

THE REPUBLIC OF TURKEY

BAHÇEŞEHİR UNIVERSITY

ROAD LANE DETECTION SYSTEM WITH

CONVOLUTIONAL NEURAL NETWORK

Master’s Thesis

 BORA TAŞHAN

 İSTANBUL, 2017

 THE REPUBLIC OF TURKEY

 BAHÇEŞEHİR UNIVERSITY

 GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES

 COMPUTER ENGINEERING

ROAD LANE DETECTION SYSTEM WITH

CONVOLUTIONAL NEURAL NETWORK

Master’s Thesis

BORA TAŞHAN

Thesis Supervisor: ASST. PROF. TARKAN AYDIN

İSTANBUL, 2017

THE REPUBLIC OF TURKEY
BAHÇEŞEHİR UNIVERSITY

GRADUATE SCHOOL OF NATURAL AND APPLIED
SCIENCES COMPUTER ENGINEERING

Name of the thesis: Road Lane Detection System with Convolutional
Neural Network
Name/Last Name Bora Taşhan
Date of the Defense of Thesis:

The thesis has been approved by the Graduate School of Natural And

Applied Sciences.

Prof. Dr. Nafiz ARICA

Graduate School Director
Signature

I certify that this thesis meets all the requirements as a thesis for the
degree of Master of Science.

Asst. Prof. Tarkan AYDIN

 Program Coordinator
Signature

This is to certify that we have read this thesis and we find it fully
adequate in scope, quality and content, as a thesis for the degree of
Master of Arts.

Examining Committee Members Signature__ __

Thesis Supervisor

Asst. Prof. Tarkan AYDIN -----------------------------------

Member

Asst. Prof. Cemal Okan ŞAKAR -----------------------------------

Member

Asst. Prof. Görkem SERBES -----------------------------------

iii

ABSTRACT

ROAD LANE DETECTION SYSTEM WITH

CONVOLUTIONAL NEURAL NETWORK

Bora Taşhan

Institute of Computer Science
Thesis Supervisor: Asst. Prof. Tarkan AYDIN

Mart 2017, 54 Pages

Occupying a significant place in today’s automotive industry and being of vital
importance in our daily lives, driving safety and driver assistance systems have
become standard in more and more vehicles, especially by means of improvements
in computer technologies and having a place in the industry, and they use more
improved algorithms for more efficient solutions with developing technology
equipment. As an example of these, being very important for the safety of driver,
road lane detection system is now used in automotive industry and with the
technological improvements, it has become more efficient and sophisticated. In
the earlier stages, it was only a camera set in front of the vehicle and processing of
the images taken by this camera. This innovation is followed by laser sensor,
geographic coordinate system assistance and radar systems and with these
innovations autonomous vehicle technology keeps improving.

In this thesis, by using deep learning methods, which are used for the processing
of the data collected by internet technologies and are enabled to be applicable with
the reduction of the costs of data storage components, memory units and multi-
core microprocessors, one of the technique from deep learning is called
convolutional artificial neural networks and computer vision methods is combined
and autonomous vehicle road lane detection system method is proposed.

Keywords: Deep Learning, Convolutional Neural Networks, Lane Detection,

Object Recognition, Machine Vision.

iv

ÖZET

KONVOLÜSYONEL YAPAY SİNİR AĞLARI İLE
ŞERİT TAKİP SİSTEMİ

 Bora Taşhan

 Bilgisayar Mühendisliği

Tez Danışmanı: Yard. Doç. Dr. Tarkan AYDIN

Mart 2017, 54 Sayfa

Günümüz dünyası otomotiv sektöründe önemli bir yer alan ve gündelik
hayatımızda hayati öneme sahip olmaya başlamış sürüş güvenliği ve sürücü asistan
sistemleri özellikle bilgisayar teknolojilerinin gelişmesi ve sektörde daha fazla yer
edinmesi ile çok daha fazla araç içerisinde standart olmaya başlamış ve gelişen
teknoloji ekipmanlari ile birlikte daha verimli çözümler için daha gelişmiş
algoritmalardan faydalanmaktadır. Bunlara örnek olarak verilebilecek ve bir
sürücünün sürüş güvenliğinde önemli bir yeri olan şerit takip sistemleri otomotiv
sektöründe kullanılmaya başlanmis ve yine teknolojinin gelişimi ile birlikte daha
verimli ve komplike bir hale gelmiştir. İlk zamanlar araç önüne yerleştirilen bir
kamera ve bu kameradan elde edilen görüntülerin işlenmesi ile başlayan bu
yenilikleri lazer sensör kullanımı, coğrafi koordinat sistemi desteği ve radar
sistemleri takip ederek otonom araç teknolojisinde gelişim devam etmektedir.

Bu tez içerisinde özellikle veri depolama elemanları, hafıza birimleri ve çoklu
çekirdek destekli mikro işlemci maliyetlerinin düşmesi ile birlikte uygulanabirliği
sağlanan, inter- net teknolojileri ile toplanan veriler ve bu verilerin işlenmesi için
gelişmeye başlayan derin öğrenme tekniklerinden konvolüsyonel yapay sinir
ağları ve bilgisayar görüşü metodları birleştirilerek otonom araçlar şerit takip
sistemi şerit algılama yöntemi önerilmiştir.

Anahtar Kelimeler: Derin Öğrenme, Konvolüsyonel Yapay Sinir Ağları, Şerit

Algılama, Nesne Algılama, Makine Görüşü.

v

CONTENTS

TABLES ... VI

FIGURES .. VII

ABBREVATIONS .. IX

1. INTRODUCTION .. 1

1.1 AUTONOMOUS VEHICLES ... 2

1.2 LANE DETECTION SYSTEMS ... 3

2. LITERATURE REVIEW .. 5

2.1 LANE DETECTION SYSTEMS ... 5

2.2 FEATURE-BASED METHODS ... 5

2.3 CLASSIFICATION AND CONVOLUTIONAL NEURAL

NETWORKS .. 11

2.3.1 Machine Learning ... 11

2.3.2 Neural Networks ... 13

3. METHODOLOGY ... 29

3.1 COLLECTING AND BUILDING DATASET ... 30

3.2 ESTABLISHING AND TRAINING CNN ... 32

3.3 PROCESSING ROAD IMAGE ... 37

3.4 OUTPUT .. 45

4. RESULTS .. 47

5. CONCLUSION ... 54

REFERENCES .. 55

vi

TABLES

Table 3.1: Sample objects from training-set……………………………………....31

Table 3.2: Numbers of training objects and labels………………………………..32

Table 4.1: CNN Training Parameters……………………………………………..47

Table 4.2: Evaluation and result of each parameter-set (28 classes).……………..48

Table 4.3: Training images resized versions……………………….……………..50

Table 4.4: Evaluation and result of each parameter-set (2 classes).…….………...52

Table 4.5: Output of predictions (2 classes) ……………………………..………..53

vii

FIGURES

Figure 1.1: Vehicle Safety Sensor on Vehicle Windshield………………………..1

Figure 1.2: A Typical lane detection system………………………………………3

Figure 1.3: Challenges of Lane Detection…………………………………………4

Figure 2.1: Classification of Road Detection Approaches…………………………6

Figure 2.2: Screenshot of RALPH……………………………………………..…..7

Figure 2.3: B-Snake Based Lane Model by Using 3 or 4 Control Points………….8

Figure 2.4: Downward looking roadway departure warning system………………8

Figure 2.5: IPM Sample. Left, input with ROI in red. Right, the IPM View………9

Figure 2.6: Robust lane detection sample………………………………….……….9

Figure 2.7: False detections of lane detection samples………………….…….….10

Figure 2.8: Representation of biological neuron network………………………..13

Figure 2.9: Biological neuron…………………………………………………….14

Figure 2.10: Artificial neuron (Perceptron)………………………………………16

Figure 2.11: Activation-output threshold relation in graphical form……………..17

Figure 2.12: A simple neural network……………………………………………17

Figure 2.13: Sigmoid function……………………………………………………18

Figure 2.14: Hyperbolic tangent function………………………………………...19

Figure 2.15: ReLU function………………………………………………………19

Figure 2.16: Fully-Connected artificial neural network…………………………20

Figure 2.17: A Typical block diagram of CNN…………………………………..22

Figure 2.18: 3D process of convolution……………………………………….….25

Figure 2.19: Representation of Max-Pooling and Average-Pooling……………..26

Figure 2.20: Representation of ReLU function…………………………………..27

Figure 2.21: Fully connected layer processing……………………………………28

Figure 2.22: Convolution and fully connected layers…………………………….28

Figure 3.1: Flow of proposed method…………………………………………….29

Figure 3.2: A Sample image from Cal-Tech Cordova dataset……………………30

Figure 3.3: Sample road image from camera video………………………………30

Figure 3.4: Architecture of LeNet………………………………………………...34

Figure 3.5: Training method flow………………………………………….……..34

viii

Figure 3.6: Plot of sigmoid function………………………………………….…..36

Figure 3.7: Flow of image processing and classification…………………..……..38

Figure 3.8: Samples from source road images……………………………..……..38

Figure 3.9: Greyscale color transformation on sample image…………..………..39

Figure 3.10: Input image, Edge detected image…………………………………..41

Figure 3.11: Input image, processed image with dilation…………………………42

Figure 3.12: Hough transformation visualization………………………………...43

Figure 3.13: Hough space and lanes on the source image………………………..44

Figure 3.14: Lines are found on the given image by Hough line transformation…44

Figure 3.15: Filtering out lines on the given image………………………………45

Figure 3.16: Processed final image……………………………………………….46

Figure 4.1: Epoch/Accuracy ratio of 32x32 pixel size……………………………49

Figure 4.2: Epoch/Accuracy ratio of 64x64 pixel size……………………………49

Figure 4.3: Score function optimization of 32x32 pixel size……………………...51

Figure 4.4: Score function optimization of 64x64 pixel size……………………...52

Figure 4.5: Score function optimization of 64x64 pixel size for two classes……...53

ix

ABBREVATIONS

AE : Auto encoder

ANN : Artificial Neural Network

BP : Backpropagation

CMC : Cumulative Matching Curve

CNN : Convolutional Neural Network

DML : Deep Metric Learning

FCM : Fuzzy C-Means

FNN : Feedforward Neural Network

GPS : Global Positioning System

GPU : Graphic Processing Unit

HOG : Histogram of Gradients

HSI : Hue, Saturation. Intensity

HSV : Hue Saturation Value

ILSVRC : ImageNet Large Scale Visual Recognition Challenge

IMM : Interacting Multiple Models

IPM : Inverse Perspective Mapping

KNN : k-Nearest Neighbor

LDW : Lane Departure Warning System

LIDAR : Laser Image Detection and Ranging

MAE : Mean Absolute Error

ML : Machine Learning

MLP : Multi-Layer Perceptron

MSE : Mean Squared Error

PNG : Portable Networks Graphics

POI : Point of Interest

PR : Pattern Recognition

RANSAC : Random Sample Consensus

RGB : Red, Green, Blue

RNN : Recurrent Neural Network

ROI : Region of Interest

SGD : Stochastic Gradient Descent

x

SIMD : Single Instruction Multiple Data

SVM : Support Vector Machines

ZIP : Archive file format supports lossless data compression.

