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ABSTRACT 

 

ROAD LANE DETECTION SYSTEM WITH 

CONVOLUTIONAL NEURAL NETWORK 

 

Bora Taşhan 

Institute of Computer Science 
Thesis Supervisor: Asst. Prof. Tarkan AYDIN 

 

Mart 2017, 54 Pages 

 

Occupying a significant place in today’s automotive industry and being of vital 
importance in our daily lives, driving safety and driver assistance systems have 
become standard in more and more vehicles, especially by means of improvements 
in computer technologies and having a place in the industry, and they use more 
improved algorithms for more efficient solutions with developing technology 
equipment. As an example of these, being very important for the safety of driver, 
road lane detection system is now used in automotive industry and with the 
technological improvements, it has become more efficient and sophisticated. In 
the earlier stages, it was only a camera set in front of the vehicle and processing of 
the images taken by this camera. This innovation is followed by laser sensor, 
geographic coordinate system assistance and radar systems and with these 
innovations autonomous vehicle technology keeps improving. 
 
In this thesis, by using deep learning methods, which are used for the processing 
of the data collected by internet technologies and are enabled to be applicable with 
the reduction of the costs of data storage components, memory units and multi-
core microprocessors, one of the technique from deep learning is called 
convolutional artificial neural networks and computer vision methods is combined 
and autonomous vehicle road lane detection system method is proposed. 
 

 

Keywords: Deep Learning, Convolutional Neural Networks, Lane Detection,  

Object Recognition, Machine Vision. 
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ÖZET 

 

KONVOLÜSYONEL YAPAY SİNİR AĞLARI İLE 
ŞERİT TAKİP SİSTEMİ 

 
         Bora Taşhan 

 
      Bilgisayar Mühendisliği 

Tez Danışmanı: Yard. Doç. Dr. Tarkan AYDIN  
 

Mart 2017, 54 Sayfa 

Günümüz dünyası otomotiv sektöründe önemli bir yer alan ve gündelik 
hayatımızda hayati öneme sahip olmaya başlamış sürüş güvenliği ve sürücü asistan 
sistemleri özellikle bilgisayar teknolojilerinin gelişmesi ve sektörde daha fazla yer 
edinmesi ile çok daha fazla araç içerisinde standart olmaya başlamış ve gelişen 
teknoloji ekipmanlari ile birlikte daha verimli çözümler için daha gelişmiş 
algoritmalardan faydalanmaktadır. Bunlara örnek olarak verilebilecek ve bir 
sürücünün sürüş güvenliğinde önemli bir yeri olan şerit takip sistemleri otomotiv 
sektöründe kullanılmaya başlanmis ve yine teknolojinin gelişimi ile birlikte daha 
verimli ve komplike bir hale gelmiştir. İlk zamanlar araç önüne yerleştirilen bir 
kamera ve bu kameradan elde edilen görüntülerin işlenmesi ile başlayan bu 
yenilikleri lazer sensör kullanımı, coğrafi koordinat sistemi desteği ve radar 
sistemleri takip ederek otonom araç teknolojisinde gelişim devam etmektedir. 
 
Bu tez içerisinde özellikle veri depolama elemanları, hafıza birimleri ve çoklu 
çekirdek destekli mikro işlemci maliyetlerinin düşmesi ile birlikte uygulanabirliği 
sağlanan, inter- net teknolojileri ile toplanan veriler ve bu verilerin işlenmesi için 
gelişmeye başlayan derin öğrenme tekniklerinden konvolüsyonel yapay sinir 
ağları ve bilgisayar görüşü metodları birleştirilerek otonom araçlar şerit takip 
sistemi şerit algılama yöntemi önerilmiştir. 
 

 
Anahtar Kelimeler: Derin Öğrenme, Konvolüsyonel Yapay Sinir Ağları, Şerit 

Algılama, Nesne Algılama, Makine Görüşü. 
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1. INTRODUCTION 

 

 
Having a significant place in today’s world, automotive industry has become a 

part of our lives and with this improvement, in order to provide safety of life and 

for a more secure drive in a car which is one of the products of this industry, it is 

very important to equip necessary instruments. According to the study based on 

data from Turkish Statistical Institute and General Directorate of Security, in 

Turkey, 2015, from 1,313,359 accidents in total, 304,421 accidents caused fatal 

injuries and in these accidents, percentage of driver deaths is 40,7 (Turkstat 2015). 

Percentage of 89,3 of these accidents are caused by driver’s fault, ranking first. 

Because of that, driver assistance systems, a part of autonomous vehicle concept 

in automotive industry, stand out especially for life safety and safe drive. Lane 

departure warning system, a part of related drive assistance systems, is offered as 

a part of vehicles.  
 

In 2009, in the USA, National Highway Traffic Safety Administration carried out 

a work and in the following years many vehicle manufacturers release lane 

detection system and related preventive systems with their cars (NHTSA 2005). 

In Figure 1.1 lane detection camera in Volvo S60 can be seen. 
 

                      Figure 1.1: Vehicle Safety Sensor on Vehicle Windshield 
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After lane departure systems were offered in Cima released by Nissan Motors in 

2000s, many leading car manufacturers also started offering this system. With the 

data taken from lane tracking system, both audio alarm systems and seat vibration 

systems warn the driver and lane detection systems become a part of our lives as a 

preventative system.  
 

Collaterally, automotive industry developed a lane tracking system, with different 

methods with the images taken from a camera inside the vehicle, tracking the road 

and by using these lane tracking system methods, they produce preventative safe 

drive solutions as lane departure warning. 
 

These systems both help drivers and play a key role in developing autonomous car 

i.e. intelligent vehicle. 

 

1.1 AUTONOMOUS VEHICLES 

 

Autonomous car or intelligent vehicle is a vehicle that is capable of sensing 

external environment by itself and navigating without the help of driver or without 

any human interference. As a result of the studies on autonomous car, date back 

to 1920s, the first working model of the car was appeared in 1980s. Carnegie 

Mellon University’s NAVLAB and ALV (Jochem et al. 1995) projects in 1984 

were followed by Eureka Prometheus project of Mercedes-Benz and Bundeswehr 

University Munich in 1987 (Dickmanns 2002). From these vehicles navigating 

without any human interference, NAVLAB-5,  project of Carnegie Mellon 

University, completes 2,797 miles from Pittsburgh to San Diego with 

approximately 102,3 km/h average speed by itself (Pomerleau and Jochem, 1996). 

Nowadays, these vehicles started to take a significant part in our lives with the 

developments of Google, Tesla and similar manufacturers and lead the way for 

using many preventative methods and prevention of traffic accidents with more 

effective road use and more secure drive. GPS, Laser, Odometer and Computer 

vision techniques are used to develop self-driving skills and lane detection system 

takes an important role in safe drive. 
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1.2 LANE DETECTION SYSTEMS 

 

With the heavy increase in car traffic, especially 30% of the accidents on highway 

are caused by lane changing and most of these accidents happen because the driver 

is exhausted or absent-minded. Therefore, the systems developed for driver 

changing lanes accidentally or not missing the lane, not only prevent many traffic 

accidents but also save many lives. These driver safety and preventative systems 

are called Advanced Driver Assistance Systems (ADAS). Some example part of 

ADAS systems are night vision, cruise control for drivers, blind spot detection, traffic 

light detection and control system. Lane detection system is also a part of ADAS. 

The purpose of these lane detection systems is to detect lanes during driving, 

informing driver assistance systems of lanes and ensure the system gives a 

warning in case the vehicle leaves its lane.  
 

In intelligent vehicle systems, the vehicle works coordinately with these 

infrastructure systems and aims to have a more secure drive and traffic. Basically, 

lane detection systems show the lanes to the driver on a screen in the vehicle, but 

more developed systems analyze lanes, other vehicles on the road and whether it 

is precise time to change lanes and warn the driver. Lane detection systems use 

camera, laser, LIDAR and GPS technologies for these processes (Borkar et al. 

2011). In Figure 1.2 a typical lane detection system flow can be seen. 

 
Figure 1.2: A Typical lane detection system 
 

 
 

 
Source: Pallavi V. Ingale, Prof. K. S. Bhagat, “Comparative Study of Lane Detection  

          Techniques” 
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In many proposed systems, lane detection systems locate primitive objects (e.g. 

lane, vehicle, road limits) such as predefined vehicles, signboards and road surface 

markings. However, at this stage, several difficulties caused by environmental 

conditions lead these algorithms to have some problems. In general, these 

difficulties are as follows; vehicles parked or on the move, erased or worn out 

road lines, shadows, non-standard road markings and lanes, non-standard curved 

lines. Intersecting road signs and road surface markings. In Figure 1.3, there is a 

shadowy road image.  

