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ABSTRACT

BANDS IN PARTIALLY ORDERED SPACE WITH UNIT ORDER
M.S. THESIS

OKAN ODABAŞI,
ABANT İZZET BAYSAL UNIVERSITY GRADUATE SCHOOL OF

NATURAL AND APPLIED SCIENCES
DEPARTMENT OF MATHEMATICS

(SUPERVISOR : PROF. DR. ZAFER ERCAN)

BOLU, MARCH 2018

This thesis consists of four chapters. In chapter I,II it is given some neccesary defini-
tions,which is used in other chapters. In chapter III, we deal with some basic properties
of Riesz spaces, and characterizations of bands of C(Ω)-spaces, which is one of the funde-
mental example of Riesz spaces, are given. In the last chapter, the notion of directed partially
ordered vector spaces are introduced and also the notion of bands are given in terms of dis-
jointness. Bands are studing via Riesz space cover X of Y on the condition X with order
unitt Y can be express as C(X), here X compact and T2 space. one can express bands in X ,
seperate complement as subset of X

KEYWORDS: Bands, Seperatness, Functionals representation, Order Unitt, Partially or-
dered vector space, Polyhedral cone, vector completion
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ÖZET

KISMİ SIRALI SIRA BİRİMİ OLAN VEKTÖR UZAYINDAKİ BANDLAR
YÜKSEK LİSANS TEZİ

OKAN ODABAŞI,
ABANT İZZET BAYSAL UNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ

MATEMATİKANABİLİM DALI
(TEZ DANIŞMANI : PROF. DR. ZAFER ERCAN)

BOLU, MART 2018

Bu tez dört bölümden oluşmaktadır. İlk iki bölümde diğer bölümlerde kullanılmak üzere,
gerekli tanımlar verildi. Üçüncü bölümde Riesz Uzayların’nın bazı temel özellikleriyle ve
Riesz Uzaylarının önemli örneklerinden biri olan, C(X) uzayındaki bandlar ile ilgilenildi.
Son bölümde ise, Archimedian sıralı vektör uzaylarında band kavramı diklik vasıtasıyla
ifade edilebilir. Şöyle ki; bandlar X’in vector lattice cover Y’yi kullanarak çalışılabilir. Eğer
X Sıra Birim’e sahip ise, Ω compact Hausdorff olduğu durumda lattice cover Y C(X) tara-
fından temsil edilebilir. Biz Ω’nın alt kümeleri vasıtasıyla X’teki bandları ve onun disjoint
complements karakterize edilir. Dahası biz X’teki bu bandları C(X) genişleten iki methodu
analiz ettik ve band’ın carrier’nin onun genişlemesiyle nasıl ilgili olduğu gösterildi.

ANAHTAR KELİMELER: Band, Diklik, Foksiyonel Temsil, Sıra Birim,Kısmi Sıralı Vek-
tör Uzayı, Kone, Riesz Tamlanışı
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1. INTRODUCTION

Partially ordered vector space without lattice property is a generalization of vector

lattices in some sense. For example, space of operators between Riesz spaces has mostly

no lattice property. To over come this problem, one use assume codomain is Dedekind

complete.

Another way, lattice theorey notions could be extended to partially ordered vector

spaces. There are two type aproach in this notion. One can be given necessarry defina-

tions in vector lattice for partially ordered vector space such as upper bound, lower bound,

disjointness etc.

Actually, definitions in vector lattice could be express in partially ordered vector

space, However, it is really hard to construct properities of this notions in partially ordered

vector space.

Second approch is that find a proper embeding which is from partially ordered vec-

tor space to Riesz space. Later Riesz space properties can be used for the space which is

embeded. The second approch was studied (anke Kalauch and O. vann gans) in terms of

disjointness. To be sucessful at embeding technic, necessary condition is that our embeding

must be order dense. Van handel in his P.h.D thesis characterize partially ordered vector

spaces which are possible to embed order dense in a Riesz space. This kind of space is

called pre-Riesz space.

Not only directed Archemedean spaces are pre-Riesz space, but also some non-

Archemedan pre-Riesz spaces. Formulation of lattice notion in partialy ordered vector

spaces may provide different notions for lattice. One can be said that the most useful gen-

eralizations will be those where the two approaches. But we will prefer second approach in

this thesis.

Disjointness property has so many exciting consequence In Riesz space theory. It is

quite meaningful how we can state disjointness in partially ordered vector space which has

not lattice property. x,y disjoint elements of Riesz space ⇐⇒ absolute value of x+y and
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x-y must be equal. This equality is the motivation of disjointness notion for partially ordered

vector spaces. Here it is also needed to be define some basic properties of Riesz space such

as absolute value. This many basic properties is hold for directed Archemedean space.

Maris van Haandel in his P.h.d thesis (Completions In Riesz space Theory) has de-

veloped a theory on Riesz completions of partially ordered vector spaces In this thesis we

used pre-Riesz space to embeded our space to extendt a Riesz space. and this embeding

should preserve our sv-disjointness. Because bands are charterize via disjointness. Our ex-

tension will be excatly C(X) and we know how bands in C(X) as a result our sv-disjointness

and disjointness in Riesz spaces will coincede each other. After we need only find a corre-

ponce with bands in C(X) the we will achive our aim. At last, we will explain how many

possible band can be in our space and show a bound for our partially ordered vector space.
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2. PRELIMINARY

In this chapter, necessarily and sufficient results are given, which are needed for the

next chapter.

2.1 Topological Spaces

Definition 2.1.1. A non-empty set T ⊆ P(X ) is called topology on X ⇐⇒ T
satisfies the following conditions;

1. X and ∅ contained by T .

2. The union of any number of sets in T contained by T .

3. The intersection of finite number sets in T contained by T .

Any set X equipped with T is called topological space. In other words, A topology space

is a tuple (X, T ) having of a set X and a topology T on X , For convenience, we will

abbreviate Topology as Top

A indiscrete top T on X is {∅, X}; that means, it’s the topology in which only ∅ and X are

open.

A metric on a set Y is a R-valued function m : Y × Y → R such thatt forr all u, v, t ∈ Y ,

1. m(u, v) = 0 ⇐⇒ u = v

2. m(u, v) = m(v, u)

3. m(u, t) ≤m(u, v)+ m(v, t)

The tuple (Y,m) is called metric space

Let (Y,m) be metric space forr each u0, r0 > 0 ,
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B(u0, r0) = {u ∈ Y : d(u0, y) < r0}

it is an O-ball with center u0 and radiu r0 > 0. Then

Td = {U ⊂ X| U is union some O − balls}

is a topology on X . So, in this sense every metric space can be considered as topological

space, and such topological spaces is called metrizable.

Let X be any set. The discrete topology on X is the collection of all subset of X . it is

induced by a metric, the so-called discrete metric d on X , which is defined by,

d(x, y) =

 0 if x=y

1 otherwise

Definition 2.1.2. If (X, T ) is top space , one can say that a subsetO ofX is an open

set of X if O contained by T .

