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ABSTRACT 

 

 

INFERENCE OF DIFFERENTIAL GENE NETWORKS  

 

 

Onur Mendi 

 

PhD in Computer Engineering 

 

Thesis Supervisor: Prof.Dr. Adem Karahoca 

 

 

December 2016, 97 Pages 

 

 

Biological systems are highly dynamic entities that behave differently under different 

conditions. Differential gene network analysis reveals disease-specific gene interactions 

from expression datasets that helps identifying the molecular interactions that underlies 

the progression of diseases. The purpose of this study is to present a novel differential 

networking approach that integrates disease-specific differential gene network with the 

prior biological knowledge to reveal the molecular mechanisms associated with breast 

cancer.  

 

In the study, METABRIC breast cancer dataset is used to infer genome-wide breast 

cancer specific differential gene network. A web-based tool was developed to infer 

breast cancer specific gene network. In order to evaluate the results of the study, 

functional enrichment analyses were performed. GO and KEGG pathway enrichment 

analysis identified numerous pathways that may have a role in the breast cancer. 

Furthermore, the top genes that are identified in the breast cancer specific differential 

network are investigated through the literature. The findings of this study may promote 

the better understanding about the molecular mechanism of breast cancer and also 

disclose potential targets for diagnostic and effective therapies. 

 

Keywords: Differential Network Analysis, Differential Gene Networks, Systems 

Biology, Disease Networks. 
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ÖZET 

 

 

FARKSAL GEN AĞLARI ÇIKARIMI 

 

 

Onur Mendi 

 

Bilgisayar Mühendisliği Doktora Programı 

 

Tez Danışmanı:  Prof.Dr. Adem Karahoca 

 

 

Aralık 2016, 97 Sayfa 

 

 

Biyolojik sistemler değişik durumlarda farklı davranışlar gösteren oldukça dinamik 

yapılardır. Farksal gen ağları analizi, ekspresyon verisini kullanarak hastalıkların 

ilerlemesine neden olan moleküler etkileşimlerin belirlenmesinde önemli rol oynayan 

hastalığa özel gen etkileşimlerini ortaya çıkaran bir analiz türüdür. Bu çalışmanın amacı 

hastalığa özel farksal gene ağları ile literatürdeki biyolojik bilgileri entegre ederek 

göğüs kanseri ile ilişkili moleküler mekanizmaları ortaya çıkaran özgün bir farksal ağ 

yaklaşımı geliştirmektir. 

 

Bu tez çalışmasında, genom seviyesinde göğüs kanserine özel farksal gen ağı 

çıkarımında METABRIC göğüs kanseri veri seti kullanıldı. Bu kapsamda göğüs 

kanserine özel gen ağı çıkaran web-tabanlı bir uygulama geliştirildi. Çalışmada elde 

edilen sonuçların değerlendirilmesinde, fonksiyonel zenginleştirme analizleri kullanıldı. 

GO ve KEGG yolak analizleri ile göğüs kanserinde önemli rol oynayan çeşitli yolaklar 

tespit edildi. Buna ek olarak göğüs kanserine özel farksal gen ağında önemli rol 

oynayan genler literatür kapsamında değerlendirildi. Bu çalışmanın bulguları, göğüs 

kanserinin gelişiminde rol oynayan mekanizmaların daha iyi anlaşılabilmesinin yanısıra, 

hastalık tanısı ve etkili tedavi geliştirilmesinde potansiyel hedef genlerin tespitine katkı 

sağlayabilir. 

 

Anahtar Kelimeler: Farksal Ağ Analizi, Farksal Gen Ağları, Sistem Biyoloji, Hastalık 

Ağları. 
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1. INTRODUCTION 

 

 

Nowadays, the identification of novel oncogenes or tumor suppressor genes has become 

popular in tumorigenesis studies in understanding molecular mechanisms that drive 

disease progression (Ren, 2015). Understanding the working mechanism of molecules 

in normal cell physiology and pathogenesis allows subtle drug development and helps 

treatment of a disease, such as cancer (Altay and Emmert-Streib, 2010a; Rual et al., 

2005;). The advent of systems and network biology enable us to capture interactions 

occurring within a cell, which can be represented as gene networks. Computational 

analysis of the networks provides key insights into complex biological systems and 

cellular organization.  

Gene and protein interaction networks can be constructed for a particular biological 

condition experimentally or computationally. The most commonly used method to 

construct a network experimentally is the yeast two-hybrid system. However, this 

method produces a very large number of false positives and receive significant 

criticism. Besides this, constructing the protein and gene association networks 

experimentally is an expensive and labor-intensive process. Hence, computational 

approaches to reverse engineer the protein and gene association networks became 

popular and used widely as a lucrative alternative (Gill et al., 2014a).  

The inference of gene regulatory networks (GRN) is a process of estimating direct 

physical associations among genes from microarray gene expression data (Emmert-

Streib et al., 2012). GRNs aim to capture the interactions between the molecular 

structures and are represented as graphs in which nodes represent genes, and edges 

represent molecular associations (Hecker et al., 2009). Various gene network inference 

algorithms are available in the literature to infer GRNs using gene expression data. 

Some of the most popular methods are ARACNE, CLR, C3NET, and MRNET 

(Margolin et al., 2006; Faith et al., 2007; Altay & Emmert-Streib, 2010a,b; Meyer et al., 

2007). This is an active research area and apart from these popular ones, many other 

algorithms also exist.  
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However, both experimental and computational methods that are used for constructing 

gene and protein networks are static in nature. The biological systems are highly 

dynamic entities and the perturbations caused by environmental stresses, evolutionary 

changes and disease conditions result in changes in the topology of the networks. For 

this reason, examining the network structure under different biological settings became 

important to identify which parts of the network get affected by the perturbation (Gill et 

al., 2014a). Some examples of such different biological settings are as following:  

a. Different tissue types: e.g., normal vs. cancer (Lu et al., 2010; Ergun et al., 

2007) 

b. Different stages of cancer: e.g., breast cancer stage I vs. stage IV (Iqbal et al., 

2015) 

c. Different cancer subtype: e.g., squamous cell carcinoma vs adenocarcinoma 

non-small cell lung cancer (Bartucci et al., 2012). 

d. Different time points: e.g., two distinct time periods (Gill et al., 2010) 

e. Different subject type: e.g., male vs. female (Van Nas et al., 2009) 

f. Different race: e.g., White women vs. African American women (White-Means 

et al., 2015) 

The biological activities at the gene level are very complex structures as genes interact 

with each other in a dynamic manner. A single gene can play a role in different stages of 

biological activities and regulate different genes at varied times (Emmert-Streib et al., 

2012). Most of the existing computational methods test the changes in the expression 

levels of each single gene individually. However, diseases are usually consequences of 

interactions between multiple molecular processes, rather than an abnormality in a 

single gene (Menche et al., 2015). 

Different associations between genes result in different cell conditions. Between two 

cell conditions, there are common gene interactions and also different interactions from 

the other. This fact can be used to identify molecular mechanisms that drive disease 

progression. Identifying these mechanisms let us to find new and more targeted 

biomarkers or drugs.  
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In order to find disease-specific interactions, many differential gene network inference 

algorithms were introduced. However, since we work in genome-wide, using these 

algorithms alone results many disease-specific interactions from which it is not easy to 

determine the main causes of the disease. In order to rank those disease-specific 

interactions and also the genes in the network, we developed a new approach by 

integrating some other available datasets for breast cancer. Our integration framework 

has resulted the most important genes and interactions by allowing ranking the breast 

cancer specific gene network. The proposed method can quantitatively identify the 

differences between two biological conditions (or two classes) and can provide better 

insights and understanding of breast cancer. 

This dissertation is composed of the following five major parts. Part one contains the 

general introduction of differential networking methodology, the purpose of the study 

and the structure of the dissertation. Part two contains biological background and the 

review of the literature starting from gene network inference to differential network 

analysis.  In this chapter main limitations of the existing approaches are also discussed. 

Part three contains the proposed differential network inference algorithm (IDN) 

including the overview and workflow of the algorithm and a case study in web based 

application.  

In part four, firstly two preliminary analysis are presented and discussed. Following 

this, data collection, data pre-processing and data integration methods for breast cancer 

analysis are explained. Lastly, breast cancer analysis results of IDN approach are 

presented . 

Finally, in part five, the discussion of the results, the limitations of the study, study 

conclusions and future recommendations are provided. 
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2. LITERATURE REVIEW 

 

 

In this part of the study, firstly biological background is given. Secondly, gene network 

inference which is the first step in differential networking analysis was highlighted and 

some popular methods are presented. Finally, review of the literature starting from 

single gene analysis to differential network analysis are presented and discussed to 

understand importance of differential network analysis. 

2.1. BIOLOGICAL BACKGROUND 

Biological background part includes the term cancer, importance of breast cancer in 

women, and information about microaaray data, gene regulatory networks and gene 

network inference. 

2.1.1. Cancer 

The term cancer refers to a large group of diseases that can affect any part of the body. 

Cancer is caused by the rapid production of abnormal cells which grow beyond normal 

boundaries and then invade adjacent tissues and spread to other parts of the body 

(World Health Organization (WHO) Fact sheet No 297).  

Cancer has fast become a primary cause of mortality and morbidity in the world, 

especially in developed countries (Bray et al., 2012; Baş et al., 2015), and the second 

most frequent cause of death after heart diseases in emerging countries (Baş et al., 

2015). In the WHO 2015 February fact sheet, there were about 14 million new cancer 

cases and 8,2 million cancer-associated deaths reported in 2012 while the number of 

new incidents was expected to increase by about 70% over the following two decades 

(WHO Fact sheet No 297). Cancer incidence rates have risen in Turkey because of 

environmental and individual risk factors, advancements in the registry system and 

improvements in the accessibility of healthcare services (Yilmaz et al., 2010).  
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The hallmarks of cancer acquired by different cancer types and enabling characteristics 

are specified as (Emmert-Streib et al., 2012): 

a. tissue invasion and sustained angiogenesis, 

b. insensivity to anti-growth signals, 

c. self-sufficiency in growth signals, 

d. unlimited replicative potential, 

e. deregulating cellular energetics, 

f. preventation of immune destruction, 

g. avoidance of apoptosis, 

h. tumor promoting inflammation. 

i. genome mutation and instability. 

2.1.2. Breast Cancer  

Breast cancer is the most prevalent cancer among women worldwide, followed by 

colorectal, lung, cervix, and stomach cancer. The cause of 521000 of the 8.2 million 

cancer-associated deaths worldwide was breast cancer in 2012 (WHO Fact sheet 

N°297).  

American Cancer Society (ACS) has estimated that nearly 246660 new invasive breast 

cancer cases and 61000 new cases of carcinoma in situ will be diagnosed in the USA in 

2016. Moreover, ACS has reported that the number of women that will die from breast 

cancer will be approximately 40450. According to the other estimates 10-12% of 

women will have breast cancer in their life (Kleibl and Kristensen, 2016). 

In Turkey, breast cancer is also the most frequent type of cancer among women 

according to statistics. It is followed by skin cancer, thyroid cancer, lung cancer, and 

stomach cancer (Yilmaz et al., 2010).  

Life expectancies in high-resource nations is 80 years and over for women in Europe, 

North America, and Australia. Also life expectancies have increased at dramatic rates in 

China and India, which constitute nearly 40% of the world’s population. The population 

of world continues to increase in size so age will be the most crucial demographic 

variable that affects future healthcare burdens. It will cause an increase in diseases 
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associated with age according to the gynecologists: problems of hormone deficiency, 

pelvicfloor problems, and genital cancers will increase. Breast cancer will certainly 

increase affecting every ethnic groups in many countries (Becker, 2015). 

Breast cancer isn’t perceived as one disease with different histological characteristics 

and clinical behavior. It’s comprehended as heterogeneous group of different diseases 

characterized by clear molecular aberrations. Research have shown that two types of 

breast cancers, oestrogen-receptor (ER)-positive and ER- negative, are distinct diseases 

at the transcriptomic level. Moreover, there might be additional molecular subtypes of 

these groups (Reis-Pilho and Pusztai, 2011). 

There are many factors affecting development of cancer that are categorized as genetic, 

lifestyle and environmental. Genetic factors are very important for the breast cancer 

since it’s known that a firs-degree female relative with breast cancer doubles the risk for 

a proband. The more relatives with the breast cancer means the more risk. The genetic 

factors can be specified as: family history, personal history of breast cancer, breast 

condition, menoactivity, and height (Kleibl and Kristensen, 2016). 

BRCA1 and BRCA2 are the top two breast cancer-associated genes, discovered in the 

last decade of the 20th century. There are many other genes associated with breast 

cancer but they didn’t show a mutation frequency and clinical importance as BRCA1 

and BRCA2. In general, breast cancer-associated genes are divided into three subtypes; 

high-penetrance, moderate- penetrance, and low-penetrance genes, according to the risk 

of breast cancer progression. BRCA1, BRCA2, PTEN, p53, STK11, and CDH1 are the 

widely known high-penetrance genes which increase breast cancer risk above four times 

(Kleibl and Kristensen, 2016).  

2.1.3. Microarray Data 

Deoxyribonucleic acid (DNA) is the basis of life for all living organisms on Earth 

consisting of nucleotide sequences (Gavlik and Szymczak, 2003). The DNA contains 

information needed by the cell to produce RNA and proteins in its genes. The 

information also controls when and how the genes are expressed. Then the genes 
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function incomplex self-regulating networks within the organism giving rise to its shape 

and basic behavior (Burton, 2014; Reddy, 2009).  

A gene can be defined as “a DNA sequence corresponding to a single norm of reaction 

of gene products across varying cellular conditions” (Griffiths and Neumann-Held, 

1999). A copy of the DNA sequence is produced for transferring from mother cell to 

daughter cell, and the stored sequence information is rewritten into messenger RNA 

(mRNA). Afterwards the protein synthesis machinery can comprehend the genetic code 

(Singh et al., 2014). 

The central dogma, identifies the encoding process of proteins by the genes. It describes 

the information flow in a biological organism including replication, transcription, and 

translation. Information refers to the certain detection of sequence, any of nucleic acid 

or of amino acid sediments’ bases in the protein (Koonin, 2012; Morange, 2008). 

Francis Crick put forward the central dogma in return for the discovery of reverse 

transcription after integrality of information transfer from RNA to DNA in retro-

transcribing genetic elements life cycle turned out to be clear (Figure 2.1). In the 

transcription step, DNA is copied into mRNA in the translation step, proteins are 

synthesized using the information carried by mRNA.  

Figure 2.1. The central dogma 

 

Source: “Koonin, E. V. 2012. Does the central dogma still stand? Biology Direct. 7:27”. 

The central dogma situates the main exclusion principle at the translation phase. The 

central dogma supposes that “There is no information transfer from protein to nucleic 

acid” (Koonin, 2012). The possible ways of information transfer are from nucleic acid 

to protein, or from nucleic acid to nucleic acid. However, transfer from protein to 

nucleic, or transfer from protein to protein is not possible (Morange, 2008).   

DNA
transcription

RNA Protein
translation

x
reverse reverse
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DNA microarray technologies were developed for the purpose of measuring the 

transcription levels of RNA transcripts obtained from genes within a genome in a single 

test. The aim is to evluate the expression levels of many genes in the same test. 

Thousands of single-stranded sequences are synthesized to a glass which has a similar 

size microscope slide.  

DNA arrays is classified in two groups; one provided by Affymetrix 

(http://www.affymetrix.com/), and the other one provided by Illumina 

(http://www.illumina.com/). The first one uses small single-stranded oligonucleotides 

that are synthesized in situ. The second type of arrays are used for copy-number 

measurements, genotyping, sequencing and detecting loss of heterozygosity (Trevino et 

al., 2007). 

The process of microarray experiments start with labeling the extracted mRNAs and 

amplified cDNAs using fluorescent dyes. After then, the DNA array is incubated and 

washed to remove non-specific hybrids for hybridization. The attached fluorescent dyes 

are actuated by a laser to generate light detected by a scanner and a digital image from 

the microarray was produced by a scanner. The image of each spot is transformed to a 

numerical reading.  

The process is completed in three steps. In the first step, the particular place and shape 

of each spot is found. Secondly the intensities in the identified spot are associated. 

Finally, the background noise is evaluated. Integrated signal is usually purged from the 

background noise. The final value is an integer that is proportional to the target 

sequence’s concentration in the sample (Trevino et al., 2007). 

2.1.4. Gene Regulatory Networks 

A gene regulatory network (GRN) is an abstract representation of indirect gene-gene 

interactions that describes the ways how one gene indirectly affects all other genes 

which are connected to it. GRNs doesn't include the physical interactions of genes 

rather than a protein-protein interaction network (PPI). Gene-gene interactions are 

highly dependent on transcription factors (TF) (Yang, 2013) 
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A schematic view of a GRN is shown in Fig. 2.2. In the figure, layers represent gene 

activities, proteins and metabolities. In the gene activity space, there are four genes. 

Three of these genes (first, third and fourth gene) encode TFs. The other one (second 

gene) encodes a protein which starts the production process of metabolite two. The 

edges between nodes show biochemical processes such as metabolic conversion, 

transcriptional regulation and protein association. The interactions and causal effects in 

the gene space layer is an example of gene network concept (Yang, 2013, de la Fuente, 

2010). 

Figure 2.2. A schematic view of a gene regulatory networks 

 

Source: “de la Fuente, A. 2010. From 'differential expression' to 'differential 

networking' - identification of dysfunctional regulatory networks in diseases. Trends in 

Genetics. 26 (7), pp. 326-33”. 

2.1.5. Gene Characteristics 

In this part, we presented important gene characteristics such as transcription factors, 

metastatic genes, prognostic genes and oncogenes which are important for the approach 

we presented in this dissetation.  
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2.1.5.1. Transcription Factors 

Transcription factor (TF) is a molecule that determines if a gene’s DNA is transcribed 

into RNA and controls the gene’s activity. The gene’s DNA is used by the enzyme 

RNA polymerase as a template. RNA is synthesized by the chemical reactions that are 

catalyzed by the enzyme RNA polymerase. TFs control the time, place, and the 

efficiency of the function of RNA polymerases. TFs play crucial role in the usual 

development of an organism. They also control the response to disease. TFs are a 

various kind of proteins which function usually in multi subunit protein complexes 

(Britannica.com). 

Different transacting factors may interact with a common binding site. Recent studies 

revealed that the interaction of different factors with a common target site does not 

always conclude with equivalent transcriptional responses. Some factors activate 

transcription whereas some prevent the activation (Karin, 1990).  

Transcription factors need the skill to bind to DNA and affect transcription positively or 

negatively, to produce their effects. Studies showed that the structure of TFs is modular 

and specific areas of the molecule are responsible for binding to the DNA. In Table 2.1, 

the categorization of TFs according to their DNA binding domains is shown (Latchman, 

1997). 

Table 2.1. Classification of transcription factor families 

 

Source: “Latchman, D.S. 1997. Transcription Factors: An Overview. International Journal of 

Biochemistry and Cell Biology. 29 (12), pp. 1305-1312”. 
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2.1.5.2. Metastatic genes 

Metastasis is a painful pathological and evolutionary process that causes morbidity and 

mortality mainly. There have been important developments in detecting and treating 

localized cancers in recent years. Even so, metastatic disease is the most common 

reason of cancer associated deaths. Early diagnosis of cancers is of capital importance 

for treatment when they are localized and curable (Yoshida et al., 2000). Expression of 

particular genetic programs is required by a tumor cell for metastasis, to enable the 

appropriate interactions with changing microenvironments for promoting continued 

survival and proliferation at secondary sites. To understand these programs and their 

effects on cellular interactions and signaling cascades is essential in discovering the 

complex metastasis process (Hurst and Welch, 2011).  