1. INTRODUCTION

Having a significant place in today’s world, automotive industry has become a

part of our lives and with this improvement, in order to provide safety of life and

for a more secure drive in a car which is one of the products of this industry, it is

very important to equip necessary instruments. According to the study based on

data from Turkish Statistical Institute and General Directorate of Security, in

Turkey, 2015, from 1,313,359 accidents in total, 304,421 accidents caused fatal

injuries and in these accidents, percentage of driver deaths is 40,7 (Turkstat 2015).

Percentage of 89,3 of these accidents are caused by driver’s fault, ranking first.

Because of that, driver assistance systems, a part of autonomous vehicle concept

in automotive industry, stand out especially for life safety and safe drive. Lane

departure warning system, a part of related drive assistance systems, is offered as

a part of vehicles.

In 2009, in the USA, National Highway Traffic Safety Administration carried out

a work and in the following years many vehicle manufacturers release lane

detection system and related preventive systems with their cars (NHTSA 2005).

In Figure 1.1 lane detection camera in Volvo S60 can be seen.

 Figure 1.1: Vehicle Safety Sensor on Vehicle Windshield

2

After lane departure systems were offered in Cima released by Nissan Motors in

2000s, many leading car manufacturers also started offering this system. With the

data taken from lane tracking system, both audio alarm systems and seat vibration

systems warn the driver and lane detection systems become a part of our lives as a

preventative system.

Collaterally, automotive industry developed a lane tracking system, with different

methods with the images taken from a camera inside the vehicle, tracking the road

and by using these lane tracking system methods, they produce preventative safe

drive solutions as lane departure warning.

These systems both help drivers and play a key role in developing autonomous car

i.e. intelligent vehicle.

1.1 AUTONOMOUS VEHICLES

Autonomous car or intelligent vehicle is a vehicle that is capable of sensing

external environment by itself and navigating without the help of driver or without

any human interference. As a result of the studies on autonomous car, date back

to 1920s, the first working model of the car was appeared in 1980s. Carnegie

Mellon University’s NAVLAB and ALV (Jochem et al. 1995) projects in 1984

were followed by Eureka Prometheus project of Mercedes-Benz and Bundeswehr

University Munich in 1987 (Dickmanns 2002). From these vehicles navigating

without any human interference, NAVLAB-5, project of Carnegie Mellon

University, completes 2,797 miles from Pittsburgh to San Diego with

approximately 102,3 km/h average speed by itself (Pomerleau and Jochem, 1996).

Nowadays, these vehicles started to take a significant part in our lives with the

developments of Google, Tesla and similar manufacturers and lead the way for

using many preventative methods and prevention of traffic accidents with more

effective road use and more secure drive. GPS, Laser, Odometer and Computer

vision techniques are used to develop self-driving skills and lane detection system

takes an important role in safe drive.

3

1.2 LANE DETECTION SYSTEMS

With the heavy increase in car traffic, especially 30% of the accidents on highway

are caused by lane changing and most of these accidents happen because the driver

is exhausted or absent-minded. Therefore, the systems developed for driver

changing lanes accidentally or not missing the lane, not only prevent many traffic

accidents but also save many lives. These driver safety and preventative systems

are called Advanced Driver Assistance Systems (ADAS). Some example part of

ADAS systems are night vision, cruise control for drivers, blind spot detection, traffic

light detection and control system. Lane detection system is also a part of ADAS.

The purpose of these lane detection systems is to detect lanes during driving,

informing driver assistance systems of lanes and ensure the system gives a

warning in case the vehicle leaves its lane.

In intelligent vehicle systems, the vehicle works coordinately with these

infrastructure systems and aims to have a more secure drive and traffic. Basically,

lane detection systems show the lanes to the driver on a screen in the vehicle, but

more developed systems analyze lanes, other vehicles on the road and whether it

is precise time to change lanes and warn the driver. Lane detection systems use

camera, laser, LIDAR and GPS technologies for these processes (Borkar et al.

2011). In Figure 1.2 a typical lane detection system flow can be seen.

Figure 1.2: A Typical lane detection system

Source: Pallavi V. Ingale, Prof. K. S. Bhagat, “Comparative Study of Lane Detection

 Techniques”

4

In many proposed systems, lane detection systems locate primitive objects (e.g.

lane, vehicle, road limits) such as predefined vehicles, signboards and road surface

markings. However, at this stage, several difficulties caused by environmental

conditions lead these algorithms to have some problems. In general, these

difficulties are as follows; vehicles parked or on the move, erased or worn out

road lines, shadows, non-standard road markings and lanes, non-standard curved

lines. Intersecting road signs and road surface markings. In Figure 1.3, there is a

shadowy road image.

 Figure 1.3: Challenges of Lane Detection

 In order to overcome these problems and develop much more reliable lane
detection systems, there are still research works going on and many proposals are
made (Kim 2008).

5

2. LITERATURE REVIEW

2.1 LANE DETECTION SYSTEMS

There are many approaches in lane detection such as feature-based or model-based

(Mistry and Makwana 2014).

2.2 Feature-based Methods

Feature-based methods find and track low level features such as lanes on road,
side lines of lanes. However, the success of feature-based approach depends on
how apparent lines are. Consequently, lines which are less or not apparent are
affected by noise and occlusions on camera image and these conditions diminish
the possibility of success of this approach.

Model-based Methods

Model-based methods define road lanes as a sort of curve model and several
significant geometric parameters on this model. Model-based approach is more
resistant to poor lane images and noises and shows more success in comparison
to feature-based approach. However, when model-based approaches are built in
accordance with certain scenes, one method might be successful in one scene but
other might not, so it makes the approach less adaptive. Moreover, the learning
algorithm for learning parameter which will be built on modelling, is more time-
consuming in proportion to other approach (Han and Hahn 2010). In Figure 2.1,
classification of road detection approaches is seen.

Figure 2.1: Classification of Road Detection Approaches

Source : Pallavi V. Ingale, Prof. K. S. Bhagat, “Comparative Study of Lane Detection
 Techniques”

Researches and Proposes About Lane Detection Systems

Lane detection approaches and solutions developed so far are explained in
literature review below.

In their article published in 1996, Dr. Dean Pomerleau and Dr. Todd Jochem
proposed the system that ensures the vehicle is tracking the related lane by the
help of processing images taken from the camera on the vehicle and calculating
lane offsets with vision system they called RALPH (Rapidly Adapting Lateral
Position Handler) (Pomerleau and Jochem 1996). After the studies, tests
performed on an approximate 2850-mile road succeeded. Although RALPH
system succeeded in tests, it was affected when lanes could not be seen for heavy
traffic or reflections on daylight.

 Figure 2.2: Screenshot of RALPH.

 Source : D. Pomerleau and T. Jochem, "Rapidly adapting
machine vision for automated vehicle steering,"

B.M. Broggi proposed a method called GOLD (Real-time Stereo Vision Parallel

System for Generic Obstacle and Lane Detection) system which converts the given

image it got from the in-car camera into a bird’s-eye view image on a new image

(Inverse Perspective Mapping) and made lane lines become almost vertical lines

and detect lines making them quasi-vertical objects on a dark background (Broggi

1998).

According to the article Kreucher and Lakshmanan published in 1998, by an
algorithm named LOIS (Likelihood of Image Shape), lanes could be detected
regardless of problems caused by shadows, lanes blocked by other vehicles
(occlusion) or different light environment (Kreucher and Lakshmanan 1998). By
LOIS algorithm, all possible lane objects on the road are identified with parametric
of shapes. Then it is determined whether the lines on the road are lane lines or not
by comparing lane objects and parametric lane data. LOIS (for Likelihood of
Image Shape) uses a deformable template approach. Family of parametric shapes
describes the all possible ways that the lane edges could appear in the given road
image. A function is defined that its value is proportional to how accurate set of
lane shape parameters matches the pixel data in a given image. The lane detection

process is performed by finding the lane shape parameters which maximize the
function for the given specified image.
In the article Y.Wang and his friends published in 2004, with B-Snake spline
method, set the road as a geometric model and in order to do it, they used CHEVP
(Canny and Hough Estimation of Vanishing Points) and extracted geometric
model parameters (Wang et al. 2004). Related algorithm became highly
successful, especially where shadows are confused with lane data. However, this
algorithm was affected by the shadows of poles or tree trunks and was not a
solution for these shadows intersecting lanes.

 Figure 2.3: B-Snake Based Lane Model by Using 3 or 4 Control Points

 Source: Y. Wang et al. Lane detection and tracking using B Snake”, In: Image and

Vision Computing 22, pp: 269-28, 2004.

