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ABSTRACT 

ON CURVES AND SURFACES IN LORENTZ SPACE  
MSC THESIS 

SAFİYE DİLAN CEYLAN  
BOLU ABANT İZZET BAYSAL UNIVERSITY GRADUATE SCHOOL OF 

NATURAL AND APPLIED SCIENCES 
DEPARTMENT OF MATHEMATICS 

(SUPERVISOR: ASSIST. PROF. DR. SERPİL KARAGÖZ  ) 
 

BOLU, AUGUST 2018 
 
 

This thesis consists of five chapters. 
 
The first chapter is devoted to the introduction. 
 
In the second chapter, 3 dimensional Lorentz-Minkowski space and its 

fundamental definitions, properties and theorems related to subject are given. 
 
In the third chapter, Curves are defined and explained in detail on 3 

dimensional Lorentz- Minkowski space and Frenet vectors are defined then some 
examples are given.  

 
In the forth chapter, Surfaces are defined and explained in detail on  3 

dimensional Lorentz-Minkowski space, curvatures of a surface on 3 dimensional 
Lorentz- Minkowski space and umbilical surfaces are defined and some examples 
are given. 

 
Finally in the fifth chapter, minimal surfaces on 3 dimensional Lorentz-

Minkowski space and maximal surfaces are given and some theorems for maximal 
surfaces are examined and some examples are given.    

 
 
 
 
 
KEYWORDS: 3 Dimensional Lorentz-Minkowski Space, Minimal Surfaces, 
Maximal Surfaces, Umbilical Surfaces, Frenet Equation, Weierstrass-Enneper 
Representation  
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ÖZET 

LORENTZ UZAYINDA EĞRİLER VE YÜZEYLER ÜZERİNE   
YÜKSEK LİSANS TEZİ 

SAFİYE DİLAN CEYLAN  
BOLU ABANT İZZET BAYSAL ÜNİVERSİTESİ  

FEN BİLİMLERİ ENSTİTÜSÜ 
MATEMATİK ANABİLİM DALI 

(TEZ DANIŞMANI: DR. ÖĞR. ÜYESİ SERPİL KARAGÖZ)  
           

BOLU, AĞUSTOS - 2018 
 

 
 
Bu tez beş bölümden oluşmaktadır.  
 
İlk bölüm giriş kısmına ayrılmıştır. 
 
İkinci bölümde, konu ile ilgili temel kavramlara yer verilmiştir. 3 boyutlu 

Lorentz – Minkowski uzayı tanımlanıp, bu uzayın özelliklerinden bahsedilmiştir. 
 
Üçüncü bölümde, 3 boyutlu Lorentz – Minkowski uzayında eğriler ayrıntılı 

olarak anlatılmıştır. Frenet vektörleri tanımlanmış olup örnekler verilmiştir. 
 
Dördüncü bölümde, 3 boyutlu Lorentz – Minkowski uzayında yüzeyler 

ayrıntılı olarak anlatılmıştır. Lorentz uzayında bir yüzeyin eğrilikleri ve umbilik 
yüzeyler tanımlanmış daha sonra da yüzeylere örnekler verilmiştir. 

 
Son olarak beşinci bölümde, 3 boyutlu Lorentz – Minkowski uzayında 

minimal ve  maksimal yüzeyler incelendi  ve bununla ilişkili teoremler ve örnekler 
verilmiştir. 

 
 

 
 
 

ANAHTAR KELİMELER: 3 boyutlu Lorentz-Minkowski Uzayı, Minimal 
Yüzeyler, Maksimal Yüzeyler, Umbilik Yüzeyler, Frenet Denklemleri, 
Weierstrass-Enneper Gösterimi  
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1. INTRODUCTION 

Lorentz space is the space furnished with the pseudo-Riemannian metric of 

mark    (+, +, +, …, − ). This is in certain the state of affairs the theory of physics 

entitled "special relativity theory", and it is locally in the state of affairs the “general 

relativity theory ".         

  

By studying the subject Lorentz space, the basic structures in 3 dimensional 

Minkowski space were established. Euclidean space and Lorentz space were 

encountered. First of all, the important metrics for its establishment have been 

examined. Then, by constructing the vector structures, the concept of angle was 

specified. 

 

Furthermore, we frequently compare and construct the results and techniques 

of (t, n, b, �, κ ) the 3 dimensional Lorentzian geometry to those of the 3 dimensional 

Riemennian geometry. The basic differences between these geometries have been 

compiled in this research.  

 



2 
 

2. AIM AND SCOPE OF THE STUDY 

The principal aim of this study is to examine the 3 dimensional Euclidean space 

and establish the basic structures in 3 dimensional Lorentz-Minkowski space. With 

this is consciousness, we also think about the distinction and similarities between them.  

 

In particular a comparison is made between the minimal surfaces in 3 

dimensional Euclidean space is and maximal surfaces in 3 dimensional Lorentz space.  

 

2.1 Preliminaries  

Semi-Riemannian geometry involves a particular kind of (0,2) tensor on 

tangent spaces. Let % be an arbitrary vector space of dimension � ≥ 1  over ,-. Then 

bilinear form on %  is an ,- − bilinear function  ./: % × % → ,- . The form ./  is 

symmetric if  ./ 3 4, 5 6 = ./35, 4 6 ∀ 4, 5 ∈ %.  (O’Neill, 1983) 

 

2.1.1 Definition  

A symmetric bilinear form ./ on %  is  

a) Positive definite provided 4 ≠ 0 implies  ./3 4, 4 6  > 0. 
b) Negative definite provided 4 ≠ 0  implies ./3 4, 4 6 < 0  . 
c) Positive semi-definite provided 4 ≠ 0 implies ./3 4, 4 6 ≥ 0,      ∀ 4 ∈ %. 
d) Negative semi-definite provided 4 ≠ 0 implies ./3 4, 4 6 ≤ 0,    ∀ 4 ∈ %. 

e) Non-degenerate provided ./ 3 4, 5 6 = 0 ∀ 5 ∈ % implies 4 = 0. 
 

Also, ./ is definite (semi-definite) provided either alternative in  a), b), c), d) 

holds.  If  ./  is definite then it is clearly both semi-definite and non-degenerate.  

(O’Neill, 1983) 

 

2.1.2 Definition  

Let % be a vector space. The index ν of a symmetric bilinear form  ./  on % is 

the dimension of a > ⊂  % such that  
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(1)  ./  | > is negative definite.  

(2)   >@⊂  % is another subspace such that  ./ | >@  is negative ⇒                
 dim >@ ≤ dim >. (O’Neill, 1983) 

 

2.1.3 Definition  

A symmetric non-degenerate 3 0, 26 tensor field F on � of constant index is 

called a metric tensor. So ∀ � ∈ �, F ∈ G	H3�6   smoothly assigns to each � a scalar 

product FI and each FI  has the same index. Non-degenerate means that for any 4 ∈
GI3�6,  there is some 5 ∈ GI3�6 such that FI 34, 56 ≠ 0. If J FI KLM are components 

of FI  in local coordinates, then non-degeneracy is equivalent to the condition that 

det3JFI  KLM6 ≠ 0.  (O’Neill, 1983) 

 

2.1.4 Definition  

A Lorentz manifold is a smooth manifold � furnished with a metric tensor F 

that the index of � is 1. Sometimes we use 〈 , 〉 as an alternative notation for F, writing 

F 3Q, .6 =  〈Q, .〉 ∈ ,- for tangent vectors and F3%, R6 =  〈%, R〉 ∈ S3�6 for vector 

fields. If  ��, … , �U  is a coordinate system on V⊂ %  the components of F  on V 

are3F 6LM = 〈∂W, ∂X〉, 1 ≤ Y, Z ≤ �  where ∂W denotes the vector field  
∂

∂[\ on V. Since F 

is non-degenerate, the matrix ]3F6LM3^6_ is invertible for each ^  in V. The inverse 

matrix is denoted by ]3F6LM3^6_, the formula for inverse matrix shows that the 

functions  ]J3F6LM^K_ is smooth. Finally since ./ is symmetric.  

3F 6LM =  3F 6ML and 3F6LM =  3F6ML for each 1 ≤ Y, Z ≤ �. (O’Neill, 1983) 

 

2.1.5 Definition  

A tangent vector � to � is  

(1) Space-like if 〈�, �〉e Yf �gfY^Y5h  or � = 0, 

(2) Time-like if 〈�, �〉e Yf  �hFQ^Y5h, 
(3) Light-like if 〈�, �〉e = 0 and � ≠ 0.  
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The set of light-like vectors in GI3�6 is called the light-cone at i. The category 

into which a given tangent vector falls is called its casual character. Light-like vectors 

are also said to be null. 

 

Let j be a submanifold of a Lorentz manifold � with metric tensor ./ , let 

  Z: i ⊂ � be the inclusion map. The pullback Z∗3F6 is again a smooth symmetric 3 0, 26 tensor field on i, if in addition Z∗3F6 is non-degenerate on i and the index of  

GI3j6  is the same for all � ∈ j, we say j is a Lorentz submanifold of � .          

(O’Neill, 1983) 

 

2.1.6 Definition  

Let � and j be Lorentz manifold with metric 3F6l  and 3F6m. An isometry 

from �  to j  is a diffeomorphism n: � → j that preserves metric tensors         

n∗3 3F6l 6 = 3F6m. (O’Neill, 1983) 

 

2.1.7 Definition  

Let ��, … , �U  be a coordinate system on a neighborhood o  in a Lorentz 

manifold. The Christoffel symbols for this coordinate system are the real-valued 

functions     ΓΓΓΓpqr  on V such that   

�stJuMK = ∑ ΓLMww uw where 1 ≤ Y, Z ≤ �. (O’Neill, 1983) 

 

2.1.8 Proposition  

Let ��, … , �U be a coordinate system on o 

(1) ΓWXx = ΓXWx  
(2) �stJ∑ RM uMK = ∑ {w sz{

s|t + ∑ ΓLMw RM}uwM  

(3)  ΓLMw = �	 ∑ gx�{������\� + ��\���\ − ��\���\ }. (O’Neill, 1983)  
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2.1.9 Definition  

The 3 dimensional Lorentz-Minkowski space with index 1 is  

��� = (,-�,<, >e ) where the metric <, >e is  < 4 , � >e= 4��� + 4	�	 − 4��� , 4 = 34� , 4	 , 4�6, � = 3�� , �	 , ��6,  which 

is called the Lorentzian metric.  

 

The non-degenerate metric with index 1 is called as  Lorentzian metric. This 

metric can be written as,  

< 4 , � >e=  4� �1 0 00 1 00 0 −1� �:= 4�� �.  

 

We denoted by the 3- dimensional Euclidean space as �� =(,-� , < , >� ) to 

separate from Lorentz – Minkowski space. (Lopez, 2014) 

 

2.1.10 Definition  

 A vector � ∈ ��� is  

(1) Space-like if  < �, � >e  Yf �gfY^Y5h  or � = 0 , 

(2) Time-like if  < �, � >e  Yf �hFQ^Y5h and 

(3) Light-like if  < �, � >e= 0 and  � ≠ 0. (O’Neill, 1983) 

The light-cone of ���:  

� = {3�, �, �6 ∈  ���: �	 + �	 − �	 = 0} − {30,0,06}. 
 

The set of time-like vector is  

τ = {3�, �, �6 ∈  ���: �	 + �	 − �	 < 0}. 3Lopez, 2014 6  
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Figure 2.1. The Causal Character in Lorentz - Minkowski Space 

 

Given R⊂ ,-� a vector subspace. The induced metric is     
<, >z  : < � , � >z = < � , � >e ,     �, � ∈  R. 

The induced metric on R is classified in 3 cases:  

a) When the metric is positive definite, R is called space-like subspace. 

b) When the metric has index 1,  R is called time-like subspace. 

c) When the metric is degenerate then R  is called light-like subspace.            

(O’Neill, 1983)  

 

 

Figure 2.2. The Causal Character of Subspace in Lorentz - Minkowski Space 

 

2.1.11 Example  

Let  a��� = 31, 0, 06  ,   �� = 30 ,1, 06   ,  �� = 30 ,0, 16. The causal character of 

Q�, ��, ��  and  �� + �� are  

< a��, a��  >e=  1	 + 0	 − 0	 = 1    →  a��  is space-like. 

< d��, d��  >e=  0	 + 1	 − 0	 = 1  →   d��  is space-like. 

< f�, f�  >e=  0	 + 0	 − 1	 = −1 →  f�  is time-like. 
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<  �� + ��,   �� + �� >e= < d��, d��  >e+ 2 < d��, f�  >e +< f�, f�  >e 

<  �� + ��,   �� + �� >e=    0   →   �� + �� is light-like. 

 

2.1.12 Example  

a) The plane f�Q� � Q� , .�� �  is space-like  

b) The plane f�Q� { Q� , �� } is time-like  

c) The plane f�Q� � Q� , .�� + ��  � is light-like  

where  a�� = 31, 0, 06  ,   .�� = 30 ,1, 06  ,  �� = 30 ,0, 16.  

 

a) < a��, a��  >e=  1	 + 0	 − 0	 = 1 →  a��  is space-like. 

< b��, b��  >e=  0	 + 1	 −  0	 = 1 →  b��  is space-like. 

< a��, b��  >e= 1.0 + 0.1 −  0.0 = 0 

 

Let �� = ��Q� + �	.��. 

< x��, x��  >e=< ��Q� + �	.��, ��Q� + �	.��  >e 

 

By direct calculation  < x��, x��  >e= 3��6	 + 3�	6	 > 0. 

 

Span { Q� , .�� }  is space-like subspace. 

 

b) < a��, a��  >e=  1	 + 0	 − 0	 = 1 →  a��  is space-like 

< c�, c�  >e=  0	 + 0	 −  1	 = −1 →  c�  is time-like 

< a��, c�  >e= 1.0 + 0.0 −  0.1 = 0. 

 

Let �� = ��Q� + �	��. 
< x��, x��  >e=< ��Q� + �	��, ��Q� + �	��  >e 

 

By direct calculation  < x��, x��  >e= 3��6	 − 3�	6	. 
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If  x�� = 3��, �	6 then < x��, x��  >e= 3��6	 − 3�	6	 so x��  ∈ E� . 

 

Span { Q� , �� }  is time-like subspace. 

 

c) < a��, a��  >e=  1	 + 0	 − 0	 = 1 →  a��  is space-like 

< a�� ,   .�� + �� >e= < a��, b��  >e + < a��, c�  >e 

 

By direct calculation  

 < a�� ,   .�� + �� >e= 0 + 0 = 0 

 <  .�� + ��,   .�� + �� >e= < b��, b��  >e+ 2 < b��, c�  >e +< c�, c�  >e 

 

By direct calculation  

<  .�� + ��,   .�� + �� >e=      1      +    2.0        +  (-1)  = 0 → .�� + �� is light-like. 

  

Let �� = ��Q� + �	3.��+��6 and �� ≠ 0. 

< x��, x��  >e=<  ��Q� + �	J.�� + ��K, ��Q� + �	3.�� + ��6  >e 

 

By direct calculation  < x��, x��  >e= =3��6	 

 

If  x�� = 30, 16  then < x��, x��  >e= 0  so span { Q� , .�� + �� } is light-like subspace 

and .�� + ��  ≠ 0��.  

 

The causality of a vector is the character space-like, time-like and light-like 

Now we give some properties of subspace of ���. 

 

2.1.13 Proposition  

Let 3%, F6 be a metric space where F is non-degenerate metric. 

a)  R ⊂ % is a subspace ⇒ dim(R�) = dim(%) – dim(R). 

b)  R ⊂ % is a subspace ⇒ (R�6� = R. 

c) R ⊂ % is a non-degenerate subspace ⇒R� is a non-degenerate subspace. 

(Lopez, 2008) 
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Proof:  

a) Let { h� ,…,  h� } a base of R  and a base  �  = { h� ,…, hU} of % . If                        

� = ∑ �L hLL  ε R�, then  

0 = < ∑ �LhL ,hMUL��  > = ∑ FLM�L UL�� = 0, 1≤ j ≤m. 

 

In a matrical expression, these m- equations writen as  

� F�� ⋯ F�U⋮ ⋱ ⋮F�� ⋯ F�U�  ���⋮�U�  = �0⋮0�   or  

 ¢£ = 0 and A= (FLM6�¤U. The range of A is m because there is a sub-matrix 

with range exactly n. As consequence of this, the solutions of AX = 0 generate a n- m 

dimensional subspace. 

 

b) Because  (R�6� ⊂ R, as a consequence dim (R�6� = dim (R). 

 

c) Let �={h�,…,h�} be an orthonormal base of R. The matrix of the metric 

F| z is diagonal with only 1 and -1. The base to get an orthonormal base of %, 

namely   � ={h�,…,hU}. Since        

dim(R�6= n-m, then {h�¥�, … , hU} is a base of R� and this end the proof. 

 

2.1.14 Proposition  

a) Let � ∈ ���. Then � is a timelike vector ⟺ f�Q�{ � }� is space-like and so,  

��� = f�Q�{ � }⊕ f�Q�{ � }�. For space-like vectors, we have: � is space-

like ⟺ f�Q�{ � }� is time-like. 

b) Let  R ⊂ % be a subspace. Then R is space-like ⟺ R� is time-like. 

c) R is subspace implies R is light-like ⟺ R� is light-like.  (Lopez, 2008) 

 

Proof:  

a) If  � is time-like vector, and by multiplying by a number if it is necessary, 

we put �  as a part an orthonormal base of ���,  § = { h�, h	, � }. Then                     
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f�Q�{ � }� = <  h�, h	 >e, which is a space-like subspace. For converse, let 

{ h�, h	}  be a orthonormal base of f�Q�{ � }�,  where < , >/I¨U{ ¤ }© is a 

positive definite metric. Then { h�, h	, � } is a base where diagonalizes the 

metric.  As F�� =  F		 = 1, then F�� < 0.  �  is time-like vector. 

b) If  R  is a time-like subspace, let � ∈  R  be a time-like vector. Then 

R� ⊂ f�Q�{ � }�. (As  f�Q�{ � }� is space-like, then R� is space-like. As 

a consequence (R�6� = R. 
c) Combining a) and b) then we get the required result. 

 

2.1.15 Proposition  

a) If  � and � are two null vectors, then �, �  are obviously linearly dependent 

⟺ < �, � >e= 0. 
b) If  � and � are two time-like or null vectors with < �, � >e= 0, then they 

are null vectors. 

c) R is a light-like subspace ⇒ dim3R ∪ R�6 = 1.  (Lopez, 2008) 

 

Proof:  

a) � and � are proportional ⇒ they are orthogonal. We suppose that they are 

orthogonal. In the decomposition     

��� =  f�Q�{  h� }� ⊕  f�Q�{  h� }. 

 

We write � = Q + �  and    � = . + � assuming that the vector � is the same 

in both decompositions in order to show what is wanted. As < �, � >e= 0 and both 

are null vectors, then  

< Q, . >e + < �, � >e + < Q, � >e + <  ., � >e= 0. 
< Q, Q >e + < �, � >e+  2 < Q, � >e= 0. < ., . >e + < �, � >e+  2 <  ., � >e= 0. 

 

We get, 

|Q|	 + |.|	 − 2 < Q, . >e= 0, that is |Q − .|	 = 0. Thus Q = .,  because Q − .  is 

space-like vector ( Q − . ∈ f�Q�{ � }� ). So we deduce � = �. 
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b) The two vectors are time-like ⇒ < �, � >e≠ 0. By using,  

��
� = f�Q�{ � }�  ⊕ f�Q�{ � } 

 where f�Q�{ � }� is a space-like subspace, we write � = Q + «� ; then  

< �, � >e= < �, Q >e+ « < �, � >e= « < �, � >e . 

< �, � >e= 0  ⇒  « = 0.  � and �  would be equal and space-like. Similar case is 

valid for  null or time-like vectors. For this reason  � and �  are null vectors. 

c) If � , � ∈  R ∪ R�, then  < �, � >e= 0. Then they are linear  dependent. 

This proves that dim(R ∪ R�) ≤ 1. The dimension is exactly   0 ⇒       

 ��
� = R ⊕ R�,  and so any vector of  ��

� would be null.  

 

2.1.16 Proposition  

Let  R ⊂  ��
� be a 2-dimensional subspace. The followings are equivalent: 

a. R is time-like subspace. 

b. R contains two independent linear null vectors. 

c. R contains a time-like vector. (O’Neill, 1983) 

 

Proof:  

a. (a⇒⇒⇒⇒b )  Let  {h�, h	, h�} be an orthonormal base of ��
�. Then h	 + h�  and     

h	 − h�  are linear independent, null vectors. 

b. (b⇒⇒⇒⇒c )  If  � and � are the two linear independent, null vectors, then � + � 

or � − � is a time-like vector because  

< � ± �, � ± � >e=  ±2 < �, � >e  and < � , � >e≠ 0 due to both vectors 

being time-like. 

c. (c⇒⇒⇒⇒a)  Let �  be a time-like vector R. Then R� ⊂  f�Q�{ � }�, and 

f�Q�{ � }�  is a space-like subspace. So, R�  is space-like, and so R  is 

timelike. The above result can generalize to high-handed dimensions by 

thinking that R is hyperplane. 

 

2.1.17 Proposition  

Let R be a vector subspace of ��
�. Q ⇒ . ⇒ � ⇒ Q 

a. R is a light-like subspace. 
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b. There exists a null vector in R but not a time-like one. 

c. R ∩ � = J − {0}  and then dim  ° = 1  where °  is a one – dimensional 

subspace and � is the light cone of %. (O’Neill, 1983) 

 

Proof:  

a. (a⇒⇒⇒⇒b)  Because < , >e is a degenerate metric, there is a null vector. By the 

2.1.5 Proposition, there are not time-like vectors. 

b. (b⇒⇒⇒⇒c )  Because there exist null vectors R ∩ � is a non–empty set. By using 

2.1.5 Proposition again.  There are two linear independent, null vectors ⇒ 

there would be a time-like vector. 

c. (c⇒⇒⇒⇒a)  2.1.5 Proposition say that R  is neither space-like nor time-like 

subspace. 

 

2.1.18 Proposition  

Let  � ⊂ ��
�  be a vector plane and  �±����� represents an orthogonal Euclidean 

vector. Then � is a space-like (respectively time-like, null) plane ⟺ �±����� is a time-like 

(respectively  space-like, null) vector. (Lopez, 2014)  

 

Proof:  

If  �  writes as  � = {(�, �, �) ∈  ,-�: �� + h� + �� = 0}, then �±�����  is 

«(Q, ., �) where « ∈ ,-. We write � as  

� = {(�, �, �) ∈  ,-3: �� + h� − (−�)� = 0} = f�Q� {(�, h, −�)}⊥ 

< (�, h, −�), (�, h, −�) >e=  �	 + h	 − �	 

< (�, h, �), (�, h, �) >e=  �	 + h	 − �	 

 

The causal character of  (�, h, −�) is the same then  �±�����. 

 

2.1.19 Example  

Find the causal character of plane � + � − 2� = 0. 

�±����� = (1,1, −2) 
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< �±����� ,  �±������  >e=  1	 + 1	 − 2	 = −2 →  �±����� Yf ^Y´h − µY¶h. 

 

So plane is space-like. 

 

2.1.20 Definition  

Given � ∈ ��
�, the norm of � is ||�||e =  ·| < �, � >e |. The vector � is called 

unit vector if its norm is 1. (O’Neill, 1983)   

 

2.1.21 Proposition  

If  � = f�Q� { � }�  is a space-like plane, then  ||�||± ≥  ||�||e .  (Lopez, 2014) 

 

Proof:  

It sufficies if ||�||e = 1. Assume �±����� = (�, h, �), with  

< (�, h, �), (�, h, �) >±=  �	 + h	 + �	 = 1 

� = {(�, �, �) ∈  ,-3: �� + h� + �� = 0} and �±����� = (�, h, �) 

� = {(�, �, �) ∈  ,-3: �� + h� − (−�)� = 0} = f�Q� {�}⊥ ⇒ � = (�, h, −�) 

< (�, h, −�), (�, h, −�) >e=  �	 + h	 − �	 

||�||e = ·| < �, � >e | = ·| �	 + h	 − �	| = 1 

� is space-like plane then � is time-like vector. < �, � >e< 0, � ≠ 0. 

�	 + h	 − �	 < 0 →  | �	 + h	 − �	| =  �	 − �	 − h	 

� =  ± 
(�, h, −�)

·�	 − �	 − h	
 

 

The Euclidean norm  ||�||± is  

 ||�||±
	 =  

�	 + h	 + �	

�	 − �	 − h	 =  
1

�	 − �	 − h	 ≥  1 

because �	 − �	 − h	 =  �	 + h	 + �	 −2�	 − 2h	=1- 2(�	 + h	)  ≤ 1. 

 

So  ||�||± ≥ ||�||e . 
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Figure 2.3. The vector ¸ orthogonal to a space-like plane ¹  bigger than the 

Euclidean normal vector º to ¹  

 

2.1.22 Definition  

Let » be a set of time-like vectors of ���. For each � ∈ » we define the time 

cone � as  

С3�6 = {� ∈  »: < �, � >e< 0}. 
This set is non–empty set since < �, � >e< 0 ⇒  � ∈  С3�6. Furthermore » the 

disjoint union of С3�6 and С3−�6 . If  � ∈ »  then  < �, � >e≠ 0  and so either             

    < �, � >e< 0  or  < �, � >e> 0   this means that  � ∈  С3�6   or  � ∈  С3−�6  and 

 �3�6 ∩ �3−�6 = ∅. (O’Neill, 1983) 

 

2.1.23 Proposition  

a) Two time-like vectors � ,  �  are in this same time-like cone ⟺                               
< �, � >e< 0.  

b) � ∈  С3�6 ⟺  С3�6 = С3�6. 

c) The time-like cones are convex sets. (O’Neill, 1983) 
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Proof: 

 

a) If  < �, � >e< 0, then � ∈  С3�6. Let assume that �, � ∈  С3^6. We can 

suppose that < ^, ^ >e= −1. We write � = � + Q^   and  � = h + .^, with  

�, h ∈ f�Q�{ ^ }�. As f�Q�{ ^ }�  is a space-like subspace, then                    

|< �, h >e| ≤  | �|. | h|, and  

< �, � >e= −Q. .+< �, h >e ≤ −Q. . + | �|. | h| 

Since < �, � >e < Q	 and < h, h >e < .	 Q�� < �, � >e< 0 . 

b) If  � ∈  С(�) then < �, � >e< 0, that is � ∈  С(�). 

c) Assume that � , � ∈  С(^) and let ´ ∈ ¾0,1¿. Then 

< ´� + (1 − ´)�, ^ >e= ´ < �, ^ >e+ (1 − ´) < �, ^ >e< 0. 

And this means that ´� + (1 − ´)� ∈  С(^). 

 

2.1.24 Theorem  

Let � and � be time-like vectors in Lorentz vector space. Then 

1. |< �, � >e| ≥  ||�||e. ||�||e , with equality ⟺� and � are collinear. 

2. If  � and � are in the same time cone, there exist only one non-negative 

number À ≥ 0, which called hyperbolic angle between � and � such that  

< �, � >e=  − ||�||e . ||�||e cosh À. (O’Neill, 1983) 

 

Proof:  

1. Write � = Q� +  �� with ��  ∈  ��. Since �� is space-like. 

< �, � >e= < Q� + ��, Q� + �� >e 

< �, � >e= < Q� + ��, Q� >e +< Q� + ��, ��  >e 

< �, � >e= < Q�, Q� >e +< ��, Q� >e +< Q�, �� >e +< ��, ��  >e 

< �, � >e=  Q	 < �, � >e+ Q < ��, � >e+ Q < �, �� >e +< ��, ��  >e 

< �, � >e=  Q	 < �, � >e +< ��, ��  >e 

< �, � >e=  Q	 < �, � >e +< ��, ��  >e< 0. (Since � is time-like ) 

< �, � >e −< ��, ��  >e=  Q	 < �, � >e   * 
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Then 

< �, � >e
	= < �, Q� +  �� >e . < �, Q� +  �� >e 

< �, � >e
	= (< �, Q� >e +< �, �� >e)	 

< �, � >e
	= Q	 < �, � >e

	 

< �, � >e
	= Q	 < �, � >e . < �, � >e 

< �, � >e
	= (< �, � >e −< ��, ��  >e) < �, � >e 

< �, � >e
	 ≥ (< �, � >e . < �, � >e) 

< �, � >e
	 ≥ ||�||Â

2.  ||�||Â
2 

| < �, � >e  | ≥ ||�||e.  ||�||e (Cauchy-Schwarz backwards) 

 

Since < ��, ��  >e ≥ 0 and < �, � >e< 0. 

 

Evidently equality holds if and only if < ��, ��  >e= 0, which is equivalent to 

��=0, that is, to � = Q�.   

2. So we get inequality  

(< �, � >e)	

(||�||e . ||�||e)	  ≥ 1. 