Subsets of tumor cells are equipped with capabilities that are not found in their 

nonmetastatic counterparts. Metastatic cells turn on genes which promote metastasis. 

It’s not easy to identify prometastatic genes because cell to accomplish numerous tasks 

in multiple different microenvironments is required for the ability to metastasize (Hurst 

and Welch, 2011). Metastasis suppressor genes are potential markers to distinguish 

nonmetastatic and metastatic cancer cells (Liu et al., 2001). “Metastatic genes are those 

in which gains in oncogene functional activity or lack of tumor suppressor genes 

enables cancer cells to detach, escape into the circulation, penetrate and colonize distant 

organs.” (Alberti, 2008). Three types of metastatic genes can be identified according to 

their involvement level in the metastatic pathway (Alberti, 2008, Nguyen and 

Massague, 2007): 

a. Metastasis initiation genes: They permit the malignant cell to enter into the 

circulation in primary tumor, by causing tumor cell detachment, invasion and 

motility, and promoting the neoplastic angiogenesis. Most genes that are 

relevant to tumor cell motility, angiogenesis or invasion are belong to this group.  

b. Metastasis progression genes: These type of metastatic genes mediates the 

metastasis initiation mentioned above and play a role in metastatic colonization. 

Moreover, they contribute to primary tumor growth. The difference of these 
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genes than oncogenes are that they carry out the same cell-autonomous 

transforming function throughout the course of a malignant disease.  

c. Metastasis virulence genes: They are exclusively responsible for the 

colonization of target organs. These genes play role in metastatic colonization 

rather than primary tumor development. 

2.1.5.3. Prognostic genes 

Prognostic genes are significant in cancer research since they give information 

concerning clinic outcomes. Prognostic genes are important in cancer treatment and 

prognosis for prediction of patients’ survival. Moreover, these genes give idea about 

molecular mechanisms of tumor progression. In a study conducted by Yang et al. 

(2014), the properties of prognositc genes in the gene co-expression networks of 4 

different types of cancer were investigated. Their results indicate that: prognostic 

mRNA genes are not hub genes; prognostic mRNA genes are enriched in modules; 

targets of prognostic microRNAs present similar patterns; some prognostic modules are 

conserved across tumor types. 

2.1.5.4. Oncogenes 

Oncogenes are usually expressed at high levels in tumor cells and have great potential to 

cause cancer (Wilbur et al., 2009). Proto-oncogenes, which normally help cells to grow, 

become a harmful when they mutate or too many copies of them come into existence. 

These genes might be kept in a state of constant activity when they are not supposed to. 

The cell growth is uncontrolled and this may cause cancer. This bad gene is called an 

oncogene (Cancer.org). The first oncogene determined is SRC which was discovered in 

chickens in 1970. It is called the “Rous sarcoma virus”. The SRC gene was then shown 

to be play a role in many cancer types such as colon, liver, lung, breast and pancreatic 

cancer in humans. There are a lot of known oncogenes in humans. They have an 

essential role in initiating and maintaining tumor growth and they are known as prime 

targets in drug development. (broadinstitute.org). Proteins which control apoptosis and 

cell proliferation are encoded by oncogenes. Oncogenes can be activated by structural 

changes caused by mutation or gene fusion (Croce, 2008). 
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2.2. GENE NETWORK INFERENCE 

In this part, the information about gene network inference is given and some of the 

popular methods such as RN, ARACNE, CLR, MRNET and C3NET that are used 

commonly are presented.  

2.2.1. Introduction 

The inference process of gene regulatory networks (GRN), which can be seen as a 

reverse engineering problem, is a process of estimating direct physical associations 

among genes from gene expression data (Emmert-Streib et al., 2012). This process can 

provide valuable information about normal cell physiology, development and 

pathogenesis and promote better understanding of biological and biomedical problems 

(Emmert-Streib & Dehmer, 2010; Rual et al., 2005; Schadt, 2009). In bioinformatics 

studies, gene network inference (GNI) algorithms are widely used for determining the 

roles of regulating and regulated genes, identifying the important genes in genetic 

diseases, and identifying biomarkers (Kurt et al., 2014). GRNs aim to capture the 

interactions between molecular structures and are represented as graphs in which nodes 

correspond to genes, and edges represent the dependencies between genes (Hecker et 

al., 2009).  

In vivo or in vitro, molecular interactions can be detected accurately by classical 

molecular biology approaches. Unfortunately, these methods are not easy to apply and 

the number of associations that can be examined by these approaches is limited (Klipp 

et al., 2005). Gene networks such as transcriptional regulatory networks, protein 

networks or metabolic networks, represent patterns of dynamical operations within 

cells. Different kind of gene networks have different effects on the dynamical processes 

of cellular systems (Emmert-Streib and Dehmer, 2009a,b). Hence, gene network 

inference has been identified as a focal point in systems biology. However, GNI is a 

challenging problem because of the current very large-scale biological datasets and the 

noise caused by experimental and computational processes. 
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The steps of the gene network inference process are shown in Fig. 2.3. The dataset 

obtained from microarray data analysis consists of gene expression levels. Firstly, by 

using these pre-processed expression values, a gene expression matrix is created. In this 

matrix, each row represents a gene whereas each column represents a sample. The 

second step is estimating interaction scores of gene pairs. In this step, association score 

estimators such as correlation-based, entropy-based and direct mutual information (MI) 

estimators are used to obtain interaction scores. A dataset discretization operation is 

required in order to use MI estimators. At the end of the second step, a square gene 

association matrix is obtained. Finally, GNI algorithms are applied to this association 

matrix and the inference of gene regulatory network process is completed. 

Figure 2.3. The workflow of gene network inference 

 

Source: “Kurt, Z. (2013). Gen ağı çıkarım algoritmaları için en uygun ilişki kestirimcilerinin 

belirlenmesi. Thesis for the Ph.D. Degree. İstanbul: Yıldız Teknik Üniversitesi FBE”. 
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The most crucial part of GNI algorithms is to compute the dependency scores among 

cell structures. The interaction scores among gene pairs are determined from the gene 

expression datasets by the association score estimators. However, there is no commonly 

approved estimator that is known to provide the best performance for GNI methods. In a 

study conducted by (Kurt et al., 2014), Twenty seven association estimators were 

examined and 14 most likely estimators were evaluated. According to the study results; 

BS with spline order 2 (BS2), BS with spline order 3 (BS3), Kernel Density Estimator 

(KDE), Spearman-based Gaussian (SPG) and Pearson-based Gaussian (PBG) were 

found to be the best association score estimators regarding the performance and 

runtime. Therefore, in this thesis, Pearson-based Gaussian estimator was preferred (Kurt 

et al., 2014a,b). 

2.2.2. Methods 

The best of the methods that have been developed for inferring GRNs from microarray 

gene expression data are based on information theory (Gallager, 1968; Shannon and 

Weaver, 1949). The main principle of information-based methods is estimating mutual 

information (MI) values among gene pairs (Butte et al., 2000; Meyer et al., 2007). MI 

based algorithms are able to detect linear as well as non-linear effects between gene 

pairs (Li, 1990; Steuer et al., 2002). Furthermore, they enable us to work with large 

sample sizes such as 25000 genes (Altay et al., 2011). 

2.2.2.1. Relevance Network 

RN (relevance network) was one of the first algorithm that is developed for inferring 

GRNs from gene expression data (Butte and Kohane, 2000). This algorithm computes 

all mutual information scores for all pairs of genes and eliminates the edges between 

genes that have MI values which are not statistically significant. The approach of 

relevance networks (Butte et al., 2000) consists in inferring a genetic network by 

computing all MI scores for all gene pairs, and linking a pair of genes (xy) by an edge if 

MI value Ixy between these genes is larger than the threshold value It. In the resulting 

network, two genes connect to each other only if Ixy > It. If this equationis not valid, no 

edge is set between x and y if this. The threshold value It was computed by randomizing 

the gene expression dataset.  
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RN computes all pairwise interactions. Hence, the complexity of the algorithm is O(n
2
) 

Additionally, RN can set an edge between two genes which do not interact directly, but 

both are regulated by a third gene. For example, suppose that gene x and y are regulated 

by gene z. This will result in high mutual information between gene pairs (xy), (xz) and 

(yz). Therefore, RN will put an edge between x and y although these genes do not 

interact directly but interact through gene z (Meyer et al., 2008). 

2.2.2.2. ARACNE 

The second well-known method is the (ARACNE) “algorithm for the reconstruction of 

accurate cellular networks” (Margolin et al., 2006). ARACNE uses data processing 

inequality and, in addition to RN, it performs a second step to eliminate the least 

significant edge of a triplet of genes. This results in a more conservative estimation of 

the inferred network. 

The algorithm starts with estimating the pair-wise MI values for all genes. Then it 

eliminates non-significant values according to the obtained threshold I0. This step is 

basically equivalent to relevance networks since it computes mutual information and 

declares MI values significant if Ixy > It. If Ixy is found to be significant, then an edge is 

included in the corresponding adjacency matrix between gene x and y, Axy = Ayx = 1. In 

addition to the first step, ARACNE performs a second step called data processing 

inequality (DPI). The DPI is a relation between MI values that means that generally its 

information content can not be increased by a post-processing (24). DPI serves as a 

filtering step. DPI indicates that, if the interaction between gene X and gene Z occurs 

through another gene Y (X→ 𝑌 → 𝑍), then 

I(X, Z) ≤  argmin {𝐼(𝑌, 𝑍), 𝐼(𝑋, 𝑌), }. 

Here, the weakest edge of the gene triplet I(X, Z), corresponds to the indirect interaction 

and hence is eliminated by the DPI approach. The working mechanism of DPI is shown 

in Fig. 2.4. 
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Figure 2.4. Working mechanism of DPI. DPI infer the most likely path of information 

flow regardless of significant mutual information values of all six gene pairs. For 

example, X⟷Z will be eliminated because I(Y,Z) > I(X,Z) and I(X,Y) > I(X,Z). Y⟷T 

will be eliminated because I(Y,Z) > I(Y,T) and I(Z,T) > I(Y,T). X⟷T will be eliminated 

in two ways: (1) because I(X,Y) > I(X,T) and I(Y,T) > I(X,T), and (2) because I(X,Z) > 

I(X,T) and I(Z,T) > I(X,T). 

 

Source: “Margolin, A., Nemenman, I., Basso, K., Wiggins, C., Stolovitzky, G., Dalla Favera, R., and 

Califano, A. 2006. ARACNE: an algorithm for the reconstruction of gene regulatory networks in a 

mammalian cellular context. BMC Bioinformatics. 7 (7) Suppl 1, pp. 7.” 

In this step, ARACNE tests all possible triplet gene combinations (three genes with MI 

values larger than It) and then, for each (xyz), it eliminates the edge with the lowest MI 

value I1 = Ix'y', with (x
'
y

'
) = argmin{Ixy, Iyz, Ixz} from the adjacency matrix, if it is smaller 

than the second smallest MI value I2 multiplied by a factor (Margolin et al., 2006). 

Ai'j' = Aj'i' = {
0   𝐼1  ≤  𝐼2(1 −  𝜖)

  1   otherwise.             
 

Here, 0 ≤  𝜖 ≤  1. 𝜖 is the tolerance parameter. Trial studies were conducted to obtain 

optimal values for 𝜖. For this reason, it can be said that I0 is identified by unsupervised 

and 𝜖 is identified by supervised manner of learning. In ARACNE, each gene triplet is 

analyzed independently from the other triplets. Hence, it is possible that an edge can be 

included in the resulting network although it has been marked for removal by prior DPI 

applications to different triplets. Consequently, the order of examination of gene triplets 

does not affect the resulting network. ARACNE has a complexity in O(n
3
) since the 

method checks all triplet gene combinations (Margolin et al., 2006). 

 

	

a
X	 Z	 T	Y	
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2.2.2.3. CLR 

CLR (Context Likelihood of Relatedness) is another method that employs a background 

sensitive estimator between the gene pairs by converting MI estimates to values similar 

to z-scores (Faith et al., 2007).  

The CLR algorithm is also an extended version of the RN approach which starts by 

computing the pair-wise MI values for all genes. Then it estimates the statistical 

likelihood of each mutual information value Ixy by comparing this MI value to a 

“background” distribution of the MI values. In particular, two z-scores are obtained for 

each gene pair (xy) by comparing the MI value Ixy with gene specific distributions, pi 

and pj. Here, pi and pj distributions are equivalent to the distributions of MI values 

related to genes x and y, respectively (Faith et al., 2007). CLR takes into account the 

score 

𝑧𝑥𝑦̅̅ ̅̅ =  √𝑧𝑥
2 +  𝑧𝑦

2 

by making a normality assumption about these distributions. Here, 𝑧𝑥
  and 𝑧𝑦

  are the z-

scores of Ixy, whereas 𝑧𝑥𝑦̅̅ ̅̅  corresponds to the joint likelihood measure. CLR estimates 

individual thresholds by considering an individual background for each pair of genes 

differently from RN and ARACNE which uses an overall threshold It for each MI score 

between gene pairs. 

CLR has O(n
2
) complexity since mutual information matrix is computed once for each 

gene pair (Faith et al., 2007). 

2.2.2.4. MRNET 

In addition to these methods, MRNET (maximum relevance and minimum redundancy 

network) (Meyer et al., 2007) uses the maximum relevance and minimum redundancy 

feature selection method to infer a network. The algorithm uses a scoring function to 

select potential association partners of a target gene Y. 
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The algorithm starts with ranking the set of input variables V according to a score that is 

the difference between the MI with the output variable Y and the average MI value with 

the previously ranked variables. The basic idea is ranking the direct interactions higher 

than indirect interactions (Meyer et al., 2007). The working mechanism is shown below. 

                  𝑋𝑗𝜖𝑉\𝑆

𝑋𝑗
𝑠 = argmax(𝑠𝑗)

 

𝑠𝑗  =  𝐼(𝑋𝑗; 𝑌) −
1

|𝑆|
∑ 𝐼(𝑋𝑗; 𝑋𝑘

𝑋𝑘∈𝑆

). 

Here, the score 𝑠𝑗 is the difference between the MI of Xj with the target variable Y 

(relevance term) and the average redundancy of Xj to each already selected variable Xk ∈ 

S (redundancy term). A gene is added to the set S only if the sj is above the threshold 

value, s0 and the score of gene Xj maximizes equation 𝑋𝑗
𝑠. The algorithm repeats the 

iteration procedure until no further gene can be found that passes the threshold test. The 

MRNET approach consists in finding interaction partners for Y that are of maximal 

relevance for Y, but have a minimum redundancy for the already found interaction 

partners in the set S. The algorithm starts with a fully connected, undirected network 

among all genes and then it eliminates the edges between Y and V S, which have not 

maximized the equation 𝑋𝑗
𝑠 (Meyer et al., 2007). MRNET has a complexity in O(f x n

2
) 

since it repeats the feature selection for each of the n genes (Meyer et al., 2007). 

All of these methods aim to infer the entire regulatory network for a given data set. 

However, achieving this goal is not easy for a large sample size.  Observational data 

may not be able to detect all dynamical associations that would allow a reliable 

estimation. Hence, c3net GNI algorithm was used in this thesis since it aims to infer 

only the strongest interactions among covariates (Altay and Emmert-Streib, 2010a).  
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2.2.2.5. C3NET 

The inference algorithm C3NET have two steps. In the first step, it eliminates non-

significant connections among gene pairs. Then it selects for each gene the edge with 

maximum mutual information (MI) value (Altay & Emmert-Streib, 2010a). The first 

step is similar to previous approaches, e.g., RN, ARACNE or CLR. In this step, C3NET 

tests the statistical significance of pair-wise mutual information values using resampling 

methods and eliminates non-significant edges according to a determined significance 

level α. Mathematical formulation of the mutual information (Cover and Thomas, 1991)  

of two random variables A and B is defined as 

𝐼(𝐴, 𝐵) = ∑ ∑ 𝑝(𝑎, 𝑏) log
𝑝(𝑎, 𝑏)

𝑝(𝑎)𝑝(𝑏)
.

𝑏∈𝐵𝑎∈𝐴

 

In order to calculate statistical threshold, C3NET uses resampling methods that estimate 

the distribution under the null hypothesis corresponding to a vanishing mutual 

information. For this purpose, it randomizes the expression data set by permuting the 

gene expression measurements n times and recalculating the distribution of the new 

pair-wise mutual information for each permutation. Then C3NET creates a vector 

combining these permuted mutual information matrices and determines the threshold 

value according to a chosen significance level α. Visualization of this vector is shown in 

Fig. 2.5. The vertical (Y) axis represents the frequency of mutual information values, 

whereas the horizontal (X) axis represents mutual information values. The threshold, 

denoted by Ic, is determined as the maximum mutual information value for the 

significant region of the null distribution, as illustrated in Fig. 2.5 by the dashed line.  

Fig. 2.6 shows the principle steps of the C3NET algorithm. Primarily, C3NET creates a 

mutual information matrix (MIM) by estimating the mutual information values from the 

data. In this process, it use an estimator that allows a close approximation of the 

theoretical value of the population. Starting from zero matrices C, with Cxy = 0 for all x, 

y  V and B, with Bxy = 0 for all x, y  V, C3NET thoroughly tests all pair-wise MI 

values Ixy, x, y  V, and sets Cxy = Cyx = 1 if the null hypothesis H0 : Ixy = 0 can be 

rejected, for a determined significance level α (Altay and Emmert-Streib, 2010a). 
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  Figure 2.5. Determining MI threshold, IC 

 

    Source: This dissertation. 

 

Secondly, the most significant connection for each gene is selected. The algorithm first 

determines the neighborhood Ns for all genes x  V. The neighborhood of gene x is 

defined by Ns(x) = {y : Cyx = 1 and y ≠ x}. To that end, it uses the connectivity matrix C. 

The link corresponding to the highest mutual information value in the neighborhood for 

each gene is determined by using Ns and I. This link is identified by 

                      𝑦𝜖𝑁𝑠(𝑥)

𝑗𝑐(𝑥) = argmax{𝐼𝑥𝑦}.
 

It is possible that all mutual information values Ixy for y  V are non-significant (Ns(x) ≠ 

). In this case, no index is assigned to yc(x). The algorithm constructs the adjacency 

matrix B of the estimated undirected network by setting 𝐵𝑥𝑦𝑐(𝑥) 
= 𝐵𝑦𝑐(𝑥)𝑥 

= 1 if yc(x) 

has been set to a valid index. The rest of the entries of B remain zero (Altay and 

Emmert-Streib, 2010a). 
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Figure 2.6. Visualization of the steps of C3NET. The edges shown in solid and 

dashed lines represent significant edges. In the third step, the edges in solid lines 

represent the edges with maximum I value. 
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Step 1  Step 2  Step 3 

Source: This dissertation. 

Suppose that we have the MI values given by I. The MI values which are statistically 

significant appear as ‘1’ entries, whereas the remaining ones appear as ‘0’ entries in the 

corresponding connectivity matrix C. 

I = (

 1.0 0.9
 0.9 1.0

0.7 0.1
0.8 0.7

 0.7 0.8
 0.1 0.7

1.0 0.4
0.4 1.0

),    C = (

 1 1
 1 1

1 0
1 1

 1 1
 0 1

1 0
0 1

). 

