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ABSTRACT

SOME GENERALIZATIONS OF UNBOUNDED ORDER CONVERGENCE

TYPES IN RIESZ SPACES AND RELATED TOPICS

PHD THESIS

MEHMET VURAL

ABANT IZZET BAYSAL UNIVERSITY GRADUATE SCHOOL OF

NATURAL AND APPLIED SCIENCES

DEPARTMENT OF MATHEMATICS

(SUPERVISOR: PROF. DR. ZAFER ERCAN)

BOLU, SEPTEMBER 2018

One of the main aim of this thesis is to generalize the the notion of multi-normed
spaces to multi-pseudonormed spaces by replacing seminorms with pseudoseminorms
and the fundemental properties of this generalized space were investigated and the
notion of continuous operators between multi-pseudonormed spaces was elaborated.
The other main thing is defined unbounded locally solid Riesz space and investigate
its fundamental properties. In the Rest of the thesis, apart from the generalizations,
we focused on the problem if topological space structure can be characterized in some
real-valued maps; the answer is affirmative : 0-1-valued quasimetrics and we reproves
that if an inequality is valid in reals then it is valid in any Riesz space(need not to be
Archimedean) without using Kakutani Representation theorem.

KEYWORDS:Multi-pseudonormed space, Unbounded locally solid Riesz space,
0-1-valued generalized quasimetrics, inequalities in Riesz spaces.
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ÖZET

RİESZ UZAYLARDA SINIRSIZ SIRA YAKINSAMANIN BAZI

GENELLEMELERİ VE İLİŞKİLİ KONULAR

DOKTORA TEZİ

MEHMET VURAL

ABANT İZZET BAYSAL ÜNİVERSİTESİ FEN BİLİMLERİ

ENSTİTÜSÜ

MATEMATİK ANABİLİM DALI

(TEZ DANIŞMANI: PROF. DR. ZAFER ERCAN)

BOLU, EYLÜL 2018

Bu tezin temel amaçlarından biri yarınormları yarınormsularla değiştirerek çoklu-
normlu uzay kavramını çoklu-normsu uzaylara genellemek ve bu yeni uzayın temel
özelliklerini incelemektir ve çoklu-normsular arasındaki sürekli operatörleri ele al-
maktır. Diğer ana amaç ise sınırsız yerel solid Riesz uzay kavramını tanımlamak ve
bu uzayın temel özelliklerini incelemektir. Tezin geri kalanında ise, bu genellemel-
erden ayrı olarak topolojik uzay yapısı bir takım reel değerli fonksiyonlar tarafından
karakterize edilebilir mi problemine odaklanılmıştır; cevap ise olumludur: 0-1-değerli
quasimetrikler ve Kakutani gösterim teoremi kullanmaksızın ve Riesz uzayın Arşim-
edyan olup olmadığına bakılmaksızın reel sayılarda geçerli olan her eşitsizliğin her-
hangi bir Riesz uzayda da geçerli olduğu ispatlanmıştır.

ANAHTAR KELİMELER: Çoklu-normsu uzaylar, sınırsız yerel solid uzaylar 0-
1 değerli sözde metrikler, Riesz uzaylarda eşitsizlikler.
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1. INTRODUCTION

One of the main convergence in Riesz space 1 is order convergence. In a Riesz

space,say E, a net (xα)α∈A is said to be order convergent to x ∈ E (briefly; xα

o−→ x, xα

o-converges to x) if another net (yβ )β∈B exists in E such that:

i. yβ ↓ 0, that is, (yβ )β∈B is decreasing to 0.

ii. For each β0 ∈ B there exists α0 ∈ A such that |xα − x| ≤ yβ0 for all α ≥ α0.

Unbounded order convergence in a Riesz space has been defined and studied

in Nakano (1948 ) and in Wickstead (1977 ). Recently many authors have started to

work on this topic in Gao et al (2017 ),Gao and Xanthos (2014),Gao (2014 ).Namely

in a Riesz space,say E, a net (xα)
2 is called unbounded order convergent if the net

(|xα−x|∧u) is order convergent to zero for any vector in E+ (briefly; xα

uo−→ x, xα uo-

converges to x). In general every order convergent net is unbounded order convergent

but the converse is not valid (Consider c0 as a Riesz space,the standard unit vectors (en)

uo-converges but not o-converges). It is obvious that order convergence and unbounded

order converge are coincide for order bounded nets. Although in general unbounded

order convergence is not topological convergence in Gao et al (2017 ), in atomic Riesz

space it is (see Theorem 2,Dabboorasad et al (2017)).

In a normed vector lattice, say E, unbounded norm convergence is defined as

an analogy of unbounded order convergence as;a net (xα) in E is said to be unbounded

order convergent to x∈ E if (|xα−x|∧u)
‖.‖0−−→ for any vector u∈ E+ (briefly; xα

un−→ x,

xα un-converges to x). The notion of unbounded norm convergence has been defined

in Troitsky (2004 ) and many papers have been written on it, (i.e, Deng et al (2017

), Kandic et al (2017 )) and it has been extended to the locally solid Riesz space.

(see Dabboorasad et al (2018 )). In Kandic et al (2017 ) it has been noticed that

unbounded norm convergence defines a topology, that is, there exists a new topology

on the normed Riesz space E so that the unbounded norm convergence and topological

convergence coincide with respect to this new topology which is called un-topology

in Kandic et al (2017 ). In the same paper it is also proved that in Banach lattices,

the norm convergence and unbounded norm converge coincide if and only if it has

(strong)order unit (Theorem 2.3).
1In this paper all Riesz spaces be assumed Archimedean
2The index is not written unless it is necessary
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In a locally solid Riesz space, the notion of unbounded topological convergence

has been defined and studied in Dabboorasad et al (2018 ) and Taylor (2017 ). The

definition of unbounded topological convergence is given as follows ; a net (xα) in

a locally solid Riesz space (E,τ) is said to be unbounded topological convergent to

x ∈ E if (|xα−x|∧u) τ−→ 0 for any vector u ∈ E+ (briefly; xα

uτ−→ x, xα uτ-converges to

x). Unbounded topological convergence in a locally solid Riesz space not only defines

a topology but also it has a locally solid topology.

Let X be a vector space and E be a Riesz space. A map p from X into E is

called lattice norm or E−valued lattice norm if the following conditions are satisfied:

(i) p(x) = 0↔ x = 0, (ii) p(λx) = |λ |p(x) for all x ∈ X and for all λ ∈ R, and (iii)

p(x+y)≤ p(x)+ p(y) for each x,y∈ X , in this case the triple (X , p,E) is called lattice

normed space, abbreviated as LNS. Let us consider any Riesz space, the map p(x)= |x|

is an E−valued lattice norm and for any normed space (X ,‖.‖, the map N(x) = ‖x‖ is

an R−valued lattice norm. If X ,E are Riesz spaces and p is a map from X into E with

the monotonicity property (i.e; x ≤ y implies p(x) ≤ p(y)), then the triple (X , p,E) is

called lattice normed vector lattice, abbreviated as LNVL. In a lattice-normed vector

lattice (X,p,E), a net (xα) in X is said to be p-convergent to x ∈ X if p(|xα−x|) o−→ 0 in

E (briefly; xα

p−→ x, xα p-converges to x).In [?] the notion of unbounded p-convergence

is defined as follows ; a net (xα) in X is said to be unbounded p-convergent to x ∈ X if

p(|xα − x| ∧u) o−→ 0 in E for any vector u ∈ X+ (briefly; xα

up−→ x, xα up-converges to

x)

From this point on the basic definitions concerning unity and convenience are

going to be surveyed.

A binary relation R on a non-void set E is a subset of E×E,the elements of a

binary relation are written as xRy instead of (x,y) ∈R. If a binary relation R on E is

reflexive (xRx ∀x∈ E), antisymmetric(xRy and yRx implies that x = y ∀x,y∈ E) and

transitive (xRy and yRz implies that xRz ∀x,y,z ∈ E), then it is called order relation

and it is written as x ≤ y or y ≥ x instead of xRy. The pair (E,≤) is called partially

ordered set. An element x ∈ E is called an upper bound for a given non-empty subset

A of E if a≤ x for all a ∈ A. If the set of all upper bounds of A⊆ E is non-empty, then

it is said that A is bounded above. An upper bound x of A is called least upper bound

or supremum if x ≤ y holds for any element y of the set of all upper bounds. Lower

2



bound, bounded below and greatest lower bound(infimum) can be easily defined as an

analogy of upper bound, bounded above and supremum, respectively. A⊆ E is said to

be order bounded if A is bounded below and bounded above. For any a,b ∈ E, the set

{x : a≤ x≤ b} is called order interval, denoted by [a,b].

A partially ordered set E is said to be lattice if the supremum and infimum of the

set {x,y} exists for any x,y ∈ E. The supremum and infimum of two elements denoted

by x∨ y and x∧ y, respectively. If a nonempty subset A of E satisfies the statement

x,y ∈ A⇒ x∧ y,x∨ y ∈ E, then it is called sublattice. The supremum and infimum of

a set A⊆ E are denoted by sup(A) or
∨

A and inf(A) or
∧

A,if they exist.

A vector space over R,say E, which is equipped with an order relation≤ is said

to be ordered vector space if the following two axioms are satisfied:

i. If x,y,z ∈ E and x≤ y, then x+ z≤ y+ z,

ii. If x,y ∈ E, x≤ y and α ∈ R+ then αx≤ αy.

In an ordered vector space E, E+ denotes the set of all positives elements of E,

that is E+ = {x : x ∈ E and 0≤ x} and it is called positive cone.

An ordered vector space is called Riesz space or vector lattice if the order rela-

tion on itself is also a lattice. In a Riesz space E, some special vectors lie in E which

is related with a fixed vector x ∈ E: positive part of x as x+ := x∨0, negative part of

x as x− := (−x)∨0 and absolute value of x as |x| := x∨ (−x). For any fixed x,y ∈ E,

if |x| ∧ |y| = 0, they are called disjoint and x ⊥ y refers to the disjointness of x and y.

In this sense, let A ⊂ E be given, the set Ad := {x : x ∈ E,x ⊥ a∀a ∈ A} denotes the

disjoint complement of A.

In a Riesz space, a net (xα)α∈I is called increasing if α,β ∈ I and α ≤ β , then

xα ≤ xβ . it is denoted by xα ↑. Also the notion xα ↑ x for an x ∈ E indicates that

xα is increasing and supα∈I xα = x. Analogously, the decreasing net and the notions

xα ↓,xα ↓ x are defined.

For any element,say x, of a positive cone of a vector lattice,say E, if the state-

ment 1
nx ↓ 0 holds then E is called Archimedean vector lattice.

A vector lattice is said to be Dedekind complete or order complete if every

nonempty subset which is bounded above has a supremum.

If a subset A of a vector lattice E is a vector subspace and sublattice, then it

3



is called vector sublattice and if for any 0 < x ∈ E there exists 0 < a ∈ A such that

0 < a < x, then it is called order dense vector sublattice and also if for any x ∈ E+

there is a ∈ A such that x≤ a, then it is called majorizing vector sublattice.

A subset A ⊂ E is called solid if y ∈ A whenever |y| ≤ |x| in E for some x ∈ A.

A solid subset A of a vector lattice E is said to be ideal if it is also a vector sub-

space. For any subset A; IA denotes the intersection of all ideals containing A, is called

ideal generated by A and is formulated as follow:

IA := {x ∈ E : ∃a1,a2...,an ∈ A and λ ∈ R+ with |x| ≤ λ

n

∑
i=1
|xi|}

If A = {a}, then IA is called principal ideal. A subset A of a vector lattice E is

called order closed if {aα} ⊆ A and aα

o−→ a in E implies that a∈ A. Order closed ideal

is called as a band.For any subset A; BA denotes the intersection of all bands containing

A, is called band generated by A and is formulated as follow:

BA := {x ∈ E : ∃{aα} ⊆ A with 0≤ aα ↑ |x|}

Let E and F be vector lattices and T be a linear operator from E into F . T

is called lattice homomorphism if the equality T (x∨ y) = T (x)∨ T (y) holds for all

x,y ∈ E. If it is one-to-one, it is called lattice isomorphism.

