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ABSTRACT

ON CURVES AND SURFACES IN LORENTZ SPACE
MSC THESIS
SAFIYE DILAN CEYLAN
BOLU ABANT IZZET BAYSAL UNIVERSITY GRADUATE SCHOOL OF
NATURAL AND APPLIED SCIENCES
DEPARTMENT OF MATHEMATICS
(SUPERVISOR: ASSIST. PROF. DR. SERPIiL. KARAGOZ )

BOLU, AUGUST 2018

This thesis consists of five chapters.
The first chapter is devoted to the introduction.

In the second chapter, 3 dimensional Lorentz-Minkowski space and its
fundamental definitions, properties and theorems related to subject are given.

In the third chapter, Curves are defined and explained in detail on 3
dimensional Lorentz- Minkowski space and Frenet vectors are defined then some
examples are given.

In the forth chapter, Surfaces are defined and explained in detail on 3
dimensional Lorentz-Minkowski space, curvatures of a surface on 3 dimensional
Lorentz- Minkowski space and umbilical surfaces are defined and some examples
are given.

Finally in the fifth chapter, minimal surfaces on 3 dimensional Lorentz-
Minkowski space and maximal surfaces are given and some theorems for maximal
surfaces are examined and some examples are given.

KEYWORDS: 3 Dimensional Lorentz-Minkowski Space, Minimal Surfaces,
Maximal Surfaces, Umbilical Surfaces, Frenet Equation, Weierstrass-Enneper
Representation



OZET

LORENTZ UZAYINDA EGRILER VE YUZEYLER UZERINE
YUKSEK LiSANS TEZi
SAFIYE DILAN CEYLAN
BOLU ABANT iZZET BAYSAL UNiVERSITESI
FEN BIiLIMLERI ENSTIiTUSU
MATEMATIK ANABILIiM DALI
(TEZ DANISMANI: DR. OGR. UYESI SERPIiL KARAGOZ)

BOLU, AGUSTOS - 2018

Bu tez bes boliimden olusmaktadir.
[k boliim giris kismina ayrilmugtir.

Ikinci boliimde, konu ile ilgili temel kavramlara yer verilmistir. 3 boyutlu
Lorentz — Minkowski uzay1 tanimlanip, bu uzayin 6zelliklerinden bahsedilmistir.

Uciincii boliimde, 3 boyutlu Lorentz — Minkowski uzayinda egriler ayrintili
olarak anlatilmistir. Frenet vektorleri tanimlanmis olup ornekler verilmistir.

Dordiincii bolimde, 3 boyutlu Lorentz — Minkowski uzayinda ylizeyler
ayrintili olarak anlatilmistir. Lorentz uzayinda bir yiizeyin egrilikleri ve umbilik
yiizeyler tammmlanmis daha sonra da yiizeylere 6rnekler verilmistir.

Son olarak besinci boliimde, 3 boyutlu Lorentz — Minkowski uzayinda
minimal ve maksimal yiizeyler incelendi ve bununla iliskili teoremler ve ornekler
verilmistir.

ANAHTAR KELIMELER: 3 boyutlu Lorentz-Minkowski Uzayi, Minimal
Yiizeyler, Maksimal Yiizeyler, Umbilik Yiizeyler, Frenet Denklemleri,
Weierstrass-Enneper Gosterimi
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1. INTRODUCTION

Lorentz space is the space furnished with the pseudo-Riemannian metric of
mark  (+, +, +, ...,— ). This is in certain the state of affairs the theory of physics
entitled "special relativity theory", and it is locally in the state of affairs the “general

relativity theory ".

By studying the subject Lorentz space, the basic structures in 3 dimensional
Minkowski space were established. Euclidean space and Lorentz space were
encountered. First of all, the important metrics for its establishment have been
examined. Then, by constructing the vector structures, the concept of angle was

specified.

Furthermore, we frequently compare and construct the results and techniques
of (t, n, b, T,x ) the 3 dimensional Lorentzian geometry to those of the 3 dimensional
Riemennian geometry. The basic differences between these geometries have been

compiled in this research.



2. AIM AND SCOPE OF THE STUDY

The principal aim of this study is to examine the 3 dimensional Euclidean space
and establish the basic structures in 3 dimensional Lorentz-Minkowski space. With

this is consciousness, we also think about the distinction and similarities between them.

In particular a comparison is made between the minimal surfaces in 3

dimensional Euclidean space is and maximal surfaces in 3 dimensional Lorentz space.

2.1 Preliminaries

Semi-Riemannian geometry involves a particular kind of (0,2) tensor on
tangent spaces. Let IV be an arbitrary vector space of dimension n = 1 over IR. Then
bilinear form on V is an IR — bilinear function bg:V XV — IR. The form by is

symmetric if by (u,v) = bg(v,u) Vu,v €V. (O’Neill, 1983)

2.1.1 Definition

A symmetric bilinear form bg on V' is

a) Positive definite provided u # 0 implies bs(u,u) > 0.

b) Negative definite provided u # 0 implies bs(u,u) <0 .

c¢) Positive semi-definite provided u # 0 implies by(u,u) =0, Vu€eV.
d) Negative semi-definite provided u # 0 implies bs(u,u) <0, VueV.
e) Non-degenerate provided by (u,v) =0V v € Vimplies u = 0.

Also, by is definite (semi-definite) provided either alternative in a), b), c), d)
holds. If by is definite then it is clearly both semi-definite and non-degenerate.

(O’Neill, 1983)

2.1.2 Definition

Let V be a vector space. The index v of a symmetric bilinear form bg on V is

the dimension of a U — V such that



(1) bg | U is negative definite.
(2) U'c V is another subspace such that bs|U’' is negative =

dim U’ < dim U. (O’Neill, 1983)

2.1.3 Definition

A symmetric non-degenerate ( 0,2) tensor field g on M of constant index is
called a metric tensor. SoVp € M, g € T)(M) smoothly assigns to each p a scalar

product g, and each g,, has the same index. Non-degenerate means that for any u €

T, (M), there is some v € T,,(M) such that g,, (u,v) # 0.If ( 9p )ij are components

of g, in local coordinates, then non-degeneracy is equivalent to the condition that

det((g, )l,j) # 0. (O’Neill, 1983)

2.1.4 Definition

A Lorentz manifold is a smooth manifold M furnished with a metric tensor g
that the index of M is 1. Sometimes we use (, ) as an alternative notation for g, writing
g (a,b) = (a,b) € IR for tangent vectors and g(V,W) = (V,W) € F(M) for vector

fields. If x1,..,x™ is a coordinate system on UcV the components of g on U

0
are(g )ij = (0;,0;), 1 <1i,j <mn where J; denotes the vector field — on U. Since g
X

is non-degenerate, the matrix ((g)i y (t)) is invertible for each t in U. The inverse
matrix is denoted by ((g)ij (t)), the formula for inverse matrix shows that the

functions (((g)ij t)) is smooth. Finally since by is symmetric.

(g)ij= (g)jiand (9)¥ = (g)/iforeach1 <i,j <n.(ONeill, 1983)

2.1.5 Definition
A tangent vector x to M is
(1) Space-like if (x, x), is positive or x = 0,

(2) Time-like if (x, x), is negative,

(3) Light-like if (x,x);, = 0 and x # 0.

3



The set of light-like vectors in T,, (M) is called the light-cone at P. The category

into which a given tangent vector falls is called its casual character. Light-like vectors

are also said to be null.

Let N be a submanifold of a Lorentz manifold M with metric tensor by, let
j: P <M be the inclusion map. The pullback j*(g) is again a smooth symmetric
( 0,2) tensor field on P, if in addition j*(g) is non-degenerate on P and the index of
T,(N) is the same for all p € N, we say N is a Lorentz submanifold of M .
(O’Neill, 1983)

2.1.6 Definition

Let M and N be Lorentz manifold with metric (g)y and (g)y. An isometry

from M to N is a diffeomorphism ¢:M — N that preserves metric tensors

¢"((9m) = (g)n- (O’Neill, 1983)

2.1.7 Definition

Let x1,...,x™ be a coordinate system on a neighborhood U in a Lorentz

manifold. The Christoffel symbols for this coordinate system are the real-valued
functions F%‘i on U such that

Dy,(0;) = XxT'f; 0 where 1 < i,j < n.(O’Neill, 1983)

2.1.8 Proposition

Let x1, ..., x™ be a coordinate system on U
Kk Kk
(1) Ty =T

awk

(2) Do (W 0;) = il 547 + Z; T W30,

! 98im |, 08im _ 98ij T
(3) T == Ym g m{=e + ~2m — 28} (O"Neill, 1983)



2.1.9 Definition

The 3 dimensional Lorentz-Minkowski space with index 1 is
E3 = (IR3,<,>, ) where the metric <, >/ is
<u,w >L: uq4wq + U Wy —U3z3W3, U = (ul y Uy ,u3); w = (Wl yWp ;W3)r which

is called the Lorentzian metric.

The non-degenerate metric with index 1 is called as Lorentzian metric. This
metric can be written as,

1 0 O
<u,w>=u'{0 1 0 |w=uGw.
0 0 -1

We denoted by the 3- dimensional Euclidean space as E3=(IR3, <, >,) to

separate from Lorentz — Minkowski space. (Lopez, 2014)

2.1.10 Definition

A vector x € E3 is
(1) Space-like if < x,x >, is positive orx =0,
(2) Time-like if < x,x >; is negative and
(3) Light-like if < x,x >;= 0and x # 0. (O’Neill, 1983)
The light-cone of E;:
C={(xv,2) € E3: x> +y? —2z2 =0} -{(0,0,0)}.

The set of time-like vector is

r={(x,y,2z) € E}: x? + y? — z?2 < 0}. (Lopez, 2014 )



Space-like

Light-like

Figure 2.1. The Causal Character in Lorentz - Minkowski Space

Given W IR? a vector subspace. The induced metric is

<SSy i <x,y >Spy=<x,y>,, x,y€E W.
The induced metric on W is classified in 3 cases:
a) When the metric is positive definite, W is called space-like subspace.
b) When the metric has index 1, W is called time-like subspace.
c¢) When the metric is degenerate then W is called light-like subspace.
(O’Neill, 1983)

(a) (b) (c)

Figure 2.2. The Causal Character of Subspace in Lorentz - Minkowski Space

2.1.11 Example

Let 3= (1,0,0) , d= (0,1,0) , f = (0,0,1). The causal character of
Ei,ci,f and ci+fare
3,3 >,= 124+02-02=1 - 4 is space-like.

dd>=02+12—02=1 - d is space-like.

YA A AN

i

f>,=024+02—-12=—1 - f is time-like.



<d+f d+f>=<dd>+2 <df> +<if>,
<d+f, d+f>= 0 - d+fislightlike.