If  � and � lie in the same time cone, then < �, � >e < 0 implies  | < �, � >e |||�||e ||�||e ≥ 1 

  −< �, � >e||�||e . ||�||e ≥ 1. 
cosh: [0,∞6 → [1, ∞6 is 1-1, there exists a unique number À ∈ [0, ∞6 such that  

cosh À = −< �, � >e||�||e . ||�||e . 
 

So < �, � >e=  −Ä|�||e Ä|�||e  cosh À.  

 

2.1.25 Corollary  

Let � and � be time-like vectors in Lorentz vector space. If � and � are in the 

same time cone then ||�||e + ||�||e ≤  ||� + � ||e . (O’Neill, 1983) 
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  Proof:  

Since < �, � >e< 0 the backwards Cauchy-Schwarz inequality this 

 

|< �, � >e |  ≥ ||�||e .  ||�||e 

 

We know that � and � are time-like vectors 

(1) ||�||e	 =  | < �, � >e | 
(2)  ||�||e =  ·|< �, � >e| 
(3) |< �, � >e| = −< �, � >e 

(4) < �, � >e=< �, � >e is symmetric. 

3||�||e + ||�||e 6	 = ||�||e	 + 2 ||�||e . ||�||e +  ||�||e	 

=  −< �, � >e − < �, � >e −< �, � >e −< �, � >e 

=    −< �, � + � >e −< � + �, � >e 

=  −< �, � + � >e −< �, � + � >e 

=  −< � + �, � + � >e =  | < � + �, � + � >e | 
 3||�||e + ||�||e 6	 ≤  ||� + �||	 ||�||e + ||�||e ≤  ||� + � ||e. 

 

2.1.26 Definition  

Let  h� = 30,0,16. For a time-like vector �, we call that � as future - directed 

(respectively past-directed) if  � ∈ С3h�6, which is  <  �, h�  >e< 0              

(respectively � ∈ С3−h�6  or <  �, h�  >e> 0 6. It is also equivalent to say that                

� = 3��, �	, ��6  is future directed if  �� > 0 . We always orient by time-like cone 

С3h�6, that is, 3���, [§Å]6, where §Å is usual base if -�. (Lopez, 2008)  

 

2.2 The Lorentz - Minkowski Vector Product  

The definition of Lorentz – Minkowski vector product is the same as the given 

one in the Euclidean ambient. 
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2.2.1 Definition  

If  Q , . ∈ ���, the Lorentz – Minkowski vector product of Q and . is express by 

 Q �e . which is unique vector. It satisfies the equation    <  Q �e ., ^ >e= det3 Q , ., ^ 6. By taking ^  each one of the vectors of the 

usual base, we obtain  

Q �e . =  Æ Y Z −¶Q� Q	 Q�.� .	 .�
Æ. 

Since the metric is bilinear the vector is exist and unique. Thus, if we denote  Q �±  . the Euclidean vector product, we have that Q �e .  is the reflection of  Q �±  . 

with respect to the plane {� = 0}. (Lopez, 2014) 

 

2.2.2 Example  

Let 4 and 5 be time-like vectors in a Lorentz vector space. If Q and . are in the 

same time cone then  

||Q �e .||e	 = ||Q||e 	 . ||.||e 	 . 3sinh À6	,  À = Q�Fµh3Q, .6.  (Lopez, 2014) 

 

Proof: 

We know that Q and . are time-like vectors and both are in the same time cone  

(1) ||Q||e =  ·| < Q, Q >e |  
(2) ||Q||e	 =  | < Q, Q >e | 
(3) |< Q, Q >e| = −< Q, Q >e 

(4) < Q, . >e= < ., Q >e  
(5) |< Q, . >e| ≥  ||Q||e. ||.||e  
(6) < Q, . >e	  > ||Q||e	. ||.||e	 

(7) < Q, . >e	 = ||Q||e	. ||.||e	3cosh À6	 

(8) 3cosh À6	 − 3sinh À6	 = 1  

||Q �e .||e	 = | < Q �e., Q �e. >e | 
||Q �e  .||e	 = | < Q, Q >e< ., . >e −< Q, . >e< ., Q >e | 

||Q �e .||e	 = | < Q, Q >e< ., . >e −< Q, . >e	 | 
||Q �e .||e	 =< Q, . >e	 −< Q , Q >e< . , . >e 

||Q �e .||e	 =< Q, . >e	− ||Q||e	. ||.||e	 
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||Q �e .||e	 = ||Q||e	. ||.||e	3cosh À6	 − ||Q||e	. ||.||e	 

||Q �e .||e	 = ||Q||e	. ||.||e	[3cosh À6	 − 1] 
||Q �e .||e	 = ||Q||e	. ||.||e	 3sinh À6	 

 

2.2.3 Proposition  

The vector product have properties: 

a) Q �e. = −. �e Q. 

b) Q �e. is orthogonal to Q and .. 

c) Q �e. = 0 ⟺ {Q , .} are not proportional. 

d) Q �e. ≠ 0  lies in the plane � = < Q, . >e  ⟺ the plane �  is null.    

(Lopez, 2008) 

 

2.3 Isometries of Lorentz-Minkowski Space  

Here we give the isometries of Minkowski space ��� . The set of all vector 

isometries of ��� is denoted by ,�336. If  Ç and Ç@ are different orthonormal bases, the 

matrix �  satisfies ���� = � where  

� = �1 0 00 1 00 0 −1�. 
 

Thus ,�336 = { � ∈ �µ33, ,-6; ���� = �}.  

1) det3�6 = ±1. 

2) ,�336 has at least two connected components. 

3) È,�336 is denoted by the set of isometries with det3�6 = 1. 

4) È,�336 is called the special Lorentz group.  

5) Ç ∈ È,�336  ⟺  Ç is positive oriented.  

 

We define the ortocrone group by  

,�¥336 = {� ∈ ,�336; � maintains the time − like orientation}. 
 � maintains the time-like orientation. A future-directed orthonormal base Ç  

⇒ the base obtained by Ç@ = �. Ç  is also future-directed. We also have the next 
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characterization of  ,�¥336: � ∈  ,�¥336  if and only if ´�� > 0. The set  ,�¥336  is a 

group with two components: One of them ,�¥336 ∩  È,�336  and the other one is 

,�¥336 − 3,�¥336 ∩ È,�3366. We define the special Lorentz ortocrone group as the set  

,�¥¥336 = È,�336 ∩ ,�¥336 = {� ∈ ,�336; det3�6 = 1, � maintains time − like orientation}. 
 

This set is a group and Y�h�^Y^�  .hµg�Ff ^g ,�¥¥336. ,�¥¥336 is not a compact 

set because the subset  

Ë�1 0 00 cosh3À6 sinh3À60 sinh3À6 cosh3À6� ; θ ∈ R Î 

is not bounded. (Lopez, 2014) 

 

2.3.1 Theorem  

The connected components of ,�336 are ,�¥¥336 and  

1. ,�¥Ï336 = { � ∈  È,1336;  ´�� < 0} 

2. ,�Ï¥336 = { � ∈ ,1+336 ; det3�6 = −1} 

3. ,�ÏÏ336 = { � ∈ ,�336  ; det3�6 = −1 ,  ´�� < 0}. 

 

If we denote by  �� and  �	 the isometries given by �� = diag[1,1, −1] and 

�	 = diag[1, −1,1]  then the three last components correspond, respectively, with 

 ��.  �	. ,�¥¥336,  �	. ,�¥¥336, and  ��. ,�¥¥336.  The rigid motion of ���  are the 

composition of a vector isometries and a translations of ���. 
 

Next we study the isometries of the two-dimensional Lorentz-Minkowski space 

��	. Let � be a matrix by  

� = ]� 
f ^_. 
 

Then M ∈ ,�326 and ⟺  � = ����, that is,  

�	 − f	 = 1, �
 − f^ = 0, ^	 − 
	 = 1. 
 

From the first equation, we have two possibilities:  

1. There exists À  such that � = cosh3À6  and f = sinh3À6. Equalities   

      ^	 − 
	 = 1, there appear two cases again: 
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(a) There exists Ð  such that ^ = cosh3Ð6  and 
 = sinh3Ð6.  With the 

second equation, we conclude that Ð = À 

(b) There exists Ð  such that ^ = −cosh3Ð6  and 
 = sinh3Ð6.  We get   Ð = −À. 

2. ∃ À  such that � = − cosh3À6  and  f = sinh3À6.  Equalities ^	 − 
	 = 1 

implies the following possibilities: 

(a) ∃ Ð such that ^ = cosh3Ð6 and 
 = sinh3Ð6. By second equation we 

get Ð = −À. 

(b) ∃ Ð such that ^ = −cosh3Ð6 and 
 = sinh3Ð6. From �
 − f^ = 0 we 

have Ð = À. 
 

As a result, we get 4 kinds of isometries.  

Òcosh3À6 sinh3À6sinh3À6 cosh3À6Ó ,    Ò cosh3À6 sinh3À6−sinh3À6 − cosh3À6Ó 

Ò− cosh3À6 sinh3À6− sinh3À6 cosh3À6Ó , Ò− cosh  3À6 sinh3À6sinh  3À6 − cosh3À6Ó. 
 

With the same notation as in 2.3.1 Theorem, each one of the matrices that have 

appeared belong to ,�¥¥326, ,�ÏÏ326, ,�Ï¥326,�¥Ï326, respectively. We see which is the 

difference with the isometries of �	. It appears as equations of type  ´	 + �	 = 1, 

whose solutions can be written as � = cos Ô and � = sin Ô. 

 

This distinguishes the equation    ´	 − �	 = 1 , where it is necessary to 

seperate the case that � is positive or negative. 

 

We end this chapter with a study of isometries of ,�¥¥336  that leave a 

straightline ° fixed pointwise. These kind of isometries are called boosts. Three types 

of such isometries will appear, depending on the causal character of Â . Let                 

   h� = 31,0,06, h	 = 30,1,06 Q�� h� = 30,0, −16 

1. J is time-like: Assume that ° = f�Q�{h�} Since �. h� = h�, we obtain 

that ´�� = ´	� = 0 anda´�� = 1. By using the equality  � = ����, 
we have ´�� = ´�	 = 0 and  

´��	 + ´	�	 = 1 ,  ´��. ´�	 + ´	�. ´		 = 0, ´�		 + ´ = 1  
 



22 
 

Thus the matrix � is written as  

� = �cos Õ − sin Õ 0sin Õ cos Õ 00 0 1�. 
2. J is space-like: Let  ° = f�Q� {h�}. Then  

� = �1 0 00 cosh Ö sinh Ö0 sinh Ö cosh Ö�. 
3. J is light-like:  We suppose that ° = f�Q� {h	 + h�}.  Then  

� =
×
ØÙ

1 Õ −Õ
−Õ 1 − Õ	

2 Õ	
2

−Õ − Õ	
2 1 + Õ	

2 Ú
ÛÜ. 

 

In all above cases, the isometries belong to ,�¥¥336. By using boosts we can 

define a circle in ���. In usual Euclidean space ��, we can define a circle in several 

ways.  

a)  A circle is the set of points equidistant from a fix point. 

b) Constant curvature curve.  

c)  The orbit of a point under a group of rotations of ��. 

 

In Lorentz-Minkowski space we will define a curve like in c) but replacing 

rotation by boosts. Let J be a fixed straight-line of ��� and let �Ý = {nÞ: Õ ∈ -} by the 

group of boosts which fix J. A circle is orbit  {nÞ3�H6: ÖÞ ∈  �Ý}  of a point                  

�H ∉ °, �H = 3�H, �H, �H6. We have 3 possibilities because of the causal character of J. 

we have; 

1. J is time-like: We consider ° = f�Q�{h�}. Then 

�Ý = ËnÞ =  �cos Õ − sin Õ 0sin Õ cos Õ 00 0 1� ; Õ ∈ ,-Î. 
 

The set {nÞ3�H6: Õ ∈ -} is the circle in � = �H with radius ·�H	 + �H	. 

2. J is space-like:  We take ° = f�Q� {h�}. Then  

Suppose �H	 − �H	 ≠ 0 otherwise, it is aa straight line. Then the orbit �H is a 

branch of the hyperbola �	 − �	 = �H	 − �H	  in the plane � = �H.   According to      

  �H	 − �H	 < 0 or �H	 − �H	 > 0, we will have 4 cases. 
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3. J is light-like:  We assume that ° = f�Q� {h	 + h�} and we consider the 

plane °� = f�Q�  { h� , h	 + h� }. 

�Ý =
àáâ
áãnÞ =

×
ØÙ

1 Õ −Õ
−Õ 1 − Õ	

2 Õ	
2

−Õ − Õ	
2 1 + Õ	

2 Ú
ÛÜ ; Õ ∈ ,-

äáå
áæ. 

 

The orbit of a point �H = 3�H, �H, �H6 ∉  °� is a plane curve which lies in       

 � − � = �H − �H. 

  £ = �H + Õ3�H − �H6  and ç = �H − �HÕ − 3�H − �H6Õ	/2  ⇒ the orbit of  �H 

satisfies  

ç =  − £	 + 2�H3�H − �H6 + �H	23�H − �H6  

 

This means that the circle {nÞ3�H6: Õ ∈ -} is a parabola. 

 
   Figure 2.4. Hyperbola and Parabola 

 

We point out that the orbits are Euclidean circles, hyperbolas and parabolas 

only in the case of the axis of the group of boosts is one of the above ones. They are 

generally affine ellipse, hyberbola or parabola, depending on the status. For instance, 

we consider the rotations with respect to the time-like line ° = f�Q�{30,1,26}.   
 °� = È�Q� { h� , 30,2,16/√3}. 
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� = 31,0,06 ∈  °� ⇒ nÞ3�6 = cos Õ h� + sin Õ �√� 30,2,16 

that is an affine ellipse in °�.  (O’Neill, 1983) 
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3. CURVES IN LORENTZ SPACE  

In this chapter we will give Frenet vectors of curves in 3 dimensional Lorentz-

Minkowski space. A smooth curve is differentiable map Ö: ° ⊂ ,- →  ��� where ° is 

an open interval. Ö is parametrized curve. A curve is regular if Ö@3^6 ≠ 0 ∀ ^ ∈ °. We 

will take ��� as a 3- dimensional manifold. A regular curve will be defined as 

immersion between the (1-dim) manifold ° and the (3-dim) manifold ,-�. 

 

3.1 The Fundamental Local Theory of Curves  

Let Ö: ° →  ��� be a regular curve. When � ∈ °, the tangent space GI° identifies 

with IR.  The differential map 3�Ö6I: GI° ≡ - → Gë3I6���  ≡  ,-� is  

3�Ö6I3f6 =  ììÅ |Å�H   Ö3� + f46 =  f. Ö@3�6. 

 

It is also linear map  Ö@3^6. 

∂

∂I is the unit tangent vector on GI° ⇒ 3�Ö6I ] ∂

∂I_ = í@3�6. 

 

We now take -� with the Lorentzian metric <, >e. By the map Ö we can define 

the induced metric of   ��� on °. 
Ö: 3°, Ö∗ <, >e6 →  ��� = 3,-�, <, >e6  

 

Obviously it is an isometric immersion. Ö∗ <, >eî 3Q, .6 =< 3�Ö6I3Q6, 3�Ö6I3.6  >e= Q. < Ö@3^6, Ö@3^6 >e , Q, . ∈ ,- , 

Ö∗ <, >e is defined above pullback metric. 

 

If we take the basis { ∂

∂I} in GI°,  

Ö∗ <, >eî  ] ∂

∂I_ , ] ∂

∂I_ = < Ö@3�6, Ö@3�6 >e.  

 

In order to classify the manifold 3°, Ö∗ <, >e6 and since , is a one-dimensional 

manifold, we need to know the sign of < Ö@3�6, Ö@3�6 >e. Thus 
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a. If  < Ö@3�6, Ö@3�6 >e Yf �gfY^Y5h then  3°, Ö∗ <, >e6   is a Riemannian 

manifold. 

b. If  < Ö@3�6, Ö@3�6 >e  Yf �hFQ^Y5h  then 3°, Ö∗ <, >e6   is a Lorentzian 

manifold. 

c. If  < Ö@3�6, Ö@3�6 >e= 0 then 3°, Ö∗ <, >e6  is a degenerate manifold.  

(Lopez, 2014)  

 

3.1.1 Definition  

A smooth  curve in í: , → ���  is  

(1) Space-like, if  for any ^ ∈ ,,  í@3^6 is space-like ; 

(2) Time-like , if for any ^ ∈ ,  í@3^6 is time-like ; 

(3) Light-like , if  for any ^ ∈ , í@3^6 is light-like. (O’Neill, 1983 )  

 

3.1.2 Proposition  

Any time-like or null curve is regular. (O’Neill, 1983) 

 

Proof:  

Suppose that the curve is time-like, and we write í3f6 = J �3f6, �3f6, �3f6K,  
where the function �, �  Q�� � are differentiable functions on f. Then  

< í@3f6, í@3f6  >e =  [�@3f6]	 + [�@3f6]	 − [�@3f6]	 < 0, �@3f6 ≠ 0, that is , í  is 

regular curve. 

 

If the curve is null, we have �@3f6 ≠ 0 , however  �@3f6 = �@3f6 = 0  and 

í@3f6 = 0.  But means that í is space-like at f.  
 

3.1.3 Example  

í: ,- →  ��� 

t    →   í(t) = (cosh ^ , �ï
	 , sinh ^) 

a) Is í(t)  regular curve? 
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b)  Determine  the causal character of í. (Lopez, 2014)  

í@3^6 = 3sinh ^, ^, cosh ^ 6 ≠ 0 ∀ ^ ∈ ,-.  í is regular. Note that  

|| í@3^6 ||e =  3sinh ^6	 + ^	 −(cosh ^ 6	 =3sinh ^6	 −(cosh ^ 6	+^	 = ^	 − 1 

|| í@3^6 ||e	 = |^	 − 1| ^ =  ∓1 . || í@3∓16 ||e= 0 but 

í@316 = ]�ïÏ�	� , 1, �ï¥�	�  _ ≠ 0  and  í@3−16 = ]�Ï�ï
	� , 1, �ï¥�	�  _ ≠ 0 

< í@3^6, í@3^6 >e= ^	 − 1 

 

On the interval (-1,-1), í is a time-like curve. 

 

On the interval 3−∞, −16 ∪ 31, ∞6,  í is space-like curve. 

 {−1,1} at ^ =  ∓1,  í is a light-like curve. 

 

3.1.4 Example  

(1) í3s6 =  Q + .f, Q, . ∈ ,-�, f ≠ 0 is the straight-line with í@3f6 = f. 

The causal character of í  is same with vector f.  
(2) í3t6 = 
3cos ^ , sin ^, 06 is the circle.    í@3^6 = 
3− sin ^ ,  cos ^,0) since 

 < í@3^6, í@3^6 >e= 
	 > 0 is a space-like curve. Also it lies �� −  plane  

where  space-like plane.  

(3) í3t6 = 3^, ^	, ^	6 Ys the parabola.  í@3^6 = 31,2^, 2^6.                                       < í@3^6, í@3^6 >e= 1 > 0 is a space-like curve. It lies in null plane  � = �.  

(4) í3^6 = 
30, sinh ^, cosh ^6 is the hyperbola. 

    í@3^6 = 
30 , cosh ^  , sinh ^ 6  since    < í@3^6, í@3^6 >e = 
	 > 0 is a      

space-like curve. Also the time-like plane of equation �� −  plane.  

(5) í3^6 = 
30, cosh ^, sinh ^ 6  is the hyperbola.  
   í@3^6 = 
30, sinh ^, cosh ^6  since  < í@3^6, í@3^6 >e= −
	< 0 is a time-like 

curve. Also the time-like plane of equation �� −  plane. 
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3.1.5 Example  

í: ,- →  ��� 

t    →   í(t)=(
 cos ^ , 
 sin ^ , ℎ^) ℎ ≠ 0, 
 > 0 

Find the causal character of í.  

 
Figure 3.1. The Helix 

 

í lies on the cylinder �	 + �	 = 
	 and pitch 2πℎ. 

í@3^6 = 3 −
 sin ^ , 
 cos ^ , ℎ6 ≠ 0 ∀ ^ ∈ ,-.  í is a regular curve . 

< í@3^6, í@3^6 >e= 
	 − ℎ	 

a) If  
	 − ℎ	 > 0 then í is a space-like curve. 

b) If  
	 − ℎ	 < 0 then í is a time-like curve. 

c) If  
	 − ℎ	 = 0 then í is a light-like curve. 

 

3.1.6 Example  

í: ,- →  ���  

t    →   í(t ) = (ℎ^, 
 sinh ^  , 
 cosh ^) , ℎ ≠ 0, 
 > 0 

Find the causal character of í.  
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Figure 3.2. Hyperbolic Cylinder    ó − ô = −õ  

 

í lies on the hyperbolic cylinder of equation �	 − �	 = −
	. 

í@3^6 = 3	ò, 
 cosh ^	, 
 sinh ^6 9 0	∀	^ ∈ ,-. í is a regular curve. 

< í@3^6, í@3^6 ;e= 
	 } ò	 > 0. í is a space-like curve. 

 

3.1.7 Example  

í:	,-	 → 	��� 

t    →	 	í(t ) = (ò^, 
 cosh ^ , 
 sinh ^	) , ò 9 0, 
 ; 0. 

 

Find the causal character of í.  

 

 
Figure 3.3. Hyperbolic Cylinder 			ó 
 ô � õ  
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í lies on the hyperbolic cylinder of equation �	 
 �	 � 
	. 

í@3^6 � 3ò, 
 sinh ^ 	 , 
 cosh ^6 ≠ 0	∀	^ ∈ ,-. í is a  regular curve. 

< í@3^6, í@3^6 >e= ℎ	 − 
	 

a) If  ℎ	 − 
	 > 0	then í is a space-like curve. 

b) If  ò	 
 
	 < 0	then í is a time-like curve. 

c) If  ò	 
 
	 � 0	then í is a light-like curve. 

 

3.1.8 Proposition  

Let Ô: ° →  ���  be non-space-like  curve and  fH  ∈ ° . ∃ ö > 0  and �÷ the 

function ��, �	: ,⊂ ,- → ,- such that f = Ð3^6  and  Ö3^6 = Ô3Ð3^66 = 3��3^6, �	3^6, ^6. (Carmo, 1976) 

 

3.1.9 Theorem  

Let Ö be a closed regular curve in � ⊂ ���. Ö is space-like ⇒ � is a  space-like 

plane. (Carmo, 1976) 

 

Proof:  

Case 1: Let �  is time-like plane. Take �  as � = 0.                                              
Ö3^6 = J0, �3^6, �3^6K. Because the function �: ,- → ,-  is periodic, it achieves a 

maximum at some point ^H  ⇒ �@3^H6 = 0 and so                                                                

Ö@3^H6 = J0, �@3^H6, �@3^H6K = 30, 0, �@3^H66. We know that  í  is a regular curve 

�@3^H6 ≠ 0 , < Ö@3^H6, Ö@3^H6 >e=  −[�@3^H6]	. í  is timelike at ^ = ^H .which is a 

contradiction. 

 

Case 2: Let � is null plane. Take � as � = �.  
Ö3^6 = Ö3^6J�3^6, �3^6, �3^6K. Let the maximum of �3^6be at ^H. Because the 

function �: ,- → ,-  is periodic this implies �@3^H6 = 0  ⇒                                            
Ö@3^H6 = J0, �@3^H6, �@3^H6K.  Ö@3^H6 ≠ 0 ⇒  �@3^H6 ≠ 0 by regularity but                            

 < Ö@3^H6, Ö@3^H6 >e=  [�@3^H6]	 − [�@3^H6]	  = 0. Ö  is null at ^ = ^H  which is a 

contaradiction. 
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3.1.10 Theorem  

There are not closed curves in 3 dimensional Lorentz space  that are time-like 

or null. (Carmo, 1976) 

 

Proof:  

Suppose that the curve is closed then  

í: , →  ��� 

t    →   í(t ) = (�3^ 6, �3^6, �3^6 ) 
� = �3^6 is periodic there exists ^ = ^H such that �@3^H6 = 0 

< í@3^H6, í@3^H6 >e=  [�@3^H6]	 + [�@3^H6]	 ≥ 0. This is a contradiction if í is time-

like. If í  is null then �@3^H6 = �@3^H6 = 0 ⇒ í@3^H6 = 30,0,06  ⇒ í  is regular at  

^ = ^H, which is a contradiction.  

 

3.1.11 Proposition  

Let  í: ° →  ���  be a non-null curve. Given �H ∈ °, ù, ö >  0 and a 

diffeomorphism n: 3−ö, ö 6 → 3 �H − ù ,  �H + ù 6 such that the curve  

Ö: 3−ö, ö 6 →  ���  given by Ö =  í g n   satisfies ||Ö @3f6|| = 1  for all             f ∈  3−ö, ö 6. (Lopez, 2014) 

 

3.1.12 Lemma  

Let Ô: , →  ��� be a null  curve such that the trace of  Ô is not a straight-line. 

There exist a parametrization of Ô given by Ö3f6 = 3Ô g n63f6  such that ||Ö @@3f6|| =
1. Ô is pseudo – parametrized by arclength. (Lopez, 2014) 

 

Proof:  

We can write Ö3f6 =   Ô3n3f6 6. 

 

Then Ö@3f6 = Ô@3n3f6 6.  n@3f6 = Ô@3^6. n@3f6. 
Ö@@3f6 = Ô@@3^6. n@3f6. n@3f6 + n@@3f6. Ô@3^6 = Ô@@3^6. [n@3f6]	 + n@@3f6. Ô@3^6 ⇒ 
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<  Ö@@3f6, Ö@@3f6  >e= [ n@3f6]ú. ||Ô@@3^6||e	 ⇒ ||Ö@@3^6||e	 =[ n@3f6]ú. 

||Ô@@3^6||e	 ⇒ ||Ö@@3^6||e = [ n@3f6]	. ||Ô@@3^6||e ⇒   [ n@3f6]	 = |Äëûû3�6Ä|ü||ýûû3�6||ü     ⇒ 
[ n@3f6] =  1·||Ô@@3^6||e = 1·||Ô@@3n3f66||e 

Φ is the solution of the above differential equation. 

 

3.2 Frenet Equations For Lorentzian  Curves  

We will assign a basis of ��� at each point of a regular curve  3 f 6. So we can 

study the geometry of the curve.  

 

Let í  be unit velocity curve or parametrized by pseudo-arclength parameter. 

þ3�6 is tangent vector of í. In Minkowski space some problems appear. 

a) The curve is null ⇒  þ3�6 is a null vector. We will use null frame because 

 þ is null we don’t have an orthonormal basis. 

b) If the curve is space-like  ⇒ { þ, º,�} is an orthonormal basis of ���. The 

binomial vector � is always defined by � = þ × º. { þ, º,�} is not 

necessarily positive oriented. Such as if  þ, º  are space-like vectors ⇒  � 

is time-like. So { þ, º,�} is negatively oriented.When  þ, º have not same 

causal characters , { þ, º,�} is positively oriented. { þ, º,�} is future 

directed if � is future directed.  

h� = 30, 0, 1 6. If � ∈  С3 h�6 then � is future directed  < �, h�  >e < 0. 

c) We prefer that { þ, º,�} is an orthonormal basis, it is future directed. í is 

a time-like curve ⇒ { þ, º,�}  is not future-directed.                                       

(since  < �,� >e> 0 ).  

If  . ∈  ���  and ^ ≠ 0, the straight-line owing to point �  has parametric 

equation í 3 ^ 6 = . + Q^   where ^ is direction vector.  í@@3^6 = 0. The curvature is 0.  

 

Conversely, if í  is a regular curve that satisfies í@@3^6 = 0  for any ^, an 

integration gives í 3 ^ 6 = . + Q^ ,  for some values of ., ^ ∈  ���, ^ ≠ 0. í parametric 

equation of the straight-line owing to the point . with direction vector  ^. 
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When we deal with a straight-line, there are other parametrizations. For 

instance, í 3 ^ 6 = 3^� + ^, 0, 0 ) is a parametric equation  of the staright-line span {h�} 

where í@@3^6 ≠ 0.  

 

Consider í: , →  ��� a regular unit velocity curve or parametrized by pseudo-

arclength. We call í@3f6 =  þ3f6 as the tangent vector f.   

 

Because  < þ3�6, þ3�6 >e= ±1 g
 0.  Differentiating, we get 

 < þ3�6, þ@3�6 >e= 0 which means and þ@3�6 is perpendicular  to þ3�6. We will take 

the curves such that þ@3�6 ≠ 0 ∀ f and for each f þ@3�6 ≠ � þ3�6    � ∈ ,-. 
 

We have 3 possibilities on the causal character of þ3�6. 

 

3.2.1 Definition  

Let í: , →  ��� be a curve and { þ, º,�} be an orthonormal basis of ���. The 

function defined by   
κ: , →  ��� 

f →  �3f6 = < þ@3�6, º3�6 >e  is called curvature function of í. 