For any vector lattice E, there exists unique Dedekind complete vector lattice F

and a lattice isomorphism T : E → F such that T (E) is a majorizing and order dense

sublattice of F , hence F is called Dedekind complition of E and denoted by Eδ .

A topology τ on a vector space E is called linear topology if it makes both

addition and scalar multiplication continuous.A linear topology τ on a Riesz space is

called locally solid if it has a neighborhood system at zero consisting of solid sets. In

this case, the pair (E,τ) is called locally solid Riesz space and if the neigbourhood

system at zero consists of convex and solid sets, then τ is called locally convex-solid

topology, so the pair (E,τ) is called locally convex-solid Riesz space.

4



2. AIM AND SCOPE OF THE STUDY

In chapter 3: We introduce the multi-pseudonormed spaces as a generalization

of multi-normed spaces by replacing seminorms with pseudoseminorms.

In chapter 4:We introduce the notion of unbounded locally solid Riesz space

and investigate its some fundamental properties. Especially in the last two parts of this

chapter, we define the product of unbounded locally solid Riesz space and unbounded

absolute weakly solid Riesz space.

In chapter 5: We prove that all topologies come from a family of 0-1-valued

quasimetrics. Therefore we refine the main theorem of Kopperman (1988 ) by taking

0-1-valued generalized quasimetrics and also reprove that every topological space is

induced by a quasi-uniformity.

In chapter 6: We prove that an elementary inequality is true in R then it is

true in any Riesz space that is not to be Archimedean without using Kakutani repre-

sentation theorem and Stone–Weierstrass theorem.
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3. LATTICE MULTI-RIESZ PSEUDONORMED

VECTOR LATTICE

3.1 Introduction

Given a set X , a convergence “ C−→" for nets in X is defined by the following

two conditions: 1) xα ≡ x⇒ xα

C−→ x; 2) xα

C−→ x⇒ xβ

C−→ x for every subnet xβ of

the net xα . Let “ C−→" be a convergence on a vector space X which agrees with linear

operations, i.e.:

X 3 xα

C−→ x, X 3 yα

C−→ y, R 3 rα → r (1)

implies

rα · xα + yα

C−→ r · x+ y. (2)

In this case, we say that X = (X ,C) is a convergence vector space. Basic examples

of such convergence vector spaces are: a topological vector space X = (X ,τ) with τ-

convergence and a space X of measurable functions on a measure space with almost

everywhere convergence. If in addition, we assume that X is a vector lattice in which

the convergence agrees with lattice operations in the sense that (1) implies

rα · xα ∧ yα

C−→ r · x∧ y, (3)

we say that X = (X ,C) is a convergence vector lattice.

In this chapter, we introduce several new convergence structures on vector

spaces and vector lattices. But we deeply focus on the section of lattice multi-Riesz

pseudonormed vector lattice.

3.2 Multi-Pseudonormed Spaces (MPNS)

Definition 1. We say that a collection M = {mα}α∈A of seminorms on a (complex)

vector space X is a multi-norm if for any 0 6= x∈X there is mα ∈M such that mα(x)>

0. In this case, we say that X =(X ,M ) is a multi-normed space (abbreviated by MNS)

with the multi-norm M .

6



Multi-normed spaces in the sense of Definition 1 (see, for example Kutateladze

(1996 )[p.94]) are also known as Hausdorff locally convex vector spaces. Notice that

nowadays the name multi-normed space becomes popular for quite different class of

spaces Dales and Polyakov (2012).

Definition 2. Given a vector space X, a function p : X →R is called pseudoseminorm

whenever:

(a) p(x)≥ 0 for all x ∈ X;

(b) p(x+ y)≤ p(x)+ p(y) for all x,y ∈ X; and

(c) lim
n→∞

p(αnx) = 0 for all x ∈ X and for all C 3 αn→ 0.

If, additionally,

(d) p(x)> 0 implies x 6= 0,

we say that p is a pseudonorm.

Example 1. Let us consider the set of all real-valued continuous functions on [0,1],

the map

p : C([0,1])→ R

f 7→ p( f ) := | f (x0)|

where f assigns the maximum value at x0. The map p is a pseudonorm.

Remark 1. Let us consider the all bounded real-valued functions on [a,b] as a vector

space. For a fixed x0 ∈ [a,b], we can define a map

p : B([a,b])→ R

f 7→ p( f ) := max{ f (x0),0}

p is a pseudoseminorm on B([a,b]). The topology generated by p does not define a

linear topology since consider the sequence of functions, defined by

fn(x) := {
−n x = x0

0 x 6= x0

fn converges to zero function with respect to the topology generated by p, but− fn does

7



not converges to zero function.

Definition 3. A collection P = {pα}α∈A of pseudoseminorms on X is said to be a

multi-pseudonorm if, for any 0 6= x ∈ X there is pα ∈P such that pα(x) > 0. In this

case we say that X = (X ,P) is a multi-pseudonormed space (abbreviated by MPNS)

with the multi-pseudonorm P .

Example 2. Let (Pi)i∈I be the family of the partitions of [0,1], then for each i ∈ I,

consider the map:

p : B([0,1])→ R

f 7→ p( f )

given by p( f ) = | ∑
Pik

f (xk)| where f (xk) is the maximum value of f on kth interval of

Pi. For each i ∈ I, the map pi is a pseudoseminorm, and P = {pi}i∈I is a multi-

pseudonorm on B([0,1]).

Remark 2. The example given in (Remark 1.) can be used for giving an example to

multi-pseudonormed space. Let us consider B([a,b]), and the family of pseudosemi-

norms P = {px}x∈[a,b], the family P satisfies the condition that for any 0 6= f ∈

B([a,b]) there exists px0 ∈P such that px0( f ) > 0. Hence (B([a,b]),P) is a multi-

pseudonormed space.The topology generated by the family P does not define a linear

topology too but the sets Up,ε{x∈X : p(x)≤ ε}where p∈P and 0< ε ∈R as a neigh-

bourhood subbase at zero defines a linear topology. If the each member of the family

P satisfies (i)p(λx)≤ p(x) for any |λ | ≤ 1 and (ii)p(xn)→ 0 implies p(λxn)→ 0 for

all λ ∈ R, then the topology < P > turns a linear topology. (schaefer (1966))

3.3 Lattice Multi-Pseudonormed Spaces (LMPNS)

3.3.1 Lattice normed spaces (LNS)

Definition 4. Let us consider a complex or real vector space,say X and a real vector

lattice ,say E. A map p from X into E+ is said to be E-valued norm, whenever:

(a) p(αx) = |α| · p(x) for all x ∈ X ,α ∈ C;

8



(b) p(x+ y)≤ p(x)+ p(y) for all x,y ∈ X; and

(c) x 6= 0 implies p(x) 6= 0.

If, additionally,

(d) p(x) = e1 + e2 with x ∈ X, e1,e2 ∈ E+ implies that x1 + x2 = x with p(x1) = e1

and p(x2) = e2 for some x1,x2 ∈ X, we say that the E-valued norm p is said to be

decomposable. A vector space (X , p,E) equipped with an E-valued norm p is called

lattice normed space (abbreviated by LNS).

Remark 3. In some sense lattice normed space structures can be understood as ’super-

structure’ since any vector lattice X can be written as LNS (X , |.|,X) and also any

normed space (X ,‖.‖) as (X ,‖.‖,R).

3.3.2 Lattice-valued pseudonorms

Definition 5. Let us consider a complex or real vector space,say X and a real vector

lattice ,say E. A map p from X into E+ is said to be E-valued pseudonorm, whenever:

(a) p(x+ y)≤ p(x)+ p(y) for all x,y ∈ X;

(b) x 6= 0 implies p(x) 6= 0;

(c) p(αnx) o−→0 for all x ∈ X and C 3 αn→ 0.

If condition (b) is dropped, p is said to be an E-valued pseudoseminorm.

Decomposable E-valued pseudonorm and lattice pseudonormed space (shortly,

LPNS) are defined similarly to corresponding ones in Definition 4.

Example 3. Let us consider C([0,1]) as a vector lattice, x0 ∈ (0,1) and 0 < ε <

min{1− x0,x0}, ε ∈ R be fixed. Consider the map:

px0,ε : C([0,1])→C([0,1])

f 7→ px0,ε( f )
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given by

px0,ε( f )(x) :=


| f |(x) x /∈ [x0− ε,x0 + ε]

l−| f |(x) x ∈ [x0− ε,x0]

l+| f |(x) x ∈ [x0,x0 + ε]

where l−| f |(x) and l+| f |(x) are the lines passing through the points x0 and | f |(x0−ε) and

the points x0 and | f |(x0+ε),respectively. px0,ε is a C([0,1])−valued pseudoseminorm.

Example 4. Let us consider c0 := {(xn) : xn→ 0} as a vector space and c00 := {(xn) :

xn→ 0 and {xn 6= 0 : n ∈ N} is finite} as a vector lattice, then consider the map p:

p : c0→ c00

(xn) 7→ p(xn) = d|xn|e

It is c00−valued pseudonorm.

3.3.3 Lattice multi-normed spaces (LMNS)

Definition 6. Let us consider a complex or real vector space,say X and a real vector

lattice ,say E. A map p from X into E+ is said to be E-valued seminorm if:

(a) m(αx) = |α| ·m(x) for all x ∈ X, α ∈ C; and

(b) m(x+ y)≤ m(x)+m(y) for all x,y ∈ X.

Example 5. Let us consider l∞ = {(xn) : supn |xn|< ∞} as a vector lattice, the map

p : l∞→ l∞

x = (xn) 7→ p(x) := (yn)

where yn =
y1+y2+...+yn

n for each n. p is a l∞−valued seminorm.

The following definition is similar to Definition 1

Definition 7. We say that a collection L = {lα}α∈A of E-valued seminorms on X is a

lattice multi-norm if for any 0 6= x ∈ X there is lα ∈L such that lα(x) 6= 0. In this case
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we say that X = (X ,L ,E) is a lattice multi-normed space (abbreviated by LMNS)

with the E-valued lattice multi-norm L .

Example 6. Let consider the map πn : C(R)→C0(R) defined by f 7→ f en where

en =


1
nx+1 x ∈ [−n,0]

−1
n x+1 x ∈ [0,n]

0 otherwise

For each n ∈ N, πn is a C0(R)−valued seminorm so the triple (C(R),L ,C0(R)) is a

LMNS where L denotes the family of seminorms {πn}n∈N.

3.3.4 Lattice multi-pseudonorms

Definition 8. We say that a collection G = {gα}α∈A of E-valued pseudoseminorms

on X is a lattice multi-pseudonorm if for any 0 6= x ∈ X there is gα ∈ L such that

gα(x) 6= 0. In this case we say that X = (X ,G ,E) is a lattice multi-pseudonormed

space (abbreviated by LMPNS) with the E-valued multi-pseudonorm G .

Example 7. Let X be a normed space, consider the map πn : XN→R, given by πn( f )=

‖ f (n)‖. πn is a real-valued pseudoseminorm for each n∈N, so (XN,G ,R) is a LMPNS

where G = {πn}n∈N.

3.4 Lattice Multi-Pseudonormed Vector Lattices (MLPNVL)

In the last section of the paper, we apply concepts developed above to the case

when X is a vector lattice.

3.4.1 Multi-pseudonormed vector lattices (MPNVL)

Definition 9. Given a vector lattice X, a pseudoseminorm r : X → R is called a Riesz

pseudoseminorm whenever |x| ≤ |y| implies r(x)≤ r(y).

We say that a collection R = {rα}α∈A of Riesz pseudoseminorms on X is a

multi-Riesz pseudonorm if for any 0 6= x ∈ X there is rα ∈ R such that rα(x) > 0.
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In this case we say that X = (X ,R) is a multi-Riesz pseudonormed space with the

multi-Riesz pseudonorm R.