                 

                 Figure 1.3: Challenges of Lane Detection 

 

 

 In order to overcome these problems and develop much more reliable lane 
detection systems, there are still research works going on and many proposals are 
made (Kim 2008). 
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2. LITERATURE REVIEW 

 

 

2.1 LANE DETECTION SYSTEMS  

 
There are many approaches in lane detection such as feature-based or model-based 

(Mistry and Makwana 2014). 

 

2.2 Feature-based Methods 
 

Feature-based methods find and track low level features such as lanes on road, 
side lines of lanes. However, the success of feature-based approach depends on 
how apparent lines are. Consequently, lines which are less or not apparent are 
affected by noise and occlusions on camera image and these conditions diminish 
the possibility of success of this approach.  

 

Model-based Methods 

 

Model-based methods define road lanes as a sort of curve model and several 
significant geometric parameters on this model. Model-based approach is more 
resistant to poor lane images and noises and shows more success in comparison 
to feature-based approach. However, when model-based approaches are built in 
accordance with certain scenes, one method might be successful in one scene but 
other might not, so it makes the approach less adaptive. Moreover, the learning 
algorithm for learning parameter which will be built on modelling, is more time-
consuming in proportion to other approach (Han and Hahn 2010). In Figure 2.1, 
classification of road detection approaches is seen.



 

Figure 2.1: Classification of Road Detection Approaches 
 

 
 

Source : Pallavi V. Ingale, Prof. K. S. Bhagat, “Comparative Study of Lane Detection  
             Techniques” 

 

Researches and Proposes About Lane Detection Systems 
 

Lane detection approaches and solutions developed so far are explained in 
literature review below.  

 

In their article published in 1996, Dr. Dean Pomerleau and Dr. Todd Jochem 
proposed the system that ensures the vehicle is tracking the related lane by the 
help of processing images taken from the camera on the vehicle and calculating 
lane offsets with vision system they called RALPH (Rapidly Adapting Lateral 
Position Handler) (Pomerleau and Jochem 1996). After the studies, tests 
performed on an approximate 2850-mile road succeeded. Although RALPH 
system succeeded in tests, it was affected when lanes could not be seen for heavy 
traffic or reflections on daylight. 
 
 
 
 
 
 
 
 
 
 



 

 

 

                        Figure 2.2: Screenshot of RALPH. 

 
 

                                  Source : D. Pomerleau and T. Jochem, "Rapidly adapting   
machine vision for automated vehicle steering,"  

 

B.M. Broggi proposed a method called GOLD (Real-time Stereo Vision Parallel 

System for Generic Obstacle and Lane Detection) system which converts the given 

image it got from the in-car camera into a bird’s-eye view image on a new image 

(Inverse Perspective Mapping) and made lane lines become almost vertical lines 

and detect lines making them quasi-vertical objects on a dark background (Broggi 

1998). 

 

According to the article Kreucher and Lakshmanan published in 1998, by an 
algorithm named LOIS (Likelihood of Image Shape), lanes could be detected 
regardless of problems caused by shadows, lanes blocked by other vehicles 
(occlusion) or different light environment (Kreucher and Lakshmanan 1998). By 
LOIS algorithm, all possible lane objects on the road are identified with parametric 
of shapes. Then it is determined whether the lines on the road are lane lines or not 
by comparing lane objects and parametric lane data. LOIS (for Likelihood of 
Image Shape) uses a deformable template approach. Family of parametric shapes 
describes the all possible ways that the lane edges could appear in the given road 
image. A function is defined that its value is proportional to how accurate set of 
lane shape parameters matches the pixel data in a given image. The lane detection 



 

 

 

process is performed by finding the lane shape parameters which maximize the 
function for the given specified image. 
In the article Y.Wang and his friends published in 2004, with B-Snake spline 
method, set the road as a geometric model and in order to do it, they used CHEVP 
(Canny and Hough Estimation of Vanishing Points) and extracted geometric 
model parameters (Wang et al. 2004). Related algorithm became highly 
successful, especially where shadows are confused with lane data. However, this 
algorithm was affected by the shadows of poles or tree trunks and was not a 
solution for these shadows intersecting lanes. 

 

    Figure 2.3: B-Snake Based Lane Model by Using 3 or 4 Control Points 

 
     Source: Y. Wang et al. Lane detection and tracking using B Snake”, In: Image and 

Vision Computing 22, pp: 269-28, 2004. 
 

In an article published in 2004, Chen and his friends placed a system called 
AURORA next to the vehicle and could detect lane lines using wide-angle colorful 
camera image (Chen et al. 2004). 

   Figure 2.4: Downward looking roadway departure warning system 

 
   Source: M. Chen., T. Jochem and D. T. Pomerleau, “AURORA: A Vision-Based Roadway  
              Departure Warning System” 

 



 

 

 

Jung and his friends could detect lane lines by using edge detection method with 
squares angular approximation as published in an article in 2005 (Jung et al. 2005). 
In his article published in 2008, Mohamed Aly proposed an real-time, robust and 
efficient lane detection algorithm. The algorithm takes the image from the camera 
mounted on the vehicle and creates ROI (Region of interest) around the road 
section from the image. After this ROI operation, it applies IPM (Inverse 
Perspective Mapping) in order to distribute all information of the region 
homogenously on the given image and it applies selective Gaussian filter for 
bringing out the lanes on the road image (Aly 2008). After applying Hough 
transform, it detected vertical lines on that area and following RANSAC (Random 
Sample Consensus) line fitting and RANSAC spline fitting processes, detected the 
places of the lanes on the image. In Figure 2.5, the ROI and IPM result is seen. 

 

Figure 2.5: IPM Sample. Left, input with ROI.Right, the IPM 

 
Source: M. Aly, “Real time Detection of Lane Markers in Urban  

 Streets”, In IEEE Intelligent Vehicles Symposium 
 

Algorithm was resulted very good performance on many conditions. In Figure 2.6, 

the result images of the given road data is seen. 

 Figure 2.6: Robust lane detection sample 

Source: M. Aly, “Real time Detection of Lane Markers in Urban Streets” 



 

 

 

Although the algorithm works stably and successfully in many environments, it is 
affected by crosswalk lines and other signs. In Figure 2.6. False detections of lane 
detection samples are seen. 

 

Figure 2.7: False detections of lane detection samples 

 
Source: M. Aly, “Real time Detection of Lane Markers in Urban Streets” 

 

In his article published in 2008, Z.Kim proposed a stable algorithm for unexpected 

signs, non-standard curved lanes and non-standard lane changes on the road. 

Related algorithm develops hypothesis using random sample consensus and 

particle filtering algorithms (Kim 2008). O.O. Khalife, in his article published in 

2009, processed the video frames taken on road in real time with the help of the 

camera he placed on the vehicle and could detect road lanes regardless of light and 

shadow changes (Khalifa and Hashim 2009). The algorithm converts the image 

taken from the camera into a Greyscale image. After it applies noise reduction, 

with canny edge detection and Hough transformation, it detects right and left 

lanes. The algorithm successfully processed the real time video frame with 

sufficient speed, however it was not very successful in detecting sharp curves in 

shadowed areas. F. Mariut 2012 proposed a method that detects the lane markers, 

characteristics of them and is able to detect direction of travelling. The Hough 

Transform was used to detect the lines in images. A technique was developed for 

being ensure to right detection of lane mark by extracting inner margin of the lane 

(Mariut et al.  2012). 

In 2006, Sun and his friends detected lanes by using HSI color model (Sun et al. 

2006). Although pixel values of road lanes are different from the pixel values of 

other areas, even in the studies performed with RGB color model used in image 

processing, in HSI color model, pixel values in lane area are prominently different 

from pixel values of other areas. Therefore, it makes it easier to detect the lanes 

on HSI color model. Sun and his friends converted the image taken from camera 



 

 

 

in RGB format into HSI format and extracted the lower part of the image to detect 

lane lines. Because the intensity value of lane line pixels is explicitly different 

from other pixels’ value, this intensity value is used as threshold and divided into 

separate clusters by Fuzzy C-Means method. Then the image is converted into binary 

image to detect shapes and among these shapes, the ones that have a particular width and 

length rate are assumed to be lanes. Kim and his friends had a similar approach in the 

article they published in 2012. After they had binarized 640x480, 24-bit road 

image, they detected the frame of the object using 4-directional contour tracking 

algorithm and in every 50 pixel, they vectorised the object and extract its 

characteristic. They detected the lanes on the image by dividing the extracted 

vectors into clusters with the help of FCM (Kim et al. 2012). 