Definition 2.1.3. If X is top space with T , one can be called that subset K of X is

closed sett if Kc is open in X

Definition 2.1.4. Let (X, T1) and (Y, T2) are top spaces. A map from X to Y is

continuous if for each open subsett V of Y , f−1(V ) is an open subsett of X

Definition 2.1.5. A collection A of open subsett of a space X is open covering if

the union of the elements of A is equal to X

Definition 2.1.6. A top space X is compact if every covering A of X contain a

finite subcover of X and this is also cover X

Let m(x, y) =
√

(x1 − y1)2 + (x2 − y2)2 + ....(xn − yn)2, In Rn. Then define a naturel

topology that is, U ⊆ Rn open if forr each x = x1, x2, ..., xn ∈ U , there exists open

(a1, b1), ....(an, bn) such that x ∈ (a1, b1)× ....×(an, bn)⊂ U known that w.r.t this topology,

a subset K is compact ⇐⇒ K is closed and bounded.
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2.2 Normed Spaces

Definition 2.2.1. (Megginson, 1998) Let V be real lineer space . A norm is R-

valued function ‖.‖ : V → R defined on a lineer space is if the following condition holds,

(1) ‖y‖ ≥ 0 for each y ∈ L and ‖y‖ = 0 if and only if y = 0.

(2) ‖αy‖ = |α| · ‖y‖.

(3) ‖y + z‖ ≤ ‖y‖+ ‖z‖ (the triangle in equality).

A 1 normed space is a lineer space which is endowed with a norm. Every normed space

has a natural metric defined by means of its norm via this relation d(x, y) = ‖x − y‖. This

natural metric is called the metric induced by the norm. The topology generated by d is

called norm topology.

Definition 2.2.2. If T is a mapping from the lineer space V into the lineer space W (

notation T : V → W ), then T is called linear operator if

T (αf + βg) = αTf + βTg

for all f and g in V and all (C or R) numbers α and β .

Theorem 2.2.3. If V andW are normed spaces and T : V → W is a lineer operator,

then the following conditions for T are equivalent.

1. T is continuous at one point f0 ∈ V .

2. T is continuous on V .

3. T is norm bounded.

T is called a linear form if it is taken R rather than W .

In particular, therefore, a linear form on V is normed bounded ⇐⇒ is continuous.

1 Normed space is an integral part of mathematics, hence it is important to know that the cardinality of infinite vector
spaces. There is an article on Cardinality of infinite dimensional vector space published by Zafer Ercan, entitled “Maşallah,
Ne Kadar çok Norm Varmiş"
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Theorem 2.2.4. Let (X, ‖.‖) be a normed space.

X∗ = {f |X → R continous linear forms },

X∗ is a normed space with norm ‖f‖ = Sup‖x‖≤1 ‖f(x)‖ then,

B∗ = {f ∈ X∗ : ‖f‖ ≤ 1}

B∗ is w∗-compact, that means following:

Each net (fα) in B∗ has a subnet (fα...) and f ∈ B∗ such thatt,

fα → f(x)

forr each x ∈ X

6



3. CHAPTER 1

3.1 Ordered Vector Spaces

Thought the exposition we shall deal with real vector spaces.

Definition 3.1.1. Let P has at least one element and ≥ be a relation on P such thatt

≤ ⊆ P × P . Let us write x ≤ y whenever (x, y) ∈≤. If the followings are satisfying then

the relation ≤ is said to be partial ordering on P where u,v,z ∈ P ,

1. u ≤ u for all u ∈ P (reflexivity)

2. If u ≤ v and u ≤ v , then u = v (anti-symmetry)

3. If u ≤ v and v ≤ z , then u ≤ z (transitivity)

A sett X endowed with an order relation ≤ is called a partially ordered sett,and it is denoted

by (X,≤). we will abbreviate partially ordered set as P.O.S.

A non-empty subsett of a partially ordered set (X,≤) and x ∈ X . One define the followings;

x yields an lower bound of A if for each a ∈ A, a ≥ x . In this case, one can write x ≤ A.

A is called bounded from below if x ≤ A for some x ∈ X

x yields greatest lower bound of A if x is greater than all lower boundd of A. Namely, if

A ≥ x and A ≥ y then x ≥ y. In this case, one can write as x =infA

x yields an upper bound of A if for each a ∈ A, a ≤ x . In this case, one may write x ≥ A.

A is called boundedd from above if x ≥ A for some x ∈ X

x yields least upper bound of A if x is greater than all upper boundd of A. namely, if

A ≤ x and A ≤ y then x ≤ y and we write as x =supA

If x =supA and x ∈ A then x is called maximum of A. In this case, one write x =maxA.

7



For example, in R, max(0,1]=1, but there is no maximum of open interval (0, 1).

If x =infA and x ∈ A then x is called minimum ofA. In this case, one may write x =minA.

For instance, min[0,1]=0. But there is no minimum of open interval (0, 1).

Definition 3.1.2. An non-empty set X with an order ≤ is called lattice if every pair

of elements x, y ∈ X has both infimum and supremum

Definition 3.1.3. A vector space E, which is equipped with a partial order ≤, is

called ordered vector space or ordered linear space if the following two conditions satisfies;

1. u ≥ v, then u+ w ≥ v + w for all u, v, w ∈ E

2. u ≥ v , then αu ≥ αv for all α ∈ R+

Ordered vector space is shown as (E,≤) pair.

Example 3.1.4. R with the usual order is an ordered vector space.

Example 3.1.5. Let X be a top space. The set of real valued continous funtions on X

is represented by C(X). It can be seen that C(X) is an lineer space with pointwise algebraic

operation. Moreover, it is an ordered lineer space in respect of the relation;

we define a pointwise relation ≤ on C(X) as follows,

f ≤ g :⇐⇒ f(x) ≤ g(x) forr all x ∈ X

One can easily check that the following hold for each f , g, h ∈ C(X) and α ∈ R

1. f ≤ f , ∀ x ∈ X ,

2. f ≤ g and g ≤ f then f = g,

3. f ≤ g, g ≤ h then f ≤ h,

4. f ≤ g then f + h ≤ g + h,

5. f ≤ g then α f ≤ α g for each α ≥ 0

Thus, C(X) is vector space.
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3.2 Archimedean Vector Spaces

Definition 3.2.1. (Zaanen, 1997)Let W is ordered vector space. W is Archimedean

if forr every x, y ∈ E such thatt nx ≤ y , ∀n ∈ N than x≤0.

Note that Riesz Space will define in the next chapter. Now it will be given Archemedean

space definition for Riesz spaces.