Then the algorithm determines statistically significant connections with neighboring 

genes with maximum MI. This is the critical step in C3NET, resulting in  yc = (2, 1, 2, 

2). The next step is determining auxiliary matrix By, directly from yc. By contains exactly 

the edges added by each node. Due to its symmetry in its arguments, MI does not 

provide directional information, so the resulting adjacency matrix, B, is symmetric. 

By = (

 0 1
 1 0

0 0
0 0

 0 1
 0 1

0 0
0 0

),    B = (

 0 1
 1 0

0 0
1 1

 0 1
 0 1

0 0
0 0

). 

The output network represented by adjacency matrix B is a star-like network where 

second gene is connected to three other genes. It is obtained by the conversion of the 

asymmetric matrix By to a symmetric matrix B as shown in the example of Fig. 2.6. It is 

important to realize that each gene can create at most one connection. However, a same 
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gene yc(x) can be selected by different genes x. For this reason, the final undirected 

network can consist of genes having more than one connection to other genes. 

2.3. DIFFERENTIAL ANALYSIS  

In this part, methods for differential analysis starting from single gene analysis are 

presented and discussed. 

2.3.1. Single Gene Analysis 

Single gene based methods can be divided into three categories: (1) differential 

expression methods, (2) differential variability methods, and (3) differential correlation 

methods (Emmert-Streib et al., 2012). 

2.3.1.1. Differential Expression 

Differential expression (DE) analysis, which is one of the most commonly used 

microarray data analysis method for disease studies, selects differentially expressed 

genes by comparing gene expression levels between two conditions e.g., disease and 

healthy cells (Zheng et al., 2014). This is commonly done by testing the statistical 

significance of the changes in the mean expression level of each individual gene. If the 

mean level of expression of a given gene is significantly different (lower or higher) 

between treatment and control conditions, then this gene is called differentially 

expressed (de la Fuente, 2010).  

Suppose that the mean level of expression of gene gi in a microarray dataset for two 

different conditions are μ1 and μ2 respectively. The null and alternative hypothesis are as 

following: 

H0 : μ1 = μ2 

H1 : μ1 ≠ μ2 

If the null hypothesis H0 is rejected, then gene gi is called differentially expressed 

(Emmert-Streib et al., 2012). This means that the mean level of expression of gene gi is 

significantly different between two different conditions.  
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Many statistical algorithms have been developed to identify differentially expressed 

genes. Among these methods, most popular ones are the empirical Bayes approach 

(Efron et al., 2001), SAM (Chu et al., 2002) and limma (Smyth, 2005). 

Diseases are usually consequences of interactions between multiple molecular 

processes, rather than an abnormality in a single gene (Menche et al., 2015). Genes and 

their products (proteins) perform their functions in coordination. However, differential 

expression analysis approach treats each gene individually and doesn’t consider the fact 

that biological operations require collective work of many genes. (Yu et al., 2011; 

Bockmayr et al., 2013). Furthermore, without any change in its expression level, the 

function of the gene can be affected by the mutations and post-translational 

modifications and accordingly, known disease genes may not be differentially expressed 

in diseases (de la Fuente, 2010).  

2.3.1.2. Differential Variability 

The differential variability (DV) analysis aims to identify a significant change in 

variance of the gene expression values between disease and control samples (Prieto et 

al., 2006; Ho et al., 2008).  

Suppose that the mean level of expression value of gene gi in a microarray dataset is μc 

and its variance σc
2
 for condition c = {1,2}. The null and alternative hypothesis are as 

following: 

H0 : σ1
2
 = σ2

2
 

H1 : σ1
2
 ≠ σ2

2
 

If the null hypothesis H0 is rejected, then gene gi is called differentially variable 

(Emmert-Streib et al., 2012). In DV analysis, commonly used statistical tests are F-test 

(Ho et al., 2008) and ANOVA (Analysis Of Variance) (Pritchard et al., 2001). 
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2.3.1.3. Differential Correlation 

The differential correlation analysis aims to detect changes in the dependency structure 

of a single gene. In this type of analysis, whole correlation vector associated with each 

single gene is tested to select candidate genes. 

Suppose that ri = ri1, …, rin is a n – 1 dimensional correlation vector, which represents 

the correlations between the ith gene and all other remaining n – 1 genes in a dataset. 

Then, 𝐹𝑟𝑖

𝐴 and 𝐹𝑟𝑖

𝐵 denote n – 1 dimensional joint distribution functions of ri in two 

different conditions. The null and alternative hypothesis are as following: 

H0 : 𝐹𝑟𝑖

𝐴 = 𝐹𝑟𝑖

𝐵
 

H1 : 𝐹𝑟𝑖

𝐴 ≠ 𝐹𝑟𝑖

𝐵 

If the null hypothesis H0 is rejected, then gene gi is called differentially correlated (Hu 

et al., 2009). 

2.3.2. Gene-pair Analysis 

Differential patterns methods can be subdivided into two categories: (1) differential co-

expression and (2) differential co-clustering (Odibat, 2012). 

2.3.2.1. Differential Co-expression 

Differential co-expression (DC) analysis, as a more advanced approach to the DE 

analysis, aims to identify differences in the co-expression patterns in normal and disease 

conditions. This is done by measuring the mean pairwise correlation difference between 

sample groups (de la Fuente, 2010). The genes whose correlated expression pattern 

differs between groups are defined as DC genes. A pair of gene expression datasets for 

normal and disease conditions are transformed into a pair of co-expression matrix. In 

this matrix, edges correspond to transcriptionally correlated gene pairs. Following this, 

the DC score is calculated for each gene. Pearson correlation coefficient is one of the 

most commonly used method to measure the co-expression relationships (Hu et al., 

2009; Zheng et al., 2014). 
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rij = 
𝑐𝑜𝑣(𝑥𝑖,𝑥𝑗)

√𝑣𝑎𝑟(𝑥𝑖) 𝑣𝑎𝑟(𝑥𝑗)

 

In the formula, cov() represents the covariance and var() represents the variance of the 

gene expression levels. Then, the correlation between a pair of gene expression levels is 

computed over the normal sample, 𝑟𝑖𝑗
𝑁, and over the disease sample, 𝑟𝑖𝑗

𝐷. The null and 

alternative hypothesis are as following: 

H01 : 𝑟𝑖𝑗
𝑁 = 0 

H02 : 𝑟𝑖𝑗
𝐷 = 0 

If none of the hypothesis is rejected, then the genes are not correlated in any sample. If 

both of the hypothesis are rejected but the sign of the correlations is same, then the 

correlation between genes are similar in both samples. If both of the hypotheses are 

rejected but correlations have changed signs, or only one of the hypotheses is rejected, 

then the pair of genes is identified to be differentially co-expressed (de la Fuente, 2010). 

Correlation-based inference methods are used to construct gene co-expression networks. 

Co-expression networks have been widely used in the literature to uncover gene 

functions and investigate GRNs. Nevertheless, gene co-expression networks reveal only 

the gene regulatory interactions under specific conditions (Hsu et al., 2015).  

Several popular methods for differential co-expression analysis are “Expected 

Conditional F-statistic” (ECF-statistic) (Lai et al., 2004), “Weighted Gene Coexpression 

Network Analysis” (WGCNA) (Zhang & Horvath, 2005), “Log Ratio of Connections” 

(Reverter et al., 2006), CoXpress (Watson, 2006), dCoxS (Cho et al., 2009), DCIM 

(Freudenberg et al., 2010), DiffCoEx (Tesson et al., 2010), “Differential Coexpression 

profile” (DCp) (Yu et al., 2011), “Differential Coexpression enrichment” (DCe) (Yu et 

al., 2011), DiffCorr (Fukushima, 2013) and “Differential Correlation in Expression for 

meta-module Recovery” (DICER) (Amar et al., 2013). 
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Figure 2.7. Instance of different gene expression correlations with the same mean 

expression levels.  

Source: “de la Fuente, A. 2010. From 'differential expression' to 'differential networking' - identification   

of dysfunctional regulatory networks in diseases. Trends in Genetics. 26 (7), pp. 326-33”. 

DC analysis have been successfully applied to identify condition-specific modules, a 

group of genes strongly correlated in one condition but not in the other. Furthermore, 

DC analysis may reveal the rewiring of transcriptional networks in response to disease 

(Hsu et al., 2015). DC methods, unlike from single gene based methods, consider the 

relationships between different genes. 

2.3.2.2. Differential Co-clustering 

A co-cluster is a set of co-expressed genes under a subset of samples. Differential Co-

clustering approach is interested in a subset of rows that may be related under a subset 

of columns of a two dimensional data matrix which is called as co-clusters (Odibat and 

Reddy, 2011). The idea behind this methodology is that some genes may active only in 

a subset of the samples but not in the whole dataset (Wu, 2007). Differential Co-

clustering methods are useful when the structure of biological samples are heterogenous 

and have multiple subtypes. The main difference between differential co-expression and 

differential co-clustering is that differential co-expression approach computes the 

correlation between any gene pair based on all the samples, while differential co-

clustering approach use a subset of the samples (Odibat, 2012).  
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Figure 2.8. Visualization of differential analysis methods of gene expression data. 
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2.3.3. Differential Network Analysis 

In the literature, there are two comprehensive reviews that discuss differential 

networking approach. The review article by de la Fuente (2010) describes the trend 

from DE to differential network analysis and outlines its effects on the disease related 

studies. In the review, DE studies and network inference approaches, which are both 

important in the analysis of gene expression data, were explained and the theoretical 

background were provided. Furthermore, some approaches for DC analysis were 

discussed and some additional future directions were suggested. The methodologies 

examined in the review mainly focus on identifying differential coexpression patterns, 

which is defined by the author as the first step towards identifying differential gene 

networks. The author mentions the importance of the comparison of the coexpression 

networks across multiple conditions and provide some approaches for establishing 

thresholds that are used to determine which edges will be included in the coexpression 

networks.  

Some of the approaches explained in the review are the use of statistical thresholds, the 

global network topology and clustering coefficient. Another approach mentioned in the 

review is to compare the weighted coexpression networks. The author also highlights 

the drawback of the construction of healthy and disease coexpression networks, as they 

both require seperate decisions and thresholds. Additionally, it is indicated that the 

examination of variance of gene expression distributions in normal and disease samples 

can be helpful. In the review, only two methods, CoExpress (Watson, 2006) and GSCA 

(Choi and Kendziorski, 2009) were discussed to compare weighted coexpression 

networks. The author conclude that the differential networking methodology will have a 

crucial role in the identification of the dysfunctional regulatory networks underlying 

complex human diseases in the future (de la Fuente, 2010). 

In another recent review, Ideker and Krogan (2012) also argue that differential 

networking will become a standard way of network analysis in the future. The authors 

review the technological progress and experimental approaches that lead to differential 

networking besides highlighting the biological insights derived from this type of 

analysis. In the review, authors emphasize that, until that day, almost all type of genetic 

networks have been examined under one condition despite the fact of the highly 
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dynamic behaviour of biological systems. They indicate the importance of 

understanding how these genetic networks effect, or are affected by, changes across 

multiple conditions, species or times. A historical timeline of differential approaches in 

biology was also provided in the review. Additionally, the authors discuss some 

quantitative methods for differential network analysis based on substraction of 

interaction scores across conditions and highlight some of the statistical challenges of 

differential network analysis. The review mainly focus on differential network mapping 

and examine only one method called dE-MAP (Bandyopadhyay, 2010) that creates 

differential maps of genetic interactions. The authors concluded that differential 

network mapping will enable us to discover unexplored interactome by providing a 

deeper understanding of complex biological phenomena (Ideker and Krogan, 2012). 

Van Landeghem et al. proposed a framework called Diffany that infers and analyzes an 

arbitrary set of input networks by implementing novel ontology-based algorithms. One 

reference network which represents the interactome of an untreated organism is always 

included in the input network set. The Diffany framework provides a default interaction 

ontology which includes genetic interactions such as regulatory, co-expression and 

protein-protein interactions. The algorithm was tested on a plant osmotic stress study. A 

regulator that is predicted by the method was experimentally confirmed (Van 

Landeghem et al., 2016). 

Hsiao et al. presented an algorithm “modulated gene/gene set interaction analysis” 

(MAGIC) that identifies modulated interactions at the gene and gene set level. The 

MAGIC provides a statistical model to examine combinations of gene and gene set 

pairs. The algorithm first scores and filters gene/gene sets. In the second step it 

performs modulated analysis based on Fisher and inverse Fisher transformation. In the 

last step, it infers and visualize the modulated interaction networks. The algorithm was 

applied to a simulated dataset as well as to a breast cancer dataset. The authors reported 

that several hub genes and functional interactions were discovered (Hsiao et al., 2016). 

Another algorithm that constructs differential dependency networks is “knowledge-

fused differential dependency networks” (KDDN) method. KDDN is a mathematical 

framework that constructs differential dependency networks with significant rewiring. It 

integrates the measured data with the prior biological knowledge to construct both 
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differential and common networks. The method was applied to budding yeast 

Saccharomyces cerevisiae dataset to test the response to oxidative stress (Tian et al., 

2015). 

Ha et al. proposed a “pathway-based differential network analysis in genomics” 

(DINGO) method for predicting differential patterns between patient-specific groups. 

DINGO algorithm decomposes networks into global and group-specific components to 

estimate separate conditional dependencies between groups. The algorithm was applied 

to TCGA glioblastoma dataset and two networks, short-term and long-term survivors in 

The Cancer Genome Atlas, were extracted. Additionally, in the study, some hub genes 

that are related to c-Myc gene were found. The authors reported that c-Myc gene has an 

important role in the regulation of glioblastoma multiforme proliferation which result in 

shorter survival times in glioblastoma multiforme patients (Ha et al., 2015). 

Differential epistasis mapping (dE-MAP) is a technique that was developed by 

Bandyopadhyay et al. (2010) to reveal the interaction differences between two static 

gene interaction networks under condition change. Seah et al. (2014) reported that 

manual extraction of differential summary from a dE-MAP network is time-consuming, 

onerous and error-prone process. Hence, they proposed a method called DiffNet that 

automatically generates summaries of a dE-MAP network to obtain a detailed map of 

functional responses due to condition change. In brief, the DiffNet algorithm leverages 

combination of Gene Ontology annotations and interaction data to find a group of 

functional sub-graphs which are highly skewed. The obtained sub-graphs represents 

significant functional responses emerged as a result of change in condition. However 

this approach can not be applied to more than two treatments (Seah et al., 2014). 

Ma et al. proposed a technique called “machine learning–based differential network 

analysis” (mlDNA) for the comparison of gene networks. Machine learning is an 

advanced data mining technique that creates a prediction model using prior knowledge 

to identify important patterns in large datasets. Before network construction, the 

mlDNA algorithm removes non-expressed, constitutively expressed and non-

informative genes by using a machine learning based filtering process. In the second 

step, it analyzes the retained informative genes to estimate candidate stress-related 
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genes based on extracted patterns. In the study, two previously unreported genes in 

SALK T-DNA mutagenesis lines were identified (Ma et al., 2014). 

Gill et al. developed a method called dna which determines differential modular 

structures between two networks using connectivity scores. A connectivity score 

represents the strength of association between gene pairs. The algorithm use partial least 

squares (PLS) as a default connectivity score. The other statistical tests that can be used 

to compute connectivity scores are ridge regression, principal components regression 

and the correlation coefficient. In the study, dna is applied to two types of synthetic 

datasets as well as one real data set and identified some set of genes that may have 

important functions in obesity (Gill et al., 2010; Gill et al., 2014b). 

In the study conducted by Warsow et al. (2013), a software tool ExprEssence was used 

to determine pre-operative breast cancer chemotherapy response. ExprEssence tool 

extracts sub-networks by selecting the associations of a gene/protein network that are 

most differentially regulated between sample groups. In the first step, the algorithm 

determines the link score for each association. Then a sub-network is extracted using the 

interactions with the largest link scores. In the study, performance of the resulting sub-

network was compared against two other sub-network identifying algorithms, 

KeyPathwayMiner and OptDis (Warsow et al., 2013). 

DINA (Differential Network Analysis) approach was developed by Gambardelle et al. 

(2013), to find set of genes which co-regulation of them is condition-specific. It starts 

from a group of condition-specific gene expression profiles. The algorithm can detect 

the TFs that may be responsible for the pathway condition-specific co-regulation. The 

authors identified several metabolic pathways as the most differentially regulated across 

the tissues using 30 tissue-specific gene networks in human. Transcription factors as 

Nuclear Receptors was identified as their main regulators and showed that a gene with 

unknown function (YEATS2) acts as a negative regulator of hepatocyte metabolism. 

The results also found that hypotheses on dysregulated pathways during disease 

progression can be made by using this method. DINA identified hepatocarcinoma-

specific metabolic and transcriptional pathway dysregulation.  
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Madhamshettiwar et al. proposed the “Regulatory Module Network Inference” 

(RMaNI) framework for the inference, analysis and visualization of condition specific 

GRN and differential network analysis. The framework identifies relevant regulatory 

transcription factors (TF) by using the “Learning Module Networks” (LeMoNe) (Josji et 

al., 2009) and Regulatory Impact Factors (RIF) (Reverter-Gomez et al., 2010) 

algorithms. Briefly, RMaNI combines heterogeneous knowledge resources and includes 

a set of several bioinformatic methods such as DE analysis, module identification, 

regulator detection, functional enrichment analysis and visualization. In the study, 

RMaNI framework was applied to hepatocellular carcinoma dataset that contains 

normal and three disease samples (Madhamshettiwar et al., 2013). 

Odibat and Reddy (2012) presented DiffRank differential network analysis algorithm in 

order to find the DE genes representing two biological conditions such as healthy and 

disease. The algorithm can be applied on directed and undirected networks since it 

doesn’t depend on the network construction. In the study, the authors identified two 

structural scoring measures which are a global and a local structure measure. These are 

optimized by propagating the scores through the structure of network and ranking the 

genes based on these scores. This method identifies the changes in the edges and the 

change in the centrality of each gene. The utility of the algorithm was tested on 

synthetic and real datasets by comparing the method with the previous ones. DiffRank 

can be detect the local and the global changes in the topological structures between two 

given gene networks. In the study, the algorithm was applied to synthetic and real-world 

datasets. 

Zhang et al. developed a method - “the differential dependency network” (DDN) - that 

aims to detect statistically significant topological changes in transcriptional regulatory 

networks between two different biological conditions. DDN algorithm use Lasso 

technique to learn the local dependency model that characterizes the dependencies of 

genes in the network and represents the local structures of a network. It estimates the 

statistical significance of each learned local structure by using a permutation test. The 

algorithm was applied to a simulated dataset as well as to a breast cancer cell line 

dataset and the authors concluded that the results were biologically meaningful (Zhang 

et al., 2009; Zhang et al., 2011). 
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Ma et al. (2011) presented a method that employs a scoring function jointly measuring 

the condition-specific changes of both individual genes and gene–gene co-expression. 

The algorithm uses a genetic algorithm to detect the optimal subnetwork which 

maximize the scoring function. This method called COSINE is useful for identifying 

significant subnetworks of appropriate size and meaningful biological relevance. 

Compared to other methods, it considers single gene’s expression variation and gene 

pair’s differential correlation and extracts a globally optimal sub-network that can 

maximize the across-group difference. 

Valcarcel et al. (2011) developed a method for the differential analysis of molecular 

associations via network representation. Based on conventional statistical methods, 

there were some differences in concentration levels of lipoprotein subclasses between 

people with normal fasting glucose and people having prediabetes. The results showed 

the applicability of the approach to identify key molecular changes inaccessible to 

standard approaches. 

Zhang et al. (2011) presented differential dependency network to determine and 

visualize statistically significant topological changes of transcriptional networks 

representing two different biological conditions. This tool provides an alternative way 

to define network biomarkers predictive of phenotypes. It was developed to identify the 

rewiring of the underlying biological network triggered by outside stimuli or different 

conditions using gene expression data. 

