

THE REPUBLIC OF TURKEY
BAHÇEŞEHİR UNIVERSITY

SOFTWARE DEVELOPMENT EFFORT
ESTIMATION USING ENSEMBLE MACHINE

LEARNING

Master’s Thesis

OMAR HIDMI

ISTANBUL, 2016

THE REPUBLIC OF TURKEY
BAHÇEŞEHİR UNIVERSITY

GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES

INFORMATION TECHNOLOGIES

SOFTWARE DEVELOPMENT EFFORT
ESTIMATION USING ENSEMBLE MACHINE

LEARNING

Master’s Thesis

OMAR HIDMI

Supervisor: ASST. PROF. BETÜL ERDOĞDU ŞAKAR

ISTANBUL, 2016

THE REPUBLIC OF TURKEY
BAHÇEŞEHİR UNIVERSITY

GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES

INFORMATION TECHNOLOGIES
Name of the thesis: SOFTWARE DEVELOPMENT EFFORT ESTIMATION USING
ENSEMBLE MACHINE LEARNING

Name/Last Name of the Student: OMAR HIDMI

Date of the Defense of Thesis: May 25th, 2016

The thesis has been approved by the Graduate School of Natural and Applied Sciences.

 Assoc. Prof. Nafiz ARICA
 Graduate School Director

 Signature

I certify that this thesis meets all the requirements as a thesis for the degree of Master
of Science.

 Prof. Adem KARAHOCA
 Program Coordinator
 Signature

This is to certify that we have read this thesis and we find it fully adequate in scope,
quality and content, as a thesis for the degree of Master of Science.

Examining Committee Members Signature

Asst. Prof. Betül ERDOĞDU ŞAKAR ____________________

Asst. Prof. Görkem SERBES ____________________

Asst. Prof. Tarkan AYDIN ____________________

ACKNOWLEDGEMENT
It is a pleasure for me to thank people who have made the finish of this thesis possible;
first and foremost, I would like to thank my wife Jinan for being so patient and helpful
and show me endless love, my daughter Tuqa, my parents Hisham and Hanin and all
my family in Palestine who encouraged me all the time. Without them, I never would
have been able to reach this stage.
I would like to express my deepest gratitude both personally and professionally, to my
supervisor Asst. Prof. Betül ERDOĞDU ŞAKAR, without her guidance and
encouragement the completion of this study would be impossible.
I would also like to express a very special thanks to Meshale International Student
Association for financially supporting me and giving me the chance to come here to
Turkey and complete my higher studies.
Finally, I would like to thank all my friends for their motivation and support.

ISTANBUL, 2016 Omar Hidmi

iv

ABSTRACT
SOFTWARE DEVELOPMENT EFFORT ESTIMATION USING ENSEMBLE

MACHINE LEARNING

Omar Hidmi

Information Technology

Thesis Supervisor: Asst. Prof. Betül ERDOĞDU ŞAKAR

May 2016, 40 pages

In software engineering, the main aim is to develop a high quality projects that fall
within scheduled time and budget, this procedure is called effort estimation. There are
many techniques to estimate the effort including expert judgment and the use of
machine learning techniques. Effort estimation is crucial and important for a company
to do because hiring more people than needed will lead to loss of income, and hiring
less people than needed will lead to delay of project delivery. The aim of this study is to
estimate software effort objectively by using machine learning techniques instead of
subjectively and time consuming estimation methods like expert judgment and
estimation by analogy. The proposed solution mentioned in this study tries to overcome
the problems of over-estimation and under-estimation by improving the software effort
estimation process. This study will propose a model that uses two machine learning
techniques which are Support Vector Machine (SVM) and K-Nearest Neighbor (k-NN)
and combining them together using a boosting technique called AdaBoost for better
effort estimation in new software development projects. Machine learning techniques
have been applied to two publically available dataset which are Desharnais and
Maxwell. Results show that SVM technique outperform k-NN technique, results also
show much improvement in estimations when using AdaBoost.
Keywords: Machine Learning, Effort Estimation, K-Nearest Neighbor, Support Vector
Machine, AdaBoost.

v

ÖZET
TOPLULUK YAPAY ÖĞRENME İLE YAZILIM GELİŞTİRME MAALİYET

TAHMİNİ

Omar Hidmi

Bilgi Teknologi

Tez Danışman: Yrd. Doç. Dr. Betül ERDOĞDU ŞAKAR

Mayıs 2016, 40 sayfa

Yazılım mühendisliğindeki ana amaç belli bir zaman dilimi ve bütçe ile yüksek kaliteli
projeler üretmektir, bu yönteme efor tahmini denir. Efor tahmini için uzman tahmini ve
yapay öğrenme tekniklerinin kullanımı gibi oldukça farklı yöntemler bulunmaktadır.
Efor tahmini firmalar için oldukça önemli ve kritik bir karardır. Çünkü fazla personel
ile çalışılması durumunda firma finansal zarara uğrarken az personel ile çalışıldığında
projenin uzaması ya da ertelenmesi gibi durumlar oluşabilir.
Bu projenin amacı uzman tahmini ya da benzerlikle tahmin gibi öznel ve zaman alıcı
yöntemler yerine yapay öğrenme tekniklerini kullanarak yazılım efor tahminini nesnel
hale getirmektir. Bu çalışmada önerilen çözüm ile yazılım efor tahmini sürecinde aşırı
öğrenme ve az öğrenme sorunlarının üstesinden gelinmeye çalışılmıştır.
Bu çalışmada iki farklı yapay öğrenme tekniği, Destek Vektör Makinaları ve K-En
Yakın Komşu algoritmaları hem ayrı ayrı denenmiş, hem de AdaBoost arttırma
yöntemi bu iki algoritmanın sonuçlarını birleştirilerek yeni yazılım geliştirme
projelerinin eforr tahminini yapacak modeller önerilmiştir. Yapay öğrenme teknikleri
tüm kullanıcılara açık olan Desharnais ve Maxwell veri kümeleri üzerinde denenmiştir.

Anahtar Kelimeler: Yapay Öğrenme, Efor Tahmini, K-En Yakın Komşu, Destek
Vektör Makinesi, AdaBoost.

vi

CONTENTS

TABLES .. viii
FIGURES .. ix
ABBREVIATIONS .. x
1. INTRODUCTION .. 1

1.1 MOTIVATION ... 1
1.2 OUTLINE ... 3

2. LITERATURE REVIEW ... 4
3. DATA AND METHODS .. 8

3.1 DATASETS USED ... 8
3.1.1 Desharnais Dataset .. 9
3.1.2 Maxwell Dataset .. 9

3.2 MACHINE LEARNING TECHNIQUES USED 10
3.2.1 k-Nearest Neighbor ... 11
3.2.2 Support Vector Machine ... 13
3.2.3 K-Fold Cross Validation ... 15
3.2.4 Leave-One-Out Cross Validation ... 16

4. RESEARCH PROCEDURE .. 17
4.1 CHOOSING THE DATASET .. 17
4.2 WORKING ON THE DATASET .. 17
4.3 FILLING MISSING VALUES ... 18
4.4 AUTO-SCALING ... 18
4.5 CROSS VALIDATION .. 19
4.6 ESTIMATIONS .. 19
4.7 SELECTION CRITERIA .. 19

vii

5. PROPOSED SOLUTION ... 20
6. EXPERIMENTAL RESULTS ... 24

6.1 RESULTS FOR DESHARNAIS DATASET 24
6.1.1 k-NN Technique on Desharnais Dataset 24
6.1.2 SVM Technique on Desharnais Dataset 25
6.1.3 Boosting Results on Desharnais Dataset 28