Hausdorff locally solid vector lattices (cf. Aliprantis and Burkinshaw (1978))

are exactly multi-pseudonormed vector lattices with multi-pseudonorms consisting of

so-called Riesz pseudoseminorms. They have been investigated recently from the point

of view of multi-Riesz pseudonorms in Ercan and Vural (2018 ).

Proposition 3.4.1. Let (X ,R) be multi-Risz pseudonormed space. The collection

Ru = {ru
α}α∈A,u∈X+ of functions defined by

ru
α(x) := rα(|x|∧u) (x ∈ X)

is a multi-Riesz pseudonorm. Moreover, the uτ-topology is exactly the topology of

multi-Riesz pseudonormed space (X ,Ru).

Proof. Let α ∈ A and u ∈ X+ be fixed elements. It is easily seen that for any x ∈ X ,

ru
α(x)> 0, since ru

α(x) = rα(|x|∧u)> 0. For the condition (b);

ru
α(x+ y) = rα(|x+ y|∧u)≤ rα((|x|+ |y|)∧u)

≤ rα(|x|∧u+ |y|∧u)

≤ rα(|x|∧u)+ rα(|y|∧u)

= ru
α(x)+ ru

α(y)

For the condition (c); let {λn} ⊂ C be any sequence such that λn→ 0, the inequality

ru
α(λnx) = rα(|λnx|∧u) = rα(|λn||x|∧u)≤ rα(|λn||x|)

gives that limn→∞ ru
α(λnx) = 0. And also for a given 0 6= x ∈ X , there exist α0 ∈ A such

that rα(x) > 0 and if we choose u0 ∈ X+ such that |x| ≤ |u0|,then ru0
α0(x) = rα0(|x| ∧

u0) = rα0(x)> 0.

Theorem 3.4.2. Let (X ,R) be Dedekind complete multi-Riesz pseudonormed space.

Then the multi-Riesz pseudonorm Ru is metrizable iff R is metrizable and X has a

countable orthogonal system.
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Proof. Assume Ru is metrizable so there must be a countable family (αi,ui)i∈I where

αi ∈ A,ui ∈ X+ for each i ∈ I such that Upui
αi ,εi

= {x ∈ X : pui
αi ≤ εi,0 < εi ∈ R} is the

neigbourhood subbase of zero for (X ,Ru). It is easy to see that Upαi ,εi = {x∈ X : pαi ≤

εi,0 < εi ∈R} is the neigbourhood subase of zero (X ,Ru). ’only if’ direction is easily

seen.

3.4.2 Lattice multi-Riesz pseudonormed vector lattices (LM-

RPNVL)

Definition 10. Let X and E be vector lattices. An E-valued seminorm r is called E-

valued Riesz seminorm if r(x)≤ r(y) whenever |x| ≤ |y|.

Remark 4. The map in the Example 5 is not l∞−valued Riesz seminorm since x =

(1,−1,1,−1,1,−1...) and x = (1,0,1,0,1,0...) is in l∞ and |y| ≤ |x| but p(y)� p(x),

and also the map in the Example 6 fails to be C0(R)−valued Riesz seminorm. But the

map πn : XN→ R in the Example 4 is a real-valued Riesz seminorm.

Definition 11. Given vector lattices X and E. We say that a collection L = {lα}α∈A

of E-valued Riesz seminorms on X is a lattice multi-Riesz norm if for any 0 6= x ∈ X

there is lα ∈L such that lα(x) 6= 0. In this case we say that X = (X ,L ,E) is a lattice

multi-Riesz normed space with the lattice multi-Riesz norm L .

Example 8. Consider the real-valued bounded functions on [0,1], P= {x0 = 0,x1, ...,xn =

1} be a partition of [0,1], the map

T : B([0,1])→C([0,1])

f 7→ T ( f )

given by T ( f ) := li(x) whenever x ∈ (xi−1,xi) where 1 ≤ i ≤ n and li(x) is the line

passing through xi−1 and f (xi).

Definition 12. Let X and E be vector lattices. An E-valued pseudoseminorm r is called

an E-valued Riesz pseudoseminorm if r(x) ≤ r(y) whenever |x| ≤ |y|. If additionally

r(x) 6= 0 for any nonzero vector x ∈ X, we say that r is an E-valued Riesz pseudonorm.
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We say that a collection R = {rα}α∈A of E-valued Riesz pseudoseminorms on X is

an E-valued multi-Risz pseudonorm if for any 0 6= x ∈ X there is rα ∈ R such that

rα(x) 6= 0. In this case we say that X =(X ,R,E) is a lattice multi-Riesz pseudonormed

lattice (abbreviated by LMRPNVL) with the E-valued multi-Riesz pseudonorm R.

Proposition 3.4.3. Every Hausdorff locally solid vector lattice is a LMRPNVL.

Proof. Let (X ,τ) be a locally solid Riesz space, it is known by Fremlin’s theorem that

τ is generated by a family of Riesz pseudoseminorms (pi)i∈I . And E : RI is the vector

lattice of all real-valued functions on I . Define a map

r : X −→ E

x 7−→ r(x)

given by r(x)[i] = pi(x).Clearly that the map r satisfies the conditions (a),(b),(d)(?) and

the monotonicity. we check condition (c);

Suppose (λn) is a sequence R such that limn→∞ λn = 0. Our aim to show that r(λnx) o−→

0 in E. Note that limn→∞ λn = 0 in R so it is bounded in R, hence the sequence (λnx)

is order bounded in X . since the sequence r(λnx) is order bounded in E. so

r(λnx) o−→ 0 if and only if r(λnx)→ 0 pointwise in E

Let i ∈ I, then r(λnx)[i] = pi(λnx), so pi(λnx)→ 0 as n→ ∞ since pi is a Riesz Pseu-

doseminorm. Thus r is lattice-valued Riesz Pseudoseminorm and (X ,{r},E) is a LM-

RPNVL.

Definition 13. In an LMRPNVL (X ,R,E), A net (xα) is said to be R−converges to

x ∈ X if rλ (xα − x) o−→ 0 in E for each rλ ∈ R and this convergence abbreviated as

xα

R−→ x.

Theorem 3.4.4. In an LMRPNVL (X ,R,E), let consider the nets (xα)α∈A,(yβ )β∈B. If

xα

R−→ x and yα

R−→ y then (xα ∨ yβ )(α,β )∈(A×B)
R−→ x∨ y. Moreover, xα

R−→ x implies

that x−α
R−→ x−.

Proof. Let λ ∈ Λ be fixed. If xα

R−→ x and yβ

R−→ y then there exist two net (z
α
′ )

α
′∈A′

and (w
β
′ )

β
′∈B′ in E such that (z

α
′ ) ↓ 0 and (w

β
′ ) ↓ 0 and also for a given (α

′
,β
′
) ∈
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A
′×B

′
there are α

α
′ ∈ A and β

β
′ ∈ B such that rλ (xα − x)≤ z

α
′ and rλ (yβ − y)≤ w

β
′

for all (α,β )≥ (α
α
′ ,β

β
′ ). By using the inequality |a∨b−a∨ v| ≤ |b− c|:

rλ (xα ∨ yβ − x∨ y) = rλ (|xα ∨ yβ − xα ∨ y+ xα ∨ y− x∨ y|)

≤ rλ (|xα ∨ yβ − xα ∨ y|+ rλ (|xα ∨ y− x∨ y|)

≤ rλ (|yβ − y|+ rλ (|xα − x|)

≤ w
β
′ + z

α
′

for all α ≥ α
α
′ and β ≥ β

β
′ . Since (w

β
′ + z

α
′ ) ↓ 0, then rλ (xα ∨ yβ − x∨ y) o−→ 0 in

E.

Definition 14. Let (X ,R,E) be a LMRPNVL and Y ⊂ X. Y is called R−closed in X

if, for any net (xα) in Y that R−convergent to x ∈ X, it implies that x ∈ Y .

Lemma 3.4.5. The positive cone X+ is R−closed.

Proof. Let {xα} ⊂ X+ and xα

R−→ x, so rλ (xα − x) goes to zero for any λ ∈ Λ. By

the previous theorem rλ (xα)
−− (x)− goes to zero in E, for all α we have x−α = 0 , it

follows rλ (x)− = 0 for all λ ∈ Λ, then (x)− = 0, it means x ∈ X+.

Proposition 3.4.6. Any monotone R−convergent net in an LMRPNVL (X ,R,E) o−converges

to its R−limit.

Proof. Let xα ↑ be a net in X and xα

R−→ x.Fix arbitrary α , xβ −xα ∈ X+ for β ≥ α , by

Theorem 1 xβ − xα

R−→ x− xα and by Lemma 1 x− xα ∈ X+ so x ≥ xα for any α , so

x is an upper bound of {xα} since α is arbitrary.And now let assume y≥ xα for all α ,

then again y− xα

R−→ y− x implies y− x ∈ X+, then y≥ x.Thus xα ↑ x.

Definition 15. Let (X ,R,E) be an LMRPNVL. Then

i. A net (xα)α∈A in X is said to be R−Cauchy if the net (xα − x
α
′ )(α,α

′
)∈(A×A)

R−converges to zero.

ii. X is called R−complete if every R−Cauchy net in X is R−convergent.

iii. A subset Y ⊂ X is called R−bounded if there exists e ∈ E such that π(y)≤ e for

all y ∈ Y .
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iv. X is called oR−continuous if xα

o−→ 0 implies that π(xα)
o−→ 0.

v. X is called R−KB-space if every R−bounded increasing net in X+ is R−convergent.

Theorem 3.4.7. For a R−complete LMRPNVL (X ,R,E),TFAE.

1. X is oR−continuous

2. If 0≤ xα ↑≤ x holds in X, then (xα) is R−Cauchy.

3. xα ↓ 0 in X implies rλ (xα) ↓ 0 for each rλ ∈R.

Proof. (i)⇒ (ii) Let 0 ≤ xα ↑≤ x in X , by [2,lemma 4.8] there exists a net in X such

that (yβ − xα)α,β ↓ 0 so X is oR−continuous then rλ (yβ − xα)→ 0 for any rλ ∈ R

and so rλ (yβk
− xα)→ 0 where yβk

= yβ , hence xα is R−Cauchy.

(ii)⇒ (iii) Assume that xα ↓ 0 in X . Fix arbitrary α0, for α ≤ α0, xα ≤ xα0 , and

(xα − xα0)α≤α0 ↑≤ xα0 , by the assumption the net (xα − xα0) is R−Cauchy since X

is R−complete then there exists x ∈ X such that (xα − x) R−→ 0 as α0 < α → ∞,so by

proposition 2.5., xα ↓ x and hence x = 0. As a result xα

R−→ 0 and by the monotonicity

of rλ , rλ xα ↓ 0.

(iii)⇒ (i) Let xα → 0, then there exists a net zβ ↓ 0 such that, for any β there exist

αβ so that |xα | ≤ zβ for all α ≥ αβ . Hence π(xα) ≤ π(zβ ) for all α ≥ αβ , by (ii),

π(zβ ) ↓ 0 therefore π(xα)
o−→ 0 or xα

π−→ 0.

Theorem 3.4.8. Let (X ,R,E) be an oR−continuous and R−complete LMRPNVL,

then X is order complete.

Proof. Assume 0≤ xα ↑≤ u, then by Theorem 2 xα is a R−Cauchy net, then there ex-

ists an x∈ X such that xα

R−→ x by the R−completeness of X .And from the Proposition

3 xα ↑ x,this completes the proof.

Theorem 3.4.9. If a LMRPNVL (X ,R,E) is R−KB-space then it is oR−continuous.

Proof. Let we assume xα ↓ 0, we define yα := xα0−xα(α ≥α0) for a fixed α0. yα is an

increasing net and it is R−bounded, so by the assumption there exists y ∈ X such that

yα

R−→ y, then by proposition 3 yα

o−→ y in X . Actually yα ↑ y, then y = supα≥α0
yα =

supα≥α0
(xα0− xα) = xα0 , so xα ↓R 0. Hence by theorem 2 X is oR−continuous.
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Theorem 3.4.10. If a LMRPNVL (X ,R,E) is R−KB-space then X is order complete.

