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ABSTRACT

SOME GENERALIZATIONS OF UNBOUNDED ORDER CONVERGENCE
TYPES IN RIESZ SPACES AND RELATED TOPICS

PHD THESIS
MEHMET VURAL
ABANT IZZET BAYSAL UNIVERSITY GRADUATE SCHOOL OF
NATURAL AND APPLIED SCIENCES
DEPARTMENT OF MATHEMATICS
(SUPERVISOR: PROF. DR. ZAFER ERCAN)

BOLU, SEPTEMBER 2018

One of the main aim of this thesis is to generalize the the notion of multi-normed
spaces to multi-pseudonormed spaces by replacing seminorms with pseudoseminorms
and the fundemental properties of this generalized space were investigated and the
notion of continuous operators between multi-pseudonormed spaces was elaborated.
The other main thing is defined unbounded locally solid Riesz space and investigate
its fundamental properties. In the Rest of the thesis, apart from the generalizations,
we focused on the problem if topological space structure can be characterized in some
real-valued maps; the answer is affirmative : 0-1-valued quasimetrics and we reproves
that if an inequality is valid in reals then it is valid in any Riesz space(need not to be
Archimedean) without using Kakutani Representation theorem.

KEYWORDS: Multi-pseudonormed space, Unbounded locally solid Riesz space,
0-1-valued generalized quasimetrics, inequalities in Riesz spaces.



OZET

RIESZ UZAYLARDA SINIRSIZ SIRA YAKINSAMANIN BAZI
GENELLEMELERI VE ILISKIiLI KONULAR
DOKTORA TEZI
MEHMET VURAL
ABANT iZZET BAYSAL UNIVERSITESI FEN BiLIMLERI
ENSTITUSU
MATEMATIK ANABILIM DALI
(TEZ DANISMANI: PROF. DR. ZAFER ERCAN)
BOLU, EYLUL 2018

Bu tezin temel amaclarindan biri yarinormlari yarinormsularla degistirerek ¢oklu-
normlu uzay kavramini ¢oklu-normsu uzaylara genellemek ve bu yeni uzayin temel
ozelliklerini incelemektir ve ¢oklu-normsular arasindaki siirekli operatorleri ele al-
maktir. Diger ana amag ise sinirsiz yerel solid Riesz uzay kavramini tanimlamak ve
bu uzayin temel 6zelliklerini incelemektir. Tezin geri kalaninda ise, bu genellemel-
erden ayr1 olarak topolojik uzay yapist bir takim reel degerli fonksiyonlar tarafindan
karakterize edilebilir mi problemine odaklanilmistir; cevap ise olumludur: 0-1-degerli
quasimetrikler ve Kakutani gosterim teoremi kullanmaksizin ve Riesz uzayin Arsim-
edyan olup olmadigina bakilmaksizin reel sayilarda gecerli olan her esitsizligin her-
hangi bir Riesz uzayda da gecerli oldugu ispatlanmustir.

ANAHTAR KELIMELER: Coklu-normsu uzaylar, sinirsiz yerel solid uzaylar 0-
1 degerli sozde metrikler, Riesz uzaylarda esitsizlikler.
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1. INTRODUCTION

One of the main convergence in Riesz space ! is order convergence. In a Riesz
space,say E, a net (xq)qea is said to be order convergent to x € E (briefly; xq 2 x, Xo
o-converges to x) if another net (yg)gcp exists in E such that:

i. yg 1 0, that is, (yg)pep is decreasing to 0.

ii. For each By € B there exists 0 € A such that |xq — x| < yg, for all & > 0.

Unbounded order convergence in a Riesz space has been defined and studied
in Nakano (1948 ) and in Wickstead (1977 ). Recently many authors have started to
work on this topic in Gao et al (2017 ),Gao and Xanthos (2014),Gao (2014 ).Namely
in a Riesz space,say E, a net (xq) 2 is called unbounded order convergent if the net
(|xe — x| A ) is order convergent to zero for any vector in E. (briefly; x¢ —2 x, X¢ tt0-
converges to x). In general every order convergent net is unbounded order convergent
but the converse is not valid (Consider c( as a Riesz space,the standard unit vectors (e;,)
uo-converges but not o-converges). It is obvious that order convergence and unbounded
order converge are coincide for order bounded nets. Although in general unbounded
order convergence is not topological convergence in Gao et al (2017 ), in atomic Riesz
space it is (see Theorem 2,Dabboorasad et al (2017)).

In a normed vector lattice, say E, unbounded norm convergence is defined as
an analogy of unbounded order convergence as;a net (xy) in E is said to be unbounded
order convergent to x € E if (|xg — x| Au) M for any vector u € E* (briefly; xo — X,
X¢ un-converges to x). The notion of unbounded norm convergence has been defined
in Troitsky (2004 ) and many papers have been written on it, (i.e, Deng et al (2017
), Kandic et al (2017 )) and it has been extended to the locally solid Riesz space.
(see Dabboorasad et al (2018 )). In Kandic et al (2017 ) it has been noticed that
unbounded norm convergence defines a topology, that is, there exists a new topology
on the normed Riesz space E so that the unbounded norm convergence and topological
convergence coincide with respect to this new topology which is called un-topology
in Kandic et al (2017 ). In the same paper it is also proved that in Banach lattices,
the norm convergence and unbounded norm converge coincide if and only if it has

(strong)order unit (Theorem 2.3).

'In this paper all Riesz spaces be assumed Archimedean
2The index is not written unless it is necessary



In a locally solid Riesz space, the notion of unbounded topological convergence
has been defined and studied in Dabboorasad et al (2018 ) and Taylor (2017 ). The
definition of unbounded topological convergence is given as follows ; a net (xq) in
a locally solid Riesz space (E, T) is said to be unbounded topological convergent to
x € E if (]xg —x| Au) = 0 for any vector u € E* (briefly; xo — x, x¢ uT-converges to
x). Unbounded topological convergence in a locally solid Riesz space not only defines
a topology but also it has a locally solid topology.

Let X be a vector space and E be a Riesz space. A map p from X into E is
called lattice norm or E—valued lattice norm if the following conditions are satisfied:
(i) p(x) =0+ x =0, (ii) p(Ax) = |A|p(x) for all x € X and for all A € R, and (iii)
p(x+y) < p(x)+ p(y) for each x,y € X, in this case the triple (X, p, E) is called lattice
normed space, abbreviated as LNS. Let us consider any Riesz space, the map p(x) = |x|
is an E—valued lattice norm and for any normed space (X, ||.||, the map N(x) = ||x|| is
an R—valued lattice norm. If X, E are Riesz spaces and p is a map from X into E with
the monotonicity property (i.e; x <y implies p(x) < p(y)), then the triple (X, p,E) is
called lattice normed vector lattice, abbreviated as LNVL. In a lattice-normed vector
lattice (X,p,E), a net (x4 ) in X is said to be p-convergent to x € X if p(|xy —x|) = 0in
E (briefly; xq LN X, X p-converges to x).In [?] the notion of unbounded p-convergence
is defined as follows ; a net (x¢) in X is said to be unbounded p-convergent to x € X if
p(|xe — x| Au) 2 0 in E for any vector u € X (briefly; xo —> x, X up-converges to
x)

From this point on the basic definitions concerning unity and convenience are
going to be surveyed.

A binary relation % on a non-void set E is a subset of E x Ethe elements of a
binary relation are written as xZy instead of (x,y) € Z. If a binary relation % on E is
reflexive (xZx Vx € E), antisymmetric(xZy and yZx implies thatx =y Vx,y € E) and
transitive (xZy and yZz implies that x#z Vx,y,z € E), then it is called order relation
and it is written as x <y or y > x instead of x#y. The pair (E,<) is called partially
ordered set. An element x € E is called an upper bound for a given non-empty subset
Aof E if a < xfor all a € A. If the set of all upper bounds of A C E is non-empty, then
it 1s said that A is bounded above. An upper bound x of A is called least upper bound

or supremum if x <y holds for any element y of the set of all upper bounds. Lower



bound, bounded below and greatest lower bound(infimum) can be easily defined as an
analogy of upper bound, bounded above and supremum, respectively. A C E is said to
be order bounded if A is bounded below and bounded above. For any a,b € E, the set
{x:a <x < b} is called order interval, denoted by |a,b].

A partially ordered set E is said to be lattice if the supremum and infimum of the
set {x,y} exists for any x,y € E. The supremum and infimum of two elements denoted
by xVy and x Ay, respectively. If a nonempty subset A of E satisfies the statement
x,y €A=xANy,xVye€ E, then it is called sublattice. The supremum and infimum of
aset A C E are denoted by sup(A) or \/A and inf(A) or A A,if they exist.

A vector space over R,say E, which is equipped with an order relation < is said

to be ordered vector space if the following two axioms are satisfied:
i. Ifx,y,ze Eandx <y, thenx+z<y+z,
ii. Ifx,ye E,x<yand o € R then ax < ary.

In an ordered vector space E, E™ denotes the set of all positives elements of E,
thatis ET = {x:x € E and 0 < x} and it is called positive cone.

An ordered vector space is called Riesz space or vector lattice if the order rela-
tion on itself is also a lattice. In a Riesz space E, some special vectors lie in £ which
is related with a fixed vector x € E: positive part of x as x™ := x V0, negative part of
x as x_ := (—x) V0 and absolute value of x as |x| := xV (—x). For any fixed x,y € E,
if |x| A [y| = 0, they are called disjoint and x L y refers to the disjointness of x and y.
In this sense, let A C E be given, the set A¢ := {x:x € E,x L aVa € A} denotes the
disjoint complement of A.

In a Riesz space, a net (xq)qes is called increasing if o, € I and o < 3, then
Xo < xpg. it is denoted by xq 1. Also the notion x4 T x for an x € E indicates that
Xq 1s increasing and sup,c;Xo = x. Analogously, the decreasing net and the notions
Xg 4,Xq 4 x are defined.

For any element,say x, of a positive cone of a vector lattice,say E, if the state-
ment %x J 0 holds then E is called Archimedean vector lattice.

A vector lattice is said to be Dedekind complete or order complete if every
nonempty subset which is bounded above has a supremum.

If a subset A of a vector lattice E is a vector subspace and sublattice, then it

3



is called vector sublattice and if for any 0 < x € E there exists 0 < a € A such that
0 < a < x, then it is called order dense vector sublattice and also if for any x € E
there is a € A such that x < g, then it is called majorizing vector sublattice.