6.2 RESULTS FOR MAXWELL DATASET .. 29
6.2.1 k-NN Technique on Maxwell Dataset 29
6.2.2 SVM Technique on Maxwell Dataset 30
6.2.3 Boosting Results on Maxwell Dataset 32

7. DISCUSSION AND CONCLUSION ... 33
APPENDICES

Appendix-1 ... 34
Appendix-2 ... 35

REFERENCES .. 36

viii

TABLES

Table 3.1: Summary of the datasets .. 10
Table 4.1: Defining intervals for Effort in Desharnais dataset 18
Table 4.2: Defining intervals for Effort in Maxwell dataset .. 18
Table 6.1: Using k-NN technique on Desharnais dataset .. 25
Table 6.2: Results for SVM technique on Desharnais dataset when using 2 classes 26
Table 6.3: Results for SVM technique on Desharnais dataset when using 5 classes 27
Table 6.4: Results for SVM technique on Desharnais dataset when using 5 classes

with comparing the first and second classes ... 27
Table 6.5: Results for SVM technique on Desharnais dataset when using 5 classes

with comparing the second and third classes .. 28
Table 6.6: Boosting K-NN with SVM on Desharnais dataset 28
Table 6.7: Boosting SVM with K-NN on Desharnais dataset...................................... 28
Table 6.8: Using k-NN technique on Maxwell dataset .. 29
Table 6.9: Results for SVM technique on Maxwell dataset when using 2 classes 30
Table 6.10: Results for SVM technique on Maxwell dataset when using 5 classes...... 30
Table 6.11: Results for SVM technique on Maxwell dataset when using 5 classes

with comparing first and second classes ... 31
Table 6.12: Results for SVM technique on Maxwell dataset when using 5 classes

with comparing second and third classes .. 31
Table 6.13: Boosting K-NN with SVM on Maxwell dataset 32
Table 6.14: : Boosting SVM with K-NN on Maxwell dataset 32

ix

FIGURES

Figure 3.1: Finding the class of a sample with k-NN .. 11
Figure 3.2: Calculating the distance between new sample and the new one 12
Figure 3.3: Deciding on the class of the new sample .. 12
Figure 3.4: Voronoi graph for k-NN visualisation .. 13
Figure 3.5: Support vector machine algorithm (linear kernel) 14
Figure 3.6: visualization of SVM using 2 classes in Desharnais dataset 15
Figure 3.7: K-Fold cross-validation technique .. 15
Figure 3.8: Leave-One-Out cross-validation technique ... 16
Figure 5.1: How Adaptive Boosting works ... 20
Figure 5.2: AdaBoost algorithm ... 21
Figure 5.3: Visualization of our proposed solution ... 22

x

ABBREVIATIONS

AdaBoost : Adaptive Boosting
ANN : Artificial Neural Networks
CART : Classification And Regression Trees
CBR : Case Based Regression
COCOMO : Constructive Cost Model
FP : Function Points
GA : Genetic Algorithm
KLOC : Kilo Lines Of Codes
K-NN : K – Nearest Neighbor
LSR : Least Square Regression
M5P : M5-Pruned
MART : Multiple Additive Regression Trees
MATLAB : Matrix Laboratory
PROMISE : The PRedictOr Models In Software Engineering data repository
RBF : Radial Basis Function
RI : Rule Induction
SVM : Support Vector Machine
SVR : Support Vector Regression
WEKA : Waikato Environment for Knowledge Analysis

1. INTRODUCTION

1.1 MOTIVATION
Estimation is really important in our lives; we make estimations approximately all the
time, for example, kids unconsciously estimate how much time to finish their
homework, parents estimate how much time to finish cooking and how much time to go
to work. Of course time estimated always oscillates according to certain conditions and
external factors, such as emergency situations, weather conditions, and so on. Also
when we plan to open a new business, we estimate cost, time, and staff needed to finish
a particular job. Same thing is in software development estimations.
Software project management is one of the most important parts of software
engineering. One cannot guarantee that good software management would lead to
project success. On the other hand, it is for sure that a project will fail with bad project
management. Project failure can be dependent on different factors like late delivery,
less or more estimated costs, fall short of customer requirements and last but not least
wrongly estimated number of staff.
A project manager usually faces with the problem of estimating the effort needed to
develop a project. This task is obviously dependent on the software engineers in the
team but it can be measured with different techniques. Some of these techniques are
easy to use but require lots of additional data while the others are time consuming and
difficult to follow (Radlinski & Hoffmann 2010). So it can be said that there is no
simple way to make an accurate estimate of the effort required to develop a software
system (Sommerville 2011).
Even you make initial estimations; there are several drawbacks in effort estimation like
the software engineers involved in the project and their ability. But still organizations
need to make effort estimation. And usually all these estimators are done to estimate
the effort for a brand new project by project managers who use their experience-based
judgments and knowledge from previous projects.

2

First let’s explain what Effort is. Effort is the amount of time that is spent to finish a
project, expressed in terms of man-month or person-hours. For evaluating the software
cost estimation there are three main factors: effort, calendar time and the total cost. By
far, finding the effort is the key point for software cost estimation since it will affect
both the duration and the fund needed for the project. Until today, for cost estimation
different techniques like have been used: expert judgment, analogy-based estimation,
algorithmic models, machine learning (Elish 2009; Nayebi et al. 2015; Humayun &
Gang 2012), proxy-based estimation, and the use of historical data (Nayebi et al.
2015).
Expert Judgment is a term that refers specifically to a technique in which judgment is
made based upon a specific set of criteria or expertise in a person in a specific area on
similar projects, the accuracy for this technique highly depends on the ability and
experience of the expert who examines the new project (Elish 2009).
Analogy-based estimation is a term that refers to a technique used for estimation based
on historical data for an analogous system or subsystem. In this technique, a currently
fielded system, similar in design and operation to the proposed system, is used as a
basis for the analogy.
Proxy-based estimation is a technique that estimates the size of a program by applying
historical size data to a conceptual design, and then applying statistical techniques to
adjust the estimate based upon past estimating accuracy (Schoedel 2006).
The aim of this work is to estimate software effort objectively by using machine
learning techniques instead of using subjective and time consuming estimation methods
like expert judgment and estimation by analogy. To add more, Unsuitable criteria and
unsuitable technique for estimation may be chosen by an expert. For these reasons, it is
highly advantageous to use a more structured estimation process using machine
learning techniques (Nayebi et al. 2015).
There are many advantages for machine learning including: (Elish 2009; Prabhakar
2013; Idri et al. 2002)

a. The capability to learn from past historical data.

3

b. The capability to model complex set of relationships between the effort
(dependent variable) and the effort drivers (independent variables).

1.2 OUTLINE
This research is organized as follows:
Section 1 in this work is the introduction part, which also contains the outline. Section
2 is about related work.
In Section 3, Data and Methodology will be explained in detail including the dataset
and machine learning techniques used in the experiments.
Section 4 describes the research procedure where as section 5 explain about the
proposed solution.
Section 6 explains the results from all the experiments, and Section 7 will discuss the
work and how it is done to find these results and the conclusion of this work and future
work are also given.