Proof. Let we assume 0 ≤ xα ↑≤ y ∈ X , then rλ (xα) ≤ rλ (y) for all rλ ∈R, then by

the assumption there exists x ∈ X such that xα

R−→ x, then by proposition 3 xα

o−→ x.

Theorem 3.4.11. Let (X ,R,E) be a R−KB-space and Y ⊆ X be a order closed sub-

lattice, then (Y,R,E) is also R−KB-space.

Proof. Let we assume yα ↑ be a R−bounded net in Y+, then X is a R−KB-space,

there exists x ∈ X such that yα

R−→ x. By proposition 3 yα ↑ x, so by the closedness of

Y ; x ∈ Y . Therefore (Y,R,E) is a R−KB-space.

In a LMRPNVL X ,R,E, the elements x,y ∈ X is said to be R−disjoint if

rλ (x) ⊥ rλ (y) for all rλ ∈ R and a subset B of X is said to be R−band if for some

non-empty subset M ⊆ X , B = {x ∈ X : m ⊥R x ∀m ∈ M}. Neither a R−band is a

band nor a band is a R−band in general, see Aydin et al (2017 ) for examples. But the

property in the following definition guarantee that every R−band is a band in X .

Definition 16. Let (X ,R,E) be an LMRPNVL, (X ,R,E) is called R−fatou space if

0≤ xα ↑ x in X implies xα ↑R x

Proposition 3.4.12. In a R−fatou space, every R−band is a band.

Proof. Let B⊆ X be a R−band, so by the definition there exists a subset M of X such

that B = {x ∈ X : m ⊥R x ∀m ∈M}. It is easy to see that B is an order ideal. Let we

assume 0≤ xα ↑ x in X where {xα} ⊆ B, by the assumption xα ↑R x, so by theorem 1

; rλ (x)∧ rλ (m) = 0 for all m ∈M, hence B is a band.

Definition 17. Let (X ,R,E) be a LMRPNVL and A⊆ X. A subset B⊆ A is said to be

R−dense in A if for a fixed rλ ∈R, for every a ∈ A and for any 0 6= u ∈ rλ (X) there

is b ∈ B such that rλ (a−b)≤ u.

Remark 5. Let consider the set of all polynomials defined on [0,1], denoted by P([0,1])

as a vector space. P([0,1]) is C([0,1])−dense with respect to the map

p : P([0,1]→C([0,1]

f 7→ p( f )

given by
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p( f ) =

| f | f ∈ P([0,1])

0 otherwise

But it is not C([0,1])−dense with respect to the map, given in example 3, since

if we choose x0 =
1
2 and ε = 1

105 and

f (x) =


1 x = 0

2 x =
k
∑

n=1

1
4n2 for some k

l f (x) otherwise

l f denotes the lines passing through (x,1) and (x,2). We cannot find a polynomial p

such that p( f− px0,ε)≤ g. On the other hand the set {(xn)∈ c0 : xn =(n,n,n,n,0,0,0...)}

(first n−1 term is equal to n). This set is not dense in c0 but it is c00−dense in c0.

Definition 18. Let (X ,R,E) be a LMRPNVL, a vector e ∈ X is called R-unit if, for

any x ∈ X+ we have π(x− x∧ne) o−→ 0 in E.

Remark 6. Let (X ,R,E) be a LMRPNVL,

i. R−unit need not to be positive, consider the example in Remark 1; the function

f (x) =

1 x = x0

−1 x 6= x0

is a R−unit since for any g ∈ B([a,b])+, p(g−g∧n f ) is equal to p(h) where

h(x) =

0 x = x0

g(x)−n f (x) x 6= x0
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so p(h) = 0.

ii. If e is an R−unit and 0 < α ∈ R, then αe is also a R−unit. Since for a fixed

rλ ∈R, and for any x ∈ X+

rλ (x− x∧nαe) = rλ (α( x
α
− x

α
∧ne))≤ [α]rλ (

x
α
− x

α
∧ne)→ 0

where [α] = min{m ∈ Z : α ≤ m}

iii. If e1 and e2 are R−units, then e1 + e2 is also a R−unit.

iv. If e is a R−unit, then e need not to be a weak unit in X. In example 4, the

sequence (1,1,1,0, ...) is an R−unit, but (0,0,0,1,0, ...) 6= 0 and (1,1,1,0, ...)∧

(0,0,0,1,0, ...) = 0.

v. If e ∈ X is a strong unit, then e is a R-unit. Since For any x ∈ X+ there exists a

k ∈N such that x≤ ke, Let rλ ∈R be fixed, then e is a strong unit, so rλ (x−x∧

ne) = rλ (x− x) = rλ (0) = 0 for all n≤ k.

vi. If X is oR-continuous , then every weak unit of X is R-unit. Since Let e be

a weak unit. For each x ∈ X+, x∧ ne ↑ x so it means x− x∧ ne ↓ 0, from the

oR-continuity rλ (x− x∧ne)→ 0 for any rλ ∈R.

Proposition 3.4.13. Let (X ,R,E) be a LMRPNVL and e ∈ X+. If the ideal generated

by e in X is R−dense in X then e is R−unit.

Proof. Firstly let we assume rλ (0) = u > 0 for some rλ ∈R. For 0 ∈ X and 0 6= u ∈

rλ (X), there must be b∈X such that rλ (−b)≤ rλ (0) but we know that rλ (0)≤ rλ (−b),

hence rλ (−b) = rλ (0), moreover for each x ∈ [−|b|, |b|], rλ (x) = u, and r
λ

1
n |b|
→ 0 but

it is impossible unless u = 0. Then rλ (x− x∧ne) goes to zero for each x ∈ X+.

3.4.3 Mixed LMRPNVLs

Let (X ,R,E) be a LMRPNVL and (E,‖.‖) be a normed lattice, then R∗ =

{‖rλ‖}λ∈Λ is also anR−valued pseudoseminorm on X , and (X ,R∗,E) is called mixed-

LMRPNVL

Remark 7. Let (X ,R∗,R) be a mixed-LMRPNVL:
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i. If (X ,R,E) is oR−continuous and ‖.‖ is order continuous then (X ,R∗,R) is

oR∗−continuous.Since xα

o−→ 0 implies rα(xα)
o−→ 0 implies ‖rα(xα)‖→ 0.

ii. If a subset Y of X is R−bounded in (X ,R,E), then Y is R∗−bounded in

(X ,R∗,R). Let rλ ∈ R be fixed so there exists e ∈ E such that rλ (y) ≤ e for

all y ∈ Y so by the monotonicity of the norm; ‖rλ (y)‖ ≤ ‖e‖.

iii. If Y ⊆ X is R−dense in (X ,R,E) then Y is R∗−dense in (X ,R∗,R). Since Let

rλ ∈R be fixed. a ∈ X and 0 6= u ∈ rλ (X) be given, we know that there exists

y ∈Y such that rλ (a−y)≤ u, so by the monotonicity of the norm ‖rλ (a−y)‖ ≤

‖u‖.

iv. If (X ,R,E) is R−fatou space and ‖.‖ is order continuous then (X ,R∗,R) is

also R∗−fatou space. Since 0≤ xα ↑ x implies xα ↑R x, it means rλ (xα − x) ↓ 0

for any rλ ∈R so by the order continuity ‖rλ (xα − x)‖ ↓ 0.

v. If (X ,R1,E) and (E,R2,F) be two R1−KB and R2−KB spaces, then R2◦R1 is

a F−valued pseudoseminorm on X and (X ,R2 ◦R1,F) is R−KB-space. Since

let we assume {xα} be an R2 ◦R1 = R−bounded increasing net, so for a fixed

rλ ∈ R2 and rβ ∈ R1, there exists f ∈ F+ such that rλ (rβ (xα)) ≤ f for all α ,

R2 is an KB-space so ...As a consequences of this remark it is easily seen that

if (E,‖.‖) is a KB-space and (X ,R,E) is a R−KB-space then (X ,R∗,R) is a

R∗−KB-space.

3.4.4 R−continuous operators on LMRPNVLs

An operator T : E→ F between two Riesz spaces is said to be order continuous

if xα

o−→ 0 in E implies T (xα)
o−→ 0 in F . We refer to Aliprantis and Burkinshaw (1985)

and Aliprantis and Burkinshaw (1978) for the basic properties of the class of order

continuous operators. Recently in Bahramnezhad and Azar (2017) , Bahramnezhad

and Azar (2017) and Aydin (2018) new classes of operators defined with different type

order continuity on operators. In this section we generalize these classes of operators.

Definition 19. Let X1 = (X1,R1,E1) and X2 = (X2,R2,E2) be two lattice multi-Riesz

pseudonormed lattice. A positive operator T : X1 → X2 is said to be R−continuous
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operator if xα

R1−−→ 0 implies T (xα)
R2−−→ 0.

Example 9. Let T : X → E be any order continuous positive operator between two

Riesz spaces,so T : (X , |.|,X)→ (E, |.|E) is R−continuous operator.

Example 10. Let T : X → E be any unbounded order continuous positive operator

between two Riesz spaces,so T : (X ,{ru}u∈X+,X)→ (E,{lv}v∈E+,E) is R−continuous

operator where ru(x) := |x|∧u and lu(x) := |x|∧ v.

Example 11. Let T : X → E be any strongly unbounded order continuous positive op-

erator between two Riesz spaces,so T : (X , |.|,X)→ (E,{lv}v∈E+,E) is R−continuous

operator

Example 12. A lattice valued locally solid Riesz space (LNLS) is a triple (X , p,E)

where X is a vector lattice, p is a E−valued vector norm and E be a locally solid Riesz

space. In a LNLS, a net xα is said to be pτ−converges to x if p(xα − x) τ−→ 0, and an

operator between two LNLS T : X1→ X2 is said to be pτ−continuous if xα

pτ−→ 0 in X1

implies T (xα)
pτ−→ 0 in X2. Now consider the family of real-valued Riesz pseudonorms

R := (ri ◦ p)i∈I where (ri)i∈I be the family of Riesz pseudonorms which generates the

locally solid topology. R−continuity coincides with pτ−continuity.

Proposition 3.4.14. If a positive R−continuous operator T : X1→ X2 dominates S :

X1→ X2, then S is also R−continuous operator.

Proof. Let (xα)
R1−−→ 0, and we know that r2

λ
(T (xα))

o−→ 0 in E2 for each r2
λ
∈R2, by

the monotonicity of r2
λ

, r2
λ
(S(xα))≤ r2

λ
(T (xα)), hence S(xα)

R2−−→ 0.

Theorem 3.4.15. Let (X ,R,E) be an LMRPNVL, and f be an order bounded linear

functional on (X ,R,E), the following statements are equivalent:

i. f is R−continuous

ii. f+ and f− are both R−continuous

iii. | f | is R−continuous

Proof. (i) =⇒ (ii) Let (xα) be a net in X+ such that xα

R−→ 0, f+ = sup{ f (y) : 0≤ y≤

x} so we can choose a net yα such that 0≤ yα ≤ xα and f+(xα)−λα ≤ f (yα) where
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λα ↓ 0 be a net in R. Hence we have that yα

R−→ 0, then by the assumption f (yα)→ 0

in R,So by the inequality f+(xα)≤ λα + f (yα), we get f+(xα)→ 0. Therefore f+ is

R−continuous and f− = (− f )+ is also R−continuous. (ii) =⇒ (iii) It is clear that

| f | is R−continuous since | f | = f++ f−.(iii) =⇒ (i) | f | dominates f ,then follows

from Proposition 4, f is R−continuous.

Theorem 3.4.16. Let (X ,R,E) be an LMRPNVL, then LR(X ,R) is a band of E .

Proof. It is easily seen that LR(X ,R) is an ideal as a consequence of Theorem 3. Let

( fλ )λ∈Λ be a net in LR(X ,R) such that 0 ≤ fλ ↑ f in E . Let assume 0 ≤ xα

R−→ 0 in

X , then for any λ ∈ Λ we have 0 ≤ f (xα) = ( f − fλ )(xα)+ fλ (xα),then fλ (xα)→ 0

and ( f − fλ )(xα)→ 0 since f − fλ ↓ 0.