A subset A C E is called solid if y € A whenever |y| < |x| in E for some x € A.
A solid subset A of a vector lattice E is said to be ideal if it is also a vector sub-
space. For any subset A; I4 denotes the intersection of all ideals containing A, is called

ideal generated by A and is formulated as follow:

n
Iy:={x€E:Jaj,a...,a, €Aand A € RT with [x| <A Z |xi|}
i=1
If A = {a}, then I is called principal ideal. A subset A of a vector lattice E is
called order closed if {ay} C A and aq 2 ain E implies that a € A. Order closed ideal
is called as a band.For any subset A; B4 denotes the intersection of all bands containing

A, is called band generated by A and is formulated as follow:
Bsy:={x€E:3aq} CAwith0 <aqg1|x|}

Let E and F be vector lattices and T be a linear operator from E into F. T
is called lattice homomorphism if the equality T(xVy) = T (x) V T(y) holds for all
x,y € E. If it is one-to-one, it is called lattice isomorphism.

For any vector lattice E, there exists unique Dedekind complete vector lattice
and a lattice isomorphism 7 : E — F such that T(E) is a majorizing and order dense
sublattice of F, hence F is called Dedekind complition of E and denoted by E?.

A topology T on a vector space E is called linear topology if it makes both
addition and scalar multiplication continuous.A linear topology 7 on a Riesz space is
called locally solid if it has a neighborhood system at zero consisting of solid sets. In
this case, the pair (E,7) is called locally solid Riesz space and if the neigbourhood
system at zero consists of convex and solid sets, then 7 is called locally convex-solid

topology, so the pair (E, ) is called locally convex-solid Riesz space.



2. AIM AND SCOPE OF THE STUDY

In chapter 3: We introduce the multi-pseudonormed spaces as a generalization

of multi-normed spaces by replacing seminorms with pseudoseminorms.

In chapter 4:We introduce the notion of unbounded locally solid Riesz space
and investigate its some fundamental properties. Especially in the last two parts of this
chapter, we define the product of unbounded locally solid Riesz space and unbounded

absolute weakly solid Riesz space.

In chapter 5: We prove that all topologies come from a family of 0-1-valued
quasimetrics. Therefore we refine the main theorem of Kopperman (1988 ) by taking
0-1-valued generalized quasimetrics and also reprove that every topological space is

induced by a quasi-uniformity.

In chapter 6: We prove that an elementary inequality is true in R then it is
true in any Riesz space that is not to be Archimedean without using Kakutani repre-

sentation theorem and Stone—Weierstrass theorem.



3. LATTICE MULTI-RIESZ PSEUDONORMED
VECTOR LATTICE

3.1 Introduction

Given a set X, a convergence «Cov for nets in X is defined by the following
two conditions: 1) x¢ =x = x4 =N x;2) xq LN xg E x for every subnet xg of
the net xq. Let «Con e a convergence on a vector space X which agrees with linear
operations, i.e.:

XBxagx,XByagy,RBra%r (1)

implies

C
Fo*Xo+ Yo — r-Xx+y. (2)

In this case, we say that X = (X,C) is a convergence vector space. Basic examples
of such convergence vector spaces are: a topological vector space X = (X, 7) with 7-
convergence and a space X of measurable functions on a measure space with almost
everywhere convergence. If in addition, we assume that X is a vector lattice in which

the convergence agrees with lattice operations in the sense that (1) implies
C
Foo*Xa NYo —> T-XN\Y, (3)

we say that X = (X, C) is a convergence vector lattice.
In this chapter, we introduce several new convergence structures on vector
spaces and vector lattices. But we deeply focus on the section of lattice multi-Riesz

pseudonormed vector lattice.

3.2 Multi-Pseudonormed Spaces (MPNS)

Definition 1. We say that a collection # = {mq}aqca of seminorms on a (complex)
vector space X is a multi-norm if for any 0 # x € X there is mg, € M such that my(x) >
0. In this case, we say that X = (X ,./#') is a multi-normed space (abbreviated by MNS)

with the multi-norm A .



Multi-normed spaces in the sense of Definition 1 (see, for example Kutateladze
(1996 )[p.94]) are also known as Hausdorff locally convex vector spaces. Notice that
nowadays the name multi-normed space becomes popular for quite different class of

spaces Dales and Polyakov (2012).

Definition 2. Given a vector space X, a function p : X — R is called pseudoseminorm
whenever:

(a) p(x)>0forallxe€X;

(b) p(x+y) < p(x)+p(y) forall x,y € X; and

(¢) ,}iilgop(anx) =0 for all x € X and for all C > a,, — 0.

If, additionally,

(d) p(x) > 0 implies x # 0,

we say that p is a pseudonorm.

Example 1. Let us consider the set of all real-valued continuous functions on [0, 1],

the map

p:C([0,1]) = R
[ p(f) = |f(x0)]
where f assigns the maximum value at xo. The map p is a pseudonorm.

Remark 1. Let us consider the all bounded real-valued functions on |a,b] as a vector

space. For a fixed xq € |a,b|, we can define a map

p:B([a,b]) = R

[ = p(f) = max{f(x0),0}

p is a pseudoseminorm on B([a,b]). The topology generated by p does not define a

linear topology since consider the sequence of functions, defined by

—n X=Xy

0 x#x0

fulx) = {

[fn converges to zero function with respect to the topology generated by p, but — f,, does

7



not converges to zero function.

Definition 3. A collection & = {pg}aca of pseudoseminorms on X is said to be a
multi-pseudonorm if, for any 0 # x € X there is po, € & such that py(x) > 0. In this
case we say that X = (X, Z) is a multi-pseudonormed space (abbreviated by MPNS)

with the multi-pseudonorm 2.

Example 2. Let (P;)ic; be the family of the partitions of [0,1], then for each i € I,

consider the map:

p:B([0,1])) = R

f=p(f)

given by p(f) = | ¥, f(xx)| where f(xi) is the maximum value of f on k™ interval of
U
P;. For each i € I, the map p; is a pseudoseminorm, and &P = {p;}ics is a multi-

pseudonorm on B([0,1]).

Remark 2. The example given in (Remark 1.) can be used for giving an example to
multi-pseudonormed space. Let us consider B([a,b]), and the family of pseudosemi-
norms & = {Px}xe[a,b]’ the family &7 satisfies the condition that for any 0 # f €
B([a,b]) there exists px, € & such that px,(f) > 0. Hence (B(|a,b]), ?) is a multi-
pseudonormed space.The topology generated by the family & does not define a linear
topology too but the sets U, ¢ {x € X : p(x) < €} where p € & and 0 < € € R as a neigh-
bourhood subbase at zero defines a linear topology. If the each member of the family
P satisfies (i) p(Ax) < p(x) for any |A| < 1 and (ii) p(x,) — 0 implies p(Ax,) — 0 for
all A € R, then the topology < &7 > turns a linear topology. (schaefer (1966))

3.3 Lattice Multi-Pseudonormed Spaces (LMPNS)

3.3.1 Lattice normed spaces (LNS)

Definition 4. Let us consider a complex or real vector space,say X and a real vector
lattice ,say E. A map p from X into E is said to be E-valued norm, whenever:

(a) p(ax) = |o| - p(x) forallx € X,a € C;



(b) p(x+y) < p(x)+p(y) for all x,y € X; and

(¢) x # 0 implies p(x) # 0.

If, additionally,

(d) p(x) =e1 +er with x € X, e1,ey € E implies that x| +x; = x with p(x]) = e}
and p(xp) = ey for some x1,xy € X, we say that the E-valued norm p is said to be
decomposable. A vector space (X, p,E) equipped with an E-valued norm p is called

lattice normed space (abbreviated by LNS).

Remark 3. In some sense lattice normed space structures can be understood as ’super-
structure’ since any vector lattice X can be written as LNS (X, |.|,X) and also any

normed space (X, H”) as (X’ H”’R>

3.3.2 Lattice-valued pseudonorms

Definition 5. Let us consider a complex or real vector space,say X and a real vector

lattice ,say E. A map p from X into E_ is said to be E-valued pseudonorm, whenever:

(@) plx+y) < p(x) +p(y) for all x,y € X;
(b) x # 0 implies p(x) # 0;
(¢) p(0x) 20 for all x € X and C > o, — 0.

If condition (b) is dropped, p is said to be an E-valued pseudoseminorm.

Decomposable E-valued pseudonorm and lattice pseudonormed space (shortly,

LPNS) are defined similarly to corresponding ones in Definition 4.
Example 3. Let us consider C([0,1]) as a vector lattice, xy € (0,1) and 0 < € <

min{1 —xg,x0}, € € R be fixed. Consider the map:

Pxo.e 1 C([0,1]) = C([0,1])
fe Pxo,s(f)



given by

|f1(x) x ¢ [xo— € x0 +€]
Pxo,e(f) (x) = l|}‘ (X) X € [X() — E,XO]
lr}‘(x) X € [x0, X0+ €]

where I, (x) and l|J]C| (x) are the lines passing through the points xy and |f|(xo — €) and

the points xo and | f|(xo + €),respectively. py, ¢ is a C([0, 1])—valued pseudoseminorm.
Example 4. Let us consider co := {(x,) : x, — 0} as a vector space and cop := {(xy) :

Xn — 0 and {x, # 0 : n € N} is finite} as a vector lattice, then consider the map p:

P co— Coo

(xn) = p(xn) = [|xal]

It is coo—valued pseudonorm.

3.3.3 Lattice multi-normed spaces (LMNS)

Definition 6. Let us consider a complex or real vector space,say X and a real vector
lattice ,say E. A map p from X into E is said to be E-valued seminorm if:

(a) m(ax) =|a|-m(x) forallx € X, oo € C; and

(b) m(x+y) <m(x)+m(y) forall x,y € X.

Example 5. Let us consider l. = {(x,) : sup, |x,| < oo} as a vector lattice, the map
pilo—ls
x = (xn) = p(x) := ()
where y, = Y222t for eqch n. p is a lu—valued seminorm.
The following definition is similar to Definition 1
Definition 7. We say that a collection £ = {ly }qea of E-valued seminorms on X is a

lattice multi-norm if for any 0 # x € X there is ly, € £ such that lo(x) # 0. In this case
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we say that X = (X,.Z,E) is a lattice multi-normed space (abbreviated by LMNS)
with the E-valued lattice multi-norm £ .
Example 6. Let consider the map m, : C(R) — Co(R) defined by f +— fe, where

;

lx+1  x€e[-n,0]

en=94 =lx+1 x€e[0,n]

0 otherwise
\

For each n € N, m, is a Co(R)—valued seminorm so the triple (C(R),.Z,Co(R)) is a
LMNS where £ denotes the family of seminorms { T, } ,en.