2.1.12 Example

a) The plane span { a, b } is space-like

b) The plane span { a,c } is time-like

¢) The plane span { @,b + € } is light-like

where 3 = (1,0,0) , b=(0,1,0) , é¢=(0,0,1).

a) <3,3a >,= 12+ 0% — 02 =1 - 3 is space-like.
<bb >,= 02+12— 02 =1 - b is space-like.

<3b>,=10+01- 00=0

Let f = Cld + ng.

<§,)_(> >L=< Cla+C25,C1a+C25 >L

By direct calculation

< §,§ >L: (Cl)z + (Cz)z > 0.

Span { @,b} is space-like subspace.

b) <3,3a >,= 124+ 02— 02 =1 - 3 is space-like
<G¢ >,=02+0%— 12=—-1- ¢ is time-like

<3¢ >=10+00- 01=0.

Let X = ¢,d + c,C.

< i,)_i >L=< Cla + CzE, Cla, + ng >L

By direct calculation

<EX >1= (c)? = ()2



If = (cy,cp)then <% X >;=(c;)? — (c3)? soX € EZ.

Span { @,C} is time-like subspace.

c) <aa >,= 124 0%2— 02 =1 - 3 is space-like

7 -

<3, b+&>,=<3b >, +<3i >,

By direct calculation

By direct calculation

<b+¢ b+¢é>= 1 + 20 + (-1) =0- b+ &is light-like.

Let # = ¢;d + c,(b+¢) and % # 0.

<XR > =< cid+cy(b+8),cid+c,(b+2) >,

By direct calculation
< §,§ >L: :(Cl)z

-

If X=1(0,1) then <X,X >;,=0so span { a,b + ¢} is light-like subspace

-

andb +¢ # 0.

The causality of a vector is the character space-like, time-like and light-like

Now we give some properties of subspace of E3.

2.1.13 Proposition

Let (V, g) be a metric space where g is non-degenerate metric.

a) W <V isasubspace = dim(W+) = dim(V) — dim(W).

b) W <V isasubspace = (WH)L=W.

c) W <V is a non-degenerate subspace =W~ is a non-degenerate subspace.

(Lopez, 2008)



Proof:

a) Let {e;,..., e, } a base of W and a base O = {e;,....,e,} of V. If
w = Zixl- e; € WJ', then

n n .
0=<2Xi4 xXie; e >= Dicq gijxi=0, 1<) <m.

In a matrical expression, these m- equations writen as
gii " Gn X1 0
oo Pl =(:] or
Im1 " YImn Xn 0

AX = 0 and A= (g;j)mxn- The range of A is m because there is a sub-matrix

with range exactly n. As consequence of this, the solutions of AX = 0 generate a n- m

dimensional subspace.
b) Because (W1)* < W, as a consequence dim (W+)* = dim (W).

c) Let O={ey,...,e;;} be an orthonormal base of W. The matrix of the metric
9w 1s diagonal with only 1 and -1. The base to get an orthonormal base of V,
namely O ={e,...,e,}. Since

dim(W+)=n-m, then {e,,;1, ..., €,} is a base of W+ and this end the proof.

2.1.14 Proposition

a) Let x € E3. Then x is a timelike vector & span{ x }* is space-like and so,
E} = span{ x }@span{ x }*. For space-like vectors, we have: x is space-
like & span{ x }*is time-like.

b) Let W <V be a subspace. Then W is space-like & W+ is time-like.

c) W is subspace implies W is light-like & W+ is light-like. (Lopez, 2008)

Proof:

a) If x is time-like vector, and by multiplying by a number if it is necessary,

we put x as a part an orthonormal base of E}, B = { ey, e, x }. Then



span{ x }* = < e;, e, >, which is a space-like subspace. For converse, let

{1, e;} be a orthonormal base of span{x }*, where <,>g, 0 1is a
positive definite metric. Then { eq, e,, x } is a base where diagonalizes the
metric. As g11 = g2 = 1, then g33 < 0. x is time-like vector.

b) If W is a time-like subspace, let x € W be a time-like vector. Then
W+ cspan{ x }*. (As span{ x }* is space-like, then W+ is space-like. As
a consequence (W)L =W,

¢) Combining a) and b) then we get the required result.

2.1.15 Proposition

a) If x and y are two null vectors, then x, y are obviously linearly dependent
=<x,y>=0.

b) If x and y are two time-like or null vectors with < x,y >; = 0, then they
are null vectors.

c) W is a light-like subspace = dim(W U W+) = 1. (Lopez, 2008)

Proof:
a) x and y are proportional = they are orthogonal. We suppose that they are
orthogonal. In the decomposition

E3? = span{ e; }* ® span{ e; }.

We write x = a +w and y = b + w assuming that the vector w is the same

in both decompositions in order to show what is wanted. As < x,y >;= 0 and both

are null vectors, then

<a,b>+<ww> +<aw> +< bw>=0.
<aa> +<ww>+ 2<aw>=0.
<b,b >L +<w,w >L+ 2 < b,W >L: 0.

We get,

lal> + |b|? —2 < a,b >;,= 0, that is |a — b|?> = 0. Thus a = b, because a — b is

space-like vector (a — b € span{w }*). So we deduce x = y.

10



b) The two vectors are time-like = < x,y >;# 0. By using,
E{ = span{y}* ®span{y}
where span{ y }* is a space-like subspace, we write x = a + Ay ; then
<xy>=<y,a>+A<y,y> =1 <yy>.

<x,y>=0 = A1=0. xandy would be equal and space-like. Similar case is
valid for null or time-like vectors. For this reason x and y are null vectors.

c) Ifx,y € WUWH, then < x,y >;= 0. Then they are linear dependent.

This proves that dim(W U W+) < 1. The dimension is exactly 0=

E3 =W @ W+, and so any vector of E3 would be null.

2.1.16 Proposition

Let W c E; be a 2-dimensional subspace. The followings are equivalent:
a. W is time-like subspace.
b. W contains two independent linear null vectors.

c. W contains a time-like vector. (O’Neill, 1983)

Proof:

a. (a=>b ) Let {ey,e,, e3} be an orthonormal base of E3. Then e, + e3 and
e, — ez are linear independent, null vectors.

b. (b=c) If x and y are the two linear independent, null vectors, then x + y
or x — y is a time-like vector because

<x tyxxtxy>=22<x,y>;and <x,y >;# 0 due to both vectors
being time-like.

c. (c=>a) Let y be a time-like vector W. Then W+ < span{y }*, and
span{y }* is a space-like subspace. So, W+ is space-like, and so W is
timelike. The above result can generalize to high-handed dimensions by

thinking that W is hyperplane.

2.1.17 Proposition

Let W be a vector subspace of EZ.a=> b =>c=>a

a. W is a light-like subspace.

11



b. There exists a null vector in W but not a time-like one.
c. WnC =]—{0} and then dim /] =1 where | is a one — dimensional

subspace and C is the light cone of V. (O’Neill, 1983)

Proof:

a. (a=b) Because <, >; is a degenerate metric, there is a null vector. By the
2.1.5 Proposition, there are not time-like vectors.

b. (b=c¢) Because there exist null vectors W N C is a non—empty set. By using
2.1.5 Proposition again. There are two linear independent, null vectors =
there would be a time-like vector.

c. (c=a) 2.1.5 Proposition say that W is neither space-like nor time-like

subspace.

2.1.18 Proposition

Let D c E? be a vector plane and 7 represents an orthogonal Euclidean
vector. Then D is a space-like (respectively time-like, null) plane <& 7y is a time-like

(respectively space-like, null) vector. (Lopez, 2014)

Proof:

If D writes as D ={(x,y,z) € IR®>:dx +ey+ fz=0}, then ng is
A(a, b, c) where A € IR. We write D as

D= {(x,y,z) € 1R3:dx+ey—(_f)2= 0} =Span{(d,e,—f)}l
<(de—f)(de—f)>= d2+ez—f2
<(d'e'f)r(d'e;f) >L= d2+ez—f2

The causal character of (d, e, —f) is the same then 7.

2.1.19 Example

Find the causal character of plane x +y — 2z = 0.

ng =(1,1,-2)

12



<ng,mg >,= 1241222 = -2 - 7 is time — like.

So plane is space-like.

2.1.20 Definition

Given x € E}, the norm of x is ||x||, = +/| < x,x >, |. The vector x is called

unit vector if its norm is 1. (O’Neill, 1983)

2.1.21 Proposition

If D =span{x}* isaspace-like plane, then ||x||g = ||x||.. (Lopez, 2014)

Proof:

It sufficies if ||x||, = 1. Assume ng = (d, e, f), with
<(def)(def)>=d*+e?+f?=1
D ={(x,v,2z) € IR®:dx+ey+ fz=0}andn; = (d,e, f)
D ={(x,y,z) € IR®:dx+ey— (—f)z =0} = span {x}" = x = (d, e, —f)
<(d,e,—f)(d,e—f)>,=d*+e?—f?
x|, =] <xx>,|=4]d?+e2—f2|=1

D is space-like plane then x is time-like vector. < x,x >; < 0,x # 0.
d>+e?—f2<0 > |d?*+e?—f?|= f2—-d?—e?
_ (d,e,—f)
X = T —
[f2 = dz — e2
The Euclidean norm ||x||g is
d* +e? + f?
f2—d2—e2 fZ—_q2—e?
because f2 —d? —e? = d? + e? + f? —2d% — 2e?=1-2(d* + %) < 1.

|lxl|E =

So [lxl|g = [Ix]]p.
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llxllg =1

lxllg=1

D

Figure 2.3. The vector x orthogonal to a space-like plane D bigger than the

Euclidean normal vector n to D

2.1.22 Definition

Let T be a set of time-like vectors of E;. For each x € T we define the time
cone X as
Cx)={yve . <x,y>, <0}
This set is non—empty set since < x,x >;< 0 = x € C(x). Furthermore 7 the
disjoint union of C(x) and C(—x). If y €7 then <x,y >,# 0 and so either
<x,y><0or <x,y>,>0 this means that y € C(x) or y € C(—x) and
C(x) N C(—x) = @. (O’ Neill, 1983)

2.1.23 Proposition

a) Two time-like vectors x , y are in this same time-like cone <
<x,y>.<0.
b) x € C(y) & C(x) = C(y).

¢) The time-like cones are convex sets. (O’Neill, 1983)
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Proof:

a) If <x,y>,<0,then x € C(y). Let assume that x,y € C(t). We can
suppose that < t,t >;= —1. We write x = d + at and y = e + bt, with
d,e € span{t}*. As span{t}* is a space-like subspace, then
|[<d,e>; | < |d|.]el| and

<x,y>=-—-ab+<de><-ab+|d||el

Since<d,d >, <a’and<e,e>; <b?and <x,y>,<0.

b) If x € C(y) then < x,y >,< 0, thatisy € C(x).

c) Assume that x,y € C(t) and let m € [0,1]. Then

<mx+(A-myyt>=m<xt>+0-m)<yt><0.