 

Real numbers �3f6 at í3f6 is called curvature of í at í3f6. 

�3f6 = < þ@3�6, º3�6 >e ⇒ þ@3�6 = �3f6. º3�6. 

 

3.2.2 Definition  

Let í: , →  ���  be a curve and { þ, º,�}  is positively oriented orthonormal 

basis ���. The function defined by  

»: , →  ��� f →  »3f6 = < º@3�6,�3�6 >e   is called torsion of í. 
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3.2.3 Definition  

Let í: , →  ���  be a curve and { þ, º,�}  is not orthonormal basis ���, null 

frame. The function defined by  

»: , →  ��� f →  »3f6 =  −< º@3�6,�3�6 >e   is called pseudo-torsion of í. 

 

3.2.4 Definition  

Let { h�,  h	, h� }  be  a null frame if h� is a unit space-like vector and   h	, h� 

are lightlike vectors space sp{h�  }� such that  < h	, h�  >e=  −1.  h	 Q��  h� are in 

this  same time cone. 

 

Curvature, torsion and Frenet equations calculation for 3 types. 

 

3.2.5 The Time-like Case  

Let í be a time-like curve that is þ3�6 is a time-like vector then  þ@3�6 is space-

like vector  (since span { þ3�6 }� is space-like subspace ). 

< þ3�6, þ3�6 >e= −1 

< þ@3�6, þ3�6 >e +< þ3�6, þ@3�6 >e= 0 

2 < þ@3�6, þ3�6 >e= 0 

< þ@3�6, þ3�6 >e= 0 

���= sp{þ3�6} ����������������L��Ï�Lw� 
⊕   sp{ þ3�6 }� ��������û

.���������/I¨	�Ï�Lw� /Å
/I¨	�  
 By 2.1.3 Proposition 

þ3�6 =    í@3f6 

 

The normal vector þ3�6 is defined by  

º3�6 = þ@3�6�3f6 

º3�6 = 1�3f6 .  þ@3�6.  
þ@3�6 = �3f6. º3�6 ⇒ ⇒ ⇒ ⇒ ||þ@3�6||�====||�3f6||�. ||º3�6||�    ⇒⇒⇒⇒    ||�3f6||� = ||þ@3�6||�    3since ||º3�6||� = 1 is a space-like unit vector6. 
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The curvature function    �3f6    is  
�3f6 = < þ@3�6, º3�6 >e. 

 We take  the binomial vector �3�6 as,  �3�6 = þ3�6  × º3�6....        �3�6    is  unit   and space-like.  For each  f, { þ3�6, º3�6,�3�6}     is an 
orthonormal basis for  ���. It is called the, frenet trihedron of  í at  f. The basis { þ, º,�}    is positively oriented because 

det3þ, º,� 6 = < þ ×  º,� >�= < �, � >�= 1.    � is a space-like vector.  We define the torsion » of  í at  f. 
�3f6 = < º@3�6,�3�6 >e  º@3�6 ∈ f� { þ3�6, º3�6,�3�6}    º@3�6 = Q þ3�6 + . º3�6 + � �3�6    < º@3�6, þ3�6 >�=< Q þ3�6 + . º3�6 + � �3�6, þ3�6  >�    < º@3�6, þ3�6 >�= Q < þ3�6, þ3�6 >������������Ï� + . < º3�6, þ3�6 >������������H + � <  �3�6, þ3�6 >������������H  

< º@3�6, þ3�6 >�= −Q  On the other hand �3f6 = < þ@3�6, º3�6 >e 
< º3�6, þ3�6 >�= 0 3we differentiate both sides 6 

< º@3�6, þ3�6 >� +< º3�6, þ@3�6 >�= 0 
< º@3�6, þ3�6 >�= − < º3�6, þ@3�6 >������������Ï�3/6      ⇒    ⇒    ⇒    ⇒     < º@3�6, þ3�6 >�= −    �3f6 

< º@3�6, þ3�6 >�= −    �3f6 = −Q ⇒ �3f6 = Q    < º@3�6, º3�6 >�=< Q þ3�6 + . º3�6 + � �3�6, º3�6  >�    < º3�6, º3�6 >�= 1 3we differentiate both sides6 
< º@3�6, º3�6 >� +< º3�6, º@3�6 >�= 0 

2 < º@3�6, º3�6 >�= 0  ⇒ < º@3�6, º3�6 >�= 0 < º@3�6, º3�6 >�= Q < þ3�6, º3�6 >������������H + . < º3�6, º3�6 >������������� + � < �3�6, º3�6 >������������H  
< º@3�6, º3�6 >�= . 

< º@3�6, º3�6 >�= . = 0 
< º@3�6,�3�6 >�=< Q þ3�6 + . º3�6 + � �3�6,�3�6  >�    
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< º@3�6,�3�6 >�= Q < þ3�6,�3�6 >������������H + . < º3�6,�3�6 >������������H + � < �3�6,�3�6 >�������������  
< º@3�6,�3�6 >�= � 

 We know the definiton of     �3f6 = < º@3�6,�3�6 >e  < º@3�6,�3�6 >�= � = �3f6 
º@3�6 = Q þ3�6 + . º3�6 + � �3�6    º@3�6 =  �3f6. þ3�6 + 0. º 3�6 +  �3f6.� 3�6    º@3�6 =  �3f6. þ3�6 + �3f6.�3�6    �@3�6 ∈ f� { þ3�6, º3�6,�3�6}    �@3�6 = Q þ3�6 + . º3�6 + � �3�6    < �@3�6, þ3�6 >�=< Q þ3�6 + . º3�6 + � �3�6, þ3�6  >�    < �@3�6, þ3�6 >�==== Q < þ3�6, þ3�6 >������������Ï� + . < º3�6, þ3�6 >������������H + � <  �3�6, þ3�6 >������������H     

< �@3�6, þ3�6 >�= = = = −Q 
 On the other hand < �3�6, þ3�6 >�= 0 3we differentiate both sides6 

< �@3�6, þ3�6 >�    + < þ@3�6,�3�6 >�= = = = 0 
< �@3�6, þ3�6 >� + < �3f6. º3�6,�3�6 >�= = = = 0 
< �@3�6, þ3�6 >� + �3f6 <  º3�6,�3�6 >������������H = = = = 0 

< �@3�6, þ3�6 >�==== 0 
< �@3�6, þ3�6 >�==== 0 = −Q ⇒ Q = 0 

< �@3�6, º3�6 >�=< Q þ3�6 + . º3�6 + � �3�6, º3�6  >� 
< �@3�6, º3�6 >�= Q < þ3�6, º3�6 >������������H + . < º3�6, º3�6 >������������� + � < �3�6, º3�6 >������������H  

< �@3�6, º3�6 >�= . 
< �3�6, º3�6 >�= 0 3we differentiate both sides6 

< �@3�6, º3�6 >� +< �3�6, º@3�6 >�= 0 
< �@3�6, º3�6 >�=  −< �3�6, º@3�6 >�     We know the definition of  �3f6 = < º@3�6,�3�6 >e  < �@3�6, º3�6 >�=  − »3f6 

< �@3�6, º3�6 >�= . = − �3f6 
< �@3�6,�3�6 >�=< Q þ3�6 + . º3�6 + � �3�6,�3�6  >�    
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< �@3�6,�3�6 >�= Q < þ3�6,�3�6 >������������H + . < º3�6,�3�6 >������������H + � < �3�6,�3�6 >�������������  
< �@3�6,�3�6 >�= � 

< �3�6,�3�6 >�= 1 3we differentiate both sides6 
< �@3�6,�3�6 >� +< �@3�6,�3�6 >�= 0    2 < �@3�6,�3�6 >�= 0 

< �@3�6,�3�6 >�= 0 
< �@3�6,�3�6 >�= 0 = � �@3�6 = Q þ3�6 + . º3�6 + � �3�6    �@3�6 = 0. þ3�6 − �3f6 º3�6 + 0.�3�6    �3�6 = −�3�6 º3�6    Conversely , 

þ@3�6 = �3f6. º3�6 
º@3�6 =  �3f6. þ3�6 + �3f6.�3�6    �@3�6 = −�3f6. º3�6    

� þ@º@�@� =  �0 � 0� 0 �0 −� 0��þº��.    
    

3.2.6 The Space-like Case  

Let í be a space-like curve in ���. That is þ3�6 = í@3f6 is a space-like vector. 

sp{ þ3�6 }� is time-like subspace ��	. 

< þ3�6, þ3�6 >e= 1 

< þ@3�6, þ3�6 >e +< þ3�6, þ@3�6 >e= 0 

2 < þ@3�6, þ3�6 >e= 0 

< þ@3�6, þ3�6 >e= 0 

���= sp{þ3�6} ���������������/I¨	�Ï�Lw�  
⊕   sp{ þ3�6 }� ��������û

.����������L��Ï�Lw� /Å
/I¨	� 
 By 2.1.3 Proposition 

(1) þ@3�6  may be space-like. 

(2) þ@3�6 may be time-like. 

(3) þ@3�6 may be light-like. 
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Case 1: þ@3�6 is a space-like vector. 

�3f6 = < þ@3�6, º3�6 >e 
þ@3�6 = �3f6. º3�6 

º3�6 = ��3/6 .  þ@3�6  ⇒⇒⇒⇒ º3�6 is a space-like vector. 

(since þ@3�6 and º3�6 have the  same causal character) �3�6 = þ3�6 × º3�6.    þ3�6 and º3�6 have the same causal character,�3�6 is time-like. { þ, º,�} is negatively oriented. 

þ@3�6 = �3f6. º3�6 ⇒ ⇒ ⇒ ⇒ ||þ@3�6||�====||�3f6||�. ||º3�6||�    ⇒⇒⇒⇒    ||�3f6||� = ||þ@3�6||�    3since ||º3�6||� = 1 is a space-like unit vector 6 
º@3�6 ∈ f� { þ3�6, º3�6,�3�6}    º@3�6 = Q þ3�6 + . º3�6 + � �3�6    < º@3�6, þ3�6 >�=< Q þ3�6 + . º3�6 + � �3�6, þ3�6  >�    < º@3�6, þ3�6 >�= Q < þ3�6, þ3�6 >������������� + . < º3�6, þ3�6 >������������H + � <  �3�6, þ3�6 >������������H  

< º@3�6, þ3�6 >�= Q 
 On the other hand    �3f6 = < þ@3�6, º3�6 >e < º3�6, þ3�6 >�= 0 3we differentiate both sides6 

< º@3�6, þ3�6 >� +< º3�6, þ@3�6 >�= 0 
< º@3�6, þ3�6 >�= − < º3�6, þ@3�6 >������������Ï�3/6      ⇒    ⇒    ⇒    ⇒     < º@3�6, þ3�6 >�= − �3f6 

< º@3�6, þ3�6 >�= −    �3f6 = Q ⇒ −�3f6 = Q    < º@3�6, º3�6 >�=< Q þ3�6 + . º3�6 + � �3�6, º3�6  >�    < º3�6, º3�6 >�= 1 3we differentiate both sides6 
< º@3�6, º3�6 >� +< º3�6, º@3�6 >�= 0 

2 < º@3�6, º3�6 >�= 0  ⇒ < º@3�6, º3�6 >�= 0 
< º@3�6, º3�6 >�= Q < þ3�6, º3�6 >������������H + . < º3�6, º3�6 >������������� + � < �3�6, º3�6 >������������H  

< º@3�6, º3�6 >�= . 
< º@3�6, º3�6 >�= . = 0 

< º@3�6,�3�6 >�=< Q þ3�6 + . º3�6 + � �3�6,�3�6  >�    < º@3�6,�3�6 >�= Q < þ3�6,�3�6 >������������H + . < º3�6,�3�6 >������������H + � < �3�6,�3�6 >������������Ï�  
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< º@3�6,�3�6 >�= −� 
    { þ, º,�} is negatively oriented. So  

�3f6 =  −< º@3�6,�3�6 >e  < º@3�6,�3�6 >�= −� = −�3f6 ⇒ � = �3f6 
º@3�6 = Q þ3�6 + . º3�6 + � �3�6    �@3�6 =  −�3f6. þ3�6 + 0. º3�6 +  �3f6.�3�6    �@3�6 =  −�3f6. þ3�6 + �3f6.�3�6    �@3�6 ∈ f� { þ3�6, º3�6,�3�6}    �@3�6 = Q þ3�6 + . º3�6 + � �3�6    < �@3�6, þ3�6 >�=< Q þ3�6 + . º3�6 + � �3�6, þ3�6  >�    < �@3�6, þ3�6 >�==== Q < þ3�6, þ3�6 >������������� + . < º3�6, þ3�6 >������������H + � <  �3�6, þ3�6 >������������H     

< �@3�6, þ3�6 >�= = = = Q 
 On the other hand < �3�6, þ3�6 >�= 0 3we differentiate both sides6 

< �@3�6, þ3�6 >�    + < þ@3�6,�3�6 >�= = = = 0 
< �@3�6, þ3�6 >� + < �3f6. º3�6,�3�6 >�= = = = 0 
< �@3�6, þ3�6 >� + �3f6 <  º3�6,�3�6 >������������H = = = = 0 

< �@3�6, þ3�6 >�==== 0 < �@3�6, þ3�6 >�==== 0 = Q ⇒ Q = 0 
< �@3�6, º3�6 >�=< Q þ3�6 + . º3�6 + � �3�6, º3�6  >� 

< �@3�6, º3�6 >�= Q < þ3�6, º3�6 >������������H + . < º3�6, º3�6 >������������� + � < �3�6, º3�6 >������������H  
< �@3�6, º3�6 >�= . < �3�6, º3�6 >�= 0 3we differentiate both sides6 

< �@3�6, º3�6 >� +< �3�6, º@3�6 >�= 0 
< �@3�6, º3�6 >�=  −< �3�6, º@3�6 >�        {þ, º,�} is negatively oriented. So 

�3f6 =  −< º@3�6,�3�6 >e  < �@3�6, º3�6 >�=   �3f6 < �@3�6, º3�6 >�= . =  �3f6 
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< �@3�6,�3�6 >�=< Q þ3�6 + . º3�6 + � �3�6,�3�6  >�    < �@3�6,�3�6 >�= Q < þ3�6,�3�6 >������������H + . < º3�6,�3�6 >������������H + � < �3�6,�3�6 >������������Ï�  
< �@3�6,�3�6 >�= −� 

< �3�6,�3�6 >�= −1 3we differentiate both sides6 
< �@3�6,�3�6 >� +< �@3�6,�3�6 >�= 0    2 < �@3�6,�3�6 >�= 0 

< �@3�6,�3�6 >�= 0 < �@3�6,�3�6 >�= 0 = −� ⇒ 0 = � �@3�6 = Q þ3�6 + . º3�6 + � �3�6    �@3�6 = 0. þ3�6 + �3f6 º3�6 + 0.�3�6    �@3�6 = �3�6 º3�6     Conversely, 
þ@3�6 = �3f6. º3�6  º@3�6 =  −�3f6. þ3�6 + �3f6.�3�6    �@3�6 = �3f6. º3�6    

� þ@º@�@� =  � 0 � 0−� 0 �0 � 0��þº��....    
    

Case 2: þ@3�6 is a time-like vector. 

�3f6 = < þ@3�6, º3�6 >e 
þ@3�6 = �3f6. º3�6 

º3�6 = ��3/6 .  þ@3�6  ⇒⇒⇒⇒ º3�6  is a time-like vector. 

(since þ@3�6 and º3�6 have the same causal character.) 

 �3�6 = þ3�6  × º3�6....    þ3�6 and º3�6 have different causal characters,�3�6 is a space-like.  

 {þ, º,�} is positively oriented. 

þ@3�6 = �3f6. º3�6 ⇒ ⇒ ⇒ ⇒ ||þ@3�6||�====||�3f6||�. ||º3�6||�    ⇒⇒⇒⇒    ||�3f6||� = ||þ@3�6||�    3since ||º3�6||� = 1 is a time-like unit vector 6 
º@3�6 ∈ f� { þ3�6, º3�6,�3�6}    
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º@3�6 = Q þ3�6 + . º3�6 + � �3�6    < º@3�6, þ3�6 >�=< Q þ3�6 + . º3�6 + � �3�6, þ3�6  >�    < º@3�6, þ3�6 >�= Q < þ3�6, þ3�6 >������������� + . < º3�6, þ3�6 >������������H + � <  �3�6, þ3�6 >������������H     
< º@3�6, þ3�6 >�= Q 

 On the other hand �3f6 =  −< þ@3�6, º3�6 >e 
< º3�6, þ3�6 >�= 0 3we differentiate both sides6 < º@3�6, þ3�6 >� +< º3�6, þ@3�6 >�= 0 

< º@3�6, þ3�6 >�= − < º3�6, þ@3�6 >�������������3/6      ⇒    ⇒    ⇒    ⇒     < º@3�6, þ3�6 >�=    �3f6 
< º@3�6, þ3�6 >�=    �3f6 = Q ⇒ �3f6 = Q    < º@3�6, º3�6 >�=< Q þ3�6 + . º3�6 + � �3�6, º3�6  >�    < º3�6, º3�6 >�= −1 3we differentiate both sides6 
< º@3�6, º3�6 >� +< º3�6, º@3�6 >�= 0 

2 < º@3�6, º3�6 >�= 0  ⇒ < º@3�6, º3�6 >�= 0 
< º@3�6, º3�6 >�= Q < þ3�6, º3�6 >������������H + . < º3�6, º3�6 >������������Ï� + � < �3�6, º3�6 >������������H  

< º@3�6, º3�6 >�= −. 
< º@3�6, º3�6 >�= −. = 0 ⇒ . = 0 

< º@3�6,�3�6 >�=< Q þ3�6 + . º3�6 + � �3�6,�3�6  >�    < º@3�6,�3�6 >�= Q < þ3�6,�3�6 >������������H + . < º3�6,�3�6 >������������H + � < �3�6,�3�6 >�������������  
< º@3�6,�3�6 >�= �     { þ, º,�} is positively oriented. So  

�3f6 = < º@3�6,�3�6 >e  < º@3�6,�3�6 >�= � = �3f6 ⇒ � = �3f6 
º@3�6 = Q þ3�6 + . º3�6 + � �3�6    º@3�6 =  �3f6. þ3�6 + 0. º3�6 +  �3f6.�3�6    º@3�6 =  �3f6. þ3�6 + �3f6.�3�6    �@3�6 ∈ f� { þ3�6, º3�6,�3�6}    �@3�6 = Q þ3�6 + . º3�6 + � �3�6    < �@3�6, þ3�6 >�=< Q þ3�6 + . º3�6 + � �3�6, þ3�6  >�    
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< �@3�6, þ3�6 >�==== Q < þ3�6, þ3�6 >������������� + . < º3�6, þ3�6 >������������H + � <  �3�6, þ3�6 >������������H     
< �@3�6, þ3�6 >�= = = = Q 

 On the other hand < �3�6, þ3�6 >�= 0 3we differentiate both sides6 
< �@3�6, þ3�6 >�    + < þ@3�6,�3�6 >�= = = = 0 

< �@3�6, þ3�6 >� + < �3f6. º3�6,�3�6 >�= = = = 0 
< �@3�6, þ3�6 >� +    �3f6 <  º3�6,�3�6 >������������H = = = = 0 

< �@3�6, þ3�6 >�==== 0 
< �@3�6, þ3�6 >�==== 0 = Q ⇒ Q = 0 

< �@3�6, º3�6 >�=< Q þ3�6 + . º3�6 + � �3�6, º3�6  >� 
< �@3�6, º3�6 >�= Q < þ3�6, º3�6 >������������H + . < º3�6, º3�6 >������������Ï� + � < �3�6, º3�6 >������������H  

< �@3�6, º3�6 >�= −. 
< �3�6, º3�6 >�= 0 3we differentiate both sides6 

< �@3�6, º3�6 >� +< �3�6, º@3�6 >�= 0 
< �@3�6, º3�6 >�=  −< �3�6, º@3�6 >�        {þ, º,�} is positively  oriented. So 

�3f6 = < º@3�6,�3�6 >e  < �@3�6, º3�6 >�=  − »3f6 
< �@3�6, º3�6 >�= −. = −�3f6 ⇒ = . =    �3f6 

< �@3�6,�3�6 >�=< Q þ3�6 + . º3�6 + � �3�6, �3�6  >�    < �@3�6,�3�6 >�= Q < þ3�6,�3�6 >������������H + . < º3�6,�3�6 >������������H + � < �3�6,�3�6 >�������������  
< �@3�6,�3�6 >�= � 

< �3�6,�3�6 >�= 1 3we differentiate both sides6 
< �@3�6,�3�6 >� +< �@3�6,�3�6 >�= 0    2 < �@3�6,�3�6 >�= 0 

< �@3�6,�3�6 >�= 0 
< �@3�6,�3�6 >�= 0 = � ⇒ 0 = � �@3�6 = Q þ3�6 + . º3�6 + � �3�6    �@3�6 = 0. þ3�6 + �3f6 º3�6 + 0.�3�6    �@3�6 = �3�6 º3�6    
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Conversely, 
þ@3�6 = �3f6. º3�6 

º@3�6 =  �3f6. þ3�6 + �3f6.�3�6    �@3�6 = �3f6. º3�6    
� þ@º@�@� =  �0 � 0� 0 �0 � 0��þº��    

    
Case 3: þ@3�6 is a light-like vector. 

< þ3�6, þ3�6 >e= 1 

< þ@3�6, þ3�6 >e +< þ3�6, þ@3�6 >e= 0 2 < þ@3�6, þ3�6 >e= 0 < þ@3�6, þ3�6 >e= 0 3þ@3�6  ⊥  þ3�6 6 

 

We take the normal vector º3�6 = þ@3�6 

 þ3�6 and º3�6 are linearly independent vectors. 

 

Let �3�6 be the unique light-like vector such that < º3�6,�3�6 >e= −1. (By 

3.2.3 Definition ) and �3�6 is orthogonal to þ3�6. 

 { þ, º,�} is not an orthogonal basis of ���. It is null frame. 

þ@3�6 = 1. º3�6 

º@3�6 ∈ f� { þ3�6, º3�6,�3�6}    º@3�6 = Q þ3�6 + . º3�6 + � �3�6    < º@3�6, þ3�6 >�=< Q þ3�6 + . º3�6 + � �3�6, þ3�6  >�    < º@3�6, þ3�6 >�= Q < þ3�6, þ3�6 >������������� + . < º3�6, þ3�6 >������������H + � <  �3�6, þ3�6 >������������H  
< º@3�6, þ3�6 >�= Q 

< º3�6, þ3�6 >�= 0 3we differentiate both sides6 < º@3�6, þ3�6 >� +< º3�6, þ@3�6 >�= 0 
< º@3�6, þ3�6 >� +< º3�6, º3�6 >�= 0    ⇒    ⇒    ⇒    ⇒     < º@3�6, þ3�6 >�= 0 
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Since º3�6    is a light-like vector. 
< º@3�6, þ3�6 >�=    0 = Q ⇒ 0 = Q    < º@3�6, º3�6 >�=< Q þ3�6 + . º3�6 + � �3�6, º3�6  >�    < º3�6, º3�6 >�= 0 3we take both sides differentiating6 

< º@3�6, º3�6 >� +< º3�6, º@3�6 >�= 0 
2 < º@3�6, º3�6 >�= 0  ⇒ < º@3�6, º3�6 >�= 0 

< º@3�6, º3�6 >�= Q < þ3�6, º3�6 >������������H + . < º3�6, º3�6 >������������H + � < �3�6, º3�6 >������������Ï�  
< º@3�6, º3�6 >�= −� 

< º@3�6, º3�6 >�= −� = 0 ⇒ � = 0 
< º@3�6,�3�6 >�=< Q þ3�6 + . º3�6 + � �3�6,�3�6  >�    < º@3�6,�3�6 >�= Q < þ3�6, º3�6 >������������H + . < º3�6,�3�6 >������������Ï� + � < �3�6,�3�6 >������������H  

< º@3�6,�3�6 >�= −..  
Define the pseudo-torsion  

�3f6 =  −< º@3�6,�3�6 >e  < º@3�6,�3�6 >�= −. = −�3f6 ⇒ . = �3f6 
º@3�6 = Q þ3�6 + . º3�6 + � �3�6    º@3�6 =  0. þ3�6 +  �3f6. º3�6 +  0.�3�6    º@3�6 =  �3f6. º3�6    �@3�6 ∈ f� { þ3�6, º3�6,�3�6}    �@3�6 = Q þ3�6 + . º3�6 + � �3�6    < �@3�6, þ3�6 >�=< Q þ3�6 + . º3�6 + � �3�6, þ3�6  >�    < �@3�6, þ3�6 >�==== Q < þ3�6, þ3�6 >������������� + . < º3�6, þ3�6 >������������H + � <  �3�6, þ3�6 >������������H     

< �@3�6, þ3�6 >�= = = = Q 
 On the other hand < �3�6, þ3�6 >�= 0 3we differentiate both sides6 

< �@3�6, þ3�6 >�    + < þ@3�6,�3�6 >�= = = = 0 
< �@3�6, þ3�6 >� + <  º3�6,�3�6 >�= = = = 0 

< �@3�6, þ3�6 >�  −     1 = = = = 0 
< �@3�6, þ3�6 >�==== 1 < �@3�6, þ3�6 >�==== 1 = Q ⇒ Q = 1 
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< �@3�6, º3�6 >�=< Q þ3�6 + . º3�6 + � �3�6, º3�6  >� 
< �@3�6, º3�6 >�= Q < þ3�6, º3�6 >������������H + . < º3�6, º3�6 >������������H + � < �3�6, º3�6 >������������Ï�  

< �@3�6, º3�6 >�= −� 
< �3�6, º3�6 >�= −1 3we differentiate both sides6 

< �@3�6, º3�6 >� +< �3�6, º@3�6 >�= 0 
< �@3�6, º3�6 >�=  −< �3�6, º@3�6 >�     Define the pseudo-torsion  

�3f6 =  −< º@3�6,�3�6 >e  < �@3�6, º3�6 >�=   �3f6 
< �@3�6, º3�6 >�= −� = �3f6 ⇒ � = −    �3f6 

< �@3�6,�3�6 >�=< Q þ3�6 + . º3�6 + � �3�6,�3�6  >�    < �@3�6,�3�6 >�= Q < þ3�6,�3�6 >������������H + . < º3�6,�3�6 >������������Ï� + � < �3�6,�3�6 >������������H  
< �@3�6,�3�6 >�= −. 

< �3�6,�3�6 >�= 0 3we differentiate both sides6 
< �@3�6,�3�6 >� +< �@3�6,�3�6 >�= 0    2 < �@3�6,�3�6 >�= 0 

< �@3�6,�3�6 >�= 0 
< �@3�6,�3�6 >�= 0 = −. ⇒ 0 = .  �@3�6 = Q þ3�6 + . º3�6 + � �3�6    �@3�6 = 1. þ3�6 + 0. º3�6 − �3f6.�3�6    �@3�6 = 1. þ3�6 − �3�6 º3�6     Conversely , 

þ@3�6 = 1. º3�6 º@3�6 = �3f6. º3�6    �@3�6 = 1. þ3�6 − �3f6. º3�6    
� þ@º@�@� =  �0 1 00 � 01 0 −���þº��.    

 

We don’t know if it is positively oriented or not. 
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3.2.7 The Light-like Case  

Let í be a light-like curve parametrized by pseudo-arclength. þ3�6 = í@3f6 is 

a light-like  vector. 

< þ3�6, þ3�6 >e= 0 

< þ@3�6, þ3�6 >e +< þ3�6, þ@3�6 >e= 0 2 < þ@3�6, þ3�6 >e= 0 < þ@3�6, þ3�6 >e= 0 3þ@3�6  ⊥  þ3�6 6 

 

We take the normal vector º3�6 = þ@3�6 is space-like vector. �3�6 is the unit 

light-like vector orthogonal to º3�6. 

< þ3�6,�3�6 >e= −1 , < þ3�6, º3�6 >e= 0 , < º3�6,�3�6 >e= 0 

 

Thus { þ, º,�} is not an orthogonal basis of ���. It is null frame of ���. 

þ@3�6 = 1. º3�6 

º@3�6 ∈ f� { þ3�6, º3�6,�3�6}    º@3�6 = Q þ3�6 + . º3�6 + � �3�6    < º@3�6, þ3�6 >�=< Q þ3�6 + . º3�6 + � �3�6, þ3�6  >�    < º@3�6, þ3�6 >�= Q < þ3�6, þ3�6 >������������H + . < º3�6, þ3�6 >������������H + � <  �3�6, þ3�6 >������������Ï�  
< º@3�6, þ3�6 >�= −� 

< º3�6, þ3�6 >�= 0 3we differentiate both sides6 
< º@3�6, þ3�6 >� +< º3�6, þ@3�6 >�= 0 < º@3�6, þ3�6 >� +< º3�6, º3�6 >�= 0    ⇒    ⇒    ⇒    ⇒     < º@3�6, þ3�6 >�+ 1 = 0 

< º@3�6, þ3�6 >�= −1 
 Since º3�6    is a space-like vector. 