A method called DEGAS was proposed by Ulitsky et al. (2010) to define connected 

gene subnetworks enriched for genes that are dysregulated in specimens of a disease. 

The method was applied to seven diseases collecting thirteen case-control gene 

expression datasets and the results were statistically significant. The subnetworks that 

are defined by DEGAS can provide a useful signature for diagnosis, possible pathways, 

and also offer drug intervention targets. Application of this computational technique to a 

large-scale protein-protein interaction network and expression data of human diseases 

demonstrated the method’s success. The results showed novel evidence in mRNA 

splicing, cell proliferation, and the 14-3-3 complex involvement in Parkinson’s 

progression. Compared to other methods, this method identifies more specific 

subnetworks that capture a significant fraction of the known disease-related pathway.  
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3. METHODOLOGY 

 

 

In this part of the dissertation, the aim of the study, proposed framework and the 

implementation of the algorithm including R package and web versions are presented.  

3.1. MOTIVATION 

Different cell conditions are results of different associations between genes. Therefore, 

from each cell condition, different gene network can be illustrated. In fact, between two 

cell conditions there are common gene interactions and also different interactions from 

the other. This fact can be used to find new and more targeted biomarkers or drugs. For 

instance, comparing a normal cell gene network and a breast cancer gene network will 

result many disease-specific genes and gene interactions, in which some of them may be 

the main cause of the breast cancer. In order to find disease-specific interactions, a 

differential gene network inference algorithm, dc3net, was introduced in Altay et al. 

(2011). However, since we work in genome-wide, using this algorithm alone results 

many disease-specific interactions from which it is not easy to determine the main 

causes of the disease. In order to rank those disease-specific interactions and also the 

genes in the network, we developed a new approach by integrating some other available 

datasets for breast cancer. This integration framework has resulted the most important 

genes and interactions by allowing ranking the breast cancer specific gene network 

which was inferred from the METABRIC (Molecular Taxonomy of Breast Cancer 

International Consortium) breast cancer dataset (Curtis et al., 2012). We call this 

framework as Integrative Differential Network (IDN) framework in the rest of the 

dissertation.  

Although the framework has been developed on breast cancer, IDN can be extended for 

other diseases as well by replacing the datasets accordingly. For a different disease, 

there may be more or less types of datasets than the IDN introduced in this study for 

breast cancer but the main integration approach can be the same. Basically, infer 

disease-specific gene network and integrate on the network with the related datasets 

found for the disease.  
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3.2. THE PROPOSED IDN ALGORITHM 

In this part, the proposed IDN approach and its parameters are presented. 

3.2.1. Introduction 

IDN is a novel approach for differential network analysis with its integrative 

framework. An outline of the IDN framework with main processes is shown in Figure 

3.1. In the first step, we apply the GNI algorithm c3net (Altay, 2010a) to tumor and 

normal samples and infer tumor and normal gene networks, respectively. In the second 

step, we compare these gene networks with respect to mutual information (MI) values 

of each interaction between the two networks using the differential networking 

algorithm dc3net (Altay, 2011). In the final step, we obtain a breast cancer specific gene 

network which the integration of information from other datasets will be performed. 

Following this, IDN extracts the subnetworks from tumor-specific differential network 

which will let us to detect hub nodes. Hub nodes are genes that are highly connected 

with other genes and they were proposed to have important roles in biological 

development. Since hub nodes have more complex interactions than other genes, they 

may have crucial roles in the underlying mechanisms of disease (Guo, 2015). 

In the integration step of IDN, we first integrate literature information. The interactions 

out of the first step of c3net, basically all the significant interactions, are compared with 

the interaction database of literature and the overlapping ones are added to the breast-

specific gene network. For this process, ganet R software package was used (Altay and 

Altay, 2013) for the literature integration, in which almost all the molecular interactions 

in literature is combined, and in that there are computational tools to perform analysis 

such as overlapping, comparison and so on. The reason of integration of the validated 

interactions from the literature was described in (Altay and Altay, 2013), where it was 

hypothesized that if there is a significant association score between two genes in a cell 

condition and if there is a validation in the literature in any other cell condition then it is 

highly likely that interaction might exist in the current cell condition too. Therefore we 

integrate validated interactions from literature with significant association score in the 

association matrix of the GNI algorithm c3net. Similar literature integration approaches 

are popular nowadays (Olsen et al., 2014).   
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Figure 3.1. IDN framework overview.  
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When merging the tumor specific network and the validated literature links of the 

significant interactions, the resulting network has 19382 unique interactions. Then other 

information from the other datasets is integrated over this network. Secondly, we 

perform a differential network analysis over the same breast cancer datasets and obtain 

a list of differentially expressed (DE) genes in tumor condition with the p-value of 0.01. 

We then integrate this list of DE genes on the combined network too. Following this, we 

integrate the effect of metastatic genes using the list of under and over expressed list of 

genes from the dataset of (Varambally). We also integrate the effect of prognostic genes 

to include survival influence using the list of under and over expressed list of genes 

from the dataset of (Glinsky). Finally, we integrate the list of oncogenes (cancer related 

genes) available in the literature (http://cancer.sanger.ac.uk). 

Since the main purpose of the algorithm is to find the most important regulators that 

drives the breast cancer, we focused on transcription factors (TF). We used a list of TFs 

assuming that it includes all of them, which we have downloaded from 

(http://www.tfcat.ca/index.php). We integrated TFs to the combined network and get a 

new list of TFs that exist in the combined network. We then grouped each of the TFs 

depends on the sub-network it belongs to. We then start scoring each TF as follows. 

While scoring, in order to consider the neighbor density with respect to the proximity of 

each TF, the link distance from each TF was limited to 2 links. This means while 

scoring each TF, any gene or link in two steps away affects the score of a TF and 

consequently the higher the neighbor density the higher the score is. Association score 

of each interaction, which is normalized between 0 and 1, is added to the score. Also if 

any of the genes from the literature integration lists exist in the two step neighborhood 

of  a TF, then they increase the score by one. Finally the score for each TF is calculated. 

The scoring formula is as follows: 

Score of a TF (in 2 step neighborhood) = 𝑵 + ∑ 𝑴𝑰𝒔 + 𝑴𝑮 + 𝑷𝑮 + 𝑫𝑬𝑮 + 𝑶𝑮 

N:  Number of neighbours 

MI:  Mutual information values 

MG: Number of metastatic genes 

PG: Number of prognostic genes 

DEG: Number of differentially expressed genes 

OG: Number of oncogenes 
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This way of grouping is a novel approach that was not seen in the literature with the 

best of our knowledge. This formula can also be extended by adding any other related 

datasets. Two step neighborhood might be selected as 3 or more if the scores are not 

high enough to rank TFs. The inputs, outputs and the main prodecure of IDN 

framework is shown in Figure 3.2. 

Figure 3.2. IDN algorithm for breast cancer 
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3.2.2. Parameters 

The required inputs of the IDN are two different gene expression data sets, e.g. tumor 

and normal, and optionally gene names. Users can also use pre-computed tumor and 

control mutual information (adjacency) matrices as input. Otherwise, the algorithm 

takes the two data sets and generates the matrices itself.  

The MI matrices are square adjacency matrices where the MI value corresponds to the 

weight of interaction for each gene pair. The diagonals are set to zero to ignore self-

interactions. The next step is computing row wise ranked versions of these MI matrices 

in descending order. Here, rank 1 corresponds to the highest mutual information value 

in a row of the matrix. This ranked matrices will be used in comparing and filtering the 

networks at the comparison step. Then the c3net algorithm is applied to the tumor and 

control MI matrices to infer gene networks of direct physical interactions of tumor and 

control datasets independently. 

There are eight parameters users can set. The first six parameters, method, cutoff, alpha, 

itnum, rankdif, and percentdif are used by c3net and dc3net algorithms to control the 

network inference and decision filtering steps. Novice users may prefer to use the 

default parameters offered by the system. 

The first four parameters, method, cutoff, alpha and itnum, are used to eliminate non-

significant interactions in c3net (Altay and Emmert-Streib, 2010a). The available 

options for method parameter are “cutoff”, “justp”, “holm”, “hochberg”, “hommel”, 

“bonferroni”, “BH” and “BY”. cutoff, alpha and itnum parameters are dependent to 

method parameter. If “cutoff” is selected as the method, cutoff value must be entered 

which can be zero or predefined cut-off value. Zero means that mean of upper triangle 

will be taken as cutoff. If the method is “justp”, alpha and itnum (iteration number) 

parameters are need to be adjusted. The other options, “holm”, “hochberg”, “hommel”, 

“bonferroni”, “BH” and “BY” are multiple testing correction (MTC) methods. Users 

can apply MTC methods by selecting the name of MTC method. If the selected method 

is one of the MTC method, then alpha and itnum parameters are need to be set as it were 

in “justp” method. The default method was set to “cutoff” which uses mean of upper 

triangle of MI matrices as a significance threshold. 
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The next two parameters, rankDif and percentDif, are for the comparison step of dc3net. 

This is the core part of dc3net that it compares the two networks to find differential 

network. In the comparison step, there are four conditions that all must be validated at 

the same time for an edge to be included in tumor differential network.  

Suppose that we check the potential interaction gene A to gene B to be included in 

differential network or not. As we stated above, we have been computed row wise 

ranked versions of the MI matrices in descending order. So we know the rank of 

interaction gene A to gene B in control MI matrix. The first parameter of dc3net, 

rankdif, is the predefined cutoff parameter that checks the interaction between gene A 

and gene B is one of the top ranked interactions in control MI matrix or not. If the rank 

of gene A and gene B in the ranked control MI matrix is greater than the predefined 

cutoff parameter, rankdif, then the first condition becomes valid for deciding it as a 

difnet interaction. rankdif parameter can be adjusted to any value between 1 and number 

of rows of control MI matrix. However, if user wants a stricter difnet, then rankdif 

parameter needs to be adjusted to a greater value.  

The second condition is the change in MI value of interaction from gene A to gene B in 

the control MI matrix. Here, algorithm uses MIdif value as the cutoff parameter. MIdif 

is defined as percentdif times the maximum MI value of the row of geneA in the control 

MI matrix. Default value for the percentdif parameter is 0.6. Depends on strictness of 

the differential network, user can increase or decrease the second cutoff parameter. The 

previous two conditions compared the interaction of gene A to gene B but we also need 

to compare the interaction of gene B to gene A. So the algorithm validates the first and 

second conditions also for the interaction of gene B to gene A. In this example, if four 

of the conditions are validated, then dc3net infer this interaction as in tumor differential 

network and continue to perform same filtering process for all gene pairs in test 

network. Since the integrative part of the framework is developed special to breast 

cancer, the rest of the process involves score calculations. 

The last two parameters, p-value and step are special to IDN algorithm. While p-value is 

used in the differential expression process, step parameter sets the link distance from 

each TF that will be used in the ranking step of IDN.  
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3.2.3. Gene Ontology Analysis 

“Gene Ontology” (GO) enrichment analysis based on Gene Ontology database 

(http://www.geneontology.org) was performed to investigate the biological roles of the 

genes in the differential network (da Huang, 2009). To further assess the signalling 

pathway of the genes, we subsequently performed “Kyoto Encyclopedia of Genes and 

Genomes” (KEGG, http://www.genome.jp/kegg) pathway enrichment analysis. The two 

analysis were performed using “The Database for Annotation, Visualization and 

Integrated Discovery” (DAVID, https://david.ncifcrf.gov) which is a powerful 

bioinformatics tool to find out functions of interested genes (Dennis, 2003). In the 

enrichment analyses, the pathways with minimum gene number 5 and p<0.05 are 

consided as significant. 

3.3. IMPLEMENTATION 

IDN framework was developed in the R statistical computing language which is a free 

software environment that runs on a wide variety of operating systems such as Linux, 

Windows and MacOS (https://www.r-project.org). Secondly, the web version of IDN 

was developed for the ease of use of biologists that are not computer experts or have not 

got computationally power computers. 

3.3.1. The IDN R Package 

In this part, installation steps of the IDN R package and general guidelines for using the 

the package is provided. 

3.3.1.1. Installation of the IDN R package  

IDN requires “R 3.2.x and later” and it depends on “c3net”, “dc3net” and “RedeR” 

packages that can be installed from the CRAN (https://cran.r-project.org) and 

Bioconductor (https://www.bioconductor.org) libraries. For the installation of IDN, 

users need to follow some simple installation steps. 

  

https://www.r-project.org)/
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The following commands should be executed in R console. 

1. To download and install dependent packages c3net, igraph and RedeR from 

CRAN and Bioconductor (execute in R): 

> 

> 

> 

> 

install.packages("c3net") 

install.packages("dc3net") 

source("http://bioconductor.org/biocLite.R") 

biocLite("RedeR") 

2. Execute the installation command for dc3net in R 

> install.packages("idn1.0.tar.gz", type="source", repos=NULL) 

3. To load the library: 

> library("idn") 

3.3.1.2. General guidelines for using the IDN R package  

The following command would be an example of a call to the main function of IDN: 

> output <- idn(tumorData, normalData, genes, difnet, pValue, step) 

where the first two inputs are test and control datasets, e.g. tumor data and normal data, 

respectively. genes variable is a vector that includes gene names. difnet is the output 

differential network of the dc3net algorithm. pValue is the p-value that is used for 

differential expression step of IDN. step is the link distance from each TF that is used in 

the ranking step of IDN. This command assign the analysis results to output R 

environment variable. 

Users can access to analysis results using the following commands: 

> subnets <- output$subnets 

> hubgenes <- output$subnetList 

subnets variable contains output subnetworks and hubgenes variable contains hub genes 

that are ranked according to the computed scores.   
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3.3.2. The IDN Web Application 

IDN is a web-based application that is developed for differential network analysis of 

gene expression data. It is impractical and time consuming for biologists and non-

technical experimentalists to install software applications on their local computers. On 

the other hand, these processes usually requires high computational resources. Hence, 

user-friendly and powerful web applications are important to overcome these 

drawbacks. Below, the system architecture of IDN is described. 

3.3.2.1. System Architecture 

Three-tier architecture model which consist of three independent layers or tiers, e.g. 

presentation, business logic and data tiers, is commonly used model for web-based 

applications. While the presentation or user services layer is the layer that user interacts 

with the application through a user interface, the data layer consists of data access 

components and manages the internal and external storage of application-related data. 

The business logic layer acts as an intertie which handles the communication between 

the other two layers and performs logical operations using computational resources 

(Yang, 2013). IDN web application is designed based on the widely used three-tier 

architecture model (Figure 3.3). 

Figure 3.3. Three-tier architecture of IDN web application 

 

 

Source: This dissertation. 
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3.3.2.2. Workflow 

IDN web application was originally implemented in R which is a popular statistical 

package among biologists. In the middle tier, PHP scripts gets the datasets and required 

parameters from client tier and saves the information to the Mysql database upon 

validation of the information. Since the differential gene networking process is a high 

computational task, the system queue the jobs coming from user tier and perform 

operations in order.  

The computation time vary according to the set parameters and the size of the datasets. 

For this purpose, the system consistently checks the database for waiting jobs. When a 

new task arrives, the system calls the R package through JAVA framework and update 

the status of related task as processing. This let users to track the status of submitted 

tasks easily. When the computation is over, the system update the status of related task 

as completed and inform the user via e-mail. Then users can access to analyze results 

through the track transaction part of IDN web application using his e-mail and 

transaction ID information.  

IDN generates three output files at the end of the analysis which are breast cancer 

specific differential network, differential subnetworks including the hub genes and the 

list of the most important genes/TFs of the tumor. Users who want to visualize the 

output networks can use a visualization package such as igraph (Csardi and Nepusz, 

2006), Cytoscape (Shannon et al., 2003) or ReDer (Castro, 2012). In this dissertation, 

gene networks were plotted using RedeR software package. The detailed usage guide of 

IDN web application with screenshots is demonstrated at the case study part of the 

study. 
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Figure 3.4. Workflow of IDN-web 
 

 

Source: This dissertation.  
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3.3.2.3. A Case Study of IDN Web Application 

IDN web requires two different microarray gene expression datasets as input, one as 

tumor and the other as normal. Additionally, users who wants to work with gene names 

instead of probe names have to prepare two files that includes gene names for each 

dataset.   The input files format should be CSV or TXT and should be prepared 

according to the instructions in the website. 

Step 1 

In the first step, the system asks user to enter his e-mail address. This is mandatory 

since users track their transactions by using the transaction id and e-mail addresses. 

Additionally, the system sends an e-mail to the user when the transaction completes.  

(Figure 3.5). 

Figure 3.5. Differential gene network inference: Step 1 

 

 

Step 2 

In the second step, the system asks user to upload test data set (e.g. tumor). Test data set 

must be a gene expression matrix which rows correspond to the variables (e.g. probes) 

and columns correspond to the samples. Users can upload data set by clicking “Select 

File” and then “Upload data set” button. The upload process will be shown to the user 

interactively (Figure 3.6).  

 



 48 

Figure 3.6. Differential gene network inference: Step 2 

 

The input files must be prepared in comma separated CSV or TXT file format as shown 

in the figures at below. Example data set can be download through the link at the same 

page. 

 

Step 3 

 

In the third step, the system gives information to the user about the uploaded test data 

set at the previous step (Data type, probe number and sample size). In this step, users 

should upload gene names correspond to the probe names in the test data set. The 

number of rows (the number of genes) in the gene names file must be identical to probe 

number. Otherwise, the system will give an error message and ask user to re-upload 

gene names. Users can upload gene names in CSV or TXT file format where each row 

represents a single gene. Example file can be download through the link at the page 

(Figure 3.7). 
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Figure 3.7. Differential gene network inference: Step 3 

 
 

Step 4 

In the fourth step, the system asks user to upload control data set (e.g. normal). Control 

data set must be a gene expression matrix which rows correspond to the variables (e.g. 

probes) and columns correspond to the samples.  

Step 5 

In the fifth step, the system gives information to the user about the uploaded normal 

data set at the previous step (Data type, probe number and sample size). Users must 

upload gene names that correspond to the probe names in the control data set.  

Step 6 

In the sixth and last step, the system ask users to enter parameters. The detailed 

information about parameters was given in the parameters part of the dissertation. The 

default parameters recommended by the system is shown in this page. Users can click to 

“question mark” icons to get information about the parameters.  
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Some of the parameters are shown according to the selected method. Hence, all eight 

parameters are not shown in Figure 3.8. The differential gene network inference process 

starts after user clicks to “Infer Differential Network” button. 

Figure 3.8. Differential gene network inference: Step 6 - Parameter selection. 

 

After user clicks to “Infer Differential Network” button, the system queue the 

transaction with the transaction ID as shown in the next page (Figure 3.9). The system 

sends an e-mail to the user when the transaction completes. This may take minutes or 

hours according to the number of waiting tasks and size of the data sets.  
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Figure 3.9. Differential gene network inference successfully submitted. 

 

Users can track the transaction status through the link “Track Transaction”. The systems 

asks users to enter transaction Id and e-mail address to show the status of the transaction 

(Figure 3.10). 

Figure 3.10. Track transaction. 

 

The transaction status, “In queue”, means that the task is waiting for execution.  

The transaction status, “Processing”, means that differential gene network inference task 

is processing. The system sends an e-mail after the execution is completed.  
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The transaction status, “Completed”, means that the differential gene network inference 

process is completed. Users can now download the inferred differential gene network 

through the link at the lower-left corner of the page. The details about the transaction 

(Date submitted, e-mail, data types, data completed and dimension (the number of 

interactions) of the inferred network) as well as the parameters used in the computation 

are also shown in this page (Figure 3.11). 