3.3.4 Lattice multi-pseudonorms

Definition 8. We say that a collection G = {gq}aca of E-valued pseudoseminorms
on X is a lattice multi-pseudonorm if for any 0 # x € X there is go € £ such that
ga(x) # 0. In this case we say that X = (X,9 ,E) is a lattice multi-pseudonormed
space (abbreviated by LMPNS) with the E-valued multi-pseudonorm 9.

Example 7. Let X be a normed space, consider the map 7, : X™ — R, given by m, (f)=
£ (). m, is a real-valued pseudoseminorm for eachn €N, so (X~,% R) is a LMPNS

where G = {m, } hen.

3.4 Lattice Multi-Pseudonormed Vector Lattices (MLPNVL)

In the last section of the paper, we apply concepts developed above to the case

when X is a vector lattice.

3.4.1 Multi-pseudonormed vector lattices (MPNVL)

Definition 9. Given a vector lattice X, a pseudoseminorm r : X — R is called a Riesz
pseudoseminorm whenever |x| < |y| implies r(x) < r(y).
We say that a collection % = {r¢ }qca of Riesz pseudoseminorms on X is a

multi-Riesz pseudonorm if for any 0 # x € X there is ro € X such that rg(x) > 0.

11



In this case we say that X = (X, %) is a multi-Riesz pseudonormed space with the

multi-Riesz pseudonorm X%.

Hausdorff locally solid vector lattices (cf. Aliprantis and Burkinshaw (1978))
are exactly multi-pseudonormed vector lattices with multi-pseudonorms consisting of
so-called Riesz pseudoseminorms. They have been investigated recently from the point

of view of multi-Riesz pseudonorms in Ercan and Vural (2018 ).

Proposition 3.4.1. Let (X, %) be multi-Risz pseudonormed space. The collection

K" = {1y} acaucx, of functions defined by
ro(x) :==ro(x|Au)  (x€X)

is a multi-Riesz pseudonorm. Moreover, the ut-topology is exactly the topology of

multi-Riesz pseudonormed space (X, %").

Proof. Let oo € A and u € X, be fixed elements. It is easily seen that for any x € X,

ra(x) > 0, since r (x) = rq(|x| Au) > 0. For the condition (b);

ra((1x] + ) Aw)

< ro(|x[ Aut[y[Au)

< ra(|x[ Au) +ra(|y[ Au)
al

=ro(x) +7g()
For the condition (c); let {4, } C C be any sequence such that A, — 0, the inequality
ro(Anx) = ro([Anx| Au) = ro(|An] x| Au) < ro(|Aa||x])

gives that lim,,_. 7% (A,x) = 0. And also for a given 0 # x € X, there exist ¢y € A such
that rg(x) > 0 and if we choose ug € X such that [x| < |ug|,then rg)(x) = re,(|x] A

uy) = roy(x) > 0. O

Theorem 3.4.2. Let (X, %) be Dedekind complete multi-Riesz pseudonormed space.
Then the multi-Riesz pseudonorm %" is metrizable iff % is metrizable and X has a

countable orthogonal system.
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Proof. Assume %" is metrizable so there must be a countable family (o, u;);c; where
0; € A,u; € X, foreachi € Isuchthat Uy . = {x € X : pg < &,0 <& €R}is the

neigbourhood subbase of zero for (X, Z%"). Itis easy to see that U, ¢, = {x € X : pg, <

oG 78i —_

€,0 < & € R} is the neigbourhood subase of zero (X, %"). *only if” direction is easily

seen.

3.4.2 Lattice multi-Riesz pseudonormed vector lattices (LM-

RPNVL)

Definition 10. Let X and E be vector lattices. An E-valued seminorm r is called E-

valued Riesz seminorm if r(x) < r(y) whenever |x| < |y|.

Remark 4. The map in the Example 5 is not l.—valued Riesz seminorm since x =
(1,-1,1,-1,1,—1...) and x = (1,0,1,0,1,0...) is in lw and |y| < |x| but p(y) £ p(x),
and also the map in the Example 6 fails to be Co(R)—valued Riesz seminorm. But the

map m, : XN — R in the Example 4 is a real-valued Riesz seminorm.

Definition 11. Given vector lattices X and E. We say that a collection £ = {lq }qca
of E-valued Riesz seminorms on X is a lattice multi-Riesz norm if for any 0 #x € X
there is o € £ such that lo(x) # 0. In this case we say that X = (X, £, E) is a lattice

multi-Riesz normed space with the lattice multi-Riesz norm £ .

Example 8. Consider the real-valued bounded functions on [0, 1], P={xo =0,x1,...,x, =

1} be a partition of [0, 1], the map

T : B([0,1]) — C([0, 1])
f=T(f)

given by T(f) := li(x) whenever x € (x;_1,x;) where 1 <i < n and l;(x) is the line
passing through x;_1 and f(x;).
Definition 12. Let X and E be vector lattices. An E-valued pseudoseminorm r is called

an E-valued Riesz pseudoseminorm if r(x) < r(y) whenever |x| < |y|. If additionally

r(x) # 0 for any nonzero vector x € X, we say that r is an E-valued Riesz pseudonorm.
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We say that a collection # = {rq}aca of E-valued Riesz pseudoseminorms on X is
an E-valued multi-Risz pseudonorm if for any 0 # x € X there is ro, € Z such that
ra(x) #0. In this case we say that X = (X, %, E) is a lattice multi-Riesz pseudonormed
lattice (abbreviated by LMRPNVL) with the E-valued multi-Riesz pseudonorm %.

Proposition 3.4.3. Every Hausdorff locally solid vector lattice is a LMRPNVL.

Proof. Let (X, ) be alocally solid Riesz space, it is known by Fremlin’s theorem that
7 is generated by a family of Riesz pseudoseminorms (p;);c;. And E : R is the vector

lattice of all real-valued functions on / . Define a map

r:X—E

x +— r(x)

given by r(x)[i] = p;i(x).Clearly that the map r satisfies the conditions (a),(b),(d)(?) and
the monotonicity. we check condition (c);

Suppose (4,) is a sequence R such that lim,,_,e A, = 0. Our aim to show that r(4,x) 2
0 in E. Note that lim,,_,. A, = 0 in R so it is bounded in R, hence the sequence (A,x)

is order bounded in X. since the sequence r(A,x) is order bounded in E. so
r(A.x) 2 0 if and only if r(A,x) — 0 pointwise in E

Let i € I, then r(A,x)[i] = pi(Aux), so pi(A,x) — 0 as n — oo since p; is a Riesz Pseu-
doseminorm. Thus r is lattice-valued Riesz Pseudoseminorm and (X, {r},E) is a LM-

RPNVL. U

Definition 13. In an LMRPNVL (X, %,E), A net (xq) is said to be %—converges to
x€X ifry(xg —x) 20 in E for each ry € Z and this convergence abbreviated as

X
Xg — X.

Theorem 3.4.4. In an LMRPNVL (X, %,E), let consider the nets (xo)aca,(Vp)gep- If

7

Xa 2, x and Ya 2, y then (xo V' Yg)(a,B)c(AxB) 2, xVy. Moreover, xo — x implies

- Z  _
that x5 — x™.

/

Proof. Let A € A be fixed. If x4 Z, x and /i 2, y then there exist two net (z,/) ./

and (wﬁ/) » in E such that (z,) | 0 and (Wﬁ’) 1 0 and also for a given (a,B') €

B'eB
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A’ x B there are o, €Aand ﬁﬁ/ € B such that ry (xq —x) <z, and ry (yg —y) < wg!
for all (o, B) > (Oca/,ﬁﬁ/). By using the inequality [aVb—aVv| < |[b—c|:

r(xaVyg—xVy)=ry(|xaVyg —xqVy+xqVy—xVy|)
< r/l(|xa\/y/3 —xq Vy|+ry(Jxa Vy—xVyl)
<r(lyg =yl +ra(lxa — )

< Wﬁ’ + o

for all o« > oy and B > ﬁﬁ/. Since (wﬁ/ +24) 40, then 1y (xo Vyg —x V) 20 in
E. 0

Definition 14. Let (X, %,E) be a LMRPNVL andY C X. Y is called %#—closed in X

if, for any net (xq) in Y that #—convergent to x € X, it implies that x € Y.
Lemma 3.4.5. The positive cone X is #—closed.

Proof. Let {xq} C X1 and xq 2, X, 80 ry(xg —x) goes to zero for any A € A. By
the previous theorem r) (x¢)~ — (x)~ goes to zero in E, for all & we have x; =0 , it

follows ry (x)~ =0 forall A € A, then (x)~ =0, it means x € X. O

Proposition 3.4.6. Any monotone % —convergent net inan LMRPNVL (X ,%,E) o—converges

to its % —limit.

Proof. Letxqy 1T beanetin X and xq —“% x.Fix arbitrary «, Xg—Xq € X, for B > a, by
Theorem 1 xg —xq 2, x—xg and by Lemma 1 x —xy € X1 so x > x4 for any o, so
x is an upper bound of {x4} since « is arbitrary.And now let assume y > x,, for all «,

then again y — xg ﬁ y—x implies y —x € Xy, then y > x.Thus x¢ T x. 0
Definition 15. Letr (X, %,E) be an LMRPNVL. Then

i. A net (xq)gea in X is said to be #—Cauchy if the net (xq —xo/)(oC o )e(AxA)

X —converges to zero.
ii. X is called %—complete if every % —Cauchy net in X is #—convergent.

iii. AsubsetY C X is called #—bounded if there exists e € E such that n(y) < e for

allyeY.
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iv. X is called 0% —continuous if xo = 0 implies that T(xq) = 0.

v. X is called #—KB-space if every % —bounded increasing net in X is % —convergent.
Theorem 3.4.7. For a #—complete LMRPNVL (X,%,E),TFAE.

1. X is o#—continuous

2. If0 < xq 1< x holds in X, then (xy) is %#—Cauchy.

3. x¢ 4 0in X implies ry,(xy) | O for each ry € X.

Proof. (i) = (ii) Let 0 < x¢ T< x in X, by [2,]lemma 4.8] there exists a net in X such
that (yg —Xq)q,p 4 0 50 X is 0% —continuous then r) (yg — xq) — 0 for any ) € #Z
and so ry (yg, — Xa) — 0 where yg = yg, hence xq is Z—Cauchy.

(i) = (iif) Assume that x¢ | O in X. Fix arbitrary o, for o < o, x¢ < x¢,, and
(Xa —Xop)a<ay T< X Dy the assumption the net (xg — X¢,) is Z—Cauchy since X
is Z—complete then there exists x € X such that (xg —x) 2,0 as Op < O — 0,50 by
proposition 2.5., x4 J x and hence x = 0. As a result x, Z, 0 and by the monotonicity
of ry, rpxe 0.