 

2.3 CLASSIFICATION and CONVOLUTIONAL NEURAL NETWORKS 

 
2.3.1 Machine Learning 

 
Tom M. Mitchell quoted a formal definition of machine learning as (1997, p. 2) 
 

A computer program is said to learn from experience E with respect to some class 
of tasks T and performance measure P if its performance at tasks in T, as measured 
by P, improves with experience E. 
 

Even though it is most often used interchangeably with the term Pattern 

Recognition (PR), they are not the exactly same and machine learning is evolved 

from Pattern Recognition and computational learning theory. Machine learning is 

study of constructing and exploring algorithm and model from given data for 

making data driven prediction or decision rather than using strict and static 

algorithms to apply prediction on data set such as predicting price of real estate, 

deciding whether given human image is male or female, classification, deciding 

whether email is spam or image classification. In order to apply prediction or 

decision, machine learning techniques creates model with parameters and learns 

parameters by optimizing them by using training data or past experience. 

 



 

 

 

Machine learning algorithms can be broadly categorized as unsupervised or 

supervised by what kind of experience they are allowed to have during the learning 

process (Goodfellow, Bengio and Courville p.104). In supervised learning, there 

is training set 𝑋 = 𝑥, 𝑟  where 𝑥 the feature is or pattern vector, r is the desired 

output which is called label or target and t is the index of sample in the dataset T, 

N is the feature count of X. The aim of supervised learning is learning a mapping 

from input x to an output r to use it for estimating or predicting accurately  𝑦 of 

given value 𝑥 where  𝑦  and 𝑥	is not the element of X. There are many supervised 

learning techniques in the literature which are k nearest neighbors (k-NN), 

decision tree, multilayer perceptron (MLP), support vector machine (SVM), 

artificial neural networks (ANN), linear regression and so on. Since supervised 

learning is provided by the output y by instructor or teacher in order to show 

machine learning algorithm what to do, in contrary of supervised learning, 

unsupervised learning algorithms experience a dataset X which contains input data 

x and no information about target y. Unsupervised learning aims finding or 

extracting useful pat- terns of unlabeled dataset X without instructor or given 

information about data. Many techniques such as clustering, anomaly detection 

widely use unsupervised learning algorithm. 

 

Classification and regression, the two important applications of machine learning 

and supervised learning algorithm, are mainly employed to solve such problems. 

Classification is the method that finding the category or label of given feature such 

as deciding whether the given image of animal is cat or dog. In contrast to 

classification, regression mainly deals with continuous values of data such as 

predicting sales price of used bike. Basically, in machine learning the regular 

approach is that constructing a model (𝑥|𝜃)	where x is the input vector and  	are 

the parameters (Alpaydın, p 39-42). Main goal   of the machine learning algorithm 

is optimizing 𝜃	by minimizing loss E over the each data in dataset X 

 

𝑬 𝜽 𝑿 = 𝑳(𝒓1 − 𝒈 𝒙 𝜽 )                  (2.1) 

 



 

 

 

Where L (.) is the loss between prediction 𝒓1 and model 𝑔 𝑥 𝜃 	which utilizes 
current parameter values of 𝜃. 

			

𝜽11 = 𝒂𝒓𝒈𝐦𝐢𝐧
𝜽
𝑬(𝜽|𝑿)                                                                                           (2.2) 

	

After the parameters 𝜃′′ is found which is called learning phase, the model with 

parameters constructed is used for testing each individual feature of test dataset 

which is different than training set and contains labeled data depicting the 

accuracy of model by using MAE or MSE in order to measure performance of 

the model. 
 

𝑴𝑨𝑬 = 𝟏
𝒏

𝒇𝒊 − 𝒚𝒊 =
𝟏
𝒏

|𝒆𝒊|𝒏
𝒊B𝟏

𝒏
𝒊B𝟏                                     (2.3) 

 

2.3.2 Neural Networks 

Biological Inspiration 

 
The human brain is approximately composed of about 86 billion neurons where 
each neuron is connected to about 10.000 other neurons according to researchers. 

 

          Figure 2.8: Representation of biological neuron network 

           Source:https://cs.stanford.edu/people/eroberts/courses/soco/projects/neural-net-        

      works/Biology/index.html 

 

A neuron is composed of soma (body), dendrites and axons which are input and 
output channels and connect neurons to each other. Each neuron receives 
electrochemical signals/inputs from other neurons from the dendrites. When the sum 



 

 

 

of these electrochemical inputs is enough powerful to activate it, the neuron 
transmits the signal along the axon and passes this electro-mechanical signal to next 
neurons which are connected to axons. Those attached neurons may fire then. 
            Figure 2.9: Biological neuron 

 
Source:https://cs.stanford.edu/people/eroberts/courses/soco/projects/neuralnetworks/ 

         Neuron/index.html 
 

The important point is that a neuron fires only when the total signal received at 

the body exceeding a certain level which means the neuron either fires or do not 

fire. Our entire brain is composed of these interconnected electrochemical 

transmission neurons where very large of these simple units manage to perform 

very complex task. This biological model is the base of artificial neural networks, 

however artificial neural networks still do not come close to complex model of the 

brain, and artificial neural networks have shown their ability that they are good in 

some problems but those problems are still very easy for human brain to solve 

such as image recognition where human brain does not need training process like 

ANNs do. 

 

Artificial Neural Network 

 
Warren McCulloch and Walter Pitts created a computational model for neural 
networks (McCullock and Pitts 1943). The model was showing two distinct 
approach, one focused on biological process in the brain and another focused on 
the artificial intelligence applications of neural networks. In 1949, Donald Hebb 
mentioned in his book and pointed out that the connections between the neurons 
that fire at the same time are enhanced which is essential for human brain learning 
(Hebb 1949, p. 62). Frank Rosenblatt (1958) created the perceptron, an algorithm 
for pattern recognition based on a two-layer computer learning network using 



 

 

 

simple addition and subtraction. With mathematical notation, Rosenblatt also 
described circuitry not in the basic perceptron, such as the exclusive-or circuit, a 
circuit which could not be processed by neural networks until after the 
backpropagation algorithm was created by Paul Werbos (1975). 
However, since neural network algorithm needed computational power and 
resources, many other approaches in AI like Support Vector Machines took the 
place of the study, therefore improvements and works on neural networks were 
quite silent. Eventually, neural networks with deep layered networks have become 
popular after 2000 due to dramatically improved computation resources and 
parallelism of computers. 

 

Perceptron 

 
Perceptron is the main computational unit and the mathematical model of the 

biological neuron. While in actual neurons the dendrite receives a signal from the 

axons of other neurons, in the perceptron those electrochemical signals 

represented as binary or numerical values. In actual neurons, between the dendrite 

and axons, signals are modulated in various amounts where the perceptron 

modeled it by multiplying each input value by a value called the weight. The 

neuron fires an output signal only when the total strengths of the input signals 

exceed a certain threshold, and the perceptron similarly accomplishes it by 

calculating weighted sum of the inputs to present is total strength of the input 

signals and applying a step function on the sum to determine output where it fires 

other neurons which are connected. According to its mathematical modeling, a 

perceptron is composed of several binary inputs 𝑥C, 𝑥D, 𝑥E …𝑥G , Weights  

𝑤C,𝑤D, 𝑤E …𝑤G  a real number expresses the importance of each input values. 
 



 

 

 

                 Figure 2.10: Artificial neuron (Perceptron) 

 
                  Source: An Introduction to Neural Networks (Gurney 1997, p. 30) 
 
When input values are received, perceptron calculates  ∝= 𝑤J𝑥JG

JBC    in order to 

obtain an activation output value to determine if it’s less or greater than some 

threshold value 𝜃 (theta).  

 

𝒐𝒖𝒕𝒑𝒖𝒕 =
𝟎, 𝒊𝒇	 𝒘𝒋𝒙𝒋𝒋 ≤ 𝒕𝒉𝒓𝒆𝒔𝒉𝒐𝒍𝒅
𝟏, 𝒊𝒇	 𝒘𝒋𝒙𝒋𝒋 > 𝒕𝒉𝒓𝒆𝒔𝒉𝒐𝒍𝒅              (2.4) 

 

When this activation value exceeds (or is equal to)   (theta) then the perceptron 

outputs a “1” (action potential) , and if it is 0 or less than Q (theta) then it emits 

“0”. This might be represented graphically as shown in figure X.Y where the 

output has been designated by the symbol y. This relation is called “step 

function” and it decides whether the perceptron should fire if the activation 

exceeds the threshold. In Figure 2.10, graphical representation of the function is 

seen. 