In an article published in 2004, Chen and his friends placed a system called
AURORA next to the vehicle and could detect lane lines using wide-angle colorful
camera image (Chen et al. 2004).

 Figure 2.4: Downward looking roadway departure warning system

 Source: M. Chen., T. Jochem and D. T. Pomerleau, “AURORA: A Vision-Based Roadway
 Departure Warning System”

Jung and his friends could detect lane lines by using edge detection method with
squares angular approximation as published in an article in 2005 (Jung et al. 2005).
In his article published in 2008, Mohamed Aly proposed an real-time, robust and
efficient lane detection algorithm. The algorithm takes the image from the camera
mounted on the vehicle and creates ROI (Region of interest) around the road
section from the image. After this ROI operation, it applies IPM (Inverse
Perspective Mapping) in order to distribute all information of the region
homogenously on the given image and it applies selective Gaussian filter for
bringing out the lanes on the road image (Aly 2008). After applying Hough
transform, it detected vertical lines on that area and following RANSAC (Random
Sample Consensus) line fitting and RANSAC spline fitting processes, detected the
places of the lanes on the image. In Figure 2.5, the ROI and IPM result is seen.

Figure 2.5: IPM Sample. Left, input with ROI.Right, the IPM

Source: M. Aly, “Real time Detection of Lane Markers in Urban

 Streets”, In IEEE Intelligent Vehicles Symposium

Algorithm was resulted very good performance on many conditions. In Figure 2.6,

the result images of the given road data is seen.

 Figure 2.6: Robust lane detection sample

Source: M. Aly, “Real time Detection of Lane Markers in Urban Streets”

Although the algorithm works stably and successfully in many environments, it is
affected by crosswalk lines and other signs. In Figure 2.6. False detections of lane
detection samples are seen.

Figure 2.7: False detections of lane detection samples

Source: M. Aly, “Real time Detection of Lane Markers in Urban Streets”

In his article published in 2008, Z.Kim proposed a stable algorithm for unexpected

signs, non-standard curved lanes and non-standard lane changes on the road.

Related algorithm develops hypothesis using random sample consensus and

particle filtering algorithms (Kim 2008). O.O. Khalife, in his article published in

2009, processed the video frames taken on road in real time with the help of the

camera he placed on the vehicle and could detect road lanes regardless of light and

shadow changes (Khalifa and Hashim 2009). The algorithm converts the image

taken from the camera into a Greyscale image. After it applies noise reduction,

with canny edge detection and Hough transformation, it detects right and left

lanes. The algorithm successfully processed the real time video frame with

sufficient speed, however it was not very successful in detecting sharp curves in

shadowed areas. F. Mariut 2012 proposed a method that detects the lane markers,

characteristics of them and is able to detect direction of travelling. The Hough

Transform was used to detect the lines in images. A technique was developed for

being ensure to right detection of lane mark by extracting inner margin of the lane

(Mariut et al. 2012).

In 2006, Sun and his friends detected lanes by using HSI color model (Sun et al.

2006). Although pixel values of road lanes are different from the pixel values of

other areas, even in the studies performed with RGB color model used in image

processing, in HSI color model, pixel values in lane area are prominently different

from pixel values of other areas. Therefore, it makes it easier to detect the lanes

on HSI color model. Sun and his friends converted the image taken from camera

in RGB format into HSI format and extracted the lower part of the image to detect

lane lines. Because the intensity value of lane line pixels is explicitly different

from other pixels’ value, this intensity value is used as threshold and divided into

separate clusters by Fuzzy C-Means method. Then the image is converted into binary

image to detect shapes and among these shapes, the ones that have a particular width and

length rate are assumed to be lanes. Kim and his friends had a similar approach in the

article they published in 2012. After they had binarized 640x480, 24-bit road

image, they detected the frame of the object using 4-directional contour tracking

algorithm and in every 50 pixel, they vectorised the object and extract its

characteristic. They detected the lanes on the image by dividing the extracted

vectors into clusters with the help of FCM (Kim et al. 2012).

2.3 CLASSIFICATION and CONVOLUTIONAL NEURAL NETWORKS

2.3.1 Machine Learning

Tom M. Mitchell quoted a formal definition of machine learning as (1997, p. 2)

A computer program is said to learn from experience E with respect to some class
of tasks T and performance measure P if its performance at tasks in T, as measured
by P, improves with experience E.

Even though it is most often used interchangeably with the term Pattern

Recognition (PR), they are not the exactly same and machine learning is evolved

from Pattern Recognition and computational learning theory. Machine learning is

study of constructing and exploring algorithm and model from given data for

making data driven prediction or decision rather than using strict and static

algorithms to apply prediction on data set such as predicting price of real estate,

deciding whether given human image is male or female, classification, deciding

whether email is spam or image classification. In order to apply prediction or

decision, machine learning techniques creates model with parameters and learns

parameters by optimizing them by using training data or past experience.

Machine learning algorithms can be broadly categorized as unsupervised or

supervised by what kind of experience they are allowed to have during the learning

process (Goodfellow, Bengio and Courville p.104). In supervised learning, there

is training set 𝑋 = 𝑥, 𝑟 where 𝑥 the feature is or pattern vector, r is the desired

output which is called label or target and t is the index of sample in the dataset T,

N is the feature count of X. The aim of supervised learning is learning a mapping

from input x to an output r to use it for estimating or predicting accurately 𝑦 of

given value 𝑥 where 𝑦 and 𝑥	is not the element of X. There are many supervised

learning techniques in the literature which are k nearest neighbors (k-NN),

decision tree, multilayer perceptron (MLP), support vector machine (SVM),

artificial neural networks (ANN), linear regression and so on. Since supervised

learning is provided by the output y by instructor or teacher in order to show

machine learning algorithm what to do, in contrary of supervised learning,

unsupervised learning algorithms experience a dataset X which contains input data

x and no information about target y. Unsupervised learning aims finding or

extracting useful pat- terns of unlabeled dataset X without instructor or given

information about data. Many techniques such as clustering, anomaly detection

widely use unsupervised learning algorithm.

Classification and regression, the two important applications of machine learning

and supervised learning algorithm, are mainly employed to solve such problems.

Classification is the method that finding the category or label of given feature such

as deciding whether the given image of animal is cat or dog. In contrast to

classification, regression mainly deals with continuous values of data such as

predicting sales price of used bike. Basically, in machine learning the regular

approach is that constructing a model (𝑥|𝜃)	where x is the input vector and 	are

the parameters (Alpaydın, p 39-42). Main goal of the machine learning algorithm

is optimizing 𝜃	by minimizing loss E over the each data in dataset X

𝑬 𝜽 𝑿 = 𝑳(𝒓1 − 𝒈 𝒙 𝜽) (2.1)

Where L (.) is the loss between prediction 𝒓1 and model 𝑔 𝑥 𝜃 	which utilizes
current parameter values of 𝜃.

			

𝜽11 = 𝒂𝒓𝒈𝐦𝐢𝐧
𝜽
𝑬(𝜽|𝑿) (2.2)

	

After the parameters 𝜃′′ is found which is called learning phase, the model with

parameters constructed is used for testing each individual feature of test dataset

which is different than training set and contains labeled data depicting the

accuracy of model by using MAE or MSE in order to measure performance of

the model.

𝑴𝑨𝑬 = 𝟏
𝒏

𝒇𝒊 − 𝒚𝒊 =
𝟏
𝒏

|𝒆𝒊|𝒏
𝒊B𝟏

𝒏
𝒊B𝟏 (2.3)

2.3.2 Neural Networks

Biological Inspiration

The human brain is approximately composed of about 86 billion neurons where
each neuron is connected to about 10.000 other neurons according to researchers.

 Figure 2.8: Representation of biological neuron network

 Source:https://cs.stanford.edu/people/eroberts/courses/soco/projects/neural-net-

 works/Biology/index.html

A neuron is composed of soma (body), dendrites and axons which are input and
output channels and connect neurons to each other. Each neuron receives
electrochemical signals/inputs from other neurons from the dendrites. When the sum

of these electrochemical inputs is enough powerful to activate it, the neuron
transmits the signal along the axon and passes this electro-mechanical signal to next
neurons which are connected to axons. Those attached neurons may fire then.
 Figure 2.9: Biological neuron

Source:https://cs.stanford.edu/people/eroberts/courses/soco/projects/neuralnetworks/

 Neuron/index.html

The important point is that a neuron fires only when the total signal received at

the body exceeding a certain level which means the neuron either fires or do not

fire. Our entire brain is composed of these interconnected electrochemical

transmission neurons where very large of these simple units manage to perform

very complex task. This biological model is the base of artificial neural networks,

however artificial neural networks still do not come close to complex model of the

brain, and artificial neural networks have shown their ability that they are good in

some problems but those problems are still very easy for human brain to solve

such as image recognition where human brain does not need training process like

ANNs do.

Artificial Neural Network

Warren McCulloch and Walter Pitts created a computational model for neural
networks (McCullock and Pitts 1943). The model was showing two distinct
approach, one focused on biological process in the brain and another focused on
the artificial intelligence applications of neural networks. In 1949, Donald Hebb
mentioned in his book and pointed out that the connections between the neurons
that fire at the same time are enhanced which is essential for human brain learning
(Hebb 1949, p. 62). Frank Rosenblatt (1958) created the perceptron, an algorithm
for pattern recognition based on a two-layer computer learning network using

simple addition and subtraction. With mathematical notation, Rosenblatt also
described circuitry not in the basic perceptron, such as the exclusive-or circuit, a
circuit which could not be processed by neural networks until after the
backpropagation algorithm was created by Paul Werbos (1975).
However, since neural network algorithm needed computational power and
resources, many other approaches in AI like Support Vector Machines took the
place of the study, therefore improvements and works on neural networks were
quite silent. Eventually, neural networks with deep layered networks have become
popular after 2000 due to dramatically improved computation resources and
parallelism of computers.