Proposition 3.4.17. Let X1 = (X1,R1,E1) and X2 = (X2,R2,E2) be two lattice multi-

Riesz pseudonormed lattice,then we have the following:

i. If 0 ≤ T ∈ LR(X1,X2) and X1 is OR−continuous then xα ↓ 0 in X1 implies

T (xα) ↓ 0 in X2.

ii. If T : x1→X2 is an onto lattice homomorphism and xα ↓ 0 in X1 implies T (xα) ↓ 0

in X2, then T ∈ LR(X1,X2)

Proof. i. Assume 0 ≤ T ∈ LR(X1,X2) and xα ↓ 0 in X1, X1 is OR− continuous

then xα ↓R1 0, by the assumption T (xα) ↓R2 0 and by proposition 3 T (xα) ↓ 0.

ii. It is trivial.
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4. TOWARDS A THEORY OF UNBOUNDED LO-

CALLY SOLID RIESZ SPACES

4.1 Introduction

Recall that a linear topology τ on E is called locally solid if it has a neighbor-

hood system at zero consisting of solid sets. One can easily show that given a set P

of Riesz pseudoseminorms 1 defines a solid topology with a subbase of zero which

is {p−1(−ε,ε) : p ∈ P,ε > 0}. This topology is denoted by < P >, and it is called

locally solid topology generated by P. Conversely, Fremlin’s Theorem says that every

locally solid topology is a generated by a family of Riesz pseudoseminorm. That is,

a linear topology τ is locally solid if and only if τ =< P > for some set P of Riesz

pseudoseminorms.(see Fremlin (1974 ))

Theorem 4.1.1. Let (E, ||.||) be a normed vector lattice. For any u ∈ E+, the map

Pu : E −→R+ defined by Pu(x) = |||x|∧u||, is a Riesz pseudoseminorm. Moreover, the

un-topology and the topology which is generated by the family (Pu)u∈E+ coincide.

Proof. Let u ∈ E+ be given. Obviously, the conditions (1),(2) and (5) hold. For con-

dition (3): Let x, y ∈ E be given. Since |x + y| ≤ |x|+ |y|, we have |x + y| ∧ u ≤

(|x|+ |y|)∧ u ≤ |x| ∧ u+ |y| ∧ u and since ||.|| is a lattice norm, we get the inequality

Pu(x+y)≤ Pu(x)+Pu(y) by the monotonicity and the triangle inequality properties of

lattice norm. For condition(4): Let {λn} ⊂ R be a sequence such that limn→∞ λn = 0

and x ∈ E, the inequality

Pu(λnx) = |||λnx|∧u|| ≤ ||λnx||= |λn|||x||

implies that limn→∞ Pu(λnx) = 0. Hence Pu is a Riesz pseudoseminorm.

Let (xα) be a net converging to x in un-topology, that is, || |xα − x| ∧ u || → 0

for each u ∈ E+. By definition, Pu(xα − x) converges to zero for each u ∈ E+, so it

converges to x in the topology generated by the family (Pu)u∈E+ . Converse direction is

also true. This completes the proof.

1For the convenience of the definition of E−valued Riesz pseudoseminorm in the previous chapter,
the term ’Riesz pseudoseminorm’ will used instead of ’Riesz pseudonorm’.
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This theorem shows that un−topology is locally solid. Following theorem is on

a short characterization of Riesz pseudonorm.

Theorem 4.1.2. Let E be a Riesz space and p : E → R be a map. The followings are

equivalent:

i. p is a Riesz pseudoseminorm;

ii. p(x) = p(|x|) for all x ∈ E and for each u ∈ E+, the map pu : E→R, defined by

pu(x) = p(|x|∧u), is a Riesz pseudoseminorm.

Proof. If (i) holds, following the proof of Theorem(2.1), we can get (ii). Suppose

that (ii) holds. Since p(x) = p(|x|) = p|x|(x) ≥ 0, it is obvious that p(x) = p(|x|) =

p|x|(x) = 0 whenever x = 0. Let x, y ∈ E be given. Then

p(x+ y) =p(|x+ y|∧ (|x|+ |y|)

=p|x|+|y|(|x+ y|)

≤p|x|+|y|(|x|)+ p|x|+|y|(|y|)

=p(|x|∧ (|x|+ |y|))+ p(|x|∧ (|x|+ |y|)

=p(|x|)+ p(|y|)

so that p satisfies the triangle inequality. Let x ∈ E be given. Then

limn→∞ p(λnx) = limn→∞ p(|λnx|) = limn→∞ p|x|(|λn||x|) = 0.

If |x| ≤ |y| then

p(x) = p(|x|) = p(|x|∧ |y|) = p|y|(|x|) = p|y|(x)≤ p|y|(y) = p(|y|) = p(y).

This completes the proof.

4.2 The main definition and its motivation

Let p be a Riesz pseudoseminorm on E. For each u ∈ E+, the map pu : E →

R is also a Riesz pseudoseminorm defined by pu(x) = p(|x| ∧ u). Let (E,τ) be a

locally solid Risz space. So there exists a family of Riesz pseudoseminorms (pi)i∈I
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such that τ =< (pi)i∈I >. For any A ⊂ E+, there exists a different family of Riesz

pseudoseminorms (pi,a)i∈I,a∈A where pi,a(x) = p(|x|∧a) for each i∈ I and a∈ A. This

related family defines a locally solid topology. This fact coincides with the Mitchell A.

Taylor’s definition of "unbounded τ−convergence with respect to A" in Taylor (2017

). Here is the Mitchell A. Taylor’s definition.

Definition 4.2.1. Let X be a vector lattice, A ⊆ X be an ideal and τ be a locally

solid topology on A. Let (xα) be a net in X and x ∈ X. We say that (xα) unbounded

τ-converges to x with respect to A if |(xα)− x|∧ |a| τ−→ for all a ∈ A+.

In Taylor (2017 ), the topology corresponding to the convergence in the above

definition is denoted by uAτ .

Observation:

Let E be a Riesz space, and p : E→R be a Riesz pseudoseminorm. For a given

nonempty set A⊂ E+, consider the map pA : E→ R defined by

pA(x) = supa∈A p(|x|∧a)

It is obvious that the map pA satisfies the conditions (1)− (3) and (5), we must check

condition (4): Let {λn} ⊂ R be any sequence converging to zero. Then

pA(λnx) = sup
a∈A

p(|λnx|∧a) = sup
a∈A

p(|λn||x|∧a)

≤ sup
a∈A

p(|λn||x|)

= p(|λn||x|)−→ 0

so that pA is a Riesz pseudoseminorm.

Let P = (pi)i∈I be a family of Riesz pseudoseminorms and A ⊂P(E+) that

does not contain the empty set. This family generates a topology, say τ . The locally

solid topology which is generated by the family {pi,A : i ∈ I,A ∈ A } will be denoted

by u < τ,A >. Actually, if A contains the empty set, then u < τ,A > is nothing but a

discrete topology. For any {A} ∈P(E+), u < τ,{A}>6= uAτ , but u < τ,
⋃

A >= uAτ

holds. Moreover, u < τ,{A} >⊂ uAτ . As an example let consider R2 with Euclidean
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norm,and take the set of non-negative part of x−axis as A, then the sequence (xn)

(xn := 2+ sinn) does not converges in uAτ ,but converges in u < τ,{A}>.

Some remarks:

Let (E,τ) be a locally solid Riesz space, (pi)i∈I be the family of Riesz pseu-

doseminorms such that τ =< (pi)i∈I >. Then

(1) For any A ⊂P(E+), u < τ,A >⊂ τ holds.

Proof: xα

τ−→ x⇐⇒ pi(xα − x)→ 0⇐⇒ pi(|xα − x|)→ 0, and for each a ∈ E+

we have pi(|xα − x|∧a)≤ pi(|xα − x|), hence

supa∈A pi(|xα − x|∧a)≤ pi(|xα − x|) for each A ∈A .

So xα

u<τ,A >−−−−−→ x.

(2) If A = {{E+}}, then u < τ,{{E+}}>= τ .

Proof: It is clear that supa∈E+
pi(|x|∧a) = pi(|x|) = pi(x).

(3) If A ⊂B then u < τ,A >⊂ u < τ,B > for all A ⊂B ⊂P(E+).

Proof: xα

u<τ,B>−−−−−→ x⇐⇒ supb∈B pi(|xα − x|∧a)→ 0 for each B ∈B

=⇒ supa∈A pi(|xα − x|∧a)→ 0 for each A ∈A ⊂B.

Hence, xα

u<τ,A >−−−−−→ x.

(4) For each A ⊂P(E+) u < τ,
⋃

A >⊂ u < τ,A > holds.

Proof: Let xα

u<τ,A >−−−−−→ x. So for a fixed i ∈ I and A ∈A , pi,A(xα − x)→ 0⇐⇒

supa∈A pi(|xα − x|∧a)→ 0, and it is obvious that

pi(|xα − x|∧a)≤ supa∈A pi(|xα − x|∧a) for each a ∈ A.

Hence, pi,{a}(xα − x) = pi,{a}(|xα − x|) = supa∈{a} pi(|xα − x| ∧ a) = pi(|xα −

x|∧a)→ 0.
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(5) For each A ⊂P(E+) u < τ,
⋃

A >= u < τ, I(
⋃

A )> holds where I(
⋃

A ) is

the ideal generated by
⋃

A .

Proof: Since
⋃

A ⊂ I(
⋃

A ), we have u < τ,
⋃

A >⊂ u < τ, I(
⋃

A ) > from

(3). Let xα

u<τ,A >−−−−−→ x and b ∈ I(
⋃

A )+ be given, there exists a1, ...,an ∈
⋃

A

and k ≥ 0 such that 0≤ b≤ k(a1 + ...+an). Then

|xα − x|∧b≤ |xα − x|∧ k(a1 + ...+an)≤ ∑
n
i=1 |xα − x|∧ kai,

= k ∑
n
i=1

1
k |xα − x|∧ai

≤ km∑
n
i=1 |xα − x|∧ai

where m is the smallest positive integer greater than 1
k . Then by the monotonicity

of pi,

pi(|xα − x|∧b)≤ pi(km∑
n
i=1 |xα − x|∧ai)→ 0.

Hence, pi(|xα − x|∧b) = supb∈{b} pi(|xα − x|∧b). This completes the proof.

(6) For each A ⊂P(E+) u < τ,
⋃

A >= u < τ,
⋃

A > holds.

Proof: Suppose that xα

u<τ,A >−−−−−→ x and b ∈ (
⋃

A )+ be given. Choose a net

(bβ ) ∈
⋃

A with bβ

u<τ,A >−−−−−→ b. Let i ∈ I be fixed and ε ≥ 0 be given. Choose

β0 such that pi(bβ0−b)< ε

2 . Then

|xα − x|∧b = |xα − x|∧ (b−bβ0 +bβ0)

≤ |xα − x|∧ (|b−bβ0 |+ |bβ0 |)

≤ |xα − x|∧ |b−bβ0|+ |xα − x|∧ |bβ0 |

Applying pi to this inequality, one can show the existence of α0 such that pi,{b}(xα−

x)< ε . This completes the proof.

(7) If 0≤ a≤ b, then u < τ,{a}> u < τ,{b}>.
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Proof: It is clear that;

sup
a∈{a}

pi(|xα − x|∧a) = pi(|xα − x|∧a)

≤ pi(|xα − x|∧b)

= sup
b∈{b}

pi(|xα − x|∧b)

(8) If e ∈ E is a strong order unit, then u < τ,{{e}} >= u < τ,
⋃

E+ >. But the

converse of this statement is not true in general. For example, consider c0 as a

Banach lattice with supremum norm, with norm topology τ and e = (1
n). Then

u < τ,{{e}}>= u < τ,
⋃

E+ >, but e is not an order unit.

(9) If e is a quasi-interior point, then u < τ,{{e}} >= u < τ,
⋃

E+ > from (5) and

(6).