And this means that mx + (1 —m)y € C(t).

2.1.24 Theorem

Let x and y be time-like vectors in Lorentz vector space. Then

1. |<x,y > = ||xllz-1|¥]|L , with equality <x and y are collinear.

2. If x and y are in the same time cone, there exist only one non-negative
number 8 > 0, which called hyperbolic angle between x and y such that

<x,y >;= —||x||;-||y]|. cosh8. (O’Neill, 1983)

Proof:

1. Write x = ay + X withX¥ € y<. Since X is space-like.
<x,x>=<ay+ X,ay+ x>,
<x,x>=<ay+xay> +<ay+xx >
<x,x > =<ayay >, +< Xay >, +<ay, X >, +<¥,X >
<x,x>=a’<yy>ta<iy >ta<yi> +<ii >,
<x, x> = al<yy>, +<X i >,
<x,x>=a*<yy> +<XX >,<0.(Since x is time-like )

<x, x>, —<XiX > =a*<yy> *

15



Then
<y,x >i=<yay+ ¥>,.<yay+ ¥>,
<y,x >=(<yay >, +<y,X>,)?
<yx >=a’<y,y >?
<yx >=a’<yy>.<yy>,
<y x Si=(<xx>, —<XX >)<yy>,
<yx >i2(<xx>.<yy>,
<yx >E =l Iyl

| <x,y > | = |Ix|lz. [l¥ll, (Cauchy-Schwarz backwards)

Since < X,X >; = 0and < y,y >;<0.

Evidently equality holds if and only if < ¥,X >,= 0, which is equivalent to
X¥=0, that is, to x = ay.
2. So we get inequality

(<xy >
(e - Hlyll)? —

If x and y lie in the same time cone, then < x,y >; < 0 implies

<x,y>
| y L|21
[z [yl

—-<x,y >
#21_
], - [1y]]L

cosh: [0,00) — [1, ) is 1-1, there exists a unique number 6 € [0, ) such that

—<x,y >
cosh @ =#.
[xlle -1yl

So<x,y >= —||x||L||y||L cosh 6.

2.1.25 Corollary

Let x and y be time-like vectors in Lorentz vector space. If x and y are in the
same time cone then

llxlly + [Iyll. < [lx +y [|5. (O’Neill, 1983)
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Proof:

Since < x,y >;< 0 the backwards Cauchy-Schwarz inequality this

I<x,y >, | = |[lx||.- [[¥]lL

We know that x and y are time-like vectors
M [Ixllf = | <x,x >_|
@) llxll, = VI<x,x >
G l<xy >l ==<xy>,
4) < x,y >, =<y,x >, is symmetric.
(lelle + 1y1)? = xlE + 2 -yl + [yl
= —<x,x > —<xYy> —<xy > —<yYy >,

= <xx+y>-<x+yy >
= <xx+y> —<yx+y >

—<x+yx+y>,

|<x+y,x+y>, |
(Ul + 1yl)* < llx + ylI?
[xll, + [yl < llx+y Il

IA

2.1.26 Definition

Let e; = (0,0,1). For a time-like vector x, we call that x as future - directed
(respectively  past-directed) if x € C(e3), which is < x,e3 >;<0
(respectively x € C(—e3) or < x,e3 >;>0). It is also equivalent to say that
x = (xq,%,,x3) is future directed if x3 > 0. We always orient by time-like cone

C(e3), that is, (E3, [B,]), where By, is usual base if R3. (Lopez, 2008)

2.2 The Lorentz - Minkowski Vector Product

The definition of Lorentz — Minkowski vector product is the same as the given

one in the Euclidean ambient.
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2.2.1 Definition

If a,b € E3, the Lorentz — Minkowski vector product of a and b is express by
a x; b which is unique vector. It satisfies the equation
< ax, bt > =det(a,b,t). By taking t each one of the vectors of the

usual base, we obtain

i j -k
ax, b= |a; a, azf.
by by b3

Since the metric is bilinear the vector is exist and unique. Thus, if we denote
a xg b the Euclidean vector product, we have that a x; b is the reflection of a xg b

with respect to the plane {z = 0}. (Lopez, 2014)

2.2.2 Example

Let u and v be time-like vectors in a Lorentz vector space. If a and b are in the
same time cone then

lla x, bl|Z = |lal|?.]|b]|Z. (sinh 8)%, 6 = angle(a,b). (Lopez, 2014)

Proof:

We know that a and b are time-like vectors and both are in the same time cone

M llall, = VI<aa>,]|

@) llallf=I<aa >,|

3) I<aa>|=—-<aa>;

4) <a,b>=<b,a>;

S) I<ab >, = |lall..[|b]ly

©) <ab > > |lall}|Ibl|?

(1) <ab >}=|lal|Z|Ib][3(cosh 6)?

(8) (cosh8)? — (sinh9)? =1
llax, bl =| <ax,bax,b>,|

[lax, bl|f =|<aa>,<bb> —<ab><ba>,|
lax, bl|Z =|<aa><bb> —<ab>%]|
[lax, bl|f =<a,b > —<a,a><b,b>,

lla x, bl =< a,b >}~ [|al[?.||b]I}
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|lax, blIZ = IlallZ. 11b]|f(cosh ) — |lallZ. |IbIIf
|lax, blIZ = llallZ.1bl|Z[(cosh 8)* — 1]
|la x, b7 = |lallZ. 11| (sinh 6)*

2.2.3 Proposition

The vector product have properties:

a) ax,b=-bx;a.

b) a x.b is orthogonal to a and b.

¢) ax.b =0« {a,b} are not proportional.

d) ax;b #0 lies in the plane D =< a,b >; <& the plane D is null.
(Lopez, 2008)

2.3 Isometries of Lorentz-Minkowski Space

Here we give the isometries of Minkowski space E3. The set of all vector
isometries of E3 is denoted by I;(3). If F and F' are different orthonormal bases, the

matrix M satisfies M DM = D where
1 0 O
G=(0 1 0 |}
0O 0 -1

Thus I;(3) = { M € GI(3,IR); MtDM = D}.

1) det(M) = +1.

2) I;(3) has at least two connected components.

3) SI,(3) is denoted by the set of isometries with det(M) = 1.
4) S1,(3) is called the special Lorentz group.

5) F € SI,(3) & F is positive oriented.

We define the ortocrone group by

I} (3) = {M € 1,(3); M maintains the time — like orientation}.

M maintains the time-like orientation. A future-directed orthonormal base F

= the base obtained by F' = M.F is also future-directed. We also have the next
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characterization of I (3): M € I (3) if and only if ms5 > 0. The set I;(3) is a
group with two components: One of them I (3) N SI;(3) and the other one is

I (3) — (I (3) n SI;(3)). We define the special Lorentz ortocrone group as the set
IF*(3)=SLB)nIf(3) = {M € [,(3);det(M) = 1, M maintains time — like orientation}.

This set is a group and identity belongs to I;*(3).17*(3) is not a compact

1 0 0
{(O cosh(6) sinh(@));e € R}
0 sinh(@) cosh(6)

is not bounded. (Lopez, 2014)

set because the subset

2.3.1 Theorem

The connected components of I; (3) are I *(3) and
1. ;=(3) = {M € s1,(3); mz3 < 0}

2. I;*(3) = {M € I (3) ; det(Mm) = -1}

3. ;7 (3) ={M € I,(3) ;det(M) = -1, m33 < 0}.

If we denote by D; and D, the isometries given by D; = diag[1,1,—1] and
D, = diag[1, —1,1] then the three last components correspond, respectively, with
Dy. D,. 17 (3), D,.I;*(3), and D;.I{*(3). The rigid motion of E} are the
composition of a vector isometries and a translations of E3.

Next we study the isometries of the two-dimensional Lorentz-Minkowski space

m=(5 )

Then M € 1,(2) and & D = M'DM, that is,

E?. Let M be a matrix by

p2—52=1,pr—st=0,t2—r2=1,

From the first equation, we have two possibilities:
1. There exists 8 such that p = cosh(f) and s = sinh(@). Equalities

t? —r? = 1, there appear two cases again:
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(a) There exists ¢ such that t = cosh(¢) and r = sinh(¢). With the
second equation, we conclude that ¢ = 6

(b) There exists ¢ such that t = —cosh(¢@) and r = sinh(p). We get
@ =-0.

2. 360 such that p = —cosh(8) and s = sinh(@). Equalities t> —r% =1

implies the following possibilities:

(a) 3 @ such that t = cosh(¢g) and r = sinh(¢). By second equation we
get @ = —6.

(b) 3 ¢ such that t = —cosh(¢) and r = sinh(¢). From pr — st = 0 we
have ¢ = 6.

As a result, we get 4 kinds of isometries.

cosh(68) sinh(6) cosh(6) sinh(8)
<sinh(9) cosh(Q))’ (—sinh(@) —cosh(B))

—cosh(6#) sinh(6#)\ (—cosh (8) sinh(8)
(—sinh(@) cosh(Q))’( sinh (0) —cosh(@))'

With the same notation as in 2.3.1 Theorem, each one of the matrices that have
appeared belong to I (2), 177 (2),1; T (2)I{ ~(2), respectively. We see which is the
difference with the isometries of E2. It appears as equations of type m? +n? =1,

whose solutions can be written as x = cosy and y = siny.

This distinguishes the equation m? —n? =1, where it is necessary to

seperate the case that x is positive or negative.

We end this chapter with a study of isometries of If*(3) that leave a
straightline J fixed pointwise. These kind of isometries are called boosts. Three types
of such isometries will appear, depending on the causal character of L. Let

e; = (1,0,0),e, = (0,1,0) and e; = (0,0,—1)
1. Jis time-like: Assume that ] = span{es;} Since M.e3; = e3, we obtain
that m;3 = m,3; = 0 andamg; = 1. By using the equality D = M*DM,
we have m3; = m3, = 0 and

2 2 _ _ 2 _
mi;+ms; =1, myy.my; +my;.my, =0mi, +m=1
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Thus the matrix M is written as

cosw —sinw 0
M=|sinw cosw O]
0 0 1
2. Jis space-like: Let | = span {e;}. Then

1 0 0
M= (0 coshfS sinh ,B),
0 sinhf coshp
3. Jis light-like: We suppose that ] = span {e, + e3}. Then

1 w —w
w? w? \
m=|"* "7 7|
w? wZ/
— — 1 —_
@ 2 T3

In all above cases, the isometries belong to I} *(3). By using boosts we can

define a circle in E13. In usual Euclidean space E3, we can define a circle in several
ways.

a) A circle is the set of points equidistant from a fix point.

b) Constant curvature curve.

