
T.C. 

BAHÇEŞEHİR UNIVERSITY 

 

 

 

 

 

 

MOTION AND FORCE CONTROL OF 

UNDERACTUATED ROBOT MANIPULATORS 

BASED ON PROJECTED INVERSE DYNAMICS  

 

 

Master’s Thesis 

 

 

 

SEDA KORKMAZ 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

İSTANBUL, 2016 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



T.C. 

BAHÇEŞEHİR UNIVERSITY 

 

GRADUATE SCHOOL OF NATURAL AND APPLIED 

SCIENCES 

MECHATRONICS ENGINEERING 

 

 

 

MOTION AND FORCE CONTROL OF 

UNDERACTUATED ROBOT MANIPULATORS 

BASED ON PROJECTED INVERSE DYNAMICS 

 

Master’s Thesis 

 

 

 

 

SEDA KORKMAZ 

 

 

 
 

 

ADVISOR: ASST. PROF. MEHMET BERKE GUR 

 

 

 

 

 

 

İSTANBUL, 2016



 

THE REPUBLIC OF TURKEY 

BAHCESEHIR UNIVERSITY 

 

GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES 

MECHATRONICS ENGINEERING 

 

 

Name of the thesis: Motion and Force control of Underactuated Robot 

Manipulators Based on Projected Inverse Dynamics 

Name/Last Name of the Student: Seda Korkmaz 

Date of the Defense of Thesis:  

 

The thesis has been approved by the Graduate School of Natural and Applied 

Sciences. 

 

                                                                                        Signature 

     Assoc. Prof. Nafiz ARICA 

                         Program Coordinator 

              

 

I certify that this thesis meets all the requirements as a thesis for the degree of 

Master of Science.   

     

                                                                                       Signature 

      Asst. Prof. Mehmet Berke GÜR 

                         Program Coordinator 

              

 

 

This is to certify that we have read this thesis and we find it fully adequate in 

scope, quality and content, as a thesis for the degree of Master of Science.  

 

        

 

Examining Comittee Members       Signature____  

 

Thesis Supervisor     ----------------------------------- 

Asst. Prof. Mehmet Berke GÜR 

    

Member      ----------------------------------- 

Ph.D. Yongki YOON 

 

Member      ----------------------------------- 

Asst. Prof. Uğur TÜMERDEM 

 

 

 



iii 

 

 

ABSTRACT 

 

 

MOTION AND FORCE CONTROL OF UNDERACTUATED ROBOT 

MANIPULATORS BASED ON PROJECTED INVERSE DYNAMICS  

 

 

Seda Korkmaz 

 

Mechatronics Engineering 

 

Thesis Supervisor: Asst. Prof. Mehmet Berke Gür 

 

 

April 2016, 68 pages 

 

 

The control of underactuated robot manipulators is a challenging problem since they 

have less control input than their degrees of freedom. Underactuated robotic systems are 

seen in different types in real applications which have similar problems that the 

uncontrolled degree of freedom makes accurate manipulation difficult. 

 

This thesis focuses on the position-force control of underactuated robots using projected 

inverse dynamics based control schemes. The projected inverse based control approach 

considers the constraint forces in addition to the motion. The linear projection matrix 

decomposes the joint input torque to its two components which creates the motion and 

constraint force. This fact allows developing two different feedback control loops and 

implementing them simultaneously. Also, the relation between the acceleration and 

constraint force yields a formulation that the constraint forces can be estimated by the 

knowledge of control input.  

 

In order to build the model of dynamics and to design controllers, it is important to 

observe the behaviors of robots during the simulation. V-REP creates a visualization of 

all the bodies in mechanical model. This simulator also gives an opportunity to simulate 

motions of robotic systems by specifying the mass properties of bodies and to initiate 

and observe body motions. 
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In this study, in order to develop the controllers, first, the necessary definitions are made 

and the dynamic formulations are explained which is basis of the control approach. 

Then, the kinematic and dynamic analysis is demonstrated for the PHANTOM Omni 

manipulator, which is a RRR articulated robot platform used in simulations and 

experimental studies. Eventually, the underactuated controller schemes are explained 

and they are implemented to the robot via Matlab/V-REP and experimentally.  

 

Underactuation is imposed artificially without applying any control input to one of the 

joints making it passive. In order to compensate the lost torque at passive joint, the 

active joint that produces torque in the same direction with the passive joint is used. The 

PHANTOM Omni robot which used in simulation and experimental studies has a 

structure that only last two joints generate torque in the same direction. Hence, when 

one of them is chosen as passive, only one joint remains to control. There are also 

differences between the control performances while robot operates in vertical and 

horizontal directions. If there is no constraint in vertical axis, the precision of control 

decreases due to the gravitational affects. Nevertheless, according to the results, it can 

be asserted that the desired control is achieved with minor steady state errors in an 

admissible range. 

 

Keywords:  Underactuation, Projected Inverse Dynamics, Motion/Force Control 
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ÖZET 

 

 

EKSİK TAHRİKLİ ROBOT KOLLARIN TERS İZDÜŞÜM DİNAMİĞİ 

YÖNTEMİ İLE HAREKET VE KUVVET KONTROLÜ 

 

 

Seda Korkmaz 

 

Mekatronik Mühendisliği 

 

Tez Danışmanı:  Yrd. Doç. Mehmet Berke Gür 

 

 

Nisan 2016, 68 sayfa 

 

 

Kontrol giriş sayısının robotun serbestlik derecesinden az olması, eksik tahrikli 

manipülatörlerin kontrolünü zorlu bir problem haline getirmektedir. Eksik tahrikli 

robotlar pek çok farklı türde olabileceği gibi, tümünde ortak sorun, kontrol edilmeyen 

serbestlik derecesi nedeni ile robotun hedeflenen performansı yerine getirmesinin 

güçleşmesidir.  

 

Bu tez çalışmasında, eksik tahrikli robot manipülatörlerinin kontrolü için izdüşüm 

operatörü tabanlı dinamik çözüm ve denetleyici tasarımları üzerinde durulmuştur. Bu 

yöntem ile hareket kontrolü ile birlikte, robotların herhangi bir nesne ile temasları 

durumdaki kuvvet kontrolü de ele alınmaktadır. Giriş kuvvetinin izdüşüm operatörü ile 

harekete ve tepki kuvvetlerine neden olan bileşenlerine ayrılması, iki bağımsız geri 

beslemeli kontrol şemasının geliştirilmesi ve aynı anda uygulanmasına olanak 

sağlamaktadır. Bununla birlikte hareket ve tepki kuvvetleri arasındaki bu ilişki, 

hareketin bilinmesi ile kuvvetlerin de öngörülebildiği bir formülasyon sunmaktadır.  

 

Robotların hareket kabiliyetini benzetim sırasında yakından gözlemlemek, 

dinamiklerinin benzetimi ve denetleyici tasarımında oldukça önemlidir. V-REP, robotun 

mekanik modelini görselleştirilirken, aynı zamanda modellenen dinamiğin ve tasarlanan 

denetleyicilerin katı model üzerindeki sonuçlarını da gözlemleme fırsatı vermektedir. 
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Bu çalışmada, test için kullanılan denetleyicilerin elde edilmesi için öncelikle gerekli 

tanımlamalar yapılmış, ardından kontrol yönteminin temel aldığı dinamik formülasyon 

açıklanmıştır. Denetleyicilerin uygulandığı robot manipülatörü olan PHANTOM Omni 

robot için kinematik ve dinamik analizler yapılmıştır. Son olarak, denetleyiciler 

açıklanmış ve Matlab ve V-REP benzetim ortamlarında ve deneysel olarak testleri 

yapılmıştır.  

 

Herhangi bir ekleme kontrol girişi uygulanmaması ile o eklem yapay olarak pasif hale 

getirilerek, eksik tahrikli robot kontrol şemaları uygulanmıştır. Pasif olan eklemdeki 

torku karşılamak için, onunla aynı yönde tork üreten aktif eklem kullanılmıştır. 

PHANTOM Omni robotta ikinci ve üçüncü eklemler aynı yönde tork üretmektedir, bu 

nedenle herhangi biri pasif olarak seçildiğinde kontrol tek bir eklem ile sağlanmaktadır. 

Ayrıca robotun düşey ve yatay eksenlerindeki hareketleri arasında da yerçekimi etkisi 

nedeni ile farklılıklar görülmektedir. Robotun düşey eksendeki hareketini sınırlayıcı bir 

yüzey olmaması durumunda yerçekimi etkisi ile kontrol hassasiyeti düşmektedir. 

Bununla birlikte, elde edilen sonuçlar, kontrol hedeflerine kalıcı durumda kabul 

edilebilir ölçüde küçük hatalarla varılabildiğini göstermektedir. 

 

Anahtar Kelimeler: Eksik Tahrikli Robot Kontrolü, İzdüşüm Operatörü Tabanlı 

Dinamik Modelleme, Hareket/Kuvvet Kontrolü 
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1. INTRODUCTION 

 

Underactuated robots belong to a special class of mechanical systems which have fewer 

independent input commands than number of generalized coordinates. There are 

different kinds of mechanisms that exhibit underactuation like free-floating space 

satellites equipped with robots, underwater vehicles, redundant snake robots and legged 

humanoids with passive joints. Control of this class of robot manipulators differs from 

the conventional robot types since passive links cannot be independently controlled. 

 

Serial chain underactuated manipulators may be in various types such as robots with 

flexible links, rigid robots with joint transmission elasticity or rigid robots with passive 

joints. In the first two cases, a manipulator with flexible links and a rigid robot with 

joint elasticity are inherently underactuated. While their joints are able to control 

directly by the actuators, the internal degrees of freedom causing the flexibility of the 

links or transmission elasticity cannot be controlled. Robots with passive joints 

connected by the rigid links are designed for reducing the energy consumption or 

avoiding them to become heavy and bulky. A conventional robot manipulator with 

failed joints is also a type of underactuated robot with passive joints. 

 

Despite of its wide definition, various types of underactuated systems have different 

difficulties from the control perspective. Particularly, robots with passive joints give 

raise to control problems that the classical feedback control approaches turn out to be 

inadequate.  

 

In addition to manipulation problem of underactuated mechanisms, it is becoming 

increasingly necessary for robots to interact safely with their environments. As robotic 

applications become gradually prevalent, robotic systems are increasingly employed in 

various industrial, medical, military and exploratory applications. In many applications, 

most of the robots operate in complex environments while interacting closely with 

environment and performing a variety of tasks. In order to make robot manipulators 

stable, safe, and robust to disturbances caused by the environment, and to improve their 
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overall performance, it is required to regulate the contact forces in addition to motion 

control. To this end, joint torque control is used instead of motion control. 