(10) For any A ⊂P(E+), u < τ,A >= u < u < τ,A >,A > holds.

4.3 Unbounded locally solid Riesz space

From the motivation of the above observation, we give the following definition.

Definition 4.3.1. A real valued map q on a Riesz space E is said to be unbounded Riesz

pseudoseminorm if there exists a Riesz pseudoseminorm p on E and A⊂ E+ satisfying

q(x) = supa∈A p(|x|∧a). In this case, we say that q is generated by p and the subset A.

It is obvious that every unbounded Riesz pseudoseminorm is a Riesz pseu-

doseminorm. So the topology which is generated by unbounded Riesz pseudosemi-

norm is a locally solid topology. If unbounded Riesz pseudoseminorm q is generated

by Riesz pseudoseminorm p and A⊂ E+, then the topology generated by q is weaker

than the topology which is generated by p. Recall that every family of Riesz pseu-

doseminorms defines a locally solid topology. Conversely, every locally solid topology

is determined by a family of Riesz pseudoseminorms.

Definition 4.3.2. Let (E,τ) be a locally solid Resz space generated by the family

(pi)i∈I of Riesz pseudoseminorms . The locally solid Riesz space on E generated by
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the family of unbounded Riesz pseudoseminorm on E is called unbounded locally solid

Riesz space generated by τ , and denoted by τ
′

Proposition 4.3.3. Let (E,τ) be a locally solid Riesz space. If τ is a Hausdorff locally

solid topology, then the unbounded locally solid topology is also Hausdorff.

Proof. Let (pi)i∈I be a family of Riesz pseudoseminorms such that τ =< (pi)i∈I > and

x 6= 0 be given, then there exists some i0 ∈ I such that pi0(x)> 0.Then,

qi0,{|x|} := supa∈{|x|} pi0(|x|∧a) = pi0(|x|∧ |x|) = pi0(|x|) = pi0(x)> 0.

It is obvious that qi0,{|x|} is an unbounded Riesz pseudoseminorm, so τ
′
is a Hausdorff

topology.

Definition 4.3.4. A net (xα) in a locally solid Riesz space (E,τ) is unbounded topo-

logical convergent if it is convergent in unbounded locally solid Riesz space (E,τ
′
).

Theorem 4.3.5. Let (E,τ) be a Hausdorff locally solid Riesz space and (xα) be an

increasing net. Then the followings are equivalent:

1. (xα)
τ−→ x in (E,τ);

2. (xα)
τ
′

−→ x in (E,τ
′
).

Proof. Since τ
′ ⊂ τ , it is easy to see that (1) implies (2). Now suppose (2) holds. Since

τ
′

is a Hausdorff locally solid Riesz space by the Proposition 4.3, we have xα ↑ x.

Thus |x| is an upper bound for the net (xα) and 2|x| is an upper bound for the net

(|xα−x|). Now suppose that (pi)i∈I is the family of Riesz pseudoseminorms such that

τ =< (pi)i∈I >. Let i ∈ I be arbitrary. Then,

pi(xα − x) = pi(|xα − x|) = pi(|xα − x|∧2|x|)

= sup
a∈{2|x|}

pi(|xα − x|∧a)

:= qi,{2|x|}(xα − x)→ 0.

This completes the proof.

Theorem 4.3.6. Let (E,τ) be a Hausdorff locally solid Riesz space, and τ
′

be the

unbounded locally solid topology generated by τ . Then τ has Lebesgue property if and

only if τ
′
has Lebesgue property.
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Proof. One side of the implication is clear. Let us assume that xα ↓ 0 implies xα

τ
′

−→ 0.

Then , it is easy to see that xα

τ−→ 0 by using the Theorem 4.5. This completes the

proof.

4.3.1 Product of unbounded locally solid Riesz space

Theorem 4.3.7. Let (Ei,τi)i∈I be a family of locally solid Riesz spaces. Then the

product space ∏i∈I Ei is unbounded locally solid Riesz space if and only if for each i,

Ei is an unbounded locally solid Riesz space.

Proof. Suppose that for each i ∈ I, (Ei,τi) is an unbounded locally solid Riesz space,

and τi is generated by a family Qi of the unbounded Riesz pseudoseminorms on Ei. So

for each q ∈Qi, there exists a Riesz pseudoseminorm p on Ei and Ai ⊂ E+
i , depending

on q, such that

q(x) = supa∈Ai
p(|x|∧a) for all x ∈ Ei.

Let j ∈ I and q ∈ Q j be given. Choose p and A j as above. Let Pj be the projection

from E = ∏i Ei into E j and f j be vector space embedding of E j into E, that is, f j sends

x ∈ E j to (xi) where x j = x and xi = 0 for all i 6= j. One can show that for each Riesz

pseudoseminorm on E j, p◦Pj is a Riesz pseudoseminorm on E. We note that for each

q ∈ Q j,

q◦Pj((xi)) = q(Pj(xi)) = q(x j) = supa∈A p(|x j|∧a) = supa∈A j p◦Pj(|(xi)|∧ f j(a)).

Thus, q ◦Pj is an unbounded Resz pseudoseminorm on E. And the the topology of

∏i Ei is the topology generated by {q ◦Pj : j ∈ I,q ∈ Q j}. Hence, the locally solid

Riesz space ∏i Ei is an unbounded locally solid Riesz space.

Now suppose that E = ∏i Ei is an unbounded locally solid Riesz space, and i0

is given. Suppose that the topology of E is generated by the family Q of unbounded

Riesz pseudoseminorm on E. Let q ∈ Q be given. There exists A = (Ai) ∈ E+ and

Riesz pseudoseminorm p on E such that q(x) = supa∈A p(|x| ∧ a) for all x ∈ E. It is

obvious that for each i0, p◦ fi0 is a Riesz pseudoseminorm on Ei0 and

q◦ fi0(x) = supa∈Ai0
p◦ fi0(|x|∧a).
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Hence qi0 is an unbounded Riesz pseudoseminorm on Ei0 . Now one can show that the

topology of Ei0 is generated by {q ◦ fi0 : q ∈ Q}. Hence, Ei0 is an unbounded locally

solid Riesz space. This completes the proof.

Let X be a product space of topological spaces (Xi)i∈I . A net (xα) converges to

x in X if and only if xi
α → xi in Xi for each i ∈ I, where xα = (xi

α)i∈I and x = (xi). By

using this fact, the proof of the following theorem is easy.

Theorem 4.3.8. Let (Ei,τi)i∈I be a family of locally solid Riesz spaces. For each

Ai ⊂P(E+
i ), we have

u < ∏iτi,∏iAi >= ∏iu < τi,Ai >.

4.3.2 Unbounded absolute weakly locally solid Riesz space

The concept of unbounded absolute weak convergence (briefly uaw-convergence)

was considered and studied in Zabeti (2017 ). Let E and F be vector spaces. If there

exists a bilinear map T : E×F → R satisfying

T (x,F) = 0 =⇒ x = 0,

T (E,y) = 0 =⇒ x = 0, then the pair 〈E,F〉 is called a dual pair. In this case, E

can be considered as a vector subspace of RF , by embedding x→ x∗, x∗(y) = T (x,y).

We can consider RF as a topological space with product topology ∏y∈FR and restric-

tion of this topology on E is the topology generated by the family (py)y∈F of semi-

norms, where py : E → R defined by py(x) = |T (x,y)|. This topology is independent

of T and is denoted by σ(E,F). Similarly, σ(F,E) can be defined. One of the main

results is that the topological dual of E with respect to σ(E,F) is a vector space which

is isomorphic to F , this is denoted by (E,σ(E,F))
′ ∼= F .

Definition 4.3.9. If 〈E,F〉 is a dual pair of Riesz spaces with respect to a positive

linear map T : E×F→R, then we call that as a positive dual pair (with respect to T ).

We note that if 〈E,F〉 is a positive dual pair with bilinear map T , then one can

show that the embedding x→ x∗, x∗(y) = T (x,y) is bipositive. The order dual of a

Riesz space E is the vector space of order bounded functionals from E into R and

denoted by E∼, which is a Dedekind complete Riesz space. Throughout the paper we

31



suppose that E∼ separates the points of E, that is, for each nonzero x ∈ E, there exists

f ∈ E∼ with f (x) 6= 0. So, 〈E,E∼〉 is a positive dual pair via the map (x, f )→ f (x). If

τ is a Hausdorff locally solid topology on E, then the topological dual E
′
is an ideal of

E∼. Let A⊂ E∼ be given. For each f ∈ A, the map p| f | : E→R. p| f |(x) = | f |(|x|) is a

Riesz seminorm. The locally convex-solid topology generated by (p| f |) f∈E∼ is called

absolute weak topology and denoted by |σ |(E,A).

Now we are going to define an unbounded absolute locally solid topology. For

this, first we need the following Lemma.

Lemma 4.3.10. Let 〈E,F〉 be a positive dual pair with respect to T . For each a ∈ E

and y ∈ F, the map p : E→ R defined by

p(x) = T (|x|∧ |a|, |y|)

is a Riesz pseudoseminorm on E.

Proof. Without loss of the generality, we can suppose that a and y are positive. Obvi-

ously the conditions (1),(2) and (5) are satisfied . For the condition (3): for a given

pair x,y ∈ E ,

p(x+ y) =T (|x+ y|∧a,y)

≤T (|x|+ |y|∧a,y) by positivity

≤T (|x|∧a,y)+T (|y|∧a,y) by linearity and positivity

=p(x)+ p(y)

hence, the condition (3) holds. For the condition (4), let {λn} ⊂R be a sequence such

that limn→∞ λn = 0 and x ∈ E, we have

p(λnx) = T (|λnx|∧a,y) = T (|λn||x|∧a,y) = T (|λn|(|x|∧ 1
|λn|a),y)

= |λn|T (|x|∧ 1
|λn|a),y)

≤ |λn|T (|x|,y)

So, T (|x|,y)is a real number,|λn|T (|x|,y)→ 0,thus the condition (4)also holds.
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By using the same motivation, for a given A⊂ E+,e0 ∈ E and f0 ∈ F , the map

supa∈A T (|x|∧a∧|e0|, | f0|) is also a Riesz pseudoseminorm, and it will be denoted by

pA,e0, f0

Definition 4.3.11. Let 〈E,F〉 be a positive dual pair. Let E0 ⊂ E,F0 ⊂ F and A ⊂

P(E+) be nonempty sets. Then the topology generated by (pA,e0, f0)A∈A ,e0∈E0, f0∈F0 is

called unbounded locally solid Riesz space on the positive pair 〈E,F〉 with respect to

E0,F0 and A . This topology is denoted by u|σ |((E,F),E0,F0,A ).

By using some routine arguments, the proof of the above theorem can be given.

Theorem 4.3.12. Let (E,F) be a positive dual pair. Let Let E0 ⊂ E,F0 ⊂ F and A ⊂

P(E+) be nonempty sets. Then

u|σ |((E,F),E0,F0,A ) = u|σ |((E,F), I(E0), I(F0),A ).

Definition 4.3.13. A net (xα) in E is called unbounded absolutely weakly convergent

to x with respect to (E0,F0,A ), x ∈ E , if and only if the net (xα) converges to x in the

the topology u|σ |((E,F),E0,F0,A )

Remark 4.3.14. These observations and results can be extended into locally solid

lattice-ordered groups studied in Hong (2015 ).
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5. ALL TOPOLOGIES COME FROM A FAM-

ILY OF 0 1-VALUED QUASIMETRICS

Topological spaces are natural extensions of metric topologies. A topological

space whose topology is a metric topology is called a metrizable space. Most of the

fundamental examples of topological spaces are not metrizable (for general definitions

and examples, see Engelking (1989)), therefore one of the fundamental research top-

ics in General Topology has been to find conditions under which a topological space is

metrizable. In Kopperman (1988 ), despite the fact that not all topologies taken into

account are metrizable, types of such conditions are shown to be obtained in terms of

generalized quasi-metrics. To prove this, Kopperman introduced the notion of conti-

nuity spaces in Kopperman (1988 ), which reads as follows.