¢) The orbit of a point under a group of rotations of E3.

In Lorentz-Minkowski space we will define a curve like in c¢) but replacing
rotation by boosts. Let J be a fixed straight-line of E; and let D; = {¢,: w € R} by the
group of boosts which fix J. A circle is orbit {¢,(po): B, € D;} of a point
Do & J, 00 = (X0, Yo, Z0)- We have 3 possibilities because of the causal character of J.
we have;

1. Jis time-like: We consider | = span{es}. Then

cosw —sinw 0
D, = {d)w = (sinw Cos w 0);0) € IR}.

0 0 1

The set {¢, (po): w € R} is the circle in z = z, with radius \/xZ + y¢.
2. Jis space-like: We take /] = span {e;}. Then

Suppose y& — z3 # 0 otherwise, it is aa straight line. Then the orbit p, is a
branch of the hyperbola y? — z2 = y2 — z2 in the plane x = x,. According to
yé —z5 < 0ory2—z5 > 0, we will have 4 cases.
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3. J is light-like: We assume that /] = span {e, + e3} and we consider the

plane /1 = span {e;,e, +e3}.

( 1 w —w \
w?  w? \

2 (1)2

Ik 0 —— 14— J

The orbit of a point py = (xg, Y0, 20) & J* is a plane curve which lies in
Y—Z=Yo~ Zp-
X=xyg+w(y,—2y) and Y =y, — xqw — (Yo — Zg)w?/2 = the orbit of p,
satisfies
— X2 + 2y (yo — 2p) + %3
4 2(zo — yo)

This means that the circle {¢,, (py): w € R} is a parabola.

€31+ €3

€2 — €3

#3 Pa

Figure 2.4. Hyperbola and Parabola

We point out that the orbits are Euclidean circles, hyperbolas and parabolas
only in the case of the axis of the group of boosts is one of the above ones. They are
generally affine ellipse, hyberbola or parabola, depending on the status. For instance,

we consider the rotations with respect to the time-like line /] = span{(0,1,2)}.
J* = Span {e;,(0,2,1)/V3}.
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p=1(100) € Jt=>¢,(p) =coswe; + sina)%(O,Z,l)

that is an affine ellipse in J*. (O’Neill, 1983)
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3. CURVES IN LORENTZ SPACE

In this chapter we will give Frenet vectors of curves in 3 dimensional Lorentz-
Minkowski space. A smooth curve is differentiable map 5:] IR — E3 where ] is
an open interval. f is parametrized curve. A curve is regular if B'(t) # 0Vt € J]. We
will take E3 as a 3- dimensional manifold. A regular curve will be defined as

immersion between the (1-dim) manifold J and the (3-dim) manifold IR3.

3.1 The Fundamental Local Theory of Curves

Let B:] — E3 bearegular curve. When p € J, the tangent space T,] identifies
with IR. The differential map (dB),: T,] =R — TpnEi = IR is

(@B)p(8) = - lu=o B +su) = 5.5'(p).

It is also linear map S'(t).

. . o y
1 the unit tangent vector on T,,] = (df), (5) =a'(p).

We now take R3 with the Lorentzian metric <, >, . By the map 8 we can define
the induced metric of E3 on J.

B:U,B" <,>) ~> E{ = (IR <,>))
Obviously it is an isometric immersion.

B <,>p (a,b) =< (df),(a),(df)y(b) > =ab < p'(t),B'(t) >, a,b EIR,
p* <,> is defined above pullback metric.

If we take the basis {é} inT,/,

B <> (£).(5) =<B®).8®) >1.

In order to classify the manifold (J, 8" <,>;) and since [ is a one-dimensional

manifold, we need to know the sign of < 8'(p), B'(p) >.. Thus
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a. If <pB'(p),B' (p) >, is positive then (J,f* <,>,) is a Riemannian
manifold.

b. If < B'(p),B'(p) >, isnegative then (J,f* <,>,) 1is a Lorentzian
manifold.

c. If <B'(p),B'(p) >,=0then (J,B* <,>.) is adegenerate manifold.

(Lopez, 2014)

3.1.1 Definition

A smooth curvein a:I — E} is

(1) Space-like, if foranyt € I, a'(t) is space-like ;

(2) Time-like , if foranyt € I a'(t) is time-like ;

(3) Light-like , if forany t € I a'(t) is light-like. (O’Neill, 1983 )

3.1.2 Proposition

Any time-like or null curve is regular. (O’Neill, 1983)

Proof:

Suppose that the curve is time-like, and we write a(s) = (x(s), y(s), z(s)),
where the function x, y and z are differentiable functions on s. Then
<a'(s), a'(s) >,= [xX'))*+ [V ()]*—[2'(s)]? < 0,z'(s) # 0, that is ,a is

regular curve.

If the curve is null, we have z'(s) # 0, however x'(s) =y'(s) =0 and

a'(s) = 0. But means that « is space-like at s.

3.1.3 Example
a:IR - E}
2
t — a(t)=(cosh t,%, sinht)

a) Is a(t) regular curve?
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b) Determine the causal character of a. (Lopez, 2014)
a'(t) = (sinht, t,cosht) # 0Vt € IR. «a is regular. Note that
|| a’'(t) ||, = (sinht)? + t? —(cosht )? =(sinh t)? —(cosht )?+t? =t? — 1
lla'(®) I = [t* — 1]
t=+1.||a'(#1)||;=0but

a'(1) = (92‘1 1,ez+1) £0 and ' (=1) = (1“32, 1,ez+1) #0

2e ’ 2e 2e 2e

<a'(t),a'(t) > =t>—-1
On the interval (-1,-1), a is a time-like curve.
On the interval (—oo,—1) U (1,0), a is space-like curve.

{—1,1}att = F1, ais alight-like curve.

3.1.4 Example

(1) a(s) = a+ bs,a,b € IR3,s # 0 is the straight-line with a’(s) = s.
The causal character of a is same with vector s.
(2) a(t) =r(cost,sint,0) isthecircle. a'(t) =r(—sint, cost,0) since
< a'(t),a’(t) >,=r% > 0is a space-like curve. Also it lies xy — plane
where space-like plane.
(3) a(t) = (¢, t?, t?) is the parabola. a'(t) = (1,2t, 2t).
<a'(t),a’(t) >,=1 > 0is a space-like curve. It lies in null plane
y = z.
(4) a(t) =r(0,sinht,cosht) is the hyperbola.
a'(t) =7r(0,cosht ,sinht) since <a'(t),a’(t)>, =7r?*>01is a
space-like curve. Also the time-like plane of equation yz — plane.
(5) a(t) =1r(0,cosht,sinht) isthe hyperbola.
a'(t) = r(0,sinh t,cosh t) since < a'(t),a’(t) >,= —1r?<0is a time-like

curve. Also the time-like plane of equation yz — plane.
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3.1.5 Example

a:IR - E3
t = a()=(rcost,rsint,ht)h #0,r >0

Find the causal character of «.

Figure 3.1. The Helix

a lies on the cylinder x? + y? = 12 and pitch 2 7h.
a'(t) = (—rsint,rcost,h) # 0Vt € IR. aisaregular curve .
<a'(t),a(t) >=r%—h?
a) If 72 —h? > 0 then « is a space-like curve.
b) If 72 — h? < 0 then «a is a time-like curve.

¢) If 2 — h? = 0 then « is a light-like curve.

3.1.6 Example

a:IR - E3
t — a(t)=(ht,rsinht ,rcosht),h+=0,r>0

Find the causal character of «.
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X

Figure 3.2. Hyperbolic Cylinder y? — z? = —r?

a lies on the hyperbolic cylinder of equation y? — z% = —r?2,

a'(t) = (h,rcosht,rsinht) # 0Vt € IR. a is a regular curve.

< a'(t),a'(t) >,=r%+ h? > 0. a is a space-like curve.

3.1.7 Example

a:IR - E}
t - a(t)=(ht,rcosht,rsinht),h+0,r > 0.

Find the causal character of a.

Figure 3.3. Hyperbolic Cylinder y? —z? =7
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2

2 =r2,

a lies on the hyperbolic cylinder of equation y? — z
a'(t) = (h,rsinht ,rcosht) # 0Vt € IR. a is a regular curve.
<a'(t),a'(t) >,=h?—1r?
a) If h? —r? > 0 then a is a space-like curve.
b) If h? —r? < 0 then « is a time-like curve.

c) If h? —r? = 0 then a is a light-like curve.

3.1.8 Proposition

Let y:J > E} be non-space-like curve and sy, €. 3&>0 and C* the
function f;, f,: IcIR — IR such that s = ¢(t) and

B =y(p(®) = (f1(®), f2(8), ). (Carmo, 1976)

3.1.9 Theorem

Let 8 be a closed regular curve in D  E3. 8 is space-like = D is a space-like

plane. (Carmo, 1976)

Proof:

Case 1: Let D is time-like plane. Take D as x=0.
B(t) = (O,y(t),z(t)). Because the function y: IR — IR is periodic, it achieves a
maximum at some point to = y'(te) =0 and SO
B'(ty) = (O,y’(to),z’(to)) = (0,0,z'(ty)). We know that «a is a regular curve
z'(ty) #0,< B'(ty), B (ty) >,= —[z'(ty)]?.a is timelike at t = t, .which is a

contradiction.

Case 2: Let D is null plane. Take D as y = z.

B(t) = B(t) (x(t), y(t), z(t)). Let the maximum of x(t)be at t,. Because the
function  x:IR — IR is  periodic  this implies x'(t;) =0 =
B'(ty) = (O,y’(to),y’(to)). B'(ty) = 0 = y'(ty) # 0 by regularity but
< B'(te), B (to) >1= [y (to)]* = [y'(tx)]?> = 0. B is null at t =t, which is a

contaradiction.
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3.1.10 Theorem

There are not closed curves in 3 dimensional Lorentz space that are time-like

or null. (Carmo, 1976)

Proof:

Suppose that the curve is closed then
a:l - E3
t - alt)=(x(),y(@),z())
z = z(t) is periodic there exists t = t, such that z'(t;) =0
< a'(ty),a'(ty) >.= [x'(ty)]? + [y (ty)]? = 0. This is a contradiction if & is time-
like. If a is null then x'(ty) = y'(t;) = 0 = a'(t,) = (0,0,0) = « is regular at

t = t,, which is a contradiction.