Figure 3.11. Transaction is completed. 
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4. RESULTS 

 

 

In the first section of this part, the preliminary analyses that are performed on prostate 

cancer and lung cancer datasets are presented and discussed. Secondly, breast cancer 

analysis including the integration of different type of datasets and the analyses results 

are presented. 

4.1. PRELIMINARY ANALYSES 

In this part of the study, two preliminary differential networking analysis was performed 

on prostate cancer and lung cancer datasets. These analysis were performed to test IDN 

framework's integration with c3net and dc3net algorithms as well as to test subnetwork 

extraction feature of IDN. Since the integration and ranking steps of IDN is special to 

breast cancer, these steps were not applied for these datasets.  

4.1.1. Inference of Prostate Cancer Specific Differential Network 

Prostate cancer is the second most common cancer in the male population, with an 

estimated 417,000 new cases diagnosed each year in Europe (Ferlay et al., 2013). The 

activation of androgen receptor (AR) through androgens plays a crucial role in the 

development and progression of prostate cancer (Kaur et al., 2016; Anantharaman et al., 

2015; Choudhary et al., 2011; Massie et al., 2011).  

For early detection of prostate cancer, prostate specific antigen (PSA) screening method 

has been used widely as a diagnostic tool (Karatas et al., 2015). However, PSA fails to 

discriminate indolent disease which results in over-diagnosis and this may lead to poor 

prognosis (Abou-Ouf et al., 2015; Ma et al., 2015; Myers et al., 2015). Furthermore, 

there is no evidence showing that the PSA screening reduces the incidence of death and 

the underlying mechanism of prostate cancer progression remains largely unknown 

(Cannistraci et al., 2014; Ren et al., 2015). 
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Figure 4.1. Genome-wide androgen stimulated prostate specific differential network with 891 interactions 
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4.1.1.1. Microarray data 

In order to investigate the alterations in androgen stimulated prostate cancer cells 

compared with androgen deprived prostate cancer cells, microarray dataset GSE18684 

deposited by Massie et al. (2011) was obtained from the Gene Expression Omnibus 

(GEO, http://www.ncbi.nlm.nih.gov/geo). The expression profile included 96 samples, 

comprising 20 androgen deprived tissue samples and 76 tissue samples with androgen 

stimulated prostate cancer. 

4.1.1.2. Results 

The androgen stimulated prostate cancer differential gene network with 891 interactions 

was inferred. The largest independent subnetwork with 119 interactions were also 

extracted from the differential network and plotted in Figure 4.1. To investigate the 

functions of the genes in the androgen stimulated prostate cancer differential gene 

network, GO and KEGG pathway analysis were performed. A total 184 terms were 

retrieved from the DAVID online analytical tool.  

The top ten GO terms ranked by statistical significance were listed in Table 4.1. GO 

analysis revealed that genes associated with sterol biosynthetic process (GO:0016126; 

p=5.05 e-08), protein transport (GO:0015031; p=2.57 e-07) and establishment of protein 

localization (GO:0045184; p=3.80 e-07) were significantly enriched top three GO terms 

among biological processes, while for cellular components, nucleotide binding 

(GO:0000166; p=7.08 e-05), purine nucleotide binding (GO:0017076; p=5.22 e-04) and 

purine ribonucleotide binding (GO:0032555; p=9.11 e-04) were significantly enriched, 

and with regards to molecular functions, genes associated with endoplasmic reticulum 

(GO:0005783; p=2.66 e-13), endoplasmic reticulum part (GO:0044432; p=1.16 e-06) 

and organelle membrane (GO:0031090; p=1.48 e-04) were significantly enriched (Table 

4.1, Figure 4.2A).  

  



 56 

Table 4.1. GO terms of androgen stimulated prostate cancer specific differential 

network (top 10) 

GO ID GO term 
No. of 

genes 
p 

Biological processes   

GO:0016126 sterol biosynthetic process 14 5.05E-08 

GO:0015031 protein transport 82 2.57E-07 

GO:0045184 establishment of protein localization 82 3.80E-07 

GO:0046907 intracellular transport 73 3.96E-07 

GO:0006695 cholesterol biosynthetic process 11 1.25E-06 

GO:0016125 sterol metabolic process 21 1.87E-06 

GO:0006886 intracellular protein transport 47 2.61E-06 

GO:0008104 protein localization 87 4.16E-06 

GO:0034613 cellular protein localization 49 6.76E-06 

GO:0008203 cholesterol metabolic process 19 7.26E-06 

Cellular components    

GO:0005783 endoplasmic reticulum 117 2.66E-13 

GO:0044432 endoplasmic reticulum part 46 1.16E-06 

GO:0031090 organelle membrane 97 1.48E-04 

GO:0005789 endoplasmic reticulum membrane 33 2.11E-04 

GO:0042175 nuclear envelope-endoplasmic reticulum network 34 2.63E-04 

GO:0005739 mitochondrion 92 9.73E-04 

GO:0005829 cytosol 109 9.89E-04 

GO:0005792 microsome 28 1.24E-03 

GO:0005624 membrane fraction 71 1.61E-03 

GO:0042598 vesicular fraction 28 1.90E-03 

Molecular 

Function 

   

GO:0000166 nucleotide binding 174 7.08E-05 

GO:0017076 purine nucleotide binding 147 5.22E-04 

GO:0032555 purine ribonucleotide binding 140 9.11E-04 

GO:0032553 ribonucleotide binding 140 9.11E-04 

GO:0000287 magnesium ion binding 42 4.10E-03 

GO:0001883 purine nucleoside binding 119 5.75E-03 

GO:0003924 GTPase activity 23 6.81E-03 

GO:0001882 nucleoside binding 119 7.19E-03 

GO:0005524 ATP binding 110 7.74E-03 

GO:0004674 protein serine/threonine kinase activity 39 8.48E-03 

FDR: false discovery rate; GO: gene ontology. 
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Next, the genes found in the androgen stimulated prostate cancer differential gene 

network were submitted to DAVID server to identify significantly enriched KEGG 

pathways (Kanehisa, 2000; Kanehisa, 2012). The KEGG pathways that were found 

significantly enriched (p<0.05) are shown in Table 4.2. Pathway analysis revealed that 

the genes in the androgen stimulated prostate cancer difnet were significantly enriched 

in ten terms. The most significant three terms were those involved in steroid 

biosynthesis (p=2.80 e-07), synthesis and degradation of ketone bodies (p=1.646523 e-

03), and amino sugar and nucleotide sugar metabolism (p=1.73 e-03) processes (Figure 

4.2B). 

Figure 4.2. Functional enrichment analysis of significantly enriched genes in the 

androgen stimulated prostate cancer specific differential gene network. (A) The top 

10 enriched GO categories for biological processes; (B) The top 10 enriched KEGG 

pathways. 

A       B 
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Table 4.2. Significant KEGG pathways in the androgen stimulated prostate cancer 

specific differential network 

KEGG ID KEGG term 
No. of 

genes 
p Genes 

hsa00100 Steroid biosynthesis 10 2.80E-07 

TM7SF2, CEL, EBP, SQLE, LSS, 

SC5DL, DHCR24, FDFT1, 

SC4MOL, NSDHL 

hsa00072 

Synthesis and 

degradation of 

ketone bodies 

5 1.69E-03 
HMGCS2, HMGCS1, ACAT2, 

ACAT1, HMGCL 

hsa00520 

Amino sugar and 

nucleotide sugar 

metabolism 

10 1.71E-03 

PGM2, GMPPB, GALK1, PGM3, 

GNPDA1, CMAS, GFPT1, GFPT2, 

HK2, GALE 

hsa00900 
Terpenoid backbone 

biosynthesis 
6 1.95E-03 

HMGCS2, HMGCS1, FDPS, MVK, 

ACAT2, ACAT1 

hsa04115 
p53 signaling 

pathway 
12 3.94E-03 

CCNE2, BID, PPM1D, TSC2, 

SIAH1, CDK6, CCNG1, 

GADD45B, THBS1, IGFBP3, 

GADD45A, SESN3 

hsa00650 
Butanoate 

metabolism 
8 5.33E-03 

ACSM3, HMGCS2, ALDH5A1, 

HMGCS1, ABAT, ACAT2, 

ACAT1, HMGCL 

hsa00250 

Alanine, aspartate 

and glutamate 

metabolism 

7 1.32E-02 

ASS1, ALDH5A1, GFPT1, 

GLUD1, GFPT2, ABAT, 

ALDH4A1 

hsa00051 

Fructose and 

mannose 

metabolism 

7 2.05E-02 
MTMR2, GMPPB, SORD, 

PFKFB2, HK2, PFKM, MTMR6 

hsa05120 

Epithelial cell 

signaling in 

Helicobacter pylori 

infection 

10 3.03E-02 

IGSF5, ATP6V0E1, LYN, 

ATP6V1E1, MAP2K4, NFKB1, 

PAK1, JAM3, ATP6V0A2, 

ATP6V0B 

hsa04360 Axon guidance 15 3.89E-02 

NRP1, EFNB3, EFNA1, EFNB2, 

DPYSL2, EPHA1, SEMA6A, 

NCK2, PAK2, CXCR4, PPP3CC, 

EFNA5, PAK1, SEMA4D, 

SEMA4A 

KEGG: Kyoto Encylopedia of genes and genomes 

 

In order to further evaluate the biological roles of the genes in the independent 

subnetworks of the genome wide androgen stimulated prostate cancer difnet, KEGG 

analysis were performed for the largest subnetwork. As shown on Figure 4.3, this 

subnetwork comprises 119 interactions with CXCR7, STK39, ELOVL3 and ACSL3 at 
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the center of the largest hubs. KEGG analysis of the genes included in the subnetwork 

revealed a highly significant association with axon guidance pathway (p=1.71 e-03), 

which was also found significantly enriched in the whole differential network. 

Furthermore, pathways involved in Fc gamma R-mediated phagocytosis (p=2.69 e-02) 

and Endocytosis (p=3.62 e-02) were also highly enriched (Table 4.3). Interestingly, 

these two pathways were not found significantly enriched in the whole differential 

network. 

Figure 4.3. The largest connected subnetwork of the androgen stimulated prostate 

cancer difnet. This subnetwork might have an important role in human prostate cancer 

as being the largest connected subnetwork with 119 edges in tumor difnet. 

 

Table 4.3. Significant KEGG pathways in the largest subnetwork of the androgen 

stimulated prostate cancer specific differential network 

KEGG ID KEGG term 
No. of 

genes 
p Genes 

hsa04360 Axon guidance 6 1.71E-03 
SEMA6A, CXCR4, EFNA1, 

PPP3CC, EFNA5, PAK1 

hsa04666 

Fc gamma R-

mediated 

phagocytosis 

4 2.69E-02 PRKCA, MAP2K1, PAK1, DNM2 

hsa04144 Endocytosis 5 3.62E-02 
EPS15, CXCR4, RAB5A, 

PARD6G, DNM2 

KEGG: Kyoto Encylopedia of genes and genomes 
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Top four hub nodes, identified in this trial, have been strongly associated with prostate 

cancer metastatic process, including CXCR7, STK39, ELOVL7 and ACSL3. 

Identification of hub genes involved in progression of prostate cancer may lead to the 

development of better diagnostic methods and providing therapeutic approaches. 

According to analysis results, CXCR7 (chemokine (C-X-C motif) receptor 7) is by far 

the top hub gene in the androgen stimulated differential network and it is also part of the 

largest independent subnetwork as seen in Figure 4.3. In (Wang, 2008), it is reported 

that the levels of CXCR7/RDC1 expression increase on tumors being more aggressive. 

Also, In vitro and in vivo studies with prostate cancer cell lines propose that alterations 

in CXCR7/RDC1 expressions are associated with enhanced invasive and adhesive 

activities in addition to a survival advantage. Along other papers on CXCR7 (Zheng, 

2010), it was shown that increased CXCR7 expression was found in hepatocellular 

carcinoma (HCC) tissues. Knockdown of CXCR7 expression by transfected with 

CXCR7shRNA significantly inhibited SMMC-7721 angiogenesis, adhesion and cells 

invasion. Moreover, down-regulation of CXCR7 expression leads to a reduction of 

tumor growth in a xenograft model of HCC (Zheng, 2010). Another study demonstrated 

that the IL-8–regulated Chemokine Receptor CXCR7 stimulates EGFR Signaling to 

promote prostate cancer growth (Singh, 2011). In a study conducted by Yun et al., it is 

reported that CXCR7 expression is increased in most of the tumor cells compared with 

the normal cells and is involved in cell proliferation, migration, survival, invasion and 

angiogenesis during the initiation and progression of many cancer types including 

prostate cancer (Yun, 2015). A more recent study indicated that there appeared to be 

disconnect of the effect of DHT on CXCL12/CXCR4/CXCR7 chemokine axis between 

transcriptional and translation machinery in androgen-responsive LNCaP cell line. 

There are many other studies that showed the strong role of CXCR7 in metastatic type 

cancer that strongly validates our blind foremost prediction is very likely to be true and 

thus needs further experimental work on its targets that we inferred in this study. 

However,  

It was also observed that CXCR7/RDC1 levels are regulated by CXCR4 (Singh, 2011). 

This is a very interesting supporting information from literature for the blind estimation 

because in the predicted largest independent subnetwork, as shown in Figure 4.3, 
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CXCR7 and CXCR4 appear to be very close and interacting over only one gene. 

Although CRCX4 is not a hub gene, it appears to be as a bridge that connects both 

halves of the largest subnetwork. According to KEGG analysis, CXCR4 was found in 

the gene list of two different significantly enriched KEGG pathways, axon guidance and 

endocytosis which are strongly associated with prostate cancer (Table 4.2). Considering 

the prediction was made on global level, this literature confirmation seems assuring but 

not a coincidence. Therefore, this relation is worth experimenting in LnCap cancer too. 

It is also reported (Shanmugam, 2011) that inhibition of CXCR4/CXCL12 signaling 

axis by ursolic acid leads to suppression of metastasis in transgenic adenocarcinoma of 

mouse prostate model and CXCR4 induced a more aggressive phenotype in prostate 

cancer (Miki, 2007). In another study, it is reported that CXCR4 and CXCR7 have 

critical roles on mediating tumor metastasis in various types of cancers as both being a 

receptor for an important α-chemokine, CXCL12 (Sun, 2010). Furthermore, a more 

recent study concluded that CXCR4 plays a crucial role in cancer proliferation, 

dissemination and invasion and the inhibition of CXCR4 strongly affects prostate 

cancer metastatic disease (Gravina, 2015). The chief officer of Massachusetts based X4 

Pharmaceuticals company recently stated that CXCR4 protein “acts as a beacon to 

attract cells to surround a tumor, effectively hiding the tumor from the body’s T cells 

that would otherwise destroy them”. He indicated that X4 company is beginning human 

trials using CXCR4 inhibitors which aims to develop a therapy to block the protein, 

CXCR4 (http://pharmaceuticalintelligence.com/2015/12/15/are-cxc4-antagonists-

making-a-comeback-in-cancer-chemotherapy, 2015). 

The second most likely prediction was STK39 (serine threonine kinase 39). Among 

others, in (Hendriksen, 2006) it is reported that lower mRNA expression of STK39 in 

primary prostate tumors was directly associated with a higher possibility of metastases 

following radical prostatectomy. In (Balatoni, 2009), it is stated that STK39 encoded 

protein SPAK, regulates cell stress responses, and microarray studies identified reduced 

SPAK expression in treatment-resistant breast cancers and metastatic prostate cancers, 

suggesting that its loss may play a role in cancer progression. They showed that 

epigenetic silencing of STK39 in B-cell lymphoma inhibits apoptosis from genotoxic 

stress in cancer. STK39 is also identified as hypertension susceptibility gene (Wang, 

2008).  
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ELOVL7 (fatty acid elongase 7) was reported that it could play an important role in 

prostate cancer cell growth and survival processes through the metabolism of SVLFAs. 

ELOVL7 is also suggested as a promising biomarker for development of new therapies 

or preventive methods for prostate cancers (Tamura, 2009). 

ACSL3 (acyl-CoA synthetase long-chain family member 3) was reported to be one of 

the androgen-regulated genes and it is shown that ACSL3 is slightly up-regulated in 

primary prostate tumors and strongly repressed in metastatic cancer (Marques, 2011). It 

also states that ACSL3, ELOVL5 and GLUD1 play a role in the production of prostatic 

fluid and in secretory function of the prostate. From this literature information, it worth 

mentioning that we blindly predicted ACSL3, ELOVL7 and GLUD1 as in top eight 

tumor-specific hubs, which may suggest their collaborative role in this disease from this 

biological process. There is also a patent that reports that the fusion genes ACSL3 and 

ETV1 and their expression products can be used as prognostic and diagnostic markers 

for prostate cancer and as clinical targets for the treatment of prostate cancer (Attard, 

2008). 

In order to evaluate biological functions of the genes in the differential network, GO 

and KEGG pathway enrichment analyses were performed. The results showed that 

sterol biosynthetic process was the most significantly enriched GO term for biological 

process. To further evaluate the biological roles of the genes in the differential network, 

KEGG pathway analysis was performed. According to the KEGG analysis, Steroid 

biosynthesis was the most significant pathway (p=2.80 e-07). It contains ten genes in 

our network: TM7SF2, CEL, EBP, SQLE, LSS, SC5DL, DHCR24, FDFT1, SC4MOL 

and NSDHL. The relation of Steroid biosynthesis and prostate cancer is reported in 

many studies. The ligand activation of the androgen receptor plays an important role in 

the progress of castration-resistant prostate cancers. The similarities and differences 

from glandular androgen synthesis provide direction for the development of new 

treatments (Migita, 2009; Sharifi, 2012; Auchus, 2012; Ferraldeschi, 2013).  

The pathway with the second highest significance was the synthesis and degradation of 

ketone bodies pathway (p=1.63 e-03), which contains five genes: HMGCS2, HMGCS1, 

ACAT2, ACAT1 and HMGCL. In the study conducted by Lin et. al. (2005), synthesis 

and degradation of ketone bodies pathway found as up-regulated pathway in androgen-



 63 

independent CL1 cells (model for late-stage prostate cancer) when compared to 

androgen-dependent LNCaP (model for early-stage prostate cancer) cells.  

Additionally, the other significant pathways have also examined, and found that Amino 

sugar and nucleotide sugar metabolism (Priolo, 2014), p53 signaling pathway 

(Chappell, 2012; Gupta, 2012; Stegh, 2012), Butanoate metabolism (Stoss, 2008; 

Romanuik, 2010), Alanine, aspartate and glutamate metabolism (Priolo, 2014), and 

Axon guidance (Choi, 2014) pathways were shown to be associated with the prognosis 

of prostate cancer. In these pathways, the p53 signaling pathway plays a critical role in 

cancer’s response to chemotherapy and tumor growth. Inactivation of the tumor 

suppressor gene p53 is widely observed in more than 50% of human cancers including 

prostate cancer. The disruption of the p53 signaling pathway is one of the vital turning 

point for the survival of advanced prostate cancer cells during therapies. By enabling 

DNA repair, it was observed that p53 blocks cancer progression by provoking transient 

or permanent growth arrest (Chappell, 2012; Gupta, 2012; Stegh, 2012). However, three 

pathways, Terpenoid backbone biosynthesis (hsa00900), Fructose and mannose 

metabolism (hsa00051) and Epithelial cell signaling in Helicobacter pylori infection 

(hsa05120), have not previously been related to prostate cancer.  