Definition 3.2.2. The Riesz space W is Archimedean if

inf(
1

n
u) = 0

hold for every u ∈ W+

Example 3.2.3. The space of continous functions, from [0, 1] to R, is denoted by

C([0, 1]) and it is is an Archimedan space. W.r.t following ordering;

f ≤ g :⇔ f(c) ≤ g(c),∀c ∈ [0, 1],

Example 3.2.4. Assume that n ≤ 2. We define the lexicographical order on Rn as

follows.

x = (x1, ...., xn) ≤ (y1, ...., yn) = y

if there exists k ∈ 0, ...., n such thatt

x1 = y1, ...., xk = yk and xk+1 < yk+1

It can easily be checked that Rn equipped with this order is a Riesz space. Further, it is

totally ordered such that the order is non-Archimeadean. If

x = (0, 1, 0, ...0) and y = (1, 0, ..., 0),

then nx ≤ y for every n ∈ N

3.3 Order Unit In Ordered Vector Spaces

Definition 3.3.1. An element e ≥ 0 in ordered lineer space E is an order unit

whenever forr each x ∈ E there exists some λ ≥ 0 with |x| ≤ λ e

9



Definition 3.3.2. An element e ≥ 0 of an Archimedian vector space E is a weak

order unit if

|f | ∧ e = 0 implies f = 0

Every order unit is weak unitt but the reverse inclusion is not true.

Example 3.3.3. C(0, 1) has no order unit.

Note that C(K) has order unit where K is compact.

3.4 Directed Ordered Vector Spaces

Even if cone will be used in this chapter, it will define later.

Definition 3.4.1. A partially ordered set W is directed if for every x, y ∈ W there

exist z ∈ W such thatt z ≥ x and z ≥ y

The relation between cone and order is given in the following definiton.

Definition 3.4.2. If K is a cone of a lineer space E then E is an ordered lineer space

in respect of the relation

x ≤ y :⇐⇒ y − x ∈ K

A vector space E equipped with cone is directed if X = K − K; In this case, K is called

generating conee

This definition is so importart because it provides us to define a new disjointness.

Definition 3.4.3. Let [a, b] be a closed interval on R and x0 = a < ... < xn = b, we

define

P = {xi, i = 0, ..., n}

The set P is called partition of [a, b].

Example 3.4.4. Let P is a partition of [a,b]. The relation is given by

P ≤ Q⇔ Q ⊂ P

with respect to this relation P is directed.

10



Example 3.4.5. Let I be the set of all polynomials from [0, 1] to R, equipped with

the following relation,

f1 ≤ g1 :⇔ f(c) ≤ g(c),∀c ∈ [0, 1]

I is directed.

11



4. VECTOR LATICES

In this chapter we introduce the notion of the Riesz subspaces, order ideal and bands

4.1 Riesz Spaces

Definition 4.1.1. A lineer space E is called Riesz space or vector lattice if two

following condition satisfy,

i) L is an ordered lineer space.

ii) L is lattice.

Example 4.1.2. C[0, 1] is a Riesz space under pointwise ordering.

There are of course many vector subspaces which also vector lattices under the same

order. In general, ordered lineer space may not be vector lattice.

Theorem 4.1.3. (Aliprantis, 1985) Let E be a vector lattice for each b, c, d ∈ E of a

vector lattice, α ∈ R. One has the following facts,

(i). b ∨ c = -[(-b) ∧(-c)] and b ∧ c = -[(-b) ∨ (-c)].

(ii). b+c=(b ∧ c)+ (b ∨ c).

(iii). b+(c ∨ d)= (b+c) ∨ (b+c) and b+(c ∧ d)= (b+c) ∧ (b+c).

(iv). α (b ∨ c) = (α b) ∨ (α c) and α (b ∧ c) =(α b) ∧ (α c) for all α ≥ 0

The Proof of the ttheorem 4.1.3 i, ii, iv can be easily done.

Proof of iii. it is obvious that b+ c ≤ b+ c ∨ d and b+ d ≤ b+ c ∨ d, and

hence (b+ c) ∨ (b+ d) ≤ b+ c ∨ d ... (1)

12



Also one has c = −b+ (b+ c)≤ −b+ (b+ c) ∨ (b+ d) ... (2)

and similarly, d = −b+ (b+ d) ≤ −b+ (b+ d) ∨ (b+ c) ... (3)

Thus the equation iii is obtained from 1, 2, 3.

If B is a subset of a vector lattice where sup B exist, then

(a) inf(-B) exist and moreover,

sup(x+B) = x+sup B;

inf(-B) =-supB

(b) the sup of the set x+B := {x+ b : b ∈ B} exist and

(c) for each α ≥ 0 the sup of the set αB := {αb : b ∈ B} exists and

sup(αB) = α supB

Let E be a vector lattice. The set {u ∈ E : u ≥ 0} is called positive cone of E it is

denoted by E+. In particular for each u ∈ E, we define

u+ := u ∨ 0, u− := (−u) ∨ 0, and |u| := u ∨ (−u)

The element u+ is called the positive side, u− the negative side, and |u| the absolute value

of u. The main relations between u, u+, u−and|u| are in the following theorem. Morever,

u, u+, u− and |u| are positive.

Theorem 4.1.4. (Aliprantis, 1985) If t is an element of vector lattice, then we have;

1. t = t+ − t−.

2. |t| = t+ + t−.

3. t+ ∧ t− = 0.

Besides, the representation in (1) is unique in such manner that if t = u − v holds with

u ∧ v = 0, then u = t+ and v = t−.

13



(1). From Theorem 3.1.4 can be seen that t = t+ 0 = t∨ 0 + t ∧ 0= t∨ 0 − (−t) ∧ 0 = t+

− t−.

(2) Using Theorem 3.1.4 and (1), we get

|t| = t∨ (−t) = (2t) ∨ 0 − t = 2 (t ∨ 0) − t = 2t+ −t = 2t+ − (t+ − t−)

= t+ − t−

(3) Note that

t+ ∧ t− = (t+ − t−) ∧ 0 + t− = −[(−t) ∨ 0] + t− = −t− + t− = 0.

Definition 4.1.5. A linear map T : E → F is called positive operator if T (E+) ⊆
F+.

Observe that if T : E → F is a positive map between two vector lattice, then from

±x ≤ |x| we see that ±Tx ≤ T |x|, and so

|Tx| ≤ T |x|

holds for all x ∈ E

In terms of positive part, identity in Theorem ??(2) takes the following useful form:

x = (x− y)+ + x ∧ y.

Regarding the absolute value, we have the following useful identities.

Theorem 4.1.6. (Aliprantis, 1985)If t and z are elements in a vector lattice, then we

get some result as follow,

(1) t ∨ z = 1
2
(t+ z + |t− z|) and t ∧ z = 1

2
(t+ z − |t− z|).

(2) |t− z| = t ∨ t− z ∧ z.

(3) |t| ∨ |z| = 1
2
(|t+ z|+ |t− z|).

(4) |t| ∧ |z| = 1
2
||t+ z| − |t− z||.

Proof. Although we skipped proof of the identities 1,2,3, They will be used in the proof of

identity 4.