< º@3�6, þ3�6 >�=    −1 = � ⇒ −1 = �    < º@3�6, º3�6 >�=< Q þ3�6 + . º3�6 + � �3�6, º3�6  >�    < º3�6, º3�6 >�= 1 3we differentiate both sides6 
< º@3�6, º3�6 >� +< º3�6, º@3�6 >�= 0 

2 < º@3�6, º3�6 >�= 0  ⇒ < º@3�6, º3�6 >�= 0 
< º@3�6, º3�6 >�= Q < þ3�6, º3�6 >������������H + . < º3�6, º3�6 >������������� + � < �3�6, º3�6 >������������H  

< º@3�6, º3�6 >�= � 
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< º@3�6, º3�6 >�= . = 0 ⇒ . = 0 
< º@3�6,�3�6 >�=< Q þ3�6 + . º3�6 + � �3�6,�3�6  >�    < º@3�6,�3�6 >�= Q < þ3�6,�3�6 >������������Ï� + . < º3�6,�3�6 >������������H + � < �3�6,�3�6 >������������H  

< º@3�6,�3�6 >�= −Q 
 
Define the pseudo-torsion  

�3f6 =  −< º@3�6,�3�6 >e  < º@3�6,�3�6 >�= −Q = −�3f6 ⇒ Q = �3f6 
º@3�6 = Q þ3�6 + . º3�6 + � �3�6    º@3�6 =  »3f6. þ3�6 +  0. º3�6 +  1.�3�6    º@3�6 = �3f6. þ3�6 +  1.�3�6    �@3�6 ∈ f� { þ3�6, º3�6,�3�6}    �@3�6 = Q þ3�6 + . º3�6 + � �3�6    < �@3�6, þ3�6 >�=< Q þ3�6 + . º3�6 + � �3�6, þ3�6  >�    < �@3�6, þ3�6 >�==== Q < þ3�6, þ3�6 >������������H + . < º3�6, þ3�6 >������������H + � <  �3�6, þ3�6 >������������Ï�     

< �@3�6, þ3�6 >�= = = = −� 
 On the other hand < �3�6, þ3�6 >�= −1 3we differentiate both sides6 

< �@3�6, þ3�6 >�    + < þ@3�6,�3�6 >�= = = = 0 < �@3�6, þ3�6 >� + <  º3�6,�3�6 >�= = = = 0 
< �@3�6, þ3�6 >� +      0   =    =    =    =    0 

< �@3�6, þ3�6 >�==== 0 
< �@3�6, þ3�6 >�==== 0 =−� ⇒ � = 0 

< �@3�6, º3�6 >�=< Q þ3�6 + . º3�6 + � �3�6, º3�6  >� 
< �@3�6, º3�6 >�= Q < þ3�6, º3�6 >������������H + . < º3�6, º3�6 >������������� + � < �3�6, º3�6 >������������H  

< �@3�6, º3�6 >�= . 
< �3�6, º3�6 >�= 0 3we differentiate both sides6 

< �@3�6, º3�6 >� +< �3�6, º@3�6 >�= 0 
< �@3�6, º3�6 >�=  −< �3�6, º@3�6 >�      
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Define the pseudo-torsion  
�3f6 =  −< º@3�6,�3�6 >e  < �@3�6, º3�6 >�=   �3f6 < �@3�6, º3�6 >�= . = �3f6 ⇒ . =    �3f6 

< �@3�6,�3�6 >�=< Q þ3�6 + . º3�6 + � �3�6,�3�6  >�    < �@3�6,�3�6 >�= Q < þ3�6,�3�6 >������������Ï� + . < º3�6,�3�6 >������������H + � < �3�6,�3�6 >������������H  
< �@3�6,�3�6 >�= −Q < �3�6,�3�6 >�= 0 3we differentiate both sides6 

< �@3�6,�3�6 >� +< �@3�6,�3�6 >�= 0    2 < �@3�6,�3�6 >�= 0 
< �@3�6,�3�6 >�= 0 

< �@3�6,�3�6 >�= 0 = −Q ⇒ 0 = Q �@3�6 = Q þ3�6 + . º3�6 + � �3�6    �@3�6 = 0. þ3�6 + �3f6. º3�6 + 0.�3�6    �@3�6 = �3�6 º3�6     Conversely , 
þ@3�6 = 1. º3�6 

º@3�6 = �3f6. þ3�6 + 1.�3�6    �@3�6 = �3f6. º3�6    
� þ@º@�@� =  �0 1 0� 0 10 � 0��þº��. 

 (Bonnor 1969, Graves 1979, Inoguchi 2008) 

 

Time-like curves and space-like curves with space-like or time-like normal 

vectors are called Frenet curves. The Frenet equations are written as follows.  

 

If < þ, þ >�=  � and < º, º >�=  � then  

� þ@º@�@� =  � 0 � 0−ù� 0 »0 ö� 0��þº��. 
            The curvature � is given by the function in such a way that  þ@ = �.º  where 

 � ∈ ,-. The torsion � is defined as the 3th coordinate of º@.  
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For space-like curves with light-like normal vector or light-like curves, the 

Frenet equations are as follows: let  < þ, þ >�=  �, < º, º >�=  � where ö, ù ∈ {0, 1 } 

and ö ≠ ù. Then  

� þ@º@�@� =  �ù0 1 0� ö� ùö ù� −ö���þº��. 
 

The torsion is  

�3f6 =  −öù < º@3�6,�3�6 >e   . 
 

In Euclidean space, the curve is planar ⟺  its torsion is zero. In Minkowski 

space, we will obtain the similar results for Frenet curves. 

 

3.2.8 Example  

í3f6 = �cos3f6 + f sin3f6 , sin3f6 − f cos3f6 , 12 Ò f ·f	 − 1 − ,� ]f + ·f	 − 1_Ó� 

for f ∈ 31, ∞6. Find the causal character of í, κ and �. (Lopez, 2014) 

 

We will find í@3f6. 
í@3f6 = þ3�6 = 3f cos3f6 , f sin3f6 , ·f	 − 1 6 

< í@3f6, í@3f6  >e=  f	3cos3f66	 + f	3sin3f66	 − 3f	 − 16  
< í@3f6, í@3f6  >e=  f	 − f	 + 1 = 1. í is  a space-like curve. 

í@@3f6 = þ@3�6 = Ò�gf 3f6 − f sin3f6 , sin3f6 + f cos3f6 , f√f	 − 1Ó. 
< í@@3f6, í@@3f6  >e=  �gf	3f6 + fY�	3f6 + f	�gf	3f6 + f	fY�	3f6 − � f	

f	 − 1� 

< í@@3f6, í@@3f6  >e= 1 + f	 − � f	
f	 − 1� =  fú − f	 − 1f	 − 1 . 

 

The causal character of þ@3�6 is given by the sign of fú − f	 − 1 since  

< í@@3f6, í@@3f6  >e=  fú − f	 − 1f	 − 1 . 
 

If  f > ·1 + √5 2�  then  þ@3�6 is space-like. 
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If 1 < f < ·1 + √5 2�  then  þ@3�6 is time-like. 

 

In both cases, the curvatures and the torsions are  

κ3f6 =  �|f4 − f2 − 1|f2 − 1   , �3f6 =  f6 − 2f4 − 2f2 + 2
Jf4 − f2 − 1K·f2 − 1 . 

 

3.2.9 Example  

(1) Let  í3f6 = 
3cos ] /! _ , sin ] /! _ , 0 6. Then  

í@3f6 = þ3�6 = 3− sin ] f
 _ , cos  ] f
 _ , 0 6   
< í@3f6, í@3f6  >e=  fY�	  ] f
 _ + �gf	  ]f
 _ −  0 = 1. 

 í is a space-like curve. 

í@@3f6 = þ@3�6 =  1
  3− cos ] f
 _ , −sin  ] f
 _ , 0 6    
< í@@3f6, í@@3f6  >e=  1
	 > 0, ∀ 
 ∈ ,-. 

 þ@ is a space-like. We know that  

þ@3�6 = �3f6. º3�6 

�3f6 =  1
   , º3�6 =  3− cos ] f
 _ , −sin  ] f
 _ , 0 6    
 º  is a space-like vector. þ, º have same causal character , �  is a time-like 

vector. { þ, º,� } is negatively oriented.  � = þ¸º.  �3�6 = 30, 0, −16.�@3�6 = 0, »3f6 = 0. 

 

This basis is either  positively oriented nor future directed.  

 

(2) Let í3f6 = 
30, sinh ] /! _ , cosh ] /! _  6.  Then  

í@3f6 = þ3�6 = ] 0, cosh ] f
 _ , sinh ] f
 _  _  
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< í@3f6, í@3f6  >e= 0 + 3cosh ] f
 _ 6	 − 3sinh ] f
 _ 6	 = 1.  
 í is a space-like curve. 

 í@@3f6 = þ@3�6 =  1
 30, sinh ] f
 _ , cosh ] f
 _ 6  .  
< í@@3f6, í@@3f6  >e= − 1
	 < 0, ∀ 
 ∈ ,-. 

 þ@ is a time-like. We know that  

þ@3�6 = �3f6. º3�6 

κ3f6 =  1
   , º3�6 =  30, sinh Ò f
 Ó , cosh Ò f
 Ó 6  . 
 º is a timel-ike vector. þ, º have different causal characters, � is a space-like  

vector. { þ, º,� } is positively oriented.  � = þ¸º.  �3�6 = 31, 0, 06.�@3�6 = 0, »3f6 = 0. 

(3) Let í3f6 = 
30,  cosh ] /! _  , sinh ] /! _ 6. Then  

í@3f6 = þ3�6 =  30, sinh ] f
 _ , cosh ] f
 _  6. 
< í@3f6, í@3f6  >e= 0 + 3sinh ] f
 _ 6	 − ] cosh3f
_6	 = −1. 

 í is a time-like curve.  

 í@@3f6 = þ@3�6 =  1
 30,  cosh ] f
 _  , sinh ] f
 _  6. 
< í@@3f6, í@@3f6  >e= 1
	 > 0, ∀ 
. 

 þ@ is a space-like. We know that  

þ@3�6 = �3f6. º3�6 

κ3f6 =  1
   , º3�6 = 30,  cosh Ò f
 Ó  , sinh Ò f
 Ó  6.  
 º is a space-like vector. þ, º have different causal characters, � is a space-like  

vector. { þ, º,� } is positively oriented.  � = þ¸º.  �3�6 = 3−1, 0, 06.�@3�6 = 0, »3f6 = 0. 
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(4) Let  

í3f6 = 3 ℎf √
	 − ℎ	 , 
 cosh3 f√
	 − ℎ	 6 , 
 sinh3 f√
	 − ℎ	 6 6  
where 
	 − ℎ	 > 0. Then  

í@3f6 = þ3�6 = 1√
	 − ℎ	 Ò ℎ, 
 sinh3 f√
	 − ℎ	 Ó , 
 cosh3 f√
	 − ℎ	 6 6. 
< í@3f6, í@3f6  >e= ℎ	 − 
	


	 − ℎ	 =  −1.  
 í is a time-like curve and future directed. We have  

í@@3f6 = þ@3�6 = 
√
	 − ℎ	  30, cosh3 f√
	 − ℎ	 6, sinh3 f√
	 − ℎ	 6 6.  
< í@@3f6, í@@3f6  >e=  
	


	 − ℎ	 > 0 , ∀ 
 ∈ ,-  since 
	 − ℎ	 > 0.   
 þ@ is a space-like. We know that  

þ@3�6 = �3f6. º3�6 

κ3f6 = 
"
2 − ℎ2    , º3�6 = 30, cosh3 f"
2 − ℎ2 6, sinh3 f"
2 − ℎ2 6 6. 
 º  is a space-like vector. þ, ºhave different causal characters, � is a space-like  

vector. { þ, º,� } is positively oriented.  � = þ¸º.  
�3�6 = 1√
	 − ℎ	  3−
, −ℎ sinh3 f√
	 − ℎ	 6 , −ℎ cosh3 f√
	 − ℎ	 6 6.  
 

We know that �3f6 = < º@3�6,�3�6 >e  
º@3�6 = 1√
	 − ℎ	  30, sinh3 f√
	 − ℎ	 6, cosh3 f√
	 − ℎ	 6 6. 

»3f6 = ℎ
	 − ℎ	. 
(5) Let 

í3f6 = 
3 f
 , 3 f 
  6	, 3 f 
  6	6    
í@3f6 = �3�6 = Ò 1, 2f
 , 2f
  Ó 
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< í@3f6, í@3f6  >e= 1.  
 í is a space-like curve.  

í@@3f6 = þ@3�6 = Ò0, 2
 , 2
  Ó.  
< í@@3f6, í@@3f6  >e= 0.  

 þ@ is a  light-like. So we defined the normal vector þ@3�6 =  º3�6. 
º3�6 =  Ò0, 2
 , 2
  Ó. 

 þ3�6 and º3�6  are linearly independent vectors. Let �3�6  be the unique light-

like vector and < º3�6,�3�6  >e= −1   and also  �3�6  is the perpendicular to 

þ3�6. { þ, º,� } is not an orthonormal basis of ���.  

�3�6 = ]0, −
4 , 
4  _        and         �3f6 = 0.   
 

(6) Consider a curve constructed by the boosts about the light-like axis 

span{(0,1,1)}. Take the orbit Ö of the point  (0, 1, -1 ). Then  

Ö3f6 = 3 2f, 1 −  f	, −1 − f	6.  Hence Ö@3f6 = 32, −2f, −2f 6. 
 < Ö@3f6, Ö@3f6  >e= 2. Ö is a space-like curve. As |Ö@3f6|e =  2, we change 

the parameter as  f by  
/	. So it has pseudo-arclength parameter. Thus let  

í3f6 = � f, 1 −  f	
4 , −1 −  f	

4  �.  
í@3f6 = �3�6 = ] 1, −f2 , f2   _.  

< í@3f6, í@3f6  >e= 1 > 0.  
 í is a space-like curve.  

í@@3f6 = þ@3�6 = Ò0, −12 , 12  Ó.  
< í@@3f6, í@@3f6  >e= 0. 

 þ@ is a light-like. So we defined the normal vector þ@3�6 =  º3�6. Thus  
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º3�6 =  Ò0, −12 , 12  Ó. 
 þ3�6 and º3�6  are linearly independent vectors. Let �3�6  be the unique light-

like vector and < º3�6,�3�6  >e= −1   and also �3�6  is the perpendicular to 

þ3�6. { þ, º,� } is not an orthonormal basis of ���.  

�3�6 = � f, 1 −  f	
4 , −1 −  f	

4 �. 
�3f6 = 0. í is contained in the plane � − � = 2. 

 

(7) Let  

í3f6 =   1
	  3cosh3
f 6, 
f, sinh3
f66. 
í@3f6 = þ3�6 =  1
 3sinh3
f6, 1, cosh3
f6 6 . 

< í@3f6, í@3f6  >e= 0. 
 í is a light-like curve.  

 í@@3f6 = þ@3�6 = 3cosh3
f6, 0, sinh3
f66 . 
< í@@3f6, í@@3f6  >e= 1 > 0. 

 þ@ is a space-like. We know that  þ@3�6 =  º3�6.  
 º3�6 =  3cosh3
f6, 0, sinh3
f66 . Thus í  is pseduo-arclength. �3�6  is unit null 

perpendicular to º3�6. We know that  

< þ3�6,�3�6  >e= −1 . 

�3�6 =   
2 3sinh3
f6, −1, cosh3
f6 6 ,  º@3�6 = 
3sinh3
f6, 0, cosh3
f6 6 . 
 

The pseudo-torsion is �3f6 = < º@3�6,�3�6 >e . We deduce that 

�3f6 = −
	
2  . 

 

(8) Let  

í3f6 =   �!ï  3cos3
f 6, sin3
f6, 
f 6. Then 
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í@3f6 = �3�6 =  1
 3− sin3
f6 , cos3
f6 , 16. 
< í@3f6, í@3f6  >e= 0. 

 í is a light-like curve.  

 í@@3f6 = þ@3�6 = 3− cos3
f6, − sin3
f6, 06 . 
< í@@3f6, í@@3f6  >e= 1 > 0. 

 þ@ is a space-like. We know that  þ@3�6 =  º3�6.  
 º3�6  = 3− cos3
f6, − sin3
f6, 06 .Thus  í is pseduo-arclength.  �3�6 is unit 

null vector perpendicular  to º3�6.  

< þ3�6,�3�6  >e= −1 . 

�3�6 =   
2 3sin3
f6 , − cosh3
f6 ,16 ,  º@3�6 = 
3sin3
f6, − cos3
f6, 0 6 . 
 

The pseudo-torsion is �3f6 = < º@3�6,�3�6 >e . We deduce that 

�3f6 = −
	
2 . 

 

3.3 Some Theorems About Curves In ��� 

3.3.1 Theorem  

Let í: , →  ��� be unit velocity curve. í is contained  in an affine plane ⟺ the 

� vanishes.  

 

The proof is the same and we omit it. However, there are more curves to 

consider. (Carmo, 1976) 

 

3.3.2 Theorem  

Let í be a space-like curve with light-like  normal vector or a null  curve.  

a) # = 0 is ⇒ the curve lies in plane.3# is pseudo-torsion )  
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b) When null curve lies in a plane then  it means  is a straight–line. There exists 

space-like plane curves with light-like normal vector with # ≠ 0 .                     

(Carmo, 1976) 

 

3.3.3 Example 

 Let  

í3f6 = ]f, /$� , /$�  _ , f > 0  that lies in  � = �.  We get 

í@3f6 = þ3�6 = 3 1, f	, f	6. 
< í@3f6, í@3f6  >e= 1. 

 í is a space-like curve. 

  í@@3f6 = þ@3�6 = 3 0, 2f, 2f 6.  < í@@3f6, í@@3f6  >e= 0.   
 þ@ is a light-like. So we defined the normal vector þ@3�6 =  º3�6. 

º3�6 =  30, 2f, 2f6. 
 þ3�6 and º3�6  are linearly independent vectors. Let �3�6  be the unique null 

vector and < º3�6,�3�6  >e= −1   and also �3�6  is the perpendicular to 

þ3�6. { þ, º,� } is not an orthonormal basis of ���.  

 

�3�6 = Òf2 , −14f , 14f Ó     and the pseudo − torsion   �3f6 = − < º@3�6,�3�6 >e .   
�@3�6 = 30, 2, 2 6 

�3f6 =  1f.   
 

3.3.4 Theorem  

For a Frenet curve , �  and �  are invariant under a rigid motion 

(� is invariant up a sign 6. When the curve is space-like with light-like normal vector 

or it is light-like, pseudo-torsion is invariant. (Carmo, 1976) 
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3.3.5 Example  

The curves í3f6 = 3 cos 3f6, sin3f6 , 0 6  and Ö3f6 = 30, cosh3f6, sinh3f6 6 

í@3f6 = þ3�6 = 3− sin3f6 , cos 3f6, 0 6  and Ö@3f6 = þ3�6 = 30, sinh3f6, cosh3f6 6  < í@3f6, í@3f6  >e= 1.  í is a space-like curve. 

< Ö@3f6, Ö@3f6  >e= −1.  Ö is a time-like curve. 

 í@@3f6 = þ@3�6 = 3− cos 3f6, −sin3f6 , 0 6. < í@@3f6, í@@3f6  >e= 1.  þ@ is a space-like. 

þ@3�6 = �3f6. º3�6 

κ3f6 =  1,   º3�6 = 3− cos 3f6,  −sin3f6 , 0 6.   
 º is a space-like vector. þ, º have the same causal characters, � is a time-like 

vector. { þ, º,� } is negatively oriented.  � = þ¸º.  �3�6 = 30, 0, −16.  �@3�6 = 0, »3f6 = 0. 

  Ö@@3f6 = þ3�6 = 30, cosh3f6, sinh3f66   < Ö@@3f6, Ö@@3f6  >e= 1.  þ@ is a space-like. 

þ@3�6 = �3f6. º3�6 

κ3f6 =  1,   º3�6 = 30, cosh3f6, sinh3f66  . 
 º is a space-like vector. þ, º have the same causal characters, � is a time-like 

vector.  { þ, º,� } is negatively oriented.  � = þ¸º.  �3�6 = 3−1, 0, 06.  �@3�6 = 0, »3f6 = 0. 

 

Although í3f6 Q�� Ö3f6  have � = 1  and � = 0  their causal chracter of 

different   í is space-like and Ö is time-like. Even so  two curves with the same causal 

character , we should pay attention to the causal character of Frenet vectors.  

 

For instance , the curve Ô3f6 = 30, sinh3f6, cosh3f6 6  
Ô@3f6 = 30, cosh3f6, sinh3f6 6 < Ô@3f6, Ô@3f6  >e= 1.  Ô  is a space-like curve. 

 Ô@@3f6 = þ@3�6 = 30, sinh3f6, cosh3f6 6. < Ô@@3f6, Ô@@3f6  >e= −1.  þ@ is a time-like. 

þ@3�6 = �3f6. º3�6 

κ3f6 =  1,   º3�6 = 30, sinh3f6, cosh3f6 6. 
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º is a time-like vector. þ, º have different causal characters, � is a space-like 

vector. { þ, º,� } is positively oriented.  � = þ¸º.  �3�6 = 31, 0, 06.  �@3�6 = 0, »3f6 = 0. 

 Ô3f6 has κ =  1, � = 0, but there does not exist  a rigid motion between 

í Q�� Ô. For í,  þ  and  º  are space-like however  Ô is a space-like curve with time-

like normal vector. 

 

 In Lorentz-Minkowski space, there exists three different Frenet curves with 

curvature   κ and torsion �. 

 

3.3.6 Theorem  

If  κ3f6 > 0 and �3f6, f ∈ ,, two differentiable maps then there exists three 

different regular parametrized curves í: , → ���, í = í3f6, with curvature �  and 

torsion �. (Lopez, 2014)  

 

3.3.7 Theorem  

Let  �: , → -  be a smooth function. There is a space-like curve with null 

normal vector and a null curve with pseudo-torsion #. (Lopez, 2014) 

 

3.3.8 Definition  

Let í, Ö: , → ��� be two unit velocity curve or parametrized by the pseudo- 

arclength. We say that í and   Ö have the same causal character of the Frenet frame if  

þ%, º%  and  �%  have the same causal character than þë , ºë  and  �ë , respectively. 

(Lopez, 2014) 

 

3.3.9 Theorem  

Let í, Ö: , → ��� be two regular curves that have the same causal character of 

the Frenet frame. They have the same � and �, or they have same pseudo - torsion 
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depending on the case ⇒ there exist  a rigid motion � of ��� such that Ö = � g í. 

(Carmo, 1976) 

  

3.3.10 Example  

Consider the curve í3f6 =  3f	 , sinh3f	6, cosh3f	66, f > 0. Then  

í@3f6 = 3 2f, 2f cosh3f	6. sinh3f	6 , 2f sinh3f	6. cosh3f	6 6 

< í@3f6, í@3f6  >e= 4f	 > 0 , í3f6 is spacelike curve . 
  í@@3f6 = 32, 2 cosh3f	6 + 2f sinh3f	6 , 2sinh3f	6 + 2f cosh3f	6 6. 

 

Thus  

  í@@3f6 is &f�Q�h − µY¶h     f ∈ 30, √26µYFℎ^ − µY¶h           f = √2 ^Y´h − µY¶h           f > √2       . 
 

However the parametrization by the arclength is  

Ö3f6 = Ò f√2 , sinh Ò f√2Ó , cosh Ò f√2Ó Ó  , 
which it is space-like.  

 

We also examine curves in Lorentz –Minkowski Plane. 

 

3.4 Curves In Lorentz-Minkowski Plane  

We study plane curves in Minkowski space ��� giving a sign to the curvature �. 

A problem appears in a first moment showing a difference with the Euclidean context. 

We have two options. First, consider the two dimensional case of Lorentz-Minkowski 

space, the Lorentz-Minkowski plane ��	. The second possibility is to consider a curve 

of ��� included in an affine plane. There are three possibilities depending on whether 

the plane is a space-like, time-like of light-like. If the plane is a space-like, the theory 

corresponds to curves in a Riemannian surface.The plane is isometric to the Euclidean 

plane �	 and hence the theory is known ; the plane is time-like ⇒ it is isometric to ��	.  
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Firstly denote  ��	 = 3,-	, 3��6	 − 3��6	6 the Lorentz-Minkowski plane. We 

describe the Frenet dihedron  such  that the curvature has a mark. Let í ∶ , → ��	 be a 

curve parametrized by arclength. Describe  the tangent vector    þ3f6 = í@3f6. 
We get away light-like curves since in ��	 there are two linearly independent 

directions of light-like vectors. Hence þ3f6  would be commensurate to a given 

direction, obtaining that the curve is a straight-line. We assume  that í is space-like or 

time-like. The vector þ@3f6 is perpendicular to þ3f6. þ3f6 and º3f6 will have different 

causal character. 

 

In �	, the unit normal º�3f6  is chosen so { þ3f6, º�3f6 }  has a positively 

oriented basis. In  ��	 we will again  choose the Frenet frame as  positively oriented 

however the sequence of the vectors  þ  and º is chosen under the stipulation that the 

first vector is space-like and the second one is time-like. The situations  are:  

a) The curve is space-like. Decribe the normal vector º3f6,  
{ þ3f6, º3f6 } is positively oriented. 

b) The curve is time-like. Describe the normal vector º3f6 , 

{ º3f6 , þ3f6} is positively oriented.  

 

Let < þ, þ >e=  ( ∈ {−1 ,1} depending on whether  the curve is a space-like 

or time-like.   < º, º >e= −( . We describe  the curvature of í  as the function 

κ3f6 such that  

þ@3�6 = κ3f6. º3f6. 
 

Hence  

κ3f6 =  −( < þ′3�6, º3�6 >Â. 
 

The Frenet equations are  þ@3�6 = κ3f6. º3f6 

º@3�6 = κ3f6. þ3f6. 
 

We have two equations in  

] þ@º@_ =  ]0 κκ 0_ ] þº_  Q�� ] þ@º@_ =  ] 0 κ−κ 0_ ] þº_. 
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3.4.1 Example  

(1)  The set ¢ = {3�, �6 ∈ ,-	: �	 − �	 = −
	}consist of two components  

¢¥ = {3�, �6 ∈ ¢: � > 0 },    ¢Ï = {3�, �6 ∈ ¢: � < 0 }.  
 

For ¢¥ ,  

Let í3f6 =  ]
 sinh3/! 6, 
 cosh3 /! 6_ 

í@3f6 = þ3f6 = ]cosh3 f
  6  , sinh3f
 6 _  
< í@3f6, í@3f6 >e= 1 > 0. 

 í is a space-like curve. þ is a space-like vector.  

í@@3f6 = þ@3f6 = Ò1
 sinh3f
 6 , 1
 cosh3 f
  6Ó 

í@@3f6 = þ@3f6 = 1
 ]sinh3f
 6 , cosh3 f
  6_ 

º3f6 = ] sinh3f
 6, cosh3 f
  6_ 

< º3f6, º3f6 >e= −1. 
 

 º is a time-like vector.  

κ3f6 = 1
 . 
 

For ¢Ï ,  

Let Ö3f6 =  ]
 sinh3/! 6, − 
 cosh3 /! 6_ 

Ö@3f6 = þ3f6 = ]cosh3 f
  6  , −sinh3f
 6 _ 

< Ö@3f6, Ö@3f6 >e= 1. 
 Ö is  a space-like curve. þ is a space-like vector.  

Ö@@3f6 = þ@3f6 = Ò1
 sinh3f
 6 , − 1
 cosh3 f
  6Ó 

Ö@@3f6 = þ@3f6 = − 1
 ]− sinh3f
 6 , cosh3 f
  6_ 

º3f6 = ]− sinh3f
 6, cosh3 f
  6_ 
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< º3f6, º3f6 >e= −1 < 0. 
 

 º is a time-like vector.  

κ3f6 = − 1
 . 
 

(2) The set § = {3�, �6 ∈ ,-	: �	 − �	 = 
	} consist of two components  

§¥ = {3�, �6 ∈ § ∶ � > 0 },    §Ï = {3�, �6 ∈ §: � < 0 }.  
 

For §¥ ,  

Let í3f6 =  ]  
 cosh3 /! 6, 
 sinh3/! 6_ 

í@3f6 = þ3f6 = ]  sinh3f
 6, cosh3 f
  6 _ 

< í@3f6, í@3f6 >e= −1. 
 í is a time-like curve. þ is a time-like vector.  