4

2. LITERATURE REVIEW
To help the project managers decide on the effort, many software estimation models
have been proposed such as SLIM, Checkpoint, Price-S, Seer and COCOMO (Boehm
& Abts 1998; Baskeles et al. 2007). Instead of using expert knowledge alone which
makes the decision process less subjective to their experience, it can be better to use the
data collected with one of these models. Even if there is data collected, expert
knowledge would still be needed to interpret it. Instead of this step, data obtained from
one of these techniques can be analyzed with the help of machine learning techniques.
In other words, machine learning techniques can be used to analyze the data collected
from previous similar software projects and come up with an effort estimate. Therefore
there are several studies on software effort prediction using machine learning
techniques.
One of these studies aimed in finding the possibility to predict software development
effort easily by using local data (Radlinski & Hoffmann 2010). They compared
accuracy for 4 datasets (MAXWELL, DESHARNAIS, COCOMO, and QQ-DEFECTS)
by applying 23 machine learning methods on them, they concluded that higher
accuracy prediction occurred after applying feature selection, and also they found that
project size (expressed in Kilo Line Of Codes (KLOC)) was the most influential factor,
to add more, results also show that the accuracy of predictions for each technique varies
depending on the dataset used (Prabhakar 2013).
While this study was concentrating on using local data, in another study Braga et al.
(2007) tried to improve precision of effort estimation for software projects using 2
datasets (NASA and DESHARNAIS), they combined the machine learning techniques
with robust confidence intervals that was computed from errors collected from the
training sets after building regression model, this step was to improve the precision and
reliability. As a result, Bagging showed improvement in performance for machine
learning methods.
On the other hand, Baskeles et al. (2007) used two public datasets (USC and NASA)
and a third dataset collected from Turkish software organizations, they applied several
machine learning techniques to past data gathered using COCOMO guidelines based on

5

COCOMO and COCOMO2 models. All experiments were carried out by cross-
validation. As a conclusion of this experiment, they have seen that parametric models
are insufficient for software effort estimation, and the problem must be handled using
an evolving system rather than a static one, they also found that it is highly preferable
to use a learning system instead of a parametric model.
Mair et al. (2000) applied three machine learning techniques: Artificial Neural
Networks (ANN), Case-based Reasoning (CBR) and Rule Induction (RI) with a Least
Squares Regression procedure (to provide a benchmark comparison) to DESHARNAIS
dataset, in order to compare effort prediction systems in terms of three factors:
accuracy, explanatory values and configurability. As a result from this research, they
found that ANN technique has the most accurate prediction, but they argued that there
are other factors influencing the prediction, so they found that the explanatory value of
CBR and RI estimation gives them an advantage when considering their interaction
with human involvement.
Elish (2009) evaluated the potential of multiple additive regression trees (MART) as a
novel software effort estimation model when compared with other recent published
models, in terms of accuracy. MART extends and improves the classification and
regression trees (CART) model when using stochastic gradient boosting. He made his
experiments using NASA dataset. Results show that an improvement in accuracy
estimation of software project effort by using MART when compared to linear
regression, Radial Basis Function (RBF), and Support Vector Regression (SVR).
Another experiment was done by Prabhakar (2013) who used two machine learning
techniques (ANN and Support Vector Machine (SVM)) to predict software effort using
China dataset, he developed MATLAB programs for training and testing. He concluded
that ANN with one hidden layer and SVM with ANOVA kernel show the best results,
also the earlier technique (ANN) has outperformed the later (SVM).
Nayebi et al. (2015) proposed a way to find a model for effort estimation that has the
most accurate and certain estimated for a dataset, depending on prediction, correlation
coefficients and Bayesian information criterion. They applied 9 machine learning
methods to 9 different datasets, they concluded that M5-Pruned (M5P) decision tree

6

algorithm and linear regression with feature subset selection outperformed other
models, also results show that feature selection make model performance better than
before.
In another work, MacDonell & Shepperd (2003) tried to find if it is possible to combine
some effort prediction techniques in order to optimize the effort in software projects,
the prediction techniques used in this research are: Expert judgment, Least-squares
linear regression(LSR) and CBR. They used a dataset of 77 observations from a
medical records system within five months. The dataset was divided into a ratio of 2:1
which describes the training and testing sets respectively. They found that indeed there
are potential advantages when using more than one technique for effort prediction,
because sometimes a technique can show poor prediction, but they couldn’t find which
technique must be used first.
Shivhare & Rath (2014) applied two machine learning techniques (Naïve Bayes
Classifier and ANN) on a public dataset (USP05) to predict software effort after
performing feature reduction to the original dataset using rough-set analysis, They
concluded that Naïve Bayes classifier performs better.
Also, many reviews and surveys have been made by many researchers in the field of
Cost and Effort Estimation and Machine Learning Techniques including (Batra &
Barua 2013; Wen et al. 2012; Singh et al. 2007; Boehm & Abts 1998; Ferrucci et al.
2010; Fedotova et al. 2013; Khatibi & Jawawi 2010; Molokken & Jorgensen 2003;
Rodríguez-Soria 2010; Khan & Qureshi 2014). Most of them concluded that effort
should be estimated in the early stages in the software development life cycle, exactly
in the analysis and design phases, to know the approximate staff to hire, also to know
the time and cost needed to finish the project.
The difference between all the mentioned studies and our study is the use of machine
learning techniques specific for classification problems and combining them together
using a special technique for improving the accuracy that will be mentioned about and
discussed in section 5.
Effort Estimations should be both accurate and certain (Nayebi et al. 2015).
Researchers have been trying to build models for estimations since the 1960s

7

(Jørgensen 2007; Nayebi et al. 2015). All the studies that I have mentioned above are
concerning about accuracy of the prediction, all the researchers are trying to build a
model that will increase the accuracy and decrease uncertainty for the software
development effort estimation.
A comparative analysis has been done by Humayun & Gang (2012) by comparing
traditional techniques (Expert Judgment and Algorithmic Estimation) and the use of
machine learning techniques. They discussed many machine learning techniques that
have been used in effort estimation problems including (ANN, CBR, RI, GA, CART,
and MART). They concluded that machine learning give more accurate estimation
compared by traditional techniques.
In the following sections and subsections, we are going to discuss each and every
technique we have used in our experiments, the datasets that we have used to train our
model, all the steps that have been taken to make the experiments, and at last, the
results for all the estimations and calculations will be shown and discussed.

8

3. DATA AND METHODS
The engineering discipline which cover all the aspects of software production is
Software Engineering (Sommerville 2007). The software product here should not be
considered as the developed computer program but also the products like the
configuration files, system documentation and user documentation.
It is a very great challenge for a software company to develop a new software project in
a high quality within predetermined budget and time (Prakash et al. 2013). Effort
estimation is the first step that is taken in budgeting for the new software project.
This research was prepared to predict effort for new software development projects by
studying and analyzing previous data combined from earlier software projects. Data
that is exploited from earlier projects consists of the actual effort (the dependent
attribute) and also factor values that are related to the effort (the independent
attributes).
3.1 DATASETS USED
Many datasets have been used to estimate software development effort. The mostly
used software datasets to predict software effort are: China (Prabhakar 2013), Maxwell
(Radlinski & Hoffmann 2010), NASA (Baskeles et al. 2007; Braga et al. 2007; Elish
2009; Oliveira 2006), Finnish, Telecom, USC (Baskeles et al. 2007), CoCoMo (Boehm
1981; Radlinski & Hoffmann 2010), Kemerer, ISBSG, Albrecht, Miyazaki94 and
Desharnais (Radlinski & Hoffmann 2010; Mair et al. 2000; Braga et al. 2007; Burgess
et al. 2001). Many of these datasets are publicly available in PROMISE repository
which is one of the most famous used repositories in Software Engineering Community
to estimate effort, it is a well-known, useful and real set related to projects of software
engineering, made publicly available in order to encourage repeatable, verifiable,
refutable, and/or improvable predictive models of software engineering (Sayyad
Shirabad, J. and Menzies 2005). These datasets have been constructed and developed
by various companies, some of them are cross-company and the others are single-
company related projects.