 

Underactuated robotic systems can be found in various types in real life applications. A 

legged robot is underactuated, since the toe behaves as a pin joint which the robot can 

rotate around. This additional degree of freedom is not governed directly by actuators. 

Most of the swimming and flying robots such as underwater vehicles, surface vessels 

and space craft are underactuated. The underactuation is originated from extra degrees 

of freedom coming with each control surface. Those vehicles cannot easily be used for 

interactive control by a manipulator due to the impossibility of handle the generalized 

forces exchanged with the manipulator’s base. In Figure 1.1, an example of 

underactuated systems is given. 

 

Figure 1.1 : Underactuated biped robot  

 

 

   Reference: Rabbit, 2003 

 

This work focuses on controlling the motion of an underactuated manipulator while also 

controlling the contact force between the environment and robot arm, using projected 

inverse based control schemes. The control method based on projected inverse 
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dynamics directly uses the constraints to control the motion and minimize the 

instantaneous joint torques. 

 

Projected inverse dynamic method that is used in this study proposes a unified 

formulation for dynamic equations of motion which gives a solution even in case of 

linearly dependent constraint equations. This fact is an advantage of the method in the 

presence of singular configurations. Another plus is the separation of joint input torque 

into its two orthogonal components which creates motion and constraint forces. Use of 

the control input in terms of motion and force allows developing two separate control 

laws for motion and force. The relation between motion and contact force also yields a 

formulation for obtaining the contact forces by using the information of input torques. 

This result allows utilizing of controllers without any force/torque sensor. So, the 

drawbacks such as noise, complexity and instability of sensor usage are eliminated in 

real applications. 

 

1.1 PROBLEM DEFINITION 

 

The control of underactuated manipulators is crucial for some applications. For 

example, where failed actuators cannot easily be repaired, it is important to control of 

the robot arm by the remaining actuators. In addition to manipulation problem of the 

robots with failed actuators, a robot manipulator can be designed as underactuated for 

special reasons such as reducing energy consumption or for lightweight construction. 

 

Robot manipulators are described by their degrees of freedom (DOF) that refer to the 

number of single-axis joints in the arm that indicates capability of positioning. 

Manipulators require at least six DOF to manipulate an object in any position and 

orientation in Cartesian space, consisting of three in translation and three in orientation. 

This study focused on underactuated robot manipulators with passive joints which have 

less control inputs than their DOF. Although more actuators increase versatility, they 

also increase the size, weight, complexity, cost, and energy consumption. The tasks 

where it is required to eliminate these properties, underactuated manipulators may be 

utilized. Alternatively, for a successful manipulation of an underactuated robot which 
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has at least one failed joint, the remaining actuators should control the robots with failed 

joints which work at place cannot easily be reached. Underactuated structure offers a 

number of benefits as being simple and high efficient than their fully actuated 

alternatives while the control of them are theoretically more complex. 

 

Although many different solutions have been proposed, the control of underactuated 

robot manipulators is still an active and challenging problem due to completely free 

joints. The characterization of controllability properties is one of the most basic 

problems for controlling of underactuated robots. The underactuated robots moving in 

the horizontal plane, the effect of the gravity may guarantee the local controllability. 

But there may not controllability condition for underactuated robotic systems with drift 

terms. 

 

In this thesis, controllers for constrained underactuated systems are investigated by first 

considering the projected inverse dynamics. Then underactuation is resolved through 

the addition of dynamically consistent control torques to the active joints. The term of 

the linear projection operator is used to develop a controller for constrained 

underactuated robotic manipulators. 

 

Projection of the control input yields an explicit formulation that allows a better 

understanding of motion and constraint forces of the robot manipulator. In the absence 

of actuators for some of the joints, remaining actuators should compensate the required 

control torques in order to manipulate the robot performing a task. For this purpose, 

another linear transformation matrix is defined called as underactuation matrix. The 

vector space includes the torques all of the passive and active joints assuming they all 

produce forces, can be mapped onto space only actuated joints through this 

underactuation matrix. This mapping operation which is stored by underactuation 

matrix is used to develop the suitable controllers that can achieve the desired motion 

and force. 
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1.2 LITERATURE SURVEY 

 

Classical robot control techniques often rely on the linearly independent spatial 

constraints and the invertible full rank Jacobian matrix. In the presence of singular 

configurations and redundancy, the Jacobian turns out to be a non-invertible matrix. The 

augmented Lagrangian method that solves the dynamic equations with an iterative 

process was proposed by Blajer (2002) which is able to overcome the singularities and 

redundancy. Generalized inverse and pseudoinverse of the Jacobian (Hollerbach 1987) 

have been also used to solve this problem. The projected inverse based control approach 

used in this study yields a solution that is applicable in case of singular constraints and 

redundancy. 

 

The control of underactuated systems is an active research area in control of robotic 

systems. Most of the methods and solutions have been so far obtained by adapting the 

control approaches to the specific mechanism considered. Despite a number of different 

methods to control underactuated robotic systems, the number of general principles is 

not much sufficient. This section of thesis aims to review the literature which reports on 

the existing underactuated robot control algorithms. 

 

The modeling and analysis of underactuated manipulators for control purposes have 

been presented in different forms by researchers. In the deficiency of control input in 

the dynamic equations of motion for such systems, input-output feedback linearization 

method for controlling becomes non-applicable. In order to overcome this problem, 

partial feedback linearization control has been widely used proposed by Spong (1994). 

Partial linearization method makes controlling of highly nonlinear dynamics of fully 

actuated robots easier with suitable linear control methods. This method can also be 

applied for underactuated robots provided that mass matrix satisfies the certain criteria. 

 

There are different energy based control methods such as and Lagrangian and direct 

Lyapunov method. Bloch (2001) used controlled Lagrangian method which is obtained 

by modifying only the generalized inertia matrix and the potential energy function. 

Control process is realized by shaping the Lagrangian with suitable equilibrium states 

and structural features by using control inputs. Direct Lyapunov method used by White 



6 

 

et. al. (2007) serves a nonlinear solution by Lyapunov functions consists of kinetic and 

potential portions.  

 

There are typical differences between a practical control system and its theoretical 

model due to pre-modeled dynamics, uncertainties and disturbances. Robust control 

(Bergerman et. al. 1994) and adaptive control (Moore et. Al. 2014) are two main 

techniques for compensation of parameter uncertainties since they use online 

identification of either system parameter. 

 

In this work, the control method is used based on projected direct and inverse dynamics 

proposed in study of Aghili (2005). This dynamic derivation with projected dynamics is 

applicable to achieve a joint space and an operational space controller. In joint space 

controller scheme, control input is projected into its two orthogonal components which 

lead the motion and reaction forces. This approach yields an effective formulation to 

manipulate an underactuated manipulator and minimize the actuation force. Operational 

space controller derived using this method decomposes rigid body dynamics into task 

space and null space dynamics in study of Mistry et. al. (2011). Underactuation is 

addressed by using null space forces indirectly apply torque at passive DOF such as at 

active joints performing a task. 
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2. DYNAMICS BASED ON ORTHOGONAL PROJECTIONS 

 

This chapter of thesis will start from the explanation of inverse and direct dynamic 

formulation based on projection operator method in order to define the kinematics and 

dynamic of the system. Then the application of the method on PHANTOM Omni robot 

arm will be presented.  

 

The development presented in this chapter is based on the work of Aghili (2005). 

Formulation for the direct and the inverse dynamics of robot manipulators based on the 

linear projection operator serves a basis for modeling, analysis and control of 

underactuated manipulators. In order to derive controllers for constrained underactuated 

manipulators, underactuation is resolved by the addition of suitable control inputs 

considering the projected inverse dynamic. 

 

The linear projection matrix is an 𝑛𝑥𝑛 square matrix, while 𝑛 denotes the DOF of the 

robot. According to this method, first, constraint forces are annihilated from projection 

of the dynamic equations by the projection operator into the null space. Then, the direct 

dynamics is derived that relates the null space of constraint Jacobian to the acceleration 

by introducing a constraint inertia matrix that is always invertible. Subsequently, the 

constraint torques/forces are calculated through projecting the dynamics into the null 

space orthogonal. The approach is applicable also for systems with singular 

configuration or redundant constraints. 

 

2.1 PROJECTION OPERATORS 

 

In order to achieve dynamic model of mechanical systems, equations of motion need to 

be written in acceleration level and the applied torques need to be defined which are the 

projection of the forces along the axes of rotation. For the mechanisms constrained by 

their environment, orthogonal components of force and acceleration which are in 

direction of the constraint and motion, helps to describe overall dynamics of the system. 

Using the linear projection operator which includes the constraint condition, the 

orthogonal components of kinematic and dynamic parameters can be obtained. 
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Mathematically, a transformation A ∶  X →  Y from a vector space X to a vector space Y 

is a linear transformation by definition, if:  

 

A(ax1 + bx2) = aA(x1) + bA(x2),     x1, x2 ∈ X   a, b ∈ 𝐑             (2.1) 

 

The projection method of dynamic vectors into the null space and range space may be 

used in order to understand the behavior of constraint mechanisms. The null (ℕ) and 

range spaces (ℝ) are subspaces of a linear transformation. Null space of a linear 

transformation is defined as x ∈  ℕ(A), if Ax = 0. Range space is defined as y ∈ ℝ(A) 

if  y = A x for any x. 

    

The linear projection operator can be calculated by the singular value decomposition 

method. Singular value decomposition (SVD) is defined as factorization of a real or 

complex matrix. Assuming r is the rank of A, Σ is a diagonal matrix that is equal to 

diagonal (σ1, . . , σr), SVD of A matrix is given in the Equation (2.2) 

 

A = U Σ V                        (2.2) 

 

where U =  [U1 U2] and V =  [V1 V2] are unitary matrices. Each row of a unitary 

matrix has a norm of one and the Hermitian inner product between rows is zero.  A 

vector has unique orthogonal decompositions, if the elements of vector have 

homogeneous measure units. The components of the decomposition of any x vector are 

obtained by using the projector operator as follows:  

 

x∥ = P x  and x⊥ = (I − P) x                 (2.3) 

 

where x∥ and x⊥ are in subspaces of null space and the null space orthogonal of A. From 

the definition of projection operator, one can show that the kinematic and dynamic 

parameters of a mechanical system can be projected to find out the orthogonal 

components.  

 



9 

 

When a mechanism contacts with a rigid object, its motion in the particular direction is 

constrained and degree of freedom decreases. In order to obtain the projection operator 

for these mechanisms, constraint condition has to be expressed mathematically. This 

can be achieved by definition of the kinematic of constrained systems. 

 

  Figure 2.1 : Constrained motion of a mechanism 

 

 

 

 

 

 

 

 

Constraint kinematics is described by a set of nonlinear equations given in Equation 

(2.4). 