Perceptron

Perceptron is the main computational unit and the mathematical model of the

biological neuron. While in actual neurons the dendrite receives a signal from the

axons of other neurons, in the perceptron those electrochemical signals

represented as binary or numerical values. In actual neurons, between the dendrite

and axons, signals are modulated in various amounts where the perceptron

modeled it by multiplying each input value by a value called the weight. The

neuron fires an output signal only when the total strengths of the input signals

exceed a certain threshold, and the perceptron similarly accomplishes it by

calculating weighted sum of the inputs to present is total strength of the input

signals and applying a step function on the sum to determine output where it fires

other neurons which are connected. According to its mathematical modeling, a

perceptron is composed of several binary inputs 𝑥C, 𝑥D, 𝑥E …𝑥G , Weights

𝑤C,𝑤D, 𝑤E …𝑤G a real number expresses the importance of each input values.

 Figure 2.10: Artificial neuron (Perceptron)

 Source: An Introduction to Neural Networks (Gurney 1997, p. 30)

When input values are received, perceptron calculates ∝= 𝑤J𝑥JG

JBC in order to

obtain an activation output value to determine if it’s less or greater than some

threshold value 𝜃 (theta).

𝒐𝒖𝒕𝒑𝒖𝒕 =
𝟎, 𝒊𝒇	 𝒘𝒋𝒙𝒋𝒋 ≤ 𝒕𝒉𝒓𝒆𝒔𝒉𝒐𝒍𝒅
𝟏, 𝒊𝒇	 𝒘𝒋𝒙𝒋𝒋 > 𝒕𝒉𝒓𝒆𝒔𝒉𝒐𝒍𝒅 (2.4)

When this activation value exceeds (or is equal to) (theta) then the perceptron

outputs a “1” (action potential) , and if it is 0 or less than Q (theta) then it emits

“0”. This might be represented graphically as shown in figure X.Y where the

output has been designated by the symbol y. This relation is called “step

function” and it decides whether the perceptron should fire if the activation

exceeds the threshold. In Figure 2.10, graphical representation of the function is

seen.

Figure 2.11: Activation-output threshold
 relation in graphical form

Obviously, the perceptron alone is not a model of complete human brain and how
it makes decision. But connecting such perceptron’s to each other and creating a
network with them can perform some decision on some sort of problems. In Figure
2.11, a simple connected neuron called neural network is seen.

 Figure 2.12: A simple neural network

The network is composed of perceptron’s and uses step functions as activation
function and accepts binary output and produces binary output which could be
utilized to solve basic classification problems. However, when it comes to learning
phase, changing weights according to some minor changes could flip neuron
output from 0 to 1 or vice versa and it could change network behavior completely.
To overcome this problem, another type of neuron called sigmoid neuron could be
used. Just like perceptron, sigmoid neurons 𝑥C, 𝑥D, 𝑥E …𝑥G and these inputs can
take any values between 0 and 1. Similar to perceptron, sigmoid neuron has
weights for each input 𝑤C,𝑤D, 𝑤E …𝑤G and an overall bias, b. Instead of output
is 0 or 1 like perceptron, sigmoid produces output between 0 and 1 which is σ 𝑤. 𝑥
+ 𝑏 where σ is called the sigmoid function or logistic function and defined b

 𝛔 𝐳 ≡ 𝟏

𝟏\𝒆]𝒛
= 𝟏

𝟏\𝒆] 𝒘𝒋𝒙𝒋]𝒃𝒋
 (2.5)

Suppose that 𝑧 ≡ 𝑤. 𝑥 + 𝑏 is large positive number then 𝑒de ≈ 0 and 𝜎(𝑧) ≈ 1
which means when 𝑧 ≡ 𝑤. 𝑥 + 𝑏 is large positive the output of sigmoid neuron
approaches to 1 and when it input is very negative then 𝑒de → ∞ and 𝜎(𝑧) ≈ 0. \

 Figure 2.13: Sigmoid function

Since sigmoid function produces input between 0 and 1 and overcomes to
binary output of step function, there are also another activation functions such
as hyperbolic tangent, Rectified Linear Unit and Softmax.

The Hyperbolic Tangent is very similar to sigmoid function but it takes values
between -1 and 1 and defined by

𝐭𝐚𝐧𝐡 𝒙 = 𝐬𝐢𝐧𝐡 𝒙
𝐜𝐨𝐬𝐡 𝒙

= 𝒆𝒙d𝒆]𝒙

𝒆𝒙\𝒆]𝒙
 (2.6)

 Figure 2.14: Hyperbolic tangent function.	
	

	

	

The Rectified Linear Unit (ReLU) is another activation function where it is mainly
used in deep neural networks. In comparison to sigmoid function, ReLU activation
function take input values from [0 to ∞) and defined by

𝒇 𝒙 = 𝐦𝐚𝐱 𝒙, 𝟎 (2.7)

 Figure 2.15: ReLU function.	

The Softmax function is mainly used as normalizing function commonly used in
last layer of neural networks in order to encode probabilities output vector for
classification tasks and defined by

𝒚𝒊 =
𝒆𝒙𝒊
𝒆𝒙𝒋𝑵

𝒋
 (2.8)

The Architecture of Neural Network

Since an artificial neuron is not sufficient to model the brain, artificial neuron
could be connected under a network architecture as it is presented in figure 2.15
with fully connected layers.

 Figure 2.16: Fully-Connected artificial neural network.

The network architecture’s first layer is input layer composed of input neurons,

the last layer is output layer and between the input and output layer is hidden layer.

Hidden layer might have one or multiple layers according to architecture. Mostly

multi layers networks are called MLP (Multi-layer perceptron). Input signals are

processed in neurons and propagated to next neuron’s inputs. As for patterns of

connections, the main distinction of network topologies are feed-forwarded

networks (FFN) and recurrent networks (RNN).

In Feed-Forward networks, the data flow from input to output is feed forwarded.

The data processing can be extend to multiple layers of units but no feedback

connections there between each layer which means that data propagated from

layers to inputs of next layer without a form of cycle. Contrary to feed-forward

networks, recurrent neural network connections have form of cycle between units

to do feedback. The main property of RNN is having dynamical properties which

causes network to have temporary memory to process input sequences.

Backpropagation

To establish a well accurate mapping between input and output of a neural
network, a common method is to train network parameters (weights) with
supervised learning. This process requires to have a training dataset with output
data for given input data. By this training data, a network can compare its output
with actual output. Suppose the desired output is 𝑦	and actual output is 𝑦	is passed
to a Cost or loss function 𝐶	which minimize the output by adjusting the weights
and biases of the network. Let 𝜃	to be the set of all parameters of the network
and then the training of the network by supervised learning is to minimize,

𝐦𝐢𝐧
𝜽

𝟏
𝑵

𝑪 𝒚𝒕, 𝒚𝒕 𝜽𝑵
𝒕B𝟏 (2.9)

The process is passing data through the network, calculating the cost and

readjusting the parameters until the network reaches to sufficient accuracy when

the training set is validated by the test set. This method is called backpropagation

and with gradient descent, backpropagation propagates the gradients of the cost

function with parameters and puts back them to network.

Stochastic Gradient Descents

In order to update parameters to reach for acceptable accuracy, a couple of

methods can be employed such as Random search, Random local search or

Gradient Descent. Random search is very inefficient approach because of finding

new parameters randomly and following continuously which parameters produce

the best result in every iteration. Random local search produces better result where

iteration starts with random W and generates random perturbations 𝛿𝑊 to it and

if the loss is better, it updates the parameters and keeps continuing iterations.

Convolutional Neural Networks

CNN uses different approach and has special methods similar to multilayer neural

networks which means it might be accepted as special version of multilayer neural

networks. A convolutional neural networks is composed of one or more

convolutional layers which is together with subsampling/pooling layer and at the

end is followed by fully connected layers which is seen in neural networks. The

idea behind the convolutional neural networks is motivated by visual perception

which is called visual cortex of human brain. The visual cortex is composed by

many cells which are responsible for detecting light in small and sub-regions of the

receptive fields which is a visual field where more complex cells have got larger

receptive fields. These receptive field cell process as local filters on the input space

where they detects edges in the given input space. These results of researches have

motivated and lead CNN convolutional layers to perform the same functionality

that cells do on visual cortex. Recognizing an object in an image by CNN is shown

in Figure 2.17. Features of a layer is fed by input from a set of features located in

a small neighborhood in the previous layer which is local receptive field. The aim

of these local receptive fields is extracting elementary visual features such as

edges, horizontal lines, corners in order to combine them with higher layers.

Figure 2.17: A Typical block diagram of CNN.

Source : Hijazi, S., Kumar, R., & Rowen, C., 2015. Using Convolutional Neural Networks for
 Image Recognition.

CNN is used in many areas such as pattern recognition, image recognition, natural

language processing and speech recognition. Since CNN does not need any hand-

designed feature extraction process which is common in typical pattern or image

recognition feature extraction process, it has become main advantage of the CNN

usage in many areas. In convolutional neural networks, weights of the

convolutional layer are being used for extraction of features and the fully connected

layer at the end is used for classification. This classification process is determined

during the training process. Also a CNN network structure can be improved in

order to save memory requirements and computational complexity as well as

giving better performance for different kind of problems such as image or speech

recognition.

CNN’s Components

Convolutional neural networks are composed of multiple stacked layers in order to

establish a complex architecture for classification problems. These layers are

divided into four different type of layers which are convolutional layers,

pooling/subsampling layers, non-linear layers and fully connected layers.

Typically, the purposes behind of these layers are to reduce the dimensions of

intermediate layers, reshaping and simulating fully connected layers. Following

sections describe these components that are given.