A semigroup (A,+) with identity 0 and absorbing element ∞ 6= 0 is called a

value semigroup if the following conditions are satisfied:

(i) If a+x = b and b+y = a, then a = b (in this case, if a≤ b is defined as b = a+x

for some x, then ≤ defines a partial order on A).

(ii) For each a, there is a unique b such that b + b = a (in this case, one writes

b = 1
2a).

(iii) For each a, b, the element a∧b := inf{a,b} exists.

(iv) For each a, b, c, the equality a∧b+ c = (a+ c)∧ (b+ c) holds.

A set of positives in a value semigroup A is a subset P⊂ A satisfying the following:

(i) if a, b ∈ P, then a∧b ∈ P;

(ii) r ∈ P and r ≤ a, then a ∈ P;

(iii) r ∈ P, then r
2 ∈ P;

(iv) if a≤ b+ r for each r ∈ P, then a≤ b.

Let X be a non-empty set, A a value semigroup, P a set of positives of A, and d :

X ×X → A a function such that d(x,x) = 0 and d(x,z) ≤ d(x,y)+ d(y,z) for all x, y,
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z ∈ X . Then A = (X ,d,A,P) is called a continuity space. For each x ∈ X and r ∈ P,

we write

B[x,r] = {y ∈ X : d(x,y)≤ r}

Theorem 5.0.1 (Kopperman Kopperman (1988 )). Let A =(X ,d,A,P) be a continuity

space. Then

To(A ) := {U ⊂ X : for each x ∈U there exists r ∈ P such that B[x,r]⊂U}

is a topology on X. Moreover, every topology on X is of this form.

5.1 The Main Result

The main issue of the present note is to reveal the fact that Kopperman’s theo-

rem can be refined by taking 0− 1-valued generalized quasi-metric spaces instead of

continuity spaces. We will first define related notions which will be used in the sequel.

A function d : X×X→ [0,∞) is called a quasi-metric if d(x,x)= 0 and d(x,z)≤

d(x,y)+ d(y,z) for all x, y, z ∈ X . A 0− 1-valued generalized quasi-metric on a set

X is a function from X ×X into {0,1}I for some non-empty set I if for each i ∈ I the

function di : X×X→{0,1} defined by di(x,y) = d(x,y)(i) is a quasi-metric. In such a

case, we will refer to (di)i∈I as a partition of d. A set X equipped with a 0−1-valued

generalized quasi-metric d is called a 0−1-valued generalized quasi-metric space. It

is easily seen that the set {0,1}I is a semigroup with respect to the operation +, given

by ( f + g)(i) = max{ f (i),g(i)}, moreover (A,+) is a value semigroup with identity

element (0(i) = 0 for each i ∈ I), absorbing element (∞(i) = 1 for each i ∈ I) and the

pointwise order.

Theorem 5.1.1. The set

P = {r ∈ {0,1}I : { j ∈ I : r( j) = 0} is finite}

is a set of positives in the value semigroup (A,+).

Proof. i. f ,g ∈ P, then ( f ∧g) ∈ P since the number of zeros of the function ( f ∧

g)(i) = inf{ f (i),g(i)} is at most |{ j ∈ I : f ( j) = 0}|+ |{ j ∈ I : g(i) = 0}|,
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ii. If f ∈ P and f ≤ g, then f (i)≤ g(i) for each i ∈ I, it leads us; set of zeros of g is

a subset of the set of zeros of f ,

iii. For each r ∈ A, r+ r = r, it is idempotent, hence if r ∈ P then r = r
2 ∈ P.

Following the usual custom, we denote this space by (X ,d, I). A subset U ⊂ X

is called open if for each x ∈U there exists a finite set J ⊂ I such that

⋂
i∈J

{y ∈ X : d(x,y)(i) = 0} ⊂U.

The set of open sets with respect to (X ,d, I) is denoted by To(X ,d, I).

Lemma 5.1.2. Let (X ,d, I) be a 0− 1-valued generalized quasi-metric space. Then,

for each x ∈ X and i ∈ I, the set {y ∈ X : di(x,y) = 0} is open.

Proof. Let U := {y ∈ X : di(x,y) = 0} and let y ∈U be given. Then di(x,y) = 0. If

di(y,z) = 0, then we have

0≤ di(x,z)≤ di(x,y)+di(y,z) = 0,

so that

{z : di(y,z) = 0} ⊂U.

It follows that U is open.

The proof of the following is elementary and is therefore omitted.

Theorem 5.1.3. Let (X ,d, I) be a 0−1-valued generalized quasi-metric space. Then

To(X ,d, I) is a topological space. If (di)i∈I is the partition corresponding to d, then

the family

{{y ∈ X : di(x,y) = 0} : i ∈ I,x ∈ X}

is a subbase of To(X ,d, I).

Let us denote the truth value of a proposition p by t(p); that is, t(p) = 1 if p is

true, t(p) = 0 if p is false. Let (X ,τ) be a topological space and U ∈ τ be given. For

each U ∈ τ , the map dU : X×X → R defined by
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0, if t(x ∈U =⇒ y ∈U) = 1;

1, if t(x ∈U =⇒ y ∈U) = 0.

is a quasi-metric. Indeed, let x, y and z ∈ X be given. If x 6∈ U then, t(x ∈ U =⇒

y ∈U) = 1 so dU(x,z) = 0. If x ∈U , dU(x,y) = 0 and dU(y,z) = 0, then y ∈U and

z ∈ U . Thus t(x ∈ U =⇒ z ∈ U) = 1, so dU(x,z) = 0. This shows that dU is a

quasi-metric. Also, for each U ∈ τ , one can define a function pU : X ×X → R as

pU(x,y) = χ{U}(x)χ{Uc}(y) where χ{U} denotes the characteristic function of U , it is

also a quasi-metric,which is equivalent to the quasi-metric dU . In particular, we have

the following.

Lemma 5.1.4. Let (X ,τ) be a topological space and U ∈ τ be given. Then, for each

x ∈U, one has

U = {y ∈ X : dU(x,y) = 0}.

Interestingly enough, the converse of the above fact is also true.

Theorem 5.1.5. Every topological spaces comes from a 0−1-valued generalized quasi-

metric space. That is, if (X ,τ) is a topological space, then there exists a 0−1-valued

generalized quasi-metric on X such that τ = To(X ,d, I).

Proof. For each x, y ∈ X and U ∈ τ , if the proposition “x ∈U =⇒ y ∈U” is true let

d(x,y)(U) = 0, and otherwise let it be 1. Then we have a function d : X×X→{0,1}τ .

One can easily show that it is indeed a 0−1-valued generalized quasi-metric. Now we

show that τ = To(X ,d, I). Let U ∈ τ and x ∈U be given. Since {y ∈ X : dU(x,y) =

0} ∈ To(X ,d, I) it directly follows that

U = {y ∈ X : dU(x,y) = 0},

whence U ∈ To(X ,d, I). Now, let V ∈ To(X ,d, I) be given. If V = X , then obviously

V ∈ τ . Suppose that V 6= X . Let x ∈V . Then there exists U1, . . .Un ∈ τ such that

n⋂
i=1

{y ∈ X : dUi(x,y) = 0} ⊂V.
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By Lemma 2.3 we have

x ∈
n⋂

i=1

Ui ⊂V,

so that V ∈ τ . The proof that τ = To(X ,d, I) is now complete.

Theorem 2.4 shows that each topology is a To(X ,d, I), and Kopperman’s result

(in Kopperman (1988 )) that each topology arises from a continuity space follows. It

is obvious that a subbase of the space To(X ,d, I) is

B = {{y : di(x,y) = 0} : x ∈ X , i ∈ I},

where (di)i∈I is a partition of d.

5.2 Pervin quasi-uniformity

For a non-empty set X , a subset U ⊂P(X×X) is called a quasi-uniformity if

it satisfies the following axioms.

(i) For each U ∈U , ∆⊂U .

(ii) If U ∈U , U ⊂V ⊂ X×X then V ∈U .

(iii) If U , V ∈U then U ∩V ∈U .

(iv) For each U ∈U there exists V ∈U such that V ◦V ⊂U ,

where ∆ = {(x,x) : x∈ X} and ◦ denotes the usual composition of binary relations, that

is; For any binary relations V,W ⊂ X×X , the composition of V and W is

V ◦W = {(x,z) ∈ X×X : (x,y) ∈V and (y,z) ∈W for some y ∈ X}.

The pair (X ,U ) is called a quasi-uniform space. Kelley’s proof (in Kelley (1995 ))

that every uniformity U on X defines a topology can easily be modified to show that

every quasi-uniformity U on X defines a topology.

τU = {U ⊂ X : for each x ∈ X there exists V ∈U such that V (x)⊂U},

where

V (x) = {y ∈ X : (x,y) ∈V}.

38



It should be noted that uniformities are symmetric quasi-uniformities, here is the defi-

nition of symmetricity; if V ∈U then V−1 = {(y,x) : (x,y ∈V )}. PervinPervin (1962

) has proved that every topological space is quasi-uniformizable; that is, for a given

topology τ on X there exists a a quasi-uniformity U on X such that τ = τU , namely

U is the intersection of all quasi-uniformities which contains,

B = {(V ×V )∪ ((X \V )×X) : V ∈ τ}.

Here U is called Pervin quasi-uniformity. As an application of Theorem 2.4 we can

reprove the following theorem.

Theorem 5.2.1 ( Pervin Pervin (1962 ) ). Every topological space is quasi-uniformizable.

Note that the above theorem improves on the result proved in Kopperman (1988

), that each generalized quasi-metric space induces a quasi-uniformity, and the topol-

ogy induced by this quasi-uniformity is that induced by any generalized quasi-metric

space that induces this quasi-uniformity. Thus each topology is induced by a quasi-

uniformity.

5.3 Some Remarks

Through lack of symmetry, categorizing the notion of convergence as right con-

vergence and left convergence is reasonable in a 0−1-valued generalized quasi-metric

space (X ,d, I). The definition is as follows.

Definition 5.3.1. A net (xα)α∈A right converges to x in (X ,d, I), denoted by (xα)
r−→ x,

if for each i ∈ I there exists α0 ∈ A such that di(x,xα) = 0 for all α ≥ α0 . A net

(xα)α∈A is called right Cauchy (or, r-Cauchy) if for each i ∈ I there exist α0 ∈ A such

that di(xα ,xβ ) = 0 for all β ≥ α ≥ α0.

The definitions of left convergence and left Cauchyness are given similarly: for

the sake of simplicity, only ‘right’ versions of them are used in the rest of the note.

Remark 8. Several familiar topological notions can be derived using the structure of

0−1-valued generalized quasi-metric spaces. We list some of them below.

(1) Let (X ,d, I) be a 0−1-valued generalized quasi-metric space. Then the follow-

ing are equivalent:
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(a) The net (xα)α∈A right converges to x in (X ,d, I).

(b) The net (xα)α∈A converges to x in To(X ,d, I).

(c) The net d(x,xα) converges to zero in the product topological space {0,1}I .

(2) Let (X ,d, I) and (Y, p,J) be 0− 1-valued generalized quasi-metric spaces, and

f a function from X into Y . Then f is continuous at a point if and only if for each

j ∈ J there exists i ∈ I such that di(x,y) = 0 implies p j( f (x), f (y)) = 0.

(3) Let (X ,d, I) be a 0−1-valued generalized quasi-metric space. Then To(X ,d, I)

is a T0 space if and only if for every distinct pair x,y ∈ X there exists i ∈ I such

that di(x,y) = 1 or di(y,x) = 1

(4) To(X ,d, I) is T1-space if and only if for every distinct pair x,y ∈ X there exists

i ∈ I such that di(x,y) = 1 and di(y,x) = 1.

(5) To(X ,d, I) is a T2-space if and only if for every distinct pair x,y ∈ X there exists

i, j ∈ I satisfying the following;

i. di(x,y) = d j(y,x) = 1,

ii. di(x,w) = d j(y,w) = 0 implies di(w,y) = 0 or d j(w,x) = 0.