(iii) = (i) Let xq — 0, then there exists a net zg | O such that, for any  there exist
ap so that |xq| < zg for all @ > ag. Hence m(xq) < 7(zp) for all & > ag, by (ii),

7(zg) | O therefore 7r(xq ) 20 0r xq = 0. O

Theorem 3.4.8. Let (X,%,E) be an 0% —continuous and % —complete LMRPNVL,

then X is order complete.

Proof. Assume 0 < x4 1< u, then by Theorem 2 x,, is a % —Cauchy net, then there ex-
ists an x € X such that x 2 x by the % —completeness of X.And from the Proposition

3 x¢ T x,this completes the proof. [
Theorem 3.4.9. If a LMRPNVL (X, %,E) is %#—KB-space then it is 0% —continuous.

Proof. Let we assume x¢ | 0, we define yq :=xq, —Xxa (0 > ) for a fixed 0. yq is an
increasing net and it is Z—bounded, so by the assumption there exists y € X such that
Yo 2, y, then by proposition 3 yq — y in X. Actually ys 1y, then y = SUP > gy Yo =

SUP o> oy (Xotg — Xar) = Xaggs SO Xt Lz 0. Hence by theorem 2 X is 0% —continuous. [
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Theorem 3.4.10. If a LMRPNVL (X, % ,E) is %#—KB-space then X is order complete.

Proof. Let we assume 0 < xo 1<y € X, then r) (x¢) < r(y) for all rj € %, then by

the assumption there exists x € X such that xq — x, then by proposition 3 xq — x. [

Theorem 3.4.11. Let (X, %,E) be a #—KB-space and Y C X be a order closed sub-
lattice, then (Y, % ,E) is also %#—KB-space.

Proof. Let we assume y, T be a #Z—bounded net in Y., then X is a #Z—KB-space,
there exists x € X such that yq 2« By proposition 3 y 1 x, so by the closedness of

Y; x €Y. Therefore (Y,%,E) is a Z—KB-space. H

In a LMRPNVL X, Z E, the elements x,y € X is said to be Z—disjoint if
rp(x) L ry(y) for all ry € # and a subset B of X is said to be #Z—band if for some
non-empty subset M C X, B={x€ X :m Ly x Ym € M}. Neither a #Z—band is a
band nor a band is a % —band in general, see Aydin et al (2017 ) for examples. But the

property in the following definition guarantee that every % —band is a band in X.

Definition 16. Let (X,%,E) be an LMRPNVL, (X,%,E) is called % —fatou space if

0<xqTxinX implies xo T x
Proposition 3.4.12. In a #—fatou space, every %—band is a band.

Proof. Let B C X be a Z—band, so by the definition there exists a subset M of X such
that B={x€X :m Ly x Ym € M}. Itis easy to see that B is an order ideal. Let we
assume 0 < xg T x in X where {x} C B, by the assumption x¢ 14 x, so by theorem 1

5 72 (x) Ary (m) = 0 for all m € M, hence B is a band. O

Definition 17. Let (X, %,E) be a LMRPNVL and A C X. A subset B C A is said to be
KX —dense in A if for a fixed ry € Z, for every a € A and for any 0 # u € ry (X) there

is b € B such that ry (a—b) < u.

Remark 5. Let consider the set of all polynomials defined on [0, 1], denoted by P([0,1])

as a vector space. P([0,1]) is C([0, 1])—dense with respect to the map

p:P([0,1] — C(]0,1]
J=p(f)

given by
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IfIfeP(0,1])

0 otherwise

p(f)=

But it is not C([0, 1])—dense with respect to the map, given in example 3, since

1

W and

if we choose xy = % and € =

1 x=0

k
flx)y=42 x=Y ﬁforsomek

Ui (x) otherwise

Ly denotes the lines passing through (x,1) and (x,2). We cannot find a polynomial p
such that p(f — px,.e) < g Onthe other hand the set {(x,) € co: x, = (n,n,n,n,0,0,0...)}

(first n — 1 term is equal to n). This set is not dense in co but it is coo—dense in c.

Definition 18. Let (X,%,E) be a LMRPNVL, a vector e € X is called % -unit if, for

any x € X, we have n(x—xAne) % 0 in E.
Remark 6. Let (X,%,E) be a LMRPNVL,

i. X —unit need not to be positive, consider the example in Remark 1; the function

-1 x#x

is a #—unit since for any g € B([a,b])", p(g — g Anf) is equal to p(h) where



so p(h) =0.

ii. Ifeisan Z—unitand 0 < a € R, then ae is also a # — unit. Since for a fixed

ry € Z, and for any x € Xy

rp(x—xAnae)=r(o(2—=Ane)) <[a]ry (2 —

Ane) — 0

X
o

RI=

B
a o

where (0] = min{m € Z : o« < m}
iii. If ey and ey are Z—units, then e| + e; is also a #—unit.

iv. If e is a Z—unit, then e need not to be a weak unit in X. In example 4, the
sequence (1,1,1,0,...) is an #—unit, but (0,0,0,1,0,...) #0and (1,1,1,0,...) A
(0,0,0,1,0,...) =0.

v. If e € X is a strong unit, then e is a Z-unit. Since For any x € X there exists a
k € N such that x < ke, Let r), € Z be fixed, then e is a strong unit, so ry (x —x A\
ne) =ry(x—x) =ry(0) =0 foralln <k

vi. If X is o%-continuous , then every weak unit of X is %Z-unit. Since Let e be
a weak unit. For each x € X4, x Ane T x so it means x —x /\ne | 0, from the

o -continuity ry (x —x Ane) — 0 for any r), € X.

Proposition 3.4.13. Let (X,%,E) be a LMRPNVL and e € X.. If the ideal generated
by e in X is #—dense in X then e is % —unit.

Proof. Firstly let we assume r, (0) = u > 0 for some rj, € Z. For0 € X and 0 # u €
r5,(X), there must be b € X such that ry (—b) <r; (0) but we know that r; (0) < ry (—b),
hence r) (—b) = r; (0), moreover for each x € [—|b|, |b|], rj,(x) = u, and ry1p — O but

it is impossible unless u = 0. Then ry (x —x A ne) goes to zero for each x € X.. O

3.4.3 Mixed LMRPNVLs

Let (X,%,E) be a LMRPNVL and (E,||.||) be a normed lattice, then %Z* =
{lI7all }1ea is also an R—valued pseudoseminorm on X, and (X, %*,E) is called mixed-

LMRPNVL
Remark 7. Let (X,2%*,R) be a mixed-LMRPNVL:
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L.

1ii.

.

If X,%,E) is o%—continuous and ||.|| is order continuous then (X,%*,R) is

0 —continuous.Since xq — 0 implies ro(xg) 2 0 implies ||rg(xq)|| — O.

If a subset Y of X is #—bounded in (X,%,E), then Y is Z*—bounded in
(X, Z*,R). Let ry € % be fixed so there exists e € E such that ry(y) < e for

< el

all y € Y so by the monotonicity of the norm;

IfY CX is #—dense in (X,%,E) then'Y is #*—dense in (X,%*,R). Since Let
ry € Z be fixed. a € X and 0 # u € ry(X) be given, we know that there exists
y €Y such that ry (a—y) < u, so by the monotonicity of the norm ||ry(a—y)|| <

el

If (X,%,E) is #—fatou space and ||.|| is order continuous then (X,%*,R) is
also #* —fatou space. Since 0 < xo 1 x implies xq T X, it means ry (xq —x) } 0

forany ry € % so by the order continuity ||ry (xg —x)|| | 0.

If (X,%1,E) and (E,%>,F) be two %\ —KB and %,—KB spaces, then %0 %) is
a F—valued pseudoseminorm on X and (X, %, o #1,F ) is #—KB-space. Since
let we assume {xq} be an %, o #1 = % —bounded increasing net, so for a fixed
), € % and rg € X\, there exists f € F, such that ry(rg(xq)) < f for all a,
%, is an KB-space so ...As a consequences of this remark it is easily seen that
if (E,|.||) is a KB-space and (X,%,E) is a #—KB-space then (X,%*,R) is a
X*—KB-space.

3.44 % —continuous operators on LMRPNVLs

An operator T : E — F between two Riesz spaces is said to be order continuous

if xo = 0in E implies T'(xy) = 0 in F. We refer to Aliprantis and Burkinshaw (1985)

and Aliprantis and Burkinshaw (1978) for the basic properties of the class of order

continuous operators. Recently in Bahramnezhad and Azar (2017) , Bahramnezhad

and Azar (2017) and Aydin (2018) new classes of operators defined with different type

order continuity on operators. In this section we generalize these classes of operators.

Definition 19. Let X = (X1, %,E1) and X, = (X2, %>, E>) be two lattice multi-Riesz

pseudonormed lattice. A positive operator T : X1 — X5 is said to be % —continuous
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7,
operator if xq EIN) implies T (xq) LN

Example 9. Let T : X — E be any order continuous positive operator between two

Riesz spaces,so T : (X,|.|,X) — (E,|.|E) is % —continuous operator.

Example 10. Let T : X — E be any unbounded order continuous positive operator
between two Riesz spaces,so T : (X, {ru}tuex, ,X) = (E,{l,}veE, ,E) is #—continuous

operator where r,(x) := |x| Au and 1,,(x) := |x| Av.

Example 11. Let T : X — E be any strongly unbounded order continuous positive op-
erator between two Riesz spaces,so T : (X, |.|,X) = (E,{l, }veE, ,E) is Z—continuous

operator

Example 12. A lattice valued locally solid Riesz space (LNLS) is a triple (X,p,E)
where X is a vector lattice, p is a E—valued vector norm and E be a locally solid Riesz
space. In a LNLS, a net xq is said to be pz—converges to x if p(xq —x) 50, and an
operator between two LNLS T : X1 — X» is said to be pr—continuous if xq 2% 0in X
implies T (xq) 2% 0 in Xp. Now consider the family of real-valued Riesz pseudonorms
X = (riop)ic; where (r;)ic be the family of Riesz pseudonorms which generates the

locally solid topology. % —continuity coincides with p;—continuity.

Proposition 3.4.14. If a positive % —continuous operator T : X| — X, dominates S :

X1 — Xy, then S is also % —continuous operator.