Convolutional Layers

The convolution is a 2D operation which is defined by kernel of size k x k. Given

an input image X with N x M , the convolutional kernel is sliding from left-to-right

and top-to-bottom along the image X and examining kernel with surrounding pixel

values and put the result to output image Y where the output pixel location i,j is

calculated

𝒀𝒊,𝒋 = 𝒌𝒊1𝒋1𝑿𝒊d𝒌z𝟏𝟐 \𝒊|,𝒋d𝒌z𝟏𝟐 \𝒋1
𝒌
𝒚|B𝟏

𝒌
𝒊|B𝟏 (2.10)

This convolution operator is denoted by * and thus

Y = k * X (2.11)

By using this convolution operator, this operation is the main actor of the

convolutional layer where it finds and extracts different features of the given input

space N. Convolution layers extracts low-level features such as edges, lines or

corners. Higher level layers extract higher-level features. Figure 2.18 shows the

process of 3D convolution used in CNN. Since convolutional is 2D process, the

image which is composed of R, G and B channels are divided into separate given

input. The input is size of N x M x D and is convolved with kernel H where each

size of kernel is k x k x D. Convolution operation is fed by input with kernel and

to produce output feature, with H kernels at produces H independent features. It

starts from top-left corner of the specified input and moved to right S element by

moving from from left to right where S is called “Stride” defines number of step. When

it reaches to the top-right corner, the kernel is moved to downward direction by

one element and it repeats to move from left to right by the same stride. This

process is kept continue until the bottom-right corner is reached by kernel. For

example, for the case N, M = 48, k = 5, S = 1, there are both 44 different positions

for left to right top to bottom that the kernel can process which can be formulized

by (N- k+1) x (M-k+1). Each feature in the output will contain 44x44 elements

corresponds to these positions. The kernel is processing under sliding window

technique for each positions. In this process, k x k x D elements of input and k x k

x D elements of kernel are multiplied element-by-element and accumulated.

Therefore, k x k x D multiply-accumulate operations are used for creating one

element of one output feature.

 Figure 2.18: 3D process of convolution.

Source : Hijazi, S., Kumar, R., & Rowen, C., 2015. Using Convolutional
Neural Networks for Image Recognition.

Pooling/Subsampling Layers

The aim of the layer is reducing the spatial size representation dimension size to

reduce the number of parameters and computation in the network. In this layer,

two different method is seen to apply pooling. One is max pooling and other is

average pooling. Both method does the same process on the given input space by

divide it into non-overlapping 2D spaces. In Figure 2.17, layer in second stage is

the pooling/subsampling layer where every input feature contains of 28x28

dimension and is divided into 14x14 sub-regions of size 2x2. The methods of

calculations are average pooling calculates the average of 4 values of 2x2 sub

region where max pooling calculates the max value of again given 4 values of

2x2 sub region.

Figure 2.19 represents the pooling process where the input is size of 4x4 and 2x2

sub- sampling. This 4x4 image is divided into four different matrices of size 2x2.

Max-pooling method produces the maximum value of the four values in the 2x2

matrix is the output. However, average pooling method produces the average of

the four values is the output. In case of average pooling, if the output value is

calculated to fraction, it is rounded to nearest integer.

Figure 2.19: Representation of Max- Pooling and
 Average-Pooling

Non-Linear Layers

Typically neural networks and CNN depends or relies on a non-linear “activation”

or “activation” function to fire distinct identification of likely features on each

hidden layer. Convolutional neural networks might use a different type of specific

functions, for example rectified linear units (ReLUs) or non-linear functions such

as hyperbolic tangent, sigmoid or softmax to implement non-linear triggering.

Rectified Linear Unit

A ReLU function is implemented by 𝜑(𝑥) = 𝑚𝑎𝑥(𝑥, 0). Therefore input and

output sizes of the layer are the same. Mainly, the Relu functions increases the

nonlinear properties of the trigger function as well as of the overall network

without affecting convolution layer’s receptive fields. The main advantage of a

ReLU is that training time of the network is way faster comparatively to other

non-linear functions used in CNNs (e.g., hyperbolic tangent, softmax and

sigmoid). ReLU functionality is presented in Figure 2.20 and transfer function is

plotted between input and output matrices.

Figure 2.20: Representation of ReLU function.

Continuous trigger (non-linear) function

For the each feature, the non-linear layer process element by element. These non-

linear functions can be hyperbolic tangent, sigmoid or softmax in order to process

output with classification problems.

FC (Fully-Connected) layers

FC (Fully connected) layers are mainly used and constructed as the final layers of

a CNN. Neurons in a fully connected layer have full connections to all activations

in the previous layer, as seen in regular artificial neural networks. Their

activations mathematically sum a weighting of the features from the previous

layer which can be done by matrix multiplications and its main aim is determining

to target which can be accepted as classification. In these fully connected layer,

all feature elements that fed by of the previous layer are used for calculating the

output feature.

Figure 2.21 shows the FC (fully-connected) layer L where L-1 has got two

features and each of composed of 2x2 matrices. Figure 2.22 shows stack of

convolutional layers and fully connected layers to represent image classification

process.

Figure 2.21: Fully connected layer processing

Source : Hijazi, S., Kumar, R., & Rowen, C., 2015. Using Convolutional Neural Networks
 for Image Recognition.

Figure 2.22: Convolution and fully connected layers

3. METHODOLOGY

In this chapter, implementing vehicle road lane detection system with
convolutional neural network will be explained. All the implementation was done
by Java platform. For building neural network deeplearning4j project is used.
OpenCV java wrapper JavaCV is used for image processing and generating
dataset. Dataset is downloaded from Caltech. In addition to Caltech dataset,
manually videos are taken by driving in Istanbul city roads and many lane objects
are extracted from the dataset. Test application is also build on Java Swing
platform.

Building a proposed lane detection system based on convolutional neural networks,
follo- wing steps were taken in thesis. Creating a dataset for train convolutional
neural network, building a convolutional neural network, training CNN and
measure performance with test set. Save network with weights and all relevant
parameters as a image file, extract object proposals from given image and apply
basic filter on them, give each object to neural network to classify if it is a lane
object, if the object is classified as lane then high- light that object on the given
source image. Figure 3.1 is presenting basic flow of the proposed method.

 Figure 3.1: Flow of proposed method.

3.1 COLLECTING and BUILDING DATASET

In the field of machine learning, feeding ml algorithm with the training data as
much as possible will increase the accuracy of the model. Typically to create a
machine learning application, the first step is collecting dataset and training the
algorithm to find optimal parameters of the model. Similarly, training dataset is
collected to train CNN which will classify image objects and reports its class is
lane or not. In order to create data set two process is followed. First of all, Caltech
Cordova dataset is downloaded from the internet. In addition to adding more data
to training set, manually videos are taken by mobile camera during the driving.
Figure 3.2 represents the sample images from Caltech dataset and Figure 3.3 video
image taken by camera.

Figure 3.2: A Sample image from Cal-Tech
 Cordova dataset.

 Figure 3.3: Sample road image from camera video.

Example image that is taken by camera is not a direct part of the training process.

In the example image in Figure 3.3, the field of view contains bridge, lanes, vehicle

on the road, skyscraper and some building and the highway road. Thus lane objects

should be extracted from the given image and save under training set by labeling

it. Therefore, one application is created and it extracts objects from the given

images. After all those objects are extracted, lane objects are labeled with hand.

Table 3.1 represents sample objects from the training dataset.

Table 3.1: Sample objects from training-set.

Lane object

Tree objects

Traffic signs

Grass object

All object images are coded by 24 bit RGB under PNG file format under file
system of host computer and approximately size of 10 KB per each file.

As presented in Table 3.1, in addition to lane objects, some of irrelevant objects
related to roads are added to training dataset such as tree objects, traffic signs and
grass objects. The aim of adding irrelevant objects is to increase the accuracy of
neural network. Other- wise it might classify some shapes in the traffic sign as lane
since the characteristic of the shape similar to lane geometrical model. Adding such

irrelevant objects increases correlation of the samples and the accuracy. In the
Figure 3.2, the table represents number of the objects in the training dataset.

Table 3.2: Numbers of training objects and labels.

Lane Objects 978

Tree 328

Traffic Signs 1110

Asphalt 299

Grass 70

Cordova irrelevant shapes 43

Irrelevant objects 112

Territory 7

Total 2947

3.2 ESTABLISHING and TRAINING CNN

In order to build a CNN and utilize it for classifying objects that are proposed, a

different multilayered CNN architectures were proposed by researchers. However,

these architectures that are proposed mainly depends on computing resources

where memory, storage and multicore computing advantages give researchers to

implement deeper networks in a modern computer. Following architectures have

been proposed by researchers.

Lenet is the first and produce good performance of convolutional neural networks

that was developed by Yann LeCunn in (1990s). After LeNet application was

proposed, many OCR application has been implemented by LeNet architecture,

reading digits and recognizing characters of handwritten texts. AlexNet is another

popular network architecture where convolutional neural networks become

popular. In (2012), Krizhevsky et al. submitted the architecture to the ImageNet

ILSVRC (ImageNet Large Scale Visual Recognition Challenge) challenge and it

significantly outperformed with top 5 error of 16%. The network was very close

to LeNet architecture but it added many convolutional layers that deeper, bigger

and featured. ZFNet is ILSVRC 2013 winner by Matthex Zeiler and Rob Fergus.

It was an improvement on AlexNet by setting on some parameters such as

expanding the size of middle convolutional layers and using smaller stride and

kernel size on the first layer. Google proposed GoogLeNet which is the winner of

ILSVRC 2014. The main contribution of it was the Inception Module which allows

reducing the network’s number of parameters. In addition to those developments,

this network uses Average Pooling instead of Fully Connected layers at the top of

the Convolutional network for eliminating a large of amount of parameters.

VGGNet is the second of ILSVRC 2014, it was the network by Karen Simonyan

and Andrew Zisserman. The main contribution was, the network depth which is a

critical part for good performance. VGGNet architecture contains 16 Convolution

and fully connected layers, from beginning to end of the network that it uses 3x3

kernel for both convolutions and pooling. However, downside of VGG- Net is that

it is more expensive to evaluate and uses a lot of memory and parameters. ResNet

is a residual network developed by Kaiming He and his friends. It was the winner

of ILSVRC 2015 with its special feature of connection skipping and use of batch

normalization which allows faster learning rate and higher accuracy in overall

network. The Architecture is also missing fully connected layers at the end of the

network.