Proof. (⇐=) We consider the open sets U = {z ∈ X : di(x,z) = 0} and V = {z ∈

X : d j(y,z) = 0}, it is obvious that x ∈U and y ∈ V and by the assumption (i),

x /∈V and y /∈U . Assuming U ∩V 6= /0, so U ∩V has at least one element, say w.

Here is the contradiction;

di(x,y)≤ di(x,w)+di(w,y)

di(x,y)≤ 0

1≤ 0

(=⇒) Assuming that To(X ,d, I) is a T2 topology, for any distinct pair x,y ∈ X

there exist open sets U and V such that x ∈ U,y ∈ V and U ∩V = /0. By the

definition of open set, there exist i, j ∈ I such that

{z ∈ X : di(x,z) = 0} ⊂U and {z ∈ X : d j(y,z) = 0} ⊂V
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it is easily seen that di(x,y) = d j(y,x) = 1, and (ii) is logically true since there is

no w ∈ X such that di(x,w) = d j(y,w) = 0.

(6) The notion of statistical convergence of a sequence of real numbers is as follows:

A sequence (xn) of real numbers is said to converge statistically to the real num-

ber x if for each ε > 0 one has δ (Aε) = 0, where Aε = {n ∈ N : |xn− x| ≥ ε}

and

δ (Aε) = lim
n→∞

∑a∈Aε ,a≤n 1
n

.

In Maio (2000 ), it is defined for topological spaces as well. Here is its vari-

ant using the aforementioned arguments: A sequence (xn) in (X ,d, I) is said to

convergence statistically to x if

lim
n→∞

|n ∈ N : di(x,xn) = 1|
n

= 0

holds for each i ∈ I.
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6. A SHORT NOTE ON INEQUALITIES IN RIESZ

SPACES

6.1 Introduction

We will follow standart notations in Riesz space theory (see,e.g.Aliprantis and

Burkinshaw (1985) ). As noted in Wickstead (2007 ), textbooks on vector lattices

abound in equalities and inequalities which often take quite a lot of proving. By using

the Kakutani representation theorem, it can easily be proved that any elementary equal-

ity or inequality which holds in the reals also holds in Archimedean Riesz spaces (see:

theorem 1.4 Wickstead (2007 ), p.66 (Meyer-Nieberg)The terms elementary equality

or inequality are defined as follows:

Definition 6.1.1. Let E be a Riesz space and n ∈N. We call a function f : ∏
n
i=1 E→ E

is elementary if f is in the following form:

f (x1,x2...xn) = y1y2y3...ykn

where

yi ∈ {(,), |,∨,∧,+,−,+ ,− }∪{xi : i = 1,2, ...n}∪R

and the sequence y1y2y3...ykn valid in E. In this case we define a function

f ′ : ∏
n
i=1R→ R

given by

f (x′1,x
′
2...x

′
n) = y′1y′2y′3...y

′
kn

such that if yi ∈ {(,), |,∨,∧,+,−,+ ,− }∪R, then y′i = yi, otherwise y′i = x′k such that

yi = xk.

6.2 The main result

The main result of this chapter is the following:

Theorem 6.2.1. Let E be a Riesz space and f ,g : ∏
n
i=1 E→ E be elementary functions.

We have the following:
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i. f (x1,x2...xn)≤ g(x1,x2...xn)⇐ f ′(x′1,x
′
2...x

′
n)≤ g′(x′1,x

′
2...x

′
n)

ii. f (x1,x2...xn)< g(x1,x2...xn)⇐ f ′(x′1,x
′
2...x

′
n)< g′(x′1,x

′
2...x

′
n)

iii. f (x1,x2...xn) = g(x1,x2...xn)⇐ f ′(x′1,x
′
2...x

′
n) = g′(x′1,x

′
2...x

′
n)

Notice that any of the above inequality (or equality) is called elementary inequality

(or elementary equality) in literature. The above theorem says, for instance, that since

for x,y,z ∈ R we have the validity of

x+(y∨ z) = (x+ y)∨ (x+ z)

in R, we also have the equality

x+(y∨ z) = (x+ y)∨ (x+ z)

in a Riesz space E, for any x,y,z ∈ E where E is not necessarily Archimedean Riesz

space. The proof of the above fact depends on some heavy representation theorems that

are valid in ZFC (see Luxemburg and Zaanen (1971 )). On the other hand, we can prove

theorem 1.2 for (not necessarily Archimedean) Riesz spaces in ZF. In Aliprantis (1996)

the belief that the above theorem can be proved for any Riesz space is mentioned. In

what follows, we not only prove that claim but give the proof of it in ZF.

Proof. Let E be a Riesz space (not necessarily Archimedean) and X be a non-empty

set. Consider the Riesz space RX under the pointwise algebraic operations and point-

wise ordering. Let V be an order ideal of RX , it is known that the quotient vector space

RX/V is a Riesz space with respect to the following order:

[ f ]≤ [g] if and only if f ≤ f + v in RX for some v ∈V

It is obvious that if an elementary equality or inequality is true inR then it is true inRX .

hence it is true inRX/V since the mapRX→RX/V , f 7→ [ f ] is a Riesz homomorphism

(by the corollary 1.4). One of the Fremlin’s theorem states that in ZFC for any ordered

vector space F there exists a nonempty set X , and an order ideal V of RX such that

F → RX/V is a injective Riesz homomorphism. This statement is true in ZF, for the

proof of this theorem of Fremlin, see Buskes et al (2008 ). Hence The Riesz space E is

Riesz isomorphic to the Riesz subspace of RX/V for some X and for some order ideal

V of RX . Therefore If an equality or inequality is true in R then it is also true in E.
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Being immediate applications of this theorem, many equalities and inequalities

in Riesz spaces can be shownd to hold, some of which are the following:

1. x∨ y =−((−x)∧ (−y)) and x∧ y =−((−x)∨ (−y))

2. x+ y = x∧ y+ x∨ y

3. x+(y∨ z) = (x+ y)∨ (x+ z) and x+(y∧ z) = (x+ y)∧ (x+ z)

4. α(x∨ y) = (αx)∨ (αy) and α(x∧ y) = (αx)∧ (αy)

5. x∨ y = 1
2(x+ y+ |x− y|) and x∧ y = 1

2(x+ y−|x− y|)

6. |x− y|= x∨ y− x∧ y

7. |x|∨ |y|= 1
2(|x+ y|+ |x− y|)

8. |x|∧ |y|= 1
2(|x+ y|− |x− y|)

9. ||x|− |y|| ≤ |x+ y| ≤ |x|+ |y|

10. |x∨ z− y∨ z| ≤ |x− y| and |x∧ z− y∧ z| ≤ |x− y|

11. If x and y are positive, then x∧ (y+ z)≤ x∧ y+ x∧ z

12. x∧ (y∨ z) = (x∧ y)∨ (x∧ z)

13. |x|+ |y|− |x+ y|= 2(x+∧ y−+ x−∧ y+)

The proof of the following theorem immediately follows the definition.

Theorem 6.2.2. Let E be a Riesz space and f : ∏
n
i=1 E → E be elementary functions.

Then, for any a = (a1,a2, ....an) and b = (b1,b2, ....bn) in ∏
n
i=1 E we have

| f (a)− f (b)| ≤ K ∑
n
i=1 |ai−bi|

for some positive real number K depending on a and b.

As an application of the above theorem we have the following. Let E be a

Riesz space and f be an elementary function. For each i = 1,2,3, ...,n suppose that

(xi
a(i))a(i)∈A(i) be nets. Then
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1. If for each i, (xa(i)) order converges to xi, then f (x1
a(1),x

2
a(2), ...,x

n
a(n)) is order

convergent to f (x1,x2, ...,xn).

2. If for each i, (xa(i)) unbounded order converges to xi, then f (x1
a(1),x

2
a(2), ...,x

n
a(n))

is unbounded order convergent to f (x1,x2, ...,xn).

3. If (E,τ) is a locally solid Riesz space and for each i, (xa(i)) τ−converges to xi,

then f (x1
a(1),x

2
a(2), ...,x

n
a(n)) is τ−convergent to f (x1,x2, ...,xn).

The above observations generalizes many well-known results on convergence of nets.
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7. CONCLUSIONS AND OUTLOOK

On the third chapter: several new convergence spaces introduced on vector

spaces and vector lattices. In the main part of this chapter lattice multi-Riesz pseudonormed

vector lattices have been studied. This space has mainly two importances; one of both

is that every Hausdorff locally solid vector lattice is a LMRPNVL, the other one is the

definition of R−continuous operators since it generalizes the other type continuous

operators.

On the fourth chapter: Firstly, by using the observation on this chapter, the

newly LMRPNVL spaces can be defined as follows: Let we choose E order complete,

for a nonempty A⊆ E+ the map

πA : X −→ E

x 7−→ πA(x) = sup
a∈A

π(|x|∧a)

is also a lattice-valued Riesz pseudoseminorm. secondly let d be an translation-invariant

lattice pseudometric, and for a fixed A⊆ G+ consider the map;

dA : G×G−→ R

(x,y) 7−→ dA(x,y) = sup
a∈A

d(|x− y|∧a,0)

Similarly, one can show that it is a translation-invariant lattice pseudometric.Hence by

using the fact that a group topology τ on an l-group G is locally solid if and only if it

is generated by a family of translation-invariant lattice pseudometrics, we can study on

new convergence types.

On the fifth chapter: A new characterization of topological spaces was done.

The equality between the new characterization and two other characterizations, which

have been already known, was stated. Since 0-1 valued maps are useful, to carry some

definitions to topological spaces will be easier : uniform continuity and statistically

convergent.

To emphasize its importance, it can be argued that even though the definition of

solid topology is clear, generally we apply to a family of pseudoseminorms to describe
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them. This characterization can offer us that. Also to ponder if further studies in this

field is possible, the following question was put: Can the topological properties be

characterized in terms of the index set?

On the sixth chapter: We can call what we had done as simplification because

the standart proof of the claimed fact Kakutanı represantation theorem, stone weistress

theorem were utilized. But there are some difficulties conscerning its structure. Also

my study is axiomatic because the proof was done without axiom of choice. More-

over the claim was applied in all Riesz Spaces, by not taking into account if it has

Arcihimedean property, or not.
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Aydin A, Emelyanov EY, Erkurşun Özcan N and Marabeh MAA (2017)
“Compact-like operators in lattice-normed spaces.”Indag. Math.
https://doi.org/10.1016/j.indag.2017.11.002

Aydin A, Gorokhova SG and Gul H (2018) “Nonstandard hulls of lattice-normed
ordered vector spaces.” Turkish J. of Math. 42, 155-163

Bahramnezhad A and Azar KH (2017) “Unbounded order continuous operators on
Riesz spaces.” Positivity

Bahramnezhad A and Azar KH (2017) “Strongly order continuous operators on Riesz
spaces.” arXiv:1712.04275

Beattie R and Butzmann HP (2002) “Convergence Structures and Applications to
Functional Analysis.” Kluwer, Dordrecht.

Buskes G, Pagter BD and Rooij AV (2008) “The Loomis-Sikorski theorem revisited”,
Algebra Universalis 58 (2008). no. 4, 413-426

Dales HG and Polyakov ME (2012) “Multi-normed spaces.” Dissertationes Math,
Rozprawy Mat. 488.

Dabboorasad YA, Emelyanov EY and Marabeh MAA (2017) “Order convergence in
infinite-dimensional vector lattices is not topological.” arXiv:1705.09883

Dabboorasad YA, Emelyanov EY and Marabeh MAA (2018) “uτ-Convergence in
locally solid vector lattices.” Positivity.

Dabboorasad YA, Emelyanov EY and Marabeh MAA (2017) “um-Topology in multi-
normed vector lattices.” Positivity. https://doi.org/10.1007/s11117-017-0533-6

Deng Y, OBrien M and Troitsky VG (2017) “Unbounded norm convergence in Ba-
nach lattices.” Positivity 21, 963-974

Emelyanov EY (1996) “Infinitesimal analysis and vector lattices.” Siberian Adv.
Math. 6(1), 19-70.

48
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