 

ϕ(q) = [

ϕ1(q)

⁞
ϕk(q)

] = 0            (2.4) 

  

where k denotes the number of constrained DOF and q denotes the vector of generalized 

coordinate represents the joint angles. Differentiation of Equation (2.4) results in a 

linear equation for the joint velocities  

 

Jcq̇ = 0                   (2.5) 

 

where  Jc is the constraint Jacobian. The joint velocities are in the null space of the 

constraint Jacobian. This mathematical equation can be explained physically with the 

fact that there will be no velocity in the constraint axis. In order to define Equation (2.5) 

with notion of projector operator, it is possible to express the null-space orthogonal 

component of velocity as follows: 

 

q̇⊥ = (I − P)q̇ = 0                 (2.6) 

x0 

z0 

y0 

Constraint axis 

Allowable axes 
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In the light of these definitions, acceleration in restricted motion direction can be found 

by time differentiation of the velocity equation. Assuming D = dP / dt, acceleration is 

obtained as following: 

 

q̈⊥ = (I − P)q̈ = D q̇                            (2.7) 

 

The null space orthogonal component of the acceleration is produced by the constraint. 

The projection operator is obtained by, 

 

P = I − Jc
+ Jc                (2.8) 

 

where Jc
+ denotes the pseudoinverse of Jc, D matrix which is the time differentiation of 

the projection matrix P can be found by differentiation of Jcq̇ = 0 and substituting 

Equation (2.7) into resulting equation. Then, D matrix is obtained as following: 

 

D = −Jc
+ Jċ             (2.9) 

 

2.2 INVERSE AND DIRECT DYNAMICS 

 

Assuming Γ is the joint input torques and Γc is the constraint force exerted by robot, 

dynamic equation of a rigid manipulator with n DOF are expressed as follows, 

 

M(q)q̈ + b(q, q̇) + g(q) = Γ − Γc        (2.10) 

 

where M(q) is the n × n mass matrix of the manipulator, b(q, q̇) is an n × 1 vector of 

centrifugal and Coriolis terms and g(q) is an n × 1 vector of gravitational terms. 

 

Constraint force Γc is exerted by joints in the direction of limitation of motion by the 

environment. Therefore, the orthogonal null space projection of the force at that point 
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will be zero. As a consequence, the projected inverse dynamic equation can be easily 

obtained by multiplying the both side of the Equation (2.11) with projection operator. 

 

PMq̈ = P(Γ − (b + g))         (2.11) 

 

When PM term is singular, acceleration is not able to be calculated through matrix 

inversion in Equation (2.11). In order to solve this problem, the constraint inertia matrix 

formulation was developed. A solution can be obtained by multiplying Equation (2.7) 

with M and adding it to Equation (2.11) and resultant equation is found in the following 

form: 

 

Mpq̈ = P(Γ − (b + g)) + Dpq̇                   (2.12) 

 

In the equation Mp =  P M –  γ (I –  P) and Dp =  γD where γ is an arbitrary scalar, 

hence, Mp and Dp are not unique. By adding the constraint inertia term, acceleration can 

be solved using Equation (2.12) which requires that the constraint inertia matrix be 

invertible. Since the projection operator in the Equation (2.10) eliminates all forces, it is 

seen that only the null space component of the generalized input force lead the motion. 

 

Generalized input force can be decomposed into its orthogonal components by 

projection. The vector summation of these orthogonal components will give the input 

force, which called as acting ( Γ∥ ) and passive input forces ( Γ⊥ ). While passive forces 

produce the constraint forces, acting forces provides the motion of the mechanism. 

Finally, the dynamic equation of motion is expressed as shown in Equation (2.13). 

 

q̈ = Mp
−1(Γ∥ − (b + g)∥ + Dpq̇)                   (2.13) 

2.2.1 Constraint Force 

 

In order to retrieve the constraint forces, dynamic equation for a rigid manipulator given 

in Equation (2.10) is projected into the null space orthogonal using  (I –  P). The 

resultant equation is in the following form: 
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Γc = ( I − P)(Γ − (b + g)) − ( I − P) Mq̈                    (2.14) 

 

For ease of calculation, the acceleration term in Equation (2.14) can be written with 

velocity term gives a generalized equation for constraint forces. 

 

Γc = (Γ⊥ − (b + g)⊥) −  μ(Γ∥ − (b + g)∥) − μDpq̇            (2.15) 

 

where μ = (I − P)MMp
−1.  

2.2.2 Decomposition of Motion and Constraint Force 

 

For constrained mechanical systems, acceleration and constraint force can be obtained 

by decomposing the total input. Inputs channels are decomposed to their acting  Γ∥  and 

passive Γ⊥ components to obtain the acceleration and the constraint force as given in 

Figure 2.2.  

 

           Figure 2.2 : Force and acceleration relation with the input force 

 

 

 

It can be directly seen from the figure that the acceleration is created by acting force 

which is the null space component of input. However, the constraint force output can be 

affected by directly from the acting force and indirectly from the passive force which 

are null space and null space orthogonal components of input channel.  

 

Гc I - P 

Mp
-1 

𝛍 

𝐃𝐩�̇�
 

𝛍𝐃𝐩�̇�
 

Γ 

b + g 

�̈� 
P 
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If the inertia matrix satisfies the condition  μ =  0, the constraint force is no longer 

affected by the acting force. The equation of constraint force of such a system can be 

simplified to the following form given in Equation (2.16). 

 

Γc = (Γ⊥ − (b + g)⊥) − μDpq̇            (2.16) 

 

In this condition, the constraint force is directly calculated by the passive input force. 
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3. UNDERACTUATED ROBOT MANIPULATORS 

 

This section of this thesis is devoted to the derivation of the kinematic model and 

dynamic equations of motion of PHANTOM Omni (Geomagic 2016) robotic arm which 

is used in of the simulations and experimental studies. The first part provides a review 

of underactuation and utilization of Omni robot as an underactuated system. Then the 

kinematic and dynamic properties of system are explained. 

 

3.1 INTRODUCTION 

 

A manipulator is defined as a mechanical articulated arm constructed of links connected 

through joints that allow relative movements between two successive links. The 

mechanical structure of the manipulator is controlled to achieve desirable tasks. The 

information received through sensors about the environment or the robot itself is 

processed, for calculating the appropriate torques to the actuators. Controlling of these 

systems has mostly an existence of subjection to physical constraints and strong 

nonlinearities. With the inclusion of underactuated feature to manipulators, the control 

problems arise due to internal degrees of freedom caused by the passive joints. A 

mechanism has underactuation when the number of actuators is less than the number of 

generalized coordinates. An increasing interest has been focused on the applications of 

underactuated mechanical systems over the last decades. 

 

Underactuation may arise from one of the following possible ways: 

 

a. Failure of actuators: A system may become underactuated when one or more 

actuators fail to work properly. A robot manipulator which has at least one failed 

joint is an instance for this type. 

 

b. The dynamics of the system: Some mechanical systems e.g. flexible link 

robots, space crafts and underwater vehicles, underactuated feature are an 

inherent property. The extra DOF causing from the dynamics of these systems 
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may be overcome modeling them as underactuated to improve appropriate 

controllers. 

 

c. Practical purposes: A system may be designed specifically underactuated for 

practical purposes. Designing such a system may aim to achieve a mechanism 

whose energy consumption is smaller, yet whose dexterity is maintained. 

 

In this study, underactuation is imposed artificially to gain an insight in the 

underactuated control theory based on projected inverse dynamics. PHANTOM Omni 

robot arm is the basis of control studies. Although all the joints are equipped with 

actuators, some of the joints were considered as passive and control inputs are only 

implemented to active ones, while the others do not have any input. Hybrid motion 

force control of an underactuated mechanism can be thus studied on this robot. 

 

3.2 PHANTOM OMNI ROBOT MANIPULATOR 

 

The PHANTOM Omni haptic device is a small robot arm that has 3 active revolute 

joints which are actuated by computer controlled DC electric motors. Besides the active 

joints, the PHANTOM robot has 3 passive wrist joints. In simulation and experimental 

studies the first three joints of the device, i.e., the actuated joints are used. Figure 3.1 

depicts a PHANTOM Omni haptic device. 

 

        Figure 3.1 : PHANTOM Omni Robot 
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3.2.1 Kinematic Model 

 

In this section of the thesis, the kinematic model of the PHANTOM Omni robot 

manipulator is explained. In order to obtain the required kinematic equations for 

developing the controllers based on projected inverse dynamics, it is a necessity to have 

the explicit expressions for the robot. 

 

The structure of the PHANTOM Omni is represented as a 3-link Revolute-Revolute-

Revolute (RRR) manipulator. While the kinematic analysis can be done through purely 

geometric structure, a more customized method will be used called as Denavit-

Hartenberg method (Spong 2005) which includes four parameters (DH parameters) 

defining the orientation and position of the joints. The starting point is the frame 

attachment to the joints that is given in Figure 3.2 

 

     Figure 3.2 : Kinematic model of PHANTOM Omni 

 

 

 

The coordinate frames are defined from the base which defined as frame 0 to the end 

effector frame defined as frame 4. With the base frame attached to the ground, the 

architecture can be easily described using the DH parameters shown in Table 3.1.  
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         Table 3.1 : DH Table of PHANTOM Omni Robot 

 

i ϴi di ai αi 

0-1 ϴ1 0 0 0 

1-2 ϴ2 0 0 -π/2 

2-3 ϴ3 0 l1 0 

3-4 0 0 l2 0 

 

Assume that   ci  =  cos(qi), si  =  sin(qi),  cij  =  cos(qi  + qj)  and  sij  =  sin(qi  +

 qj), (i = 1, 2, 3 and j = 1, 2, 3). The transformation matrices corresponding to the 

each frame attached to the joints is given as the following: 

 

T1
0 = [

c1 −s1 0 0 
s1 c1 0 0
0 0 1 0
0 0 0 1

] T2
1 = [

c2 −s2 0 0
0 0 1 0

−s2 −c2 0 0
0 0 0 1

] 

 

T3
2 = [

c3 −s3 0 l1
s3 c3 0 0
0 0 1 0
0 0 0 1

] T4
3 = [

1 0 0 l2 

0 1 0 0
0 0 1 0
0 0 0 1

]                        (3.1) 

 

Subsequently, the homogeneous transformation matrix of the end effector with respect 

to the based coordinate system calculated by, 

 

T4
0 = T1

0  T  2
1 T 3

2 T4
3             (3.2) 

 

is given by the Equation (3.3) 
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T4
0 = [

c1 c23 −c1s23 −s1 l2c1 c23 + l1c1c2

s1c23 −s1s23 c1 l2s1 c23 + l1s1c2

−s23 −c23 0 −l1s2 − l2s23

0 0 0 1

]                  (3.3) 

 

Differentiation with respect to joint variables of the forward kinematics position 

equations yields the below equation, 

 

ẋ = J(q)q̇             (3.4) 

 

ẋ is the velocity of end effector, q̇ is the vector of joint velocities, J(q) is a 6xn matrix 

whose elements are in general nonlinear functions is called as Jacobian matrix. End 

effector velocity vector ẋ consist of the two components, linear and angular velocity 

expressing by Equation (3.5) 

 

ẋ = [
v
ω

]                      (3.5) 

 

Since the first three joint is considered for the simulation studies, Jacobian matrix has 

dimensions as 6 × 3. The last three rows that correspond to angular velocity of J are 

relevant for calculations and it can be directly calculated considering the position 

equations from the forward kinematics by the Equation (3.6).  