LeNet Architecture is selected as lane detections system by utilizing convolutional
neural network. Following Figure 3.4 represents the layers of LeNet architecture.

Figure 3.4: Architecture of LeNet.

In order to implement a CNN, a Java based deep learning library called DL4J is
used DL4J (Deep learning for java) is an open-source, distributed deep-learning
project in Java and Scala by the data science company SkyMind and aim is
building deep learning applications for enterprise level. The project is composed
of many deep learning algorithms, distributed computing support and many dataset
utilities such as image I/O operations, speech and text reading helpers in order to
vectorise them to present data. By using DL4J and collected dataset, following
method that is presented in Figure 3.4 is taken for training our convolutional
network to solve classification problem during lane detection process.

Figure 3.5: Training method flow.

Setting variables of network and training process is the key point of getting sufficient

network classification as a result. Thus, following variables were set during

training process and varied by output accuracy.

Input Size is set 64x64 pixel where each image of training and test set rescaled to

this dimension.

Channel is set to 3 where each image is coded under RGB format. Each channel

is mapped to color channel of image.

Batch size is the number of examples to be fetched with each step.

Epoch is complete pass through a given dataset.

Number of labels is output count of the network.

Weight Initialization is important parameter where adjusting hyper parameters

during experiment process. Generating weight parameters for each experiment

may vary on accuracy because initial weights can lead algorithms to different local

minima and errors- cape. Also the choice of weights is important. When weights

in the network are too small, then the signal shrinks as it passes through each layer

where it become too tiny to be useful. When the weights in the network are too

large, then the signal grows while it passes through each layer until it’s too big to

be useful. Suppose we are using sigmoid function as activation function. Sigmoid

function is approximately linear when input goes close to zero, if the weights are

too large, sigmoid function become flat for larger values as it is shown in figure

3.6.

 Figure 3.6: Plot of sigmoid function.

Due to this fact, initializing the network weights properly is very important to
make net- work function properly. During implementation of LeNet architecture
in this thesis, Xavier weight initialization(Xavier et al. 2010) method is used
which initializes weights in the network by drawing them from distribution with
zero mean and specific variance in other words, it keeps the variance remain the
same while it passes each layer,

𝑽𝒂𝒓 𝑾 = 𝟐
𝒏𝒊𝒏\𝒏𝒐𝒖𝒕

 (3.1)

Where W is the initialization for the neuron, 𝑛JG	is the number of input neurons
and 𝑛��� is the number of output neurons.

Optimization Algorithm is the method of optimizing cost function. Stochastic
Gradient Descent is utilized to help minimize error.

Iteration Count is a learning step for updating model’s weights. The network is

fed by the data, makes predictions about the data, and then corrects its own

parameters based on error which shows how wrong its predictions were. More

iterations allow network to take more steps and learn more which means

minimizing error.

Learning rate is the step size of optimization algorithm where it adjusts weights

with each iteration. A high learning rate allows net traverse quickly but very error-

prone how- ever low learning rate is more likely to find the minimum but it will

do this very slowly.

Momentum is the additional factor in determining how fast an optimization

algorithm converges on the optimum point.

Regularization is the technique to prevent overfitting. Overfitting is when the

model fits the training data very well but performs poorly when network predicts

the output of data which does not belong the dataset.

After variables and parameters are set, network is fit by training dataset and start

learning process. After the process is done which depends on the epochs and

iterations, network evaluates its performance by testing predictions with test

dataset. Measurement parameters of the network,

Accuracy is the percentage of test images that were correctly identified by the

network.

Precision is the number of true positives divided by the number of true positives

and false positives.

Recall is the number of true positives divided by the number of true positives and

the number of false negatives.

F1 Score is weighted average of precision and recall.

After the network is trained, the network is saved as an image file under a

filesystem when it is desired to be used for image classification. In this thesis,

network image is compressed and saved as zip file in order to be kept small.

3.3 PROCESSING ROAD IMAGE

In order to detect lines on the road, first the objects in the source image should be
processed to extract objects. After this process is done, all object that are extracted
is given to CNN in order to classify it whether it is recognizable by network. If the
network classifies the given object as “Lane”, then our system becomes able to

access coordinates of the lane on the road. Figure 3.6 represents the flow of image
processing and classifying the object by the network.

Figure 3.7: Flow of image processing and classification.

Implementing image processing and related computer vision algorithms, a java
wrapper of OpenCV is used. OpenCV is most common open-source computer
vision library that is being used for developing computer vision applications.

Reading image from the source

An example image from the camera or the Caltech Cordova dataset is used for our
testing. Figure 3.7 shows the samples from the source images.

 Figure 3.8: Samples from source road images.

Suppose I is the original image. After the source image I1 is loaded into memory,
it is converted to Greyscale format in order to apply canny edge detection.
Transformation to Grayscale by	𝑌 ← 0.299. 𝑅 + 0.587. 𝐺 + 0.114. 𝐵. Figure 3.8
shows the source image in 24 bit RGB color format in left section and 8 bit
Grayscale format in right section,

Figure 3.9: Greyscale color transformation on sample image.

Applying grayscale transformation of the image will allow edge detection to

perform well on the image. Edge detection application is used for extracting objects

especially lanes on the road from the source image.

OpenCV Canny edge detection algorithm is employed for extracting lanes as well
as other objects from the given source image. Regarding to edge detection
implementation in OpenCV, Gaussian filter is used firstly for filtering out any
noise on the source image. Since all edge detection results are easily affected by
image noise, it is important to filter out the noise preventing false detection caused
by the noise which means it is for smoothing the image by convolve kernel with
the given image. Kernel of size = 5 shown in below matrix is used since that size
is common and useful for many images,

𝐊 = 𝟏
𝟏𝟓𝟗

𝟐 𝟒 𝟓 𝟒 𝟐
𝟒 𝟗 𝟏𝟐 𝟗 𝟒
𝟓 𝟏𝟐 𝟏𝟓 𝟏𝟐 𝟓
𝟒 𝟗 𝟏𝟐 𝟗 𝟒
𝟐 𝟒 𝟓 𝟒 𝟐

 (3.1)	

After filtering out of the noise on the image, the algorithm finds the intensity
gradient of the image by using Sobel filters. It applies max of convolution pair in
x and y directions,

𝑮𝒙 =
−𝟏 𝟎 +𝟏
−𝟐 𝟎 +𝟐
−𝟏 𝟎 +𝟏

 (3.3)

𝑮𝒚 =
−𝟏 −𝟐 −𝟏
𝟎 𝟎 𝟎
+𝟏 +𝟐 +𝟏

 (3.4)

And it finds the gradient strength and direction with,

𝑮 = 𝑮𝒙𝟐 + 𝑮𝒚𝟐 (3.4)

𝜽 = 𝐚𝐫𝐜𝐭𝐚𝐧	(𝑮𝒚
𝑮𝒙
) (3.5)	

The edge direction angle is rounded to one of four angles representing vertical,
horizontal and the two diagonals (0°, 45°, 90° and 135° for example). After the
gradient strength and direction is found, it applies Non-Maximum suppression
where it removes pixels that are not considered to be part of an edge. As a final
step, Hysteresis step is taken. Canny does use two threshold. On is upper
threshold where the pixel is accepted as an edge if the pixel gradient value is
higher than the upper threshold or it’s rejected if the pixel gradient value is below
the lower threshold. Canny recommended an upper: lower ratio between 2:1 and
3:1. Below images that shown in Figure 3.9 presents the given source image
and processed image after canny edge detection is applied.

Figure 3.10: Input image, Edge detected image.

Since canny edge detection operation outputs a binary image of the road and
extracts the lanes and other objects, in order to make it strong or fill up empty
pixels in the lanes, a dilation morphological operation is applied. Suppose f is
binary input image and convolved with 3x3 kernel k. Let,

𝒄 = 𝒇 ∗ 𝒌 (3.6)

And Dilation is

𝒅𝒊𝒍𝒂𝒕𝒆 𝒇, 𝒌 = 𝜽(𝒄, 𝟏) (3.7)

Where

𝜽 𝒇, 𝒕 = 𝟏, 𝒇 ≥ 𝒕
𝟎, 𝒆𝒍𝒔𝒆 (3.8)

	

In the figure 3.10, the output shows the source binary image and output binary
image that dilation is applied.

 Figure 3.11: Input image, processed image with dilation.

Dilation process made the edges stronger in the binary image before the next

method where the lines in the image will be found. This operation is called Hough

Transformation.

The Hough transform is a feature extraction method that is used in computer vision

and image processing applications. The purpose of the method is to find certain

class of shapes in the given binary image such as lines or circles. In 1962 Paul

Hough described and patented the transform (Hough, 1962). It was a point to curve

transformation which has many applications in pattern recognition. Later on,

Richard Duda and Peter Hart (1972) invented the universally usage by calling

“Generalized Hough Transformation” by applying Hough line transformation

which is mainly used for finding lines in the image, suppose the straight line,

𝒚 = 𝒎𝒙 + 𝒃 (3.9)

Can be represented as a point (b, m) in a parameter space. However, due to

characteristic of the vertical line, there can be infinite value of slope parameter

m. Since computers do have finite resources, it could be computationally

impossible to store slope parameter. Thus, Hough line transform proposes the

use of polar coordinate system to represent the line parameters with (p, 𝜃) where

p is the distance from the origin and 𝜃 ist he angle between the x axis. Therefore,

it is possible to associate with each line of the pair (p,𝜃). For Hough Transform

the line is expressed in polar coordinate system as the equation,

𝒚 = − 𝒄𝒐𝒔𝜽
𝒔𝒊𝒏𝜽

𝒙 + (𝒑
𝒔𝒊𝒏𝜽

) (3.10)

Also

𝒑𝜽 = 𝒙𝟎. 𝒄𝒐𝒔𝜽 + 𝒚𝟎. 𝒔𝒊𝒏𝜽 (3.11)

Which means each pair (𝑝�, 𝜃) represents each line that passes by(𝑥�, 𝑦�).