 

 

 

Figure 2.11: Activation-output threshold  
          relation in graphical form  

 

 
Obviously, the perceptron alone is not a model of complete human brain and how 
it makes decision. But connecting such perceptron’s to each other and creating a 
network with them can perform some decision on some sort of problems. In Figure 
2.11, a simple connected neuron called neural network is seen. 

 

 

    Figure 2.12: A simple neural network 

 

The network is composed of perceptron’s and uses step functions as activation 
function and accepts binary output and produces binary output which could be 
utilized to solve basic classification problems. However, when it comes to learning 
phase, changing weights according to some minor changes could flip neuron 
output from 0 to 1 or vice versa and it could change network behavior completely. 
To overcome this problem, another type of neuron called sigmoid neuron could be 
used. Just like perceptron, sigmoid neurons 𝑥C, 𝑥D, 𝑥E …𝑥G  and these inputs can 
take any values between 0 and 1. Similar to perceptron, sigmoid neuron has 
weights for each input 𝑤C,𝑤D, 𝑤E …𝑤G  and an overall bias, b. Instead of output 
is 0 or 1 like perceptron, sigmoid produces output between 0 and 1 which is σ 𝑤. 𝑥 
+ 𝑏 where σ is called the sigmoid function or logistic function and defined b  



 

 

 

 
  𝛔 𝐳 ≡ 𝟏

𝟏\𝒆]𝒛
= 𝟏

𝟏\𝒆] 𝒘𝒋𝒙𝒋]𝒃𝒋
                              (2.5) 

 

Suppose that 𝑧 ≡ 𝑤. 𝑥 + 𝑏 is large positive number then 𝑒de ≈ 0 and 𝜎(𝑧) ≈ 1 
which means when 𝑧 ≡ 𝑤. 𝑥 + 𝑏 is large positive the output of sigmoid neuron 
approaches to 1 and when it input is very negative then 𝑒de → ∞ and 𝜎(𝑧) ≈ 0. \ 
 
               Figure 2.13: Sigmoid function  

 

Since sigmoid function produces input between 0 and 1 and overcomes to 
binary output of step function, there are also another activation functions such 
as hyperbolic tangent, Rectified Linear Unit and Softmax. 
 
The Hyperbolic Tangent is very similar to sigmoid function but it takes values 
between -1 and 1 and defined by 

 

𝐭𝐚𝐧𝐡 𝒙 = 𝐬𝐢𝐧𝐡 𝒙
𝐜𝐨𝐬𝐡 𝒙

= 𝒆𝒙d𝒆]𝒙

𝒆𝒙\𝒆]𝒙
                              (2.6) 

 

 

 

 

 

 

 

 



 

 

 

              Figure 2.14: Hyperbolic tangent function.	
	

	

	

The Rectified Linear Unit (ReLU) is another activation function where it is mainly 
used in deep neural networks. In comparison to sigmoid function, ReLU activation 
function take input values from [0 to ∞) and defined by 

 

𝒇 𝒙 = 𝐦𝐚𝐱 𝒙, 𝟎                              (2.7) 

 
                           Figure 2.15: ReLU function.	
 

 
 

The Softmax function is mainly used as normalizing function commonly used in 
last layer of neural networks in order to encode probabilities output vector for 
classification tasks and defined by 



 

 

 

𝒚𝒊 =
𝒆𝒙𝒊
𝒆𝒙𝒋𝑵

𝒋
                                (2.8) 

 

The Architecture of Neural Network 

 
Since an artificial neuron is not sufficient to model the brain, artificial neuron 
could be connected under a network architecture as it is presented in figure 2.15 
with fully connected layers. 
 

                Figure 2.16: Fully-Connected artificial neural network. 

 

The network architecture’s first layer is input layer composed of input neurons, 

the last layer is output layer and between the input and output layer is hidden layer. 

Hidden layer might have one or multiple layers according to architecture. Mostly 

multi layers networks are called MLP (Multi-layer perceptron). Input signals are 

processed in neurons and propagated to next neuron’s inputs. As for patterns of 

connections, the main distinction of network topologies are feed-forwarded 

networks (FFN) and recurrent networks (RNN). 

In Feed-Forward networks, the data flow from input to output is feed forwarded. 

The data processing can be extend to multiple layers of units but no feedback 

connections there between each layer which means that data propagated from 



 

 

 

layers to inputs of next layer without a form of cycle. Contrary to feed-forward 

networks, recurrent neural network connections have form of cycle between units 

to do feedback. The main property of RNN is having dynamical properties which 

causes network to have temporary memory to process input sequences. 

 

Backpropagation 

 
To establish a well accurate mapping between input and output of a neural 
network, a common method is to train network parameters (weights) with 
supervised learning. This process requires to have a training dataset with output 
data for given input data. By this training data, a network can compare its output 
with actual output. Suppose the desired output is 𝑦	and actual output is 𝑦	is passed 
to a Cost or loss function 𝐶	which minimize the output by adjusting the weights 
and biases of the network.  Let 𝜃	to be the set of all parameters of   the network 
and then the training of the network by supervised learning is to minimize, 

 

𝐦𝐢𝐧
𝜽

𝟏
𝑵

𝑪 𝒚𝒕, 𝒚𝒕 𝜽𝑵
𝒕B𝟏                               (2.9) 

 

The process is passing data through the network, calculating the cost and 

readjusting the parameters until the network reaches to sufficient accuracy when 

the training set is validated by the test set. This method is called backpropagation 

and with gradient descent, backpropagation propagates the gradients of the cost 

function with parameters and puts back them to network. 

 

Stochastic Gradient Descents 

 
In order to update parameters to reach for acceptable accuracy, a couple of 

methods can be employed such as Random search, Random local search or 

Gradient Descent. Random search is very inefficient approach because of finding 

new parameters randomly and following continuously which parameters produce 

the best result in every iteration. Random local search produces better result where 



 

 

 

iteration starts with random W and generates random perturbations 𝛿𝑊 to it and 

if the loss is better, it updates the parameters and keeps continuing iterations. 

 

Convolutional Neural Networks 

 
CNN uses different approach and has special methods similar to multilayer neural 

networks which means it might be accepted as special version of multilayer neural 

networks. A convolutional neural networks is composed of one or more 

convolutional layers which is together with subsampling/pooling layer and at the 

end is followed by fully connected layers which is seen in neural networks. The 

idea behind the convolutional neural networks is motivated by visual perception 

which is called visual cortex of human brain. The visual cortex is composed by 

many cells which are responsible for detecting light in small and sub-regions of the 

receptive fields which is a visual field where more complex cells have got larger 

receptive fields. These receptive field cell process as local filters on the input space 

where they detects edges in the given input space. These results of researches have 

motivated and lead CNN convolutional layers to perform the same functionality 

that cells do on visual cortex. Recognizing an object in an image by CNN is shown 

in Figure 2.17. Features of a layer is fed by input from a set of features located in 

a small neighborhood in the previous layer which is local receptive field. The aim 

of these local receptive fields is extracting elementary visual features such as 

edges, horizontal lines, corners in order to combine them with higher layers. 

 

Figure 2.17: A Typical block diagram of CNN. 

 

Source : Hijazi, S., Kumar, R., & Rowen, C., 2015. Using Convolutional Neural Networks for  
               Image Recognition. 



 

 

 

CNN is used in many areas such as pattern recognition, image recognition, natural 

language processing and speech recognition. Since CNN does not need any hand-

designed feature extraction process which is common in typical pattern or image 

recognition feature extraction process, it has become main advantage of the CNN 

usage in many areas. In convolutional neural networks, weights of the 

convolutional layer are being used for extraction of features and the fully connected 

layer at the end is used for classification. This classification process is determined 

during the training process. Also a CNN network structure can be improved in 

order to save memory requirements and computational complexity as well as 

giving better performance for different kind of problems such as image or speech 

recognition. 

 

CNN’s Components 

 
Convolutional neural networks are composed of multiple stacked layers in order to 

establish a complex architecture for classification problems. These layers are 

divided into four different type of layers which are convolutional layers, 

pooling/subsampling layers, non-linear layers and fully connected layers. 

Typically, the purposes behind of these layers are to reduce the dimensions of 

intermediate layers, reshaping and simulating fully connected layers. Following 

sections describe these components that are given. 