í@@3f6 = þ@3f6 = Ò 1
 cosh3 f
  6, 1
 sinh3f
 6Ó 

í@@3f6 = þ@3f6 = 1
 ] cosh3 f
  6 , sinh3f
 6_ 

º3f6 = ] cosh3 f
  6 , sinh3f
 6_ 

< º3f6, º3f6 >e= 1. 
 

 º is a space-like vector.  

κ3f6 = 1
 . 
 

For §Ï   

Let Ö3f6 =  ] − 
 cosh3 /! 6 , 
 sinh3/! 6_ 

Ö@3f6 = þ3f6 = ]  −sinh3f
 6 , cosh3 f
  6 _ 

< Ö@3f6, Ö@3f6 >e= −1. 
 Ö is a time-like curve. þ is a time-like vector.  
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Ö@@3f6 = þ@3f6 = Ò − 1
 cosh3 f
  6, 1
 sinh3f
 6Ó 

Ö@@3f6 = þ@3f6 = − 1
 ] cosh3 f
  6 , − sinh3f
 6_ 

º3f6 = ] cosh3 f
  6 , − sinh3f
 6_ 

< º3f6, º3f6 >e= 1. 
 

 º is a space-like vector.  

κ3f6 = − 1
 . 
 

For κ, let  

À3f6 = *  κ3^6�^./
/+  

 

Describe two curves í and Ö and curvature  κ, where í is space-like and Ö is 

time-like:  

í3f6 = �*  cosh À 3^6�^,/
/+ *  sinh À 3^6�^ /

/+ � 

 
Ö3f6 = �* sinh À 3^6�^ ,/

/+ *  cosh À 3^6�^ /
/+ �. 

 

3.4.2 Theorem  

Let í ∶ , → ��	 be a time-like curve parametrized by arclength. Assume that 

there exist a unit time-like vector 5 ∈ ��	 and þ3f6 and 5 lie in this  same time-like 

cone ∀ f .  À  is the angle between the tangent vector of í  and 5  ⇒                                 
 κ 3f6 = ±À′3f6. 3Lopez, 20146     

Proof: 

We know that     −coshJÀ3f6K = < þ3f6, 5 >e .   
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By differentiating both sides , 

−À@3f6 sinhJÀ3f6K = < þ@3f6, 5 >e +  < þ3f6, 5@,H >e�����������H
  

−À@3f6 sinhJÀ3f6K = < þ@3f6, 5 >e   
 

We know that þ@3f6 = κ 3f6. º3f6 

−À@3f6 sinhJÀ3f6K = < κ 3f6. º3f6, 5 >e=  κ 3f6 < º3f6, 5 >e          3∗ 6 

5 = Qþ3f6 + .º3f6  
< 5, þ3f6 >e= Q < þ3f6, þ3f6 >e������������L��Ï�Lw� + . < þ3f6, º3f6 >e�����������H,-t./0 1234151.67 

 

< 5, þ3f6 >e= Q. 3−16 + .. 0 

< 5, þ3f6 >e= −Q < 5, º3f6 >e=  Q < þ3f6, º3f6 >e�����������H,-t./0 1234151.67 
+ .  < º3f6, º3f6 >e�����������/I¨	�Ï�Lw�  

< 5, º3f6 >e=  Q. 0 + .. 1  
< 5, º3f6 >e= . 

5 = −< 5, þ3f6 >e . þ3f6+ < 5, º3f6 >e . º3f6 

< 5, 5 >e��������L��Ï�Lw� = < 5, þ3f6 >e	. 3−16+< 5, º3f6 >e	. 316 

−1 = −< 5, þ3f6 >e	 +< 5, º3f6 >e	 

 

We know that     −coshJÀ3f6K = < þ3f6, 5 >e 

−1 =  −cosh	JÀ3f6K + < 5, º3f6 >e	 

< 5, º3f6 >e	 =  −1 +  cosh	JÀ3f6K 

 

Since we know that  cosh	3À6 − sinh	3À6 = 1 

< 5, º3f6 >e	 = sinh	JÀ3f6K 

< 5, º3f6 >e= ± sinhJÀ3f6K                    3∗∗6 

−À@3f6 sinhJÀ3f6K = < �3f6. º3f6, 5 >e= �3f6 < º3f6, 5 >e          3∗ 6 

κ 3f6 = ±À′3f6    since   3∗6 and  3∗∗6.  
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Finallly, for the curves in ��	 of constant curvature. Suppose that the curvature 

� is a constant Q ≠ 0. Then  

À3f6 =  * Q �^ = Qf + . ,   . ∈ ,-./
/+  

 

From  

À3f6 = * κ3^6 �^   ,/
/+  

 

Curves have curvature Q:  
(1) The space-like curve  

í3f6 =  1Q  3sinh3Qf + .6, cosh3Qf + .66. 
< í@3f6, í@3f6 >e=  1.  

(2) The time-like curve  

Ö3f6 =  1Q 3cosh3Qf + .6, sinh3Qf + .66. 
< Ö@3f6, Ö@3f6 >e=  −1. (Lopez, 2014) 

 

According to the Euclidean space , í and Ö curves are Euclidean hyperbolas. 

 

3.4.3 Theorem  

Let í ∶ , → ��� be a Frenet curve included in a plane of ���. í is a circle ⟺    
κ = �, � ≠ 0 3�ℎh
h � Yf �g�f^Q�^ 6 and the � =0. (Lopez, 2014)  

 

3.4.4 Theorem  

Let �  be the light-like plane � = � . The only space-like curves in �  with 

constant pseudo torsion « ≠ 0 are,   

í3f6 =  ]f + � , 8̈ï h8/ + .f + � , 8̈ï h8/ + .f + �  _ , Q, ., �, � ∈ ,-. (Lopez, 2014) 
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Proof: 

Let í3f6 = J�3f6, �3f6, �3f6K. í is parametrized by arclength parameter then 

�@3f6 = ±1  when  �3f6 = f í@3f6 = þ3f6 =  31 , �@3f6, �@3f6 6 

< í@3f6, í@3f6 >e=  1   since  í and þ is a space − like.  
º3f6 = þ3f6  = J0, �@@3f6, �@@3f6K 

 

< º3f6 , º3f6 >e=  0  since º  Yf Q light − like.  
 � is unit null vector satisfiying < º ,� >e=  −1.  

�3f6 = � �@
�@@  , −1 + 3�@6	

2�@@ , 1 + 3�@6	
2�@@  �.   

 �@@ ≠ 0   because conversly, �3f6 = Qf + ., Q, . ∈ ,-, showing that í  is 

straight-line. í3f6 = 3±f, Qf + ., Qf + . 6. The computation of the pseudo torsion  

« = −< º@ ,� >e .  
º@3f6 = J0, �@@@3f6, �@@@3f6K 

« = −� 0 + �@@@3−1 + 3�@6	62�@@ − �@@@31 + 3�@6	62�@@  � =  �@@@
�@@   with �@@ ≠ 0.  

 

Because  
9ûûû9ûû  = λ by solving   �3f6 = 8̈ï h8/ + .f + �.  

 

3.5 Helices In ��� 

A curve is called a general helix or cylindrical helix if its tangent makes a 

constant angle with a fixed line in Euclidean space.. A curve is a general  helix ⟺ � �⁄  

is a constant function. For instance, plane curves are helices.  We expand this concept 

to the Lorentz-Minkowski space. The problem is two defined the angle two vectors. 

Difficulty is caused causal characters of vectors.  
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3.5.1 Definition  

A helix í ∶ , → ��� is a unit velocity curve (or parametrized  by the pseudo-

arclength if í is light-like ) such that there exists a vector � ∈ ��� with < þ3f6, � >e 

is constant. Any line parallel to this direction � is named the axis of the helix.  

 

Especially,  a plane curve and a straight-line are helices. As a result   � κ ⁄  is 

constant. (Lopez, 2014) 

 

3.5.2 Theorem  

Let Ö ∶ , → ��� be aa Frenet curve. Ö is a helix ⟺� κ ⁄   is constant. (O’Neill, 

1983)  
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4. SURFACES IN LORENTZ  SPACE  

First we will define the notion of space-like and time-like surface. We will 

define the � and Κ  for them. We will calculate these curvatures by using 

parametrizations. We will define umbilical and minimal surfaces of ���. Nevertheless, 

we will  see the effect of causal characters, for instance , the surfaces can not be closed 

and the Weingarten map for time-like surfaces might not be diagonalizable. 

 

4.1 Spacelike and Timelike Surfaces In ��� 

Let �  be a smooth and  connected surface for non-empty boundary u�. Let 

 �: � →  ��� be an immersion, that is, a differentiable map such that its differentiable 

map  ��I: GI� →  ,-�  is injective. We identify the tangent plane GI�  with 

3��6I3GI� 6. �∗3< , >e6I is the pullback metric ,  
�∗3< , >e6I3 4, 5 6 = <  ��I346, ��I356 >e  where  4, 5 ∈  GI�. 

 

�: J �, �∗3< , >e6K  → 3���, < , >e6  is an isometric immersion. The metric  

�∗ < , >e can be  of 3-types,  

a) GI� is a space-like plane when  �∗ < , >e is positive definite. 

b) GI�  is a time-like plane when  �∗ < , >e  is a metric with index 1. 

c) GI�  is a light-like plane when  �∗ < , >e  is a degenerate metric. (Lopez, 

2014) 

 

4.1.1 Definition  

Let �  be a surface. An immersion �: � → ��  is called space-like 

(respectively  time-like, light-like ) if all  tangent planes  J GI�, �∗3< , >e6 K  are 

space-like (respectively  time-like, light-like ).  

 

A space-like or time-like surface are a non-degenerate surface. As the curves 

of  ���, given an immersed surface in ���, the causal character might change in different 
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points of the same surface. A surface is not necessarily classified in one of the above 

types. For instance , in the sphere  

È	 = { 3 � , �, �6 ∈  ,-� | �	 + �	 + �	 = 1 } 

5 = 3�, �, �6 ∈ È	  ⇒ < 5, 5 >e  =  �	 + �	 − �	  
 

We know that  �	 + �	 + �	 = 1 ⇒  �	 + �	 = 1 −  �	. So  

5 = 3�, �, �6 ∈ È	  ⇒ < 5, 5 >e  =  �	 + �	 − �	 =  1 − 2�	 

(1)  The region ¢ =  { 3 � , �, �6 ∈  È	 |   | � | <  �√	  } is time-like. 

(2) The region § =  { 3 � , �, �6 ∈  È	 |   | � | >  �√	  } is space-like. 

(3) The region � =  { 3 � , �, �6 ∈  È	 |   | � | =  �√	  } is light-like. 

 

For a space-like (resp. time-like ) surface �  and  � ∈ �  we have the 

decomposition ��� = J GI�K ⊕  3GI� 6�, where 3GI� 6� is a time-like (resp. space-

like ) subspace of dimension 1. A Gauss map is a differentiable map �: � →  ��� such 

that | �3�6| = 1  and  �3�6 ∈ 3GI� 6� ∀ � ∈ �. For a non-degenerate surface this is 

equivalent to existence of a Gauss map, also called an orientation of �. (Lopez, 2014) 

 

4.1.2 Proposition  

Let È be a compact surface and let �: È →  ���  be a space-like, time-like or 

light-like immersion. Then uÈ ≠ ∅. (Lopez, 2014) 

 

Proof: 

Let  uÈ = ∅. Consider that the immersion is space-like (respectively time-like 

or light-like ). Let  í ∈  �� be a space-like (respectively  time-like ) vector. Since  È is 

compact, let   �H ∈ È be the minimum point of the function 

�3�6 = < � 3�6, í >e . As uÈ = ∅, then  �H  is critical point of the function  �   so         

< 3��6I+3�6, í >e , ∀� ∈  GI+ È . Then  Q ∈  3GI+ È6�, a contradiction because 

3GI+ È6� is time-like (respectively space-like or light-like). 
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4.1.3 Proposition  

Let �: È →  ���   be a space-like immersion of a surface È . Consider the 

projection map =: È →  ,-	, =3 �, �, � 6 = 3 �, � 6. 
a) The projection = is local diffeomorphism.  

b) Assume that È is compact and that � |s>  is a diffeomorphism between  uÈ 

and a plane, closed, simple curve. Then � 3È6 is a graph on the planer 

domain determined by  �3uÈ6. (Lopez, 2014) 

 

4.1.4 Example  

A plane � =  �H + f�Q� { �}�  the causal character of � coincides with the 

one of. � is a unit time-like or space-like vector ⇒ a Gauss map is a                         

 �3�6 = �. (Lopez, 2014) 

 

4.1.5 Example   

A hyperbolic plane of center �H  ∈ ��� and radius 
 > 0 is  

ℍ	3
; �H6 = { � ∈ ��� |  < � − �H, � − �H  >e=  −
	, < � − �H, h�  >e< 0 } 

here h� = 3 0, 0 ,1 6. The set { � ∈ ��� |  < � − �H, � − �H  >e=  −
	}  has two 

connected components and that the condition < � − �H, h�  >e< 0  chooses from 

them. Let  �H be origin in ,-� and 
 = 1 is denoted by ℍ	31; �30,0,06 6 =  ℍ	, that 

is 

ℍ	 = { � ∈ ���| < �, � >e= −1, < �, h�  >e< 0 } 

ℍ	 = { 3� , �, �6  ∈ ���| �	 + �	 − �	 = −1, � > 0 }. 
 

This surface is one part of a hyperboloid of two sheets.  A hyperbolic plane is 

a space-like surface.  Actually, if � ∈  GIℍ	3
 ;  �H6 and í = í3^6⊂ ℍ	3
 ;  �H6 is the 

curve that represent �, then <  í 3^6 − �H , í 3^6 − �H  >e = − 
	. By differentiating 

with respect to  ^  

2 <  í@3^6, í 3^6 − �H  >e = 0  let ^ = 0  ⇒ <  í@306, í 306 − �H  >e = 0  ⇒ <  �, � − �H  >e  = 0. 

This means that GIÈ = f�Q� { � − �H}�. As  � − �H is a time-like vector then È is a 

space-like surface. Morever, �3�6 =  3IÏI+6!   is a Gauss map. Since <  �, h� >e< 0, � is 

future directed. (Lopez, 2014) 
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 Figure 4.1. Hyperbolic Plane of  ��� 

 

4.1.6 Example  

The pseudo-sphere of center �H and radius 
 is  

��	3 
; �H6 = { � ∈ ��� |  < � − �H, � − �H  >e=  
	}. 

 

The tangent plane at � is GI� = f�Q� { � − �H}� and 3�6 =  3IÏI+6! , �3�6 is a 

space-like since 
	 > 0. �3�6 is a space-like vector, so the surface is time-like.  �H is 

the origin and 
 = 1 the surface is named  The De Sitter Space and we denote by ��	. 

Then  

��	 = 31; �30,0,06 6 = ��	 = { 3� , �, �6  ∈ ���| �	 + �	 − �	 = 1 }. 
 

According to Euclidean geometry, this surface is a ruled hyperboloid.  

 

Additionally this surface called is a hyperboloid of one sheet. (Lopez, 2014) 

 
Figure 4.2. Pseudo-sphere of  ��� 
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4.1.7 Example  

The light-like cone of center  �H is  

�3�H6 = { � ∈ ��� |  < � − �H, � − �H  >e=  0} − {�H}  
GI � 3�H6 =  f�Q� { � − �H}�.  

 

The surface is light-like. If  �H is origin of  ,-�, then �3�H6  is the light-like 

cone  �  of  ���. (Lopez, 2014) 

�30 ; �30,0,06 6 = � =  { 3� , �, �6  ∈ ���| �	 + �	 − �	 = 0 } − {30 ,0 ,06}. 

 

 

Figure 4.3. Light-like Cone Of  ��� 
 

4.1.8 Example  

ℎ: ? ⊂ I-	  → ,-  be a smooth function defined on a domain ? ⊂ ,-	 . The 

graph of  ℎ defined by  

ℎ� = F
Q�ℎ 3ℎ6 = �J�, �, ℎ3�, �6K Ä 3 �, �6 ∈ ? }.  

 

Consider  ℎ� as the image of immersion  n�: ? → ���, given by    n� 3 �, �6 = 3�, �, ℎ3�, �66. 
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As  n�¤ 3 �, �6 = 31, 0, ℎ¤6,   n�9 3 �, �6 = J0, 1, ℎ9K. 
� = <  n�¤,  n�¤  >e= 1 − ℎ¤	 Ç =<  n�¤,  n�9  >e= −ℎ¤ℎ9 

� = <   n�9,  n�9  >e= 1 − ℎ9	  

�1 − ℎ¤	 −ℎ¤ℎ9 −ℎ¤ℎ9 1 − ℎ9	 � 

and determinant is 1 − ℎ¤	 − ℎ9	  = 1− ||  ∇eℎ  ||	  
(1) n� is space-like if ||  ∇eℎ  ||	 <  1. 

(2) n� is time-like if ||  ∇eℎ  ||	 > 1. 

(3) n� is light-like if ||  ∇eℎ  ||	 = 1. (Lopez, 2014) 

ℎ� = F
Q�ℎ 3ℎ6 = �J�, �, ℎ3�, �6K Ä 3 �, �6 ∈ ? } 

ℎ	 = F
Q�ℎ 3ℎ6 = {3�, ℎ3�, �6, �6 | 3 �, �6 ∈ ? } 

ℎ� = F
Q�ℎ 3ℎ6 = {3ℎ3�, �6, � , �6 | 3 �, �6 ∈ ? } 

 

 Consider  ℎ� as the image of immersion  n�: ? → ���, given by    n� 3 �, �6 = 3�3�, �6, �, �6. 

As  n�9 3 �, � 6 = Jℎ9 , 1, 0K,   n�A 3 �, �6 =  3ℎA , 0, 16. 

� = <  n�¤,  n�¤  >e= 1 + ℎ9	  

Ç =<  n�¤,  n�9  >e= ℎ9ℎA 

� = <   n�9,  n�9  >e= ℎA	 − 1 

�1 + ℎ9	  ℎ9ℎA ℎ9ℎA ℎA	 − 1 � . 
 

            The determinat is −ℎ9	 + ℎA	 − 1 which is different from 1− ||  ∇eℎ  ||	and the 

mark gives the causal character of the surface. Hence the same function ℎ might give 

a surface with a different causal  character. For instance ? =  ,-	 and ℎ3�, �6 = 0 ⇒ 

ℎ� is a space-like plane but ℎ� is a time-like plane. 

 

 

 

 

 



74 
 

4.1.9 Example  

 Let �3�, �, � 6 =  �	 + �	 − �	. Then � = 3�, �, �6 and 5 = 35�, 5	, 5�6        

3��6I 356 = 2�5� + 2�5	 − 2�5� ⇒ 3��6I 356 = 23�5� + �5	 − �5�6.                          
� is critical point only if  � = 30,0,06. �30,0,06 = 0 and ∀ Q ≠ 0, 

È¨ = �Ï�3{Q}6 is a surface. ∇e� = 32�, 2�, 2� 6 = 23�, �, � 6 ∇�� = 32�, 2�, −2� 6 = 23�, �, −� 6 

<  ∇e�,∇e� >e= 43 �	 + �	 − �	6 = 4 �3�, �, �6 = 4Q. 

           

Consider Q ∈ {−1,1}. 
i. If Q < 0 then <  ∇e�,∇e� >e= −4 the surface is space-like. 

ii. If Q > 0 then <  ∇e�,∇e� >e= 4 the surface is time-like. (Lopez, 2014) 

 

4.1.10 Proposition  

A space-like (respectively time-like) surface is locally the graph of a function 

defined in the plane � = 0 (respectively  � = 0 or � = 0 6. (Lopez, 2014) 

 

4.1.11 Theorem  

Let �  be a surface and let �: � → ���  be space-like immersion. Then �  is 

orientable. (Lopez, 2014) 

 

4.2 Mean Curvature Of Space-like And Time-like Surfaces 

Let �: � → ��� be a space-like or time-like immersion of a surface � and let  � be its Gauss map. B3�6 refers to be space of tangent vector fields to �  it is   denote 

by ∇H the Levi-Civita connection of ���. If  ç ∈  B3�6, we obtain the decomposition ∇|H ç = 3∇|H ç6C + 3∇|H ç6⊥ , 

where T and ⊥⊥⊥⊥ indicate  the tangential  part and the normal part according to � of  ∇|H ç, respectively. ∇ refers the induced connection on � by the immersion �,  ∇|ç = 3∇|H ç6C. 
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We define the second fundamental form of � as the tensorial, symmetric map  D: B3�6 � B3�6 → B3�6⊥,  D3£, ç 6 =  3∇|H ç6⊥. 
 

The expression of the Gauss formula is  ∇|H ç =  ∇|ç +  D3£, ç 6, £ , ç ∈  B3�6 (E. �6 

 

Consider Z as a normal vector field to   �   and let ¢F3£6  be tangential 

component of  −∇|HG , 

¢F3£6 =  −3∇|HG6C. 
 

We have from (E. �6 

< ¢F3£6, ç >e= < D3£, ç6,G >e .  3E.  6 

 

Because  D is symmetric, 3E.  6 implies  

< ¢F3£6, ç >e= < £, ¢F3ç6  >e  . 3E. �6 

 ¢F is self-adjoint according to the metric of. Let  j be a unit normal vector 

field on �.The immersion  is  space-like ⇒ the surface is always orientable by 4.1.1 

theorem. 

 

 Denote  

< �, � >e=  ( H−1   Y� � Yf f�Q�h − µY¶h  1   Y� � Yf ^Y´h − µY¶h.  

 

Take in the above formula G = j. Since < j, j >e  is constant, we have   

     < ∇|H �, � >e= 0. Then ∇|H j is tangent to �. Denote  

−∇|H � = ¢m3£6 3RhY�FQ
^h� �g
´4µQ 6 3E.E6 (Lopez, 2014) 

 

4.2.1 Definition  

The Weingarten endomorphism at  � ∈ � is described  by  

¢I  : GI� → GI�,  ¢I = 3¢m  3�66I. 
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Morever 3E.E6 gives  

¢I  356 = −∇IH� =  −3�j6J356, 5 ∈ GI�.  
 

We will write ¢£ instead of  ¢m3£6. 

 

Since  D3£, ç 6 is commensurate to � from (E. �6 and 3E.  6  D3£, ç 6 = ( <  D3£, ç 6, � >e � = ( < ¢£, ç >e �. 3E.K6 

 

Now (∗6 writes as  ∇|H ç =  ∇|ç + ( < ¢£, ç >e �. (Lopez, 2014) 

 

4.2.2 Definition  

Let � be a surface and let �: � → ��� be a space-like or time-like immersion. 

����� is the mean curvature vector field.  

����� = 12  ^
Q�h 3D6. 
 

The mean curvatures function ����� is defined by the relation ����� = ��. For this 

reason 

����� = ( < L���, � >e . 
 

����� is a vector field perpendicular to �, �����  ∈  B3�6⊥. We can write  ����� and  � 

in terms of a local tangent basis. Let  {h�, h	} be an orthonormal local tangent vector 

fields on � where h� is space-like and < h	, h	  >e= −(. Then 3E.K6 gives  

����� = 12  ^
Q�h 3D6 =  12 JD3h�, h�6 − (D3 h	 , h	6K 

����� = 12 3( < ¢h�, h� >e − < ¢h	 , h	  >e 6� 

����� = 12 3< ¢h�, h� >e− ( < ¢h	 , h	  >e 6� = ](2  trace ¢ _ �. 
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On the other hand,  

� = ( < �����, � >e = M	 3< ¢h�, h� >e− ( < ¢h	 , h	  >e6 = M	  trace 3¢6. (Lopez, 

2014) 

 

4.2.3 Corollary  

The mean curvature of a space-like or time-like surface is  

� = (2  trace 3¢6.  3E.N6 

 

We define the Gauss curvature Κ of the surface. For a surface, O = 2Κ where O 

is the scalar curvature. We calculate the curvature tensor of the surface.                  

(O’Neill, 1983)  

 

Denote by -H and - the curvature tensors of  ��� and �, respectively. Because 

-H = 0, we can calculate. Let £ , ç,G ∈  B3�6. We know that  

-H3£, ç6G = ∇|H∇PHG − ∇PH∇|HG − ∇[|,P]H G. 
 

Also ,∇PHG = ∇PG + D3ç,G6. Since  D3ç,G6 =  ( < ¢ç,G >e �, and using 

(4.1) we have  ∇|H∇PHG =  ∇|H 3∇PG6 + ∇|HD3ç,G6  ∇|H∇PHG = ∇|∇PG +  D3£,∇PG6 −  ( < ¢ç,G >e ¢£ +  ( < ¢ç,G >e �. 
 

The tangential part on �  is ∇|∇PG −  ( < ¢ç,G >e ¢£ . Likewise, we 

compute  ∇PH∇|HG and ∇[|,P]H G and considering the tangential parts. Using that -H = 0 

and that  -3£, ç6G = ∇|∇PG − ∇P∇|G − ∇[|,P]G, we conclude  

-3£, ç6G = − ( < ¢ç,G >e ¢£ +  ( < ¢£,G >e ¢ç -3£, ç6G =  (3−< ¢ç,G >e ¢£+ < ¢£,G >e ¢ç 6.   3E.Q6 

 

Thus we calculate the Ricci tensor the scalar curvature  O. For Ricci tensor, we 

get  

Ric 3£, ç6 = trace 35 → -3£, 56ç6 =< -3£, h�6ç, h� >e− ( < -3£, h	6ç, h	 >e 

Ric 3£, ç6 =  (J< ¢£, ç >e 3< ¢h�, h� >e− ( < ¢h	 , h	  >e6K − ( < ¢£, ¢ç >e 
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Ric 3£, ç6 =  (3trace 3¢6 < ¢£, ç >e −< ¢£, ¢ç >e6 Ric 3£, ç6 =  2L < ¢£, ç >e−  ( < ¢£, ¢ç >e. Hence O = trace 3Ric6 = -3h�, h�6 − (-3h	 , h	6 O = 2�3< ¢h�, h� >e− ( < ¢h	 , h	  >e6 − (3< ¢h�, h� >e− ( < ¢h	 , h	  >e6 O = (Jtrace 3¢6	 − trace 3¢	6K = 4(� − ( trace3¢	6 O = 2( det3¢6.               (4.8) 

 

This matrix ¢ in the basis {h�, h	} is  

¢ = Ò < ¢h�, h� >e < ¢h	 , h�  >e−( < ¢h� , h	  >e −( < ¢h	 , h	  >eÓ. 
 

As = 2Κ, the Gauss curvature Κ is  

Κ =  (det3¢6 = (2  Ò4� − trace ]¢2_Ó .      3E.R6 (Lopez, 2014) 

 

4.2.4 Corollary  

The Weingarten map ¢ of a space-like or time-like surface of ���.  Κ =  (det3¢6 .      3E. �S6 

 

We can calculate Κ in 2 - dimensional manifold, the Gauss curvature coincides  

with the local curvature of the 2 - dimensional plane generated by {h�, h	} of the 

tangent plane. As a result  of 3E.Q6, we get  

Κ =  < -3h1, h26h2, h1 >Â< h1, h1 >Â< h2, h2 >Â −< h1, h2 >Â2 

Κ =  (3< ¢h1, h1 >Â< ¢h2, h2 >Â −< ¢h1, h2 >Â< ¢h2, h1 >Â6−(  

Κ = −J< ¢h1, h1 >Â< ¢h2, h2 >Â −< ¢h1, h2 >Â2K. 
 

This expression coincides with 3E.R6. (Lopez, 2014) 

 

4.2.5 Definition  

Let �: � → ���  a space-like or time-like immersion and � ∈ �. If the 

Weingarten map  ¢I  is diagonalizable, the eigenvalues of  ¢I  are called the principal 

curvature at  �. Denote by «�3�6 and «	3�6. From 3E.N6 and 3E. �S6 (Lopez, 2014) 
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4.2.6 Corollary  

Assume that ¢I  is diagonalizable in a space-like or time-like surface of  ���.  

�3�6 =  ( 8T3I6¥8ï3I6	 ,    Κ3�6 = ( «�3�6«	3�6.  (Carmo, 1976) 

 

4.2.7 Definition  

Let �: � → ���  be a space-like  or time-like immersion. A point � ∈ � is 

named if  ∃ «3�6 ∈ ,- such that  

< D34, 56, �3�6 >e= «3�6 < 4, 5 >e , 4, 5 ∈  GI�. 
 

A surface is named completely umbilical if all points are umbilic. 

 

Hence, an umbilic is a point where the first and the second fundamental forms 

are proportional. Besides, it is equivalent to say that  

< ¢I4 , 5 >e= «3�6 < 4, 5 >e . 
 

Especially, and from (4.2), ¢I must be diagonalizable since  

< ¢h�, h	 >e= 0. 
 

