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ABSTRACT 
SOFTWARE DEVELOPMENT EFFORT ESTIMATION USING ENSEMBLE 

MACHINE LEARNING 

Omar Hidmi 

Information Technology 

Thesis Supervisor: Asst. Prof. Betül ERDOĞDU ŞAKAR 

May 2016, 40 pages 

In software engineering, the main aim is to develop a high quality projects that fall 
within scheduled time and budget, this procedure is called effort estimation. There are 
many techniques to estimate the effort including expert judgment and the use of 
machine learning techniques. Effort estimation is crucial and important for a company 
to do because hiring more people than needed will lead to loss of income, and hiring 
less people than needed will lead to delay of project delivery. The aim of this study is to 
estimate software effort objectively by using machine learning techniques instead of 
subjectively and time consuming estimation methods like expert judgment and 
estimation by analogy. The proposed solution mentioned in this study tries to overcome 
the problems of over-estimation and under-estimation by improving the software effort 
estimation process. This study will propose a model that uses two machine learning 
techniques which are Support Vector Machine (SVM) and K-Nearest Neighbor (k-NN) 
and combining them together using a boosting technique called AdaBoost for better 
effort estimation in new software development projects. Machine learning techniques 
have been applied to two publically available dataset which are Desharnais and 
Maxwell. Results show that SVM technique outperform k-NN technique, results also 
show much improvement in estimations when using AdaBoost. 
Keywords: Machine Learning, Effort Estimation, K-Nearest Neighbor, Support Vector 
Machine, AdaBoost. 
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ÖZET 
TOPLULUK YAPAY ÖĞRENME İLE YAZILIM GELİŞTİRME MAALİYET 

TAHMİNİ 

Omar Hidmi 

Bilgi Teknologi 

Tez Danışman: Yrd. Doç. Dr. Betül ERDOĞDU ŞAKAR 

Mayıs 2016, 40 sayfa 

Yazılım mühendisliğindeki ana amaç belli bir zaman dilimi ve bütçe ile yüksek kaliteli 
projeler üretmektir, bu yönteme efor tahmini denir. Efor tahmini için uzman tahmini ve 
yapay öğrenme tekniklerinin kullanımı gibi oldukça farklı yöntemler bulunmaktadır. 
Efor tahmini firmalar için oldukça önemli ve kritik bir karardır. Çünkü fazla personel 
ile çalışılması durumunda firma finansal zarara uğrarken az personel ile çalışıldığında 
projenin uzaması ya da ertelenmesi gibi durumlar oluşabilir. 
Bu projenin amacı uzman tahmini ya da benzerlikle tahmin gibi öznel ve zaman alıcı 
yöntemler yerine yapay öğrenme tekniklerini kullanarak yazılım efor tahminini nesnel 
hale getirmektir. Bu çalışmada önerilen çözüm ile yazılım efor tahmini sürecinde aşırı 
öğrenme ve az öğrenme sorunlarının üstesinden gelinmeye çalışılmıştır. 
Bu çalışmada iki farklı yapay öğrenme tekniği, Destek Vektör Makinaları ve K-En 
Yakın Komşu algoritmaları hem ayrı ayrı denenmiş, hem de AdaBoost arttırma 
yöntemi bu iki algoritmanın sonuçlarını birleştirilerek yeni yazılım geliştirme 
projelerinin eforr tahminini yapacak modeller önerilmiştir. Yapay öğrenme teknikleri 
tüm kullanıcılara açık olan Desharnais ve Maxwell veri kümeleri üzerinde denenmiştir.  
 
Anahtar Kelimeler: Yapay Öğrenme, Efor Tahmini, K-En Yakın Komşu, Destek 
Vektör Makinesi, AdaBoost. 
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1. INTRODUCTION 

1.1 MOTIVATION 
Estimation is really important in our lives; we make estimations approximately all the 
time, for example, kids unconsciously estimate how much time to finish their 
homework, parents estimate how much time to finish cooking and how much time to go 
to work. Of course time estimated always oscillates according to certain conditions and 
external factors, such as emergency situations, weather conditions, and so on. Also 
when we plan to open a new business, we estimate cost, time, and staff needed to finish 
a particular job. Same thing is in software development estimations. 
Software project management is one of the most important parts of software 
engineering. One cannot guarantee that good software management would lead to 
project success. On the other hand, it is for sure that a project will fail with bad project 
management. Project failure can be dependent on different factors like late delivery, 
less or more estimated costs, fall short of customer requirements and last but not least 
wrongly estimated number of staff.  
A project manager usually faces with the problem of estimating the effort needed to 
develop a project. This task is obviously dependent on the software engineers in the 
team but it can be measured with different techniques. Some of these techniques are 
easy to use but require lots of additional data while the others are time consuming and 
difficult to follow (Radlinski & Hoffmann 2010). So it can be said that there is no 
simple way to make an accurate estimate of the effort required to develop a software 
system (Sommerville 2011).  
Even you make initial estimations; there are several drawbacks in effort estimation like 
the software engineers involved in the project and their ability. But still organizations 
need to make effort estimation. And usually all these estimators are done to estimate 
the effort for a brand new project by project managers who use their experience-based 
judgments and knowledge from previous projects. 