According to algorithm that by calculating each line passes by the given non

background pixel (pixel value is not 0) and storing the parameters in the

accumulator table, it will allow to find lines. In the Figure 3.10, suppose there is

a line starts from (𝑥J, 𝑦J) to(𝑥�, 𝑦�). When the each pixel on the given line is

scanned by Hough transformation algorithm, and the each pair (𝑝�, 𝜃) is stored

in the accumulator table, as it seen on the intersection point (𝑝′, 𝜃) corresponds

tot he lines that passes through given (𝑥J, 𝑦J) to(𝑥�, 𝑦�).

 Figure 3.12: Hough transformation visualization.

Source:http://www.uio.no/studier/emner/matnat/ifi/INF4300/h09/undervisningsmateriale/houg
h09.pdf

 Figure 3.13: Hough space and lanes on the source image. (Left: original
 image, Middle : Hough Space, Right : Lines found on the
 image)

Using Hough transformation to find lanes on the given road image,
transformation will report the lines on the image by using OpenCV Hough
transformation. In the figure 3.12, the lines that are caught on the image is shown.
The red lines as it is seen on the images are the lines found by Hough
transformation and they are drawn on the image.

 Figure 3.14: Lines are found on the given image by Hough line
 transformation.

Even though, the lines are found on the road image, in order to eliminate
irrelevant shapes, a simple filter is used for eliminating unnecessary lines. The
filter does basically eliminates lines whose slope is larger that 30ᵒ and area of the
line smaller than 400px. Figure 3.14 shows the output after elimination,

 Figure 3.15: Filtering out lines on the given image.

3.4 OUTPUT

Convolutional neural network typically used as classification in image

recognation process. However, as it s mention, the lane detection is interested in

lanes on the road instead of the road image given. Therefore a method should

be involved at this phase to extract relevant object which might contains lane.

This method is called Object proposing. Therefore, the lines that is found by

hough transformation is used to extract object from given image. Lets say, the

line is found from the coordinates 𝑥C, 𝑦C 	𝑎𝑛𝑑	(𝑥D, 𝑦D).). Cropping the

rectangle by the given coordinates will create a new image on the memory which

only contains the object that the line is passing over. This subimage will be

considered as an object for being proposed to CNN to classify if it is a lane

object or not. By traversing on all lines and extracting each subregion of the

image by CNN will help to find lanes on the road. In the figure 3.15, the left

image ist he input image and the right image contains the regions of the lanes

after CNN classified each object.

Figure 3.16: Processed final image. Left: Source image, Right: Output
 image marked with lane objects

4. RESULTS

Lane detection system recognition accuracy depends on two different method on

the system proposed. One is computer vision algorithm to extract objects from the

road data to find objects similar to lane shape and CNN classification method which

detects if the proposed object is lane or not. Since, CNN become a lane

identification component of the system, it’s very important to adjust CNN

parameters and train it properly to reach acceptable result. In order to approach

acceptable result of CNN, some experiments with different parameters will be done.

These parameters might be training set data count, epoch, training data image sizes

and network internal parameters such as learning rate, regularization, layer count

etc. Since LeNet architecture does have own learning rate, regularization and layer

count, the other parameters will be considered. In order to observing CNN

classification accuracy, different parameters will be set and training phase will be

re-run. The parameters and their values before each test is shown in Table 4.1

Table 4.1: CNN Training Parameters.

Parameter Values Values
Input Image Size 32x32 Pixels 64x64 Pixels
Epoch/Iteration
Count

50, 200, 800, 1600 50, 200, 800,
1600

DataSet Input
Image Count

2947, 2943 2947, 2943

Dataset Training
Set Image Count

46, 486 46, 486

Dataset Label
Count

28 28

Dataset Label
Count
(Lane/NoLane)

2 2

Each parameter-set (image size = 32x32 pixels, Epoch = 50), the training

application run by those parameters to train model. After training by using test-set,

evaluation of the model is saved. There is also two type of training method is tried

during training phase. One is splitting training dataset into 28 different label (Lane,

tree, grass, traffic sign, stops sign etc.…) and another one is two different label

which is Lane or not a lane for testing and observing classification process accuracy

according to these two different approach. There is also, different test dataset size

is used where in one case (28 different label) contains 46 different test objects, 489

different objects are used for testing 2 labeled class method.

The parameters and evaluation results of each parameter-set for 28 different class

is shown in table 4.2

Table 4.2: Evaluation and result of each parameter-set (28 classes).

Input
Image Size

Epoch/Iteration
Count

Accuracy Precision Recall F1
Score

64x64 1600 0,8478 0,9467 0,8913 0,9182
64x64 800 0,8043 0,902 0,8333 0,8663
64x64 400 0,5870 0,7175 0,6111 0,6601
64x64 100 0,3478 0,4520 0,2391 0,3128
64x64 50 0,2826 0,45 0,1594 0,2354
32x32 6400 0,7174 0,8581 0,8285 0,8430
32x32 3200 0,7609 0,8465 0,7923 0,8185
32x32 800 0,3478 0,5327 0,2899 0,3474
32x32 200 0,2826 0,4324 0,1594 0,2329
32x32 100 0,2391 0,2894 0,1014 0,1502

As it is seen in the table 4.2, increasing epoch on learning will result better accuracy

since more iterations allow network to take more steps and learn more which means

minimizing error. However, fort he pixel size of 32x32 where it is input image size,

in the table 4.2 it is seen that Epoch 6400 results lower accuracy than epoch 3200.

It is caused by Over-Fitting which means the weights and parameters are fit on

training set but results improper predictions when the source does not belong to

training set. It is also important that the input image size is important for learning

accuracy as it is seen in the table 4.2. However, as it is seen in the both table 4.2

and figure 4.1 and Figure 4.2, 64x64 pixel size of training objects give better

performance than 32x32 pixels size.

As it is seen in the Figure 4.1, even though epoch is increased after 3200 iteration,

the accuracy does not increases even it is accuracy goes down as it is mentioned as

over-fitting.

Figure 4.1: Epoch/Accuracy ratio of 32x32 pixel size.

However, when training image size is selected to 64x64 pixels, as it is seen in the

table 4.2, with the same iteration count, it is reaching better accuracy than 32x32

pixels training images.

Figure 4.2: Epoch/Accuracy ratio of 64x64 pixel size.

In order to understand the role of training image size relation to accuracy, let’s

check the sample images in Table 4.3. As it is shown, 64x64 resized form of given

training image provides better information to CNN to learn edges, corners and other

relevant shapes. Therefore to using better resolution for training image increasing

the accuracy. However, it will cause learning phase to consume more time and

computational resources since input data is bigger.

Table 4.3: Training images resized versions.

Original Image 32x32 pixels
resized

64x64 pixels resized

Regarding to accuracy, it is important to check score function steps during training.

In our proposed solution, the each 10 step is logged for creating graph of score

function divergence. Let’s look at Figure 4.3 showing the score function where

vertical axis shows score result of cost function and horizontal axis is iteration

count.

 Figure 4.3: Score function optimization of 32x32 pixel size.

The plot of score functions, it is seen that there is many peak points throughout the

iterations. It is caused by mini-batch where SGD processes part of training data for

each time. However, as it is seen, SGD approaches to minimum until training is

finished on specified epoch (It this sample it’s stopped on iteration count on 7220).

However, when input size is set to 64x64 pixel size and epoch is set to 1600, as it

is seen in the Figure 4.4, Cost function approaches to almost 0 when epoch is

increased. Therefore, it proves that generally more epochs and better image sizes

resulting better accuracy for Convolutional neural network applications. Regarding

to over-fitting, the learning phase could be stopped when the cost function score

approaches to almost 0 and keep this output stability for a specified batch count.

Figure 4.4: Score function optimization of 64x64 pixel size.

In addition to 28 different classes, the training dataset is splitted in to 2 different

classeses. One class is determining if the proposed object is lane, another class is

determining if the proposed object is not a lane. According to test results of 28

different classes, it results that 64x64 pixels size of training dataset objects is

produces more accurate result. Thus, 64x64 pixels size of training dataset is used

for 2 classes test. Table 4.3 shows the results of training and test results.

Table 4.4: Evaluation and result of each parameter-set (2 classes).

Input
Image Size

Epoch/Iteration
Count

Accuracy Precision Recall F1 Score

64x64 1600 0,9506 0,9502 0,9554 0,9528
64x64 800 0,9403 0,9411 0,9461 0,9436
64x64 400 0,9444 0,9442 0,9494 0,9468
64x64 100 0,9527 0,9513 0,9559 0,9536
64x64 50 0,965 0,9635 0,9671 0,9653

Table 4.5: Output of predictions (2 classes).

Input
Image
Size

Epoch/Iteration
Count

Number
of

NoLanes
classified

as
NoLane

Number
of

NoLanes
classified
as Lane

Number
of Lanes
classified

as
NoLane

Number
of Lanes
classified
as Lane

64x64 1600 245 24 0 217
64x64 800 240 29 0 217
64x64 400 243 26 1 216
64x64 100 249 20 3 214
64x64 50 255 14 3 214

It is seen in the table 4.3 and Table 4.4, it produced better performance to split

classes in to two different classes which performs prediction if the given object is a

lane or not a lane. There is also one important point that splitting dataset to two

different classes approached acceptable accuracy by 50 epochs where the other

method which contains 28 different classes is not able to reach the closed accuracy

by 1600 epochs. It also shows that eliminating unnecessary classes from training

dataset produces better accuracy for convolutional neural networks. Figure 4.5

shows score functions of two classes and 100 epoch optimization graph.

 Figure 4.5: Score function optimization of 64x64 pixel size for two classes.