Hence we can say that � is umbilical ⟺ «�3�6 = «	3�6. In Euclidean space, it 

is well know the inequality � − Κ ≥ 0 and hold only in a umbilic. (Lopez, 2014) 

 

4.2.8 Proposition  

Suppose that � is a space-like or time-like  surface of ���, � ∈ � and ¢I is 

diagonalizable.  �3�6	 − (Κ3�6 ≥ 0 

and the equality ⟺ � is umbilic. Especially, in a time-like surface.    L3�6	 − Κ3�6 < 0 ⇒ � is not umbilic. (Lopez, 2014) 

 

Proof:  

From the definition of  � and Κ, we have  
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0 ≤ Ò«� − «	2 Ó	 = Ò«� + «	2 Ó	 − «�«	 =  � − (Κ. 
 

Furthermore the equality holds at a point � ⟺ «�3�6 = «	3�6, that is, � is an  

umbilic. The diagonalization of the Weingarten map depends on the existence of real 

roots of its characteristic polynomial i3«6. A simple calculation leads to             

  i3«6 = «	 − 2�(« + (Κ and its discriminat is ∆= 43�  − (Κ 6. 

(1) � − (Κ > 0 ⇒ there are two different real roots of i3«6  and the 

Weingarten map is diagonalizable. 

(2) � − (Κ < 0 ⇒ ¢ is not diagonalizable.  

(3) � − (Κ = 0 ⇒ there is a double root of i3«6.  

a) ( = −1  ⇒ the root « = −� is the eigenvalue of ¢  and the point is 

umbilic. 

b) ( = 1 ⇒ the matrix could be or not be diagonalizable.  

|D|	 = V < ¢hL
	

L,M��
, hM >e	= 4�	 − 2(Κ , 

and if ¢I  is diagonalizable , |D|	 = «�	 + «		 . There exist  non-umbilical time-like 

surfaces such that � − Κ = 0 on the surface.  

 

4.2.9 Example  

 Plane  

Consider a non-degenerate plane � = �H+ < �, � >e⊥, with |�|e = 1. � = � 

and �� =0. Here «� = «	 = � =  Κ = 0. 
 

4.2.10 Example  

Hyperbolic plane  

ℍ	3
; �H6 = { � ∈ ��� |  < � − �H, � − �H  >e=  −
	, < � − �H, h�  >e< 0 }. 
 

 The unit normal vector pointing to the future of ℍ	3
; �H6  is  

�3�6 =  3IÏI+6! .   Then ¢ = , 
�  and 
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 «� = «	 = −1 
� , � = 1 
� , Κ =  1 
	� . 
 

Hence a hyperbolic plane has constant negative curvature. ℍ	3
; �H6 is a 2 

dimensional space form of negative curvature  and called the hyperbolic plane. 

 

4.2.11 Example  

Pseudo-sphere 

��	3 
; �H6 = { � ∈ ��� |  < � − �H, � − �H  >e=  
	}. 

 

For ��	3 
; �H6, the Gauss map is �3�6 =  3IÏI+6! . Then  ¢ = −, 
� . In this way 

«� = «	 = −1 
� , � = −1 
� ,Κ =  1 
	�   . 
 

Hence a pseudo-sphere has constant positive curvature. 

 

4.3 Local Calculation of the Curvature and Examples  

We calculate the curvatures of a space-like or time-like surface by using local 

parametrization. (Carmo, 1976) 

 

Consider a local parametrization  

£: >⊂ ,-	 → ���,   £ = £34, 56,  
of a (space-like or time-like ) immersion �. Let § = {£Å, £I } be a local basis of the 

tangent plane at each point of  £3>6. The Lorentz - Minkowski 1st fundamental form 

is the metric on GI�,  
,I =<, >I : GI� × GI� →  ,- 

,I34 , 56 =< 4 , 5 >I 

, =< �£, �£ >e= ��4	 + 2Ç�4�5 + ��5	 

 According to �, let ]� ÇÇ �_ be the matricial phrase  of the first fundamental 

form, where  � = < £Å, £Å  >e  , Ç = < £Å, £I  >e  , � = < £I, £I  >e  . 
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Denote det3,6 = �� − Ç	. The surface is space-like if det3,6 = �� − Ç	 > 0 

and it is time-like if det3,6 = �� − Ç	 < 0. We take the normal vector field  

� = £Å  ×e  £I|£Å  ×e  £I|e . 
 

 We use the notation < �, � >e= ( again. Here  

|£Å  ×e  £I|e =  ·−(3�� − Ç	6 = ·−ϵdet3,6. 
 

The Minkowski second fundamental form of  � DI: GI� × GI� →  ,- DI34, 56 = −< 3�j6I346, 5 >e= < ¢I346, 5 >e  
,, =< −�£, �� >e= Â�4	 + 2��4�5 + j�5	. 

 

Let  ] Â �� j_ be a matricial phrase of D with respect to   

Â = < £Å, − �Å >e= < �, £ÅÅ  >e 

� = < £Å, − �I >e=< £I, − �Å >e= < �, £ÅI  >e 

Â = < £I, − �I >e= < �, £II  >e 

 ¢ is the Weingarten map. Then  

¢ =  ]� ÇÇ �_Ï� ] Â �� j_. 
 

For this reason the Minkowski mean curvature  �  and Minkowski Gauss 

curvature  Κ  are defined as expected by  

� = ( �j + �Â − 2�Ç23�� − Ç	6  

Κ = ( YZ[ \\YZ[ \ = ( emÏlï
±]Ï^ï  . (Weinstein, 1996) 

 

4.3.1 Example  

Let  � ∈  �	3?6 be a smooth function and consider the surface � given by   

� = �3� , �6. Let _: ? → ��� denote the usual parametrization  _3�, �6 = 3 �, �, �3� , �6 6. 
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 _¤ 3 �, �6 = 31, 0, �¤6,   _9 3 �, �6 = J0, 1, �9K. 

First fundamental form coeffients are, 

� = <  _¤,  _¤  >e= 1 − �¤	 Ç =<  _¤,  _9  >e= −�¤�9 

� = <   _9,  _9  >e= 1 − �9	 

�1 − �¤	 −�¤�9 −�¤�9 1 − �9	�. 
 

Thus the det , = �� − Ç	 = 1 − ��2 − ��2 = 1− ||  ∇e�  ||	. On  ? 

(1) Immersion is space-like if ||  ∇e�  ||	 <  1 

(2) Immersion is time-like if ||  ∇e�  ||	 > 1. 

 

The mean curvature � satisfies  

J1 − �9	K�¤¤ + 2�¤�9 + 31 − �¤	6�99 = −2L3−(31 − |∇e�  |	66� 	 � . 
 

Likewise, the Gauss curvature Κ is  

Κ =  − ������ − ���2
31 − ��2 − ��262 . 

 

4.3.2 Example  

Let  í: , → ��� be a null curve and we denote by {þ, º,�} the Frenet trihedron.  

 

Let  

£: , � ,- → ���  ,   £3f, ^ 6 =  í3f6 + ^þ3�6. 
 

This surface is named  a B-scroll. (Graves, 1979) 

 

We calculate the matrix of the Weingarten map the basis on  {£/ , £�}.   
£/ =  í@ + ^ �@ =  þ + ^�º   and £� = �, then 

� = <  £/,  £/  >e=  ^	 �	 

Ç = <  £/,  £�  >e= −1 

� = <  £�,  £�  >e= 0 
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]� Ç Ç � _ = ]^2 �2 −1 −1 0 _. 
Thus the det , = �� − Ç	 = −1. So the determinat is negative, the surface is   

time-like. Since  

 £// = ^�	þ + 31 + ^�@ 6º +  ^��  
 £/� = �º 

 £�� =  0  
 

The second fundamental form is  

] Â � � j _ = Ò −1 − ^3�@ − ^��6 −� −� 0 Ó. 
 

Thus the det ,, = Âj − �	 = −�	. 
Κ = det ,,det , = −�2−1 = �2 

� = �j + �Â − 2�Ç23�� − Ç	6 = −23−» 6. 3−16−2  =  ». 
 

Weingarten endomorphism  

¢ =  ]� ÇÇ �_Ï� ] Â �� j_ 

¢ = ]  » 01 + ^�@  �_. 
 

This matrix is not diagonalizable. Since   � − (Κ = 0, ( = 1  so it is not 

umbical. 

 

4.3.3 Example  

The surfaces we will now examine are all minimal surfaces ( � = 0 6 .      

(Dillen, 1999), (Kobayashi, 1983), (Woestijne, 1990)  

(1) Helicoid of the 1st kind is  £3f, ^ 6 = 3 f cos3^6 , f sin3^6 , ℎ^ 6, f > ℎ > 0. 
£/ = 3 cos3^6 , sin3^6 , 0 6 £� = 3−f sin3^6 , f cos3^6 , ℎ 6 
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� = <  £/,  £/  >e= 1 

Ç = <  £/,  £�  >e= 0 

� = <  £�,  £�  >e= f	 − ℎ	 

, = ]� Ç Ç � _ = ]1 0 0 f	 − ℎ	_. 
Thus the det , = �� − Ç	 = f	 − ℎ	, the surface £3f, ^ 6 is space-like since 

f > ℎ > 0 . 
� = £/  ×e  £�|£/  ×e  £�|e 

� = 1√f	 − ℎ	  3ℎ sin3^6 , −ℎ cos3^6 , 0 6 

 £// = 3 0, 0, 0 6 

 £/� = 3− sin3^6 , cos3^6 , 0 6 

 £�� = 3 −f cos3^6 , −f sin3^6 , 0 6 

 Â =< �, £//  >e= 0 

� =< �, £/�  >e=  −ℎ√f	 − ℎ	 

j =< �, £��  >e= 0 

,, = ] Â � � j _ =
×
ØÙ 0 −ℎ√f	 − ℎ	−ℎ√f	 − ℎ	 0 Ú

ÛÜ 

det ,, = Âj − �	 = − ℎ	
f	 − ℎ	 

 

Κ = det ,,det , = − ℎ2
3f2 − ℎ262 

� = �j + �Â − 2�Ç23�� − Ç	6 = 0. 
 

The Weingarten map is 

¢ =  ]� ÇÇ �_Ï� ] Â �� j_ 
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¢ =
×
ØÙ

 0 −ℎ√f	 − ℎ	−ℎ·3f	 − ℎ	6�  0 Ú
ÛÜ. 

 

(2) Helicoid of the  2nd  kind is  £3f, ^ 6 = 3ℎ^, f cos ℎ3^6 , f sin ℎ3^6 6, ℎ > 0 , f ∈ 3ℎ, ∞6. £/ = 3 0, cosh 3^6, sinh 3^6 6  
£� = 3ℎ , f sin ℎ3^6 , f cos ℎ3^66 

� = <  £/,  £/  >e= 1 

Ç = <  £/,  £�  >e= 0 

� = <  £�,  £�  >e= ℎ	 − f	 

, = ]� Ç Ç � _ = ]1 0 0 ℎ	 − f	_. 
 

Thus the det , = �� − Ç	 = ℎ	 − f	 < 0, the surface £3f, ^ 6 is time-like. 

� = £/  ×e  £�|£/  ×e  £�|e 

� = 1√f	 − ℎ	  3f, ℎ sin ℎ3^6 , ℎ cos ℎ3^6 6 

 £// = 3 0, 0, 0 6 

 £/� = 30 , sin ℎ3^6 , cos ℎ3^6  6 

 £�� = 30 , f cos ℎ3^6 , f sin ℎ3^6  6 

 Â =< �, £//  >e= 0 

� =< �, £/�  >e=  −ℎ√f	 − ℎ	 

j =< �, £��  >e= 0 

,, = ] Â � � j _ =
×
ØÙ 0 −ℎ√f	 − ℎ	−ℎ√f	 − ℎ	 0 Ú

ÛÜ 

det ,, = Âj − �	 = − ℎ	
f	 − ℎ	 

Κ = det ,,det , = ℎ2
3f2 − ℎ262 
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� = �j + �Â − 2�Ç23�� − Ç	6 = 0. 
 

The Weingarten map is 

¢ =  ]� ÇÇ �_Ï� ] Â �� j_ 

¢ =
×
ØØÙ

 0 −ℎ√f	 − ℎ	−ℎ"3f	 − ℎ	6� 	�  0
Ú
ÛÛÜ. 

 

This matrix is not diagonalizable. Since   � − Κ < 0,  so it is not umbical.  

 

(3) Helicoid of the 3rd is parametrization   

£3f, ^ 6 = 3ℎ^ , f sin ℎ3^6 , f cos ℎ3^6 6, ℎ > 0 , f ∈ ,-. £/ = 3 0, sinh3^6 , cosh 3^6 6  £� = 3ℎ , f cos ℎ3^6 , f sin ℎ3^66 

� = <  £/,  £/  >e= −1 

Ç = <  £/,  £�  >e= 0 

� = <  £�,  £�  >e= ℎ	 + f	 

, = ]� Ç Ç � _ = ]−1 0 0 ℎ	 + f	_. 
 

Thus the det , = �� − Ç	 = −ℎ	 − f	 < 0, the surface £3f, ^ 6 is time-like. 

� = £/  ×e  £�|£/  ×e  £�|e 

� = 1√f	 + ℎ	  3−f, ℎ cos ℎ3^6 , ℎ sin ℎ3^6 6 

 £// = 3 0, 0, 0 6  £/� = 30 , cos ℎ3^6 , sinh3^6 6 

 £�� = 30 , f sinh3^6 , f cosh3^6 6 

 Â =< �, £//  >e= 0 

� =< �, £/�  >e=  ℎ√f	 + ℎ	 

j =< �, £��  >e= 0 
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,, = ] Â � � j _ =
×
ØÙ 0 ℎ√f	 + ℎ	ℎ√f	 + ℎ	 0 Ú

ÛÜ 

det ,, = Âj − �	 = − ℎ	
f	 + ℎ	 

Κ = det ,,det , = ℎ2
3f2 + ℎ262 

� = �j + �Â − 2�Ç23�� − Ç	6 = 0. 
 

The Weingarten map is 

¢ =  ]� ÇÇ �_Ï� ] Â �� j_ 

¢ =
×
ØØÙ

 0 −ℎ√f	 + ℎ	ℎ"3f	 + ℎ	6� 	�  0
Ú
ÛÛÜ. 

 

This matrix is not diagonalizable. Since   � − Κ < 0,  so it is not umbical.  

 

(4) The Cayley’s surface is  

£3f, ^ 6 = �f^ − ℎ^ + ℎ ^�
3  , f + ℎ^	, f^ + ℎ^ + ℎ ^�

3  � , ℎ, f > 0. 
£/ = 3 ^, 1, t 6  

£� = 3f − ℎ + ℎ^	, 2^ℎ, f + ℎ + ℎ^	6 

� = <  £/,  £/  >e= 1 

Ç = <  £/,  £�  >e= 0 

� = <  £�,  £�  >e= −4fℎ 

, = ]� Ç Ç � _ = ]1 0 0 −4fℎ_. 
 

Thus the det , = �� − Ç	 = −4fℎ < 0, the surface £3f, ^ 6 is time-like. 

� = £/  ×e  £�|£/  ×e  £�|e 
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� = 12√fℎ 3f + ℎ − ℎ^	, −2ℎ^, f − ℎ − ℎ^	 6 

 £// = 3 0, 0, 0 6 

 £/� = 31, 0, 1 6 

 £�� = 3−2ℎ^, 2ℎ, 2ℎ^  6 

 Â =< �, £//  >e= 0 

� =< �, £/�  >e=  �ℎf 

j =< �, £��  >e= 2�ℎf  ^3−f − ℎ + ℎ^	6 

 

,, = ] Â � � j _ =
×
Ù 0 "/̀" /̀      2"/̀  ^3−f − ℎ + ℎ^	6Ú

Ü. 

det ,, = Âj − �	 = − ℎf  
Κ = det ,,det , = 14f2 

� = �j + �Â − 2�Ç23�� − Ç	6 = 0. 
 

The Weingarten map is 

¢ =  ]� ÇÇ �_Ï� ] Â �� j_ 

¢ = a  0 "/̀Ï�ú√/$`         Ï�	√/$` ^3−f − ℎ + ℎ^	6b. 

 

This matrix is not diagonalizable. Since   � − Κ < 0,  so it is not umbical.  

 

4.3.4 Example  

Ruled surfaces is a class of surfaces of interest in Minkowski space ���. (Dillen, 

1999). We will use examples of ruled surface to calculate � and Κ. The samples we 
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will give. The surface is time-like and the Weingarten endomorphism map is not 

diagonalizable and  � − Κ = 0. 
(1) Consider the immersion  

£3f, ^ 6 = 3 f cos3^6 , f sin3^6 , f + ℎ^ 6, ℎ > 0. 
£/ = 3 cos3^6 , sin3^6 , 1 6 £� = 3−f sin3^6 , f cos3^6 , ℎ 6 

� = <  £/,  £/  >e= 0 

Ç = <  £/,  £�  >e= −ℎ 

� = <  £�,  £�  >e= f	 − ℎ	 

, = ]� Ç Ç � _ = ] 0 −ℎ −ℎ f	 − ℎ	_. 
 

Thus the det , = �� − Ç	 = −ℎ	 , the surface £3f, ^ 6  is time-like since       

 ℎ > 0 . 
� = £/  ×e  £�|£/  ×e  £�|e 

� = 1ℎ 3ℎ sin3^6 − f cos 3^6 , −ℎ cos3^6 − f sin3^6 , f 6 

 £// = 3 0, 0, 0 6 

 £/� = 3− sin3^6 , cos3^6 , 0 6 

 £�� = 3 −f cos3^6 , −f sin3^6 , 0 6 

 Â =< �, £//  >e= 0 � =< �, £/�  >e=  −1 

j =< �, £��  >e= f	
ℎ  

,, = ] Â � � j _ = � 0 −1
−1 f	

ℎ � 

det ,, = Âj − �	 = − 1 

Κ = det ,,det , = 1ℎ2 

� = �j + �Â − 2�Ç23�� − Ç	6 = 1ℎ . 
 

The Weingarten map is 

¢ =  ]� ÇÇ �_Ï� ] Â �� j_ 
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¢ = a 1ℎ −1
0    1ℎ     b. 

 

This matrix is not diagonalizable. Since   � − Κ = 0  and ( = 1   so it is not 

umbical. 

(2) Let Q ≠ 0. The surface  

£3f, ^ 6 = 3ℎ^, 3f + Q6 cosh3^6 + f sinh3^6 , 3f + Q 6sinh3^6 + f cosh3^66. £/ = 3 0, cosh3^6 + sinh3^6 , sinh3^6 + cosh3^6 6 

£� = 3ℎ, 3f + Q 6sinh3^6 + f cosh3^6 , 3f + Q6 cosh3^6 + f sinh3^66 

� = <  £/,  £/  >e= 0 

Ç = <  £/,  £�  >e= −Q 

� = <  £�,  £�  >e= ℎ	 − 2fQ − Q	 

, = ]� Ç Ç � _ = ] 0 −Q −Q ℎ	 − 2fQ − Q	_. 
 

Thus the det , = �� − Ç	 = −Q	 < 0, the surface £3f, ^ 6 is time-like. 

� = £/  ×e  £�|£/  ×e  £�|e 

� = 1|Q| 3Q, ℎ sinh3^6 + ℎ cosh3^6 , ℎ cosh3^6 +  ℎ sinh3^66 

 £// = 3 0, 0, 0 6  £/� = 30 , cosh3^6 + sinh3^6 , sinh3^6 + cosh3^6  6 

 £�� = 30, 3f + Q6 cosh3^6 + f sinh3^6 , 3f + Q 6sinh3^6 + f cosh3^66. 
 Â =< �, £//  >e= 0 

� =< �, £/�  >e=  0 

j =< �, £��  >e= 1|Q|  ℎQ  
,, = ] Â � � j _ = �0 0

0 1|Q|  ℎQ� 

det ,, = Âj − �	 = 0 

Κ = det ,,det , = 0 

� = �j + �Â − 2�Ç23�� − Ç	6 = 0. 
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The Weingarten map is 

¢ =  ]� ÇÇ �_Ï� ] Â �� j_ 

¢ = � 0 − ℎ|Q|0    0   �. 
This matrix is not diagonalizable. Since   � = Κ = 0 and ( = 1   so it is not 

umbical. 

 

(3) The parabolic null cylinder is  

£3f, ^6 = �f + ℎ �−^ + ^�
3  � , ℎ^	, f + ℎ �^ + ^�

3  �� , ℎ > 0. 
£/ = 3 1,0,1 6  

£� = 3−ℎ + ℎ^	, 2^ℎ, ℎ + ℎ^	6 

� = <  £/,  £/  >e= 0 

Ç = <  £/,  £�  >e= −2ℎ 

� = <  £�,  £�  >e= 0 

, = ]� Ç Ç � _ = ] 0 −2ℎ −2ℎ 0 _. 
 

Thus the det , = �� − Ç	 = −4ℎ	  < 0, the surface £3f, ^ 6 is a time-like. 

� = £/  ×e  £�|£/  ×e  £�|e 

� = 12ℎ 3−2ℎ^, −2ℎ^, −2ℎ^ 6 

 £// = 3 0, 0, 0 6 

 £/� = 30, 0, 0 6 

 £�� = 32ℎ^, 2ℎ, 2ℎ^  6 

 Â =< �, £//  >e= 0 

� =< �, £/�  >e=  0 j =< �, £��  >e= −2ℎ 

,, = ] Â � � j _ = ]0 00   −2ℎ _ 

det ,, = Âj − �	 = 0 
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Κ = det ,,det , = 0 

� = �j + �Â − 2�Ç23�� − Ç	6 = 0. 
 

The Weingarten map is 

¢ =  ]� ÇÇ �_Ï� ] Â �� j_ 

¢ = ] 0 10 0_. 
 

This matrix is not diagonalizable. Since   � = Κ = 0 and ( = 1   so it is not 

umbical. 

 

4.3.5 Theorem  

The only totally umbilical surfaces in Lorentz - Minkowski space are a plane, 

these are the pseudosphere or hyperbolic plane. (Lopez, 2014) 
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5. MINIMAL AND MAXIMAL SURFACES  

The study of minimal surfaces started with the more intuitive meaning of 

minimal surfaces, namely surfaces of least area among a family of surfaces having the 

same boundary. Lagrange defined  in 1760 the minimal surfaces as surfaces whose 

mean curvature vanishes. A surface � in ��U is called minimal if and only if the mean 

curvature vector field is equal to zero, so � = 0. 
 

The minimal surfaces in the Lorentz-Minkowski space �� �  with metric   

       F = ���	 + ��		 − ���	 were studied by Kobayashi in 1983. He classified all the 

spacelike minimal – he called them ‘maximal’ because the second variation of volume 

is always negative definite for spacelike surfaces in �� � – rotation surfaces and ruled 

surfaces. 

 

4.4 Minimal Surfaces In �� 

A minimal surface is a surface �  with mean curvature � = 0 at all points    

� ∈ �. The mean curvature is the average of  the principal curvatures. Denote by the 

principal curvatures  ¶� and ¶	, then  

� =  ¶� + ¶	 2  . 
 

A linear transformation from the tangent space of the surface at that point to 

itself  ÈI: GI� → GI�. We use the shape operator to find the mean curvature.           

 

Let a surface � ⊆ ��  be parametrized by � ����34, 56: ? ⊆ ,-	 → �. Then the 

unit normal vector to the surface is  

��� = £/  ×  £�|£/  ×  £�| . 
 

Define �, Ç, � , Â, � and  j as  

� = < � ����Å, � ����Å > 

Ç = < � ����Å, � ����I > 

� = < � ����I, � ����I > 
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Â = <  ���, � ����ÅÅ > 

� = < ���, � ����ÅI > 

 

The shape operator is  

È =  1�� − Ç	 ]�Â − Ç� �� − Çj�� − ÇÂ �j − Ç�_. 
 

 The mean curvature is  

� = �j + �Â − 2�Ç23�� − Ç	6 = 12  ^
Q�h3È6. 
 

5.1.1 Example (Minimal Surface) 

The helicoid of parametrizations  £3f, ^ 6 = 3 f cos3^6 , f sin3^6 , ℎ^ 6, f > ℎ > 0 

£/ = 3 cos3^6 , sin3^6 , 0 6 £� = 3−f sin3^6 , f cos3^6 , ℎ 6 

� = <  £/,  £/ > = 1 

Ç = <  £/,  £� > = 0 

� = <  £�,  £� > = f	 − ℎ	 

, = ]� Ç Ç � _ = ]1 0 0 f	 − ℎ	_. 
 

Thus the det , = �� − Ç	 = f	 − ℎ	 > 0, since f > ℎ > 0 . 
� = £/  ×  £�|£/  ×  £�| 

� = 1√f	 − ℎ	  3ℎ sin3^6 , −ℎ cos3^6 , 0 6 

 £// = 3 0, 0, 0 6 

 £/� = 3− sin3^6 , cos3^6 , 0 6  £�� = 3 −f cos3^6 , −f sin3^6 , 0 6 

 Â = < �, £// > = 0 

� = < �, £/� > =  −ℎ√f	 − ℎ	 

j = < �, £�� > = 0 



96 
 

,, = ] Â � � j _ =
×
ØÙ 0 −ℎ√f	 − ℎ	−ℎ√f	 − ℎ	 0 Ú

ÛÜ 

det ,, = − ℎ	
f	 − ℎ	 

Κ = det ,,det , = − ℎ2
3f2 − ℎ262 

� = �j + �Â − 2�Ç23�� − Ç	6 = 0. 
 � = 0 ⇒ £3f, ^ 6  is minimal surface.  

 

In conclusion, all of the helicoids variety are minimal surfaces. 

 

5.1.2 Isothermal Patch  

If  � = � and Ç = 0 then � ����34, 56: ? → �  is a patch such that  it is called an 

isothermal patch. We can say that geometrically means � ����Å  and � ����I  are orthogonal, 

therefore  angles are preserved � ���� stretches the patch the same amount in the  4 and  5 

directions.  

 � ���� is an isothermal patch ⇒ � = �j + �Â23�	6 = j + Â2�  . 
 

 Any surface can be parametrized using an isothermal patch. Every minimal 

surface ,-� has locally isothermal parametrization. (Oprea, 2007) 

 

5.1.2.1 Theorem  

If  � ����34, 56 is isothermal, then ∆�� = 32��6. ���. 3Oprea, 20076 

 

Proof:  

We know that ∆� =  �ÅÅ + �II   
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�ÅÅ = �Å2�  �Å − �I2�  �I + Â��� 

�ÅI = �I2�  �Å − �Å2�  �I + ���� 

�II = − �Å2�  �Å + �I2�  �I + j��� 

 

Since � ���� is isothermal � = � and Ç = 0  ∆� = �ÅÅ + �II 

∆� = Ò�Å2�  �Å − �I2�  �I + Â��� Ó + Ò − �Å2�  �Å + �I2�  �I + j��� Ó 

∆� = 3Â + j6. ��� 

 

We know that  

� = j + Â2�  ⇒ Â + j = 2��. 
∆�� = 3 ��6. ���. (Oprea, 2007) 

 

5.1.2.2 Corollary  

A surface �: � ����34, 56 = J ��34, 56, �	34, 56, ��34, 56K,  with isothermal 

coordinates is minimal if and only if ��, �	 and  �� are all harmonic. (Oprea, 2007) 

 

Proof:  

(⇒ ) If  � is minimal, then  � = 0 ⇒ ∆�� = 32��6. ��� = 0 ⇒ ��, �	, �� are 

harmonic. 

(⇐) ��, �	, �� are harmonic ⇒ ∆�� = 0 ⇒ 32��6. ��� = 0.  �����  is unit normal 

vector, So ��� ≠ 0 and  � = < � ����Å, � ����Å > =  |� ����Å|	 ≠ 0. Therefore � = 0 ⇒ � is 

minimal.  

 

 For a curve (í 6 parametrized by arc length,  

� =  | �G�f  | =  f�	í�f	  f. 
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Because � ����34, 56 is not parametrized by arc length, the principle curvatures are 

not exactly the magnitude of the second derivatives | � ����ÅÅ | and | � ����II |, but they are 

certainly related. 

��ÅÅM + ��IIM = 0 for Z ∈ {1, 2, 3 } ⇒ ¶� + ¶	 = 0 and vice versa. 

 

5.1.3  Transition to Holomorphic Functions from Isothermal Patches 

Let �  be a minimal surface described by isothermal patch � ����34, 56 . Let      

   � = 4 + Y5 and  � ̅ = 4 − Y5 , so then  uu� = 12 Ò uu4 − Y uu5Ó   and  uu� ̅ = 12 Ò uu4 + Y uu5Ó . 
 

Notice that  � + � ̅ = 24  and  � − � ̅ = 25Y, so  

4 =  � + � ̅2    and   5 =  � − � ̅2Y  . 
 

This means that  � ����34, 56 may be written as  

� ����3�, � ̅6 = J ��3�, � ̅6, �	3�, � ̅6, ��3�, � ̅6K,  
and the derivative of   Z�` components is  

u�M
u� = 12 J�ÅM − Y�IMK. 