3.1.11 Proposition

Let a:] — Ef be a non-null curve. Given x, €/,6,¢ > 0 and a
diffeomorphism ¢: (—¢,&) = (x9 — 8, xo + 6 ) such that the curve
B:(—&,e) > E} given by f= ao¢ satisfies ||B'(s)|| =1 for all
s € (—¢,¢). (Lopez, 2014)

3.1.12 Lemma

Lety:I — E3 be anull curve such that the trace of ¥ is not a straight-line.
There exist a parametrization of y given by B(s) = (y 0 ¢)(s) suchthat || "' (s)]|| =
1.y is pseudo — parametrized by arclength. (Lopez, 2014)

Proof:

We can write B(s) = y(¢(s)).

Then B'(s) = y'(¢(s) ). ¢'(s) = y'(£).¢"(s).
B"(s) =v"(0)-9'(5).9"(s) + ¢"(s).¥' () =v"(O)-[¢'()]* + ¢"(s).¥'(©) =
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< B7(s),B"(s) >1=[ &' ()I% Iy (OIF = 18" O11Z = ' ()]
Y OIZ = 118" O], = [¢' )1 Iy Ol = [¢'(s))? =1L Ol

YOl
1

N oI IR

@ is the solution of the above differential equation.

[¢'()] =

3.2 Frenet Equations For Lorentzian Curves

We will assign a basis of E at each point of a regular curve (s ). So we can

study the geometry of the curve.

Let @ be unit velocity curve or parametrized by pseudo-arclength parameter.
t(s) is tangent vector of a. In Minkowski space some problems appear.
a) The curve is null = t(s) is a null vector. We will use null frame because
t is null we don’t have an orthonormal basis.

b) If the curve is space-like = { t,n, b} is an orthonormal basis of E3. The
binomial vector b is always defined by b = t X n.{ t,n, b} is not
necessarily positive oriented. Such as if t,n are space-like vectors = b
is time-like. So { t, n, b} is negatively oriented.When t, n have not same
causal characters , { t, n, b} is positively oriented. { t, n, b} is future
directed if b is future directed.

e; = (0,0,1).If w € C(e3) then w is future directed < w,e; >; < 0.

c) We prefer that { £, n, b} is an orthonormal basis, it is future directed. « is
a time-like curve = {t,nb} is not future-directed.

(since < b,b >;>0).

If b€ E? and t # 0, the straight-line owing to point p has parametric

equation @ (t ) = b + at where t is direction vector. a''(t) = 0. The curvature is 0.
Conversely, if a is a regular curve that satisfies a”(t) = 0 for any t, an
integration gives & (t) = b + at, for some values of b,t € E;,t # 0. parametric

equation of the straight-line owing to the point b with direction vector t.
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When we deal with a straight-line, there are other parametrizations. For
instance, a (t) = (t3 +t, 0,0) is a parametric equation of the staright-line span {e;}

where a''(t) # 0.

Consider a: I - E3 a regular unit velocity curve or parametrized by pseudo-

arclength. We call a’(s) = t(s) as the tangent vector s.

Because < t(s),t(s) >, = +1 or 0. Differentiating, we get
< t(s),t'(s) >,= 0 which means and t'(s) is perpendicular to t(s). We will take
the curves such that t'(s) # 0 V s and for each s t'(s) # c t(s) c € IR.

We have 3 possibilities on the causal character of ¢(s).

3.2.1 Definition

Let a:I — E; be a curve and { t,n, b} be an orthonormal basis of E5. The
function defined by
k.| - E}

s = k(s) =< t'(s),n(s) >, is called curvature function of a.

Real numbers k(s) at a(s) is called curvature of a at a(s).

Kk(s) =< t'(s),n(s) >, = t'(s) = k(s).n(s).

3.2.2 Definition

Let a:1 — E3 be a curve and { t,n, b} is positively oriented orthonormal
basis E7. The function defined by
.1 - E}

s = 1(s) =< n'(s),b(s) >, is called torsion of a.
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3.2.3 Definition

Let a:1 - E3 be a curve and { t,n, b} is not orthonormal basis E3, null
frame. The function defined by
1 - E}

s = 1(s) = —< n'(s),b(s) >, is called pseudo-torsion of a.

3.2.4 Definition

Let { e;, €5,e3 } be a null frame if e; is a unit space-like vector and e,, e3
are lightlike vectors space sp{e; }* such that < e, e; >,= —1. e, and e; are in

this same time cone.

Curvature, torsion and Frenet equations calculation for 3 types.

3.2.5 The Time-like Case

Let a be a time-like curve that is t(s) is a time-like vector then t'(s) is space-
like vector (since span { t(s) }* is space-like subspace ).

< t(s), t(s) > =-1

<t'(s),t(s) >, +< t(s), t'(s)>,=0
2<t'(s)t(s) >=0
<t'(s)t(s) >=0

E3=sp{t(s)} @ sp{t(s)}*. By2.1.3 Proposition
t t/

'_,f/ D —— ——
time—like space—like subspace

t(s) = a'(s)

The normal vector t(s) is defined by

— 1 !
n(s) = m t'(s).
t'(s) = k(s).n(s) = [|'()||L=|k(S)]|L. [[n(s)]|. =
()|, = [|1t'(s)]|; (since |[n(s)||, = 1 is a space-like unit vector).
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The curvature function x(s) is

K(s) =< t'(s),n(s) >;.

We take the binomial vector b(s) as,

b(s) = t(s) x n(s).

b(s) is unit and space-like. For each s,{t(s),n(s),b(s)} isan
orthonormal basis for E13. It is called the, frenet trihedron of « at s. The basis
{ t,n, b} is positively oriented because

det(t,n,b) =<t X n,b >;=<b, b > =1.
b is a space-like vector. We define the torsion 7 of « at s.
T(s) =< n'(s),b(s) >,
n'(s) € sp { t(s),n(s), b(s)}
n'(s) = at(s)+ bn(s)+cb(s)
<n'(s),t(s) >=< at(s)+ bn(s)+cb(s)t(s) >

<n'(s), t(s) >=a< t(s), t(s) >, + b< n(s),t(s) >, +c< b(s), t(s) >,
T 0 0

<n'(s),t(s) >=—a

On the other hand k(s) = < t'(s),n(s) >,
< n(s), t(s) >;= 0 (we differentiate both sides )
<n'(s),t(s) > +<n(s), t'(s) >=0

<n'(s), t(s) > = —<n(s),t'(s) > = <n'(s)t(s) >=—k(s)
—k(s)

<n'(s),t(s) >=—k(s)=—a =2k(s)=a

<n'(s),n(s) >=<at(s)+bn(s)+cb(s),n(s) >
< n(s),n(s) >;= 1 (we differentiate both sides)
<n'(s),n(s) >, +<n(s),n'(s) >=0
2<n'(s),n(s) >=0 =><n'(s),n(s) >=0

<n'(s),n(s) >=a< t(s),n(s) > + b<n(s),n(s) >, +c< b(s),n(s) >

<n'(s),n(s) >,=»b

<n'(s),n(s) >=b=0
<n'(s),b(s) > =< at(s)+bn(s) +cb(s),b(s) >
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<n'(s),b(s) >;=a< t(s),b(s) >, + b<n(s),b(s) >, +c<b(s),b(s) >
0 0 1

<n'(s),b(s) >=c

We know the definiton of 7(s) = < n'(s),b(s) >,
<n'(s),b(s) >=c =1(s)
n'(s) =at(s)+bn(s)+chb(s)
n'(s) = k(s).t(s) + 0.n(s) + ©(s).b (s)
n'(s) = k(s).t(s) + 7(s). b(s)
b'(s) € sp { t(s),n(s), b(s)}
b'(s) =at(s)+ bn(s)+cb(s)
< b'(s),t(s) >,=<at(s)+bn(s)+cb(s)t(s) >

< b'(s),t(s) > =a< t(s), t(s) > + b< n(s),t(s) >, +c< b(s),t(s) >,
-1 0 0

< b'(s),t(s) >,=—a

On the other hand < b(s), t(s) >;= 0 (we differentiate both sides)
< b'(s),t(s) >, + < t'(s),b(s) >,=0
< b'(s),t(s) >, + < k(s).n(s),b(s) >;=0

< b'(s),t(s) >, + k(s) < n(s),b(s) >,=0

< b'(s),t(s) >;,=0
<b'(s),t(s) >=0=—a=a=0

< b'(s),n(s) >;=< at(s)+bn(s)+chb(s),n(s) >

< b'(s),n(s) >;=a< t(s),n(s) >, + b < n(s),n(s) >, +c< b(s),n(s) >
0 1 0

<b'(s),n(s) >;=0b

< b(s),n(s) >;= 0 (we differentiate both sides)

< b'(s),n(s) >, +< b(s),n'(s) >,=0
< b'(s),n(s) >,= —< b(s),n'(s) >,

We know the definition of 7(s) = < n'(s), b(s) >,
< b'(s),n(s) >= —1(s)
< b'(s),n(s) >=b=—1(s)
< b'(s),b(s) >,=<at(s)+bn(s)+cb(s),b(s) >
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< b'(s),b(s) >=a< t(s),B(s) >, + b<n(s),b(s) > +c<b(s),b(s) >
0 0 1

< b'(s),b(s) >=c
< b(s),b(s) >;= 1 (we differentiate both sides)
< b'(s),b(s) >, +< b'(s),b(s) >,=0
2<b'(s),b(s) >=0
< b'(s),b(s) >=0
< b'(s),b(s) >=0=c
b'(s) =at(s)+ bn(s)+cb(s)
b'(s) = 0.t(s) — t(s) n(s) + 0. b(s)

b(s) = —t(s) n(s)

Conversely,
t'(s) = k(s).n(s)
n'(s) = k(s).t(s) + (s). b(s)
b'(s) = —t(s).n(s)

t' 0 rk 0\ t
<n’> = <1c 0 T) <n>
b’ 0 —t 0/ \b

3.2.6 The Space-like Case

Let a be a space-like curve in E3. That is t(s) = a’(s) is a space-like vector.
sp{ t(s) }* is time-like subspace EZ.

<t(s) t(s) >,=1

<t'(s),t(s) >, +< t(s), t'(s)>,=0

2<t'(s)t(s) >=0
<t'(s)t(s) >=0
E3= sp{t(s)} @ sp{t(s)}*. By2.1.3 Proposition
T T’

_,_./ N —
space—like time—like subspace

(1) t'(s) may be space-like.
(2) t'(s) may be time-like.
(3) t'(s) may be light-like.
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Case 1: t'(s) is a space-like vector.
k(s) =< t'(s),n(s) >,
t'(s) = k(s).n(s)

n(s) = ¢ (s) = n(s) is a space-like vector.