 

 

Convolutional Layers 

 
The convolution is a 2D operation which is defined by kernel of size k x k.  Given 

an input image X with N x M , the convolutional kernel is sliding from left-to-right 

and top-to-bottom along the image X and examining kernel with surrounding pixel 

values and put the result to output image Y where the output pixel location i,j  is 

calculated 

 



 

 

 

𝒀𝒊,𝒋 = 𝒌𝒊1𝒋1𝑿𝒊d𝒌z𝟏𝟐 \𝒊|,𝒋d𝒌z𝟏𝟐 \𝒋1
𝒌
𝒚|B𝟏

𝒌
𝒊|B𝟏                                      (2.10) 

This convolution operator is denoted by * and thus 

 

Y = k * X                               (2.11) 

 
By using this convolution operator, this operation is the main actor of the 

convolutional layer where it finds and extracts different features of the given input 

space N. Convolution layers extracts low-level features such as edges, lines or 

corners. Higher level layers extract higher-level features. Figure 2.18 shows the 

process of 3D convolution used in CNN. Since convolutional is 2D process, the 

image which is composed of R, G and B channels are divided into separate given 

input. The input is size of N x M x D and is convolved with kernel H where each 

size of kernel is k x k x D. Convolution operation is fed by input with kernel and 

to produce output feature, with H kernels at produces H independent features. It 

starts from top-left corner of the specified input and moved to right S element by 

moving from from left to right where S is called “Stride” defines number of step. When 

it reaches to the top-right corner, the kernel is moved to downward direction by 

one element and it repeats to move from left to right by the same stride. This 

process is kept continue until the bottom-right corner is reached by kernel. For 

example, for the case N, M = 48, k = 5, S = 1, there are both 44 different positions 

for left to right top to bottom that the kernel can process which can be formulized 

by  (N- k+1) x (M-k+1). Each feature in the output will contain 44x44 elements 

corresponds to these positions. The kernel is processing under sliding window 

technique for each positions. In this process, k x k x D elements of input and k x k 

x D elements of kernel are multiplied element-by-element and accumulated. 

Therefore, k x k x D multiply-accumulate operations  are used for creating one 

element of one output feature. 

 

 
 
 



 

 

 

               Figure 2.18: 3D process of convolution. 
 

 

Source : Hijazi, S., Kumar, R., & Rowen, C., 2015. Using Convolutional  
Neural Networks for Image Recognition. 

 

Pooling/Subsampling Layers 
 

The aim of the layer is reducing the spatial size representation dimension size to 

reduce the number of parameters and computation in the network. In this layer, 

two different method is seen to apply pooling. One is max pooling and other is 

average pooling. Both method does the same process on the given input space by 

divide it into non-overlapping 2D spaces. In Figure 2.17, layer in second stage is 

the pooling/subsampling layer where every input feature contains of 28x28 

dimension and is divided into 14x14 sub-regions of size 2x2. The methods of 

calculations are average pooling calculates the average of 4 values of 2x2 sub 

region where max pooling calculates the max value of again given 4 values of 

2x2 sub region. 
 

Figure 2.19 represents the pooling process where the input is size of 4x4 and 2x2 

sub- sampling. This 4x4 image is divided into four different matrices of size 2x2. 

Max-pooling method produces the maximum value of the four values in the 2x2 

matrix is the output. However, average pooling method produces the average of 



 

 

 

the four values is the output. In case of average pooling, if the output value is 

calculated to fraction, it is rounded to nearest integer. 

 

Figure 2.19: Representation of Max- Pooling and    
                      Average-Pooling 

 

 

Non-Linear Layers 

 

Typically neural networks and CNN depends or relies on a non-linear “activation” 

or “activation” function to fire distinct identification of likely features on each 

hidden layer. Convolutional neural networks might use a different type of specific 

functions, for example rectified linear units (ReLUs) or non-linear functions such 

as hyperbolic tangent, sigmoid or softmax to implement non-linear triggering. 

Rectified Linear Unit 
 

A ReLU function is implemented by 𝜑(𝑥) = 𝑚𝑎𝑥(𝑥, 0). Therefore input and 

output sizes of the layer are the same. Mainly, the Relu functions increases the 

nonlinear properties of the trigger function as well as of  the overall network 

without affecting convolution layer’s receptive fields. The main advantage of a 

ReLU is that training time of the network is way faster comparatively to other 



 

 

 

non-linear functions used in CNNs (e.g., hyperbolic tangent, softmax and 

sigmoid). ReLU functionality is presented in Figure 2.20 and transfer function is 

plotted between input and output matrices. 

 

Figure 2.20: Representation of  ReLU function. 

 

 

Continuous trigger (non-linear) function 

 

For the each feature, the non-linear layer process element by element. These non-

linear functions can be hyperbolic tangent, sigmoid or softmax in order to process 

output with classification problems. 

 

FC (Fully-Connected) layers 

 

FC (Fully connected) layers are mainly used and constructed as the final layers of 

a CNN. Neurons in a fully connected layer have full connections to all activations 

in the previous layer, as seen in regular artificial neural networks. Their 

activations mathematically sum a weighting of the features from the previous 

layer which can be done by matrix multiplications and its main aim is determining 

to target which can be accepted as classification. In these fully connected layer, 

all feature elements that fed by of the previous layer are used for calculating the 

output feature. 
 

Figure 2.21 shows the FC (fully-connected) layer L where L-1 has got two 

features and each of composed of 2x2 matrices. Figure 2.22 shows stack of 



 

 

 

convolutional layers and fully connected layers to represent image classification 

process. 

 
Figure 2.21: Fully connected layer processing  

 
Source : Hijazi, S., Kumar, R., & Rowen, C., 2015. Using Convolutional Neural Networks  
              for Image Recognition. 

 
 

Figure 2.22: Convolution and fully connected layers 



 

 

 

3. METHODOLOGY 

 

 
In this chapter, implementing vehicle road lane detection system with 
convolutional neural network will be explained. All the implementation was done 
by Java platform. For building neural network deeplearning4j project is used. 
OpenCV java wrapper JavaCV is used for image processing and generating 
dataset. Dataset is downloaded from Caltech. In addition to Caltech dataset, 
manually videos are taken by driving in Istanbul city roads and many lane objects 
are extracted from the dataset. Test application is also build on Java Swing 
platform. 

 

Building a proposed lane detection system based on convolutional neural networks, 
follo- wing steps were taken in thesis. Creating a dataset for train convolutional 
neural network, building a convolutional neural network, training CNN and 
measure performance with test set. Save network with weights and all relevant 
parameters as a image file, extract object proposals from given image and apply 
basic filter on them, give each object to neural network to classify if it is a lane 
object, if the object is classified as lane then high- light that object on the given 
source image. Figure 3.1 is presenting basic flow of the proposed method. 

 
                  Figure 3.1: Flow of proposed method. 
 

 
 

 



 

3.1 COLLECTING and BUILDING DATASET 

 

In the field of machine learning, feeding ml algorithm with the training data as 
much as possible will increase the accuracy of the model. Typically to create a 
machine learning application, the first step is collecting dataset and training the 
algorithm to find optimal parameters of the model. Similarly, training dataset is 
collected to train CNN which will classify image objects and reports its class is 
lane or not. In order to create data set two process is followed. First of all, Caltech 
Cordova dataset is downloaded from the internet. In addition to adding more data 
to training set, manually videos are taken by mobile camera during the driving. 
Figure 3.2 represents the sample images from Caltech dataset and Figure 3.3 video 
image taken by camera. 

 

Figure 3.2: A Sample image from Cal-Tech  
                    Cordova dataset. 

 
                  Figure 3.3: Sample road image from camera video. 



 

 

 

Example image that is taken by camera is not a direct part of the training process. 

In the example image in Figure 3.3, the field of view contains bridge, lanes, vehicle 

on the road, skyscraper and some building and the highway road. Thus lane objects 

should be extracted from the given image and save under training set by labeling 

it. Therefore, one application is created and it extracts objects from the given 

images. After all those objects are extracted, lane objects are labeled with hand. 

Table 3.1 represents sample objects from the training dataset. 
 

Table 3.1: Sample objects from training-set. 
 
 

Lane object 

 

 

Tree objects 

 

 
 

  
 

Traffic signs 

 

 
 

  

 

Grass object 

 

 
 

All object images are coded by 24 bit RGB under PNG file format under file 
system of host computer and approximately size of 10 KB per each file. 

 

As presented in Table 3.1, in addition to lane objects, some of irrelevant objects 
related to roads are added to training dataset such as tree objects, traffic signs and 
grass objects. The aim of adding irrelevant objects is to increase the accuracy of 
neural network. Other- wise it might classify some shapes in the traffic sign as lane 
since the characteristic of the shape similar to lane geometrical model. Adding such 



 

 

 

irrelevant objects increases correlation of the samples and the accuracy. In the 
Figure 3.2, the table represents number of the objects in the training dataset. 

 

Table 3.2: Numbers of training objects and labels. 
 