2  

First let’s explain what Effort is. Effort is the amount of time that is spent to finish a 
project, expressed in terms of man-month or person-hours. For evaluating the software 
cost estimation there are three main factors: effort, calendar time and the total cost. By 
far, finding the effort is the key point for software cost estimation since it will affect 
both the duration and the fund needed for the project. Until today, for cost estimation 
different techniques like have been used: expert judgment, analogy-based estimation, 
algorithmic models, machine learning (Elish 2009; Nayebi et al. 2015; Humayun & 
Gang 2012), proxy-based estimation, and  the use of historical data (Nayebi et al. 
2015). 
Expert Judgment is a term that refers specifically to a technique in which judgment is 
made based upon a specific set of criteria or expertise in a person in a specific area on 
similar projects, the accuracy for this technique highly depends on the ability and 
experience of the expert who examines the new project (Elish 2009).  
Analogy-based estimation is a term that refers to a technique used for estimation based 
on historical data for an analogous system or subsystem. In this technique, a currently 
fielded system, similar in design and operation to the proposed system, is used as a 
basis for the analogy.  
Proxy-based estimation is a technique that estimates the size of a program by applying 
historical size data to a conceptual design, and then applying statistical techniques to 
adjust the estimate based upon past estimating accuracy (Schoedel 2006). 
The aim of this work is to estimate software effort objectively by using machine 
learning techniques instead of using subjective and time consuming estimation methods 
like expert judgment and estimation by analogy. To add more, Unsuitable criteria and 
unsuitable technique for estimation may be chosen by an expert. For these reasons, it is 
highly advantageous to use a more structured estimation process using machine 
learning techniques (Nayebi et al. 2015). 
There are many advantages for machine learning including: (Elish 2009; Prabhakar 
2013; Idri et al. 2002) 

a. The capability to learn from past historical data. 
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b. The capability to model complex set of relationships between the effort 
(dependent variable) and the effort drivers (independent variables). 