 

Define  

n =  u��u� = 3�A� , �A	 , �A�6  
3n6	 = 3�A�6	 + 3�A	6	 + 3�A�6	. 

 

Then  

3nM6	 = 3�AM6	 = 3 �	 J�ÅM − Y�IMK 6	 = �ú 33�ÅM 6	 − J �IM6	 − 2Y�ÅM �IM  K,  so 

3n6	 =  14V33�ÅM 6	 − J �IM6	 − 2Y�ÅM �IM  K�
M��

 

3n6	 =  14 3|�Å ������|	 −  |�I ������|	 − 2Y �Å������.  �I�����6 

3n6	 =  14 3� − � − 2YÇ6. 
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Since � ���� is isothermal,  

3n6	 =  �ú 3� − �6 = 0. (Oprea 2007) 

 

5.1.3.1 Lemma  

uu� ̅ � u��u�� = 14∆�.���� 3Oprea 20076, 3Stein and Shakarchi 20036  
 

Proof: 

uu� ̅ � u��u�� =  uu� ̅�12�u��u4 − Y u��u5 �� 

uu� ̅ � u��u�� = 12h12 � uu4 �u��u4 − Y u��u5� + Y uu5 �u��u4 − Y u��u5��i 

 uu� ̅ � u��u�� =  14 �u	��u4	 − Y u	��u4u5 + Y u	��u4u5 +  u	��u5	 � 

 uu� ̅ � u��u�� =  14 �u	��u4	 +  u	��u5	 � 

 uu� ̅ � u��u�� =  14∆��. 
 

5.1.3.2 Theorem  

Assume  �  is a surface with patch � ����.  Let   n�� = s¤�sA   and suppose 3n6	 = 0  

(i.e., � ���� is isothermal ). � is minimal ⟺ each nM  is holomorphic. (Oprea, 2007) 

 

Proof: 

� is holomorphic ⟺sjsA̅ = 0  3Stein and Shakarchi, 20036 

 
3⇒⇒⇒⇒)   � is minimal ⇒  �M  is harmonic for Z ∈ {1, 2, 3 }.  

 �M  harmonic ⇒  ∆�� = 0 ⇒ 14∆�� = 0 ⇒ uu� ̅ � u��u�� = 0  by the 5.1.2.1 lemma  
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Because 
ssA̅ ] s¤�sA_ = 0, nM  is holomorphic.  

 
3⇐6 nM  is holomorphic ⇒    sk����sA̅ = 0. 

  un��u� ̅ = 0 ⇒ uu� ̅ � u��u�� = 14∆�� = 0 ⇒ ∆�� = 0 ⇒ ∀ xX harmonic ⇒ � is minimal.  
 

5.1.3.3 Corollary  

�M3�, � ̅6 =  �M + 2-h3*nM�� 6 . 3Oprea 20076  
 

Proof:  

� = 4 + Y5 ⇒ �� = �4 + Y�5  
 nM�� =  12 J�ÅM − Y�IMK3�4 + Y�56 = 12 J�ÅM �4 + �IM�5K + 12 Y3�ÅM �5 − �IM�46  
 nlM�� ̅ =  12 J�ÅM + Y�IMK3�4 − Y�56 = 12 J�ÅM �4 + �IM�5K − 12 Y3�ÅM �5 − �IM�46 

 

Then we have  

 ��M = u�M
u� �� + u�M

u� ̅ �� ̅ 
��M =  nM�� +  nlM�� ̅ 

��M = 12 J�ÅM �4 + �IM�5K + 12 J�ÅM �4 + �IM�5K 

��M = �ÅM �4 + �IM�5 

��M = 2-hJ nM��K  ⇒  �M = 2-h Ò*  nM��Ó + �M    , cX  is constant.  
 

5.1.4 Weierstrass-Enneper Representations of Minimal Surfaces  

We will give the Weierstrass-Enneper Representation for minimal surfaces 

might be established.  
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5.1.4.1 Theorem  (The Weierstrass-Enneper Representation I )  

If  �  is holomorphic on a domain �, F  is meromorphic on , and �F	  is 

holomorphic on �, then a minimal surface is defined by  

� ����3�, � ̅6 = J ��3�, � ̅6, �	3�, � ̅6, ��3�, � ̅6K , 

 where  

��3�, � ̅6 = -h Ò *12 �31 − F	6 �� Ó 

�	3�, � ̅6 =  -h Ò * Y2 �31 + F	6 �� Ó 

��3�, � ̅6 =  -h Ò *�F �� Ó. 
(Oprea, 2007), (Weinstein, 1996) 

 

Proof:  

We know that � is a minimal surface defined by  isothermal parametrizations 

� ����3�, � ̅6. Since � is minimal we know that nMs are complex analytic functions. Since � ���� is isothermal we have  

3n6	 =  �ú ∑ 33�ÅM 6	 − J �IM6	 − 2Y�ÅM �IM  K�M�� = 0. 

 

Since � is minimal we have  

3n�6	 + 3n	6	 + 3n�6	 = 0 

3n�6	 + 3n	6	 = −3n�6	 

3n� + Yn	6. 3n� − Yn	6 = −3n�6	. 

 

For non-zero n� − Yn	. Let  � = n� − Yn	 and   F =  k$j .  3n� + Yn	6. 3n� − Yn	63n� − Yn	6 = −3n�6	
3n� − Yn	6 

3n� + Yn	6 =  −3n�6	
3n� − Yn	6 

3n� + Yn	6 = − n�mjn . n�
3n� − Yn	6�������j

 

3n� + Yn	6 = −�F. F =  −�F	 
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We have n� − Yn	 = �  and n� + Yn	 = −�F	 

3n� + Yn	6 + 3n� − Yn	6 = −�F	 + � ⇒ 2n� = �31 − F	6 

n� = 12 �31 − F	6 ⇒ ��3�, � ̅6 = -h Ò *12 �31 − F	6 �� Ó  
3n� + Yn	6 − 3n� − Yn	6 = 3−�F	6 − � ⇒ 2Yn	 = −�31 + F	6 

n	 = 12 Y�31 + F	6 ⇒ �	3�, � ̅6 =  -h Ò * Y2 �31 + F	6 �� Ó 

F = n�
� ⇒ n� = �F ⇒ ��3�, � ̅6 =  -h Ò *�F �� Ó. 

 

5.1.4.2 Theorem  (The Weierstrass-Enneper Representation II ) 

For any holomorphic function Ç3»6, a minimal surface is defined by  

� ����3�, � ̅6 = J ��3�, � ̅6, �	3�, � ̅6, ��3�, � ̅6K 

where  

��3�, � ̅6 = -h Ò *31 − »	6 Ç3»6�» Ó 

�	3�, � ̅6 =  -h Ò * Y31 + »	6  Ç3»6�»Ó 

��3�, � ̅6 =  -h Ò * 2» Ç3»6�» Ó.   
(Oprea, 2007), (Weinstein, 1996) 

 

Proof:  

Suppose in The Weierstrass-Enneper Representation I using only one  

holomorphic function that is a composition of functions. F  is holomorphic with 

FÏ� is also  holomorphic ⇒ we consider F as a new complex variable » = F with 

�» = F@�� ]which means ìoìA = ìnìA _. Define 

Ç3»6 = �F@    and obtain  Ç3»6�» = ���.  
 

Substitute » for F  and Ç3»6�»  for  ���  in the Weierstrass-Enneper 

Representation I , we get  
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��3�, � ̅6 = -h Ò *31 − »	6 Ç3»6�» Ó 

�	3�, � ̅6 =  -h Ò * Y31 + »	6  Ç3»6�»Ó 

��3�, � ̅6 =  -h Ò * 2» Ç3»6�» Ó. 
 

5.1.4.2.1 Example  

The most common parametrization for Enneper’s surface is  

� ����34, 56 = Ò 4 − 13 4� + 45	, −5 − 4	5 + 13 5�, 4	 − 5	Ó. 
 

First show that this is an isothermal patch. ��Å = 31 − 4	 + 5	, −245, 24 6 

��I = 3245, −1 − 4	 + 5	, −25 6 

� = < ��Å , ��Å > = 1 + 24	 + 25	 + 24	5	 + 4ú + 5ú  
� = < ��I , ��I > = 1 + 24	 + 25	 + 24	5	 + 4ú + 5ú  

Ç =< ��I , ��I > = 24531 − 4	 + 5	6 − 2453−1 − 4	 + 5	6 − 445 = 0. 
 

Because � = �  and = 0, � ����34, 56  is isothermal. Let � = 4 + Y5  and              

n�� = ��Å − Y��I. Then  

n�� = 31 − 4	 + 5	, −245, 24 6 − Y3245, −1 − 4	 + 5	, −25 6 

n�� = J31 − 4	 + 5	 − Y2456, −245 − Y3−1 − 4	 + 5	6, 324 + Y256K 

n�� = J1 − 34	 + Y245 − +5	6, −245 + Y + Y4	 − Y5	, 234 + Y56K 

n�� = 31 − 34 + Y56	, Y31 + 4	 + Y245 − 5	6, 234 + Y56 6 

n�� = 31 − 34 + Y56	, Y31 + 34 + Y56	 6, 234 + Y56 6  
n�� = 31 − �	, Y31 + �	6, 2�  6 

 

Note that n�3�6 = 1 − �	 ,  n	3�6 = 1 + �	,  and n�3�6 = 2� are all 

holomorphic. (Koreavar, 2002)  
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Now we will examine the reversal. We know n�� = ��Å − Y��I   and                   

n�3�6 = 1 − �	 ,  n	3�6 = 1 + �	,  and n�3�6 = 2�, and we want � ����34, 56 to be real-

valued. Let  

(1)  �� = -h3 p31 − �	6 �� 6 

�� = -h Ò� − 13 ��Ó 

 �� = -h34 + Y5 − 13 34 + Y56�6 

�� = -h �4 + Y5 − 13 34� + 34	5Y − 345	 + Y5�6� 

 �� =  4 − 13 4� + 45	 

(2)  �	 = -h3 p Y31 + �	6 �� 6 

�	 = -h Ò Y Ò� + 13 ��Ó Ó 

�	 = -h 3Y 34 + Y5 +  13 34 + Y56�66  
�	 = -h � 4Y − 5 + 13 34� + 34	5Y − 345	 + Y5�6� 

�	 = − 5 + 13 5� − 45	 

(3)  �� = -h 3 p2��� 6  
  �� = -h 3�	6 

  �� = -h 334 + Y5 6	6 

  �� = -h 3 4	 + 245Y − 5	6 

  �� =  4	 − 5	 

 

We get, 

� ����34, 56 = Ò 4 − 13 4� + 45	, −5 − 4	5 + 13 5�, 4	 − 5	Ó 

which is Enneper’s surface. (Koreavar, 2002) 

 

The enneper’s surface may be obtained from � = 1 and  F = �.  
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Figure 5.1. Enneper's Minimal Surface  
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5.1.4.2.2 Example  

A helicoid may be obtained from Ç3»6 =  L	oï  where » =  hA. (Oprea, 2007)  

 

Notice that  » =  hA , »Ï� = ÂgF 3z6  , and  Ç3hA6 =  L	�ïq  are all holomorphic 

on the domain of  Log 3z6. I have used Log (z)  instead of  µgF3 �6  because Log (z)  is 

the principal branch of the log and branches of the log are holomorphic, but log itself 

is not.  

(1) �� = -h ] p31 − »	6 L	oï �» _ 

�� = -h Ò −Y2» − Y2 » Ó 

�� = -h �− Y2 3hÏA + hA6� 

�� = -h �− Y2 JhÏ3Å¥LI6 + h3Å¥LI6K� 

  �� = -h �− Y2 ]hÏÅJcos3−56 + YfY�3−56K + hÅJcos356 + YfY�356K_� 

�� = -h Ò− Y2 hÏÅ cos3−56 + 12 hÏÅ sin3−56 − Y2 hÅ cos356 + 12 hÅ sin356Ó 

  �� = 12 hÏÅ sin3−56 + 12 hÅ sin356 

(2) �	 =  -h ] p Y31 + »	6 L	oï �» _ 

 �	 =  -h Ò 12» − 12 »Ó 

�	 = -h �12 3hÏA − hA6� 

 �	 = -h �12 JhÏ3Å¥LI6 + h3Å¥LI6K� 

�	 = -h �12 ]hÏÅJcos3−56 + YfY�3−56K − hÅJcos356 + YfY�356K_� 

 �	 = -h Ò12 hÏÅ cos3−56 + Y2 hÏÅ sin3−56 − 12 hÅ cos356 + Y2 hÅ sin356Ó 

 �	 = 12 hÏÅ cos3−56 − 12 hÅ cos 356 
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(3) �� = -h ] p2» ] L	oï_ �» _ 

�� =  -h3Y ÂgF | » | 6 

�� =  -h3Y ÂgF | hA | 6 

�� =  -h3Y�6 

�� =  -hJY34 + Y5 6K 

�� =  -h3Y4 − 56 

�� = −5  
 

So � ����34, 56 = ] �	 hÏÅ sin3−56 + �	 hÅ sin356 , �	 hÏÅ cos3−56 − �	 hÅ cos 356 , −5_ 

is an isothermal patch for the helicoid. 
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Figure 5.2. Helicoid of Minimal Surface 
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5.2 Maximal Surface In ��� 

A spacelike surface in � = 0 is called  a maximal surfaces.  

 

We will give Weierstrass-Enneper representation for these surfaces and also 

explain with examples. 

 

5.2.1 Weierstrass-Enneper Formulas for Maximal Surfaces ��� 

For a space-like surface in ���, the Gauss map is described to be a mapping 

which appoints to each point of the surface the unit normal vector at the point.  

 

Therefore  

ℍ	 = { 3� , �, �6  ∈ ���| �	 + �	 − �	 = −1, � > 0 } , 
which has constant negative curvature  −1  according to the induced metric. We 

describe a stereographic mapping  D for ℍ	  

D: �\{|�| � 1} → ℍ	 ;   � → � −2 -h �|�|	 
 1  , −2 ,´ �|�|	 
 1  , |�|	 } 1|�|	 
 1 �  and D3∞6 = 30,0,16. 
 

 D3�6 is the intersection of ℍ	  and the line joining 3-h �, ,´ �, 0 6  and the    

"north pole"   30,0,16 of ℍ	. (Kobayashi 1983) 

 

5.2.1.1 Theorem (Weierstrass-Enneper Formula of 1st Kind ) 

Any maximal spacelike surface in ��� is represented as  

n3�6 = -h * Ò12 �31 + F	6, Y2 �31 − F	6, −�F Ó ��, � ∈ �,    3∗6 

where �  is a domain in �, and  �  (respectivelyF ) is a holomorphic (respectively 

meromorphic ) function on � such that |F3�6| 9 1 for � ∈ �. Morever,  

(1) The Gauss map � is given by  �3�6 = DJF3�6K, where D is a map defined D: �\{|�| � 1} → ℍ	 ;    
  � → � −2 -h �|�|	 
 1  , −2 ,´ �|�|	 
 1  , |�|	 } 1|�|	 
 1 �  and D3∞6 = 30,0,16 ; 
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(2) The induced metric is  

�f = �|�|. |1 
 |F|	2 � |��| 
(3) The Gauss curvature  is  

� � H 4|F@||�|31 
 |F|	6	s	.  
(Kobayashi, 1983) 

 

Proof: 

Suppose that n: � → ���  is a maximal space-like surface. From the 

maximality ,∆n = 0 where ∆  is the Laplacian defined  by the induced metric on 

�, which is a positive definite Riemannian metric. In particular,  � can not be a closed 

surface. Thus, taking the universal covering of  �.We  might suppose � is domain in ₵ and that  n is a conformal mapping. Set  

2uAn = 3 n�, n	, n�6  where uu� = 12 Ò uu4 − Y uu5Ó , � = 4 + Y5.  
 

Then, the conformality of  n  implies that 3n�6	 + 3n	6	 − 3n�6	 = 0, and ∆n = 0 implies that uAu uAn = 0, i.e., nLare holomorphic. 

3n�6	 + 3n	6	 − 3n�6	 = 0 

3n�6	 + 3n	6	 = 3n�6	 

3n� + Yn	6. 3n� − Yn	6 = 3n�6	 

 

Let  � = n� − Yn	 and   F = − k$j .  3n� + Yn	6. 3n� − Yn	63n� − Yn	6 = 3n�6	
3n� − Yn	6 

3n� + Yn	6 =  3n�6	
3n� − Yn	6 

3n� + Yn	6 = −3n�6.� −n�
n� − Yn	� 

3n� + Yn	6 = �F. F =  �F	 

 

We have n� + Yn	 =  �F	  and n� − Yn	 = � 

3n� + Yn	6 + 3n� − Yn	6 = �F	 + � ⇒ 2n� = �31 + F	6 
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2uAn = 3 n�, n	, n�6 

n� = 12 �31 + F	6 ⇒ n�3�6 = -h Ò *12 �31 + F	6 �� Ó 

3n� + Yn	6 − 3n� − Yn	6 = 3�F	6 − � = �F	 − � ⇒ 2Yn	 = �31 − F	6 

n	 = 12 Y�31 − F	6 ⇒ n	3�6 =  -h Ò * Y2 �31 − F	6 �� Ó 

F = −n�
� ⇒ n� = −�F ⇒ n�3�6 =  -h Ò *−�F �� Ó. 

 

Holomorphic function Ç3»6, a maximal surface is  

n�3�6 = -h Ò *31 + »	6 Ç3»6�» Ó 

 n	3�6 = -h Ò * Y31 − »	6  Ç3»6�»Ó 

n�3�6 =  -h Ò *−2» Ç3»6�» Ó.   
 

Suppose in the Weierstrass-Enneper Representation of the  1v[ kind using only 

one holomorphic function that is a composition of functions.F is holomorphic  and 

with FÏ�also  holomorphic ⇒ we consider F as a new complex variable » = F with 

�» = F@�� ]which means ìoìA = ìnìA _. Define 

Ç3»6 = �2F@    and obtain  Ç3»6�» = �2 ��.  
 

Substitute » for F  and Ç3»6�»  for  ���  in the Weierstrass-Enneper 

Representation of the 1v[  kind then we get  

n�3�6 = -h Ò *  31 + »	6 Ç3»6�» Ó 

 n	3�6 = -h Ò * Y31 − »	6  Ç3»6�»Ó 

n�3�6 =  -h Ò *−2» Ç3»6�» Ó.   
(1) Unit normal vector is defined as  

� = nÅ  ×e  nI|nÅ  ×e  nI|e . 
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nÅ  ×e  nI =  w Y Z −¶2 -h n� 2 -h n	 2 -h n�2 ,´ n� 2 ,´ n	 2 ,´ n�w 
  nÅ  ×e  nI = −43-h n	,´ n� − -h n�,´ n	, -h n�,´ n� − -h n�,´ n�, -h n	,´ n� − -h n�,´ n	6   nÅ  ×e  nI = −43 ,´3n	. nl�6, ,´3n�nl�6, ,´ 3n	nl�6 6  

 

We know that  n� = �	 �31 + F	6, n	 = �	 Y�31 − F	6, and  n� = −�F 

n	nl� = 12 Y�31 − F	6. J−�Fllll K = − 12 Y�31 − F	6. J�.̅ F̅K 

n	nl� =  − 12 Y�. �u 31 − F	6. F̅ = − Y2 |�|	3F̅ 
 F̅F	6 
n	nl� � 12 |�|	3
Y. F̅ + Y. F̅. F. F6 = 12 |�|	3 −Y. F̅ + YF̅|F|	6  

,´3n	. nl�6 = ,´ x12 |�|	3 −Y. F̅ + YF̅|F|	6y 
,´3n	. nl�6 = 12 |�|	,´¾3 −Y. F̅ + YF̅|F|	6¿ 

,´3n	. nl�6 = 12 |�|	¾,´3
Y. F̅6 + |F|	. ,´3Y. F̅6] 
,´3n	. nl�6 = 12 |�|	¾
-h 3F6 + |F|	. -h3F6] 

,´3n	. nl�6 = 12 |�|	. -h3F6[|F|	 
 1¿ 
n�nl� �  −�F x12 �31 + F	6llllllllllllly =  − 12 �Fz �.̅ 31 + F	6lllllllllll { 
n�nl� = − 12 �Fz �.̅ 31 + F̅	6{ = − 12 �. � ̅[ F. 31 + F̅	6 ] 
n�nl� = − 12 |�|	¾ F + F. F̅	 ] =  − 12 |�|	¾ F + F. F̅. F̅] 

n�nl� = − 12 |�|	3F } F.u |F|	6 
,´3 n�nl�6 = ,´ x− 12 |�|	3F } F.u |F|	6y 
,´3 n�nl�6 = − 12 |�|	,´ [3F + F.u |F|	6¿ 

,´3 n�nl�6 = − 12 |�|	¾ ,´ 3F6 + |F|	. ,´ 3F u 6] 
,´3 n�nl�6 = − 12 |�|	¾ ,´ 3F6 − |F|	. ,´ 3F6] 
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,´3 n�nl�6 = 12 |�|	¾
,´ 3F6 + |F|	. ,´ 3F6] 
,´3 n�nl�6 = 12 |�|	,´ 3F6[ |F|	 
 1 ] 

n	nl� = Y2  �31 − F	6. x12 �31 + F	6llllllllllllly = Y4  �31 − F	6. z �.̅ 31 + F	6lllllllllll {  
n	nl� = Y4  �. �.̅ 31 − F	631 + F̅	6 =  Y4 |�|	31 } F̅	 
 F	 
 F	. F̅	6 

n	nl� = Y4 |�|	31 } F̅	 
 F	 
 |F|ú 6 

n	nl� = 14 |�|	3Y } Y. F̅	 − Y. F	 − Y. |F|ú 6 

,´3 n	nl�6 = ,´ x 14 |�|	3Y } Y. F̅	 − Y. F	 − Y. |F|ú 6y 
,´3 n	nl�6 = 14 |�|	¾ ,´ 3Y + Y. F̅	 − Y. F	 − Y. |F|ú 6] 

,´3 n	nl�6 = 14 |�|	¾ ,´ 3 Y6 + ,´3Y. F̅	6 − ,´3Y. F	6 − |F|ú. ,´3Y6 ] 
,´3 n	nl�6 = 14 |�|	¾ 1 + ,´3F6 − ,´3F6 − |F|ú. 1 ] 

,´3 n	nl�6 = 14 |�|	31 
 |F|ú 6 

,´3 n	nl�6 = − 14 |�|	3|F|ú 
 1 6 

   ,´3 n	nl�6 = − 14 |�|	. [ |F|	 
 1 ]. [ |F|	 } 1 ] 
  nÅ  ×e  nI = −43 ,´3n	. nl�6, ,´3n�nl�6, ,´ 3n	nl�6 6 

   nÅ  ×e  nI =  |�|	. [ |F|	 
 1 ]. 3−2 -h3F6, −2 ,´ 3F6,  |F|	 } 1  6 

 

We use the notation < �, � >e= ( = −1 since the surface is space-like. Here   

|nÅ  ×e  nI|e �  ·−(3�� − Ç	6 = ·−ϵdet3,6 = ·det3,6 = ·3�. �6 = �. 
 

Since  n34, 56 is isothermal. We define  |nÅ  ×e  nI|e � � � «	 and we shall 

find  � = «	. 

n = u�u� = Ò u��u� , u�	u� , u��u�  Ó = 3n�, n	, n�6  
|n|	 � |n�|	 } |n	|	 
 |n�|	   

Since x is isothermal parametrization  
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� = |�Å|	 � |�I|	 � �  and  Ç = < �Å, �I  >e= 0. 
 

Let  «	 = |�Å|	 � |�I|	 

|n|	 � |n�|	 } |n	|	 
 |n�|	 � |u��u� |	 } |u�	u� |	 
 |u��u� |	   
|n|	 � |12 3u��u4 
 Y u��u5 6|	 } |12 3u�	u4 
 Y u�	u5 6|	 
 |12 3u��u4 
 Y u��u5 6|	  
 

We note that  

|12 3u�wu4 − Y u�wu5 6|	 =  x12 3u�wu4 − Y u�wu5 6y . x12 3u�wu4 + Y u�wu5 6y. 
|12 3u�wu4 − Y u�wu5 6|	 = 14 x3u�wu4  6	 + 3u�wu5  6	y    for  ¶ = 1, 2, 3 

|n|	 �  V 14 x3u�wu4  6	 + 3u�wu5  6	y�
w��

= 14 |�Å|	 } 14  |�I|	 

|n|	 � 14  � + 14  � =  12 «	 

«	 = 2|n|	 � 2 3|n�|	 } |n	|	 
 |n�|	6  
 

We will use 

n� = �	 31 + »	6Ç3»6, n	 = �	 Y31 − »	6Ç3»6, n� = −»Ç3»6. 

 

 Then letting Ç = JÇ3»6K 

«	 = 2 Ò | 12 31 } »	6Ç3»6|	 } | 12 Y31 
 »	6Ç3»6|	 
 |
»Ç3»6|	 Ó 

«	 = 2. 14 |Ç|	 3 |31 } »	6|	 } |Y31 
 »	6|	 
 4|
»|	6 
«	 � 12  |Ç|	3 31 + »	631 + » ̅	6 + 31 − »	631 − » ̅	6 − 4|»|	 6 

«	 =  12 |Ç|	3 1 + 3»	 + » ̅	6 + |»|ú } 1 
 3»	 } » ̅	6 } |»|ú 
 4|»|	 6 

«	 = 12 |Ç|	32 
 4|»|	 } 2|»|ú6 
«	 �  |Ç|	31 
 2|»|	 } |»|ú6 
«	 �  |Ç|	31 
 |»|	6	 � �  
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� = nÅ  ×e  nI|nÅ  ×e  nI|e 

 nÅ  ×e  nI =  |�|	. [ |F|	 
 1 ]. 3−2 -h3F6, −2 ,´ 3F6,  |F|	 } 1  6 

|nÅ  ×e  nI|e � � �  |Ç|	31 
 |»|	6	  =  |Ç3»6|	31 
 |»|	6	 

|nÅ  ×e  nI|e � � � |�|	¾ |F|	 
 1 ][ |F|	 
 1 ] 
|nÅ  ×e  nI|e � |�|	¾ |F|	 
 1 ][ |F|	 
 1 ] 

� =  |�|	. [ |F|	 
 1 ]|�|	¾ |F|	 
 1 ][ |F|	 
 1 ] 3−2 -h3F6, −2 ,´ 3F6,  |F|	 } 1  6 

 � = �−2 -h3F6 |F|	 
 1  , −2 ,´ 3F6 |F|	 
 1  ,  |F|	 } 1 |F|	 
 1 � 

 

So  �3�6 = DJF3�6K 

 

(2) The induced metric is given by 

�f	 = ��4	 + 2Ç�4�5 + ��5	 

�f	 = �3�4	 + �5	6 since � = � and Ç = 0 

�f	 = «	|�»|	 

 

We know that  «	 �  |Ç|	31 
 |»|	6	  
        �f	 =  |Ç|	31 
 |»|	6	 |�»|	 

 

We defined » � F with �» = F@�� ]which means ìoìA = ìnìA _  and  

       Ç3»6 = �2F@    and obtain  Ç3»6�» = �2 ��. 
      �f	 = |�|	4 31 
 |F|	6	 |��|	 

 

So  
�f = �|�|. |1 
 |F|	|2 � |��|. 