14



(4) by using (1) and (3), we can get,∣∣ |t+ z| − |t− z|
∣∣ = 2 (|t+ z| ∨ |t− z|) − (|t+ z| + |t− z|)

= 2(|t|+ |z|) − 2 (|t| ∨ |z|)
= 2 (|t| ∧ |z|)

Corollary 4.1.7. Let E be ordered lineer space and for all t ∈ E . Then following

are equivalent;

i) E is Vector lattice.

ii) if t ∨ 0 exist ,then t+ ∈ E

iii) if (−t) ∨ 0 , then x− ∈ E

iv) if t ∨ (−t) , then |t| ∈ E

Definition 4.1.8. Let E is Riesz space and x, y ∈ E. If |x| ∧ |y| = 0 then x and y is

perpendicular each other. And,it is denoted by x ⊥ y

Note that by Theorem 4.1.6 (4). We obtain an altarnative definition as t ⊥ z if and

only if |t + z| = |t − z|. Two subsetts T and Z of a vector lattice are disjoint(denoted

T ⊥ Z) if t ⊥ z holds for all t ∈ T and all z ∈ T .

If T is a non-empty subset of a vector lattice E, then its disjoint complement T d is defined

by

T d := {t ∈ E : t ⊥ z for all z ∈ T}

T dd is written for (T d)d. Note that T ∩ T d = {0}.

If T and Z are subsetts of a vector lattice, then we will write

|T | := {|t| : t ∈ T};
T+ := {t+ : t ∈ T};
T− := {t− : t ∈ T};

T ∨ Z := {t ∨ z : t ∈ T and z ∈ Z};
T ∧ Z := {t ∧ z : t ∈ T and z ∈ T};

u ∨ T := {u ∨ T : t ∈ T};
u ∧ T := {u ∧ t : t ∈ T}.
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The following theorem show us that every vector lattice satisfies infinite distributive

law

Theorem 4.1.9. (Aliprantis, 1985) Let T be non-empty subsett of a vector lattice. If

supT exists, then sup(t ∧ T ) exists for each t and

sup(t ∧ T ) = x∧ sup T.

Anagously, if infT exists, then infimum(t ∧ T ) exists for each x and

infimum(t ∨ T ) = t ∨ infimum(T ).

The following result has lots of important inequalites thatt are commonly used .

Theorem 4.1.10. (Aliprantis, 1985) For a,b,c in a Riesz space E following inequal-

ities hold:

1. ||a| − |b|| ≤ |a+ b| ≤ |a|+ |b|. (the triangle inequality)

2. |a ∨ c− b ∨ c| ≤ |a− b| and |a ∧ c− b ∧ c| ≤ |a− b|.

3. if in addition a, b and a are all positive, then

a ∧ (b+ c) ≤ a ∧ b+ a ∧ c.

In particular, note that we have where E is Riesz space

|a+ − b+| ≤ |a− b|.

Definition 4.1.11. The linear subspace V of E is called a vector lattice subspace

of E if for all members f and g of V the elements f ∨ g and f ∧ g are likewise members of

V

We make some remarks concerning these definitions. In the definition of a Riesz subspace

it is sufficient to say that V is a Riesz subspace of E if V is a linear subspace of E such that

f ∈ V, g ∈ V implies f ∨ g ∈ V because this implies already that f ∧ g ∈ V . Indeed, from

f ∈ V, g ∈ V it follows that −f ∈ V,−g ∈ V , so

f ∧ g = −{(−f) ∨ (−g)} ∈ V
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Definition 4.1.12. (Zaanen, 1997)The subset T of E is said to be solid if it follows

from f ∈ S and |g| ≤ |f | that g ∈ S

Notice that a solid sett and lineer subspace is not need solid when it is intersected. To

illusturate, close-unitt ball of L1 norm on C[0, 1] is solid but affin functions and its intersect

is not solid in subspace.

4.2 Ideal in Riesz Spaces

Definition 4.2.1. A vector subspace F of a vector lattice E is said to be an order

ideal whenever |x| ≤ |y| and y ∈ F imply x ∈ F

Definition 4.2.2. The subset T of a Riesz space E is called ideal in E if A is a solid

linear subspace of E.

Sometimes this is called an order ideal if it necessary to distinguish it from an algebraic

ideal in ring.

The definition of an ideal may be reformulated by saying that an ideal A in E is a linear

subspace such that f ∈ A, |g| ≤ |f | implies g ∈ A. This can be reformulated one more by

saying that an ideal A in E is a linear subspace in E such that

(i) f ∈ A if and only if |f | ∈ A,

(ii) 0 ≤ g ≤ f ∈ A implies g ∈ A.

(iii) 0 ≤ f ∈ A and g ∈ E+ implies f ∧ g ∈ A

The last condition clearly show the analogy with the definition of a ring ideal in a

commutative ring R, where I is an ideal in R whenever I is a subring satisfying the

condition that f ∈ I , g ∈ R implies fg ∈ I

Example 4.2.3. Let W be a Riesz space C([0, 1]) and V be the linear subspace of

W consisting of all constant function on [0, 1]. Then V is a Riesz subspace but not ideal.

Theorem 4.2.4. Let A1 and A2 be ideals in Riesz space E. Then algebraic sum

A1 + A2 is an ideal in E.
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Proof. Let f ∈ A1 + A2 and |g| ≤ |f |. we have to prove that g ∈ A1 + A2. The element f

can be written as f = f ′ + f ′′ with f ′ ∈ A1 and f ′′ ∈ A2. Note now that

g+ ≤ |g| ≤ |f | ≤ |f ′|+ |f ′′|,

so in view of the Riesz decomposition theorem there exist element g′ and g′′ such that

g+ = g′ + g′′ with 0 ≤ g′ ≤ |f ′| and 0 ≤ g′′ ≤ |f ′′|. Since f ′ ∈ A1 and f ′′ ∈ A2 , it

follows that g′ ∈ A1 and g′′ ∈ A2, so g+ = g′ + g′′ ∈ A1 + A2. Similarly g− ∈ A1 + A2.

Hence g = g+ − g− ∈ A1 + A2

4.3 Band in Riesz Spaces

Definition 4.3.1. An Order ideal B of Riesz space E is called band if it follows from

D ⊂ B, D 6= ∅ and f0 = supD existing in E that f0 ∈ B

Remark 4.3.2. it is obvious that a band is an ideal and that ideal is a Riesz subspace.

However converse of these statements do not hold.

Let E be a Riesz space C([0, 1]),

Example 4.3.3. Let A be linear subspace of E consisting of all functions f satisfy-

ing f(1/2) = 0. Then A is an ideal but not a band of E

Example 4.3.4. Let B be the linear subspace of E consisting of all f satisfy f ≡ 0

on [0, 1/2]. Then B is a band in E.

Example 4.3.5. Let E be a Riesz space if B and V are band in E than algebraic sum

of B+V is not band in E.

Theorem 4.3.6. (Jonge and Roijj, 1977) The following statements are equivalent.

(a) L is Archimedean.

(b) u, v ∈ L+ and 0 ≤ nv ≤ u for n=1,2,3 ... implies v = 0.

(c) If v ∈ L+, v = 0, then nv: n=1,2,3... is not bounded above.

(d) A = (Ad)d for every band A in L.
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5. CHAPTER 4

In this chapter, the notions of bands of Riesz spaces are generalized to partially

ordered lineer space which has order unitt, and the fundamental results are given.