1.2 OUTLINE 
This research is organized as follows: 
Section 1 in this work is the introduction part, which also contains the outline. Section 
2 is about related work. 
In Section 3, Data and Methodology will be explained in detail including the dataset 
and machine learning techniques used in the experiments. 
Section 4 describes the research procedure where as section 5 explain about the 
proposed solution.  
Section 6 explains the results from all the experiments, and Section 7 will discuss the 
work and how it is done to find these results and the conclusion of this work and future 
work are also given. 
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2. LITERATURE REVIEW 
To help the project managers decide on the effort, many software estimation models 
have been proposed such as SLIM, Checkpoint, Price-S, Seer and COCOMO (Boehm 
& Abts 1998; Baskeles et al. 2007). Instead of using expert knowledge alone which 
makes the decision process less subjective to their experience, it can be better to use the 
data collected with one of these models. Even if there is data collected, expert 
knowledge would still be needed to interpret it. Instead of this step, data obtained from 
one of these techniques can be analyzed with the help of machine learning techniques. 
In other words, machine learning techniques can be used to analyze the data collected 
from previous similar software projects and come up with an effort estimate. Therefore 
there are several studies on software effort prediction using machine learning 
techniques.  
One of these studies aimed in finding the possibility to predict software development 
effort easily by using local data (Radlinski & Hoffmann 2010). They compared 
accuracy for 4 datasets (MAXWELL, DESHARNAIS, COCOMO, and QQ-DEFECTS) 
by applying 23 machine learning methods on them, they concluded that higher 
accuracy prediction occurred after applying feature selection, and also they found that 
project size (expressed in Kilo Line Of Codes (KLOC)) was the most influential factor, 
to add more, results also show that the accuracy of predictions for each technique varies 
depending on the dataset used (Prabhakar 2013).  
While this study was concentrating on using local data, in another study Braga et al. 
(2007) tried to improve precision of effort estimation for software projects using 2 
datasets (NASA and DESHARNAIS), they combined the machine learning techniques 
with robust confidence intervals that was computed from errors collected from the 
training sets after building regression model, this step was to improve the precision and 
reliability. As a result, Bagging showed improvement in performance for machine 
learning methods. 
On the other hand, Baskeles et al. (2007) used two public datasets  (USC and NASA) 
and a third dataset collected from Turkish software organizations, they applied several 
machine learning techniques to past data gathered using COCOMO guidelines based on 
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COCOMO and COCOMO2 models. All experiments were carried out by cross-
validation. As a conclusion of this experiment, they have seen that parametric models 
are insufficient for software effort estimation, and the problem must be handled using 
an evolving system rather than a static one, they also found that it is highly preferable 
to use a learning system instead of a parametric model. 
Mair et al. (2000) applied three machine learning techniques: Artificial Neural 
Networks (ANN), Case-based Reasoning (CBR) and Rule Induction (RI) with a Least 
Squares Regression procedure (to provide a benchmark comparison) to DESHARNAIS 
dataset, in order to compare effort prediction systems in terms of three factors: 
accuracy, explanatory values and configurability. As a result from this research, they 
found that ANN technique has the most accurate prediction, but they argued that there 
are other factors influencing the prediction, so they found that the explanatory value of 
CBR and RI estimation gives them an advantage when considering their interaction 
with human involvement. 
Elish (2009) evaluated the potential of multiple additive regression trees (MART) as a 
novel software effort estimation model when compared with other recent published 
models, in terms of accuracy. MART extends and improves the classification and 
regression trees (CART) model when using stochastic gradient boosting. He made his 
experiments using NASA dataset. Results show that an improvement in accuracy 
estimation of software project effort by using MART when compared to linear 
regression, Radial Basis Function (RBF), and Support Vector Regression (SVR). 
Another experiment was done by Prabhakar (2013) who used two machine learning 
techniques (ANN and Support Vector Machine (SVM)) to predict software effort using 
China dataset, he developed MATLAB programs for training and testing. He concluded 
that ANN with one hidden layer and SVM with ANOVA kernel show the best results, 
also the earlier technique (ANN) has outperformed the later (SVM). 
Nayebi et al. (2015) proposed a way to find a model for effort estimation that has the 
most accurate and certain estimated for a dataset, depending on prediction, correlation 
coefficients and Bayesian information criterion. They applied 9 machine learning 
methods to 9 different datasets, they concluded that M5-Pruned (M5P) decision tree 
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algorithm and linear regression with feature subset selection outperformed other 
models, also results show that feature selection make model performance better than 
before. 
In another work, MacDonell & Shepperd (2003) tried to find if it is possible to combine 
some effort prediction techniques in order to optimize the effort in software projects, 
the prediction techniques used in this research are: Expert judgment, Least-squares 
linear regression(LSR) and CBR. They used a dataset of 77 observations from a 
medical records system within five months. The dataset was divided into a ratio of 2:1 
which describes the training and testing sets respectively. They found that indeed there 
are potential advantages when using more than one technique for effort prediction, 
because sometimes a technique can show poor prediction, but they couldn’t find which 
technique must be used first. 
Shivhare & Rath (2014) applied two machine learning techniques (Naïve Bayes 
Classifier and ANN) on a public dataset (USP05) to predict software effort after 
performing feature reduction to the original dataset using rough-set analysis, They 
concluded that Naïve Bayes classifier performs better. 
Also, many reviews and surveys have been made by many researchers in the field of 
Cost and Effort Estimation and Machine Learning Techniques including (Batra & 
Barua 2013; Wen et al. 2012; Singh et al. 2007; Boehm & Abts 1998; Ferrucci et al. 
2010; Fedotova et al. 2013; Khatibi & Jawawi 2010; Molokken & Jorgensen 2003; 
Rodríguez-Soria 2010; Khan & Qureshi 2014). Most of them concluded that effort 
should be estimated in the early stages in the software development life cycle, exactly 
in the analysis and design phases, to know the approximate staff to hire, also to know 
the time and cost needed to finish the project. 
The difference between all the mentioned studies and our study is the use of machine 
learning techniques specific for classification problems and combining them together 
using a special technique for improving the accuracy that will be mentioned about and 
discussed in section 5. 
Effort Estimations should be both accurate and certain (Nayebi et al. 2015). 
Researchers have been trying to build models for estimations since the 1960s 
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(Jørgensen 2007; Nayebi et al. 2015). All the studies that I have mentioned above are 
concerning about accuracy of the prediction, all the researchers are trying to build a 
model that will increase the accuracy and decrease uncertainty for the software 
development effort estimation. 
A comparative analysis has been done by Humayun & Gang (2012) by comparing 
traditional techniques (Expert Judgment and Algorithmic Estimation) and the use of 
machine learning techniques. They discussed many machine learning techniques that 
have been used in effort estimation problems including (ANN, CBR, RI, GA, CART, 
and MART). They concluded that machine learning give more accurate estimation 
compared by traditional techniques. 
In the following sections and subsections, we are going to discuss each and every 
technique we have used in our experiments, the datasets that we have used to train our 
model, all the steps that have been taken to make the experiments, and at last, the 
results for all the estimations and calculations will be shown and discussed. 
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3. DATA AND METHODS 
The engineering discipline which cover all the aspects of software production is 
Software Engineering (Sommerville 2007). The software product here should not be 
considered as the developed computer program but also the products like the 
configuration files, system documentation and user documentation. 
It is a very great challenge for a software company to develop a new software project in 
a high quality within predetermined budget and time (Prakash et al. 2013). Effort 
estimation is the first step that is taken in budgeting for the new software project. 
This research was prepared to predict effort for new software development projects by 
studying and analyzing previous data combined from earlier software projects. Data 
that is exploited from earlier projects consists of the actual effort (the dependent 
attribute) and also factor values that are related to the effort (the independent 
attributes). 
3.1  DATASETS USED 
Many datasets have been used to estimate software development effort. The mostly 
used software datasets to predict software effort are: China (Prabhakar 2013), Maxwell 
(Radlinski & Hoffmann 2010), NASA (Baskeles et al. 2007; Braga et al. 2007; Elish 
2009; Oliveira 2006), Finnish, Telecom, USC (Baskeles et al. 2007), CoCoMo (Boehm 
1981; Radlinski & Hoffmann 2010), Kemerer, ISBSG, Albrecht, Miyazaki94 and 
Desharnais (Radlinski & Hoffmann 2010; Mair et al. 2000; Braga et al. 2007; Burgess 
et al. 2001). Many of these datasets are publicly available in PROMISE repository  
which is one of the most famous used repositories in Software Engineering Community 
to estimate effort, it is a well-known, useful and real set related to projects of software 
engineering, made publicly available in order to encourage repeatable, verifiable, 
refutable, and/or improvable predictive models of software engineering (Sayyad 
Shirabad, J. and Menzies 2005).  These datasets have been constructed and developed 
by various companies, some of them are cross-company and the others are single-
company related projects. 
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In this research we are going to use two publicly available datasets, Desharnais and 
Maxwell, in order to build a model for estimating the effort for new software 
development projects. 
3.1.1 Desharnais Dataset 
In this work, to find the potentiality of machine learning techniques for building 
software development effort prediction, we have used Desharnais dataset; it is one of 
the most commonly used datasets in the field of software effort estimation. Many 
Researchers used this dataset in their experiments including Radlinski & Hoffmann 
(2010); Braga et al. (2007); Mair et al. (2000) and many others. Desharnais dataset 
consists of 81 projects collected by J.M. Desharnais in the late 1980s from a Canadian 
software house (Mair et al. 2000; Desharnais 1989; Menzies et al. 2012). The original 
dataset consists of 12 attributes but in this study the ProjectID attribute was omitted 
from the original dataset because it has no meaning to the study, so the left 11 attributes 
are: (TeamExp, ManagerExp, YearEnd, Length, Effort, Transactions, Entities, 
PointsAdjust, Adjustment, PointsNonAjust, Language) as explained in Appendix-1, ten 
independent attributes and one dependent attribute (effort), all the values in this dataset 
are numeric but only one nominal attribute that is Language. Despite the fact that this 
dataset is now more than 25 years old, it is one of the largest and most used publicly 
available datasets (Mair et al. 2000). 
3.1.2 Maxwell Dataset 
Maxwell dataset is a new dataset consists of 62 projects (Maxwell 2002). Each project 
is described by 27 attributes in which all attributes are numerical. 26 independent 
attributes and one dependent attribute (effort). As explained in Appendix-2. 
The two mentioned datasets (Desharnais and Maxwell) have some common features 
and other different features, for example, they both have the same type of project size 
which is described using function points (FP), and also they both have the same 
measure type for effort which is person-hours. Table 3.1 below summarizes the datasets 
in term of the features and projects within each dataset. 
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Table  3.1: Summary of the datasets 
Dataset Number of Features Number of Projects 