9

In this research we are going to use two publicly available datasets, Desharnais and
Maxwell, in order to build a model for estimating the effort for new software
development projects.
3.1.1 Desharnais Dataset
In this work, to find the potentiality of machine learning techniques for building
software development effort prediction, we have used Desharnais dataset; it is one of
the most commonly used datasets in the field of software effort estimation. Many
Researchers used this dataset in their experiments including Radlinski & Hoffmann
(2010); Braga et al. (2007); Mair et al. (2000) and many others. Desharnais dataset
consists of 81 projects collected by J.M. Desharnais in the late 1980s from a Canadian
software house (Mair et al. 2000; Desharnais 1989; Menzies et al. 2012). The original
dataset consists of 12 attributes but in this study the ProjectID attribute was omitted
from the original dataset because it has no meaning to the study, so the left 11 attributes
are: (TeamExp, ManagerExp, YearEnd, Length, Effort, Transactions, Entities,
PointsAdjust, Adjustment, PointsNonAjust, Language) as explained in Appendix-1, ten
independent attributes and one dependent attribute (effort), all the values in this dataset
are numeric but only one nominal attribute that is Language. Despite the fact that this
dataset is now more than 25 years old, it is one of the largest and most used publicly
available datasets (Mair et al. 2000).
3.1.2 Maxwell Dataset
Maxwell dataset is a new dataset consists of 62 projects (Maxwell 2002). Each project
is described by 27 attributes in which all attributes are numerical. 26 independent
attributes and one dependent attribute (effort). As explained in Appendix-2.
The two mentioned datasets (Desharnais and Maxwell) have some common features
and other different features, for example, they both have the same type of project size
which is described using function points (FP), and also they both have the same
measure type for effort which is person-hours. Table 3.1 below summarizes the datasets
in term of the features and projects within each dataset.

10

Table 3.1: Summary of the datasets
Dataset Number of Features Number of Projects

Desharnais 12 81
Maxwell 27 62

Source: (Maxwell 2002; Desharnais 1989)
For the two datasets mentioned above, we divided the dataset into two parts, training
set and testing set. To form these parts, we randomly divided the datasets using two
techniques which are Leave-One-Out Cross Validation Technique and K-Fold Cross-
Validation Technique, which will be discussed later in detail.
The two datasets are analyzed in their own context by using two machine learning
techniques which are K-nearest neighbor (k-NN) and Support Vector Machine (SVM)
that will be discussed later in the following subsection.
3.2 MACHINE LEARNING TECHNIQUES USED
Machine learning is considered as a subfield of Artificial Intelligence and it is
concerned with the development of methods and techniques that enable the machine to
learn and perform activities and tasks (Prabhakar 2013). Machine Learning techniques
resemble the human mind in some aspects, allowing us to solve complex problems in a
fast way (Schank 1982). Recently, Machine Learning approaches have been proposed
as an alternative way to predict software effort (Mair et al. 2000).
In this section, we will discuss two Machine Learning techniques that could be used to
predict effort: k-NN and SVM. These techniques have been selected because k-NN is
non-parametric and SVM is parametric and this difference will enable us to reveal what
kind of a model works better on software effort estimation datasets. The main
difference between a non-parametric and parametric model is the number of parameters
and how they are obtained (Murphy 2012). In a non-parametric model the parameters
are detected by the training data itself but not the model. However, in a parametric
model the parameters are determined by the model itself. That’s why the number of
parameters increases as the number of training instances increase in a dataset in a non-
parametric model. Nonetheless this is not valid for a parametric model since the
number of parameters is fixed and is not dependent on the number of training instances.

11

3.2.1 k-Nearest Neighbor
k-NN is one of the techniques used for classification problems, and it is one of the most
simple classification techniques that should be the first option for a classification study
when there is no past knowledge about data description (Peterson 2009). k-NN works
first by computing distance between an instance with other instances and find the k
nearest neighbor for that instance, then it estimates the effort (Nayebi et al. 2015).
Let’s describe this non parametric classifier with figures. As it is seen in Figure 3.1
samples belonging to two different classes are represented by stars and triangles, and
the unclassified sample is shown with a circle.

For the neighborhood parameter k = 3 (for example), first the nearest three samples are
found, as shown in figure 3.2. The distance between these samples are usually
calculated by Euclidean distance (default in MATLAB) which is the strait-line distance
between two points in Euclidean space. The majority of the samples that are belonging
to one class determine the label of the new sample.

Figure 3.1: Finding the class of a sample with k-NN

12

Since the nearest two samples in this example are from the class represented by star, the
new sample is also labeled as star, as shown in figure 3.3.

Figure 3.2: Calculating the distance between new sample and the new one

Figure 3.3: Deciding on the class of the new sample

13

Figure 3.4 shows a visualization for k-NN using Desharnais dataset which we used to
train our model, it is made by using a ready function in MATLAB called (voronoi).
Figure 3.4: Voronoi graph for k-NN visualisation

3.2.2 Support Vector Machine
SVMs are a set of machine learning methods used in many areas, such as classification
and regression (Smola & Schölkopf 2004). This method has outperformed previous
ones in many classification and regression tasks.
SVM algorithm was proposed by Vapnik (in Cortes & Vapnik 1995) and got the
attention of the researchers working in machine learning. SVM classifier separates the
instances from two different classes by using a hyper plane which tries to maximize the
margin (Vapnik 2013). This increases the generalization capability of the classifier. The
instances that are close to or on the border are called the support vectors. The number
of support vectors also represents the complexity of the model. A figurative
representation of the algorithm is a good way to visualize how it works, as shown in
figure 3.5 below.
It is easy to use the support vector machine algorithm by taking some important issues
into consideration (Vapnik 1998). First important issue is to decide on the place of the
hyper plane that will separate the instances. Here support vectors have direct influence

14

on the optimum location of this decision surface since they are the data points most
difficult to classify.

In machine learning, if a problem is not linearly separable, one can try to fit a non-
linear function. However, non-linear functions are time consuming and more difficult
to understand. In this case the problem can be mapped to a new space by using
nonlinear basis functions. Of course, this will increase the dimensionality of the
problem. So it is better to find a model whose complexity is not dependent on the input
dimensionality. And SVMs are one of the most popular algorithms that are running on
this trick.
When the input space is carried to another dimension, a significant point is to map the
items in the original input space to the new ones; this is done by the kernel function.
The last important issue is the over-learning of the classifier. Over-learning should be
avoided to make a more generalizable model. By using different kernels even one
hundred percent classification can be obtained. But the model complexity is as
important as the classification accuracy. And to control the complexity of SVM, cost
parameter is used.
So when using the SVM classifier, main three parameters are used (1) the kernel type
(linear, quadratic, polynomial, RBF, etc.), (2) the cost parameter / box constraints, and

margin

hyper plane support
vector

support
vector

support
vector

Figure 3.5: Support vector machine algorithm (linear kernel)

15

(3) the kernel width. The values of these parameters change according to the problem
and usually determined empirically.
Figure 3.6 illustrates visualization for the SVM technique when applying it to
Desharnais dataset.