Definition 5.0.1. (Aliprantis and Tourky, 2007) A non empty subset K of a lineer

space is said to be a cone if it satiesfies the following three properties:

1. K+K ⊆ K,

2. α K ⊆ K for all α ≥ 0,

3. K ∩ (-K) =0,

Recall in Riesz Spaces disjointnes is defined as |x| ∧ |y| = 0 another defination which gets

from first one |x + y| = |x − y| it gives motivation for how should define disjointnes in

partial ordered space.

t, z ∈ E is disjoint, in symbols t ⊥ z,if

{t+ z, t− z}u = {t− z,−t− z}u

A subset T of E of The disjoint complement is given by

T d := {z ∈ E : t ⊥ z for all t ∈ T}.

A lineer subspace B of E is called a band if (Bd)d = B

This characterization is valid for Archimedian Riesz space. In partially ordered space, it

is not simply define bands. For this porpose, one should define disjointnes and for better

results it is required some extra properties on partially ordered space.

From now on, we will suppose that T is Archimedean P.O.V.S and has an order unit o ∈ K.

In other words ,for each t ∈ T There exists 0 ≤ β such that

−βo ≤ t ≤ βt
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Then T is directed.

Naturally, an order unit o ∈ K produce a norm ‖.‖o on X by

‖x‖o = inf{β > 0 − βo ≤ x ≤ βo}.

via this norm each positive lineer functional Ψ : T → R is continous, as |Ψ(t)| ≤ Ψ(o) ∀
t ∈ T with ‖t‖o ≤ 1.

In the norm dual T ′ the set

K∗ := {Ψ ∈ T ′
: Ψ(K) ⊆ [0,∞)}

is a cone. We remember the functional representation of T . Denote

Σ := {Ψ ∈ K∗ : Ψ(o) = 1}.

By using Banach-Alaoglu Ttheorem close unit ball B′ of T ′ is weak*-compact. also Σ

subset of B′ is weak*-closed ,and hence weak*-compact.Let see this set

Λ := {Ψ ∈ Λ : Ψ is extrem point of Λ}

Definition 5.0.2 (Extreme). Ψ ∈ Σ is called an extreme point of Σ if ϕ1, ϕ2 ∈ Σ,

αϕ1 + (1− α)ϕ2 = ϕ⇒ ϕ1 = ϕ2 = ϕ

Theorem 5.0.3. If a convex set C of a lineer space X is compact for normed topology

τ on X, then C has an extrem point. Moreover, C is the τ - closed convex hull of its extrem

points.

By using Krein-Milman Σ 6= ∅. Generally, Σ is not necessary to be weak*-closed, even T is

not required finite dimensional condition.For M ⊆ X ′ the weak*-closure of M is denoted

by M .Thus Λ

Theorem 5.0.4. Let Φ : T → C(Λ) is map.It is defined as

(Φ(t))(Ψ) = Ψ(t) for Ψ ∈ Λ

(Φ,Λ) is a functional representation of T. That is, Φ is lineer, bipositive, unit goes to constant

1 function under Φ (this indicate isometry in respect of the o-norm) and the image of Φ

separetes the points of Λ.
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Definition 5.0.5 (order dense). A lineer subspace D of a P.O.V.S X is called order

dense in X if ∀ x ∈ X one get

t = inf{z ∈ D : z ≥ t}

In other words, x is the sup of the set {z ∈ D : z ≥ t} in X

5.1 Riesz completion

Definition 5.1.1 (Haandel, 1993). Let E be a Riesz space and X is partialy ordered

lineer space, then Y is called vector lattice cover if the following satiesfied,

1. there is a bipositive lineer map from X to E

2. i(X) is order dense in E

Moreover, The pair (E, i) is called Riesz completion of X if E has no proper vector sublat-

tice of including i(X)

Remark 5.1.2. If G has a Riesz complation,then it is unique up to Riesz isomor-

phisms. This follows from the fact that if both (E1, ϕ1) and (E2, ϕ2) are Riesz compla-

tions of G, there is Riesz homomorphisms ϕ̃1 : E2 → E1 and ϕ̃1 : E1 → E2 such that

ϕ̃1 ◦ ϕ2 = ϕ1 and ϕ̃2 ◦ ϕ1 = ϕ2. Since ϕ̃1 ◦ ϕ̃2 ◦ ϕ1 = ϕ1 and ϕ̃2 ◦ ϕ̃1 ◦ ϕ2 = ϕ2 we can

conclude that ϕ̃1 ◦ ϕ̃2 =idE1 and ϕ̃2 ◦ ϕ̃1 =idE2 . This means that ϕ̃1 and ϕ̃2 are each other’s

inverses, and therefore, E1 and E2 are Riesz isomorphic.

Theorem 5.1.3. [Haandel, 1993] Let X and Y be Poset and let t, z ∈ X

(i) If Y has a subspace X , then t ⊥sv z in Y indicate that t ⊥sv z in X.

(ii) If X is order dense subspace of Y , then t ⊥sv z in Y ⇐⇒ x ⊥sv y in X .

Definition 5.1.4 (Haandel, 1993). E is called pre-Riesz if for every x ∈ E and

every finite non-empty subsett S of E such thatt every upper bound of x + S is an upper

bound of S one has that x is positive.

The following theorem will give us an alternative and more practical definition of pre-Riesz

space.
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Theorem 5.1.5. (Haandel, 1993) Let X be a partialy ordered lineer space. The

following statements are equivalent

1. X is pre-Riesz.

2. There exists a Riesz space E a bipositive lineer map from X to E such thatt i(X) is

order dense in E and generates E as a Riesz space. Furthermore, whole spaces E are

iso-morphic as Riesz spaces.

By using Theorem 5.1.3 and Theorem 5.1.5 one get following theorem,

Theorem 5.1.6. (Kalauch, Lemmans and Gaans, 2015) Let (E, i) is a vector lattice

cover of X , then t ⊥sv z if and only if i(t) ⊥sv i(z)

Theorem 5.1.7. (Kalauch, Lemmans and Gaans, 2015) Let X be an Archimeadian

partialy ordered lineer space and has an order unit o. Then C(Λ) is a lineer lattice cover of

X . Furthermore, Riesz subspace of C(Λ) generated by Φ(X) is the Riesz complation of X.

Proposition 5.1.8. (Kalauch, Lemmans and Gaans, 2015) Let X be pre-Riesz space

and T is lineer subsett of X then,

1. (T dsv)dsv ⊇ T .

2. T dsv is sv-band in X

Proof. (i) Let t ∈ T . Then t ⊥sv z for every z ∈ T dsv , Thus t ∈ (T dsv)dsv

(ii) By (i), ((T dsv)dsv)dsv ⊆Mdsv , and by (i) T dsv this yields reverse inclusion hence T dsv is

band.

Proposition 5.1.9. Let E be a pre-Riesz space, X an order dense subspace of E and

I a band in E. Then there is a band J in Y such thatt I = J ∩X .