Desharnais 12 81 
Maxwell 27 62 

Source: (Maxwell 2002; Desharnais 1989) 
For the two datasets mentioned above, we divided the dataset into two parts, training 
set and testing set. To form these parts, we randomly divided the datasets using two 
techniques which are Leave-One-Out Cross Validation Technique and K-Fold Cross-
Validation Technique, which will be discussed later in detail. 
The two datasets are analyzed in their own context by using two machine learning 
techniques which are K-nearest neighbor (k-NN) and Support Vector Machine (SVM) 
that will be discussed later in the following subsection. 
3.2 MACHINE LEARNING TECHNIQUES USED 
Machine learning is considered as a subfield of Artificial Intelligence and it is 
concerned with the development of methods and techniques that enable the machine to 
learn and perform activities and tasks (Prabhakar 2013). Machine Learning techniques 
resemble the human mind in some aspects, allowing us to solve complex problems in a 
fast way (Schank 1982). Recently, Machine Learning approaches have been proposed 
as an alternative way to predict software effort (Mair et al. 2000). 
In this section, we will discuss two Machine Learning techniques that could be used to 
predict effort: k-NN and SVM. These techniques have been selected because k-NN is 
non-parametric and SVM is parametric and this difference will enable us to reveal what 
kind of a model works better on software effort estimation datasets. The main 
difference between a non-parametric and parametric model is the number of parameters 
and how they are obtained (Murphy 2012). In a non-parametric model the parameters 
are detected by the training data itself but not the model. However, in a parametric 
model the parameters are determined by the model itself. That’s why the number of 
parameters increases as the number of training instances increase in a dataset in a non-
parametric model. Nonetheless this is not valid for a parametric model since the 
number of parameters is fixed and is not dependent on the number of training instances.      
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3.2.1 k-Nearest Neighbor 
k-NN is one of the techniques used for classification problems, and it is one of the most 
simple classification techniques that should be the first option for a classification study 
when there is no past knowledge about data description (Peterson 2009). k-NN works 
first by computing distance between an instance with other instances and find the k 
nearest neighbor for that instance, then it estimates the effort (Nayebi et al. 2015). 
Let’s describe this non parametric classifier with figures. As it is seen in Figure 3.1 
samples belonging to two different classes are represented by stars and triangles, and 
the unclassified sample is shown with a circle.  

 
 
For the neighborhood parameter k = 3 (for example), first the nearest three samples are 
found, as shown in figure 3.2. The distance between these samples are usually 
calculated by Euclidean distance (default in MATLAB) which is the strait-line distance 
between two points in Euclidean space. The majority of the samples that are belonging 
to one class determine the label of the new sample. 
 

Figure  3.1: Finding the class of a sample with k-NN 
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Since the nearest two samples in this example are from the class represented by star, the 
new sample is also labeled as star, as shown in figure 3.3. 

 
 

Figure  3.2: Calculating the distance between new sample and the new one 

Figure  3.3: Deciding on the class of the new sample 
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Figure 3.4 shows a visualization for k-NN using Desharnais dataset which we used to 
train our model, it is made by using a ready function in MATLAB called (voronoi). 
Figure  3.4: Voronoi graph for k-NN visualisation 

 
3.2.2 Support Vector Machine 
SVMs are a set of machine learning methods used in many areas, such as classification 
and regression (Smola & Schölkopf 2004). This method has outperformed previous 
ones in many classification and regression tasks. 
SVM algorithm was proposed by Vapnik (in Cortes & Vapnik 1995) and got the 
attention of the researchers working in machine learning. SVM classifier separates the 
instances from two different classes by using a hyper plane which tries to maximize the 
margin (Vapnik 2013). This increases the generalization capability of the classifier. The 
instances that are close to or on the border are called the support vectors. The number 
of support vectors also represents the complexity of the model. A figurative 
representation of the algorithm is a good way to visualize how it works, as shown in 
figure 3.5 below. 
It is easy to use the support vector machine algorithm by taking some important issues 
into consideration (Vapnik 1998). First important issue is to decide on the place of the 
hyper plane that will separate the instances. Here support vectors have direct influence 
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on the optimum location of this decision surface since they are the data points most 
difficult to classify. 

 

 
In machine learning, if a problem is not linearly separable, one can try to fit a non-
linear function. However, non-linear functions are time consuming and more difficult 
to understand. In this case the problem can be mapped to a new space by using 
nonlinear basis functions. Of course, this will increase the dimensionality of the 
problem. So it is better to find a model whose complexity is not dependent on the input 
dimensionality. And SVMs are one of the most popular algorithms that are running on 
this trick. 
When the input space is carried to another dimension, a significant point is to map the 
items in the original input space to the new ones; this is done by the kernel function.  
The last important issue is the over-learning of the classifier. Over-learning should be 
avoided to make a more generalizable model. By using different kernels even one 
hundred percent classification can be obtained. But the model complexity is as 
important as the classification accuracy. And to control the complexity of SVM, cost 
parameter is used.  
So when using the SVM classifier, main three parameters are used (1) the kernel type 
(linear, quadratic, polynomial, RBF, etc.), (2) the cost parameter / box constraints, and 

margin 

hyper plane  support 
vector 

support 
vector 

support 
vector 

Figure  3.5: Support vector machine algorithm (linear kernel) 
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(3) the kernel width. The values of these parameters change according to the problem 
and usually determined empirically. 
Figure 3.6 illustrates visualization for the SVM technique when applying it to 
Desharnais dataset. 