Figure 3.6: visualization of SVM using 2 classes in Desharnais dataset

3.2.3 K-Fold Cross Validation
K-Fold Cross Validation works by dividing the dataset into K subsets, K-1 subsets are
used for training and the final subset is used for testing, this process is repeated K time
by leaving out one different subset for testing each time, then the mean value is
measured. Different values of K can be used in K-Fold Cross Validation technique; in
our research we used the values (3 and 10), we found that 10-Fold cross validation is
better than 3-Fold cross validation.
Figure 3.7: K-Fold cross-validation technique

16

In figure 3.7 above, the black circles describe the testing sets and the white circles
describe the training sets, the dataset is divided into k folds and in each fold we have
training and testing sets and we find the prediction for every variable in each fold, then
the total accuracy is calculated.
3.2.4 Leave-One-Out Cross Validation
This technique works by leaving one sample as testing set and all the other projects
were considered as the training set, this procedure works fine because we have
relatively small datasets (one of them has 62 projects and the other has 81 projects).
This technique was seen to be more effective and produces more accurate estimations.
Figure 3.8: Leave-One-Out cross-validation technique

In figure 3.8 above, black circle in each iteration describes the testing set and all the
white circles describe the training set. In this technique, the dataset is divided into n
iterations according to the number of variables, and in each iteration the nth variable is
considered the testing set, then the total accuracy is calculated.

17

4. RESEARCH PROCEDURE
This research aims to improve software development effort estimation by developing a
model and using different machine learning techniques on software development effort
estimation public datasets.
We begin by taking into account some machine learning techniques for estimation,
comparing their performance on a particular dataset, and resulting to a set of standards
and criteria for selecting the model with the best performance on the dataset.
This procedure consists of many steps that will be discussed in detail in the following
subsections:
4.1 CHOOSING THE DATASET
Choosing the best dataset that will work on classification, so we found 3 datasets that
have numerical values, these are Desharnais, Maxwell and China, but we will work
only using 2 of them (Desharnais and Maxwell).
We used WEKA software to convert the original file for the dataset that was in .arff
format, and changed it to .xls format, to be able to use it in MATLAB.
4.2 WORKING ON THE DATASET
This step covers transforming data into a new scales, this procedure is called
Discretisation, to change the problem from regression to classification (i.e. to discretize
numeric variables to a number of classes/intervals), it is a very important step to be
done because the machine learning techniques we have picked work only with
categorized data and do not predict exact numeric values but one of the classes, we
used a code in MATLAB to convert the actual effort taken from the dataset to a specific
number or label (1 to 5) according to an experiment done by Radlinski & Hoffmann
(2010), as explained in Tables 4.1 and 4.2 below.

18

Table 4.1: Defining intervals for Effort in Desharnais dataset
Desharnais Dataset

Actual Effort Number of Cases Class ID
0 – 1500 11 1

1500 – 3000 21 2
3000 – 4500 20 3
4500 – 8000 14 4

More than 8000 15 5
Source: (Radlinski & Hoffmann 2010)

Table 4.2: Defining intervals for Effort in Maxwell dataset
Maxwell Dataset

Actual Effort Number of Cases Class ID
0 – 1500 9 1

1500 – 3000 10 2
3000 – 5000 11 3
5000 – 10000 18 4

More than 10000 14 5
Source: (Radlinski & Hoffmann 2010)

4.3 FILLING MISSING VALUES
The third step is about filling missing values in the datasets, we found that Desharnais
dataset has 4 projects containing missing values; we calculated the mean value for all
the numeric variables in one attribute (column) and filled the missing value.
4.4 AUTO-SCALING
Next we applied Auto-scaling on the whole dataset after filling the missing values, this
method uses mean-centering followed by division of each column by the standard
deviation of that column. We used a ready function in MATLAB called (autosc) that
will return a scaled dataset, mean value (mx) and standard deviation (stdx) for the
dataset.

19

4.5 CROSS VALIDATION
This step is about dividing the dataset into training and testing sets, two machine
learning techniques have been used for this purpose, which are Leave-One-Out and K-
Fold cross validation techniques.
4.6 ESTIMATIONS
In this step, we applied the machine learning techniques, which are k-NN and SVM,
using 10-Fold and leave-one-out cross validation techniques to generate predictions.
4.7 SELECTION CRITERIA
In this study, we used only one criterion, which is Accuracy. The accuracy is
implemented for each model on each dataset separately.

20

5. PROPOSED SOLUTION
The aim of this research is to improve the accuracy of estimations for software
development projects, this will be done by constructing a system that will use multiple
machine learning techniques and apply them to multiple datasets. In this research, we
are going to propose a method to improve accuracy for effort estimation on software
development projects, this method is called Boosting, it is widely used to improve the
accuracy for any learning algorithm, boosting is a method that is used to boost accuracy
of any learning algorithm by fitting a series of models each having low error rate and
then combining them into an ensemble that may perform better (Monteiro 2002;
Schapire et al. 1999; Elish 2009).
Many algorithms have been used for the purpose of boosting, and one of them is called
Adaptive Boosting (Known as AdaBoost). AdaBoost algorithm was first introduce by
Freund & Schapire (1997), this algorithm was a solution to many of the difficulties for
earlier boosting algorithms (Schapire 2009), the idea of AdaBoost is to construct a
strong model sequentially by combining multiple weak classifiers into one single strong
classifier, a weak classifier is a classifier which perform poorly but better than random
guessing. Figure 5.1 below illustrate this procedure.
Figure 5.1: How Adaptive Boosting works

Here, each model tries to correct the mistakes of the previous one, to come up with a
better accuracy for effort estimation. AdaBoost can be applied to any classification
algorithm.

21

AdaBoost was used by many researchers in their experiments including Reyzin (2003);
Schapire (2013); Kummer & Najjaran (2014); Schapire (2009). The boosting algorithm
AdaBoost is explained in figure 5.2 below.
Figure 5.2: AdaBoost algorithm

 Source: (Schapire 2009)

Figure 5.3 below illustrates all the steps, after calling the dataset and inputting it to the
system; discretization of the variables, where all the actual effort values were replaced
into classes between 1 and 5, because we are going to use machine learning techniques
for classification, then the dataset is checked for missing values in its variables, if there
is a missing value, it is replaced with a value by computing the mean value for all the
variables in the same attribute. After this step has been completed, the dataset is scaled
and divided into training and testing sets, this step has been done by using two
techniques (Leave-one-out and K-fold Cross Validation), and then the first machine
learning technique is applied to train the system, at last, the evaluation of the system
performance using the testing set and comparing the results.

22

Input: Dataset

Dataset Discretization

Fill missing values

Scaling the Dataset

Training Set Testing Set

Apply first machine learning technique

Testing and Evaluation

Misclassified Data

Training Set Testing Set

Apply second machine learning technique

Testing and Evaluation

Output: Accuracy Estimation

.. Boosting

Figure 5.3: Visualization of our proposed solution

23

After getting the results from the first technique, the misclassified data are transformed
to another dataset; the new dataset is also divided into two sets like the previous one
and then a second machine learning techniques is applied for training. Final step is
about calculating the overall accuracy after implementing AdaBoost technique.