Proof. Let (xq) KR 0, and we know that r5 (T (xq)) 2, 0 in E, for each r; € %, by

the monotonicity of r/zl, r% (S(xq)) < ri (T (xq)), hence S(xg) 70, m

Theorem 3.4.15. Let (X, %,E) be an LMRPNVL, and f be an order bounded linear

functional on (X, %,E), the following statements are equivalent:
i. fis %—-continuous
ii. f*and f~ are both #—continuous
iii. |f|is #—-continuous

Proof. (i) = (ii) Let (x¢) be a net in X such that x 20, ft = sup{f(y):0<y<

x} so we can choose a net yg such that 0 < yg < xg and [T (xq) — Ag < f(yg) Where
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Aq 1 0 be anet in R. Hence we have that y, ﬁ 0, then by the assumption f(yg) — 0
in R,So by the inequality /7 (xy) < Ag + f(Va), we get fT(xq) — 0. Therefore f7 is
A —continuous and f~ = (—f)" is also Z—continuous. (ii) = (iii) It is clear that
|f] is Z—continuous since |f| = f + f~.(iii) => (i) |f| dominates f,then follows

from Proposition 4, f is % —continuous. L]
Theorem 3.4.16. Let (X, %,E) be an LMRPNVL, then Ls(X,R) is a band of E .

Proof. 1t is easily seen that L, (X,R) is an ideal as a consequence of Theorem 3. Let
(fa)rea be anetin Ly(X,R) such that 0 < f 1 f in E . Let assume 0 < xq 2, 0'in

X, then for any A € A we have 0 < f(xq) = (f — f2) (xa) + f2 (xa),then f3 (xg) — 0
and (f — f3)(xq) — Osince f— f | 0. O

Proposition 3.4.17. Let X| = (X, %1,E)) and X5 = (X»,%>,E>) be two lattice multi-

Riesz pseudonormed lattice,then we have the following:

. If 0 <T € Lyp(X1,X) and Xy is O —continuous then xq | 0 in X| implies
T (xq) 4 0in X5.

ii. If T:x1— X isan onto lattice homomorphism and x4 | 0 in Xy implies T (x4) | 0

in Xp, then T € Lop(X1,X3)

Proof. i. Assume 0 < T € Ly(X;,X2) and x¢ | O in X;, X; is OZ— continuous

then xq |4, 0, by the assumption 7' (x¢) .22, 0 and by proposition 3 T (x¢) | O.

ii. It is trivial.
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4. TOWARDS A THEORY OF UNBOUNDED LO-
CALLY SOLID RIESZ SPACES

4.1 Introduction

Recall that a linear topology 7 on E is called locally solid if it has a neighbor-
hood system at zero consisting of solid sets. One can easily show that given a set P
of Riesz pseudoseminorms ! defines a solid topology with a subbase of zero which
is {p~!(—¢,€): p € P.e > 0}. This topology is denoted by < P >, and it is called
locally solid topology generated by P. Conversely, Fremlin’s Theorem says that every
locally solid topology is a generated by a family of Riesz pseudoseminorm. That is,
a linear topology 7 is locally solid if and only if T =< P > for some set P of Riesz

pseudoseminorms.(see Fremlin (1974 ))

Theorem 4.1.1. Let (E,||.||) be a normed vector lattice. For any u € E™, the map
P,: E — R defined by P,(x) = |||x| Au

, is a Riesz pseudoseminorm. Moreover, the

un-topology and the topology which is generated by the family (P,),cg+ coincide.

Proof. Let u € E™ be given. Obviously, the conditions (1),(2) and (5) hold. For con-
dition (3): Let x, y € E be given. Since |x+y| < |x|+ [y, we have |x+ y| Au <
(|x| 4+ |y]) Au < |x| Au+ |y| Au and since ||.|| is a lattice norm, we get the inequality
P,(x+y) < P,(x)+ P,(y) by the monotonicity and the triangle inequality properties of
lattice norm. For condition(4): Let {A,} C R be a sequence such that lim, e 4, =0

and x € E, the inequality
Pu(Anx) = |[[Anx| Au]| < [|Anx]] = [An]||x]]

implies that lim,,_,. P,(A,x) = 0. Hence P, is a Riesz pseudoseminorm.

Let (x¢) be a net converging to x in un-topology, that is, || [xg — x| Au || — 0

for each u € E™. By definition, P,(xq — x) converges to zero for each u € E™, so it
converges to x in the topology generated by the family (P,),cg+. Converse direction is

also true. This completes the proof. 0

!For the convenience of the definition of E—valued Riesz pseudoseminorm in the previous chapter,
the term ’Riesz pseudoseminorm’ will used instead of 'Riesz pseudonorm’.
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This theorem shows that un—topology is locally solid. Following theorem is on

a short characterization of Riesz pseudonorm.

Theorem 4.1.2. Let E be a Riesz space and p : E — R be a map. The followings are

equivalent:
i. pisa Riesz pseudoseminorm;

ii. p(x)=p(|x|) forall x € E and for each u € E™, the map p, : E — R, defined by

pu(x) = p(|x| Au), is a Riesz pseudoseminorm.

Proof. 1f (i) holds, following the proof of Theorem(2.1), we can get (ii). Suppose
that (if) holds. Since p(x) = p(|x|) = p|x(x) > 0, it is obvious that p(x) = p(|x]) =

P|x(x) = 0 whenever x = 0. Let x, y € E be given. Then

p(x+y) =p(lx+y[A(|x] +[y[)
=P+ (X +])
<Pty (XD + Py (191
=p(Ix| A (Pl + y) + p(xl A (el + [y

=p(Ix) +p(lyl)

so that p satisfies the triangle inequality. Let x € E be given. Then
limy,—seo p(Ax) = im0 p(|AnX]) = im0 p1yy (|| [x]) = 0.
If [x| < |y| then
p(x) = p(|x]) = p(Ix| Aly]) = py(Ix]) = piy (x) < py(y) = p(y]) = p().

This completes the proof. ]

4.2 The main definition and its motivation

Let p be a Riesz pseudoseminorm on E. For each u € E, the map p, : E —
R is also a Riesz pseudoseminorm defined by p,(x) = p(|x| Au). Let (E,7) be a

locally solid Risz space. So there exists a family of Riesz pseudoseminorms (p;)ics
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such that T =< (p;)ie; >. For any A C E, there exists a different family of Riesz
pseudoseminorms (p; 4)icr.aca Where p; 4(x) = p(|x| Aa) for each i € I and a € A. This
related family defines a locally solid topology. This fact coincides with the Mitchell A.
Taylor’s definition of "unbounded T—convergence with respect to A" in Taylor (2017

). Here is the Mitchell A. Taylor’s definition.

Definition 4.2.1. Let X be a vector lattice, A C X be an ideal and T be a locally
solid topology on A. Let (xq) be a net in X and x € X. We say that (xq) unbounded

T-converges to x with respect to A if |(x¢) — x| A |a| = foralla € A,.

In Taylor (2017 ), the topology corresponding to the convergence in the above

definition is denoted by us 7.

Observation:

Let E be a Riesz space, and p : E — R be a Riesz pseudoseminorm. For a given

nonempty set A C E, consider the map p4 : E — R defined by

Pa(x) = supyea p(|x| Aa)

It is obvious that the map p4 satisfies the conditions (1) — (3) and (5), we must check

condition (4): Let {A4,} C R be any sequence converging to zero. Then

pA(Anx) = sup p(| x| Aa) = sup p(|A,||x| Aa)
acA acA

< sup p(|2n]|x[)
acA

= p(|Allx]) — 0

so that py4 is a Riesz pseudoseminorm.

Let P = (pi)ics be a family of Riesz pseudoseminorms and <7 C &?(E. ) that
does not contain the empty set. This family generates a topology, say 7. The locally
solid topology which is generated by the family {p; 4 : i € I,A € </} will be denoted
by u < 7,/ >. Actually, if .o/ contains the empty set, then u < 7,27 > is nothing but a
discrete topology. For any {A} € Z(E), u < 1,{A} >F# ust,butu < 7, JA >=upt

holds. Moreover, u < T,{A} >C us7. As an example let consider R? with Euclidean
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norm,and take the set of non-negative part of x—axis as A, then the sequence (x;)

(xn := 2+ sinn) does not converges in u4 T,but converges in u < 7,{A} >.

Some remarks:

Let (E, T) be a locally solid Riesz space, (p;)ic; be the family of Riesz pseu-

doseminorms such that T =< (p;);e; >. Then

(D

2)

3)

“4)

Forany &/ C Z(E.),u < 1,4/ >C 7 holds.
Proof: xg — x <= pi(xq —x) = 0 <= pi(|xq —x|) — 0, and for each a € E;
we have p;(|xq —x| Aa) < pi(|xq — x|), hence

sup,ca Pi(|xa — x| Na) < pi(Jxq —x|) for each A € &7

u<t,of >
So xq

If o ={{E;}}, thenu < 7,{{E+}} >=1.
Proof: It is clear that sup,cp, pi(|x| Aa) = pi(|x]) = pi(x).

If o CAthenu<t,o/ >Cu<t,#B>forall o/ C BC P(Ey).
Proof: xq UEIZ e supyep Pi(|xa —x| Aa) — 0 for each B € &
= SUp,cy Pi(|¥q —x| Na) — O foreach A € & C A.

u<t,of >
Hence, xo —— x.

For each & C Z(Ey)u< t,Jo >Cu < 1,47 > holds.

Proof: Let xq % x. Soforafixedieland A € &7, pis(xq —x) = 0 <=

sup,ca Pil|xa —x| Aa) — 0, and it is obvious that
pi(|xa —x| Aa) <sup,cu pi(|xa —x| Aa) for each a € A.

Hence, p; (4} (Xa — X) = pi () ([Xa —x|) = sup,eiqy Pi(|Xa — X[ Aa) = pi(|xa —
x| Aa) — 0.
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(5) Foreach & C Z(Ex)u<t,Jo >=u<71,I(J«) > holds where I(|J <) is
the ideal generated by |J 7.
Proof: Since |J&/ C I(</), we have u < t7,Jo/ >C u < 7,1(J«/) > from

(3). Let xq % xand b € I(J <)+ be given, there exists ay,...,a, € |J &

and k > 0 such that 0 < b < k(a; + ... +ay). Then
|Xa —X| AD < |xq —x|ANk(ai + ... +an) <Y} | |xa — x| Nkai,
=kY" | 1l —x| Aa;
<kmY! | |xoa —x|Naj

where m is the smallest positive integer greater than % Then by the monotonicity

of pj,
pi(|xa —x|AD) < pi(km¥ " | |xoq — x| Aaj) — 0.

Hence, p;(|xq — x| Ab) = supyc gy pi(|xa — x| Ab). This completes the proof.

(6) Foreach & C Z(Ey)u<rt,Uo >=u<1,J& > holds.