KEGG analysis for the largest independent subnetwork revealed much more interesting 

results that may show that it has the most important role in the prostate cancer. Axon 

guidance (hsa04360) pathway, which was also found significantly enriched in the whole 

differential network, is known to have tumor suppressor genes and therefore related 

with tumor growth. Axon guidance molecules are validated as tumor suppressor in the 

breast cancer and show promise as breast cancer diagnostic markers as well as potential 

therapeutic targets (Mehlen, 2011; Harburg, 2011). In the study conducted by Choi, 

axon guidance pathway was shown to be involved in prostate cancer tumorigenesis 

(Choi, 2014). In addition, Savli et al. reported that axon guidance signaling pathway 

was the most significant down-regulated canonical pathway in prostate cancer (Savli, 

2008). The second significantly enriched pathway was Fc gamma R-mediated 

phagocytosis (hsa04666). This pathway was found as the highest significant pathway in 

prostate cancer and have been referred as being involved in the pathological 

development of prostate cancer (Jia, 2012). In the literature, the pathway endocytosis 
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(hsa04144), was also found related with prostate cancer. The importance of 

understanding the regulation between signal transduction and endocytosis pathways, 

and also how the breakdown of this integrated regulation contributes to cancer 

development was emphasized (Bonaccorsi, 2007). 

4.1.2. Inference of Lung Cancer Specific Differential Network 

Lung cancer is one of the most leading cause of cancer related death with an estimated 

224,390 new cases and 158,080 deaths in the United States in 2016 (American Cancer 

Society, 2016). Based on pathological features, lung cancer is divided into two main 

types; small cell lung carcinoma (SCLC) and non-small cell lung carcinoma (NSCLC). 

Approximately, 80% of all lung cancer cases are diagnosed as NSCLC (Zakaria et al., 

2015). The three major subtypes of NSCLC are adenocarcinoma, squamous cell 

carcinoma and large cell carcinomas (Bartucci et al., 2012). In this second preliminary 

analyse, NSCLC specific differential network was inferred using the datasets described 

at below. 

4.1.2.1. Microarray data 

In order to investigate the alterations in tumor NSCLC cells compared with normal 

cells, microarray dataset GDS3837 deposited by Lu et al. (2010) was obtained from the 

Gene Expression Omnibus (GEO, http://www.ncbi.nlm.nih.gov/geo). The expression 

profile included 120 samples, comprising 60 tissue samples with non-small cell lung 

cancer (NSCLC) and 60 adjacent normal lung tissue samples. The platform was 

GPL570: [HG-U133_Plus_2] Affymetrix Human Genome U133 Plus 2.0 Array. 

4.1.2.2. Results 

The NSCLC specific differential gene network with 804 interactions was inferred. If we 

consider a gene that has more than five interactions as a hub gene, COL11A1, 

ADAM12, CHEK1 and GLIPR1 were identified as hub genes in the differential 

network. Additionally, the largest independent subnetwork with 50 interactions were 

extracted from the differential network and plotted in Figure 4.4. COL11A1 and 

ADAM12 genes which are the most important two hub genes in the main differential 

network were also detected in this subnetwork. 
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Figure 4.4. Genome-wide NSCLC specific differential network with 804 interactions 
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The top ten GO terms ranked by statistical significance were listed in Table 4.4. GO 

analysis revealed that genes associated with cell cycle phase (GO: 0022403; p=2.0E-

08), M phase (GO: 0000279; p=2.2E-08) and cell cycle (GO: 0007049; p=4.0E-08) 

were significantly enriched top three GO terms among biological processes, while for 

molecular functions, enzyme binding (GO: 0019899; p=6.7E-06), purine ribonucleotide 

binding (GO: 0032555; p=8.2E-05) and ribonucleotide binding (GO: 0032553; p=8.2E-

05) were significantly enriched, and with regards to cellular components, genes 

associated with collagen (GO: 0005581; p=2.0E-06), extracellular matrix (GO: 

0031012; p=1.1E-05) and extracellular matrix part (GO: 0044420; p=1.4E-05) were 

significantly enriched (Table 4.4, Figure 4.5A).  

Table 4.4. GO terms of non-small cell lung cancer specific differential network (top 

10) 

GO ID GO term 
No. of 

genes 
p 

Biological processes   

GO:0022403 cell cycle phase 62 2.0E-08 

GO:0000279 M phase 53 2.2E-08 

GO:0007049 cell cycle 96 4.0E-08 

GO:0022402 cell cycle process 75 9.6E-08 

GO:0000278 mitotic cell cycle 54 4.3E-07 

GO:0006260 DNA replication 33 2.9E-06 

GO:0000087 M phase of mitotic cell cycle 36 5.7E-06 

GO:0030198 extracellular matrix organization 22 8.5E-06 

GO:0000280 nuclear division 35 9.9E-06 

GO:0007067 mitosis 35 9.9E-06 

Cellular components    

GO:0005581 collagen 13 2.0E-06 

GO:0031012 extracellular matrix 47 1.1E-05 

GO:0044420 extracellular matrix part 23 1.4E-05 

GO:0005578 proteinaceous extracellular matrix 44 1.8E-05 

GO:0005583 fibrillar collagen 7 6.8E-05 
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GO:0005694 chromosome 55 7.9E-05 

GO:0044421 extracellular region part 97 1.1E-04 

GO:0031981 nuclear lumen 133 3.9E-04 

GO:0000775 chromosome, centromeric region 20 8.1E-04 

GO:0031974 membrane-enclosed lumen 162 8.4E-04 

Molecular 

Function 

   

GO:0019899 enzyme binding 64 6.7E-06 

GO:0032555 purine ribonucleotide binding 166 8.2E-05 

GO:0032553 ribonucleotide binding 166 8.2E-05 

GO:0001871 pattern binding 25 1.2E-04 

GO:0030247 polysaccharide binding 25 1.2E-04 

GO:0017076 purine nucleotide binding 170 1.8E-04 

GO:0042802 identical protein binding 68 2.8E-04 

GO:0032559 adenyl ribonucleotide binding 136 3.5E-04 

GO:0042803 protein homodimerization activity 41 3.6E-04 

GO:0005524 ATP binding 134 4.2E-04 

GO: gene ontology. 

 

Next, the genes found in the NSCLC specific differential gene network were submitted 

to DAVID server to identify significantly enriched KEGG pathways (Kanehisa, 2000; 

Kanehisa, 2012). The top ten KEGG pathways that were found significantly enriched 

(p<0.05) are shown in Table 4.5. Pathway analysis revealed that the genes in the 

NSCLC specific differential gene network were significantly enriched in sixteen terms. 

The most significant three terms were those involved in focal adhesion (p=6.8E-08), 

ECM-receptor interaction (p=1.0E-05), and T cell receptor signaling pathway (p=2.7E-

03) processes (Figure 4.5B). 
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Figure 4.5. Functional enrichment analysis of significantly enriched genes in the 

NSCLC specific differential gene network. (A) The top 10 enriched GO categories for 

biological processes; (B) The top 10 enriched KEGG pathways. 

A   B 

 
 

 

Table 4.5. Significant KEGG pathways in the NSCLC specific differential network 

KEGG ID KEGG term 
No. of 

genes 
p Genes 

hsa04510 Focal adhesion 39 6.8E-08 XIAP, COL3A1, ITGA11, ITGB5, 

ELK1, PAK2, BCL2, RAC1, 

COL6A3, PIK3CA, COL6A1, 

LAMB1, FIGF, COL11A1, 

RAPGEF1, THBS2, AKT3, PIK3R2, 

PARVG, COL4A2, TNXB, IGF1, 

RAF1, HGF, COL5A2, COL5A1, 

PRKCB, LAMA2, ITGA9, LAMA4, 

CCND3, FYN, LAMA5, ITGA8, 

COL1A2, PDGFRA, COL1A1, 

PARVB, MYLK 

hsa04512 ECM-receptor 

interaction 

20 1.0E-05 COL4A2, TNXB, COL3A1, ITGA11, 

ITGB5, COL5A2, COL5A1, HMMR, 

LAMA2, ITGA9, LAMA4, LAMA5, 

ITGA8, COL6A3, COL1A2, 

COL6A1, COL1A1, LAMB1, 

THBS2, COL11A1 
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hsa04660 T cell receptor 

signaling pathway 

18 2.7E-03 IL4, PTPRC, ITK, CD247, RAF1, 

IL10, MAP3K7, PRKCQ, PAK2, 

FYN, NCK1, PPP3CB, PIK3CA, 

AKT3, CD28, NFATC1, LCP2, 

PIK3R2 

hsa03030 DNA replication 9 4.5E-03 RFC4, SSBP1, RFC2, POLE3, 

RNASEH1, POLA2, RNASEH2A, 

MCM4, MCM6 

hsa05222 Small cell lung 

cancer 

14 9.6E-03 LAMA2, E2F2, COL4A2, LAMA4, 

XIAP, LAMA5, RXRB, BCL2, 

PIK3CA, CDK6, LAMB1, CDK2, 

AKT3, PIK3R2 

hsa04810 Regulation of actin 

cytoskeleton 

27 1.0E-02 GNA13, FGF6, FGFR1, FGFR4, 

MRAS, DIAPH3, ITGA11, IQGAP3, 

ITGB5, ABI2, TTLL3, PAK2, RAC1, 

PIK3CA, FGF2, FGD3, PIK3R2, 

ARHGEF6, RAF1, ARHGEF12, 

ITGA9, CHRM2, ITGA8, PDGFRA, 

MYH14, MYLK, CD14 

hsa05410 Hypertrophic 

cardiomyopathy 

14 1.1E-02 LAMA2, ITGA9, SLC8A1, DES, 

ATP2A2, CACNG8, ITGA8, 

ITGA11, SGCD, IGF1, ITGB5, 

CACNA1C, CACNA2D2, TPM4 

hsa05412 Arrhythmogenic 

right ventricular 

cardiomyopathy 

(ARVC) 

13 1.1E-02 LAMA2, ITGA9, SLC8A1, DES, 

ATP2A2, CACNG8, ITGA8, 

ITGA11, SGCD, ITGB5, DSC2, 

CACNA1C, CACNA2D2 

hsa05218 Melanoma 12 1.6E-02 FGF6, E2F2, FGFR1, PDGFRA, 

RAF1, IGF1, PIK3CA, CDK6, HGF, 

FGF2, AKT3, PIK3R2 

hsa05414 Dilated 

cardiomyopathy 

14 2.0E-02 LAMA2, ITGA9, SLC8A1, DES, 

ATP2A2, CACNG8, ITGA8, 

ITGA11, SGCD, IGF1, ITGB5, 

CACNA1C, CACNA2D2, TPM4 

KEGG: Kyoto Encylopedia of genes and genomes 

 

In order to investigate the biological roles of the genes in the independent subnetworks 

of the genome wide NSCLC specific differential gene network, we performed KEGG 

analysis for the largest subnetwork. As shown on Figure 4.6, this subnetwork comprises 

50 interactions with COL11A1, and ADAM12 at the center of the largest hubs. KEGG 

analysis of the genes included in this subnetwork revealed a highly significant 

association with ECM-receptor interaction (p=1.45E-08) and focal adhesion (p=2.68E-
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06) pathways, which were the top two significantly enriched pathways in the whole 

differential network.  

Figure 4.6. The largest connected subnetwork of NSCLC specific differential gene 

network. This subnetwork might have an important role in human NSCLC as being the 

largest connected subnetwork with 50 edges in tumor differential network. 

 

 

Table 4.6. Significant KEGG pathways in the largest subnetwork of the NSCLC 

specific differential network 

KEGG ID KEGG term 
No. of 

genes 
p Genes 

hsa04512 
ECM-receptor 

interaction 
7 1.45E-08 

COL3A1, ITGA11, COL1A1, 

COL5A2, THBS2, COL11A1, 

COL5A1 

hsa04510 Focal adhesion 7 2.68E-06 

COL3A1, ITGA11, COL1A1, 

COL5A2, THBS2, COL11A1, 

COL5A1 

KEGG: Kyoto Encylopedia of genes and genomes 
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In line with previous studies, hub genes identified in the present trial have been closely 

associated with non-small cell lung cancer metastatic process, including COL11A1, 

ADAM12, CHEK1 and GLIPR1. Identification of hub genes involved in progression of 

NSCLC may lead to the development of better diagnostic methods and providing 

therapeutic approaches. 

According to the analysis results, COL11A1 (Collagen, Type XI, Alpha 1) is by far the 

top hub gene in the NSCLC specific differential network and it is also part of the largest 

independent subnetwork as seen in Figure 4.6. In the literature, the COL11A1 is a 

widely known human gene that promotes tumor progression in many different human 

carcinomas (Zhang et al., 2016; Vázquez-Villa et al., 2015; Kleinert et al., 2015; Wu et 

al., 2014). Chong et al indicated that the overexpression of COL11A1 is highly 

correlated with lymph node metastasis and poor prognosis of NSCLC. Furthermore, 

COL11A1 and COL1A1 (encoding Collagen I alpha-1 chain protein) were found as 

upregulated differential expressed genes (Chong et al., 2006; Metodieva et al., 2011). 

This is a very interesting supporting information from literature for our blind estimation 

because in our predicted largest independent subnetwork, as shown in Figure 4.6, 

COL11A1 and COL1A1 appear to be interacting directly. Additionally, Lv and Wang 

strongly recommended that COL11A1 and COL1A1 may be potential targets in the 

treatment of smoking independent lung cancer (Lv and Wang, 2015). In another recent 

study, Tian et al indicated that COL11A1 might participate in the pathology of NSCLC 

(Tian et al., 2015). We also found that COL11A1 and COL1A1 were enriched in both 

ECM-receptor interaction and focal adhesion pathways which are important pathways 

for NCSLC. 

The second most likely prediction was ADAM12 (ADAM Metallopeptidase Domain 

12). Among others, Rocks et al demonstrated that production of ADAM12 is increased 

both at the protein and mRNA levels in human lung carcinomas. It is also suggested that 

overexpression of ADAM12 and a lower expression of ADAMTS-1 in NSCLC play 

important functions in lung cancer progression (Rocks et al, 2006). In another recent 

study, it is revealed that the expression levels of ADAM12 was significantly higher in 

small cell lung cancer (SCLC) than other ADAM genes. Furthermore, ADAM12 is 
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indicated as an independent prognostic factor that plays a crucial role in SCLC 

proliferation, invasion and metastasis (Shao et al., 2014). 

CHEK1 (Checkpoint kinase 1) regulates cell cycle checkpoints and is known to be 

involved in the DNA damage repair (Liu et al., 2015). In tumor cells, CHK1 activation 

impairs the efficacy of many chemotherapeutic agents by inducing the S-phase 

checkpoint and by causing cell cycle arrest. Therefore, CHK1 inhibition improves 

survival of NSCLC patients by enhancing the therapeutic effects of chemotherapy 

(Bartucci et al., 2012; Fang et al., 2013). Inhibitors of CHK1 were suggested as new 

cancer treatment agents that can be useful in lung cancer (Syljuasen et al., 2015). 

Furthermore, Liu et al indicated that high expression levels of CHEK1 (Checkpoint 

kinase 1) in tumor tissues is significantly associated with the poor survival of NSCLC 

(Liu et al., 2015). 

GLIPR1 (GLI pathogenesis-related 1) is known as a tumor suppressor gene which 

reduces cell growth and increases chemokine secretion (Ccl5) by activating immune 

cells (Zhang et al., 2015). In a very recent study, GLIPR1 (GLI pathogenesis-related 1) 

was identified as a potential therapeutic target for lung cancer by inhibiting lung cancer 

cell growth through suppressing ERBB3 (Erb-B2 Receptor Tyrosine Kinase 3) (Sheng 

et al., 2016). Taken together, these findings indicate that COL11A1, ADAM12, CHEK1 

and GLIPR1 are closely associated with the progression of NSCLC. 

In order to evaluate biological functions of the genes in the differential network, GO 

and KEGG pathway enrichment analyses were performed. The predominant enriched 

GO terms for biological processes, cellular components and molecular components 

included cell cycle phase, collagen and enzyme binding, respectively.  

To further investigate the biological roles of the genes in the NSCLC specific 

differential network, KEGG pathway analysis was performed. KEGG analysis revealed 

that, ECM-receptor interaction was the most significant pathway (p=1.45E-08) for the 

largest independent subnetwork. It contains seven genes in our network: COL3A1, 

ITGA11, COL1A1, COL5A2, THBS2, COL11A1, COL5A1. The ECM mainly 

involves in tissue morphogenesis and plays a crucial role in the maintenance of cellular 

events such as adhesion, migration, differentiation and survival. The development and 
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progression of tumors is directly associated with the dysregulation of ECM (Zakaria et 

al., 2015, Zhang et al., 2015). The relation of ECM-receptor interaction and lung cancer 

has been reported in many studies. Hu and Chen indicated that ECM receptor 

interaction was significantly affected in lung tumor tissues and may contribute to early 

stages of lung adenocarcinoma irrelevant to smoking (Hu and Chen, 2015). In another 

study, it is demonstrated that ECM-receptor interaction pathway including COL11A1 

and COL1A1 genes might be involved in lung cancer metastasis and angiogenesis (Lv 

and Wang, 2015).   

The pathway with the second highest significance was the focal adhesion pathway 

(p=2.68E-06). The same seven genes, COL3A1, ITGA11, COL1A1, COL5A2, THBS2, 

COL11A1, COL5A1, were enriched in the focal adhesion pathway as in ECM-receptor 

interaction pathway. Focal adhesions are large protein complexes that physically 

connect the extracellular matrix to the cytoskeleton and regulate a number of biological 

processes such as cell migration, proliferation and survival. The perturbations in these 

processes can result in the development of malignancy and alteration of focal adhesion 

activity in cancer cells (McLean, 2005, Kim and Wirtz, 2013). Carelli et al indicated 

that the expression levels of focal adhesion kinase (FAK) are increased in tumor tissue 

as compared to normal lung tissue which refers to the crucial role of FAK in the 

progression of NSCLC (Carelli et al., 2006). Moreover, Webber et al suggested a 

combined treatment of Hsp90 and FAK that inhibits the growth of NSCLC cells 

(Webber et al., 2015). In a recent study (Howe et al., 2016), the major role of FAK in 

NSCLC growth and progression was emphasized and a new drug combination that 

targets EGFR along with FAK in NSCLC was suggested. Beside these, seven of top ten 

significant pathways of NSCLC specific differential network were found related with 

NSCLC including T cell receptor signaling (Kakimi et al., 2014), DNA replication 

(Zhang et al., 2014), small cell lung cancer, regulation of actin cytoskeleton (Gao et al., 

2015) and melanoma (Huang et al., 2016) pathways. 
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4.2. BREAST CANCER ANALYSIS 

4.2.1. Microarray Data 

The METABRIC (Molecular Taxonomy of Breast Cancer International Consortium) 

microarray dataset used in this dissertation is provided by the European Bioinformatics 

Institute (EBI). Upon access request and approval, the Metabric gene expression data is 

downloaded from the European Genome-Phenome Archive (EGA, 

http://www.ebi.ac.uk/ega/) webpage using special EGA download client. 

The study accession number for the dataset is EGAS00000000083. The dataset 

accession IDs are shown in Table 4.7. It consists of transcriptomic information (cDNA 

microarrays profiling) measured using the Illumina HT-12 v3 platform, as indicated in 

(Curtis  et al., 2012). In the normalized METABRIC gene expression dataset, discovery 

set with 997 samples and normals set with 144 samples were used respectively as tumor 

and normal datasets. Sample size over 64 is reported as sufficient to infer a gene 

network with maximum performance (Altay, 2012). 