Proof. Let D = Id in X , so Dd = (Id)d = I , Since I is band in X . So, I is the disjoint

complement of D in X . Let J be the disjoint complement of D in Y . J is a band in Y due

to proposition 5.1.8, and it can be observed in Maris Vaan Handel Phd Thesis.

Theorem 5.1.10. (Haandel, 1993) Every directed partialy ordered vector space G

has a Riesz complation.
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Definition 5.1.11. Let S be a subsett of C(Ω) , Then the carrier of S is defined by

carr(S) = {ω ∈ Ω : there is s ∈ S such thatt s(ω) 6= 0 }

The carier of an ideal in C(Ω) is an open subset of Ω. Different ideals in C(Ω) may have

same carier.

Definition 5.1.12. An open subsett O of Ω is called regularly open if O=int(O)

Example 5.1.13. An example of a non-regular open subsett of [0, 1] is [0, 1
2
) ∪ (1

2
, 1]

Definition 5.1.14. For a open subsett O of Ω

IO := {s ∈ C(Ω) : ∀ω ∈ Ω\O one has s(ω) = 0}

is the greatest ideal containing O as its carier.

Proposition 5.1.15. If P is an open subsett of Ω as well, then IO = IP if and only if

O = P

Theorem 5.1.16. Let B a band in C(Ω)

1. For every band B in C(Ω) there is a open subsett O such thatt B = IO,(thus whenever

its carier is known, a band is determined)

2. For every open subsett O of Ω the ideal IO is a band if and only if O is regularly open.

Recall that x and y ∈ C(Ω) are disjoint if and only if for every ω ∈ Ω one has x(ω) = 0 or

y(ω) = 0.

We will intersect properties of disjointnes in vector lattice covers and disjointnes in C(X).

If X is an Archimedian P.O.V.S which has unit and Φ is its embedding in to C(Λ) ,then

theorem 5.1.7 yield that for x, y ∈ X

x ⊥ y in X ⇐⇒ Φ(x) ⊥ (y) in C(Λ)⇐⇒ for each Ψ ∈ Λ one has Ψ(x) = 0 or Ψ(y)

Furthermore, If B is a band in X , then one can find a regular open sett O ⊂ Λ such thatt

B = {x ∈ X : Ψ(x) = 0 for all Ψ ∈ Λ\O}
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5.2 Characterization of bands

We dealed with an Archimedian P.O.V.S X with order unitt and its Ψ -embedding in

to C(λ) as given previous section.

For B ⊂ X we will work with carr(Ψ(B)) , and it will be abbreviated by carr(B)

The following remark as a consequence of Banach-Stone Theorem.

Remark 5.2.1. If X = C(Ω), here Ω compct Hausdorf space, then λ = λ and Ω

homemorphic, such thatt the carier of B ⊆ C(Ω) defined as a subsett of λ has correspon-

dence to the carier of B seen as a subsett of Ω. In that meaning the definition of the carier

in X is compitable with the definition of the carier in previous section. It is denoted

N(B) := λ\carr(B) = {Ψ ∈ λ : Ψ(b) = 0 ∀ b ∈ B}

For a set T ⊂ λ, we fix the notions T c := λ and spanned(T ) denotes the lineer subspace of

X ′ spanned by T and the affin hull is defined by

affine(T ) =

{ n∑
i=1

αiti :
n∑
i=1

αi = 1, n ∈ N, αi ∈ R, ti ∈ T
}

For T ⊆ Λ denote the zero set induced by

Zero(M) = {x ∈ X : Ψ(x) = 0 for all Ψ ∈M}

Now, we shall characterize those set T ⊂ Λ that belongs B in X in a manner that B =

Zero(T ) and T = N(B). The next notion is required.

Definition 5.2.2. (Kalauch, Lemmans and Gaans, 2015) For T ⊂ Λ we define the

saturation of T by

saturation(T ) := Λ ∩ spanned(T )

A sett T ⊆ Λ is saturated if T = saturation(T )

Proposition 5.2.3. Let B a band in X, then N(B) is saturated.

In the following proposition it will be charterized the saturation in terms of zero sets. Before

this one, Two properties should be stated.

Lemma 5.2.4. (Kalauch, Lemmans and Gaans, 2015) Let T ⊂ Λ. Then the next is

satified,
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(i) saturation(saturation(T )) = saturation(T );

(ii) Zero(saturation(T )) = Zero(T ).

Proposition 5.2.5. Let T ⊂ Λ. Then we have,

saturation(T ) = N(Zero(T ))

Proof. If Ψ ∈ Λ ∩ spanned(T ) and x ∈ Zero(T ), then Ψ(t) = 0, so

Λ ∩ spanned(T ) ⊆ {Ψ ∈ Λ : Ψ(t) = 0 for all t ∈ Zero(T )}

=
⋂
{Ψ ∈ Λ : Ψ(t) = 0}.

For the reason that the right hand side of the equality is weak∗ -closed sett, it brings us that

Λ ∩ spanned(T ) ⊆ {Ψ ∈ Λ : Ψ(x) = 0 for all x ∈ Zero(T )}

Vice versa, let

Ψ ∈ Λ\spanned(T)

By using Hahn-Banach Ttheorem, there is t ∈ X such thatt ψ(t) 6= 0 and ∀
Ψ ∈ spanned(T ) one has Ψ(t) = 0. Spesificaly, x ∈ Zero(T ). Thus,

ψ /∈ {Ψ ∈ Λ : Ψ(x) = 0 for all x ∈ Zero(T )}

It can be seen that the saturation of T ⊂ Λ is the biggest subsettN of Λ such thattZero(N) =

Zero(T ).

In the consideration the following corollary it is quite natural to use the affine hull rather

than the lineer span while describing saturations. As a result of Proposition 5.2.5 that the

same sets are obtained.

Corollary 5.2.6. Let M ⊂ Λ. Then saturation(T ) = Λ ∩ affine(T ).
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Our final result will be related with understanding bands in terms of subsets of Λ, The

following llemmas are required for this purpose.

Lemma 5.2.7. (Kalauch, Lemmans and Gaans, 2015) Let B ⊆ X. Then B ⊆
Zero(N(B)) ⊆ Bdd

As a direct result of Lemma 5.2.7, one have the following result,

Proposition 5.2.8. Let B be a band in X . Then B = Zero(N(B))

Thus, in analogy to bands inC(Ω)(we discused in previous section Band in C(X)), whenever

its carier is known , a band in X is determined

Lemma 5.2.9. (Kalauch, Lemmans and Gaans, 2015) Let B ⊆ X be such thatt

B=Zero(N(B)). Then

Bd = {x ∈ X : Ψ(x) = 0 ∀ Ψ ∈ saturation((N(B))c}

The following definition will introduce those saturated subsetts of Λ the zero sets of which

take place to be bands. Like a band and its disjoint complemant. The next definition is also

meaningful in the more general case of a top vector space E (rather than dual of X) and a

subset V of E (rather than Λ). With hindsight and in the light of Corollary 5.2.6, a subset T

of V is called saturated (in V) if

T = saturation(T ) := V ∩ affine(T )

Definition 5.2.10. (Kalauch, Lemmans and Gaans, 2015) Let E be a top vector

space and let V be subset of E. A subset T of V is called bisaturated (in V) if

T = V ∩ affine(V \(V ∩ affine(V \T ))).