Proof: Suppose that xg UETZ and b e (U«)+ be given. Choose a net

(bg) € U< with bg USTIZ p Leti e 1 be fixed and € > 0 be given. Choose

Bo such that p;(bg, —b) < §. Then

[Xo — x| Ab = |xq — x| A (b—bg, +Dbg,)
< e = x| A(|b = bg,| + |bg,|)

< |xq = x| A |b—bg,| +|xa — x| A |bg,|

Applying p; to this inequality, one can show the existence of @ such that p; () (X —

x) < €. This completes the proof.

(7) f0<a<b,thenu < t,{a} >u<1,{b}>.
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Proof: It is clear that;

sup pi(|xa —x|Aa) = pi(lxa —x|Aa)
ac{a}

< pi(|xa —x[Ab)
= sup pi(|xq —x[Ab)
be{b}
(8) If e € E is a strong order unit, then u < 7,{{e}} >=u < 7,JE+ >. But the
converse of this statement is not true in general. For example, consider ¢( as a
Banach lattice with supremum norm, with norm topology 7 and e = (}l) Then

u<t,{{e}} >=u < t,JE; >, but e is not an order unit.

(9) If e is a quasi-interior point, then u < 7,{{e}} >=u < 7,JE+ > from (5) and

(6).

(10) Forany & C Z(E4),u<7t,9 >=u<u< 7,9 >, > holds.

4.3 Unbounded locally solid Riesz space

From the motivation of the above observation, we give the following definition.

Definition 4.3.1. A real valued map q on a Riesz space E is said to be unbounded Riesz
pseudoseminorm if there exists a Riesz pseudoseminorm p on E and A C E™ satisfying

q(x) = sup,c4 p(|x| Aa). In this case, we say that q is generated by p and the subset A.

It is obvious that every unbounded Riesz pseudoseminorm is a Riesz pseu-
doseminorm. So the topology which is generated by unbounded Riesz pseudosemi-
norm is a locally solid topology. If unbounded Riesz pseudoseminorm ¢ is generated
by Riesz pseudoseminorm p and A C E™, then the topology generated by ¢ is weaker
than the topology which is generated by p. Recall that every family of Riesz pseu-
doseminorms defines a locally solid topology. Conversely, every locally solid topology

is determined by a family of Riesz pseudoseminorms.

Definition 4.3.2. Let (E, ) be a locally solid Resz space generated by the family

(pi)icr of Riesz pseudoseminorms . The locally solid Riesz space on E generated by
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the family of unbounded Riesz pseudoseminorm on E is called unbounded locally solid

Riesz space generated by t, and denoted by T

Proposition 4.3.3. Let (E, T) be a locally solid Riesz space. If T is a Hausdorff locally
solid topology, then the unbounded locally solid topology is also Hausdorff.

Proof. Let (p;)icr be a family of Riesz pseudoseminorms such that T =< (p;);c; > and

x # 0 be given, then there exists some iy € I such that p; (x) > 0.Then,

Gig,{ |} = SUPae{lx|} Pio ([X| A @) = pig (|x| A |x]) = pig(|x]) = pig (x) > 0.
It is obvious that g;; 1|,y 18 an unbounded Riesz pseudoseminorm, so 7 is a Hausdorff

topology. O

Definition 4.3.4. A net (xo) in a locally solid Riesz space (E, ) is unbounded topo-

logical convergent if it is convergent in unbounded locally solid Riesz space (E, ‘L',).

Theorem 4.3.5. Let (E,t) be a Hausdorff locally solid Riesz space and (xq) be an
increasing net. Then the followings are equivalent:
1. (xq) = xin (E,1);

/

2. (xq) = xin(E,T

!

).
Proof. Since T C 1, itis easy to see that (1) implies (2). Now suppose (2) holds. Since
7T is a Hausdorff locally solid Riesz space by the Proposition 4.3, we have x4 1 x.
Thus |x| is an upper bound for the net (x) and 2|x| is an upper bound for the net
(|xe, — x|). Now suppose that (p;)ic; is the family of Riesz pseudoseminorms such that

T =< (pi)ier >. Leti € I be arbitrary. Then,

pilxa —x) = pi(lxa —x[) = pi(lxa —x[ A2]x])

= sup pi(jxq —x|Aa)
ac{2[x|}

1= i (2]} (Xa —x) = 0.

This completes the proof. ]

Theorem 4.3.6. Let (E,T) be a Hausdorff locally solid Riesz space, and T be the
unbounded locally solid topology generated by T. Then T has Lebesgue property if and
only if 7 has Lebesgue property.
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Proof. One side of the implication is clear. Let us assume that x | 0 implies x 25 0.
Then , it is easy to see that xy 50 by using the Theorem 4.5. This completes the

proof. ]

4.3.1 Product of unbounded locally solid Riesz space

Theorem 4.3.7. Let (E;,T;)ic; be a family of locally solid Riesz spaces. Then the
product space [l;c; E; is unbounded locally solid Riesz space if and only if for each i,

E; is an unbounded locally solid Riesz space.

Proof. Suppose that for each i € I, (E;, 7;) is an unbounded locally solid Riesz space,
and 7; is generated by a family Q; of the unbounded Riesz pseudoseminorms on E;. So
for each g € Q;, there exists a Riesz pseudoseminorm p on E; and A; C El+ , depending

on ¢, such that
q(x) = sup,cq, p(|X| A a) for all x € E;.

Let j €1 and g € Q; be given. Choose p and A; as above. Let P; be the projection
from E = []; E; into E; and f; be vector space embedding of E; into E, that is, f; sends
x € E;j to (x;) where x; = x and x; = O for all i # j. One can show that for each Riesz

pseudoseminorm on E;, po P; is a Riesz pseudoseminorm on E. We note that for each
q € 0j,

qo Pi((xi)) = q(Pj(xi)) = q(x;) = supgea p(|xj| N @) = supaca; po Pi(|(xi)| A fj(a)).
Thus, g o P; is an unbounded Resz pseudoseminorm on E. And the the topology of
[1;E; is the topology generated by {goP;: j € I,q € Q;}. Hence, the locally solid
Riesz space []; E; is an unbounded locally solid Riesz space.

Now suppose that E = []; E; is an unbounded locally solid Riesz space, and iy
is given. Suppose that the topology of E is generated by the family Q of unbounded
Riesz pseudoseminorm on E. Let g € Q be given. There exists A = (A;) € E; and
Riesz pseudoseminorm p on E such that g(x) = sup,c4 p(|x| Aa) for all x € E. Ttis

obvious that for each io, p o f;, is a Riesz pseudoseminorm on E;, and

q° fig(x) = supgeq, PO fig(|X| Aa).
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Hence g;, is an unbounded Riesz pseudoseminorm on Ej,. Now one can show that the
topology of Ej, is generated by {go f;, : ¢ € Q}. Hence, E;, is an unbounded locally

solid Riesz space. This completes the proof. 0

Let X be a product space of topological spaces (X;)ics. A net (xy) converges to
x in X if and only if x{, — x; in X; for each i € I, where x¢ = (x})ic; and x = (x;). By

using this fact, the proof of the following theorem is easy.

Theorem 4.3.8. Let (E;, T;)ic; be a family of locally solid Riesz spaces. For each
o, C P(E;"), we have

u <Lt [Le >=Tlu < 7,9 >.

4.3.2 Unbounded absolute weakly locally solid Riesz space

The concept of unbounded absolute weak convergence (briefly uaw-convergence)
was considered and studied in Zabeti (2017 ). Let E and F be vector spaces. If there
exists a bilinear map T : E X F' — R satisfying

T(x,F)=0=x=0,

T(E,y) = 0= x =0, then the pair (E,F) is called a dual pair. In this case, E
can be considered as a vector subspace of RY, by embedding x — x*, x*(y) = T (x,y).
We can consider R as a topological space with product topology [Ier R and restric-
tion of this topology on E is the topology generated by the family (p,)ycr of semi-
norms, where p, : E — R defined by p,(x) = |T(x,y)|. This topology is independent
of T and is denoted by 6(E,F). Similarly, o(F,E) can be defined. One of the main
results is that the topological dual of E with respect to (E, F) is a vector space which

is isomorphic to F, this is denoted by (E,c(E,F)) = F.

Definition 4.3.9. If (E,F) is a dual pair of Riesz spaces with respect to a positive

linearmap T : E X F — R, then we call that as a positive dual pair (with respectto T ).

We note that if (E, F) is a positive dual pair with bilinear map 7', then one can
show that the embedding x — x*, x*(y) = T'(x,y) is bipositive. The order dual of a
Riesz space E is the vector space of order bounded functionals from E into R and

denoted by E~, which is a Dedekind complete Riesz space. Throughout the paper we
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suppose that E™ separates the points of E, that is, for each nonzero x € E, there exists
f € E~ with f(x) #0. So, (E,E™) is a positive dual pair via the map (x, f) — f(x). If
7 1s a Hausdorff locally solid topology on E, then the topological dual E "is an ideal of
E™. Let A C E™ be given. For each f € A, the map p|s : E = R. pjf(x) = |f](|x]) isa
Riesz seminorm. The locally convex-solid topology generated by ( P f‘) reE~ 1s called
absolute weak topology and denoted by |G |(E,A).

Now we are going to define an unbounded absolute locally solid topology. For

this, first we need the following Lemma.

Lemma 4.3.10. Let (E,F) be a positive dual pair with respect to T. For each a € E
andy € F, the map p : E — R defined by

p(x) =T (x| Alal,|y])
is a Riesz pseudoseminorm on E.

Proof. Without loss of the generality, we can suppose that a and y are positive. Obvi-
ously the conditions (1),(2) and (5) are satisfied . For the condition (3): for a given

pairx,y € E |

plx+y) =T(jx+y|Aa,y)
<T(|x| + [y| A a,y) by positivity
<T(|x| Na,y)+T(|y| Aa,y) by linearity and positivity

=p(x) +p(y)

hence, the condition (3) holds. For the condition (4), let {4, } C R be a sequence such

that lim,, .. A, = 0 and x € E, we have
P(Anx) = T(|Aux| Na,y) = T (|Aallx| Aa,y) = T(|Aa| (¥ A 70),)
— Ml (] A pra).3)
< [T (|x],y)

So, T(|x|,y)is a real number,

An|T (|x|,y) — 0O,thus the condition (4)also holds. O
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By using the same motivation, for a given A C E,eq € E and fy € F, the map

sup,ea T (x| AaNleol,|fol) is also a Riesz pseudoseminorm, and it will be denoted by

PA.eo.fo

Definition 4.3.11. Let (E,F) be a positive dual pair. Let Ey C E,Fy C F and &/ C
P (E,) be nonempty sets. Then the topology generated by (pa ey, fy)Acst eycEy, focFo IS

called unbounded locally solid Riesz space on the positive pair (E,F) with respect to

Eo, Fy and <f . This topology is denoted by u|c|((E,F),Eo, Fo, ).
By using some routine arguments, the proof of the above theorem can be given.