 

J = [

−s1 (l1c2 + l2c23) −c1 (l1s2 + l2s23) −l2c1s23

−c1 (l1c2 + l2c23) −s1 (l1s2 + l2s23) −l2s1s23

0 −(l1c2 + l2c23) −l2c23

]                (3.6) 

 

3.2.2 Dynamic Analysis 

 

The dynamic equations give the relationships between input forces and constraint forces 

acting on joints. In order to analyze and implement the controllers it is necessary to 

know the dynamic equation of the PHANTOM Omni. These equations governing the 



19 

 

motion of this serial 3-RRR manipulator are calculated through the Newton-Euler 

equations. 

 

Newton - Euler method that computes torques using the motion of the links and joints 

consists of two parts. First, link velocities and accelerations are computed iteratively 

from link 1 out to link n, then, forces are derived recursively from link n back to link 1. 

(Craig 2005) 

 

In order to achieve the force and torque equations, following iterations is utilized. 

 

Outward iterations: i: 0 2 

 

ωi+1
i+1 = Ri

i+1 ωi i + q̇i+1 Ẑi+1
i+1          (3.7) 

ω̇i+1
i+1 = Ri

i+1 ω̇i i + Ri
i+1 ωi i  ×  q̇i+1 Ẑi+1

i+1 + q̈i+1 Ẑi+1
i+1      (3.8) 

v̇i+1
i+1 = Ri

i+1  ( ω̇i i  ×  pi i+1 + ωi i  ×  ( ωi i  ×  pi i+1) + v̇i i)  

              (3.9) 

v̇i+1
ci+1

= ω̇i+1
i+1 𝚡 Pi+1

ci+1
+ ωi+1

i+1  ×  ( ωi+1
i+1  ×  Pi+1

ci+1
) + v̇i+1

i+1)    

              (3.10) 

Fi+1
i+1 = mi+1 v̇i+1

ci+1
         (3.11) 

𝑁i+1
i+1 = I

ci+1
i+1 ω̇i+1

i+1 + ωi+1
i+1 × I

ci+1
i+1 ωi+1

i+1     (3.12) 

 

Inward iterations: i: 3 1 

 

fi i = Ri+1
i+1

i fi+1
i+1 + Fi i         (3.13) 

Γi i = 𝑁i i + Ri+1
i+1

i Γi+1
i+1 + Pi ci

× Fi i + pi i+1𝚡 Ri+1
i+1

i fi+1
i+1   (3.14) 

 

In order to derive the dynamics of the Omni robot, first step is to define centers of 

gravity which are the distances from the origins of the link frames to the centers of the 

gravity of links. Subsequently, the inertial parameters must be defined. In this study, the 

inertias are calculated assuming the links are cylindrical with the diameter of the 

cylinder smaller than their lengths. 
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        Figure 3.3 : Inertia Calculation 

 

 

 

 

Moments of inertia of link 2 and link 3 are calculated by Equation (3.16) assuming they 

are slender rods with the diameter of the cylinder comparatively smaller than their 

length. Ixxi
( i=2,3) is neglected since the radius of the rod is much smaller than the 

length. 

 

Ici
= [

Ixxi 0 0
0 Iyyi 0
0 0 Izzi

] = [

0 0 0
0 ml2/3 0

0 0 ml2/3
]      (i=2,3)                     (3.15) 

 

Mass of the link is denoted by m and length denoted by l inertias. Moment of inertia for 

the first link is calculated assuming that it is a solid sphere where the mass moment 

inertia matrix is Ic1
= diag (2mr2/5, 2mr2/5, 2mr2/5) . Center of mass locations 

are: 

 

Pc,1 = {0,0,0},    Pc,2 = {l1 2⁄ , 0,0},    Pc,3 = {l2 2⁄ , 0,0}     (3.16) 

 

Since the center of mass is too close to rotation axis for the first link, mass location of it 

is assumed as zero.  With the knowledge of the kinematics and mass distribution of the 

manipulator, the joint forces required to lead motion is derived by using Newton -Euler 

outward and inward equations. Joint torque equations are given by: 
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Г1 =
1

8
(θ̈1(8Sin(θ2)

2Ixx2 + 8Sin(θ2 + θ3)
2Ixx3 + 4Iyy2 + 4Cos(2θ2)Iyy2 +

4Iyy3 + 4Cos(2(θ2 + θ3))Iyy3 + 8Izz1 + l1
2m2 + Cos(2θ2)l1

2m2 + 4l1
2m3 +

4Cos(2θ2)l1
2m3 + 4Cos(θ3)l1l2m3 + 4Cos(2θ2 + θ3)l1l2m3 + l2

2m3 + Cos(2(θ2 +

θ3))l2
2m3) + 2θ̇1(θ̇2(4Sin(2θ2)Ixx2 + 4Sin(2(θ2 + θ3))Ixx3 − 4Sin(2θ2)Iyy2 −

4Sin(2(θ2 + θ3))Iyy3 − Sin(2θ2)l1
2m2 − 4Sin(2θ2)l1

2m3 − 4Sin(2θ2 + θ3)l1l2m3 −

Sin(2(θ2 + θ3))l2
2m3) + 2Sin(θ2 + θ3)θ̇3(4Cos(θ2 + θ3)Ixx3 − 4Cos(θ2 +

θ3)Iyy3 − l2(2Cos(θ2)l1 + Cos(θ2 + θ3)l2)m3)))      (3.17) 

 

Г2 =
1

8
(θ̇1

2(−4Sin(2θ2)Ixx2 − 4Sin(2(θ2 + θ3))Ixx3 + 4Sin(2θ2)Iyy2 +

4Sin(2(θ2 + θ3))Iyy3 + Sin(2θ2)l1
2m2 + 4Sin(2θ2)l1

2m3 + 4Sin(2θ2 + θ3)l1l2m3 +

Sin(2(θ2 + θ3))l2
2m3) + 2(θ̈2(4Izz2 + 4Izz3 + l1

2m2 + 4l1
2m3 + 4Cos(θ3)l1l2m3 +

l2
2m3) + θ̈3(4Izz3 + l2(2Cos(θ3)l1 + l2)m3) − 2(gCos(θ2 + θ3)l2m3 +

l1(gCos(θ2)m2 + (2gCos(θ2) + 2Sin(θ3)θ̇2θ̇3l2 + Sin(θ3)θ̇3
2l2)m3))))   (3.18) 

 

Г3 = 
1

4
(4θ̈3Izz3 + θ̈3l2

2m3 − 2gCos(θ2 + θ3)l2m3 + 2Sin(θ3)dθ2
2l1l2m3 +

θ̈2(4Izz3 + l2(2Cos(θ3)l1 + l2)m3) − Sin(θ2 + θ3)θ̇1
2(4Cos(θ2 + θ3)Ixx3 −

4Cos(θ2 + θ3)Iyy3 − l2(2Cos(θ2)l1 + Cos(θ2 + θ3)l2)m3)     (3.19) 

 

The dynamic equations for the manipulator can be written in the form: 

 

[

m11 0 0
0 m22 m23

0 m32 m33

] [

q̈1

q̈2

q̈3

] + [ 

b1

b2

b3

 ] + [ 
0
g2

g3

 ] = [ 

Г1

Г2

Г3

 ]                      (3.20) 

 

Thus, each element of the mass (M) and centrifugal - coriolis (b) vector and vector of 

gravitational terms (g) can be written as following:    

 

m11 =
1

8
(8Sin(θ2)

2Ixx2 + 8Sin(θ2 + θ3)
2Ixx3 + 4Iyy2 + 4Cos(2θ2)Iyy2 + 4Iyy3 +

4Cos(2(θ2 + θ3))Iyy3 + 8Izz1 + l1
2m2 + Cos(2θ2)l1

2m2 + 4l1
2m3 +

4Cos(2θ2)l1
2m3 + 4Cos(θ3)l1l2m3 + 4Cos(2θ2 + θ3)l1l2m3 + l2

2m3 + Cos(2(θ2 +

θ3))l2
2m3)              (3.21) 
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m22 =
1

4
(4Izz2 + 4Izz3 + l1

2m2 + 4l1
2m3 + 4Cos(θ3)l1l2m3 + l2

2m3)     (3.22) 

 

m23 =
1

8
(4Izz3 + l2(2Cos(θ3)l1 + l2)m3)        (3.23) 

 

m32 =
1

4
(4Izz3 + l2(2Cos(θ3)l1 + l2)m3)        (3.24) 

 

m33 =
1

4
(4Izz3 + l2

2m3)          (3.25) 

 

b1 =
1

8
(2θ̇1(θ̇2(4Sin(2θ2)Ixx2 + 4Sin(2(θ2 + θ3))Ixx3 −  4Sin(2θ2)Iyy2 −

 4Sin(2(θ2 + θ3))Iyy3 − Sin(2θ2)l1
2m2 − 4Sin(2θ2)l1

2m3 − 4Sin(2θ2 + θ3)l1l2m3 −

Sin(2(θ2 + θ3))l2
2m3) + 2Sin(θ2 + θ3)θ̇3(4Cos(θ2 + θ3)Ixx3 − 4Cos(θ2 +

θ3)Iyy3 − l2(2Cos(θ2)l1 + Cos(θ2 + θ3)l2)m3)))        (3.26) 

 

b2 =
1

8
(θ̇1

2(−4Sin(2θ2)Ixx2 − 4Sin(2(θ2 + θ3))Ixx3 + 4Sin(2θ2)Iyy2 +

4Sin(2(θ2 + θ3))Iyy3 + Sin(2θ2)l1
2m2 + 4Sin(2θ2)l1

2m3 + 4Sin(2θ2 + θ3)l1l2m3 +

Sin(2(θ2 + θ3))l2
2m3) + l1(2Sin(θ3)θ̇2θ̇3l2 + Sin(θ3)θ̇3

2l2)m3)                (3.27) 

 

b3 =
1

4
(2Sin(θ3)θ̇2

2l1l2m3 − Sin(θ2 + θ3)θ̇1
2(4Cos(θ2 + θ3)Ixx3 − 4Cos(θ2 +

θ3)Iyy3 − l2(2Cos(θ2)l1 + Cos(θ2 + θ3)l2)m3)      

    (3.28) 

 

g2 = −
1

4
(gCos(θ2 + θ3)l2m3 + l1(gCos(θ2)m2 + 2gCos(θ2))m3)     (3.29) 

 

g3 = −
1

2
(gCos(θ2 + θ3)l2m3)         (3.30) 

 

Using the dynamics of the PHANTOM Omni considering approximations of the inertial 

parameters of each links, a control scheme can be implemented to robot arm. 
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4. CONTROL OF UNDERACTUATED MANIPULATORS 

 

In a motion control application, it is desired to move a robot manipulator to a goal 

position in order to perform a task. Robotic tasks are generally defined in the 

operational space in notion of the end effector, as control schemes are applied in the 

joint space to reach the desired targets. This fact leads to two different control problems 

called as joint space control and operational space control (Chung 2007). 