Table 4.7. METABRIC Breast Cancer Datasets 

Dataset Accesion Technology Description Samples Type 

EGAD00010000210 Illumina HT 12 
Normalized 

expression data 
997 Tumor 

EGAD00010000212 Illumina HT 12 
Normalized 

expression data 
144 Normal 

Source: European Genome-Phenome Archive (EGA, https://www.ebi.ac.uk/ega/studies/ 

EGAS00000000083) 

4.2.2. Data Preprocessing 

Preprocessing is a crucial preliminary step in bioinformatics studies to prepare the 

dataset for the application of data analysis and to improve the performance of analysis 

results. In this dissertation, the following data pre-processing steps were performed:  

The gene expression datasets, which was downloaded from EGA, were consisted of 

48803 probes. Since the datasets were normalized before, the normalization process was 
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skipped. Firstly, the datasets were checked for missing values. There were no missing 

values in the datasets. Then probe annotation process was carried out using the 

illuminaHumanv3.db (Illumina Human HT-12 v3 annotation data) R software package 

(Dunning et al., 2016). This package includes all known gene symbols that correspond 

to probes in the Illumina HT-12 v3 platform. At the end of the annotation process, 

29221 probes were annotated successfully. So the resulting datasets which were used in 

the rest of the analysis were consisted of 29221 probes.  

Following the probe annotation process, copula transformation was performed for each 

of the datasets. It was reported that copula transformed datasets result in more stable 

estimations of the mutual information matrices. Then probe filtering operation was 

performed. In microarray technology, multiple probes can represent a single gene. In 

theory and mostly in practice those kind of probes have highest association score among 

them which cause an error for the inference algorithm c3net. In order to eliminate this 

problem, the association matrix was filtered by setting zero for the mutual information 

score for those probe pairs (Altay and Emmert-Streib, 2010a). Finally, mutual 

information (MI) matrices of each of the datasets were computed. The dimension of 

computed MI matrices was 29221 x 29221. 

4.2.3. Data Integration 

In this part, the datasets which were used in the integration part of IDN framework were 

described. The integrated data includes all known transcription factors, identified 

differential expressed genes fom METABRIC breast cancer datasets, oncogenes, 

prognostic genes and metastatic genes associated with breast cancer. 

4.2.3.1. Transcription Factors 

Transcription factor is a molecule that controls the activity of a gene by determining 

whether the gene’s DNA is transcribed into RNA. TFs are important regulators of 

cellular processes. A list of 1856 TFs were downloaded from TFCat (Transcription 

factor database) and adopted to the IDN framework (http://www.tfcat.ca, Access date: 

June, 2016).  

http://www.tfcat.ca/
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4.2.3.2. Identification of Differentially Expressed Genes 

In the genomic studies, differentially expressed (DE) genes are widely considered as 

potential candidates of biomarkers. The t-statistic is one of the frequently used method 

for identifying DE genes between two different biological conditions. (Abeel et al., 

2010). In this dissertation, limma (Linear Models for Microarray Data) R software 

package was used for the analyze and identification of the differentially expressed genes 

between tumor and normal breast cancer cells (Ritchie et al., 2015). According to 

eBayes modified t-statistic analysis results, 20627 genes found to be differentially 

express with adjusted p value of 0.01. The top 20 differentially expressed genes are 

shown in the Table 4.8. 

Table 4.8. Differentially Expressed Genes of Metabric Breast Cancer Dataset 

Gene logFC t P.Value adj.P.Val B 

FXYD1 -1.78015726 -57.729493 0.00E+00 0.00E+00 770.744162 

SDPR -2.78229480 -55.706600 0.00E+00 0.00E+00 740.763584 

CD300LG -3.66903123 -55.066523 9.88e-324 9.62e-320 731.170398 

ABCA9 -1.88347822 -53.967940 2.18e-316 1.59e-312 714.586282 

SCARA5 -2.81934553 -53.350932 2.64e-312 0.00E-01 705.206328 

LYVE1 -2.28281412 -52.200300 1.23E-304 5.98E-301 687.588957 

CREB5 -1.41840590 -50.008824 7.66E-290 3.20E-286 653.591330 

ABCA6 -2.19428576 -49.997155 9.20E-290 3.36E-286 653.408776 

CLEC3B -3.03235838 -49.965190 1.52E-289 4.93E-286 652.908595 

CA4 -2.64780384 -48.918138 2.19E-282 6.39E-279 636.458718 

RPL21P44 -0.84602167 -48.829489 8.88E-282 2.36E-278 635.060136 

AQP7P1 -3.25714999 -47.843749 5.51E-275 1.24E-271 619.448092 

RBPMS -1.54516073 -47.791570 1.27E-274 2.64E-271 618.618624 

ABCA8 -3.14024792 -47.233687 9.32E-271 1.81E-267 609.731198 

LINC-PINT -1.00181901 -45.880611 2.57E-261 4.41E-258 588.034583 

FHL1 -3.55314298 -45.623645 1.63E-259 2.64E-256 583.892052 

GPIHBP1 -2.48640897 -44.942500 1.01E-254 1.55E-251 572.878299 

ARHGAP20 -1.15422218 -44.693572 5.75E-253 8.40E-250 568.841475 

IGFBP6 -3.12818907 -44.562896 4.81E-252 6.70E-249 566.719834 

KLHL29 -1.28006010 -44.519535 9.75E-252 1.29E-248 566.015451 
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4.2.3.3. Prognostic Genes 

The identification of prognostic genes is a very crucial task in breast cancer since they 

are directly associated with the short survival times. Additionally, these genes help us to 

understand molecular mechanisms underlying the tumor progression. Hence, I adopted 

them into the IDN framework.  

In a recent study conducted by Joe and Nam (2016), 26 high-expressed and 17 low-

expressed genes are reported as most important prognostic factors in breast cancer. 16 

genes of 26 co-expressed genes, and 8 genes of 17 low-expressed genes reported in this 

study were previously defined as prognostic genes in breast cancer (Table 4.9). 

Table 4.9. The prognostic gene list in Breast Cancer 

Type Gene Description 

High-expressed 

genes 

CHEK1 checkpoint kinase 1 

FOXM1 forkhead box M1 

CCNA2 cyclin A2 

CDC20 cell division cycle 20 

TTK TTK protein kinase 

CENPA centromere protein A 

KIF2C kinesin family member 2C 

BUB1 BUB1, mitotic checkpoint serine/threonine kinase 

MCM6 minichromosome maintenance complex component 6 

LMNB2 lamin B2 

CDC45 cell division cycle 45 

ANLN anillin actin binding protein 

MCM10 minichromosome maintenance 10 replication initiation factor 

CDCA8 cell division cycle associated 8 

MELK maternal embryonic leucine zipper kinase 

CCNB2 cyclin B2 

CEP55 centrosomal protein 55 kDa 

DLGAP5 discs, large (Drosophila) homolog-associated protein 5 

HJURP Holliday junction recognition protein 

CDCA5 cell division cycle associated 5 

TRIP13 thyroid hormone receptor interactor 13 
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Type Gene Description 

High-expressed 

genes 

GTSE1 G2 and S-phase expressed 1 

CDCA3 cell division cycle associated 3 

PRR11 proline rich 11 

FAM83D family with sequence similarity 83 member D 

GTPBP4 GTP binding protein 4 

Low-expressed 

genes 

ESR1 estrogen receptor 1 

GATA3 GATA binding protein 3 

LRIG1  leucine-rich repeats & immunoglobulin-like domains 1 

RABEP1 rabaptin, RAB GTPase binding effector protein 1 

CIRBP cold inducible RNA binding protein 

EVL Enah/Vasp-like 

WDR19 WD repeat domain 19 

SCUBE2  signal peptide, CUB domain, EGF-like 2 

KIF13B kinesin family member 13B 

TBC1D9 TBC1 domain family member 9 

ANKRA2 ankyrin repeat family A member 2 

DYNLRB2 dynein, light chain, roadblock-type 2 

NME5 NME/NM23 family member 5 

CAPN8 calpain 8 

CASC1 cancer susceptibility candidate 1 

BBOF1 basal body orientation factor 1 

RUNDC1 RUN domain containing 1 

Source: “Joe, S. & Nam, H. 2016. Prognostic factor analysis for breast cancer using gene expression 

profiles. BMC Med Inform Decis Mak. 16: 56”. 

4.2.3.4. Oncogenes 

Oncogenes are genes that are usually expressed at high levels in tumor cells and have 

great potential to cause cancer (Wilbur et al., 2009). For this reason, 518 known cancer 

genes were adopted into the IDN framework. The up-to-date list of oncogenes were 

downloaded from “Network of Cancer Genes” repository which is maintained by the 

Cancer Evolutionary Genomics at King's College of London (http://ncg.kcl.ac.uk, 

Access date: June, 2016). 
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4.2.3.5. Metastatic Genes 

The metastatic genes associated with breast cancer are important promoters of 

metastasis in breast cancer. Fan et al. (2014) identified 61 genes as the most important 

metastatic genes in breast cancer. These genes which are adopted to the IDN framework 

are shown in (Table 4.10). 

Table 4.10. Metastatic genes associated with breast cancer 

Gene Description Gene Description 

ACTN1 actinin alpha 1 L3MBTL1 l(3)mbt-like 1 

AKAP12 A-kinase anchoring protein 12 LMNA lamin A/C 

ANGPTL4 angiopoietin like 4 LPP murein lipoprotein 

BMP8B bone morphogenetic protein 8b MAPK7 mitogen-activated protein kinase 7 

CALM1 calmodulin 1 MCAM melanoma cell adhesion molecule 

CAMK1D 
calcium/calmodulin-dependent 

protein 
MMP10 matrix metallopeptidase 10 

CAV1 caveolin 1 MRC2 mannose receptor C type 2 

CAV2 caveolin 2 MTMR9 myotubularin related protein 9 

C0L1A2 type I collagen gene NDEL1 nudE neurodevelopment protein 1 

COL5A3 collagen type V alpha 3 chain NDUFS4 
NADH:ubiquinone oxidoreductase 

subunit S4 

C0X7A1 cytochrome c oxidase N0X4 NADPH oxidase 4 

CRISPLD2 
cysteine rich secretory protein 

LCCL domain containing 2 
PMP22 peripheral myelin protein 22 

CRLP1 
Cytokine Receptor Like Factor 

1 
PPL periplakin 

CTDSP2 CTD Small Phosphatase 2 RNASE2 ribonuclease A family member 2 

CYR61 
cysteine rich angiogenic 

inducer 61 
S100A10 S100 calcium binding protein A10 

DACT1 
dishevelled binding antagonist 

of beta catenin 1 

SERPINE

1 
serpin family E member 1 

DKK3 
dickkopf WNT signaling 

pathway inhibitor 3 
SPOCK1 

SPARC/osteonectin, cwcv and kazal 

like domains proteoglycan 1 

ECM1 extracellular matrix protein 1 SPP1 secreted phosphoprotein 1 

EGR1 early growth response 1 SRPX2 
sushi repeat containing protein, X-

linked 2 

EHD2 EH domain containing 2 STMN2 stathmin-like 2 
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ELF3 
E74 like ETS transcription 

factor 3 
TAC1 tachykinin precursor 1 

EMP1 epithelial membrane protein 1 TAOK1 TAO kinase 1 

EMX2 empty spiracles homeobox 2 TGFB1I1 
transforming growth factor beta 1 

induced transcript 1 

FSTL3 follistatin like 3 THBS3 thrombospondin 3 

GBE1 
1.4-alpha-glucan branching 

enzyme 1 
TLN2 talin 2 

GLI1 
GLI-Kruppel family member 

GLI1 
TNC tenascin C 

HES1 hairy and enhancer of split 1 TPM1 tropomyosin 1 

HOXD1 homeobox D1 TRIO 
trio Rho guanine nucleotide 

exchange factor 

HYAL1 hyaluronoglucosaminidase 1 WDR6 WD repeat domain 6 

INSIG2 insulin induced gene 2 WFDC1 WAP four-disulfide core domain 1 

ITGA5 integrin subunit alpha 5   

Source: “Fan, M., Sethuraman, A., Brown, M., Sun, W., & Pfeffer, L. M. 2014. Systematic analysis of 

metastasis-associated genes identifies miR-17-5p as a metastatic suppressor of basal-like breast cancer. 

Breast Cancer Res Treat. 146 (3), pp. 487-502”. 

4.2.4. Inference of Breast Cancer Specific Differential Network 

The breast cancer specific differential gene network with 1525 interactions was inferred 

and plotted in Figure 4.7. The differential network was included 2003 unique genes, 5 

subnetworks with minimum 30 interactions and 5 hub genes with more than 10 targets.  

In Fig. 4.7, colors are overlapped one on the other as following order. Nodes or labels 

are yellow if they are oncogenes. Triangles nodes represent transcription factors. Labels 

are red if they are significant in the first step of c3net. Labels are green if they are also 

differentially expressed with p-value 0.01. Edge widths vary with the correlation values. 
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Figure 4.7. Breast cancer specific differential network with 1525 interactions 



 82 

Table 4.11. Top five hub genes in the breast cancer specific differential network 

Gene Descripiton # of targets 

HNRNPK heterogeneous nuclear ribonucleoprotein K 15 

DCN decorin 14 

SRGN serglycin 12 

PTGES3 prostaglandin E synthase 3 11 

GLT8D2 glycosyltransferase 8 domain containing 2 11 

HNRNPK, DCN, SRGN, PTGES3 and GLT8D2 genes were identified as the top five 

hub genes with more than 10 targets in the breast cancer specific differential network 

(Table 4.11). These genes and their targets are plotted in Figure 4.8. 

Figure 4.8. Top five hub genes and their targets in the breast cancer specific 

differential network 
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To investigate the functions of the genes in the breast cancer specific differential gene 

network, GO and KEGG pathway analysis were performed. A total 699 GO terms AND 

28 KEGG terms were retrieved from the DAVID. The top ten GO terms ranked by 

statistical significance were listed in Table 4.12. GO analysis revealed that genes 

associated with mitotic cell cycle (GO:0000278; p=4.8E-08), cell cycle (GO:0007049; 

p=2.7E-15) and cell cycle phase (GO:0022403; p=2.9E-13) were significantly enriched 

top three GO terms among biological processes, while for molecular functions, spindle 

(GO:0005819; p=4.7E-09), condensed (GO:0000793; p=5.3E-09) and chromosome 

(GO:0005694; p=1.7E-08) were significantly enriched, and with regards to cellular 

components, genes associated with ribonucleotide binding (GO:0032553; p=3.4E-08), 

purine ribonucleotide binding (GO:0032555; p=3.4E-08) and purine nucleotide binding 

(GO:0017076; p=3.8E-08) were significantly enriched (Table 4.12, Figure 4.9A).  

Table 4.12. GO terms of breast cancer specific differential network (top 10) 

GO ID GO term 
No. of 

genes 
p 

Biological processes   

GO:0000278 mitotic cell cycle 101 4.8E-16 

GO:0007049 cell cycle 163 2.7E-15 

GO:0022403 cell cycle phase 102 2.9E-13 

GO:0022402 cell cycle process 125 5.5E-13 

GO:0000279 M phase 85 4.5E-12 

GO:0007067 mitosis 65 1.0-E11 

GO:0000280 nuclear division 65 1.0-E11 

GO:0048285 organelle fission 66 2.0E-11 

GO:0000087 M phase of mitotic cell cycle 65 2.0E-11 

GO:0051726 regulation of cell cycle 76 4.0E-08 

Cellular components    

GO:0005819 spindle 46 4.7E-09 

GO:0000793 condensed 42 5.3E-09 

GO:0005694 chromosome 94 1.7E-08 

GO:0043228 non-membrane-bounded 358 2.4E-08 

GO:0043232 intracellular 358 2.4E-08 

GO:0015630 microtubule 104 8.5E-08 

GO:0044427 chromosomal 80 1.3E-07 

GO:0000775 chromosome 37 2.4E-07 
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GO:0005654 nucleoplasm 144 8.9E-07 

GO:0043233 organelle 256 2.0E-06 

Molecular 

Function 

   

GO:0032553 ribonucleotide binding 253 3.4E-08 

GO:0032555 purine ribonucleotide binding 253 3.4E-08 

GO:0017076 purine nucleotide binding 262 3.8E-08 

GO:0000166 nucleotide binding 298 5.8E-08 

GO:0001883 purine nucleoside binding 213 7.0E-06 

GO:0001882 nucleoside binding 214 7.8E-06 

GO:0005201 extracellular matrix structural constituent 24 8.7E-06 

GO:0005524 ATP binding 196 2.2E-05 

GO:0032559 adenyl ribonucleotide binding 198 2.3E-05 

GO:0030554 adenyl nucleotide binding 207 2.4E-05 

GO: gene ontology. 

 

Next, the genes found in the breast cancer differential gene network were submitted to 

DAVID server to identify significantly enriched KEGG pathways (Kanehisa, 2000; 

Kanehisa, 2012). The KEGG pathways that were found significantly enriched (p<0.05) 

are shown in Table 4.13. Pathway analysis revealed that the genes in the breast cancer 

specific differerential network were significantly enriched in eighteen terms. The most 

significant three terms were those involved in cell cycle (p=5.4E-08), DNA replication 

(p=9.6E-06), and oocyte meiosis (p=1.2E-04) processes (Figure 4.9B). 
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Figure 4.9. Functional enrichment analysis of significantly enriched genes in the 

breast cancer specific differential gene network. (A) The top 10 enriched GO 

categories for biological processes; (B) The top 10 enriched KEGG pathways. 