Figure  3.6: visualization of SVM using 2 classes in Desharnais dataset 

 
3.2.3 K-Fold Cross Validation 
K-Fold Cross Validation works by dividing the dataset into K subsets, K-1 subsets are 
used for training and the final subset is used for testing, this process is repeated K time 
by leaving out one different subset for testing each time, then the mean value is 
measured. Different values of K can be used in K-Fold Cross Validation technique; in 
our research we used the values (3 and 10), we found that 10-Fold cross validation is 
better than 3-Fold cross validation. 
Figure  3.7: K-Fold cross-validation technique 
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In figure 3.7 above, the black circles describe the testing sets and the white circles 
describe the training sets, the dataset is divided into k folds and in each fold we have 
training and testing sets and we find the prediction for every variable in each fold, then 
the total accuracy is calculated. 
3.2.4 Leave-One-Out Cross Validation 
This technique works by leaving one sample as testing set and all the other projects 
were considered as the training set, this procedure works fine because we have 
relatively small datasets (one of them has 62 projects and the other has 81 projects). 
This technique was seen to be more effective and produces more accurate estimations. 
Figure  3.8: Leave-One-Out cross-validation technique 

 
In figure 3.8 above, black circle in each iteration describes the testing set and all the 
white circles describe the training set. In this technique, the dataset is divided into n 
iterations according to the number of variables, and in each iteration the nth variable is 
considered the testing set, then the total accuracy is calculated. 
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4. RESEARCH PROCEDURE 
This research aims to improve software development effort estimation by developing a 
model and using different machine learning techniques on software development effort 
estimation public datasets. 
We begin by taking into account some machine learning techniques for estimation, 
comparing their performance on a particular dataset, and resulting to a set of standards 
and criteria for selecting the model with the best performance on the dataset. 
This procedure consists of many steps that will be discussed in detail in the following 
subsections: 
4.1 CHOOSING THE DATASET 
Choosing the best dataset that will work on classification, so we found 3 datasets that 
have numerical values, these are Desharnais, Maxwell and China, but we will work 
only using 2 of them (Desharnais and Maxwell). 
We used WEKA software to convert the original file for the dataset that was in .arff 
format, and changed it to .xls format, to be able to use it in MATLAB. 
4.2 WORKING ON THE DATASET 
This step covers transforming data into a new scales, this procedure is called 
Discretisation, to change the problem from regression to classification (i.e. to discretize 
numeric variables to a number of classes/intervals), it is a very important step to be 
done because the machine learning techniques we have picked work only with 
categorized data and do not predict exact numeric values but one of the classes, we 
used a code in MATLAB to convert the actual effort taken from the dataset to a specific 
number or label (1 to 5) according to an experiment done by Radlinski & Hoffmann 
(2010), as explained in Tables 4.1 and 4.2 below. 
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Table  4.1: Defining intervals for Effort in Desharnais dataset 
Desharnais Dataset 

Actual Effort Number of Cases Class ID 
0 – 1500 11 1 

1500 – 3000 21 2 
3000 – 4500 20 3 
4500 – 8000 14 4 

More than 8000 15 5 
Source: (Radlinski & Hoffmann 2010) 

Table  4.2: Defining intervals for Effort in Maxwell dataset 
Maxwell Dataset 

Actual Effort Number of Cases Class ID 
0 – 1500 9 1 

1500 – 3000 10 2 
3000 – 5000 11 3 
5000 – 10000 18 4 

More than 10000 14 5 
Source: (Radlinski & Hoffmann 2010) 

4.3 FILLING MISSING VALUES 
The third step is about filling missing values in the datasets, we found that Desharnais 
dataset has 4 projects containing missing values; we calculated the mean value for all 
the numeric variables in one attribute (column) and filled the missing value.  
4.4 AUTO-SCALING  
Next we applied Auto-scaling on the whole dataset after filling the missing values, this 
method uses mean-centering followed by division of each column by the standard 
deviation of that column. We used a ready function in MATLAB called (autosc) that 
will return a scaled dataset, mean value (mx) and standard deviation (stdx) for the 
dataset. 
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4.5 CROSS VALIDATION 
This step is about dividing the dataset into training and testing sets, two machine 
learning techniques have been used for this purpose, which are Leave-One-Out and K-
Fold cross validation techniques. 
4.6 ESTIMATIONS 
In this step, we applied the machine learning techniques, which are k-NN and SVM, 
using 10-Fold and leave-one-out cross validation techniques to generate predictions. 
4.7 SELECTION CRITERIA 
In this study, we used only one criterion, which is Accuracy. The accuracy is 
implemented for each model on each dataset separately. 
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5. PROPOSED SOLUTION 
The aim of this research is to improve the accuracy of estimations for software 
development projects, this will be done by constructing a system that will use multiple 
machine learning techniques and apply them to multiple datasets. In this research, we 
are going to propose a method to improve accuracy for effort estimation on software 
development projects, this method is called Boosting, it is widely used to improve the 
accuracy for any learning algorithm, boosting is a method that is used to boost accuracy 
of any learning algorithm by fitting a series of models each having low error rate and 
then combining them into an ensemble that may perform better (Monteiro 2002; 
Schapire et al. 1999; Elish 2009). 
Many algorithms have been used for the purpose of boosting, and one of them is called 
Adaptive Boosting (Known as AdaBoost). AdaBoost algorithm was first introduce by 
Freund & Schapire (1997), this algorithm was a solution to many of the difficulties for 
earlier boosting algorithms (Schapire 2009), the idea of AdaBoost is to construct a 
strong model sequentially by combining multiple weak classifiers into one single strong 
classifier, a weak classifier is a classifier which perform poorly but better than random 
guessing. Figure 5.1 below illustrate this procedure. 
Figure  5.1: How Adaptive Boosting works 

 
Here, each model tries to correct the mistakes of the previous one, to come up with a 
better accuracy for effort estimation. AdaBoost can be applied to any classification 
algorithm. 
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AdaBoost was used by many researchers in their experiments including Reyzin (2003); 
Schapire (2013); Kummer & Najjaran (2014); Schapire (2009). The boosting algorithm 
AdaBoost is explained in figure 5.2 below. 
Figure  5.2: AdaBoost algorithm 

 Source: (Schapire 2009) 

Figure 5.3 below illustrates all the steps, after calling the dataset and inputting it to the 
system; discretization of the variables, where all the actual effort values were replaced 
into classes between 1 and 5, because we are going to use machine learning techniques 
for classification, then the dataset is checked for missing values in its variables, if there 
is a missing value, it is replaced with a value by computing the mean value for all the 
variables in the same attribute. After this step has been completed, the dataset is scaled 
and divided into training and testing sets, this step has been done by using two 
techniques (Leave-one-out and K-fold Cross Validation), and then the first machine 
learning technique is applied to train the system, at last, the evaluation of the system 
performance using the testing set and comparing the results.  
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Input: Dataset 