24

6. EXPERIMENTAL RESULTS
In this section, we will present results for all the experiments we have done using the
machine learning techniques on the mentioned datasets.
All the experiments was conducted using a recent version of MATLAB software
(R2014b), MATLAB is known to be simple, easy to use and has many ready functions
built in its library.
Two publicly available datasets have been used in the experiments, those are
Desharnais and Maxwell. The two datasets were divided into two sets, training set and
testing set. We used two approaches to divide the dataset, firstly by using Leave-One-
Out Cross-Validation, and the other by using K-Fold Cross-Validation.
All the experiments were conducted two times, one without scaling the dataset, and
then by scaling the dataset using a ready function in MATLAB called (autosc). Results
show that autoscaling improves the accuracy when implementing it to k-NN technique,
but it does not improve it when using SVM technique. The following sub-sections
explain all the results for the mentioned experiments.
6.1 RESULTS FOR DESHARNAIS DATASET
As explained earlier, Desharnais dataset consists of 81 software projects between 1983
and 1988, it has 4 projects missing some values, but we filled them by measuring the
mean value for all the values in the same attribute, after filling all the missing values,
we applied two machine learning techniques to calculate the accuracy and find the best
one, the two machine learning techniques are k-NN and SVM. All the results are shown
in the following sub-sections:
6.1.1 k-NN Technique on Desharnais Dataset
k-NN is simple and easy to use technique in which it is used for classification problems
like the one we have. It works by computing the distance between an unknown instance
(the one which we want to predict) and other known instances (the original values in
the dataset), the new value for the unknown instance will take the value of the majority
of the surrounding instances.

25

As we mentioned before, we applied Discretization to the values in the dataset, to
change the problem from regression to classification problem (i.e. we removed the
actual effort and changed it to labels/ classes from 1 to 5), so the problem now is a
classification problem with 5 classes, we applied K-NN techniques and the results are
shown in Table 6.1 below:
Table 6.1: Using k-NN technique on Desharnais dataset

Leave-One-Out
Cross-Validation

Accuracy
without Autoscaling

Accuracy
with Autoscaling

k=1 40.74 43.21
k=3 41.98 41.98
k=5 40.74 43.21
k=7 45.68 50.62

10-Fold
Cross-Validation

Accuracy
without Autoscaling

Accuracy
with Autoscaling

k=1 27.16 19.75
k=3 27.16 23.46
k=5 28.4 23.46
k=7 29.63 23.46

We can see from the table above that the best accuracy is when using 7 nearest
neighbors and with scaling the whole dataset, this is when applying Leave-One-Out
Cross-Validation, this accuracy is relatively small, but it is the best accuracy in this
situation.
6.1.2 SVM Technique on Desharnais Dataset
Accuracy was compared by changing the kernel function (Linear, Quadratic,
Polynomial, and RBF) and the box constraint (between 0.01 and 1). Experiments were
carried out two times, first without scaling the dataset and the second time with auto
scaling the whole dataset.
As it is mentioned before, data was transformed into a new scale (Discretisation), to
change the problem from regression to classification, the previous technique (K-NN)

26

worked fine with 5 classes, but SVM will only work with 2 classes, so we made this
step in many ways to make sure we get the best accuracy:
First way was only by producing 2 classes (1 or -1), one of them when the effort is
3000 or less and the other class when the effort is more than 3000; results are shown in
table 6.2 below.
Table 6.2: Results for SVM technique on Desharnais dataset when using 2 classes

Kernel
Function

Accuracy without
Autoscaling

Box
Constraint

Accuracy with
Autoscaling

Box
Constraint

Linear 79.01 1 79.01 1
Quadratic 81.48 1 81.48 1

Polynomial 85.18 1 85.18 1
RBF 79.01

(sigma=1) 1 79.01
(sigma=1) 1

Second way was by producing 5 classes and then comparing each class with all the
other classes together, and then taking the total average of the accuracy, for example,
the first class will be 1 and all the other classes will become -1 and we find the
accuracy, then the second class will be 1 and all the other classes will become -1 and
we find the accuracy, and so on, then we find the total accuracy by taking the average
value of all the five accuracies we have calculated, all the results are listed in table 6.3
below.
The earliest used implementation for SVM multi-class classification is probably the
one-against-all method. It constructs k SVM models where k is the number of classes.
The mth SVM is trained with all of the examples in the mth class with positive labels,
and all other examples with negative labels.
Results show that RBF kernel function has the best accuracy with box constraint equal
to 0.1 and the default value of RBF sigma (kernel width), this accuracy is the best
accuracy for this experiment when applying the SVM machine learning technique
alone, and it is clear from the results that Autoscaling didn’t affect the results at all.

27

Table 6.3: Results for SVM technique on Desharnais dataset when using 5 classes
Kernel

Function
Accuracy without

Autoscaling
Box

Constraint
Accuracy with

Autoscaling
Box

Constraint
Linear 65.92 1 65.92 1

Quadratic 76.29 1 76.29 1
Polynomial 76.05 0.01 76.05 0.01

RBF 81.97
(sigma=1) 0.1 81.97

(sigma=1) 0.1

The third way was by producing 5 classes and then comparing two classes together, in
table 6.4, we compared the first and second classes, and in table 6.5 we compared the
second and third classes together.
Table 6.4: Results for SVM technique on Desharnais dataset when using 5 classes with
comparing the first and second classes

Kernel
Function

Accuracy without
Autoscaling

Box
Constraint

Accuracy with
Autoscaling

Box
Constraint

Linear 62.50 0.01 62.50 0.01
Quadratic 75.00 0.1 75.00 0.1
Polynomial 68.75 0.01 68.75 0.01

RBF 65.62
(sigma=0.1) 0.1 65.62

(sigma=0.1) 0.1

Numbers show that the best result when using 5 classes and comparing the first two
classes is when using Quadratic kernel function when and a box constraint equal to 0.1,
but when comparing the second and third classes, the best results are when using
Quadratic and RBF kernel function with the default value of kernel width.

28

Table 6.5: Results for SVM technique on Desharnais dataset when using 5 classes with
comparing the second and third classes

Kernel
Function

Accuracy without
Autoscaling

Box
Constraint

Accuracy with
Autoscaling

Box
Constraint

Linear 63.41 0.01 63.41 0.01
Quadratic 70.73 0.1 70.73 0.1
Polynomial 68.29 1 68.29 1

RBF 70.73
(sigma=1) 0.1 70.73

(sigma=1) 0.1

6.1.3 Boosting Results on Desharnais Dataset
Boosting was done by using one technique and calculating the accuracy, then taking the
misclassified data from the first technique into a new dataset and using another
technique. Here we applied this method in two ways, first by using K-NN and boosting
it with SVM, the other by using SVM and boosting it with K-NN, all the results are
shown in tables 6.6 and 6.7 below.
Table 6.6: Boosting K-NN with SVM on Desharnais dataset

K-NN then SVM Without Autoscaling With Autoscaling
Accuracy for K-NN 45.68 50.61
Accuracy for SVM 70.45 80.00

Total Accuracy 83.95 90.12
Table 6.7: Boosting SVM with K-NN on Desharnais dataset

SVM then K-NN Without Autoscaling With Autoscaling
Accuracy for SVM 85.18 85.18
Accuracy for K-NN 41.66 41.66

Total Accuracy 91.35 91.35
We can observe from the results above mentioned in tables 6.6 and 6.7 that boosting
really improves the accuracy, at least it is approximately 84% (this is when using K-NN
first) and at most it is 91.35% (this is when using SVM first), this result is very good

29

and show that the best way to improve accuracy is to use adaptive boosting as shown in
all the previous experiments.
6.2 RESULTS FOR MAXWELL DATASET
Maxwell dataset is relatively new and small dataset which consists of only 62 projects
between 1985 and 1993; it has no missing values so it is not necessary to apply a code
to fill missing values in MATLAB like the previous dataset (Desharnais), this is a very
important thing to do to save time and memory usage when making the experiment.
Like the previous dataset, we applied two machine learning techniques (k-NN and
SVM) on the dataset to find the best accuracy for the prediction; all the results are
shown in the following sub-sections:
6.2.1 k-NN Technique on Maxwell Dataset
Table 6.8 show all the results when applying K-NN technique to Maxwell dataset, this
procedure was implemented to times, first without Autoscaling the dataset, and the
second time with Autoscaling the dataset using a ready function in MATLAB.
Table 6.8: Using k-NN technique on Maxwell dataset
Leave-One-Out
Cross-Validation