A   B 

 
 

 

Table 4.13. Significant KEGG pathways in the breast cancer specific differential 

network (Top 10) 

KEGG ID KEGG term 
No. of 

genes 
p Genes 

hsa04110 Cell cycle 39 5.4E-08 E2F2, YWHAZ, E2F4, E2F5, TGFB3, 

PRKDC, TTK, PKMYT1, CHEK1, 

ANAPC10, CDC16, PTTG1, RBX1, 

CCNE2, CCNE1, MCM7, BUB1, CCNA2, 

CDK1, CCNH, SKP2, CDC20, ESPL1, 

MCM2, SKP1, CDC25C, MCM3, MCM4, 

CDK2, CDC25B, CCNB1, YWHAG, 

MAD2L1, CCNB2, HDAC2, CCND2, 

PLK1, PCNA, BUB1B 

hsa03030 DNA 

replication 

16 9.6E-06 SSBP1, POLE, MCM2, MCM3, 

RNASEH2A, MCM4, RNASEH2B, RFC3, 

RFC4, MCM7, POLE2, RFC2, POLD1, 

PRIM2, PCNA, FEN1 

hsa04114 Oocyte 

meiosis 

29 1.2E-04 YWHAZ, PPP2R5D, PKMYT1, AURKA, 

ANAPC10, CDC16, PTTG1, RBX1, 

CCNE2, CCNE1, IGF1R, PPP2CA, 

PPP2CB, BUB1, FBXO5, CDK1, SGOL1, 

IGF1, ESPL1, CDC20, SKP1, CDC25C, 

CDK2, CCNB1, REC8, YWHAG, 

MAD2L1, CCNB2, PLK1 
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hsa04510 Focal 

adhesion 

42 6.9E-04 CAV2, ITGA11, PIP5K1C, ITGB5, ITGB1, 

MYL9, CTNNB1, AKT1, CDC42, IGF1R, 

PTK2, COMP, BCL2, COL6A3, COL6A2, 

RHOA, PDGFC, PDGFD, LAMB1, 

COL11A1, THBS2, THBS4, SPP1, EGFR, 

IGF1, FLNC, COL5A3, COL5A2, COL5A1, 

PRKCB, LAMA2, LAMA4, CCND2, FYN, 

ITGA5, COL1A2, PDGFRA, PDGFRB, 

RAP1B, LAMC1, COL1A1, CRK 

hsa04512 ECM-

receptor 

interaction 

22 1.1E-03 ITGA11, ITGB5, COL5A3, COL5A2, 

ITGB1, COL5A1, HMMR, LAMA2, SDC1, 

LAMA4, ITGA5, COMP, COL6A3, 

COL1A2, COL6A2, LAMC1, COL1A1, 

LAMB1, THBS2, COL11A1, THBS4, SPP1 

hsa05130 Pathogenic 

Escherichia 

coli infection 

17 1.1E-03 YWHAZ, LY96, ARPC4, TLR4, ITGB1, 

WAS, CTNNB1, CDC42, CTTN, FYN, 

NCK1, RHOA, TUBA3C, TUBB6, 

TUBA3D, TUBA3E, TUBA1A, TUBA1B 

hsa05322 Systemic 

lupus 

erythematosu

s 

23 4.0E-03 C7, C3, C1R, C1S, HLA-DMB, 

HIST2H2AB, HIST2H2AC, IFNG, 

HIST3H2A, HIST3H2BB, HIST1H2BF, 

HIST1H2BG, SSB, CD40, HLA-DQA1, 

C1QB, CD86, FCGR2B, HLA-DPA1, 

HIST1H3D, FCGR2A, H3F3C, HIST1H3F, 

HIST1H2AM, CTSG, HIST1H3H 

hsa05200 Pathways in 

cancer 

58 4.1E-03 E2F2, TGFB3, FOXO1, FASLG, FLT3LG, 

CTNNB1, WNT2, AKT1, CCNE2, CDC42, 

FOS, MAX, CCNE1, RHOA, TPR, 

CSF2RA, EGFR, CTBP1, RUNX1T1, 

SKP2, STK4, CDK2, RAD51, PRKCB, 

HIF1A, PIAS4, PDGFRA, PDGFRB, 

LAMC1, TRAF1, CKS1B, BCL2L1,ITGB1, 

TPM3, RBX1, IGF1R, PTK2, BCL2, 

LAMB1, CSF1R, IL6, MSH2, MAP2K2, 

TGFBR2, IGF1, BIRC5, STAT1, FZD7, 

LAMA2, RASSF5, LAMA4, HDAC2, 

PLCG1, ETS1, PLCG2, TCEB2, 

TCEB1,CRK 

hsa03050 Proteasome 13 1.0E-02 PSMB8, PSMB9, PSMB4, PSMC6, 

PSMA6, PSMC4, PSME2, IFNG, PSMC1, 

PSMD2, PSMD4, PSMD6, PSMD7 

hsa00240 Pyrimidine 

metabolism 

21 1.1E-02 POLR2F, POLR3K, PNPT1, POLE, 

DTYMK, POLR1C, POLR3A, RRM2B, 

CMPK1, NME7, CMPK2, TYMP, NME2, 

NME3, POLE2, NME1-NME2, NME1, 

RRM2, POLD1, PRIM2, TXNRD1, UCK2, 

DPYD 

KEGG: Kyoto Encylopedia of genes and genomes 
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In order to further evaluate the biological roles of the genes in the independent 

subnetworks of the genome-wide breast cancer specific differential gene network, we 

performed KEGG analysis for the largest subnetwork with 200 interactions. As shown 

on Figure 4.10, this subnetwork comprises 200 interactions with DCN and GLT8D2 at 

the center of the largest hubs. KEGG analysis of the genes included in this subnetwork 

revealed a highly significant association with ECM-receptor interaction (p=4.4-E6), 

focal adhesion (p=4.4E-4), complement and coagulation cascades (p=1.1-E3), 

hypertrophic cardiomyopathy (HCM) (p=1.6-E2) and dilated cardiomyopathy (p=2.1-

E2) pathways.  

Figure 4.10. Largest subnetwork of breast cancer specific differential network with 

200 interactions 
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Table 4.14. Significant KEGG pathways in the largest independent subnetwork of 

breast cancer specific differential network 

KEGG ID KEGG term 
No. of 

genes 
p Genes 

hsa04512 ECM-receptor 

interaction 

9 4.4E-6 LAMA4, SDC1, COMP, COL6A3, 

ITGA11, ITGB5, LAMB1, 

COL11A1, ITGB1 

hsa04510 Focal adhesion 10 4.4E-4 LAMA4, CCND2, COMP, 

COL6A3, ITGA11, ITGB5, 

LAMB1, COL11A1, ITGB1, MYL9 

hsa04610 Complement and 

coagulation cascades 

6 1.1E-3 F13A1, CFH, C1R, C1S, PLAU, 

PLAUR 

hsa05410 Hypertrophic 

cardiomyopathy 

(HCM) 

5 1.6E-2 ITGA11, SGCD, ITGB5, TPM2, 

ITGB1 

hsa05414 Dilated 

cardiomyopathy 

5 2.1E-2 ITGA11, SGCD, ITGB5, TPM2, 

ITGB1 

KEGG: Kyoto Encylopedia of genes and genomes 

 

4.2.5. Integration and ranking process 

In the integration step of IDN, the interactions out of the first step of c3net, are 

compared with the interaction database of literature including 860919 known gene-to-

gene interactions and the overlapping ones are added to the breast cancer specific 

differential gene network. The resulting network had 5359 unique interactions. Then 

other information including 518 oncogenes, 43 prognostic genes and 61 metastatic 

genes associated with breast cancer are integrated over this network.  

Since the main purpose of the algorithm is to find the most important regulators that 

drives the breast cancer, genes in the differential network were compared with the TF 

database of literature including 1856 TFs and scoring process were performed for the 

overlapping ones. In this step, 138 TFs that may have a crucial role in breast cancer 

were identified. Then, scoring process for each TF was performed according to the 

novel scoring formula of IDN. While scoring, in order to consider the neighbor density 

with respect to the proximity of each TF, the link distance from each TF was limited to 

2 links.  
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Table 4.15. The top 20 genes identified by IDN framework that may have a crucial 

role in the progression of breast cancer 

Gene Descripiton # of links   Score 

YY1 Yin yang 1 483 877.782 

SMARCA5 
SWI-SNF-related Matrix-associated Actin dependent 

Regulator of Chromatin A5 
262 465.428 

FOXM1 forkhead box M1 211 383.247 

STAT4 signal transducer and activator of transcription 4 168 316.915 

PTTG1 pituitary tumor-transforming 1 127 274.232 

EOMES eomesodermin 143 268.436 

CNBP CCHC-type zinc finger nucleic acid binding protein 134 256.344 

MAX MYC associated factor X 98 208.596 

GTF2I general transcription factor IIi 104 206.935 

HMGB1 high mobility group box 1 88 189.925 

HCLS1 hematopoietic cell-specific Lyn substrate 1 84 176.351 

ZFP36L1 ZFP36 ring finger protein like 1 71 155.676 

SNAI2 snail family transcriptional repressor 2 61 139.141 

STAT1 signal transducer and activator of transcription 1 61 127.109 

IRF9 interferon regulatory factor 9 70 126.154 

SP140 SP140 nuclear body protein 53 125.177 

IRF1 interferon regulatory factor 1 60 122.448 

E2F2 E2F transcription factor 2 44 113.259 

TGIF1 TGFB induced factor homeobox 1 44 102.821 

HMGB2 high mobility group box 2 45 100.533 

 

The top 20 genes that may have a crucial role in the prognosis of breast cancer is shown 

in Table 4.15. According to the analysis results, YY1 (YY1 transcription factor) was 

found to be the most important gene in breast cancer with the highest score of 2309.816. 

The score was computed according to 1407 links in 2 step neighborhood distance of the 

gene. SMARCA5, FOXM1, STAT4 and PTTG1 genes were identified as the other 

important genes following YY1 in the ranking table. 
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Figure 4.11. Targets of the transcription factor YY1 (69 interactions) 

 

Furthermore, we checked oncogene, metastatic gene and prognostic gene lists 

associated with human breast cancer to verify the existence of these top 20 genes in 

these lists.  According to this check, CNBP and MAX genes were found in oncogene 

list, and FOXM1 gene was found in prognostic gene list associated with breast cancer. 

The gene with the highest score, YY1, and the remaining six genes of top twenty were 

not found in these lists (Table 4.16). 
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Table 4.16. The existence status of top 20 genes identified by IDN framework in the 

known breast cancer lists  

Gene Oncogene List Metastatic Gene List Prognostic Gene List 

YY1 No No No 

SMARCA5 No No No 

FOXM1 No No Yes 

STAT4 No No No 

PTTG1 No No No 

EOMES No No No 

CNBP Yes No No 

MAX Yes No No 

GTF2I No No No 

HMGB1 No No No 

HCLS1 No No No 

ZFP36L1 No No No 

SNAI2 No No No 

STAT1 No No No 

IRF9 No No No 

SP140 No No No 

IRF1 No No No 

E2F2 No No No 

TGIF1 No No No 

HMGB2 No No No 
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5. DISCUSSION 

 

 

The aim of this dissertation is to reveal mechanisms that drives disease progression in 

breast cancer which is the most common type of cancer in women. The IDN (integrative 

differential network) approach proposed in this dissertation differs significantly from 

the existing differential networking approaches since it combines prior knowledge in the 

literature with differential networking methodology in a novel way. 

According to analysis results, the genes and pathways identified by the IDN framework 

were found highly associated with breast cancer. In the study, YY1, SMARCA5, 

FOXM1, STAT4 and PTTG1 genes were found as the most important genes in breast 

cancer. Accordingly, all of these blind predicted genes were found significantly 

associated with human breast cancer in the literature. This verifies the success of blind 

(unsupervised) prediction of IDN approach which can be easily extended to apply to the 

other disease datasets. 

Yin yang 1 (YY1), which was found to be the most important gene in breast cancer, is a 

TF involved in the maintenance and initiation of DNA methylation (Qi et al. 2015). In a 

study conducted by Wan et al. (2012), it was observed that Yin yang 1 (YY1) is over 

expressed in breast cancer cells and plays a crucial role in breast cancer prognosis by 

regulating tumorigenesis through multiple pathways. Furthermore, it was also reported 

that the cooperation between YY1 and activator protein 2 results in the stimulation of 

expression of ERBB2 (Her2/neu) which is an oncogene highly expressed in 30% of 

breast cancers and mostly correlated with a malignant prognosis. In another study, the 

association between YY1 and Annexin A6 (AnxA6), which has multiple functions in 

breast cancer such as promoting the invasiveness of breast cancer cells and tumor 

growth, was emphasized (Qi et al. 2015). 

In a study by Wang et al. (2015), it was identified that YY1 binds to the Flap 

endonuclease 1 (FEN1) gene which is up-regulated in breast cancer cells and suppresses 

the expression level of this gene. In another study that compares the GRNs of benign 

and malicious breast cancer samples with normal samples, YY1 was screened as a hub 
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gene that plays a crucial role in the whole process of breast cancer (Chen & Yang 

2014). In a study by Lee et al. (2012), a strong correlation between the level of YY1 and 

breast cancer-associated gene 1 (BRCA1) was demonstrated. In the same study, YY1 

was also reported as an important regulator of BRCA1 expression that is directly 

connected to the molecular etiology of breast cancer. Another recent study demonstrated 

that depletion of YY1 results in the inhibition of the migration, invasion, clonogenicity, 

and tumor formation of breast cancer tissues (Wang et al. 2016). 

The second highest score is found for SWI-SNF-related Matrix-associated Actin 

Dependent Regulator of Chromatin A5 (SMARCA5). Hill et al. (2015) was reported 

that high expression level of SMARCA5, which is involved in cell proliferation and 

stem cell self-renewal, is directly associated with significantly short survival time, 

compared with those with low expression. In another recent study, it was found that 

SMARCA5 was highly expressed in human breast cancer cells and it was significantly 

associated with high proliferation, invasion, tumor size and poor survival of patients. 

Moreover, in a study by Chen et al. (2014), miR-100 was identified as a tumor 

suppressor and epithelial-mesenchymal transition (EMT) inducer by targeting 

SMARCA5 in breast cancer.   

Forkhead box M1 (FOXM1) is a transcription factor which controls apoptosis and cell 

proliferation and it is increased in invasive breast cancer cells. It was reported that 

FOXM1 is directly associated with poor survival of breast cancer patients (Ferrer et al. 

2016; Yuan & Wang 2015). In a study conducted by Hamurcu et al. (2016), it was 

found that FOXM1 is highly upregulated in triple negative breast cancer (TNBC) cells 

and the knockdown of FOXM1 by RNA interference (siRNA) results in the inhibition 

of eEF2K expression which is an emerging molecular target in cancer treatment that 

promotes to cancer proliferation, migration, tumorigenesis, disease progression and 

drug resistance. It was also found that high levels of FOXM1 was significantly 

correlated with the TNBC (Lee et al. 2016).  

In another study which investigates the role of FOXM1 in breast cancer progression, it 

was reported that low expression levels of FOXM1 are significantly correlated with 

better survival in patients with estrogen receptor positive (ER+) tumors. In the study, 

also the critical role of FOXM1 in the development of resistance to breast cancer 
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therapies was emphasized (Saba et al. 2016). FOXM1 was also reported to be generally 

upregulated and knockdown of FOXM1 causes the inhibition of cell migration (Ye et al. 

2015).  

The transcription factor STAT4 (signal transducer and activator of transcription 4) was 

reported as playing an important role in human breast cancer physiology by regulating 

S100A4 mediated by HBXIP. (Liu et al., 2012; Wang et al. 2015). Kristensen et al. 

(2012) was identified STAT4 as the most significant difference between low and high 

mammographic density in healthy breast cells. In a recent study, the antitumor role of 

Cryptotanshinone by regulating cytotoxic CD4+ T cells through STAT4 in breast cancer 

was demontrated (Li et al. 2016). 

PTTG1 (pituitary tumor-transforming 1) is a gene that is over-expressed in several type 

of tumors and has been highly associated with tumor invasiveness and poor prognosis. 

Recent studies in the literature have revealed that inhibition of PTTG1 results in the 

suppress of tumor growth and metastasis in breast cancer (Huang et al. 2014). In a study 

by Han & Poon (2013), it was reported that PTTG1 increases the invasive 

characteristics of breast cancer cells by inducing epithelial to mesenchymal transition 

and progression of the cancer stem cell population. In another recent study, PTTG1 was 

identified as a direct target of miR-300, miR-329, miR-381 and miR-655, which may 

have an oncogenic role in miRNA-induced pituitary tumor progress inhibition. 

Additionally, PTTG1 protein levels were found as down-regulated in human breast cells 

and the reduction level was found highly associated with the tumor grade (Liang et al. 

2015). Wang et al. (2015) reported that the over-expressed PTTG1 mRNA in tumors 

induce tumor recurrence and metastasis. Moreover, expression of PTTG1 in early phase 

of breast cancer was suggested as an invasion biomarker. 

Moreover, we performed enrichment analysis for the breast cancer specific differential 

network. The enrichment analyses are important since they improve disease 

classification and reveals novel insights about a disease (Myers et al., 2015). The cell 

cycle pathway, which is recently suggested in the literature as an important pathway in 

breast cancer, was found as the most significant pathway in breast cancer specific 

differential network (p<5.4E-08).  
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In a study by Wu et al. (2016), the underlying molecular pathways responsible for 

breast cancer was investigated. The authors reported that four pathways, cell-cycle, 

progesterone-mediated oocyte maturation, oocyte meiosis and p53 signalling pathways, 

are significantly associated with the pathogenesis of breast cancer. In another recent 

study, it was reported that the abnormalities in cell cycle were seen more common on 

the patients with metaplastic breast cancer which is a rare subtype of breast cancer. In 

the same study, aberrant cell-cycle pathway is suggested as an potential therapeutic 

target for breast cancer (Helsten et al. 2016). In another study by Zhang et al. (2016), 

the inhibitory role of miR-29a (microRNA-29a) was investigated by examining its role 

in cell cycle progression in breast cancer. The results of the study revealed that miR-29a 

has a growth-inhibiting function in breast cancer cells through cell cycle regulation. 

Zhuang et al. (2015) conducted a study to identify hub subnetwork in breast cancer 

using topological features of genes. In the study, the cell cycle, cluster1 and oocyte 

meiosis pathways were detected as the most significant subnetworks in breast cancer 

and hub subnetwork was constructed using the intersection of the genes involved in 

these three pathways. 

Following the “Cell cycle” pathway, KEGG pathway analysis results showed a high 

enrichment of “DNA replication” (p<9.6E-06), “Oocyte meiosis” (p<1.2E-04), “Focal 

adhesion” (p<6.9E-04), “ECM-receptor interaction” (p<1.1E-03), “Pathogenic 

Escherichia coli infection” (p<1.1E-03), “Systemic lupus erythematosus” (p<4.0E-03), 

“Pathways in cancer” (p<4.1E-03), “Proteasome” (p<1.0E-02) and “Pyrimidine 

metabolism” (p<1.1E-02) pathways, which have all been related to breast cancer except 

“Systemic lupus erythematosus” pathway. Considering the success of the comparison of 

the results with the literature, “Systemic lupus erythematosus” pathway may be a 

potential target of breast cancer. 

Findings from this dissertation suggest that IDN framework has a great potential in 

identifying disease specific differential networks as well as gene targets in human breast 

cancer. Furthermore, IDN approach can be easily extended for other diseases as well by 

replacing the datasets accordingly. 
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However, this dissertation had some limitations. Previous research had reported that 

breast cancer has five main subtypes including luminal subtype A, luminal subtype B, 

ERBB2, basal-like and normal breast-like. In the present dissertation, the METABRIC 

tumor dataset, which includes samples of these subtypes are considered as a whole 

tumor dataset. Therefore, the breast cancer specific differential network, pathways and 

the genes identified in this study may not be differential for all subtypes. 

Second limitation is about the integrated datasets. In this dissertation, the oncogene, 

metastatic gene and prognostic gene lists obtained from the literature for breast cancer 

may not cover all of the genes identified in these categories. For this reason, missing 

genes in these lists may affect the results. 

The present study provided significant insight into the molecular mechanisms 

associated with breast cancer. Furthermore, GO and KEGG pathway enrichment 

analysis identified numerous pathways that may have a role in the breast cancer, and 

these findings may promote the better understanding about the molecular mechanism of 

this disease and also disclose potential targets for diagnostic and effective therapies.  

The strongest prediction as breast cancer specific hub gene has experimental validations 

from the literature that reports YY1 as metastatic-level cancer indicator gene. This 

verifies the blind (unsupervised) prediction of IDN approach and assures the use of IDN 

in the other datasets. Moreover, some of our estimations in the breast cancer specific 

differential network may well be biomarkers or drug targets for breast cancer and awaits 

biologist to perform wet-lab experiments on them.  

Our application not only elucidates a genome-wide tumor-specific interaction network 

of breast cancer but stands as a successful example for the application of other cancer 

types.  Considering these strong confirmations, our inferred differential network might 

reveal the core mechanism of breast cancer. 

In this dissertation, the main application of the work was on gene expression data. For 

future works, the algorithm may be extended for the use on the other data types such as 

ChIP-seq, motif data, methylation and etc.  
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Additionally, IDN approach can be applied to each subtype of breast cancer to identify 

breast cancer subtype specific differential results. Moreover, IDN approach can be 

extended to be applied on different kind of diseases by changing the integrated datasets.  
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