K(s)"
(since t'(s) and n(s) have the same causal character)
b(s) = t(s) x n(s).
t(s) and n(s) have the same causal character, b(s) is time-like.
{ t,n, b} is negatively oriented.
t'(s) = k(s).n(s) = ||t' (|| ,=[x(S)]]|L- [|n($)]], =
[1(s)]|, = ||t (s)]|, (since ||n(s)||, = 1 is a space-like unit vector )
n'(s) € sp {t(s),n(s), b(s)}
n'(s) = at(s) + bn(s)+cb(s)
<n'(s),t(s) >=< at(s)+ bn(s)+cb(s)t(s) >

<n'(s),t(s) > =a< t(s),t(s) > + b<n(s)t(s) > +c< b(s),t(s) >,

<n'(s),t(s) >=a

On the other hand k(s) = < t'(s), n(s) >,
< n(s), t(s) >,= 0 (we differentiate both sides)
<n'(s), t(s) > +<n(s), t'(s)>=0

<n'(s),t(s) > = —<n(s),t'(s) > = <n'(s)t(s) >=—k(s)
—k(s)

<n'(s),t(s) >,= —k(s) =a = —k(s) = a

<n'(s),n(s) > =<at(s)+ bn(s)+cb(s),n(s) >
< n(s),n(s) >;= 1 (we differentiate both sides)
<n'(s),n(s) >, +<n(s),n'(s) >=0
2<n'(s),n(s) >=0=><n'(s),n(s) >=0

<n'(s),n(s) > =a< t(s),n(s) > + b< n(s),n(s) >, +c< b(s),n(s) >

<n'(s),n(s) >,=b

<n'(s),n(s) >=b=0
<n'(s),b(s) >=<at(s)+bn(s)+chb(s),b(s) >

<n'(s),b(s) >=a< t(s),b(s) >, + b<n(s),b(s) >, +c<b(s),b(s) >
0 0 -1
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<n'(s),b(s) >=—c

{ t,n, b} is negatively oriented. So
T(s) = —<n'(s),b(s) >,
<n'(s),b(s) >=—c=—-1(s) >c =1(s)
n'(s) =at(s)+bn(s)+chb(s)
N'(s) = —k(s).t(s) + 0.n(s) + t(s).b(s)
N'(s) = —k(s).t(s) + ©(s).b(s)
b'(s) € sp { t(s),n(s), b(s)}
b'(s) =at(s)+ bn(s)+cb(s)
< b'(s),t(s) >,=<at(s)+bn(s)+cb(s)t(s) >

< b'(s),t(s) > =a< t(s), t(s) > + b< n(s), t(s) >, +c< b(s),t(s) >,
1 0 0

< b'(s),t(s) >=a

On the other hand < b(s), t(s) >;= 0 (we differentiate both sides)
< b'(s),t(s) >, + < t'(s),b(s) >=0
< b'(s),t(s) >, + < k(s).n(s),b(s) >,=0

< b'(s),t(s) >, + k(s) < n(s),b(s) >,=0

< b'(s),t(s) >,=0
< b'(s),t(s) >=0=a=>a=0

< b'(s),n(s) >;=< at(s)+bn(s)+chb(s),n(s) >

< b'(s),n(s) >=a< t(s),n(s) >, + b < n(s),n(s) >, +c< b(s),n(s) >
0 1 0

< b'(s),n(s) >=»b
< b(s),n(s) >;= 0 (we differentiate both sides)

< b'(s),n(s) >, +< b(s),n'(s) >,=0
< b'(s),n(s) >;= —< b(s),n'(s) >,

{t,n, b} is negatively oriented. So
T(s) = —<n'(s),b(s) >,
< b'(s),n(s) >;= t(s)
< b'(s),n(s) >=b = t(s)
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< b'(s),b(s) >,=<at(s)+bn(s)+cb(s),b(s) >

< b'(s),b(s) >,=a< t(s),b(s) >, +b<n(s),b(s) > +c<b(s),b(s) >
0 0 -1

< b'(s),b(s) >=—c
< b(s),b(s) >;= —1 (we differentiate both sides)
< b'(s),b(s) >, +< b'(s),b(s) >,=0

2<b'(s),b(s) >=0
< b'(s),b(s) >=0

<b'(s),b(s) >=0=—-c=>0=c

b'(s) =at(s)+ bn(s)+cb(s)
b'(s) = 0.t(s) + t(s) n(s) + 0. b(s)
b'(s) = t(s) n(s)

Conversely,
t'(s) = k(s).n(s)
n'(s) = —k(s).t(s) + ©(s).b(s)
b'(s) = t(s).n(s)

t' 0 kK 0\ ,t
(n’) = (—K 0 r) (n)
b’ 0 T 0/ \b

Case 2: t'(s) is a time-like vector.
k(s) =< t'(s),n(s) >,
t'(s) = k(s).n(s)

n(s) = L t'(s) = n(s) is atime-like vector.

()"

(since t'(s) and n(s) have the same causal character.)

b(s) = t(s) x n(s).

t(s) and n(s) have different causal characters, b(s) is a space-like.

{t,n, b} is positively oriented.

t'(s) = k(s).n(s) = [|t'()][ =]k [In($)]|], =

[l(s)|, = ||t (s)]|; (since ||[n(s)||, = 1 is a time-like unit vector )

n'(s) € sp { t(s),n(s), b(s)}
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n'(s) = at(s) + bn(s)+ cb(s)
<n'(s),t(s) >=< at(s)+ bn(s)+chb(s)t(s) >

<n'(s),t(s) >=a<t(s),t(s) > +b<n(s)t(s) >, +c< b(s),t(s) >
1 0 0

<n'(s),t(s) >=a

On the other hand k(s) = —< t'(s),n(s) >,
< n(s), t(s) >,= 0 (we differentiate both sides)
<n'(s), t(s) > +<n(s), t'(s)>=0

<n'(s),t(s) > = —<n(s),t'(s) > = <n'(s)t(s) > =k(s)
k(s)

<n'(s),t(s) > =k(s)=a =2k(s)=a

<n'(s),n(s) > =< at(s)+bn(s)+cb(s),n(s) >
< n(s),n(s) >;= —1 (we differentiate both sides)
<n'(s),n(s) >, +<n(s),n'(s) >=0
2<n'(s),n(s) >=0=><n'(s),n(s) >=0

<n'(s),n(s) >=a< t(s),n(s) > + b< n(s),n(s) >, +c< b(s),n(s) >

<n'(s),n(s) >,=-b
<n'(s),n(s) >=-b=0=b=0
<n'(s),b(s) >=<at(s)+bn(s)+cb(s),b(s) >

<n'(s),b(s) >;=a< t(s),b(s) >, + b<n(s),b(s) >, +c<b(s),b(s) >
0 0 1

<n'(s),b(s) >=c

{ t,n, b} is positively oriented. So
T(s) =< n'(s),b(s) >,
<n'(s),b(s) >=c=1(s) > c=1(s)
n'(s) =at(s)+bn(s)+cb(s)
n'(s) = k(s).t(s) + 0.n(s) + ©(s).b(s)
n'(s) = k(s).t(s) + 7(s).b(s)
b'(s) € sp { t(s),n(s), b(s)}
b'(s) =at(s)+ bn(s)+cb(s)
< b'(s),t(s) > =< at(s)+bn(s)+cb(s)t(s) >
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< b'(s),t(s) > =a< t(s), t(s) > + b< n(s), t(s) >, +c< b(s),t(s) >,
1 0 0

< b'(s),t(s) >=a

On the other hand < b(s), t(s) >;= 0 (we differentiate both sides)
< b'(s),t(s) >, +<t'(s),b(s) >,=0
< b'(s),t(s) >, + < k(s).n(s),b(s) >,=0

< b'(s),t(s) >, + k(s) < n(s),b(s) >,=0

< b'(s),t(s) >;,=0
<b'(s),t(s) >=0=a=>a=0

< b'(s),n(s) >;=<at(s)+bn(s)+chb(s),n(s) >

< b'(s),n(s) >;=a< t(s),n(s) >, + b< n(s),n(s) >, +c< b(s),n(s) >
0 -1 0

< b'(s),n(s) >,=—-b

< b(s),n(s) >;= 0 (we differentiate both sides)

< b'(s),n(s) >, +< b(s),n'(s) >;=0
< b'(s),n(s) >;= —< b(s),n'(s) >,

{t,n, b} is positively oriented. So
T(s) =< n'(s),b(s) >,
< b'(s),n(s) >= —1(s)
< b'(s),n(s) >=-b=—-1(s)>=>b =1(s)
< b'(s),b(s) > =< at(s) + bn(s)+cb(s), b(s) >,

< b'(s),b(s) >,=a< t(s),b(s) >, +b<n(s),b(s) > +c<b(s),b(s) >
0 0 1

< b'(s),b(s) >=c
< b(s),b(s) >;= 1 (we differentiate both sides)
< b'(s),b(s) >, +< b'(s),b(s) >,=0
2<b'(s),b(s) >=0

< b'(s),b(s) >=0

<b'(s),b(s) >=0=c=>0=c

b'(s) =at(s)+ bn(s)+cb(s)

b'(s) = 0.t(s) + T(s) n(s) + 0. b(s)
b'(s) = t(s) n(s)
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Conversely,
t'(s) = k(s).n(s)
n'(s) = k(s).t(s) + 7(s). b(s)
b'(s) = t(s).n(s)

t' 0 x 0\ /t
(n’) = (K 0 T) (n)
b’ 0 0/ \b

Case 3: t'(s) is a light-like vector.
<t(s), t(s) >,=1
<t'(s)t(s) >, +<t(s), t'(s) >=0
2<t'(s)t(s) >=0
<t'(s)t(s) >,=0(t'(s) L t(s))

We take the normal vector n(s) = t'(s)
t(s) and n(s) are linearly independent vectors.

Let b(s) be the unique light-like vector such that < n(s), b(s) >,= —1. (By
3.2.3 Definition ) and b(s) is orthogonal to t(s).

{ t,n, b} is not an orthogonal basis of E3. It is null frame.
t'(s) =1.n(s)
n'(s) € sp { t(s),n(s), b(s)}
n'(s) = at(s) + bn(s)+ cb(s)
<n'(s),t(s) >=<at(s)+bn(s)+chb(s)t(s) >

<n'(s), t(s) > =a<t(s),t(s) > +b<n(s)t(s) > +c< b(s)t(s) >

<n'(s),t(s) >=a

< n(s), t(s) >,= 0 (we differentiate both sides)
<n'(s), t(s) > +<n(s), t'(s)>=0
<n'(s), t(s) > +<n(s),n(s) >=0=> <n'(s),t(s) >=0
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Since n(s) is a light-like vector.
<n'(s),t(s)>=0=a =20=a
<n'(s),n(s) >=<at(s)+bn(s)+cb(s),n(s) >
< n(s),n(s) >;= 0 (we take both sides differentiating)
<n'(s),n(s) >, +<n(s),n'(s) >=0
2<n'(s),n(s) >=0=><n'(s),n(s) >=0

<n'(s),n(s) > =a< t(s),n(s) > + b< n(s),n(s) >, +c< b(s),n(s) >

<n'(s),n(s) >,=—c

<n'(s),n(s) >=—c=0=¢c=0
<n'(s),b(s) >=<at(s)+bn(s)+cb(s),b(s) >

<n'(s),b(s) >=a< t(s),n(s) >, + b<n(s),b(s) > +c< b(s),b(s) >
0 -7, 0

<n'(s),b(s) >,= —b.