Lane Objects 978 

Tree 328 

Traffic Signs 1110 

Asphalt 299 

Grass 70 

Cordova irrelevant shapes 43 

Irrelevant objects 112 

Territory 7 

Total 2947 

 

 

3.2 ESTABLISHING and TRAINING CNN 

 

In order to build a CNN and utilize it for classifying objects that are proposed, a 

different multilayered CNN architectures were proposed by researchers. However, 

these architectures that are proposed mainly depends on computing resources 

where memory, storage and multicore computing advantages give researchers to 

implement deeper networks in a modern computer. Following architectures have 

been proposed by researchers. 

 

Lenet is the first and produce good performance of convolutional neural networks 

that was developed by Yann LeCunn in (1990s). After LeNet application was 

proposed, many OCR application has been implemented by LeNet architecture, 



 

 

 

reading digits and recognizing characters of handwritten texts. AlexNet is another 

popular network architecture where convolutional neural networks become 

popular. In (2012), Krizhevsky et al. submitted the architecture to the ImageNet 

ILSVRC (ImageNet Large Scale Visual Recognition Challenge) challenge and it 

significantly outperformed with top 5 error of 16%. The network was very close 

to LeNet architecture but it added many convolutional layers that deeper, bigger 

and featured. ZFNet is ILSVRC 2013 winner by Matthex Zeiler and Rob Fergus. 

It was an improvement on AlexNet by setting on some parameters such as 

expanding the size of middle convolutional layers and using smaller stride and 

kernel size on the first layer. Google proposed GoogLeNet which is the winner of 

ILSVRC 2014. The main contribution of it was the Inception Module which allows 

reducing the network’s number of parameters. In addition to those developments, 

this network uses Average Pooling instead of Fully Connected layers at the top of 

the Convolutional network for eliminating a large of amount of parameters. 

VGGNet is the second of ILSVRC 2014, it was the network by Karen Simonyan 

and Andrew Zisserman. The main contribution was, the network depth which is a 

critical part for good performance. VGGNet architecture contains 16 Convolution 

and fully connected layers, from beginning to end of the network that it uses 3x3 

kernel for both convolutions and pooling. However, downside of VGG- Net is that 

it is more expensive to evaluate and uses a lot of memory and parameters. ResNet 

is a residual network developed by Kaiming He and his friends. It was the winner 

of ILSVRC 2015 with its special feature of connection skipping and use of batch 

normalization which allows faster learning rate and higher accuracy in overall 

network. The Architecture is also missing fully connected layers at the end of the 

network. 

 

LeNet Architecture is selected as lane detections system by utilizing convolutional 
neural network. Following Figure 3.4 represents the layers of LeNet architecture. 
 
 

 

 

 



 

 

 

Figure 3.4: Architecture of LeNet. 
 

 
 
In order to implement a CNN, a Java based deep learning library called DL4J is 
used DL4J (Deep learning for java) is an open-source, distributed deep-learning 
project in Java and Scala by the data science company SkyMind  and aim is 
building deep learning applications for enterprise level. The project is composed 
of many deep learning algorithms, distributed computing support and many dataset 
utilities such as image I/O operations, speech and text reading helpers in order to 
vectorise them to present data. By using DL4J and collected dataset, following 
method that is presented in Figure 3.4 is taken for training our convolutional 
network to solve classification problem during lane detection process. 

 

Figure 3.5: Training method flow. 

 

 
 
 

 

 



 

 

 

Setting variables of network and training process is the key point of getting sufficient 

network classification as a result. Thus, following variables were set during 

training process and varied by output accuracy. 

 

Input Size is set 64x64 pixel where each image of training and test set rescaled to 

this dimension. 

 

Channel is set to 3 where each image is coded under RGB format. Each channel 

is mapped to color channel of image. 

 

Batch size is the number of examples to be fetched with each step. 

 

Epoch is complete pass through a given dataset. 

 

Number of labels is output count of the network. 

 

Weight Initialization is important parameter where adjusting hyper parameters 

during experiment process. Generating weight parameters for each experiment 

may vary on accuracy because initial weights can lead algorithms to different local 

minima and errors- cape. Also the choice of weights is important. When weights 

in the network are too small, then the signal shrinks as it passes through each layer 

where it become too tiny to be useful. When the weights in the network are too 

large, then the signal grows while it passes through each layer until it’s too big to 

be useful. Suppose we are using sigmoid function as activation function. Sigmoid 

function is approximately linear when input goes close to zero, if the weights are 

too large, sigmoid function become flat for larger values as it is shown in figure 

3.6. 

 

 

 

 

 



 

 

 

             Figure 3.6: Plot of sigmoid function. 

 

 

 
Due to this fact, initializing the network weights properly is very important to 
make net- work function properly. During implementation of LeNet architecture 
in this thesis, Xavier weight initialization(Xavier et al. 2010) method is used 
which initializes weights in the network by drawing them from distribution with 
zero mean and specific variance in other words, it keeps the variance remain the 
same while it passes each layer, 

 

𝑽𝒂𝒓 𝑾 = 𝟐
𝒏𝒊𝒏\𝒏𝒐𝒖𝒕

                   (3.1) 

Where W is the initialization for the neuron, 𝑛JG	is the number of input neurons 
and 𝑛��� is the number of output neurons. 

Optimization Algorithm is the method of optimizing cost function. Stochastic 
Gradient Descent is utilized to help minimize error. 

 

Iteration Count is a learning step for updating model’s weights. The network is 

fed by the data, makes predictions about the data, and then corrects its own 

parameters based on error which shows how wrong its predictions were. More 

iterations allow network to take more steps and learn more which means 

minimizing error. 
 

Learning rate is the step size of optimization algorithm where it adjusts weights 

with each iteration. A high learning rate allows net traverse quickly but very error-

prone how- ever low learning rate is more likely to find the minimum but it will 

do this very slowly. 



 

 

 

Momentum is the additional factor in determining how fast an optimization 

algorithm converges on the optimum point. 
 

Regularization is the technique to prevent overfitting. Overfitting is when the 

model fits the training data very well but performs poorly when network predicts 

the output of data which does not belong the dataset. 
 

After variables and parameters are set, network is fit by training dataset and start 

learning process. After the process is done which depends on the epochs and 

iterations, network evaluates its performance by testing predictions with test 

dataset. Measurement parameters of the network, 
 

Accuracy is the percentage of test images that were correctly identified by the 

network. 

 
Precision is the number of true positives divided by the number of true positives 

and false positives. 
 

Recall is the number of true positives divided by the number of true positives and 

the number of false negatives. 
 

F1 Score is weighted average of precision and recall. 

 
After the network is trained, the network is saved as an image file under a 

filesystem when it is desired to be used for image classification. In this thesis, 

network image is compressed and saved as zip file in order to be kept small. 

 

3.3 PROCESSING ROAD IMAGE 

 

In order to detect lines on the road, first the objects in the source image should be 
processed to extract objects. After this process is done, all object that are extracted 
is given to CNN in order to classify it whether it is recognizable by network.  If the 
network classifies the  given object as “Lane”, then our system becomes able to 



 

 

 

access coordinates of the lane on the road. Figure 3.6 represents the flow of image 
processing and classifying the object by the network. 

 

 

Figure 3.7: Flow of image processing and classification. 

 
 

Implementing image processing and related computer vision algorithms, a java 
wrapper of OpenCV is used. OpenCV is most common open-source computer 
vision library that is being used for developing computer vision applications. 

 

Reading image from the source 

 
An example image from the camera or the Caltech Cordova dataset is used for our 
testing. Figure 3.7 shows the samples from the source images. 

 

 Figure 3.8: Samples from source road images.  

 



 

 

 

Suppose I is the original image.  After the source image I1 is loaded into memory, 
it is converted to Greyscale format in order to apply canny edge detection. 
Transformation to Grayscale by	𝑌 ← 0.299. 𝑅 + 0.587. 𝐺 + 0.114. 𝐵.  Figure 3.8 
shows the source image in 24 bit RGB color format in left section and 8 bit 
Grayscale format in right section, 

 

Figure 3.9: Greyscale color transformation on sample image. 
 

 
 

 

 
 

Applying grayscale transformation of the image will allow edge detection to 

perform well on the image. Edge detection application is used for extracting objects 

especially lanes on the road from the source image. 
 