 

For a successful manipulation task, it is required to overcome the interactions of robot 

and its environment. Only motion control becomes inadequate since the effect of the 

contact force, causing instability during the interaction. This case makes the force 

control necessary to perform a stable behavior of a robot manipulator in structured 

environments. 

 

This section of thesis aims to explain projected inverse based control strategy to control 

of motion and regulate the interaction of the manipulator with environment. The method 

exhibits the opportunity of deriving and combining two different feedback control law 

through motion and force estimation. 

 

Regarding to this purpose, the motion/force control of robotic manipulators will be 

explained based on the projected inverse dynamics. The relationship between control 

force and direct and inverse dynamics is used as the basis of position/force control 

structure. By considering the orthogonal components of the input force called as acting 

and passive forces which lead to the motion and constraint forces, control schemes for 

position and force are developed. A position control loop is constructed thanks to the 

inherent of the acceleration channel that is decoupled. In case of force control, the 

components of input force are both used to derive the constraint force as a feedback and 

by comparing the desired force; a control feedback loop is built. 
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4.1 JOINT SPACE CONTROL OF UNDERACTUATED MANIPULATORS 

 

The purpose of the joint space motion control is to develop a controller that the joints 

follow the desired motion as closely as possible. By choosing the control forces as 

input, the control of robot manipulators is performed in the joint space. The desired 

motion may be expressed in terms of end effector coordinates and through the inverse 

kinematics and Jacobian of robot; they are converted to a joint trajectory. In this case, 

the controller calculates the joint force required to move the manipulator along the 

desired trajectory defined in joint coordinates. 

 

           Figure 4.1 : Concept of joint space motion control 

 

 

 

In case of manipulators which constrained by environment, the number of DOF of the 

system decreases by presence of independent constraints. Therefore, dependent and 

independent coordinates have to be considered in solving of control problem. During 

interaction, the constraint physically limits on the trajectories that can be tracked by the 

end effector. In this case, the constraint forces have to be regulated. 

 

Controlling the contact force requires force feedback similar to that of motion control. 

In case joint space control, it is hard to know all the constraint forces at the joints since 

all the joints have to be equipped with torque sensors. There are different kinds of 

estimation methods to get the joint torques without sensor. Projected base dynamics 

method which used in this study, serves an estimation method based on the input 

torques. 
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4.1.1 Motion Control 

 

For an  n DOF manipulator, assuming k is the number of reduced DOF due to the 

constraints the following equation gives the generalized coordinates, 

 

q =  ψ(ϴ)             (4.1) 

 

where q represents all the joint positions and ϴ is the independent ones.  The function of 

independent coordinates must satisfy the constraint condition since, 

 

ϕ(q) = ϕ(ψ(ϴ)) = 0                       (4.2) 

 

Differentiation of this equation gives the joint velocities.  

 

q̇ =  Ʌϴ̇             (4.3) 

 

Differentiating Equation (4.3) ones more yields accelerations in terms of generalized 

coordinates. 

 

q̈ = Ʌϴ̈ + Ʌ̇ϴ̇               (4.4) 

 

Using the acceleration defined in terms of the reduced dimensional coordinate, 

projected inverse dynamic equation can be calculated.  

 

Implementing the acceleration into Equation (2.11) is given by: 

 

PM(Ʌϴ̈ + Ʌ̇ϴ̇) = P(Γ − (b + g))          (4.5) 

 

As it explained before, the main purpose of designing a controller in joint space is to 

derive the required joint forces to perform the desired joint motion. In this approach, 

decomposing the control input into its two orthogonal components yields an 
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independent law to control of the motion. The block diagram scheme of the controller is 

constructed in Figure 4.2. 

 

Figure 4.2 : Projected based joint space motion control 

 

 

 

Projected inversed based motion control law is obtained by retrieving the acting joint 

torques from the inverse dynamic equation. 

 

Γ∥ = (b + g)∥ + P M up                   (4.6) 

 

In the Equation (4.6), up is equal to the acceleration defined in terms of the reduced 

dimensional coordinate which is given in Equation (4.4). If acceleration is written with 

the desired motion variables, a Proportional Derivative (PD) control structure is 

obtained. 

 

up = Ʌ̇ϴ̇ +  Ʌ(ϴ̈d + GDėp + Gpep)                 (4.7) 

 

where ep  =  ϴd  −  ϴ position error, ėp = ϴ̇d − ϴ̇ velocity error, Gp and GD are the 

proportional and derivative gains respectively. 

 

In the case underactuation, the actuated and non-actuated joints can be called as active 

joints and passive joints, respectively. For an  n DOF manipulator, assuming there are a 
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active joints and n − a passive joints, the control force of the robot takes the form given 

by Equation (4.8) 

 

Γ =  

[
 
 
 
 
 
Γ1

⁞
Γa

0
⁞
0 ]

 
 
 
 
 

               (4.8) 

 

The control forces, from 1 to a, denote the generalized input forces of the active joints, 

while the zero columns represent the passive joints. Choosing an another appropriate 

projection operator which projects all the joint inputs into the actuator space, the 

projected inverse dynamic control scheme can be implemented for underactuated 

systems. Further information about the implementation of the method is given in the 

Hybrid motion/force control section. 

 

4.1.2 Force Control 

 

During contact of a manipulator with a surface that limits the motion, for ensuring a 

compliant behavior control accuracy must be provided. The compliant behavior may be 

realized by controlling the resultant constraint forces in addition to the motion control. 

 

Figure 4.3 : Projected based joint space constraint force control 
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The projected inverse dynamic formulation decomposes the input force into active and 

passive components that lead the motion and constraint forces, respectively. So in the 

cases such that the sign of constraint force does not change, motion control law works 

well. If not, the constraint condition may not be physically maintained using the motion 

control law. In this case, the constraint force must be controlled. The block diagram 

scheme of the controller is given in Figure 4.3. 

 

The force control law can be derived using the null space orthogonal component of 

dynamic equation. Instead of the constraint force term in Equation (2.15), force control 

law can be implemented as uF as follows: 

 

Γ⊥ = (b + g)⊥ + μ(Γ∥ − (b + g)∥ + Dq̇) + uF            (4.9) 

 

In above equation, uF denotes the force control input. Then control law can be 

implemented through this term to find out the required passive force for a desired 

constraint force. For most of the cases, P control seems adequate and force control law 

is written as a P controller given by Equation (4.10) 

 

uF = Γd + Gf ef          (4.10) 

 

where  ef  =  Γd – Γc force error and Gf  is proportional gain.  

4.1.3 Hybrid Control Method 

 

A generic hybrid position/force control law usually requires a separation for force 

control from motion control. This case may alter for different constraint states and may 

have to be changed from one constraint configuration to another within the same 

constraint state. These control schemes yield two different feedback loops which use 

force error and position error.  
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A hybrid position/force control scheme may be derived through coupling the motion 

and the force control formulations based on projected inverse dynamic by following 

equation as: 

 

Γ =  Γ∥ + Γ⊥                   (4.11) 

 

Γ = (b + g) + μDq̇ + (I + μ)PMuP + uF         (4.12) 

 

Projected inverse dynamics control approach leads to two error equations. The motion 

and force control laws can be applicable simultaneously due to the presence of two error 

information. 

 

The reduced control input through underactuation was simply expressed by Equation 

(4.8). A proper projection matrix may be defined to make this transformation assuming 

Ia is an a × a identity matrix given by Equation (4.13) 

 

B =  [
Ia 0
0 0

] ,       B Γ =  Γ         (4.13) 

 

As suggested by Mistry et. al. (2011), if JcF ≠ BJcF  additional null space torques must 

be used to compensate for underactuated dynamics. The projected inverse control law 

can be simply transformed to a new form to satisfy this condition. If the null space 

motion is a subset of the range space of this transformation (ℕ(A) ⊆ ℝ(B)), the motion 

control equation may be used as the control input. Assuming the constraint force control 

law is an orthogonal projection of such a component, 

 

Γ⊥ = (I − P)Γ0,       Γ0 ∈ ℝ         (4.14) 

 

Then the control law takes the form given as following: 

 

Γ =  Γ∥ + (I − P)Γ0                (4.15) 
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Since B transforms the input force to the actuator space, I - B projects it to the null 

space which is zero.  

 

(I − B)Γ = 0             (4.16) 

 

The same equation can be written as the following form after substitution the control 

input in Equation (4.16) 

 

(I − B)(I − P)Γ0 = −(I − B)Γ∥        (4.17) 

 

For linear systems with non-unique solutions, the pseudoinverse is used to get the 

solution of minimum Euclidean norm. In order to solve the Γ0 which is given by 

Equation (4.17), pseudoinverse is used to get a minimal actuation force. 

 

Γ0 = −((I − B)(I − P))+(I − B)Γ∥         (4.18) 

 

Substituting Γ0 into the Equation (4.14) gives, 

 

Γ⊥ = −(I − P)((I − B)(I − P))+(I − B)Γ∥                     (4.18) 

 

Eventually, the control input for an underactuated system can be obtained by summation 

of active and passive control inputs as following: 

 

Γ =  Γ∥ + Γ⊥  

    = (I + H)Γ∥                      (4.19) 

 

where H = −(I − P)((I − B)(I − P))+(I − B). 

 

Figure 4.4 : Obtaining underactuated control input 
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The controllability condition of underactuated robot under the control law is related to 

existence of a solution. 