Dataset Discretization 

Fill missing values 

Scaling the Dataset 

Training Set Testing Set 

Apply first machine learning technique 

Testing and Evaluation 

Misclassified Data 

Training Set Testing Set 

Apply second machine learning technique 

Testing and Evaluation 

Output: Accuracy Estimation 

.. Boosting 

Figure  5.3: Visualization of our proposed solution 
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After getting the results from the first technique, the misclassified data are transformed 
to another dataset; the new dataset is also divided into two sets like the previous one 
and then a second machine learning techniques is applied for training. Final step is 
about calculating the overall accuracy after implementing AdaBoost technique. 
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6. EXPERIMENTAL RESULTS 
In this section, we will present results for all the experiments we have done using the 
machine learning techniques on the mentioned datasets. 
All the experiments was conducted using a recent version of MATLAB software 
(R2014b), MATLAB is known to be simple, easy to use and has many ready functions 
built in its library.  
Two publicly available datasets have been used in the experiments, those are 
Desharnais and Maxwell. The two datasets were divided into two sets, training set and 
testing set. We used two approaches to divide the dataset, firstly by using Leave-One-
Out Cross-Validation, and the other by using K-Fold Cross-Validation. 
All the experiments were conducted two times, one without scaling the dataset, and 
then by scaling the dataset using a ready function in MATLAB called (autosc). Results 
show that autoscaling improves the accuracy when implementing it to k-NN technique, 
but it does not improve it when using SVM technique. The following sub-sections 
explain all the results for the mentioned experiments. 
6.1 RESULTS FOR DESHARNAIS DATASET 
As explained earlier, Desharnais dataset consists of 81 software projects between 1983 
and 1988, it has 4 projects missing some values, but we filled them by measuring the 
mean value for all the values in the same attribute, after filling all the missing values, 
we applied two machine learning techniques to calculate the accuracy and find the best 
one, the two machine learning techniques are k-NN and SVM. All the results are shown 
in the following sub-sections: 
6.1.1 k-NN Technique on Desharnais Dataset 
k-NN is simple and easy to use technique in which it is used for classification problems 
like the one we have. It works by computing the distance between an unknown instance 
(the one which we want to predict) and other known instances (the original values in 
the dataset), the new value for the unknown instance will take the value of the majority 
of the surrounding instances.  
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As we mentioned before, we applied Discretization to the values in the dataset, to 
change the problem from regression to classification problem (i.e. we removed the 
actual effort and changed it to labels/ classes from 1 to 5), so the problem now is a 
classification problem with 5 classes, we applied K-NN techniques and the results are 
shown in Table 6.1 below: 
Table  6.1: Using k-NN technique on Desharnais dataset 

Leave-One-Out 
Cross-Validation 

Accuracy 
without Autoscaling 

Accuracy 
with Autoscaling 

k=1 40.74 43.21 
k=3 41.98 41.98 
k=5 40.74 43.21 
k=7 45.68 50.62 

10-Fold 
Cross-Validation 

Accuracy 
without Autoscaling 

Accuracy 
with Autoscaling 

k=1 27.16 19.75 
k=3 27.16 23.46 
k=5 28.4 23.46 
k=7 29.63 23.46 

We can see from the table above that the best accuracy is when using 7 nearest 
neighbors and with scaling the whole dataset, this is when applying Leave-One-Out 
Cross-Validation, this accuracy is relatively small, but it is the best accuracy in this 
situation. 
6.1.2 SVM Technique on Desharnais Dataset 
Accuracy was compared by changing the kernel function (Linear, Quadratic, 
Polynomial, and RBF) and the box constraint (between 0.01 and 1). Experiments were 
carried out two times, first without scaling the dataset and the second time with auto 
scaling the whole dataset. 
As it is mentioned before, data was transformed into a new scale (Discretisation), to 
change the problem from regression to classification, the previous technique (K-NN) 
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worked fine with 5 classes, but SVM will only work with 2 classes, so we made this 
step in many ways to make sure we get the best accuracy: 
First way was only by producing 2 classes (1 or -1), one of them when the effort is 
3000 or less and the other class when the effort is more than 3000; results are shown in 
table 6.2 below. 
Table  6.2: Results for SVM technique on Desharnais dataset when using 2 classes 

Kernel  
Function 

Accuracy without 
Autoscaling 

Box 
Constraint 

Accuracy with 
Autoscaling 

Box 
Constraint 

Linear 79.01 1 79.01 1 
Quadratic 81.48 1 81.48 1 

Polynomial 85.18 1 85.18 1 
RBF 79.01  

(sigma=1) 1 79.01  
(sigma=1) 1 

Second way was by producing 5 classes and then comparing each class with all the 
other classes together, and then taking the total average of the accuracy, for example, 
the first class will be 1 and all the other classes will become -1 and we find the 
accuracy, then the second class will be 1 and all the other classes will become -1 and 
we find the accuracy, and so on, then we find the total accuracy by taking the average 
value of all the five accuracies we have calculated, all the results are listed in table 6.3 
below. 
The earliest used implementation for SVM multi-class classification is probably the 
one-against-all method. It constructs k SVM models where k is the number of classes. 
The mth SVM is trained with all of the examples in the mth class with positive labels, 
and all other examples with negative labels. 
Results show that RBF kernel function has the best accuracy with box constraint equal 
to 0.1 and the default value of RBF sigma (kernel width), this accuracy is the best 
accuracy for this experiment when applying the SVM machine learning technique 
alone, and it is clear from the results that Autoscaling didn’t affect the results at all. 
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Table  6.3: Results for SVM technique on Desharnais dataset when using 5 classes 
Kernel  