OpenCV Canny edge detection algorithm is employed for extracting lanes as well 
as other objects from the given source image. Regarding to edge detection 
implementation in OpenCV, Gaussian filter is used firstly for filtering out any 
noise on the source image. Since all edge detection results are easily affected by 
image noise, it is important to filter out the noise preventing false detection caused 
by the noise which means it is for smoothing the image by convolve kernel with 
the given image. Kernel of size = 5 shown in below matrix is used since that size 
is common and useful for many images, 
  



 

 

 

𝐊 = 𝟏
𝟏𝟓𝟗

𝟐 𝟒 𝟓 𝟒 𝟐
𝟒 𝟗 𝟏𝟐 𝟗 𝟒
𝟓 𝟏𝟐 𝟏𝟓 𝟏𝟐 𝟓
𝟒 𝟗 𝟏𝟐 𝟗 𝟒
𝟐 𝟒 𝟓 𝟒 𝟐

                                        (3.1)	

 

After filtering out of the noise on the image, the algorithm finds the intensity 
gradient of the image by using Sobel filters. It applies max of convolution pair in 
x and y directions, 

 

𝑮𝒙 =
−𝟏 𝟎 +𝟏
−𝟐 𝟎 +𝟐
−𝟏 𝟎 +𝟏

                    (3.3) 

 

𝑮𝒚 =
−𝟏 −𝟐 −𝟏
𝟎 𝟎 𝟎
+𝟏 +𝟐 +𝟏

                             (3.4) 

 

And it finds the gradient strength and direction with, 

 

𝑮 = 𝑮𝒙𝟐 + 𝑮𝒚𝟐                      (3.4) 

 

𝜽 = 𝐚𝐫𝐜𝐭𝐚𝐧	(𝑮𝒚
𝑮𝒙
)        (3.5)	

 

The edge direction angle is rounded to one of four angles representing vertical, 
horizontal and the two diagonals (0°, 45°, 90° and 135° for example).  After the 
gradient strength and direction is found, it applies Non-Maximum suppression 
where it removes pixels that are not considered to be part of an edge. As a final 
step, Hysteresis step is taken. Canny does use two threshold. On is upper 
threshold where the pixel is accepted as an edge if the pixel gradient value is 
higher than the upper threshold or it’s rejected if the pixel gradient value is below 
the lower threshold. Canny recommended an upper: lower ratio between 2:1 and 
3:1.  Below images that shown in Figure 3.9 presents the given source image 
and processed image after canny edge detection is applied. 



 

 

 

Figure 3.10: Input image, Edge detected image. 
 

 
 
 
 

  
Since canny edge detection operation outputs a binary image of the road and 
extracts the lanes and other objects, in order to make it strong or fill up empty 
pixels in the lanes, a dilation morphological operation is applied. Suppose f is 
binary input image and convolved with   3x3 kernel k. Let, 
 

𝒄 = 𝒇 ∗ 𝒌                   (3.6) 

And Dilation is  

𝒅𝒊𝒍𝒂𝒕𝒆 𝒇, 𝒌 = 𝜽(𝒄, 𝟏)                 (3.7) 

Where 

𝜽 𝒇, 𝒕 = 𝟏, 𝒇 ≥ 𝒕
𝟎, 𝒆𝒍𝒔𝒆                 (3.8) 

	

In the figure 3.10, the output shows the source binary image and output binary 
image that dilation is applied. 

 

 

 

 
 



 

 

 

         Figure 3.11: Input image, processed image with dilation. 
 
 

           
 

 
 

 
Dilation process made the edges stronger in the binary image before the next 

method where the lines in the image will be found. This operation is called Hough 

Transformation. 

 

The Hough transform is a feature extraction method that is used in computer vision 

and image processing applications. The purpose of the method is to find certain 

class of shapes in the given binary image such as lines or circles. In 1962 Paul 

Hough described and patented the transform (Hough, 1962). It was a point to curve 

transformation which has many applications in pattern recognition. Later on, 

Richard Duda and Peter Hart (1972) invented the universally usage by calling 

“Generalized Hough Transformation” by applying Hough line transformation 

which is mainly used for finding lines in the image, suppose the straight line, 

 

𝒚 = 𝒎𝒙 + 𝒃                   (3.9) 

Can be represented as a point (b, m) in a parameter space. However, due to 

characteristic of the vertical line, there can be infinite value of slope parameter 

m. Since computers do have finite resources, it could be computationally 

impossible to store slope parameter. Thus, Hough line transform proposes the 

use of polar coordinate system to represent the line parameters with (p, 𝜃) where  

p is the distance from the origin and 𝜃 ist he angle between the x axis. Therefore, 



 

 

 

it is possible to associate with each line of the pair (p,𝜃). For Hough Transform 

the line is expressed in polar coordinate system as the equation, 

𝒚 = − 𝒄𝒐𝒔𝜽
𝒔𝒊𝒏𝜽

𝒙 + ( 𝒑
𝒔𝒊𝒏𝜽

)            (3.10) 

Also 

𝒑𝜽 = 𝒙𝟎. 𝒄𝒐𝒔𝜽 + 𝒚𝟎. 𝒔𝒊𝒏𝜽             (3.11) 

 

Which means each pair (𝑝�, 𝜃) represents each line that passes by(𝑥�, 𝑦�).  

According to algorithm that by calculating each line passes by the given non 

background pixel (pixel value is not 0) and storing the parameters in the 

accumulator table, it will allow to find lines. In the Figure 3.10, suppose there is 

a line starts from (𝑥J, 𝑦J) to(𝑥�, 𝑦�). When the each pixel on the given line is 

scanned by Hough transformation algorithm, and the each pair (𝑝�, 𝜃) is stored 

in the accumulator table, as it seen on the intersection point (𝑝′, 𝜃) corresponds 

tot he lines that passes through given (𝑥J, 𝑦J) to(𝑥�, 𝑦�). 

 
  Figure 3.12: Hough transformation visualization. 
 

  
 
 

Source:http://www.uio.no/studier/emner/matnat/ifi/INF4300/h09/undervisningsmateriale/houg
h09.pdf 

 
 
 
 
 
 
 



 

 

 

  Figure 3.13: Hough space and lanes on the source image. (Left: original  
          image,   Middle : Hough Space, Right : Lines found on the  
          image) 

 

 
 

 

Using Hough transformation to find lanes on the given road image, 
transformation will report the lines on the image by using OpenCV Hough 
transformation. In the figure 3.12, the lines that are caught on the image is shown. 
The red lines as it is seen on the images are the lines found by Hough 
transformation and they are drawn on the image. 

 

 

      Figure 3.14: Lines are found on the given image by Hough line  
   transformation.  



 

 

 

Even though, the lines are found on the road image, in order to eliminate 
irrelevant shapes, a simple filter is used for eliminating unnecessary lines. The 
filter does basically eliminates lines whose slope is larger that 30ᵒ and area of the 
line smaller than 400px. Figure 3.14 shows the output after elimination, 

 
         Figure 3.15: Filtering out lines on the given image.  

 

 

3.4 OUTPUT 

 
Convolutional neural network typically used as classification in image 

recognation process. However, as it s mention, the lane detection is interested in 

lanes on the road instead of the road image given. Therefore  a method should 

be involved at this phase to extract relevant object which might contains lane. 

This method is called Object proposing. Therefore, the lines that is found by 

hough transformation is used to extract object from given image. Lets say, the 

line is found from the coordinates 𝑥C, 𝑦C 	𝑎𝑛𝑑	(𝑥D, 𝑦D). ). Cropping the 

rectangle by the given coordinates will create a new image on the memory which 

only contains the object that the line is passing over.  This subimage will be 

considered as an object for being proposed to CNN to classify if it is a lane 

object or not.  By traversing on all lines and extracting each subregion of the 



 

 

 

image by CNN will help to find lanes on the road. In the figure 3.15, the left 

image ist he input image and the right image contains the regions of the lanes 

after CNN classified each object. 

 

Figure 3.16: Processed final image. Left: Source image, Right: Output  
          image marked with lane objects 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

4. RESULTS 

 
Lane detection system recognition accuracy depends on two different method on 

the system proposed. One is computer vision algorithm to extract objects from the 

road data to find objects similar to lane shape and CNN classification method which 

detects if the proposed object is lane or not. Since, CNN become a lane 

identification component of the system, it’s very important to adjust CNN 

parameters and train it properly to reach acceptable result. In order to approach 

acceptable result of CNN, some experiments with different parameters will be done. 

These parameters might be training set data count, epoch, training data image sizes 

and network internal parameters such as learning rate, regularization, layer count 

etc.  Since LeNet architecture does have own learning rate, regularization and layer 

count, the other parameters will be considered. In order to observing CNN 

classification accuracy, different parameters will be set and training phase will be 

re-run. The parameters and their values before each test is shown in Table 4.1 

 
Table 4.1: CNN Training Parameters. 
 