Accuracy
without Autoscaling

Accuracy
with Autoscaling

k=1 41.93 32.25
k=3 50.00 38.71
k=5 46.77 32.64
k=7 48.38 35.48
10-Fold
Cross-Validation

Accuracy
without Autoscaling

Accuracy
with Autoscaling

k=1 14.51 22.58
k=3 14.51 22.58
k=5 14.51 27.42
k=7 16.13 32.25

30

We can see from the table above that the best accuracy is not more than 50%; this is
when performing Leave-One-Out Cross Validation using 3 nearest neighbors before
auto scaling the dataset.
6.2.2 SVM Technique on Maxwell Dataset
SVM technique was done like the previous dataset but with changing the actual effort
numbers like the experiment done by (Radlinski & Hoffmann 2010), results are shown
in tables 6.9 to 6.12 below:
From reading the results in table 6.9, we can observe that the best result is when using a
linear kernel function with the default values of box constraint and kernel width, this is
when using only 2 classes (when the effort is 5000 or more, the class will be 1, and if it
is less than 500, the class will be -1).
Table 6.9: Results for SVM technique on Maxwell dataset when using 2 classes

Kernel
Function

Accuracy without
Autoscaling

Box
Constraint

Accuracy with
Autoscaling

Box
Constraint

Linear 79.03 1 79.03 1
Quadratic 62.90 1 62.90 1

Polynomial 70.97 1 70.97 1

RBF 51.61
(sigma=1) 0.1 51.61

(sigma=1) 0.1

But when using all the 5 classes, and comparing each class with all the other classes,
the results will change, as shown in table 6.10 below.
Table 6.10: Results for SVM technique on Maxwell dataset when using 5 classes

Kernel
Function

Accuracy without
Autoscaling

Box
Constraint

Accuracy with
Autoscaling

Box
Constraint

Linear 67.09 1 67.09 1
Quadratic 75.80 1 75.80 1

Polynomial 74.51 1 74.51 1

31

RBF 80.00
(sigma=0.1) 0.01 80.00

(sigma=0.1) 0.01

It is clearly shown in table 6.10 above that the best accuracy is 80% when using a RBF
kernel function with box constraint equal to 0.01 and kernel width equal to 0.1; this is
the best accuracy that we get when applying SVM technique to Maxwell dataset.
In the last way, we compared two classes together, in table 6.11 we compared the first
two classes and we get 73.68% accuracy when using a linear kernel function with box
constraint equal to 0.1. But in table 6.12, we compared the second and third classes, and
we get 66.66% accuracy when using a quadratic kernel function with the default values
of box constraint and kernel width.
Table 6.11: Results for SVM technique on Maxwell dataset when using 5 classes with
comparing first and second classes

Kernel
Function

Accuracy without
Autoscaling

Box
Constraint

Accuracy with
Autoscaling

Box
Constraint

Linear 73.68 0.1 68.42 0.1
Quadratic 47.37 1 47.37 1

Polynomial 42.10 1 42.10 1

RBF 52.63
(sigma=1) 1 52.63

(sigma=1) 1

Table 6.12: Results for SVM technique on Maxwell dataset when using 5 classes with
comparing second and third classes

Kernel
Function

Accuracy without
Autoscaling

Box
Constraint

Accuracy with
Autoscaling

Box
Constraint

Linear 52.38 0.1 52.38 0.1
Quadratic 66.66 1 57.14 1
Polynomial 42.85 1 47.62 1

RBF 42.85
(sigma=0.1) 0.1 52.38

(sigma=0.1) 0.1

32

6.2.3 Boosting Results on Maxwell Dataset
Boosting was done by using one technique and calculating the accuracy, then taking the
misclassified data into a new dataset and using another technique. Here we applied this
method in two ways, first by using K-NN then SVM, the other by using SVM then K-
NN, all the results are shown in tables 6.13 and 6.14 below.
Table 6.13: Boosting K-NN with SVM on Maxwell dataset

K-NN then SVM Without Autoscaling With Autoscaling
Accuracy for K-NN 50.00 38.71
Accuracy for SVM 74.19 76.31

Total Accuracy 87.10 85.48
Table 6.14: : Boosting SVM with K-NN on Maxwell dataset

SVM then K-NN Without Autoscaling With Autoscaling
Accuracy for SVM 79.03 79.03
Accuracy for K-NN 30.77 15.38

Total Accuracy 85.48 82.25
As it is shown in the last two tables, results of accuracy is improving when using a
boosting technique, the best accuracy was shown when applying K-NN technique first,
we get 87 accuracy. The least accuracy is 82%, and it is more than the best accuracy
when applying a machine learning technique alone. So we can say that adaptive
boosting really improves the accuracy, and it is simple and easy to use.

33

7. DISCUSSION AND CONCLUSION
A survey conducted by (Molokken & Jorgensen 2003) show that approximately
between 70 and 85 percent of the respondents accepted and agreed to the importance of
estimating the effort for new software development projects. This study and experiment
was done to evaluate some machine learning methods which are k-Nearest Neighbor
and Support Vector Machine by applying them into two different datasets in order to
make effort prediction for a new software development project.
We have seen from the results that when applying a single method alone, it has a good
accuracy, but it did not get over 85% in the best scenario (this was when applying SVM
technique using 2 classes to Desharnais dataset), but when we used a boosting
technique called AdaBoost in order to improve the accuracy, we get 91.35% accuracy
when using Desharnais dataset and 87.10% accuracy when using Maxwell dataset. So,
we can say that boosting one technique with another one improves the accuracy of
estimations.
For future work, other machine learning techniques can be used for classification
problems, also other datasets can be used for experiments and training the model, in
this way, we have more accurate estimations and predictions, also boosting with more
than two techniques to get more accuracy reaching 100%. Another Future work can be
to use feature selection technique.

34

APPENDICES

Appendix-1
List of Variables in Desharnais Dataset
Symbol Name Type
TeamExp Team experience – measured in years numeric
ManagerExp Manager experience – measured in years numeric
YearEnd Year project ended numeric
Entities The number of entities in the systems data model

 (function points)
numeric

Transactions A count of basic logical transactions in the system
 (function points)

numeric

Length Actual project schedule in months numeric
PointsNonAjust Transactions + Entities (function points) numeric
PointsAdjust Function points adjusted by the Adjustment factor

 = 0.65 + (0.01 * PointsNonAdjust)
numeric

Adjustment Function point complexity adjustment factor
 (Total Processing Complexity)

numeric

Effort Actual Effort is measured in person-hours (Dependent) numeric
Language Programming Language nominal

35

Appendix-2
List of Variables in Maxwell Dataset
Symbol Name Type
Syear Software Year numeric
App Application Type numeric
Har Hardware Platform numeric
Dba Database numeric
Ifc User Interface numeric
Sourse Where Developed numeric
Telonuse Telon Use numeric
Nlan Number of Development Languages numeric
T01 Customer Participation numeric
T02 Development Environment Adequacy numeric
T03 Staff Availability numeric
T04 Standards Use numeric
T05 Methods Use numeric
T06 Tools Use numeric
T07 Software’s Logical Complexity numeric
T08 Requirements Volatility numeric
T09 Quality Requirements numeric
T10 Efficiency Requirements numeric
T11 Installation Requirements numeric
T12 Staff Analysis Skills numeric
T13 Staff Application Knowledge numeric
T14 Staff Tool Skills numeric
T15 Staff Team Skills numeric
Duration Duration (months) numeric
Size Application Size (Function Points) numeric
Time Time numeric
Effort (H) Work Carried-out numeric

36

REFERENCES

Books

Desharnais, J.M., 1989. Analyse statistique de la productivitie des projets informatique
a partie de la technique des point des fonction.