Define the pseudo-torsion
T(s) = —<n'(s),b(s) >,
<n'(s),b(s) > =—-b=—-1(s)=b =1(s)
n'(s) = at(s) + bn(s)+cb(s)
n'(s) = 0.t(s) + t(s).n(s) + 0.b(s)
n'(s) = ©(s).n(s)

b'(s) € sp { t(s),n(s), b(s)}

b'(s) =at(s)+ bn(s)+cb(s)

< b'(s),t(s) >,=<at(s)+bn(s)+cb(s)t(s) >

< b'(s),t(s) > =a< t(s), t(s) > + b< n(s), t(s) >, +c< b(s),t(s) >,
1 0 0

< b'(s),t(s) >=a

On the other hand < b(s), t(s) >;= 0 (we differentiate both sides)
< b'(s),t(s) >, + < t'(s),b(s) >=0
< b'(s),t(s) >, + < n(s),b(s) >,=0
<b'(s),t(s) > — 1=0
< b'(s),t(s) > =1
<b'(s),t(s) >=1=a=a=1
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< b'(s),n(s) >;=<at(s)+bn(s)+chb(s),n(s) >

< b'(s),n(s) >;=a< t(s),n(s) >, + b < n(s),n(s) >, +c< b(s),n(s) >
0 0 -1

< b'(s),n(s) >,=—c

< b(s),n(s) >;= —1 (we differentiate both sides)
< b'(s),n(s) >, +< b(s),n'(s) >;=0
< b'(s),n(s) >= —< b(s),n'(s) >,

Define the pseudo-torsion
T(s) = —<n'(s),b(s) >,
< b'(s),n(s) >= t(s)
<b'(s),n(s) >=—-c=1(s)=c=—1(s)
< b'(s),b(s) >,=<at(s)+bn(s)+cb(s),b(s) >

< b'(s),b(s) >,=a< t(s),b(s) >, +b<n(s),b(s) > +c<b(s),b(s) >
0 26 0

< b'(s),b(s) >,=—b
< b(s), b(s) >;= 0 (we differentiate both sides)
< b'(s),b(s) >, +< b'(s),b(s) >,=0
2<b'(s),b(s) >=0
< b'(s),b(s) >=0
<b'(s),b(s)>=0=-b=>0=0b
b'(s) =at(s)+ bn(s)+cb(s)
b'(s) = 1.t(s) + 0.n(s) — ©(s).b(s)
b'(s) = 1.t(s) — t(s) n(s)

Conversely,

t'(s) =1.n(s)

n'(s) = t(s).n(s)
b'(s) = 1.t(s) — t(s).n(s)

t 01 0 t

n|=10 0 (n)

b’ 1 0 —t/ \b
We don’t know if it is positively oriented or not.
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3.2.7 The Light-like Case

Let a be a light-like curve parametrized by pseudo-arclength. t(s) = a'(s) is
a light-like vector.
<t(s), t(s) >,=0
<t'(s)t(s) >, +<t(s),t'(s) >=0
2<t'(s)t(s) >=0
<t'(s),t(s) >,=0(t'(s) L t(s))

We take the normal vector n(s) = t'(s) is space-like vector. b(s) is the unit
light-like vector orthogonal to n(s).

<t(s),b(s) >,=-1,<t(s),n(s) >,=0,<n(s),b(s) >=0

Thus { t,n, b} is not an orthogonal basis of E;. It is null frame of E;.
t'(s) =1.n(s)
n'(s) € sp { t(s),n(s), b(s)}
n'(s) =at(s) + bn(s)+chb(s)
<n'(s),t(s) >=< at(s)+ bn(s)+chb(s)t(s) >

<n'(s),t(s) >=a<t(s),t(s) > +b<n(s)t(s) >, +c< b(s),t(s) >
0 0 -1

<n'(s), t(s) > =—c

< n(s), t(s) >;= 0 (we differentiate both sides)
<n'(s), t(s) > +<n(s), t'(s)>=0
<n'(s),t(s) > +<n(s),n(s) >=0=> <n'(s),t(s) >,+1=0
<n'(s), t(s) >=—1

Since n(s) is a space-like vector.
<n'(s)t(s) >=—-1=c=>-1=c
<n'(s),n(s) > =<at(s)+ bn(s) +cb(s),n(s) >,
< n(s),n(s) >;= 1 (we differentiate both sides)
<n'(s),n(s) >, +<n(s),n'(s) >=0
2<n'(s),n(s) >=0 =><n'(s),n(s) >=0

<n'(s),n(s) > =a< t(s),n(s) >, + b<n(s),n(s) >, +c< b(s),n(s) >
0 1 0

<n'(s),n(s) >=b
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<n'(s),n(s) >=b=0=b=0
<n'(s),b(s) >=<at(s)+bn(s)+cb(s),b(s) >

<n'(s),b(s) >;=a< t(s),b(s) >, + b< n(s),b(s) >, +c< b(s),b(s) >
-1 0 0

<n'(s),b(s) >,=—a

Define the pseudo-torsion
T(s) = —<n'(s),b(s) >,
<n'(s),b(s) > =—a=—-1(s)>a=1(s)
n'(s) = at(s) + bn(s)+chb(s)
n'(s) = 1(s).t(s) + 0.n(s) + 1.b(s)

n'(s) = t(s).t(s) + 1.b(s)
b'(s) € sp { t(s),n(s), b(s)}

b'(s) = at(s) + bn(s) + c b(s)

< b'(s),t(s) >,=<at(s)+bn(s)+cb(s)t(s) >

< b'(s),t(s) > =a< t(s), t(s) >, + b< n(s), t(s) >, +c< b(s),t(s) >,

< b'(s),t(s) >,=—c

On the other hand < b(s), t(s) >;= —1 (we differentiate both sides)
< b'(s),t(s) >, + < t'(s),b(s) >=0
< b'(s),t(s) >, + < n(s),b(s) >,=0
<b'(s),t(s)>+ 0 =0
< b'(s),t(s) >;,=0
< b'(s),t(s) >=0=—c=c=0
< b'(s),n(s) >;=<at(s)+bn(s)+chb(s),n(s) >

< b'(s),n(s) >;=a< t(s),n(s) >, + b < n(s),n(s) >, +c< b(s),n(s) >
0 1 0

<b'(s),n(s) >;,=0b

< b(s),n(s) >;= 0 (we differentiate both sides)

< b'(s),n(s) >, +< b(s),n'(s) >,=0
< b'(s),n(s) >= —< b(s),n'(s) >,
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Define the pseudo-torsion
T(s) = —<n'(s),b(s) >,
< b'(s),n(s) >;= t(s)
<b'(s),n(s)>=b =t(s)=b =1(s)
< b'(s),b(s) > =<at(s)+bn(s)+cb(s),b(s) >

< b'(s),b(s) >=a< t(s),b(s) >, +b<n(s),b(s) >, +c<b(s),b(s) >

< b'(s),b(s) >,=—a
< b(s), b(s) >;= 0 (we differentiate both sides)

< b'(s),b(s) >, +< b'(s),b(s) >,=0
2<b'(s),b(s) >=0
< b'(s),b(s) >;,=0

<b'(s),b(s) >=0=—-a=>0=a
B'(s) = at(s) + bn(s) + c b(s)
b'(s) = 0.t(s) + 7(s).n(s) + 0. b(s)
b'(s) = t(s) n(s)

Conversely,
t'(s) =1.n(s)
n'(s) = t(s).t(s) + 1.b(s)
b'(s) = t(s).n(s)

t 0 1 0 t
<n’> = <‘L’ 0 1) <n>
b’ 0 T 0/ \b

(Bonnor 1969, Graves 1979, Inoguchi 2008)

Time-like curves and space-like curves with space-like or time-like normal

vectors are called Frenet curves. The Frenet equations are written as follows.
f<tt>= e€and <n,n>;= §then
t 0 kK 0\ /t
n|={-6k 0 1 <n>
b’ 0 et 0/ \b

The curvature k is given by the function in such a way that t' = c.n where

¢ € IR. The torsion T is defined as the 3th coordinate of n’.

48



For space-like curves with light-like normal vector or light-like curves, the

Frenet equations are as follows: let < t,t >;= &, <n,n>;= § whereg,§ €{0,1}
t' 0 1 0 t
n)|=16t et & <n>
b’ e 06t —et/ \b

T(s) = —&b6 <n'(s),b(s) >, .

and € # 6. Then

The torsion is

In Euclidean space, the curve is planar < its torsion is zero. In Minkowski

space, we will obtain the similar results for Frenet curves.

3.2.8 Example

a(s) = <cos(s) + s sin(s), sin(s) — s cos(s) ,% ( sys?—1—1In (s + /5% — 1)))

for s € (1, ). Find the causal character of ¢, x and . (Lopez, 2014)

We will find a'(s).
a'(s) =t(s) = (s cos(s),ssin(s),m)
<a'(s),a’(s) >,= s?(cos(s))? +s%(sin(s))? — (s2 — 1)
<a'(s),a'(s) >=s*—s?+1=1.

a is a space-like curve.

a’(s) =t'(s) = (cos (s) — ssin(s) ,sin(s) + s cos(s), > )
s?2—1

SZ
<a'(s),a”’(s) >,= cos?(s) + sin?(s) + s?cos?(s) + s?sin?(s) — (52 — 1)

s? st —s2 -1
" , " :1 2 _ = 3
<a'(s),a"(s) >, +s <52_1> 21

The causal character of t'(s) is given by the sign of s* — 52 — 1 since
st—s?2-1

<a'(s),a"(s) >= 21

If s>v1++/5 /2 then t'(s) is space-like.
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If1<s<+v1++V5/2then t'(s) is time-like.

In both cases, the curvatures and the torsions are

) [s* —s2 —1]| ) s6 —2s* — 25242

k() = |———, = .
s2—1 (s*—s2—1)Vs?2—1

3.2.9 Example

(1) Let a(s) = r(cos(%),sin(%),O).Them

S

a'(s) =t(s) = (—sin(%),cos (—),0)

r

<a'(s),a'(s) >,= sin? (;) + cos? (;) - 0=1.

a is a space-like curve.
1 S _ S
a’(s)=t'(s) = - (—cos(;),—sm (r—),O)

1
<a'(s),a'(s) >.= ) >0,Vr€lR.

t' is a space-like. We know that

t'(s) = k(s).n(s)
s

K(s) = % , n(s) = (—cos(;),—sin (r—),O)

n is a space-like vector. t,n have same causal character, b is a time-like
vector. { t,n, b } is negatively oriented.

b =txn. b(s) = (0,0,—1).b'(s) = 0,7(s) = 0.