5. CONCLUSION

Many of the computer vision applications do extract and recognize objects from the image

by using hand designed learning system on specific problem where those learning system

is defined by mathematical parameters such as extracting parallel splines and lines from

image to detect road lanes or finding shapes similar to face structure on the given image

to detect faces on the image. These hand-designed mathematical models are strictly

depend on the specific objects. For example, by using Hough line transformation to detect

lanes on the road image, the implementation should extract lines, detect if the line objects

are overlapped on vanishing point to understand if there is a perspective effect, if the line

does not have any parallel line then the implementation should decide if it is accepted as

lane or not, and each time to make the algorithm stronger, new road images should be

reviewed by researchers and the algorithm should be updated. In such computer vision

applications, convolutional neural network implementations supports those algorithms to

detect or classify the sample objects to understand if it is expected object. Since

convolutional neural network classifies the proposed object, the algorithm that extract and

analyze objects can be simple where analyzing process become simpler. The proposed

lane detection implementation, the object extracting phase is only extracts the line objects

and implementation does not need any complex object analyzing phase. Convolutional

neural network decides if the object is lane or not. Therefore, convolutional neural

network supports increasing accuracy of such object classification solutions while it does

not need any complex hand-designed mathematical parameters involved. In addition to

ease of implementation, convolutional neural networks does help solutions to detect many

different objects from the same image. For example, in the proposed lane detection

method, by training CNN on vehicle, truck, motorbike objects, the same solution will

classify vehicles on the road by only adding simple vehicle object extraction method. It

is also same for detecting traffic lights on the same image. Therefore, convolutional neural

networks will become common method in many computer vision object classification

solutions where it supports algorithms to detect any object by allows implementation to

eliminate complex operations.

REFERENCES

Books

D. O. Hebb, 1949. The organization of behavior: A neuropsychological theory. New

York, Wiley.

T. M. Mitchell, 1997. Machine Learning, 1st ed. New York, NY, USA: McGraw-Hill,
Inc.

E. Alpaydin, 2010. Introduction to Machine Learning, 2nd ed. The MIT Press.

Richard Szeliski, 2010. Computer Vision: Algorithms and Applications. London,
Springer.

I. Goodfellow & Y. Bengio, A. Courville, 2016. Deep Learning. The MIT Press.

Periodicals

McCulloch, W. S., & Pitts, W., 1943. A logical calculus of the ideas immanent in nervous

activity. The bulletin of mathematical biophysics, 5(4), 115-133.

Rosenblatt, F., 1958. The perceptron: A probabilistic model for information storage and

organization in the brain. Psychological review, 65(6), 386.

VC, H. P., 1962. U.S. Patent No. 3,069,654. Washington, DC: U.S. Patent and Trademark

Office.

Duda, R. O., & Hart, P. E., 1972. Use of the Hough transformation to detect lines and

curves in pictures. Communications of the ACM, 15(1), 11-15.

Werbos, P. J., 1974. Beyond regression: new tools for prediction and analysis in the

behavioral science. Ph. D. Thesis, Harvard University.

Canny, J., 1986. A computational approach to edge detection. IEEE Transactions on

pattern analysis and machine intelligence, (6), 679-698.

Jochem, T., Pomerleau, D., Kumar, B., Armstrong, J., 1995, PANS: A Portable

Navigation Platform, IEEE Symposium on Intelligent vehicle, September 25-26,
1995, Detroit, Michigan, USA

Chen, Mei, Todd Jochem, and Dean Pomerleau. 1995, AURORA: A vision-based

roadway departure warning system. Intelligent Robots and Systems 95.'Human
Robot Interaction and Cooperative Robots', Proceedings. 1995 IEEE/RSJ
International Conference on. Vol. 1. IEEE.

D. Pomerleau and T. Jochem, 1996, Rapidly adapting machine vision for automated

vehicle steering, in IEEE Expert, vol. 11, no. 2, pp. 19-27, Apr 1996.

B. M, Broggi, 1998. GOLD: A parallel real-time stereo Vision system for generic obstacle

and lane detection, IEEE Transactions on Image Processing, pp. 4-6.

LeCun, Y., Bottou, L., Bengio, Y., & Haffner, P. , 1998. Gradient-based learning applied
to document recognition. Proceedings of the IEEE, 86(11), 2278-2324.

C. Kreucher and S. K. Lakshmanan, 1998. A Driver warning System based on the LOIS

Lane detection Algorithm, Proceeding of IEEE International Conference On
Intelligent Vehicles. pp. 17 -22.

E. D. Dickmanns, 2002, "The development of machine vision for road vehicles in the last

decade," Intelligent Vehicle Symposium, 2002. IEEE, 2002, pp. 268-281 vol.1.

Y. Wang, E. K. Teoha, D. Shen., 2004. Lane detection and tracking using B-Snake, In:

Image and Vision Computing 22, pp: 269-28.

Jung, Cláudio Rosito, and Christian Roberto Kelber, 2005. Lane following and lane
departure using a linear-parabolic model. Image and Vision Computing 23.13 :
1192-1202.

Sun, T. Y., Tsai, S. J., & Chan, V., 2006. HSI color model based lane-marking detection.

In Intelligent Transportation Systems Conference, 2006. ITSC'06. IEEE (pp. 1168-
1172). IEEE.

Aly, M., 2008. Real time detection of lane markers in urban streets. In Intelligent Vehicles

Symposium, 2008 IEEE (pp. 7-12). IEEE.

Kim, Z., 2008. Robust lane detection and tracking in challenging scenarios. IEEE

Transactions on Intelligent Transportation Systems, 9(1), 16-26.

Khalifa, O. O., Hashim, A. H. A., & Assidiq, A. A., 2009. Vision-based lane detection

for autonomous artificial intelligent vehicles. In Semantic Computing, 2009.
ICSC'09. IEEE International Conference on (pp. 636-641). IEEE.

Q. Lin, Y. Han and H. Hahn, 2010. Real-time lane departure detection based on extended

edge-linking algorithm, In IEEE 2nd International Conference on Computer
Research and Development, pp. 725-730.

Glorot, X., & Bengio, Y., 2010. Understanding the difficulty of training deep feedforward
neural networks. In Aistats (Vol. 9, pp. 249-256).

Chang, C.C. and Lin, C. J., 2011, A library for support vector machines. ACM

Transactions on Intelligent Systems and Technology. 2(3), pp. 1 – 27

Borkar, M. Hayes, M.T. Smith and S. Pankanti , 2011, A Layered Approach To Robust

Lane Detection At Night , In IEEE International Conference and Exposition on
Electrical and Power Engineering, Iasi, Romania, pp. 735 - 739, 2011.

Krizhevsky, A., Sutskever, I., & Hinton, G. E., 2012. Imagenet classification with deep
convolutional neural networks. In Advances in neural information processing
systems (pp. 1097-1105).

Măriut, F., Foşalău, C., & Petrisor, D., 2012. Lane mark detection using Hough transform.

In Electrical and Power Engineering (EPE), 2012 International Conference and
Exposition on (pp. 871-875). IEEE.

Kim, K. B., Song, D. H., & Cho, J. H. (2012). Lane detection using fuzzy c-means

clustering. International Journal of Multimedia and Ubiquitous Engineering, 7(4),
119-124.

Simonyan, K., & Zisserman, A., 2014. Very deep convolutional networks for large-scale

image recognition. arXiv preprint arXiv:1409.1556.

Mistry, V.H.; Makwana, R. Survey, 2014. Vision based road detection techniques. Int.
J. Comput. Sci. Inf. Technol. 5, 4741–4747.

Zeiler, M. D., & Fergus, R., 2014. Visualizing and understanding convolutional networks.
In European conference on computer vision (pp. 818-833). Springer International
Publishing.

Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., ... & Rabinovich, A.,

2015. Going deeper with convolutions. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition (pp. 1-9).

Hijazi, S., Kumar, R., & Rowen, C., 2015. Using Convolutional Neural Networks for
Image Recognition.

Pallavi V. Ingale, Prof. K. S. Bhagat, 2016. Comparative Study of Lane Detection

Techniques, ICSTSD 2016 Track , International Journal on Recent and Innovation
Trends in Computing and Communication (IJRITCC), ISSN: 2321-8169, PP: 381 –
390

He, K., Zhang, X., Ren, S., & Sun, J., 2016. Deep residual learning for image recognition.
In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition (pp. 770-778).

Others Sources

Turkish Statistical Institute, 2015, Number Of Traffic Accidents And Results, [Internet]
http://www.turkstat.gov.tr/PreIstatistikTablo.do?istab_id=362 [accessed date 01
February 2017]

National Highway Traffic Safety Administration, 2005, Lane Departure Warning

systems,[Internet]https://www.nhtsa.gov/sites/nhtsa.dot.gov/files/barickman_lanede
partuerwarning_final.pdf [accessed date 01 February 2017]

Stanford University, U.S.A, Prof. Eric Roberts’s personal web page, Neural Networks,

[Internet] https://cs.stanford.edu/people/eroberts/courses/soco/projects/neural-
networks/Biology/index.html [accessed date 19.03.2017]

Wikipedia, List Of Animals by number of neurons, [Internet]
https://en.wikipedia.org/wiki/List_of_animals_by_number_of_neurons[accessed
date 19.03.2017]

Stanford University, U.S.A, , Class of CS231 Convolutional Neural Networks for Visual

Recognition notes, [Internet] https://cs231n.github.io/ [accessed date 19.01.2017]

Mohamed Alaa El-Dien Aly, Caltech Lane Dataset [Internet]
http://www.mohamedaly.info/datasets/caltech-lanes [accessed date 10.06.2016]

Deeplearning for Java, An opensource deep learning framework for Java, [Internet]

https://deeplearning4j.org/. [accessed date 01.10.2016]

OpenCV, An opensource computer vision software library, [Internet]

http://www.opencv.org/. [accessed date 01.10.2016]