Function 
Accuracy without 

Autoscaling 
Box 

Constraint 
Accuracy with 

Autoscaling 
Box 

Constraint 
Linear 65.92 1 65.92 1 

Quadratic 76.29 1 76.29 1 
Polynomial 76.05 0.01 76.05 0.01 

RBF 81.97  
(sigma=1) 0.1 81.97  

(sigma=1) 0.1 

The third way was by producing 5 classes and then comparing two classes together, in 
table 6.4, we compared the first and second classes, and in table 6.5 we compared the 
second and third classes together. 
Table  6.4: Results for SVM technique on Desharnais dataset when using 5 classes with 
comparing the first and second classes 

Kernel  
Function 

Accuracy without 
Autoscaling 

Box 
Constraint 

Accuracy with 
Autoscaling 

Box 
Constraint 

Linear 62.50 0.01 62.50 0.01 
Quadratic 75.00 0.1 75.00 0.1 
Polynomial 68.75 0.01 68.75 0.01 

RBF 65.62 
(sigma=0.1) 0.1 65.62 

(sigma=0.1) 0.1 

Numbers show that the best result when using 5 classes and comparing the first two 
classes is when using Quadratic kernel function when and a box constraint equal to 0.1, 
but when comparing the second and third classes, the best results are when using 
Quadratic and RBF kernel function with the default value of kernel width. 
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Table  6.5: Results for SVM technique on Desharnais dataset when using 5 classes with 
comparing the second and third classes 

Kernel  
Function 

Accuracy without 
Autoscaling 

Box 
Constraint 

Accuracy with 
Autoscaling 

Box 
Constraint 

Linear 63.41 0.01 63.41 0.01 
Quadratic 70.73 0.1 70.73 0.1 
Polynomial 68.29 1 68.29 1 

RBF 70.73 
(sigma=1) 0.1 70.73 

(sigma=1) 0.1 
 
6.1.3 Boosting Results on Desharnais Dataset 
Boosting was done by using one technique and calculating the accuracy, then taking the 
misclassified data from the first technique into a new dataset and using another 
technique. Here we applied this method in two ways, first by using K-NN and boosting 
it with SVM, the other by using SVM and boosting it with K-NN, all the results are 
shown in tables 6.6 and 6.7 below. 
Table  6.6: Boosting K-NN with SVM on Desharnais dataset 

K-NN then SVM Without Autoscaling With Autoscaling 
Accuracy for K-NN 45.68 50.61 
Accuracy for SVM 70.45 80.00 

Total Accuracy 83.95 90.12 
Table  6.7: Boosting SVM with K-NN on Desharnais dataset 

SVM then K-NN Without Autoscaling With Autoscaling 
Accuracy for SVM 85.18 85.18 
Accuracy for K-NN 41.66 41.66 

Total Accuracy 91.35 91.35 
We can observe from the results above mentioned in tables 6.6 and 6.7 that boosting 
really improves the accuracy, at least it is approximately 84% (this is when using K-NN 
first) and at most it is 91.35% (this is when using SVM first), this result is very good 
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and show that the best way to improve accuracy is to use adaptive boosting as shown in 
all the previous experiments. 
6.2 RESULTS FOR MAXWELL DATASET 
Maxwell dataset is relatively new and small dataset which consists of only 62 projects 
between 1985 and 1993; it has no missing values so it is not necessary to apply a code 
to fill missing values in MATLAB like the previous dataset (Desharnais), this is a very 
important thing to do to save time and memory usage when making the experiment. 
Like the previous dataset, we applied two machine learning techniques (k-NN and 
SVM) on the dataset to find the best accuracy for the prediction; all the results are 
shown in the following sub-sections: 
6.2.1 k-NN Technique on Maxwell Dataset 
Table 6.8 show all the results when applying K-NN technique to Maxwell dataset, this 
procedure was implemented to times, first without Autoscaling the dataset, and the 
second time with Autoscaling the dataset using a ready function in MATLAB. 
Table  6.8: Using k-NN technique on Maxwell dataset 
Leave-One-Out 
Cross-Validation 

Accuracy 
without Autoscaling 

Accuracy 
with Autoscaling 

k=1 41.93 32.25 
k=3 50.00 38.71 
k=5 46.77 32.64 
k=7 48.38 35.48 
10-Fold 
Cross-Validation 

Accuracy 
without Autoscaling 

Accuracy 
with Autoscaling 

k=1 14.51 22.58 
k=3 14.51 22.58 
k=5 14.51 27.42 
k=7 16.13 32.25 
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We can see from the table above that the best accuracy is not more than 50%; this is 
when performing Leave-One-Out Cross Validation using 3 nearest neighbors before 
auto scaling the dataset. 
6.2.2 SVM Technique on Maxwell Dataset 
SVM technique was done like the previous dataset but with changing the actual effort 
numbers like the experiment done by (Radlinski & Hoffmann 2010), results are shown 
in tables 6.9 to 6.12 below: 
From reading the results in table 6.9, we can observe that the best result is when using a 
linear kernel function with the default values of box constraint and kernel width, this is 
when using only 2 classes (when the effort is 5000 or more, the class will be 1, and if it 
is less than 500, the class will be -1). 
Table  6.9: Results for SVM technique on Maxwell dataset when using 2 classes 

Kernel  
Function 

Accuracy without 
Autoscaling 

Box 
Constraint 

Accuracy with 
Autoscaling 

Box 
Constraint 

Linear 79.03 1 79.03 1 
Quadratic 62.90 1 62.90 1 

Polynomial 70.97 1 70.97 1 

RBF 51.61 
(sigma=1) 0.1 51.61 

(sigma=1) 0.1 

But when using all the 5 classes, and comparing each class with all the other classes, 
the results will change, as shown in table 6.10 below. 
Table  6.10: Results for SVM technique on Maxwell dataset when using 5 classes 

Kernel  
Function 

Accuracy without 
Autoscaling 

Box 
Constraint 

Accuracy with 
Autoscaling 

Box 
Constraint 

Linear 67.09 1 67.09 1 
Quadratic 75.80 1 75.80 1 

Polynomial 74.51 1 74.51 1 
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RBF 80.00 
(sigma=0.1) 0.01 80.00 