Maxwell, K., 2002. Applied statistics for software managers. Prentice Hall.
Menzies, T. et al., 2012. The promise repository of empirical software engineering

data.
Murphy, K.P., 2012. Machine Learning: A Probabilistic Perspective. MIT Press.
Sommerville, I., 2011. Software engineering.
Sommerville, I., 2007. Software Engineering. International computer science series.

Addison-Wesley.
Vapnik, V., 2013. The Nature of Statistical Learning Theory 2nd ed., Springer Science

& Business Media.
Vapnik, V., 1998. Statistical learning theory.

37

Periodicals

Baskeles, B., Turhan, B. & Bener, a, 2007. Software effort estimation using machine
learning methods. Computer and information sciences, 2007. iscis 2007. 22nd
international symposium. pp.1–6.

Batra, G. & Barua, K., 2013. A Review on Cost and Effort Estimation Approach for
Software Development. International Journal of Engineering and Innovative
Technology. 3(4), pp.290–293.

Boehm, B. & Abts, C., 1998. Software Development Cost Estimation Approaches – A
Survey. Science.

Boehm, B.W., 1981. Understanding and controlling software costs.
Braga, P.L., Oliveira, A.L.I. & Meira, S.R.L., 2007. Software Effort Estimation using

Machine Learning Techniques with Robust Confidence Intervals. 7th
International Conference on Hybrid Intelligent Systems (HIS 2007), pp.352–357.

Burgess, C.J., Lefley, M. & Le, M., 2001. Can genetic programming improve software
effort estimation? A comparative evaluation. Information and Software
Technology. 43(14), pp.863–873.

Cortes, C. & Vapnik, V., 1995. Support-Vector Networks. Machine Learning. 20(3),
pp.273–297.

Elish, M.O., 2009. Improved estimation of software project effort using multiple
additive regression trees. Expert Systems with Applications. 36(7), pp.10774–
10778.

Fedotova, O., Teixeira, L. & Alvelos, A.H., 2013. Software effort estimation with
multiple linear regression: Review and practical application. Journal of
Information Science and Engineering. 29(5), pp.925–945.

Ferrucci, F. et al., 2010. Using Evolutionary Based Approach to Estimate Software
Development Effort. Evolutionary Computation and Optimization Algorithms in
Software Engineering: Applications and Techniques.

Freund, Y. & Schapire, R.E., 1997. A decision theoretic generalization of on-line
learning and an application to boosting. Computer Systems Science. 57, pp.119–
139.

Humayun, M. & Gang, C., 2012. Estimating Effort in Global Software Development
Projects Using Machine Learning Techniques. 2(3).

Idri, A., Khoshgoftaar, T.M. & Abran, A., 2002. Can neural networks be easily
interpreted in software cost estimation? In IEEE International Conference on
Fuzzy Systems. pp. 1162–1167.

38

Jørgensen, M., 2007. Forecasting of Software Development Work Effort: Evidence on
Expert Judgment and Formal Models. International Journal of Forecasting. 23(3),
pp.449–462.

Khan, M.W. & Qureshi, I., 2014. Neural Network based Software Effort Estimation: A
Survey. Int. J. Advanced Networking and Applications. 05(04), pp.1990–1995.

Khatibi, V. & Jawawi, D.N.., 2010. Software Cost Estimation Methods: A Review.
Journal of Emerging Trends in Computing and Information Sciences. 2(1), pp.21–
29.

Kummer, N. & Najjaran, H., 2014. Adaboost.MRT: Boosting regression for
multivariate estimation. Artificial Intelligence Research. 3(4).

MacDonell, S.G. & Shepperd, M.J., 2003. Combining techniques to optimize effort
predictions in software project management. Journal of Systems and Software.
66(2), pp.91–98.

Mair, C. et al., 2000. An investigation of machine learning based prediction systems.
The Journal of Systems and Software. 53, pp.23–29.

Malhotra, R. & Jain, A., 2011. Software effort prediction using statistical and machine
learning methods.

Molokken, K. & Jorgensen, M., 2003. A review of software surveys on software effort
estimation. pp.223–230.

DAS Monteiro, J.A., 2002. Multiple Additive Regression Trees a Methodology for
Predictive Data Mining for Fraud Detection.

Nayebi, F., Abran, A. & Desharnais, J.-M., 2015. Automated selection of a software
effort estimation model based on accuracy and uncertainty. Artificial Intelligence
Research. 4(2), p.p45.

Oliveira, A.L.I., 2006. Estimation of software project effort with support vector
regression. Neurocomputing. 69(13-15), pp.1749–1753.

Prabhakar, 2013. Prediction of Software Effort Using Artificial Neural Network and
Support Vector Machine. International Journal of Advanced Research in
Computer Science and Software Engineering. 3(3), pp.2277–128.

Prakash, B.V.A., Ashoka, D. V & Aradhya, V.N.M., 2013. An Evaluation of Neural
Networks Approaches used for Software Effort Estimation. Proc. of Int. Conf. on
Multimedia Processing, Communication and Info. Tech., MPCIT. pp.292 – 296.

Radlinski, L. & Hoffmann, W., 2010. On predicting software development effort using
machine learning techniques and local data. International Journal of Software.
2(2).

Reyzin, L., 2003. On Boosting Sparse Parities. pp.2055–2061.

39

Rodríguez-Soria, P., 2010. A Review of Parametric Effort Estimation Models for the
Software Project Planning Process. Seke.

Schank, R.C., 1982. Dynamic memory: a theory of learning in computers and people.
Schapire, R.E. et al., 1999. A Brief Introduction to Boosting Generalization error. Ijcai

99, pp.1401–1406.
Schapire, R.E., 2009. A Short Introduction to Boosting. Society. 14(5), pp.771–780.
Schapire, R.E., 2013. Explaining adaboost. Empirical Inference: Festschrift in Honor

of Vladimir N. Vapnik. pp.37–52.
Schoedel, R., 2006. PROxy Based Estimation (PROBE) for Structured Query Language

(SQL). Management, (May).
Shivhare, J. & Rath, S.K., 2014. Software effort estimation using machine learning

techniques. Proceedings of the 7th India Software Engineering Conference on -
ISEC ’14. pp.1–6.

Singh, Y., Bhatia, P. & Sangwan, O., 2007. A review of studies on machine learning
techniques. International Journal of Computer Science and Technology. 1, pp.70–
84.

Smola, a J. & Schölkopf, B., 2004. A tutorial on support vector regression. Statistics
and Computing. 14, pp.199–222.

Wen, J. et al., 2012. Systematic literature review of machine learning based software
development effort estimation models. Information and Software Technology.
54(1), pp.41–59.

40

Other Publications

Peterson, L., 2009. K-nearest neighbor. Scholarpedia, 4(2), p.1883. Available at:
http://www.scholarpedia.org/article/K-nearest_neighbor [Accessed February 28,
2016].

Sayyad Shirabad, J. and Menzies, T.J., 2005. The PROMISE Repository of Software
Engineering Databases. School of Information Technology and Engineering,
University of Ottawa, Canada.