 

In order to derive hybrid motion force/control for underactuated case, the force control 

law must be added to control equation given in Equation (4.19). When the force control 

law is written as Equation (4.18), the constraint force control law is not performed. If 

the both side of the Equation (4.19) is multiply with projection operator, the particular 

equation is taken the form, 

 

PΓ =  P(Γ∥ + Γ⊥ ) = Γ∥          (4.20) 

 

Finally the hybrid motion/force control law is written as in Equation (4.21) 

 

Γ =  Γ∥ + Γ⊥ = (I + H) P Γ                         (4.21) 
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4.2 OPERATIONAL SPACE CONTROL OF UNDERACTUATED 

MANIPULATORS 

 

Since many of the tasks require controlling of the end effector motion, joint space 

control method may turn out inadequate. This fact motivates an approach that develops 

direct control method with respect to the end effector dynamics in the operational space. 

 

Operational space dynamics present a solution for the modeling and control of robotic 

manipulators based on the dynamics of their end effectors. A unified approach for 

motion and force control is developed by Khatib (1987), based on the fundamentals of 

the operational space formulation. This method expresses decoupling task space and 

null space dynamics and constructs the control scheme with respect to the forces at the 

end effector or only motion within the null space. 

 

The required variables for operational space formulation can be calculated by the 

Jacobian and forward kinematics using the joint space variables. The Jacobian matrix 

denoted by J, transforms the joint velocity to the end effector velocity is given in 

Equation (4.21). 

 

ẋ = J(q)q̇           (4.21) 

 

The end effector acceleration is found by: 

 

ẍ = J̇(q)q̇ + J(q)q̈                (4.22) 

 

          Figure 4.5 : Concept of operational space motion control 
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Figure 4.5 depicts the generic block diagram of operational space motion control 

scheme. For controlling constraint forces, a force feedback loop is also necessary. 

Operational space dynamics can be expressed with Equation (4.23) 

 

Mt(q)ẍ + bt(q, q̇)q̇ + gt(q) = Ft                  (4.23) 

 

Ft is the control forces in the operational space. Operational space mass matrix is 

defined by, 

 

Mt(q) = J−T(q)M(q)J−1(q)            (4.24) 

 

And  

 

bt(q, q̇) = J−T(q)B(q, q̇)J−1(q) − Mt(q)J̇(q)J−1(q)              (4.25) 

 

gt(q) =  J−T(q)G(q)          (4.26) 

 

End effector motion parameters, i.e position, velocity and acceleration can be derived 

through the joint space variables. 

 

4.2.1 Motion Control in Operational Space 

 

The main purpose of the operational space control is to obtain a controller which the 

end effector motion tracks the goal motion as closely as possible. This method offers 

many advantages since they use a control scheme that directly minimize the operational 

space errors. 

 

Orthogonal projections method can be utilized for developing constrained operational 

space dynamics like joint space dynamics (Mistry et. al. 2011). Operational space 

dynamics is formulated with consideration of motion dynamic equation, when equations 
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of projected inverse dynamics are used. It leads a compact solution of passive DOFs and 

underactuated manipulators. 

 

The constraint forces caused by the contact are utilized to compensate the torque at non-

actuated joint, dynamically convenient null space forces is used to create torque at 

passive joints to achieve desired operational space dynamics. The forces in null space 

may be used to produce constraint forces or null-space motion. The identical control 

method is also valid for unconstrained systems, using null space motion to satisfy for 

passive joints. This unified formulation is applicable for all the systems even in case of 

underactuation and unconstrained motion.  

 

Projected inverse dynamic equation is given in the Equation (4.27): 

 

Mpq̈ + P(b + g) − Dpq̇ = PΓ         (4.27) 

 

Multiplying two side of the equation with  JMp
−1 

 

ẍ − J̇q̇ + JMp
−1(P(b + g) − Dpq̇) = JMp

−1PΓ          (4.28) 

 

where Jq̈ =  ẍ − J̇q̇. The force of the end effector is transformed by JT into joint torques. 

 

Ʌcẍ + Ʌc(JMp
−1P(b + g) − (J̇ + JMp

−1Dp)q̇) = F                          (4.29) 

 

where Ʌc = J−TP−1MpJ
−1. 
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Figure 4.6 : Projected based operational space motion control 

 

 

 

The block diagram scheme in Figure 4.6 shows the controller structure in operational 

space. Operational space motion control law is developed according to the projected 

inverse equation by the Equation (4.30) with a PD controller. 

 

Γ = JTF = JT(Ʌcẍdes + Ʌc(JMp
−1P(b + g) − (J̇ − JMp

−1Dp)q̇)          (4.30) 

 

and, 

 

ẍdes = Kp(xd − x) + Kd(ẋd − ẋ)        (4.31) 

 

Defining N = I − JTJT# and JT# = (JMp
−1 PJT)−1 JMp

−1 P, input torques are expressed 

by the Equation (4.32), 

 

Γ = JTF + NΓ0          (4.32) 

 

where Γ0 denotes the null space torque of a robot manipulator. B matrix, which was 

defined in Equation (4.13) , should satisfy the following condition: 

 

JTF + NΓ0 = BJTF + BNΓ0         (4.33) 

 

Retrieving Γ0 from the below equation to solve the joint torque equation gives,  
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Γ0 = ((I − B)N)+(I − B)JTF                 (4.34) 

 

The solution by pseuodinversion yields the minimum norm of Γ0. This approach 

presents a valid solution both constrained and unconstrained systems.  

 

Finally, substituting Γ0 into the Equation (4.32), the control equation is taken the 

following form: 

 

Γ = (I − N[(I − B)N]+)JTF         (4.35) 

4.2.2 Operational Space Hybrid Motion/Force Control Based on Projected 

Inverse Dynamics  

 

In this part, a hybrid motion/force control scheme in operational space has been 

proposed. The usage of linear projection matrix gives an opportunity to develop two 

different feedback control loops in operational space and implement them 

simultaneously to the robot.   

 

According to the error signal regarding to the constraint and desired forces, a force 

control scheme is built based on the projected inverse dynamics methodology. Using the 

transpose of Jacobian, desired forces in operational space are mapped into the joint 

space. By using the null space orthogonal component of input torques in Equation 

(2.10), constraint force term is derived and it is replaced by the control law defined as ζ. 

In this way; the force control law is written as in Equation (4.36). 

 

(I − P)Γ = Γ⊥ = (I − P)(b + g) + μ(PΓ − P(b + g) + Dq̇) + JTζ    (4.36) 

 

where ζ is the operational space force control law described by the following equation: 

 

ζ = Fd + Kf (Fd  − Fc)         (4.37) 
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Above equation, Fd is the desired force, Fc is the constraint force at the end effector and 

Kf is the proportional gain. 

 

Since the projection operator decomposes the joint torques into its two orthogonal 

components, the forces which create motion and force can be combined to get a hybrid 

control method. Hence, the motion control law must be written as a component which 

creates the motion. Similar to the derivation of Equation (4.36), motion control law in 

operational space is in the following form, 

 

PΓ = Γ∥ = (JMp
−1)−1(ẍdes + JMp

−1P(b + g) − (J̇ + JMp
−1D)q̇)    (4.38) 

 

The block diagram scheme in Figure 4.7 shows the controller structure. 

 

Figure 4.7 : Operational space motion/force control 
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Combining Equation (4.36) and (4.37), the motion / force control law in operational 

space is written in the following form: 

 

Γ = Γ∥ + Γ⊥ = PΓ + (I − P)Γ 

 

    = (JMp
−1)−1(ẍdes + JMp

−1P(b + g) − (J̇ + JMp
−1D)q̇) + (I − P)(b + g) +

 μ(PΓ − P(b + g) + Dq̇) + JTζ            (4.39) 
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5. SIMULATION AND RESULTS 

 

Simulation of dynamics and control design of the robotic manipulators are generally 

complicated tasks. Our problem is to obtain a model of system dynamics fast and 

reliable enough to be suitable for designing of control mechanism. This may be realized 

using Matlab (Mathworks 2016) and Virtual Robot Experimentation Platform (V-REP) 

(Coppelia Robotics 2016) through dynamic modeling and rigid model of the robot 

manipulator.  

 

V-REP is a robot simulator which is used for a wide range of applications such as rapid 

modeling and simulation and remote monitoring. This simulator allows developing the 

scripts with an external language and communicates it through a remote application 

programming interface (remote API). Matlab runs as a client which can read data from 

V-REP or send data to it. In classical client - server communication, a request is send by 

client and it waits till the server processed and replied that takes long time. In order to 

overcome this problem, the remote API allows choosing the type of operation mode and 

the way simulation advances by providing different modes to control the simulation. 

The detailed information is given in Appendix -1. 

 

      Figure 5.1 : Matlab - V-REP Communication 

 

 

 

 

 

 

 

The projected inverse based control schemes have been tested in a number of 

simulations on PHANTOM Omni robot. Controller gains used in simulation studies are 

obtained by trial and error. 

 

Omni robot manipulator model is imported as a Universal Robot Description Format 

(URDF) into the simulator. (Ruiz 2015) Since pure shapes are much more stable during 
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dynamic simulation, instead of using the complicated robot model as respondable shape, 

convex decomposition of the links are used to increase the simulation performance.  

 

5.1 TEST OF THE CONTROLLER PERFORMANCE IN CASE OF A 

CONSTRAINT IN VERTICAL AXIS 

5.1.1 Joint Space Controllers 

 

It is possible to limit the translational motion of the end effector of PHANTOM Omni in 

Cartesian coordinates. In order to develop a projected inverse based controller, 

projection matrix is calculated by corresponding to these kinematic constraints. The 

vertical translational motion of end effector is limited by the constraint equation which 

was calculated with forward kinematics: 

 

z(t)  =  ϕ(t)  =  −l1s2 − l2s23                       (5.1) 

 

Constraint Jacobian (Jc) is calculated by the differentiation of constraint equation with 

respect to the joint variables. Differentiating Equation (5.1) with respect to time yields 

the following constraint Jacobian,  

 

J𝑐  = [0    (−l1c2−l2c23)    − l2c23]                     (5.2) 

 

which can be seen as the last row of the Jacobian given in Equation (3.6). The Matlab 

code for calculating the constraint Jacobian and the projection matrix is given in Figure 

5.2. In this code, q(4), q(5), and q(6) corresponds the joint velocity that comes from 

the time derivation of the joint positions. Then, the projection matrix is obtained by 

pseudoinverse (pinv) function based on SVD. 

 

 

 

 



41 

 

Figure 5.2 : Calculation of Projection Matrix in Case of a Constraint in Z-Axis 

% Projection matrix in case of a constraint in z direction 

Jc = (0, (-l1*c2-l2*c23), -l2*c23); 

drv_Jc = (0 (l1*s2*q(5)+l2*s23*(q(5)+q(6))) (l2*s23)*(q(5)+q(6)));  

 

P = eye(3) - pinv(Jc) * Jc; 

D = -pinv(Jc) * drv_Jc; 

 

In order to test the performance of the controller considering the manipulator as fully 

actuated, Equation (4.6) is implemented. Figure 5.3 shows the simulation environment. 