For two subset T1 and T2 of V the set {T1, T2} is called a bisaturatted pair (in V). If

T1 = V ∩ affine(V \T2) and T2 = V ∩ affine(V \T1)

.
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For a subset T of V we simply write T c := V \T . Note that a set T ⊆ V is bisaturatted if

and only if

T = saturation((saturation(T c))c),

and for two subsets T1, T2 ⊆ V the set {T1, T2} is a bisaturatted pair if and only if T1 =

saturation(T2
c) and T2=saturation(T1

c)

Obviously, every bisaturatted subset of V is saturated. But the converse is not true. Next it

will be given an example of a bisaturatted set.

Example 5.2.11. Consider continous function from [0, 1] to R(so Λ contain the calu-

lation points and can be correpondeced with [0, 1]), and

B = {x ∈ C[0, 1] : x(t) = 0 ∀ t ∈ [
1

2
, 1]}.

it is claimed that N(B) = [1
2
, 1] is bisaturatted. Indeed,

saturation((N(B))c) = [0,
1

2
]

,

so

saturation[(saturation[(N(B))c])c] = [
1

2
, 1] = N(B)

it is easy to see that (N(B))c = [0, 1
2
) is not saturated, because of the fact that every satu-

rated set is closed.

The following lemma is connected with bisaturatted sets and bisaturatted tuple in V and

try to find out a geometric depict of bisaturatted sets. we will that for a bisaturatted tuple

{T1, T2} in V we have

T1 ∪ T2 = V,

Because T1 ∪ T2 = T1 ∪ saturation(T1
c) ⊇ T1 ∪ T1c = V

Lemma 5.2.12. (Kalauch, Lemmans and Gaans, 2015) For two saturated sets T1, T2 ⊆
V the next statements are equivalent to each other,

(a) T1 is bisaturatted and M2 = saturation(T1c);

(b) {T1, T2} is a bisaturatted tuple;
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(c) affine(T1) = affine(V \T2) and affine(T2) = affine(T1\V )

(d) there is affine subspaces S1 and S2 of E such thatt

V ⊆ S1 ∪ S2, S1 = affine(V \S2), S2 = affine(V \S1), Ti = V ∩ Si, i = 1, 2.

Proof. (a)⇒ (b): T1 is bisaturatted, so T1 = saturation((saturation(T1
c))c) = saturation(T2

c)

(b)⇒ (c): we have

T2 = V ∩ affine(T1
c) ⊆ affine(T1

c)

so affine(T2) ⊆ affine(T1
c). Also,

T2 = V ∩ affine(T1
c) ⊇ V ∩ T1c = T1

c,

so affine(T2) ⊇ affine(T1
c). Hence affine(T1) = affine(T2

c). By similar method,

affine(T1) = affine(T2
c).

(c) ⇒ (d): Choose Si = affine(Ti), i = 1, 2. Since Ti is saturated, Ti = V ∩
affine(Ti) = V ∩ Si. Hence

S1 = affine(T1) = affine(V \M2) = affine(V \(V ∩ S2)) = affine(V \S2)

and,similarly, S2 = affine(V \S1).

(d)⇒ (a): Since V \T1 = V \(V ∩ S1) = V \S1, we have

T1 = V ∩ S1 = V ∩ affine(V \S2) = V ∩ affine(V \affine(V \S1))

= V ∩ affine(V \affine(V \T1)) = V ∩ affine(V \(V ∩ affine(V \T1))

=saturation((saturation(T1
c))c,

thus T1 is bisaturatted.

For E = X ′ and V = Λ, it is described bisaturatted pairs in Λ to disjoint complements in

X .

Proposition 5.2.13. Let T1, T2 ⊆ Λ be saturated sets and B1 = Zero(T1) and B2 =

Zero(T2). Then {T1, T2} be a bisaturatted pair if and only if B1 = B2
d and B2 = B1

d.
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Proof. Let {T1, T2} be a bisaturatted pair. To show that B2 ⊆ B1
d, let x1 ∈ B1, x2 ∈ B2.

For all Ψ ∈ M1 one has Φ(x1)(Ψ) = 0 and for all Ψ ∈ M2 one has Φ(x2)(Ψ) = 0. Since

M1 ∪M2 ⊇ Λ, it follows that Φ(x1) ⊥ Ψ(x2), which implies x1 ⊥ x2. Hence B2 ⊆ B1
d.

Likewise, let x ∈ Bd
1 . Then forr every y ∈ B1 one can get x ⊥ y and Φ(x) ⊥ Φ(y). Hence,

Φ(x)(Ψ) = 0 for every

Ψ ∈ carr(B1) = Λ\N(B1) = Λ\M1,

due to Proposition 5.2.5. Thus, Φ(x)(Ψ) = Ψ(x) = 0 for every

Ψ ∈ saturation(carr(B1)) = saturation(Λ\M1) = M2

Hence x ∈ Zero(M2) = B2. Therefore B1
d = B2 and, by symmetry, B2

d = B1.

If B2 = B1
d , then due to Proposition 5.2.5 ,

Λ\M1 = Λ\N(Zero(M1)) = Λ\N(B1) = carr(B1)

so, by

Zero(Λ\M1) = Zero(carr(B1)) = B1
d.

Again by Proposition 5.2.5 .

M2 = N(Zero(M2)) = N(B2) = N(B1
d) = N(Zero(Λ\M1)) = saturation(Λ\M1).

By symmetry, {M1,M2} is a bisaturatted pair

We reach at the desired result. The assumption in ttheorem is natural because of proposition

5.2.5

Theorem 5.2.14. (Kalauch, Lemmans and Gaans, 2015) Let B ⊂ X be such thatt

B = Zero(N(B)). Then B is a band if and only if N(B) is bisaturatted.

Proof. Assume, that B1 := B = Zero(N(B)) is a band. Define as M1 := N(B) and

M2 := saturation(M1
c). Then by LLemma 5.2.9 , {M1,M2} is a bisaturatted tuple. Hence

N(B) is a bisaturatted set, by using Lemma 5.2.12
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Coversely, let M1 : N(B) be bisaturatted and let B1 := B = Zero(N(B)). Let M2 =

saturation(M1
c). Then, by Lemma 5.2.12 , {M1,M2} is a bisaturatted pair. Let B2 :=

Zero(M2). Proposition 5.2.13 yields that B1 = B2
d = B1

dd, hence B = B1 is a band.

Theorem 5.2.15. (Kalauch, Lemmans and Gaans, 2015) The cardinality of bands

in an n-dimensionals partialy order vector space X order by generate polyhedral cone K is

bounded above by 1
4
22n , provided n ≥ 2

A combination of Theorem 4.2.17 and Lemma 4.2.18 yields Theorem 4.2.19. it is believed

that this bound in Theorem 4.2.19 is far from optimal. The next example indicates that there

is (n+1)-dimensionals partialy order lineer space with
(
2n
n

)
+ 2 band. Specifically, it follows

that there is P.O.V.S with dimensions n ≥ 4 that have more band than an n-dimensionals

Archimedian vector lattice, which has 2n bands.