Parameter Values Values 
Input Image Size 32x32 Pixels 64x64 Pixels 
Epoch/Iteration 
Count 

50, 200, 800, 1600 50, 200, 800, 
1600 

DataSet Input 
Image Count 

2947, 2943 2947, 2943 

Dataset Training 
Set Image Count 

46, 486 46, 486 

Dataset Label 
Count 

28 28 

Dataset Label 
Count 
(Lane/NoLane) 

2 2 

 

 

Each parameter-set (image size = 32x32 pixels, Epoch = 50), the training 

application run by those parameters to train model. After training by using test-set, 

evaluation of the model is saved. There is also two type of training method is tried 

during training phase. One is splitting training dataset into 28 different label (Lane, 



 

 

 

tree, grass, traffic sign, stops sign etc.…) and another one is two different label 

which is Lane or not a lane for testing and observing classification process accuracy 

according to these two different approach. There is also, different test dataset size 

is used where in one case (28 different label) contains 46 different test objects, 489 

different objects are used for testing 2 labeled class method. 

 

The parameters and evaluation results of each parameter-set for 28 different class 

is shown in table 4.2 

 

Table 4.2: Evaluation and result of each parameter-set (28 classes). 
 

Input 
Image Size 

Epoch/Iteration 
Count 

Accuracy Precision Recall F1 
Score 

64x64 1600 0,8478 0,9467 0,8913 0,9182 
64x64 800 0,8043 0,902 0,8333 0,8663 
64x64 400 0,5870 0,7175 0,6111 0,6601 
64x64 100 0,3478 0,4520 0,2391 0,3128 
64x64 50 0,2826 0,45 0,1594 0,2354 
32x32 6400 0,7174 0,8581 0,8285 0,8430 
32x32 3200 0,7609 0,8465 0,7923 0,8185 
32x32 800 0,3478 0,5327 0,2899 0,3474 
32x32 200 0,2826 0,4324 0,1594 0,2329 
32x32 100 0,2391 0,2894 0,1014 0,1502 

 

 

As it is seen in the table 4.2, increasing epoch on learning will result better accuracy 

since more iterations allow network to take more steps and learn more which means 

minimizing error. However, fort he pixel size of 32x32 where it is input image size, 

in the table 4.2 it is seen that Epoch 6400 results lower accuracy than epoch 3200. 

It is caused by Over-Fitting which means the weights and parameters are fit on 

training set but results improper predictions when the source does not belong to 

training set. It is also important that the input image size is important for learning 

accuracy as it is seen in the table 4.2.  However, as it is seen in the both table 4.2 

and figure 4.1 and Figure 4.2, 64x64 pixel size of training objects give better 

performance than 32x32 pixels size. 

As it is seen in the Figure 4.1, even though epoch is increased after 3200 iteration, 

the accuracy does not increases even it is accuracy goes down as it is mentioned as 

over-fitting.  



 

 

 

Figure 4.1: Epoch/Accuracy ratio of 32x32 pixel size. 

 

However, when training image size is selected to 64x64 pixels, as it is seen in the 

table 4.2, with the same iteration count, it is reaching better accuracy than 32x32 

pixels training images. 

 

Figure 4.2: Epoch/Accuracy ratio of 64x64 pixel size. 



 

 

 

In order to understand the role of training image size relation to accuracy, let’s 

check the sample images in Table 4.3. As it is shown, 64x64 resized form of given 

training image provides better information to CNN to learn edges, corners and other 

relevant shapes. Therefore to using better resolution for training image increasing 

the accuracy. However, it will cause learning phase to consume more time and 

computational resources since input data is bigger.  

 

Table 4.3: Training images resized versions. 
 

Original Image 32x32 pixels 
resized 

64x64 pixels resized 

 
 

 

 

 

 
 

  

Regarding to accuracy, it is important to check score function steps during training. 

In our proposed solution, the each 10 step is logged for creating graph of score 

function divergence. Let’s look at Figure 4.3 showing the score function where 

vertical axis shows score result of cost function and horizontal axis is iteration 

count. 

 

 

 

 

 

 

 

 

 

 



 

 

 

 Figure 4.3: Score function optimization of 32x32 pixel size. 

 

 
  

  

The plot of score functions, it is seen that there is many peak points throughout the 

iterations. It is caused by mini-batch where SGD processes part of training data for 

each time. However, as it is seen, SGD approaches to minimum until training is 

finished on specified epoch (It this sample it’s stopped on iteration count on 7220).   

However, when input size is set to 64x64 pixel size and epoch is set to 1600, as it 

is seen in the Figure 4.4, Cost function approaches to almost 0 when epoch is 

increased.  Therefore, it proves that generally more epochs and better image sizes 

resulting better accuracy for Convolutional neural network applications. Regarding 

to over-fitting, the learning phase could be stopped when the cost function score 

approaches to almost 0 and keep this output stability for a specified batch count.  

 

 

 

 

 



 

 

 

Figure 4.4: Score function optimization of 64x64 pixel size. 

 

 
 

In addition to 28 different classes, the training dataset is splitted in to 2 different 

classeses. One class is determining if the proposed object is lane, another class is 

determining if the proposed object is not a lane. According to test results of 28 

different classes, it results that 64x64 pixels size of training dataset objects is 

produces more accurate result. Thus, 64x64 pixels size of training dataset is used 

for 2 classes test. Table 4.3 shows the results of training and test results. 

 

Table 4.4: Evaluation and result of each parameter-set (2 classes). 
 

Input 
Image Size 

Epoch/Iteration 
Count 

Accuracy Precision Recall F1 Score 

64x64 1600 0,9506 0,9502 0,9554 0,9528 
64x64 800 0,9403 0,9411 0,9461 0,9436 
64x64 400 0,9444 0,9442 0,9494 0,9468 
64x64 100 0,9527 0,9513 0,9559 0,9536 
64x64 50 0,965 0,9635 0,9671 0,9653 

 

 

 

 



 

 

 

Table 4.5: Output of predictions (2 classes). 
 

Input 
Image 
Size 

Epoch/Iteration 
Count 

Number 
of 

NoLanes 
classified 

as 
NoLane 

Number 
of 

NoLanes 
classified 
as Lane 

Number 
of Lanes 
classified 

as 
NoLane  

Number 
of Lanes 
classified 
as Lane 

64x64 1600 245 24 0 217 
64x64 800 240 29 0 217 
64x64 400 243 26 1 216 
64x64 100 249 20 3 214 
64x64 50 255 14 3 214 

 

It is seen in the table 4.3 and Table 4.4, it produced better performance to split 

classes in to two different classes which performs prediction if the given object is a 

lane or not a lane. There is also one important point that splitting dataset to two 

different classes approached acceptable accuracy by 50 epochs where the other 

method which contains 28 different classes is not able to reach the closed accuracy 

by 1600 epochs. It also shows that eliminating unnecessary classes from training 

dataset produces better accuracy for convolutional neural networks. Figure 4.5 

shows score functions of two classes and 100 epoch optimization graph. 

 
           Figure 4.5: Score function optimization of 64x64 pixel size for two classes. 

 

 



 

 

 

5. CONCLUSION 

 
Many of the computer vision applications do extract and recognize objects from the image 

by using hand designed learning system on specific problem where those learning system 

is defined by mathematical parameters such as extracting parallel splines and lines from 

image to detect road lanes or finding shapes similar to face structure on the given image 

to detect faces on the image. These hand-designed mathematical models are strictly 

depend on the specific objects. For example, by using Hough line transformation to detect 

lanes on the road image, the implementation should extract lines, detect if the line objects 

are overlapped on vanishing point to understand if there is a perspective effect, if the line 

does not have any parallel line then the implementation should decide if it is accepted as 

lane or not, and each time to make the algorithm stronger, new road images should be 

reviewed by researchers and the algorithm should be updated. In such computer vision 

applications, convolutional neural network implementations supports those algorithms to 

detect or classify the sample objects to understand if it is expected object. Since 

convolutional neural network classifies the proposed object, the algorithm that extract and 

analyze objects can be simple where analyzing process become simpler. The proposed 

lane detection implementation, the object extracting phase is only extracts the line objects 

and implementation does not need any complex object analyzing phase. Convolutional 

neural network decides if the object is lane or not. Therefore, convolutional neural 

network supports increasing accuracy of such object classification solutions while it does 

not need any complex hand-designed mathematical parameters involved.  In addition to 

ease of implementation, convolutional neural networks does help solutions to detect many 

different objects from the same image. For example, in the proposed lane detection 

method, by training CNN on vehicle, truck, motorbike objects, the same solution will 

classify vehicles on the road by only adding simple vehicle object extraction method. It 

is also same for detecting traffic lights on the same image. Therefore, convolutional neural 

networks will become common method in many computer vision object classification 

solutions where it supports algorithms to detect any object by allows implementation to 

eliminate complex operations. 
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