(sigma=0.1) 0.01 

It is clearly shown in table 6.10 above that the best accuracy is 80% when using a RBF 
kernel function with box constraint equal to 0.01 and kernel width equal to 0.1; this is 
the best accuracy that we get when applying SVM technique to Maxwell dataset. 
In the last way, we compared two classes together, in table 6.11 we compared the first 
two classes and we get 73.68% accuracy when using a linear kernel function with box 
constraint equal to 0.1. But in table 6.12, we compared the second and third classes, and 
we get 66.66% accuracy when using a quadratic kernel function with the default values 
of box constraint and kernel width. 
Table  6.11: Results for SVM technique on Maxwell dataset when using 5 classes with 
comparing first and second classes 

Kernel  
Function 

Accuracy without 
Autoscaling 

Box 
Constraint 

Accuracy with 
Autoscaling 

Box 
Constraint 

Linear 73.68 0.1 68.42 0.1 
Quadratic 47.37 1 47.37 1 

Polynomial 42.10 1 42.10 1 

RBF 52.63 
(sigma=1) 1 52.63 

(sigma=1) 1 

Table  6.12: Results for SVM technique on Maxwell dataset when using 5 classes with 
comparing second and third classes 

Kernel  
Function 

Accuracy without 
Autoscaling 

Box 
Constraint 

Accuracy with 
Autoscaling 

Box 
Constraint 

Linear 52.38 0.1 52.38 0.1 
Quadratic 66.66 1 57.14 1 
Polynomial 42.85 1 47.62 1 

RBF 42.85  
(sigma=0.1) 0.1 52.38  

(sigma=0.1) 0.1 
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6.2.3 Boosting Results on Maxwell Dataset 
Boosting was done by using one technique and calculating the accuracy, then taking the 
misclassified data into a new dataset and using another technique. Here we applied this 
method in two ways, first by using K-NN then SVM, the other by using SVM then K-
NN, all the results are shown in tables 6.13 and 6.14 below. 
Table  6.13: Boosting K-NN with SVM on Maxwell dataset 

K-NN then SVM Without Autoscaling With Autoscaling 
Accuracy for K-NN 50.00 38.71 
Accuracy for SVM 74.19 76.31 

Total Accuracy 87.10 85.48 
Table  6.14: : Boosting SVM with K-NN on Maxwell dataset 

SVM then K-NN Without Autoscaling With Autoscaling 
Accuracy for SVM 79.03 79.03 
Accuracy for K-NN 30.77 15.38 

Total Accuracy 85.48 82.25 
As it is shown in the last two tables, results of accuracy is improving when using a 
boosting technique, the best accuracy was shown when applying K-NN technique first, 
we get 87 accuracy. The least accuracy is 82%, and it is more than the best accuracy 
when applying a machine learning technique alone. So we can say that adaptive 
boosting really improves the accuracy, and it is simple and easy to use. 
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7. DISCUSSION AND CONCLUSION 
A survey conducted by (Molokken & Jorgensen 2003) show that approximately 
between 70 and 85 percent of the respondents accepted and agreed to the importance of 
estimating the effort for new software development projects. This study and experiment 
was done to evaluate some machine learning methods which are k-Nearest Neighbor 
and Support Vector Machine by applying them into two different datasets in order to 
make effort prediction for a new software development project. 
We have seen from the results that when applying a single method alone, it has a good 
accuracy, but it did not get over 85% in the best scenario (this was when applying SVM 
technique using 2 classes to Desharnais dataset), but when we used a boosting 
technique called AdaBoost in order to improve the accuracy, we get 91.35% accuracy 
when using Desharnais dataset and 87.10% accuracy when using Maxwell dataset. So, 
we can say that boosting one technique with another one improves the accuracy of 
estimations. 
For future work, other machine learning techniques can be used for classification 
problems, also other datasets can be used for experiments and training the model, in 
this way, we have more accurate estimations and predictions, also boosting with more 
than two techniques to get more accuracy reaching 100%. Another Future work can be 
to use feature selection technique. 
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APPENDICES 

Appendix-1 
List of Variables in Desharnais Dataset 
Symbol Name Type 
TeamExp Team experience – measured in years numeric 
ManagerExp Manager experience – measured in years numeric 
YearEnd Year project ended numeric 
Entities The number of entities in the systems data model     

     (function points) 
numeric 

Transactions A count of basic logical transactions in the system  
     (function points) 

numeric 

Length Actual project schedule in months numeric 
PointsNonAjust Transactions + Entities (function points) numeric 
PointsAdjust Function points adjusted by the Adjustment factor  

     = 0.65 + (0.01 * PointsNonAdjust) 
numeric 

Adjustment Function point complexity adjustment  factor  
     (Total Processing Complexity) 

numeric 

Effort Actual Effort is measured in person-hours (Dependent) numeric 
Language Programming Language  nominal 
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Appendix-2 
List of Variables in Maxwell Dataset 
Symbol Name Type 
Syear Software Year  numeric 
App  Application Type numeric 
Har  Hardware Platform numeric 
Dba  Database numeric 
Ifc  User Interface numeric 
Sourse  Where Developed numeric 
Telonuse  Telon Use numeric 
Nlan  Number of Development Languages numeric 
T01  Customer Participation numeric 
T02  Development Environment Adequacy numeric 
T03  Staff Availability numeric 
T04  Standards Use numeric 
T05  Methods Use numeric 
T06  Tools Use numeric 
T07  Software’s Logical Complexity numeric 
T08  Requirements Volatility numeric 
T09  Quality Requirements numeric 
T10  Efficiency Requirements numeric 
T11  Installation Requirements numeric 
T12  Staff Analysis Skills numeric 
T13  Staff Application Knowledge numeric 
T14  Staff Tool Skills numeric 
T15  Staff Team Skills numeric 
Duration  Duration (months) numeric 
Size Application Size (Function Points) numeric 
Time  Time numeric 
Effort (H) Work Carried-out numeric 
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