 

Figure 5.3 : VREP Simulator Environment 

 

 

 

Initial joint positions are 0, π/3 and −π/6 while the desired joint trajectories are 

0.1sin(t), π/4 and 0 rad for the joint 1, joint 2 and joint 3, respectively. Such a 

trajectory gives an insight to controller performance for constant and time varying 

control inputs. PD motion controller gains (see Equation 4.7) are chosen as GP = 15, GD 

= 10.  

 

The motion of the fully actuated robot in joint space is presented in Figure 5.4.  As can 

be seen from these plots, the joints are tracking desired trajectories. 
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Figure 5.4 : Joint positions and velocities 

 

 

 

The control input and constraint forces are found as shown in Figure 5.5.  

 

         Figure 5.5 : Joint input torques 

 

 

In the second step, the underactuated motion control is tested. The actuator projection 

matrix is chosen as follows: 
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Figure 5.6 : Actuator projection matrix for passive 3rd joint 

 
% Actuator projection for underactuated control 

B =[1 0 0;0 1 0;0 0 0]; 

 

This means that joint 3 is a passive joint which has no control input, while others are the 

active joints. Using the actuator projection matrix information, controller can generate 

dynamically consistent motion for compensation of lost torque at the passive joint 

according to the control law given in Equation (4.19).  

 

PD motion controller gains are both 10 for the underactuated joint space motion control 

problem. Joint positions and velocities are given in Figure 5.7. Input forces are given in 

Figure 5.6. Although there is no applied torque at the joint 3, constraint forces create the 

motion to reach the goal position. 

 

Figure 5.7 : Joint positions and velocities while joint 3 is passive 
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Figure 5.8 : Joint input torques while joint 3 is passive 

 

 

 

In the third step, underactuated motion control of joint 2 is tested. In order to select 2nd 

joint as passive, the actuator projection matrix is chosen as following. 

 

Figure 5.9 : Actuator projection matrix for passive 2nd joint 

 

% Actuator projection for underactuated control 

B =(1 0 0;0 0 0;0 0 1); 

 

Using the actuator projection matrix, controller has generated required input commands 

to compensate lost torque at the joint 2. The joint motions are given in Figure 5.10 

while proportional and derivative gains are 10 and 5, respectively. 
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      Figure 5.10 : Joint positions and velocities while joint 2 is passive 

 

 

 

5.1.2 Operational Space Controllers 

 

For defining the desired motion in terms of operational space, the motion control law in 

Equation (4.30) is implemented. Operational space motion control performs considering 

the initial joint angles as 0, π/3 and −2π/3 which makes the end effector initial 

positions 0.132, 0, 0 m in x, y and z directions, respectively.  Set point motion control 

performance for constant references x =  x(0) + 0.02 m, where x(0) is the initial 

position in x (0.132m) direction, y =  0.1 m, is given in Figure 5.11. PD motion 

controller gains are 0.5 and 0.3 respectively.  
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Figure 5.11 : End effector positions and velocity 

 

 

 
 

 

Figure 5.12 shows the input forces while no force feedback control is applied. 

 

        Figure 5.12 : Joint input torques 
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Controller gains are Kp = 0.1 and Kd = 0.5, motion control performance is given in 

Figure 5.13. 

 

Figure 5.13 : End effector positions and velocities while joint 3 is passive 
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Figure 5.14 : Control input and null space torque while joint 3 is passive 
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5.2 TEST OF THE CONTROLLER PERFORMANCE IN CASE OF A 

CONSTRAINT IN HORIZONTAL AXIS 

 

Only the underactuated case is tested for horizontal constraints. In the horizontal 

direction the constraint equation is described by the Equation (5.2). In order to derive 

constraint Jacobian and projection matrix for this case, the required Matlab code is 

given in Figure 5.15. 

 

x(t)  =  ϕ(t)  =  l2c1c23 + l1c1c2          (5.2) 

 

Figure 5.15 : Calculation of Projection Matrix in Case of a Constraint in X-Axis 
 

% Projection matrix in case of a constraint in x direction 

Jc = (-s1*(l2*c23+l1*c2),-c1*(l2*s23+l1*s2),-l2*c1*s23); 

drv_Jc = (-c1*q(4)*(l2*c23+l1*c2)+ 

s1*(l2*s23*(q(5)+q(6))+l1*s2*q(5)), s1*q(4)*(l2*s23+l1*s2)-

c1*(l2*c23*(q(5)+q(6))+l1*c2*q(5)), l2*s1*q(4)*s23-

l2*c1*c23*(q(5)+q(6))); 

 

P = eye(3) - pinv(Jc) * Jc; 

D = -pinv(Jc) * drv_Jc; 

 

In operational space control scheme, joint 3 is set as passive joint with using 

underactuation matrix. Initial end effector positions are 0.132, 0, 0 m in x, y, and z 

directions, respectively. Underactuated motion is tested with PD gains Kp = 15 and Kd = 

5 for a constant reference 0.03 m in z direction. Since the robot has not enough 

redundancy to reach a target position without changing its current position, slight 

movements are observed in other axes to achieve the goal. End effector motions are 

given in Figure 5.16. 
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Figure 5.16 : End effector position and velocities in case of a constant input 
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to preserve the contact condition as a result of the desired end effector motions. In order 
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Figure 5.17 : Joint input and null space torques 

 

      

 

Another test is performed with time varying reference input is given next while PD 

controller gains are Kp = 10 and Kd = 0. Initials end effector positions are same while 

0 5 10 15 20 
-6 

-5 

-4 

-3 

-2 

-1 

0 

1 

Time [s] 

N
u
ll 

S
p
a
c
e
 T

o
rq

u
e
 [
N

m
] 

  

  

Joint 1 
Joint 2 

0 5 10 15 20 
-4 

-3 

-2 

-1 

0 

1 

2 

3 

Time [s] 

J
o
in

t 
In

p
u
t 
[N

m
] 

  

  
Joint 1 
Joint 2 
Joint 3 

0 5 10 15 20 
0 

0.05 

0.1 

0.15 

0.2 

Time [s] 

x
 p

o
s
.[
m

] 
  

  

  

Position 
Reference 

0 5 10 15 20 
-0.1 

-0.05 

0 

0.05 

0.1 

Time [s] 

y
 p

o
s
.[
m

] 
 

  

  

Position 
Reference 

0 5 10 15 20 
-0.04 
-0.02 

0 
0.02 
0.04 
0.06 

Time [s] 

z
 p

o
s
.[
m

] 
 

  

  

0 5 10 15 20 
-0.2 

-0.1 

0 

0.1 

0.2 

Time [s] 

E
n
d
-e

ff
e
c
to

r 
V

e
l.
 [
m

/s
] 
 

  

  
x-direction 
y-direction 
z-direction 

Position 
Reference 



50 

 

the desired position is 0.03sin(0.5t) m applied in y direction. The tracking performance 

of controller is given in Figure 5.18. In this case, in order to reach the desired position, 

joint 1 and 2 move simultaneously.  

 

Similar with the previous case, slight movements are seen in other axes although there 

is no desired movement, since the robot has not enough redundancy.  

 

Figure 5.18 : Tracking performance in case of a time varying reference input 
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Figure 5.19 : Joint input and null space torques 

 

      
 

5.3 TEST OF THE MOTION/FORCE CONTROLLER PERFORMANCE IN 

OPERATIONAL SPACE 

 

Before testing of motion/force control scheme, the pure force control law in Equation 

(4.36) is performed. In case of a constraint in vertical axis, the contact force can be 

applied in z-direction.  

 

With a controller gain Kf = 0.4, the end effector force is reached to desired value within 

a short period while desired force is applied as Fz = 1 N. 

 

Figure 5.20 : End effector force in z-direction 
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In order to test the performance of the motion/force controller considering the 

manipulator as fully actuated, Equation (4.39) is implemented. Set point motion control 

performance for constant references is given in Figure 5.21, while PD motion controller 

gains are 55 and 10, and force control gain is 0.8, respectively. 

 

           Figure 5.21 : End effector position and velocity 

 

 
 

Operational space forces are plotted in Figure 5.22. 

 

          Figure 5.22 : End effector forces 
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According to the Figures 5.21 and 5.22 which show the end effector position and forces, 

the tip of the robot manipulator reaches to the desired trajectories with accuracy while 

the 0.1 N contact force is applied in the z-direction. It can be seen from the Figure 5.22 

that although the end effector reached to its desired position, joint 2 and joint 3 continue 

to produce input torque to achieve the desired force in z direction. End effector forces 

are calculated by converting joint torques with Jacobian transpose. 

 

The tracking performance of controller in case of a time varying reference input is given 

in Figure 5.25 while PD controller gains are Kp = 65, Kd = 5 and force control gain is 

Kf = 0.8.  

 

Figure 5.23 : End effector position and velocity 
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Since the robot has not enough redundancy, reaching to the desired trajectory in y axis 

causes slight movements in other axes. The force controller performance of the robot for 

a sinusoidal trajectory is given in Figure 5.23 while the desired end effector force is 

chosen as 0.1 N. End effector forces are given in Figure 5.24. 

 

 

Figure 5.24 : End effector forces 
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In case of underactuation, the desired end effector forces using mapping to joint 

variables with Jacobian transpose may not be produced. In this case, the task space 

dynamics without the addition of null-space torques in general may not be achieved, 

and task and null space dynamics cannot be decoupled. In order to perform the 

underactuated case in operational space, joint 2 has been chosen as passive. Tracking 

performance of end effector is given in Figure 5.25. 

 

 

 

 

 

 

 

 

 

  Figure 5.25 : End effector position and velocity when joint 2 is passive 
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Operational space forces are plotted in Figure 5.26. 

 

  Figure 5.26 : End effector forces when joint 2 is passive  
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for fully actuated and underactuated cases for PHANTOM Omni robot and robot is 

achieved the desired trajectories with accuracy. 

 

In operational space, in addition to the motion control, force control is also 

implemented. Although Omni is a 3-DOF robot, it has two joints (joint 2 and 3) which 

generate the torque in same direction. Hybrid motion force/control goal cannot be 

successfully performed for underactuated case, since only one control input remains due 

to underactuation. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

6. EXPERIMENTAL RESULTS 
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The PHANTOM Omni robot used for experimental evaluation is a 6-DOF robot with 

three active revolute joints in addition to three wrist joints that are non-actuated. At the 

tip of the non-actuated joints, there is a stylus which was fixed to link 3 during the 

experiments. In this position, last 3 joints remain fixed which allow to make analysis 

assuming only first three joints. 