Example 5.2.16. (Kalauch, Lemmans and Gaans, 2015) Let P be a polytop in Rn

with vertex set V = {v1, ....v2n} that is in generel lineer position, In other words, for each

affin subspace U ⊂ Rn with dimU < v, we get that |V ∩ U | ≤ dimension U+ 1.That is, no

three points on straight line in V exist, no four point in V in two dimensional plane, etc. To

prove existence of such a set V , let n ≥ 1 and Sn−1 be unit sphere in Rn. Pick with equal

probability at random v1, ...., v2n from Sn−1. Then the convex hull of {v1, ...., v2n} is , with

probability one, a polytop, P . If neccessary make a translation, in order to P can contain

0. By this way constitute with the vertex set V = {v1, ...., v2n} of P is in generel lineer

position.

For i = 1, ..., 2n let wi = (vi, 1) ∈ Rn × R = Rn+1 and define

KV = {x ∈ Rn+1 : 〈wi, x〉 ≥ 0 for all .ßcontent = 1, ...2n}

Here 〈 ·, ·〉 we use natural inner product on Rn+1. As w1, ....., w2n span Rn+1, KV is a close

generate polyhedral cone in Rn+1 with u = (0, 1) ∈ Rn × R in its interior. At this moment

write that

Σ = {z ∈ KV
′
: 〈 z, u〉 = 1} = {z ∈ KV

′
: z = (v, 1) and v ∈ P}
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and Λ = {w1, ...., w2n}, as V is in generel lineer position. Furthermore, if U is an affin

subspace of Rn+1 contained in Σ with dimension U is greater than n, then |Λ ∩ U | ≤
dimension U + 1.

Next it will be shown that (Rn+1, KV ) has
(
2n
n

)
+ 2 bends in virtue of showing that S ⊂

Λ is bisaturatted ⇐⇒ S = ∅, S = Λ, |S| = n. Obviously, if S is a bisatrated set in Λ

and cardinality of S greater then n , then dimS > n − 1, as V is in generel lineer position.

Hence, S = Λ∩ affine S = Λ. In contrast, if S is bisaturatted in Λ and cardinality of S less

than n, then |Λ \ S| > n, and thus S = ∅

On the other hand, if Cardinality of S is n, then dimen(S) = n− 1 and dimen(Λ \S ) , as V

is in generel lineer position. This indicates that

|Λ ∩ affineS| ≤ dimen(affine(Λ ∩ affineS)) + 1 = dimen(S) + 1 = n = |S| ,

and because Λ ∩ affine S ⊇ S it follows that Λ ∩ affine S = S. In the same manner Λ ∩
affine (Λ \S) = Λ \S. Thus {S, Λ \S} is bisaturatted tuple in Λ. it follows that (Rn+1,KV )

has
(
2n
n

)
+ 2 bands.

it is conjuctured that the optimal bound from above for the cardinality of bands in an (n+1)

dimensionals partialy ordered lineer space (X,K) with close generate cone K, is
(
2n
n

)
+ 2.

Example 5.2.17. (Kalauch, Lemmans and Gaans, 2015) Let Y = R4, we will de-

fine,

ϕ1 =


0

4

2

2

 , ϕ2 =


4

0

2

2

 ϕ3 =


2

2

0

3

 ϕ4 =


2

2

4

0

 ϕ5 =


8

0

0

0


and,

let us focus on the set K

K = {x ∈ R4 : ϕi(x) ≥ 0 for all i ∈ {1, ..., 5}.}
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
0 4 2 2

4 0 2 2

2 2 0 4

4 0 0 0




0 4 2 2

4 0 2 2

2 2 0 4

1 0 0 0




1 0 0 0

4 0 2 2

2 2 0 4

0 4 2 2




1 0 0 0

0 0 2 2

0 2 0 4

0 4 2 2




1 0 0 0

0 2 0 4

0 4 2 2

0 0 2 2




1 0 0 0

0 1 0 2

0 4 2 2

0 0 2 2




1 0 0 0

0 1 0 2

0 0 2 −6

0 0 2 2


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
1 0 0 0

0 1 0 2

0 0 1 −3

0 0 0 8




1 0 0 0

0 1 0 2

0 0 1 −3

0 0 0 1




1 0 0 0

0 1 0 2

0 0 1 0

0 0 0 1




1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1



Since matrices of ϕ1, ϕ2, ϕ3, ϕ5 rank=4, K is cone in R4.

ϕ1u =


0

4

2

2

 ∗
1

8
(1, 1, 1, 1) = 1

ϕ2u =


4

0

2

2

 ∗
1

8
(1, 1, 1, 1) = 1
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ϕ3u =


2

2

0

4

 ∗
1

8
(1, 1, 1, 1) = 1

ϕ4u =


2

2

4

0

 ∗
1

8
(1, 1, 1, 1) = 1

ϕ5u =


8

0

0

0

 ∗
1

8
(1, 1, 1, 1) = 1

Forv = 1
4
(1, 1, 1, 1)Tranpose. We have ϕi(v) = 1 for all i ∈ 1, 2, 3, 4, 5, thus v is an inner

point of K, and we set Σ := {ϕ ∈ K ′: ϕu = 1}. A simple evaluation give us that ϕi is an

extrem point of Σ ∀ i, thus

Λ = {ϕ, ϕ1, ϕ2, ϕ3, ϕ4, ϕ5}

Observe that span {ϕ, ϕ1, ϕ2, ϕ3, ϕ4} has dimension 3. Indeed,

ϕ1 + ϕ2 − ϕ3 − ϕ4 = 0

and ϕ1, ϕ2, ϕ3 are not lineerly dependent. We embed (R4, K) into (R5,R5
+) under Φ.

Now we would determine all bands in (R4, K). Because of proposition every band equals

Zero(M) for some saturatted set M ⊆ {ϕ1, ϕ2, ϕ3, ϕ4, ϕ5}.

Theorem indicate that for a saturatted set M ⊆ {ϕ1, ϕ2, ϕ3, ϕ4, ϕ5} one has that Zero(M)

is a band if and only if M is bisaturatted.

here list of the sets N ⊂ N ⊆ {ϕ1, ϕ2, ϕ3, ϕ4, ϕ5} for which { ϕ: i ∈ N} is bisaturatted: ∅,
{5} , {1, 4}, {1, 3}, {1, 2}, {2, 4}, {2, 3}, {3, 4}, {3, 4, 5}, {2, 3, 5}, {1, 3, 5}, {1, 2, 3, 4},
{1, 2, 3, 4, 5}. Hence we get 16 bands in (R4, K).
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It is known that in Riesz spaces the whole bands is directed. Here it is an interesting result

bands in partialy ordered lineer space can not be directed. Above example shows us this

fact.
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