Theorem 4.3.12. Let (E,F) be a positive dual pair. Let Let Ey C E,Fy C F and </ C
P (EL) be nonempty sets. Then

ulo|((E,F),Eo, Fo, /) = u|c|((E, F),I(Eo),I(Fy), ).

Definition 4.3.13. A net (xy) in E is called unbounded absolutely weakly convergent
to x with respect to (Ey, Fy, /), x € E , if and only if the net (xy) converges to x in the
the topology u|o|((E,F), Eo, Fo, <)

Remark 4.3.14. These observations and results can be extended into locally solid

lattice-ordered groups studied in Hong (2015 ).

33



5. ALL TOPOLOGIES COME FROM A FAM-
ILY OF 0 1-VALUED QUASIMETRICS

Topological spaces are natural extensions of metric topologies. A topological
space whose topology is a metric topology is called a metrizable space. Most of the
fundamental examples of topological spaces are not metrizable (for general definitions
and examples, see Engelking (1989)), therefore one of the fundamental research top-
ics in General Topology has been to find conditions under which a topological space is
metrizable. In Kopperman (1988 ), despite the fact that not all topologies taken into
account are metrizable, types of such conditions are shown to be obtained in terms of
generalized quasi-metrics. To prove this, Kopperman introduced the notion of conti-
nuity spaces in Kopperman (1988 ), which reads as follows.

A semigroup (A,+) with identity O and absorbing element o # 0 is called a

value semigroup if the following conditions are satisfied:

(1) Ifa+x=>band b+y=a, thena = b (in this case, if a < b is defined as b =a+x

for some x, then < defines a partial order on A).

(1) For each a, there is a unique b such that b+ b = a (in this case, one writes

b= %a).
(iii) For each a, b, the element a Ab := inf{a,b} exists.
(iv) For each a, b, c, the equality a Ab+c = (a+c¢) A (b+c¢) holds.
A set of positives in a value semigroup A is a subset P C A satisfying the following:
(1) ifa,be P,thenaNb € P,
(i) re Pand r < a, thena € P,
(iii) r € P, then 5 € P;
(iv) ifa < b+rforeachr € P,thena <b.

Let X be a non-empty set, A a value semigroup, P a set of positives of A, and d :

X X X — A a function such that d(x,x) = 0 and d(x,z) < d(x,y) +d(y,z) for all x, y,
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z€ X. Then o« = (X,d,A,P) is called a continuity space. For each x € X and r € P,

we write
Blx,r] ={y€ X :d(x,y) <r}

Theorem 5.0.1 (Kopperman Kopperman (1988 )). Let o7 = (X,d,A, P) be a continuity

space. Then
To(«/) :={U C X : for each x € U there exists r € P such that B[x,r| CU}

is a topology on X. Moreover, every topology on X is of this form.

5.1 The Main Result

The main issue of the present note is to reveal the fact that Kopperman’s theo-
rem can be refined by taking 0 — 1-valued generalized quasi-metric spaces instead of
continuity spaces. We will first define related notions which will be used in the sequel.

A functiond : X x X — [0, o) is called a quasi-metric if d(x,x) =0 and d(x,z) <
d(x,y) +d(y,z) for all x, y, z € X. A 0— l-valued generalized quasi-metric on a set
X is a function from X x X into {0, 1} for some non-empty set I if for each i € I the
function d; : X x X — {0, 1} defined by d;(x,y) = d(x,y)(i) is a quasi-metric. In such a
case, we will refer to (d;);cr as a partition of d. A set X equipped with a 0 — 1-valued
generalized quasi-metric d is called a 0 — 1-valued generalized quasi-metric space. It
is easily seen that the set {0, 1}/ is a semigroup with respect to the operation -+, given
by (f +g)(i) = max{f(i),g(i)}, moreover (A,+) is a value semigroup with identity
element (0(i) = O for each i € I), absorbing element (eo(i) = 1 for each i € I) and the

pointwise order.
Theorem 5.1.1. The set
P={rec{0,1}:{jecI:r(j) =0} is finite}
is a set of positives in the value semigroup (A,+).
Proof. i. f,g € P, then (fAg) € P since the number of zeros of the function (f A

g)(i) = inf{f(i),g(i)} is at most [{j € I : f(j) =0} +[{j € :g(i) =0},
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ii. If fePandf <g,then f(i) < g(i) for each i € I, it leads us; set of zeros of g is

a subset of the set of zeros of f,

iii. For each r € A, r+r = r, it is idempotent, hence if r € P then r = % e P.

]

Following the usual custom, we denote this space by (X,d,I). A subset U C X

is called open if for each x € U there exists a finite set J C [ such that

(Hy€X:d(xy)(i)=0} CU.

icJ
The set of open sets with respect to (X,d, 1) is denoted by To(X,d,I).

Lemma 5.1.2. Let (X,d,I) be a 0 — 1-valued generalized quasi-metric space. Then,

foreachx € X and i € I, the set {y € X : di(x,y) =0} is open.

Proof. Let U :={y € X : di(x,y) =0} and let y € U be given. Then d;(x,y) = 0. If
di(y,z) = 0, then we have

0 S d,-(x,z) S di(x7y) +di<y,Z) = 07
so that
{z:di(y,z) =0} C U.
It follows that U is open. [

The proof of the following is elementary and is therefore omitted.

Theorem 5.1.3. Let (X,d,I) be a 0 — 1-valued generalized quasi-metric space. Then
To(X,d,I) is a topological space. If (d;)ic; is the partition corresponding to d, then
the family

{{yeX:di(x,y)=0}:iel,xeX}

is a subbase of To(X,d,I).

Let us denote the truth value of a proposition p by #(p); that is, #(p) = 1 if p is
true, t(p) = 0 if p is false. Let (X, 7) be a topological space and U € 7 be given. For
each U € 7, the map dy : X x X — R defined by
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0, iftxeU = yeU)=1;

1, iftlxelU = yeU)=0.

is a quasi-metric. Indeed, let x, y and z € X be given. If x € U then, t(x e U —
yeU)=1sody(x,z) =0. If x€ U, dy(x,y) =0 and dy(y,z) =0, then y € U and
z€U. Thust(x e U = z€U) =1, so dy(x,z) =0. This shows that dy is a
quasi-metric. Also, for each U € 7, one can define a function py : X X X — R as
pu(x,y) = Xy (x) Xy (v) where x(yy denotes the characteristic function of U, it is
also a quasi-metric,which is equivalent to the quasi-metric dy. In particular, we have

the following.

Lemma 5.1.4. Let (X, 1) be a topological space and U € T be given. Then, for each
x €U, one has

U={yeX:dy(x,y) =0}.
Interestingly enough, the converse of the above fact is also true.

Theorem 5.1.5. Every topological spaces comes from a 0 — 1-valued generalized quasi-
metric space. That is, if (X, 7) is a topological space, then there exists a 0 — 1-valued

generalized quasi-metric on X such that T =To(X,d,I).

Proof. For each x, y € X and U € 7, if the proposition “x € U = y € U” is true let
d(x,y)(U) = 0, and otherwise let it be 1. Then we have a functiond : X x X — {0, 1}7.
One can easily show that it is indeed a 0 — 1-valued generalized quasi-metric. Now we
show that T = To(X,d,I). Let U € T and x € U be given. Since {y € X : dy(x,y) =
0} € To(X,d,I) it directly follows that

U={yeX:dy(xy) =0},

whence U € To(X,d,I). Now, let V € To(X,d,I) be given. If V = X, then obviously

V € 1. Suppose that V == X. Let x € V. Then there exists Uy, ...U, € 7T such that

(v €X :dy,(x,y) =0} CV.
i=1
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By Lemma 2.3 we have
n
xe UiV,
i=1

so that V € 1. The proof that T = To(X,d, 1) is now complete. O

Theorem 2.4 shows that each topology is a To(X,d,I), and Kopperman’s result
(in Kopperman (1988 )) that each topology arises from a continuity space follows. It

is obvious that a subbase of the space To(X,d,I) is
B ={{y:di(x,y)=0}:xeX,icl},

where (d;);e; is a partition of d.

5.2 Pervin quasi-uniformity

For a non-empty set X, a subset ZZ C (X x X) is called a quasi-uniformity if

it satisfies the following axioms.
(i) ForeachU € %, ACU.
) fUew, UCVCXxXthenVe%.
(iii) fU, Ve thenUNV € % .
(iv) Foreach U € % there exists V € % suchthat VoV C U,

where A = {(x,x) : x € X} and o denotes the usual composition of binary relations, that

is; For any binary relations V,W C X x X, the composition of V and W is
VoW ={(x,z) X xX:(x,y) €V and (y,z) € W for some y € X }.

The pair (X,% ) is called a quasi-uniform space. Kelley’s proof (in Kelley (1995 ))
that every uniformity %/ on X defines a topology can easily be modified to show that

every quasi-uniformity %/ on X defines a topology.
Ty ={U C X : for each x € X there exists V € % such that V(x) C U},
where
Vix)={yeX:(x,y) eV}
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It should be noted that uniformities are symmetric quasi-uniformities, here is the defi-
nition of symmetricity; if V € % then V! = {(y,x) : (x,y € V)}. PervinPervin (1962
) has proved that every topological space is quasi-uniformizable; that is, for a given
topology 7 on X there exists a a quasi-uniformity %/ on X such that T = 75, namely

% 1is the intersection of all quasi-uniformities which contains,
B={(VxV)U((X\V)xX):V et}

Here 7% is called Pervin quasi-uniformity. As an application of Theorem 2.4 we can

reprove the following theorem.
Theorem 5.2.1 ( Pervin Pervin (1962 ) ). Every topological space is quasi-uniformizable.

Note that the above theorem improves on the result proved in Kopperman (1988
), that each generalized quasi-metric space induces a quasi-uniformity, and the topol-
ogy induced by this quasi-uniformity is that induced by any generalized quasi-metric
space that induces this quasi-uniformity. Thus each topology is induced by a quasi-

uniformity.

5.3 Some Remarks

Through lack of symmetry, categorizing the notion of convergence as right con-
vergence and left convergence is reasonable in a 0 — 1-valued generalized quasi-metric

space (X,d,I). The definition is as follows.

Definition 5.3.1. A net (xo)qea right converges to x in (X,d,I), denoted by (x4) - x,
if for each i € I there exists oy € A such that di(x,xg) = 0 for all o > o . A net
(Xor) aea is called right Cauchy (or, r-Cauchy) if for each i € I there exist 0 € A such
that di(xe,xg) =0 for all B > o0 > ot.