 

Several experiments are performed by applying the proposed control algorithms to 

PHANTOM Omni robot. The control scheme is based on the encoder feedback and the 

estimation of contact forces to move joints through the desired positions of the 

workspace and providing the required torques at the joint motors. The angular velocities 

and accelerations of the joints are calculated by using the position information 

providing from the encoders.  

 

In order to filter out the noise due to differentiation, second order filters are used. To 

eliminate the noises for joint velocities, bode plot of the filter is given in Figure 6.1. 

 

             Figure 6.1 : Bode plot of the second order filter 
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a. Link Properties: Link properties are provided in Chapter 3 but are repeated here 

for convenience. In the PHANTOM haptic interface hardware installation and 

technical manual, the masses of required parts were measured using an electronic 

weighing scale. The length of link 2 and link 3 is given as 0.132 m.  

 

For the calculation of inertial parameters, the first link has been assumed as a sphere 

while link 2 and link 3 are assumed as cylinders. The calculation of the center of 

masses and the moments of inertia was done using these approximations and 

assuming they are homogeneous rigid bodies. In order to implement appropriate 

desired motion for control study, the reachability of joints is considered as given in 

Table 6.1 and Table 6.2. 

 

        Table 6.1: Joint limits for PHANTOM Omni 

Joint Min (Rad) Max (Rad) 

q1 -1.01 0.954 

q2 -1.79 -0.033 

q3 3.47 5.58 

 

          Table 6.2: End effector limits 

Coordinate Min (m) Max (m) 

x 0.103 0.288 

y -0.249 0.241 

z -0.129 0.189 

 

b. Torque calculations: The frictional effects are ignored during the entire analysis. 

These effects could be accounted for by multiplying the torques by appropriate 

coefficients.  

The total current consumption is limited as 2.2A to prevent over-current of the joint 

motors. In order to figure out this issue, smart saturation is used to allow channels to 

go up to 1.6A unless the total exceeds 2.2A in which case all channels are scaled so 

that the cumulative current is equal to this current value. 
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c. Conversion of torque to PWM values: The assignment of joint torques to the 

motors was achieved using Digital to Analog (DAC) values. It is assumed that there 

is a linear relationship between the DAC values and the torques.  

 

6.2 SOFTWARE 

 

In order to control PHANTOM Omni robot, Quanser’s QUARC software has been used 

which has powerful tools to Matlab/Simulink to make the development and implement 

of complicated real-time applications easier. Toolbox generates real-time code directly 

from Simulink designed controllers and runs it in real-time on the Windows target. The 

HIL API from the toolbox has been used to access the robot to send joint commands 

and to read the encoder values. 

 

6.3 RESULTS 

 

First, joint space motion control is tested. Controller gains used in experiments are 

obtained by trial and error.  

 

To test the underactuation, the actuator projection matrix is chosen to set the joint 2 as 

passive that makes the control input of this joint is 0. Desired positions are ϴ1  =

 0.1sin(0.4πt), ϴ2  = –  π/4 and ϴ3  =  3π / 2 rad for each joint, where initial 

positions are 0, -0.26 and 3.78 rad respectively. Controller proportional and derivative 

gains are Gp = 40 and Gd =1. In case of a constraint in vertical axis, motion control 

performance is given in Figure 6.2. 

  

 

 

 Figure 6.2 : Joint positions and velocities when joint 2 is passive 

 

http://www.mathworks.com/matlab


61 

 

 

 

According to the Figure 6.2, the max position error of joint 1 is 0.023 rad, steady state 

errors are 0.017 rad and 0.041 rad for joint 2 and 3, respectively. The joint inputs are 

given in Figure 6.3 to make pure motion control. 

 

Figure 6.3: Joint torques when joint 2 is passive 

 

 

 

Secondly, motion control is tested while joint 3 is passive with same desired and initial 

positions. The max position error of joint 1 is 0.021 rad and steady state errors are 0.025 

rad 0.032 rad for joint 2 and 3, respectively. Motion control performance is given in 

Figure 6.4. 
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Figure 6.4 : Joint torques when joint 3 is passive 

 

 

 

The joint inputs are given in Figure 6.5. 

 

Figure 6.5 : Joint torques when joint 3 is passive 
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Figure 6.6 : Joint positions and velocities in case of hybrid motion/force control 

 

 
 

 

Joint 1 does not produce any torque in constraint axis; hence the contact of the robot 

with an obstacle in this direction does not produce any constraint force at this joint. The 

constraint forces at the joints and input forces are given in Figure 6.7. Steady state 

errors for constraint force are 0.004 Nm and 0.003 Nm for joint 2 and 3, respectively. 

 

 

 

 

 

 

 

 

Figure 6.7 : Joint constraint torques and inputs in case of hybrid motion/force 

control 
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Next, actuator projection matrix is chosen in order to make the joint 2 passive. In case 

of underactuation, since robot has only one actuated joint which produces torque in 

constraint direction, only position or constraint force can be controlled. In order to test 

the force control performance, joints are kept their initial positions. Desired contact 

forces are chosen as 0, 0.1 and 0.05 Nm. Force control performance is given in Figure 

6.8, while the steady state errors are 0.0002 and 0.001 Nm. 

 

Figure 6.8 : Joint constraint torques and inputs in case of passive 2nd joint 
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In order to test the force control performance for passive 3rd joint, while joints are kept 

their initial positions. Desired contact forces are same, force control performance is 

given in Figure 6.9. 

 

Figure 6.9 : Joint constraint torques and input in case of passive 3rd joint 

 

 
 

For defining the desired motion in terms of operational space, the motion control law in 

Equation (4.34) is implemented. Response for constant reference is given in Figure 6.10 

with x(t) = x(0) + 0.02,  x(t) = x(0) + 0.03, and x(t) = x(0) − 0.035 m desired 

positions in direction of x, y and z axes.  

 

 

 

 

 

 

 

 

 

 

Figure 6.10 : End effector position and velocity in case of a constant reference 

0 5 10 15 20
-1

-0.5

0

0.5

1

Time [s]


1
 [

N
m

]

 

 

Force

Reference

0 0.05 0.1 0.15 0.2
0.095

0.1

0.105

Time [s]


2
 [

N
m

]

 

 

Force

Reference

0 0.05 0.1 0.15 0.2
0.048

0.049

0.05

0.051

Time [s]


3
 [

N
m

]

 

 

Force

Reference

0 0.05 0.1 0.15 0.2
-0.05

0

0.05

0.1

Time [s]

J
o
in

t 
In

p
u
t 

[N
m

]

 

 

Joint 1

Joint 2

Joint 3



66 

 

 

 
 

 

Tracking performance for a time varying reference is given in Figure 6.11. Desired 

position of x is x(t) = x(0) + 0.001sin(2πt) while desired positions in y and z axes are 

same with the previous case. 

 

Figure 6.11 : End effector position and velocity in case of a time varying reference 
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force are controlled separately, since the robot has only one control input in direction of 

underactuation. In operational space, set point and time varying motion control 

performance is tested for fully actuated case of robot. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

7. CONCLUSION 
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This dissertation describes the process of modeling, simulation and control of an 

underactuated robot manipulator considering interaction with its environment. Dynamic 

simulation gives an opportunity to analyze the time varying behavior of the robot by 

giving a virtual response close to the actual system using mathematical equations. The 

use of V-REP as a tool to model and simulate the mechanics of the robot allows the 

possibility to verify control algorithms. Subsequently, the validity of control algorithms 

is tested experimentally. Simulator and experiment environments accept joint positions 

as input, thus applying joint torques as control input requires making assumptions. 

 

In this study, controllers for the underactuated robots are modeled by first considering 

the projected inverse based dynamics and then solving underactuation by the addition of 

appropriate control torques. In presence of passive joints, the underactuation matrix is 

used to rebuild controller laws in order to perform a manipulation in a way that robot 

can achieve the desired motion and force. The controllers based on projected inverse 

dynamics are developed both in joint space and operational space. In joint space 

underactuated controller scheme, the controller uses constraint forces to create lost 

torque at the joints that are passive. In operational space underactuated control method, 

the null space motion is used besides the constraint force in order to achieve the desired 

motion. 

 

Motion and force feedback control loops are developed and implemented together 

through decomposition of the input channel. Another plus is to estimate the constraint 

forces by using the control input while robot moves on a constraint surface. The 

estimation of forces in a force feedback control is useful approach, because the usage of 

sensors increases the complexity of system and decreases the stability of control. 

 

An insight into the use of projected inverse based control shows its adequacy to control 

the environment interaction of a robot. It can be asserted that a compliant behavior is 

achieved, although some differences occur in the performance of the control schemes 

while robot is constrained in vertical or in horizontal direction since the gravitational 

affects. The number of active joint is important to achieve the desired position 

accurately, on condition that they have axes of rotation in the same direction with the 
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passive joint. The same axis of rotation is important in order to obtain control torques in 

the same direction to compensate the lost torque at passive joint. In this study, since 

there is only one active joint at axis of rotation in passive joint, rise of gravitational 

effect in horizontal case decreases the accuracy and precision of control. 
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APPENDICES 

Appendix A.1- Operation Modes for Matlab / V-REP Communication 

 

In order to overcome the time lag problem in server client communication between 

Matlab and V-REP, there are 4 different modes to control the simulation. 
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i. Blocking function calls 

ii. Non-blocking function calls 

iii. Data streaming 

iv. Synchronous operation 

 

Blocking function call is used for situations when there is no need to wait for a reply 

from the server. There is an execution delay between sending command and reading 

data from V-REP Server. 

 

Figure App. 1.1 : Blocking function calls 

 

 

 

In some situations, there is no need for reply from the server side. In this case non-

blocking function call is used to send data to V-REP simply. 

 

 

 

Figure App. 1.2 : Non-blocking function calls 
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Data streaming is used for continuous data transfer, where the client signals the desire to 

the server with a "streaming" or "continuous" operation mode flag. This can be regarded 

as a command/message subscription from the client to the server, where the server will 

be streaming the data to the client. 

 

Figure App. 1.3 : Data streaming 

 

 

 

The situations where the client needs to be synchronized with the simulation progress, 

by controlling the simulation advance from the client side, synchronous operation mode 

is used. 
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Figure App. 1.4: Synchronous Operation 

 

 

 

 

 

 

 

 

 

 

 

 

 

Appendix A.2- Simulink Controllers 
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Figure App. 2 1 : Position Control Scheme 
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Figure App. 2 2 : Position Control Scheme for Underactuated Case 
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Figure App. 2 3 : Hybrid Control Scheme for Fully Actuated / Underactuated 

Cases 
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Figure App. 2 4 : Operational Space Controller 
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