 

(3) We know that Gauss Theorem Egregium. The Gauss curvature � depends 

on the metric  �, �, Ç = 0: 
� =  − 12√�� � uu5 Ò �I√��Ó + uu4 Ò �Å√��Ó�. 
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We know that is isothermal � =  �, Ç = 0 and «	 = �. 
� =  − 12√  «	«	 � uu5 � 3«	6I√«	«	 � + uu4 � 3«	 6Å√«	«	 �� 

� =  − 12«	 � uu5 � 3«	6I√«	«	 � + uu4 � 3«	 6Å√«	«	 �� 

� =  − 12«	 � u	
u5	 3,� «	 6 + u	

u4	 3,� «	 6� 

� =  − 12«	 3∆ ,� «	  6 

� =  − 1«	 3∆ ,� «  6 

«	 = |Ç|	31 
 |»|	6	  ⇒  « =  |Ç|. |1 
 |»|	| 
� � 
 1|Ç|	31 
 |»|	6	 3 ∆ ,�3|Ç|. |1 
 |»|	|6 6 

� = −∆ ,�|Ç| } ∆ ,�3|1 
 |»|	|6|Ç|	31 
 |»|	6	  

 

We know that  

∆ò � 4 � uu� ̅ Ò uℎu�Ó� 

∆ ,�|Ç| �  4 � uu» ̅ � u3,�|Ç|6u» �� � 4 uu» ̅  � u3,�3Ç. Çl6� 	� 6u» � 

 ∆ ,�|Ç| � 2 uu» ̅ � uJ,�3Ç. Çl6Ku» � =  2 uu» ̅ � u3,� Ç + ,� Çl6u» � 

 ∆ ,�|Ç| � 2 uu» ̅ �u3,� Ç6u» + u3,� Çl6u» � 

 ∆ ,�|Ç| � 2 uu» ̅ �ÇoÇ } ÇloÇl� 

Since Ç is holomorphic, then Çl can not be holomorphic. (Oprea, 2007)  

 

Thus, 3Çlo6 = 0. this implies that  

   ∆ ,�|Ç| � 2 uu» ̅ ÒÇoÇÓ � 0 
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Since, Ço, and, hence, }̂̂ are holomorphic, we also have that  

∆ ,�3|1 
 |»|	|6 �  4 � uu» ̅ � u3,�3|1 
 |»|	|66u» �� 

∆ ,�3|1 
 |»|	|6 �  4 uu» ̅  � u3,�31 − ». » ̅66u» � 

∆ ,�3|1 
 |»|	|6 �  4 uu» ̅  Ò− » ̅ 1 − |»|	Ó 

∆ ,�3|1 
 |»|	|6 �  −4�1 − |»|	 } ». » ̅ 31 − |»|	6	 � 

∆ ,�3|1 
 |»|	|6 �  −4�1 − |»|	 }  |»|	 31 − |»|	6	 � 

∆ ,�3|1 
 |»|	|6 �  Ò −4 31 − |»|	6	Ó 

� � 
∆ ,�|Ç| } ∆ ,�3|1 
 |»|	|6|Ç|	31 
 |»|	6	  

� � 
0 +  ] Ïú 3�Ï|o|ï6ï_  
|Ç|	31 
 |»|	6	  

� � 4  |Ç|	31 
 |»|	6ú �  4  |Ç3»6|	31 
 |»|	6ú 

 

We defined » � F with �» = F@�� ]which means ìoìA = ìnìA _ and  

Ç3»6 = �3�62F@3�6    and obtain  Ç3»6�» = �2 �� 

� = 4  ~ j3A6	nû3A6~	 31 − |F3�6|	6ú �  4.4 |F@3�6|	|�3�6|	31 
 |F3�6|	6ú 

� �  � 4|F@3�6||�3�6|31 
 |F3�6|	6	�	. 
 

As an immediate consequence.  
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5.2.1.2 Theorem (Weierstrass-Enneper Formula of   º� Kind ) 

Any maximal space-like surface in ��� is represented as  

n3�6 = -h *�12 �3F	 + 16, Y�F, 12 �3F	 − 1 6�  ��, -h F ≠ 0,   3∗∗6 

The Gauss map � is  

�3�6 =  D ]3�Ïn63�¥n6_. (Kobayashi, 1983) 

 

Proof:  

Replace � and F  in 3∗6 by  

�31 + F6	 2  and     31 − F631 + F6 , respectively . 
n� = 12 �31 + F	6 = 12��31 + F6	 2 � . �1 + �31 − F631 + F6�	� 

n� = 14 3� 31 + F6	6.�231 + F	631 + F6	 � =  12 �3F	 + 16. 
n	 = 12 Y�31 − F	6 = 12 Y ��31 + F6	 2 � . �1 − �31 − F631 + F6�	� 

n	 = 12 Y ��31 + F6	 2 � . Ò 4F31 + F6	Ó = Y�F 

n� = −�F =  − ��31 + F6	 2 � .�31 − F631 + F6� =  12 �3F	 − 1 6. 
 

5.2.2 Examples Of Maximal Surfaces 

5.2.2.1 Example  

The first example of maximal surfaces in ��� is a space-like plane. The only 

complete maximal surface in ��� is plane with  F is �g�f^Q�^ Y�   3∗6  or 3∗∗6 .           

(Calabi 1970, Cheng and Yau 1976) 
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5.2.2.2 Example (Enneper’s Surface of 1st Kind)  

Set � = 2, F = �  and � = � \{ |�| < 1 } in  

n3�6 = -h p3�	 �31 + F	6, L	 �31 − F	6, −�F 6��, � ∈ �  where � = 4 + Y5. 
n3�6 = -h *312 231 + �	6, Y2 231 − �	6, −2� 6�� 

n3�6 = -h *331 + �	6, Y31 − �	6, −2� 6��. 
n� = -h Ò *3�	 + 16 �� Ó 

n� = -h Ò� + 13 ��Ó = -h Ò4 + Y5 +  13 34 + Y56�Ó  
n� = -h Ò 4 + Y5 + 13 34� + 34	5Y − 345	 − Y5�6 Ó 

n� = Ò 4 − 45	 + 13 4� Ó 

n	 = -h Ò * Y31 − �	6 �� Ó 

n	 = -h �Y Ò� − 13 ��Ó� = -h �Y Ò4 + Y5 − 13 34 + Y56�Ó�  
n	 = -h �Y �4 + Y5 − 13 34� + 34	5Y − 345	 − Y5�6�� 

n	 = -h �4Y − 5 − 13 34�Y − 34	5 − 345	Y + 5�6� 

n	 = Ò−5 + 4	5 − 13 5�Ó 

n� = -h Ò *−2� �� Ó = -h 3−�	6 = -h 3 − 34 + Y56	6  
n� = -h 3 −4	 − 24Y5 + 5	 6 

n� = 35	 − 4	 6 

We have a maximal surface given by  

n 3�6 =  Ò 4 − 45	 + 13 4� , −5 + 4	5 − 13 5�, 5	 − 4	 Ó    where � = 4 + Y5 

(Kobayashi, 1983)   
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Figure 5.3. Enneper's Surface of the ��þ Kind 
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5.2.2.3 Example (Enneper’s Surface of   º� Kind )   

This given by putting � = 2í, F = � in  

n3�6 = -h *�12 �3F	 + 16, Y�F, 12 �3F	 − 1 6�  ��, -h F ≠ 0,    
where í is a non-zero real constant.  

n3�6 = -h *�12 . 2í. 3�	 + 16, Y2í�, 12 . 2í. 3�	 − 1 6�  �� 

n3�6 = -h *Jí. 3�	 + 16, Y2í�, í. 3�	 − 1 6K  �� 

n� = -h Ò *í3�	 + 16 �� Ó 

n� = í. -h Ò� + 13 ��Ó = í. -h Ò4 + Y5 + 13 34 + Y56�Ó 

n� = í. -h Ò 4 + Y5 + 13 34� + 34	5Y − 345	 − Y5�6 Ó 

n� = í Ò 4 − 45	 + 13 4� Ó 

n	 = -h Ò *2�íY �� Ó = í. -h 3�	Y6 = í. -h 3 Y 34 + Y56	6 

n	 = í. -h 3 4	Y + 245 − Y5	 6 

n	 = í3−245 6 

n� = -h Ò *í3�	 − 16 �� Ó 

n� = í. -h Ò13 �� − �Ó = í. -h Ò 13 34 + Y56� − 4 + Y5Ó 

n� = í. -h Ò13 34� + 34	5Y − 345	 − Y5�6 − 34 + Y56 Ó 

n� = í Ò−4 − 45	 + 13 4� Ó 

Then we have a maximal surface an explicit formula is given as follows: 

n 3�6 = í Ò 4 − 45	 + 13 4� , −245, −4 − 4	5 + 13 4� Ó  
where � = 4 + Y5 , 4 ≠ 0. This surface is a rotation surface with a light-like axis 31 ,0, 16, which can be seen from the following expression (5.2.3):  
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n 3�6 =
×
ØÙ

1 − 12 5	 5 12 5	
−5 1 5

− 12 5	 5 1 + 12 5	Ú
ÛÜ

×
ØÙ

í4 + í3 4�
0−í4 + í3 4�Ú

ÛÜ , 4 ≠ 0.  
 

As shown in below. (Kobayashi, 1983)  

 

 
Figure 5.4. Enneper's Surface of the  º� Kind 
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5.2.2.4 Example (Conjugate of Ennper’s Surface of the  º� Kind ) 

We define the conjugate surface of Enneper’s surface of the 2Uì  kind by 

putting � = 2íY, F = � in 

n3�6 = -h *�12 �3F	 + 16, Y�F, 12 �3F	 − 1 6�  ��, -h F ≠ 0.   
n3�6 = -h *�12 . 2íY. 3�	 + 16, Y. 2í. Y. �, 12 . 2íY. 3�	 − 1 6�  �� 

n3�6 = -h *JíY. 3�	 + 16, −2í�, íY. 3�	 − 1 6K  �� 

n� = -h Ò *íY3�	 + 16 �� Ó 

n� = í. -h Ò�Y + Y3 ��Ó = í. -h Ò4Y − 5 + Y3 34 + Y56�Ó  
n� = í. -h Ò 4Y − 5 + Y3 34� + 34	5Y − 345	 − Y5�6 Ó 

n� = í Ò−5 − 4	5 + 13 5� Ó 

n	 = -h Ò *−2�í �� Ó = í. -h 3−�	6 = í. -h 3− 34 + Y56	6  
n	 = í. -h 3− 4	 − 245Y + 5	 6 

n	 = í35	 −  4	 6 

n� = -h Ò *íY3�	 − 16 �� Ó 

n� = í. -h ÒY3 �� − �YÓ = í. -h Ò Y3 34 + Y56� − 4Y + 5Ó  
n� = í. -h ÒY3 34� + 34	5Y − 345	 − Y5�6 − 4Y + 5 Ó 

n� = í Ò5 − 4	5 + 13 5� Ó 

 

Then we have a maximal surface 

n 3�6 = í Ò− 5 − 4	5 + 13 5� , 5	 −  4	, 5 − 4	5 + 13 5� Ó 

n 3�6 = í Ò− 5 + 13 5� , 5	, 5 + 13 5� Ó − í4	3 5, 1 , 5 6 , 4 ≠ 0. 
 

As a consequence, this is a ruled surface.  
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As shown below. (Kobayashi, 1983)  

 

 
Figure 5.5. Conjugate of Enneper's surface of the   �� Kind 

 

5.2.2.5 Example (Catenoid of the ��þ Kind ) 

This rotattion surface is defined by   

�	 + �	 − í	 sinh	 ]�í_ = 0 , 3 � ≠ 0 6,  
where í is a non-zero real. In view of the Weierstrass-Enneper formula, it is given by 

putting � = í�Ï	, F = � in  

n3�6 = -h p3�	 �31 + F	6, L	 �31 − F	6, −�F 6��, � ∈ �  where � = 4 + Y5. 
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As shown below. (Kobayashi, 1983)  

 

 
Figure 5.6. Catenoid of the ��þ  Kind 

 

5.2.2.6 Example (Helicoid) 

The conjugate surface of a catenoid of the 1st kind, that is, the surface defined 

by setting � = Yí�Ï	, F = � in  

n3�6 = -h p3�	 �31 + F	6, L	 �31 − F	6, −�F 6��, � ∈ � where � = 4 + Y5, 
is given by  

n3�6 = 3 0, 0, íÀ6 + í cosh 3log 
 3− sin À , cos À, 0 66, � = 
hL�, 3
 ≠ 16. 
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Note that this is an open subset of the usual helicoid;  

� cos ]�í_ + � sin ]�Q_ = 0. 
 

Hence, it is also a minimal surface with respect to the metric                              ��	 + ��	 + ��	. Conversely, this property characterizes the helicoid.        

(Kobayashi, 1983) 

 

5.2.2.7 Example  (Catenoid of the  º� Kind ) 

This is a rotation surface defined by setting  � = í�Ï	, F = � in  

n3�6 = -h *�12 �3F	 + 16, Y�F, 12 �3F	 − 1 6�  ��, -h F ≠ 0.   
n3�6 = �cosh log 
 0 sinh log 
0 1 0sinh log 
 0 cosh log 
� � 0−íÀαcos À�,  � = 
hL�, (cos À ≠ 0 6. 
 

As shown in below. (Kobayashi, 1983)  

 

 
Figure 5.7. Catenoid of the  º� Kind 
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5.2.2.8 Example (Helicoid of  º� Kind ) 

This is a ruled surface defined by  

� + � tanh ]�í_ = 0 ]�	 ≤ í	 cosh ]�Q_ _ , 
which corresponds to � = Yí�Ï	, F = � in  

n3�6 = -h *�12 �3F	 + 16, Y�F, 12 �3F	 − 1 6�  ��, -h F ≠ 0.   
(Kobayashi, 1983) 

 

5.2.2.9 Example  (Scherk’s Surface of the ��þ Kind) 

This is maximal surface defined by  z = log cosh � − log cosh � ,   3coshÏ	 � + coshÏ	 � > 16 , 
which is obtained by setting � = 431 − �ú6Ï�, F = � in  

n3�6 = -h p3�	 �31 + F	6, L	 �31 − F	6, −�F 6��, � ∈ � where � = 4 + Y5. 
 

As shown below. (Kobayashi, 1983)  

 

 
Figure 5.8. Helicoid of the  º�  Kind 
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5.2.3 Rotation Surfaces  

The purpose of this section is to determine the maximal rotation surfaces in ���. 

A surface is called a rotation surface with axis µ if it is invariant under the action of the 

group of motions in ��� which fix each point of the line µ. 
 

5.2.3.1 Theorem  

Every maximal rotation surface in ���  is congruent to a part of one of the 

following: 

i. 3 �, � 6 - plane ;  

ii. Catenoid of the 1/� kind ; 

iii. Catenoid of the 2Uì kind ; 

iv. Enneper’s surface of  the 2Uì  kind. (Kobayashi, 1983) 

 

Proof:  

The 3�, �6 - plane is obviously a rotation surface with time-like axis, and every 

space-like plane is congruent to it. So, we suppose that the given maximal rotation 

surface is not a plane. 

 

If the axis is time-like (respectively  space-like ), we might assume that the axis 

is the � − axis (respectively  � − axis ), because every time-like (respectively  space-

like ) unit vector is transformed to 3 0, 0, 1 6  (respectively  3 0, 1, 0 66 by a Lorentz 

transformation. Then the surface is expressed as follows: 

 

Case 1:  

£34, 56 = 3 �356 cos 4, �356 sin 4, F356 6   if the axis is timelike. The 

maximal surface equation is then given  by �. �@@ = 3�@6	 − 1  for  3�@6	 − 1 > 0. 
£Å = 3− �356 sin 4, �356 cos 4, 06 

£I = 3�@356 sin 4, �@356 cos 4 , F@3566 

� = <  £Å , £Å  >e=  J�356K	
 

Ç = <  £Å, £I  >e=  0 
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� = <  £I, £I >e=  J�@356K	 − JF@356K	 =  1 since profile curve is unit velocity. 

, = ��4	 + 2Ç�4�5 + ��5	 

, = J�356K	�4	 + 2.0�4�5 + 1�5	 

, = J�356K	�4	 + �5	 

, = ]� ÇÇ �_ = �J�356K	 00 1�  ⇒ det , = J�356K	
 

,, = Â�4	 + 2��4�5 + j�5	 

Â = <  �, £ÅÅ  >e , � = <  �, £ÅI  >e  Q��  j = <  �, £II  >e £ÅÅ = 3−�356 cos 4, −�356 sin 4, 0 6   
£ÅI =  3−�@356 sin 4, �@356 cos 4 , 06 

£II =  3�@@356 cos 4, �@@356 sin 4 , F@@3566 

� = 3�356F@356 cos 4, �356F@356 sin 4 , �356�@356 6 

Â = �356F@356 

� = 0 

j =  �@@356F@356 − �@356F@@356 

,, = J�356F@356K�4	 + 2.0 �4�5 + J�@@356F@356 − �@356F@@356K�5	 

,, = J�356F@356K�4	 + J�@@356F@356 − �@356F@@356K�5	 

f� = Ò�	 00 1ÓÏ� Ò−�F′ 00 �@@F@ − �@F@@Ó. 

f� = �nûj 00 �@@F@ − �@F@@�. 

 

Since profile curve is unit velocity curve 3�@6	 − 3F@6	 = 1. Differentiate 

both sides 2. �@. �@@ − 2. F@. F@@ =  0 ⇒ �@. �@@ = F@. F@@ 
3�@@F@ − �@F@@6. F@ =  �@@.  F@.  F@ − �@.  F@@.  F@����� 

3�@@F@ − �@F@@6. F@ = �@@.  3F@6	 − �@. 3�@. �@@6 

3�@@F@ − �@F@@6. F@ = �@@.  3F@6	 − 3�@ 6	. �@@ 
3�@@F@ − �@F@@6. F@ = �@@3 3F@6	 − 3 �@ 6	6. Rh ¶�g� ^ℎQ^ 3�@6	 − 3F@6	 = 1. 

3�@@F@ − �@F@@6. F@ = −�@@ 33�@6	 − 3F@6	6������������  

3�@@F@ − �@F@@6. F@ = −�@@ 
�@@F@ − �@F@@ =  −�@@

F@  
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� = 12��@@F@ − �@F@@ + F@
� � 

� = 12�−�@@
F@ + F@

� � 

 

£ is maximal if and only if  
nûj =    jûûnû  ⇒ 3F@6	 = �. �@@. We know that                 

3�@6	 − 3F@6	 = 1 ⇒ 3F@6	 = 3�@6	 − 1. 3�@6	 − 1 = �. �@@ 
 

Solving the differentiable equation let ℎ = �@  ,  �@ = ìjìI 

�@@ = �ℎ�5 = �ℎ�� . ���5 = ℎ. �ℎ�� 

�. �@@ = 3�@6	 − 1 ⇒ �ℎ �ℎ�� =  ℎ	 − 1, F@ ≠ 0, ℎ	 ≠ 1. 
* ℎ�ℎ ℎ	 − 1 = *���  

ℎ = ·Q	�	 + 1 ���5 =  ℎ = ·Q	�	 + 1  ⇒ ��·Q	�	 + 1 = �5 

* ��·Q	�	 + 1 = *�5 

  

 Let  Q� = À ⇒ Q�� = �À ⇒ �� =  �̈  �À 

1Q * �À√À	 + 1 = 5 

1Q sinhÏ� À = 5 

1Q sinhÏ�3Q�6 = 5 + . 

sinhÏ�3Q�6 = Q35 + .6 Q� =  sinh Q35 + .6 

� = QÏ� sinh3Q5 + .6 
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Case 2:  

£34, 56 = 3 F356 sinh 4, �3^6, F356 cosh 46  if the axis is spacelike. The 

maximal surface equation is then given  by F. F@@ = 3F@6	 − 1  for  3F@6	 − 1 < 0. 
£Å = 3F356 cosh 4 , 0, F356 sinh 4 6   

£I = 3F@356 sinh 4, �@356 , F@356 cosh 4 6 

� = <  £Å , £Å  >e=  JF356K	
 

Ç = <  £Å, £I  >e=  0 

� = <  £I, £I >e=  J�@356K	 − JF@356K	 = 1 since profile curve is unit velocity. 
, = ��4	 + 2Ç�4�5 + ��5	 

, = JF356K	�4	 + 2.0�4�5 + 1�5	 

, = JF356K	�4	 + �5	 

, = ]� ÇÇ �_ = �JF356K	 00 1�  ⇒ det , = JF356K	
 

,, = Â�4	 + 2��4�5 + j�5	 

Â = <  �, £ÅÅ  >e , � = <  �, £ÅI  >e  Q��  j = <  �, £II  >e £ÅÅ = 3 F356 sinh 4, 0, F356 cosh 46  
£ÅI =  3F@356 cosh 4, 0, F@356 sinh 4 6 £II =  3F@@356 sinh 4 , �@@356, F@@356 cosh 46 

� = 3−�@356 cosh 4, −F@356, −�@356 cosh 4  6  
Â =  �@356. F356 � = 0 

j =  �@356F@@356 − �@@356F@356 

,, = J �@356. F356K�4	 + 2.0 �4�5 + J�@356F@@356 − �@@356F@356K�5	 

f� = ÒF	 00 1ÓÏ� � �′F 00 �@F@@ − �@@F@�. 

f� = �jûn 00 �@F@@ − �@@F@�. 

 

Since profile curve is unit velocity curve 3�@6	 − 3F@6	 = 1. Differentiate 

both sides 2. �@. �@@ − 2. F@. F@@ =  0 ⇒ �@. �@@ = F@. F@@ 
3�@F@@ − �@@F@6. �@ =  �@.  �@.  F′@ − F@.  �@@.  �@���  

3�@F@@ − �@@F@6. �@ = F@@.  3�@6	 − F@. 3F@. F@@6 
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3�@F@@ − �@@F@6. �@ = F@@.  3�@6	 − 3F@ 6	. F@@ 
3�@F@@ − �@@F@6. �@ = F@@3 3�@6	 − 3 F@ 6	6. Rh ¶�g� ^ℎQ^ 3�@6	 − 3F@6	 = 1. 

3�@F@@ − �@@F@6. �@ = F@@ 33�@6	 − 3F@6	6������������  

3�@F@@ − �@@F@6. �@ = F@@ 
�@F@@ − �@@F@ =  F@@

�@  

� = 12��@F@@ − �@@F@ + �@
F� 

� = 12�F@@
�@ + �@

F� 

 

       £ is maximal if and only if  − jûn =    nûûjû  ⇒ 3�@6	 = −F. F@@. We know that              

3�@6	 − 3F@6	 = 1 ⇒ 3�@6	 = 3F@6	 + 1. 3F@6	 + 1 = −F. F@@ 
 

Solving the differentiable equation let ℎ = F@  ,  F@ = ìjìI 

F@@ = �ℎ�5 = �ℎ�F . �F�5 = ℎ. �ℎ�F 

−F. F@@ = 3F@6	 + 1 ⇒ −Fℎ �ℎ�F =  ℎ	 + 1, �@ ≠ 0, ℎ	 ≠ −1. 
−* ℎ�ℎ ℎ	 + 1 = *�FF  

ℎ = ·1 − Q	F	QF  

�F�5 =  ℎ = ·1 − Q	F	QF ⇒ QF �F·1 − 3QF6	 = �5 

* QF �F·1 − 3QF6	 = *�5 

 

Let  QF = À ⇒ Q�F = �À ⇒ �F =  �̈  �À 

1Q * �À√1 − À	 = 5 
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1Q cosÏ� À = 5 

1Q cosÏ�3QF6 = 5 + . 

cosÏ�3QF6 = Q35 + .6 QF =  cos Q35 + .6 

F = QÏ� cos 3Q5 + �6 

 

Thus, we have  �356 = QÏ� sinh3Q5 + .6 and F356 = QÏ� cos 3Q5 + �6, where Q 

and . are integral constants.  

 

Hence, the surface is locally congruent to a catenoid of the 1st kind or a catenoid 

of the 2nd kind according to that the axis is time-like or space-like.  

 

If the axis is light-like, we might suppose that it is ��. 3 1, 0, 16. Note that the 

subgroup of the Lorentz group which fixes 3 1, 0, 16 is  

àáâ
áã

×
ØÙ

1 − 4	
2 4 4	

2−4 1 4
− 4	

2 4 1 + 42Ú
ÛÜ ; 4 ∈ ,- 

äáå
áæ. 

 

Thus, the surface can be written as  

£34, 56 =  
×
ØÙ

1 − 4	
2 4 4	

2−4 1 4
− 4	

2 4 1 + 42Ú
ÛÜ �ℎ356 + 50ℎ356 − 5�.  3∗6 

 

The maximal surface equation for 3∗6 is given by  

5ℎ@@ − 2ℎ@ = 0, 5 ≠ 0,   ℎ@ > 0. 
 

Hence, we have the solution ℎ356 = Q^� + . , Q > 0, which shows that the 

surface is Enneper’s surface of the 2nd kind. 
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5.2.4 Ruled Surfaces  

As for maximal ruled surfaces, we have following: 

5.2.4.1 Theorem  

Every maximal ruled surfaces in ���  is congruent to a part of one of the 

following: 

i. 3 �, � 6 - plane;  

ii. Helicoid; 

iii. Helicoid of the 2Uì kind; 

iv. Conjugate of Enneper’s surface of the 2Uì kind. (Kobayashi, 1983) 

 

Proof:  

Every space-like ruled surface can be written   
£3^, f6 =  í3f6 + ^. º3f6 

í@3f6 =  þ3f6 

< í@3f6, í@3f6 >e= 1 

f�Q�{ þ3f6 = í@3f6 }⊥  is a time-like subspace ��	. 
 þ@3f6 may be space-like. 

 þ@3f6 may be time-like. 

 þ@3f6 may be light-like. 

 

We will examine þ@3f6 may be space-like. 

 þ@3f6 is a space-like vector.  

κ3f6 = < þ′3�6, º3�6 >Â ⇒  þ@3�6��������Ï���� = κ3f6. º3�6������Ï���� 

< º3f6, º3f6 >e= 1 < þ3f6, þ3f6 >e= 1 ⇒  < þ3f6, þ@3f6 >e= 0 ⇒ < þ3f6, º3f6 >e= 0 
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where í3f6 is a space-like curve in ��� with arclength parameter and º3f6 is a unit 

normal vector field along í3f6. Note that º3f6 is an asymptotic vector field on the 

surface and that  í@3f6 + ^. º@3f6  ⇒ þ3f6 + ^. º@3f6  is perpendicular to º3f6. 
It follows from the maximality that í@3f6 + ^. º@3f6 is an asymptotic direction. 

Especially, putting ^ = 0, we can see that º3f6 is the principal normal vector of  í3f6. 

Thus,  we need only to determine the curve í3f6 to get the surface  

£3^, f6 =  í3f6 + ^. º3f6, < í@3f6, í@3f6 >e=< º3f6, º3f6 >e= 1,           3K. �6 

< þ3f6, º3f6 >e= 0. 
 

Denoting by �3f6  the binormal vector of 3f6, we have the Frenet-Serret 

formula:  þ@3�6 = κ3f6. º3�6 º@3�6 =  −3κf6. þ3�6 + �3f6.�3�6,                            3K.  6 �@3�6 = �3f6. º3�6    
where  κand » are curvature and torsion of í3f6, respectively. Hence,  

þ3f6 + ^. º@3f6 = þ3f6 + ^J−κ3f6. þ3�6 + �3f6.�3�6K 

þ3f6 + ^. º@3f6 = þ3f6 − ^. κ3f6. þ3�6 + ^. �3f6.�3�6 

þ3f6 + ^. º@3f6 = þ3f6J1 − ^. 3κf6K + ^. �3f6.�3�6    3K. �6 

þ@3f6 + ^. º@@3f6�����������  
κ3f6. º3�6 + ^ h−κ3f6.  º′3�6����3f6.º3�6 + �3f6. �′3�6���»3f6.º3�6 − κ′3f6. þ3�6 + �′3f6.�3�6i 

κ3f6. º3�6 + ^ ]−κ3f6. 3κf6. º3�6 + �3f6. �3f6. º3�6 − κ′3f6. þ3�6 + �′3f6.�3�6_ 

þ@3f6 + ^. º@@3f6�����������   
º3�6 ]κ3f6 − ^Jκ3f6K	 + ^J�3f6K	_ + ^J−κ@3f6. þ3�6 + �@3f6.�3�6K.       3K.E6 

 

Since í@ + ^º@ is an asymptotic direction, í@@ + ^º@@ is tangent to the surface.  

That is   ^J−κ@3f6. þ3�6 + �@3f6.�3�6K  must be parallel to  

þ3f6J1 − ^. κ3f6K + ^. �3f6.�3�6 for any ^ and f. 

 

Thus ,κ  and � are constant. 



136 
 

 

Then, if |κ| ; |�| ; 0 3 
hf�h�^Y5hµ�   |�| ; |κ| ; 0 6,   
í�3f6 =  í3f6 + ] κκ	 − � _ º3�6 

is a time-like (respectively  space-like ) line by 3K. �6 and 3K.E6. Therefore,  

from 3K.  6, we can see that í3f6 is congruent to  

] κκ	 − � cos ]·κ	 − � _ f, κκ	 − � sin ]·κ	 − �  _ f , �κ	 − �  f_         3K.K6 

 

if   |κ| ; |�| ; 0 ;  

 

Or  

] κ� − κ	 cosh ]·� − κ _ f, �� − κ	 f , κ� − κ	 sinh ]·� − κ	_  f_        3K.N6  
 

if  |�| ; |κ| ; 0.  

 

The surface defined by 3K. �6 is compatible to a part of helicoid or 2Uì kind.  

 

If  |�| � |κ| 9 0, we have º@@ = 0  by 3K.  6, hence í@@@@ = 0. í3f6  is a 

polynomial of degree 3. We have the conjugate of Enneper’s surface of the 2Uì kind. 
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6. CONCLUSION  

Curves and surfaces in ��� have some similar properties with these in ��. We 

have seen that curves and surfaces in ���  differs by their causal character.We 

investigate Weierstrass-Enneper representation  the surfaces by comparing minimal 

surfaces in �� with maximal surfaces in ���. The Weierstrass-Enneper  representation 

of minimal and maximal surfaces gives linkage between differential geometry  and 

complex analysis. This representation is used for the classification of these surfaces. 

These methods might be used for the surfaces in ��U and classification of these opens 

a way to investigate new examples. 
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