The definitions of left convergence and left Cauchyness are given similarly: for

the sake of simplicity, only ‘right’ versions of them are used in the rest of the note.

Remark 8. Several familiar topological notions can be derived using the structure of

0 — 1-valued generalized quasi-metric spaces. We list some of them below.

(1) Let (X,d,I) be a 0— 1-valued generalized quasi-metric space. Then the follow-

ing are equivalent:
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(a) The net (xq)qea right converges to x in (X,d,I).

(b) The net (xq)qea converges to x in To(X,d,I).

(¢) The net d(x,xq) converges to zero in the product topological space {0,1}".
(2) Let (X,d,I) and (Y,p,J) be 0 — 1-valued generalized quasi-metric spaces, and

f afunction from X into Y. Then f is continuous at a point if and only if for each

Jj € J there exists i € I such that di(x,y) = 0 implies p;(f(x), f(y)) =0.

(3) Let (X,d,I) be a 0— 1-valued generalized quasi-metric space. Then To(X,d,I)
is a Ty space if and only if for every distinct pair x,y € X there exists i € I such

that di(x,y) = 1 or d;(y,x) = 1

(4) To(X,d,I) is Ty-space if and only if for every distinct pair x,y € X there exists
i € I such that d;(x,y) = 1 and d;(y,x) = 1.

(5) To(X,d,I) is a Tr-space if and only if for every distinct pair x,y € X there exists
i, j € I satisfying the following;
i. di(x,y)=d;(y,x) =1,

ii. di(x,w)=d;(y,w) =0 implies d;(w,y) =0 ord;(w,x) =0.

Proof. (<=) We consider the open sets U = {z € X : d;(x,z) =0} and V = {z €
X :dj(y,z) = 0}, it is obvious that x € U and y € V and by the assumption (i),
x¢Vandy¢U. Assuming UNV # 0, so UNYV has at least one element, say w.

Here is the contradiction;

(=) Assuming that To(X,d,) is a T, topology, for any distinct pair x,y € X
there exist open sets U and V such that x € U,y € V and UNV = 0. By the

definition of open set, there exist i, j € I such that

{zeX:di(x,z) =0} CU and {z€ X :dj(y,z2) =0} CV
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(6)

it is easily seen that d;(x,y) = d;(y,x) = 1, and (ii) is logically true since there is

no w € X such that d;(x,w) = d;(y,w) = 0. O

The notion of statistical convergence of a sequence of real numbers is as follows:
A sequence (x,) of real numbers is said to converge statistically to the real num-
ber x if for each € > 0 one has 6(A¢) =0, where Ag = {n € N: |x, — x| > €}

and

1
8(A¢) = lim Z“GAs—»“S”,

n—eo n
In Maio (2000 ), it is defined for topological spaces as well. Here is its vari-
ant using the aforementioned arguments: A sequence (x,) in (X,d,I) is said to
convergence statistically to x if

lim IneN:dij(x,x,) =1 _

n—eo n

0

holds for eachi € I.
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6. A SHORT NOTE ON INEQUALITIES IN RIESZ
SPACES

6.1 Introduction

We will follow standart notations in Riesz space theory (see,e.g.Aliprantis and
Burkinshaw (1985) ). As noted in Wickstead (2007 ), textbooks on vector lattices
abound in equalities and inequalities which often take quite a lot of proving. By using
the Kakutani representation theorem, it can easily be proved that any elementary equal-
ity or inequality which holds in the reals also holds in Archimedean Riesz spaces (see:
theorem 1.4 Wickstead (2007 ), p.66 (Meyer-Nieberg)The terms elementary equality

or inequality are defined as follows:

Definition 6.1.1. Let E be a Riesz space and n € N. We call a function f : [} _|E — E

is elementary if f is in the following form:
f(x1,X2...%) = y1Y2Y3- Yk,
where
yi € {(), VoA 4+, =1, 7 u{xii=1,2,..n} UR
and the sequence y1y2y3...yk, valid in E. In this case we define a function
I R=>R
given by
SO 03) = Yiyay5-- 3,

such that if y; € {(,),],V,A\,+,—,7,” }UR, then y; =y, otherwise y; = x| such that

Vi = Xk-

6.2 The main result

The main result of this chapter is the following:

Theorem 6.2.1. Let E be a Riesz space and f,g : [[}_| E — E be elementary functions.
We have the following:
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i f(x1,x0..2) < g(x1,x0..0,) < f/(x],x5..x],) < g'(x],%5..x},)

ii. f(xr,x0..x,) < g(x1,%2..%0) <= f (], %5...x},) < g'(x],x5..x},)

iii. f(x1,%0..00) = g(X1,X2..%,) <= f/ (X}, x}..x),) = g/ (x,x5..x),)

Notice that any of the above inequality (or equality) is called elementary inequality

(or elementary equality) in literature. The above theorem says, for instance, that since

for x,y,z € R we have the validity of

x+(yVz) = (x+y)V(x+z)
in R, we also have the equality

x+(yVz) = (x+y)V(x+z)

in a Riesz space E, for any x,y,z € E where E is not necessarily Archimedean Riesz
space. The proof of the above fact depends on some heavy representation theorems that
are valid in ZFC (see Luxemburg and Zaanen (1971 )). On the other hand, we can prove
theorem 1.2 for (not necessarily Archimedean) Riesz spaces in ZF. In Aliprantis (1996)
the belief that the above theorem can be proved for any Riesz space is mentioned. In

what follows, we not only prove that claim but give the proof of it in ZF.

Proof. Let E be a Riesz space (not necessarily Archimedean) and X be a non-empty
set. Consider the Riesz space RX under the pointwise algebraic operations and point-
wise ordering. Let V be an order ideal of R¥, it is known that the quotient vector space

RX /V is a Riesz space with respect to the following order:
[f] <lg] ifand only if f < f+vin RX forsomeveV

It is obvious that if an elementary equality or inequality is true in R then it is true in RX.
hence it is true in R¥ /V since the map RX — RX /V, f+ [f] is a Riesz homomorphism
(by the corollary 1.4). One of the Fremlin’s theorem states that in ZFC for any ordered
vector space F there exists a nonempty set X, and an order ideal V of RX such that
F — RX/V is a injective Riesz homomorphism. This statement is true in ZF, for the
proof of this theorem of Fremlin, see Buskes et al (2008 ). Hence The Riesz space E is
Riesz isomorphic to the Riesz subspace of R¥ /V for some X and for some order ideal

V of RX. Therefore If an equality or inequality is true in R then it is also true in E. [J
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Being immediate applications of this theorem, many equalities and inequalities

in Riesz spaces can be shownd to hold, some of which are the following:
L xVy=—((-x)A(=y)) andx Ay = —((—x) V (=)
2. x+y=xAy+xVy
3. x+(yVz)=(x+y)V(x+z)and x+ (yAz) = (x+y) A (x+2)
4. a(xVy)=(ax)V(oy)and a(xAy) = (ax) A (ay)
5. xVy=3(x+y+|x—y)) andxAy=S(x+y—|x—y|)
6. [x—y|=xVy—xAy
7. x|V Iyl = 3+ yl+ x =)
8. x| Alyl = 5 (lx+yl—Ix—y)
9. [lxl = Iyll < Px+y[ < [xf +[y]
10. [xVz—yVz| <|x—yland [xAz—yAz] <|x—Y|
11. If x and y are positive, then x A (y+2) < xAy+xAz
12. xA(yVz)=(xAy)V(xAz)
13. x|+ [y] = |x+y] =2(xT Ay~ +x Ayt)
The proof of the following theorem immediately follows the definition.

Theorem 6.2.2. Let E be a Riesz space and f :[]\_| E — E be elementary functions.
Then, for any a = (ay,az, ....ay) and b = (by,ba,....b,) in [}, E we have

|[f(a) = f(b)| < KYiLlai—bil
for some positive real number K depending on a and b.

As an application of the above theorem we have the following. Let E be a
Riesz space and f be an elementary function. For each i = 1,2,3,...,n suppose that

(xil(i))a(i)eA(i) be nets. Then

44



1. If for each i, (x,(;)) order converges to x;, then f (x}l(l),xz(z), ...,xZ(n)) is order

convergent to f(xy,X2,...,xp).
2. If for each i, (x,(;)) unbounded order converges to x;, then f (x;(n ,xg(z), ...,xZ(n))

is unbounded order convergent to f(xy,x2,...,Xy).

3. If (E,7) is a locally solid Riesz space and for each i, (x,(;) T—converges to x;,

then f(x;(l),xi(z), ...,xZ(n)) is T—convergent to f(x1,Xx2,...,Xp).

The above observations generalizes many well-known results on convergence of nets.
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7. CONCLUSIONS AND OUTLOOK

On the third chapter: several new convergence spaces introduced on vector
spaces and vector lattices. In the main part of this chapter lattice multi-Riesz pseudonormed
vector lattices have been studied. This space has mainly two importances; one of both
is that every Hausdorff locally solid vector lattice is a LMRPNVL, the other one is the
definition of % —continuous operators since it generalizes the other type continuous
operators.

On the fourth chapter: Firstly, by using the observation on this chapter, the
newly LMRPNVL spaces can be defined as follows: Let we choose E order complete,

for a nonempty A C E the map

Ty : X — F

x+— ma(x) = supn(|x| Aa)
acA

is also a lattice-valued Riesz pseudoseminorm. secondly let d be an translation-invariant

lattice pseudometric, and for a fixed A C G4 consider the map;

dy:GxG—R

(x,y) — da(x,y) = Sugd(lx—yl Aa,0)
ac

Similarly, one can show that it is a translation-invariant lattice pseudometric.Hence by
using the fact that a group topology 7 on an [-group G is locally solid if and only if it
is generated by a family of translation-invariant lattice pseudometrics, we can study on
new convergence types.

On the fifth chapter: A new characterization of topological spaces was done.
The equality between the new characterization and two other characterizations, which
have been already known, was stated. Since 0-1 valued maps are useful, to carry some
definitions to topological spaces will be easier : uniform continuity and statistically
convergent.

To emphasize its importance, it can be argued that even though the definition of

solid topology is clear, generally we apply to a family of pseudoseminorms to describe
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them. This characterization can offer us that. Also to ponder if further studies in this
field is possible, the following question was put: Can the topological properties be
characterized in terms of the index set?

On the sixth chapter: We can call what we had done as simplification because
the standart proof of the claimed fact Kakutani represantation theorem, stone weistress
theorem were utilized. But there are some difficulties conscerning its structure. Also
my study is axiomatic because the proof was done without axiom of choice. More-
over the claim was applied in all Riesz Spaces, by not taking into account if it has

Arcihimedean property, or not.
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