This basis is either positively oriented nor future directed.

(2) Let a(s) = r(0,sinh ( ;) ,cosh ( ;) ). Then

a'(s) = t(s) = (O,COSh(;),Sinh(f) )

r
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<a'(s),a'(s) >=0+ (cosh(%) )2 — (sinh(;) )2 =1.

a is a space-like curve.
1 _ S S
a’(s) =t'(s) = ;(0,smh(;) ,cosh(;)) .

1
<a'(s),a"(s) >= 2 <0,Vvr€lR.

t' is a time-like. We know that

t'(s) = k(s).n(s)

k(s) = % , n(s) = (O,Sinh<;) ,cosh(%)) .

n is a timel-ike vector. £, n have different causal characters, b is a space-like
vector. { t,n, b } is positively oriented.
b = txn. b(s) = (1,0,0).b'(s) = 0,7(s) = 0.
(3) Let a(s) =r(0, cosh ( ;) ,sinh ( ;) ). Then
. s S
a'(s) =t(s) = (0,51nh(;),cosh(;) ).
s

<a'(s),a'(s) >,=0+ (sinh ( " ) )2 — ( cosh(;))2 =—1.

a is a time-like curve.

a’(s) =t'(s) = %(O, cosh(;) ,sinh(;) ).

1
<a'(s),a’(s) >.= ) >0,Vr.

t' is a space-like. We know that

t'(s) = k(s).n(s)

k(s) = % , n(s) = (0, cosh(f:) ,sinh(f:) )-

n is a space-like vector. £, n have different causal characters, b is a space-like
vector. { t,n, b } is positively oriented.

b =txn. b(s) =(-1,0,0).b'(s) = 0,7(s) = 0.
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(4) Let

a(s) = (——=—=——=,r cosh( ), 1 sinh(

S S
e A o))

where > — h? > 0. Then

a'(s) =t(s) = h,r sinh(

S S
———— |, cosh(—)).
Vr2 —hz) (rz—hz))

h? —r?
<a'(s),a'(s) >= m = —1.

1
ﬁ(

a is a time-like curve and future directed. We have

a’(s)=t'(s) = (0, cosh( ), sinh(

))-

r S S

2

r
<a’(s),a"(s) >.= e >0,Vr €IR sincer? —h? > 0.

t' is a space-like. We know that
t'(s) = k(s).n(s)

k(s) = _r , n(s)=(0, cosh(; ), sinh( ;) ).
r2 — h? r2 — h? r2 — h?

n is a space-like vector. t, nhave different causal characters, b is a space-like

vector. { t,n, b } is positively oriented.

b = txn.
b(s) = ———— (=7, —h sinh( ————),, ~h cosh(o——))
S) =——=(—T1,— Sin ——— ), —NnCcosn(——— .
r2_h2 ‘/rz_hz w/rz_hz
We know that T(s) = < n'(s), b(s) >,
/(8) = ———— (0, sinh( ————), cosh(o——))
nis) ==—— , SIn ——— ), C0SN(———= .
Vr2 — h2 \Vr2 — h? r2 — h2
h
1) =
(5 Let

a(s) = 1) ()% ()

28 2s

o' (s) = T(s) =<1,r—,—)

r
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<a'(s),a'(s) >,=1.

a is a space-like curve.
2 2
a"(s) =) = (02,5 ).
r'r

<a'(s),a(s) >,=0.

t' is a light-like. So we defined the normal vector t'(s) = n(s).

n(s) = (Org,g>

r

t(s) and n(s) are linearly independent vectors. Let b(s) be the unique light-
like vector and < n(s),b(s) >,=—1 and also b(s) is the perpendicular to

t(s).{t,n, b} is not an orthonormal basis of E3.

b(s) = (O,%,%) and 7(s) = 0.

(6) Consider a curve constructed by the boosts about the light-like axis
span{(0,1,1)}. Take the orbit S of the point (0, 1, -1 ). Then
f(s) =(2s,1— s, —1—s2). Hence B'(s) = (2,—2s,—2s).

< B'(s),B'(s) >,=2.B is a space-like curve. As |B'(s)|, = 2, we change
the parameter as s by % So it has pseudo-arclength parameter. Thus let

1-— s? —1—52>

a(s)=<s, T a

a'(s) = T(s) = (1_75;)

<a'(s),a'(s) >=1>0.

a is a space-like curve.

a"(s) = t'(s) = (0_2—121)

<a'(s),a"(s) >.=0.

t' is a light-like. So we defined the normal vector t'(s) = n(s). Thus
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- (022)

t(s) and n(s) are linearly independent vectors. Let b(s) be the unique light-
like vector and < n(s),b(s) >;,=—1 and also b(s) is the perpendicular to

t(s).{t,n, b} is not an orthonormal basis of E3.

s? 52
b(S) = <S,1 —T,—I—T)

T(s) = 0. is contained in the plane y — z = 2.

(7) Let

a(s) = r_i (cosh(rs ), rs, sinh(rs)).

a'(s) =t(s) = r—l(sinh(rs), 1, cosh(rs) ).

<a'(s),a'(s) >,=0.

a is a light-like curve.
a' (s) = t'(s) = (cosh(rs),0,sinh(rs)) .
<a'(s),a"(s) >=1>0.

t' is a space-like. We know that t'(s) = n(s).

n(s) = (cosh(rs),0,sinh(rs)) . Thus a is pseduo-arclength. b(s) is unit null
perpendicular to n(s). We know that
<t(s),b(s) >=-1.

b(s) = Zl(sinh(rs), —1, cosh(rs) ) , n'(s) = r(sinh(rs), 0, cosh(rs) ).

The pseudo-torsion is T(s) = < n'(s), b(s) >, . We deduce that

—r2
T(s) = -

(8) Let

a(s) = r—i (cos(rs),sin(rs),rs ). Then
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a'(s) =T(s) = r—l(— sin(rs), cos(rs),1).

<a'(s),a'(s) >,=0.

a is a light-like curve.
a'(s) =t'(s) = (— cos(rs),— sin(rs), 0).

<a'(s),a"(s) >=1>0.
t' is a space-like. We know that t'(s) = n(s).

n(s) = (— cos(rs),— sin(rs), 0).Thus « is pseduo-arclength. b(s) is unit
null vector perpendicular to n(s).

< t(s),b(s) >=-1.

b(s) = Zi(sin(rs) ,—cosh(rs) 1), n'(s) = r(sin(rs), — cos(rs),0) .

The pseudo-torsion is T(s) = < n'(s), b(s) >, . We deduce that

T(s) = —Trz

3.3 Some Theorems About Curves In E3

3.3.1 Theorem

Let a:1 — E3 be unit velocity curve. a is contained in an affine plane < the

T vanishes.

The proof is the same and we omit it. However, there are more curves to

consider. (Carmo, 1976)

3.3.2 Theorem

Let a be a space-like curve with light-like normal vector or a null curve.

a) A = 0 is = the curve lies in plane.(4 is pseudo-torsion )
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b) When null curve lies in a plane then it means is a straight-line. There exists
space-like plane curves with light-like normal vector with 4 #0 .

(Carmo, 1976)

3.3.3 Example
Let
3 3
a(s) = (s,%,%), s > 0 that liesin y = z. We get

a'(s) = t(s) = (1,s2,52).
<a'(s),a'(s) >=1.

a is a space-like curve.
a’(s) =t'(s) =(0,2s,2s).
<a'(s),a’(s) >,=0.

t' is a light-like. So we defined the normal vector t'(s) = n(s).

n(s) = (0,2s, 2s).

t(s) and n(s) are linearly independent vectors. Let b(s) be the unique null
vector and < n(s),b(s) >, =—1 and also b(s) is the perpendicular to

t(s).{t,n, b} is not an orthonormal basis of E3.

s -1 1
b(s) = (E'E'E) and the pseudo — torsion (s) = — < n'(s),b(s) >, .
7'(s) =(0,2,2)
1
(s) = -
S
3.3.4 Theorem

For a Frenet curve ,k and t are invariant under a rigid motion
(t is invariant up a sign ). When the curve is space-like with light-like normal vector

or it is light-like, pseudo-torsion is invariant. (Carmo, 1976)
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3.3.5 Example

The curves a(s) = (cos (s), sin(s),0) and B(s) = (0, cosh(s), sinh(s) )
a'(s) = t(s) = (—sin(s),cos (5),0) and B'(s) = t(s) = (0, sinh(s), cosh(s))
< a'(s),a'(s) >,=1. ais aspace-like curve.
< B'(s),B'(s) >,=—1. B is atime-like curve.

a'"(s) =t'(s) = (—cos (s), —sin(s),0).
<a'(s),a"(s) >,= 1. t'is aspace-like.
t'(s) = k(s).n(s)

k(s) = 1, n(s) = (—cos (s), —sin(s),0).

n is a space-like vector. £, n have the same causal characters, b is a time-like
vector. { t,n, b } is negatively oriented.
b = txn. b(s) = (0,0,—1). b'(s) = 0,7(s) = 0.
B (s) = t(s) = (0, cosh(s), sinh(s))
< B"(s),B"(s) >,=1. t'isaspace-like.
t'(s) = k(s).n(s)
k(s) = 1, n(s) = (0, cosh(s),sinh(s)) .

n is a space-like vector. £, n have the same causal characters, b is a time-like
vector. { t,n, b }is negatively oriented.

b = txn. b(s) = (—1,0,0). b'(s) = 0,7(s) = 0.

Although a(s) and B(s) have k =1 and T = 0 their causal chracter of
different «a is space-like and f is time-like. Even so two curves with the same causal

character , we should pay attention to the causal character of Frenet vectors.

For instance , the curve y(s) = (0, sinh(s), cosh(s) )
v'(s) = (0, cosh(s), sinh(s) )
<y'(s),y'(s) >,=1. y is a space-like curve.
v (s) = t'(s) = (0, sinh(s), cosh(s) ).
<y"(s),y"(s) >,=—1. t'is a time-like.
t'(s) = k(s).n(s)
k(s) = 1, n(s) = (0,sinh(s), cosh(s) ).
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n is a time-like vector. £, n have different causal characters, b is a space-like
vector. { t,n, b } is positively oriented.

b =txn. b(s) = (1,0,0). b'(s) =0,7(s) = 0.

y(s) has x = 1,7 = 0, but there does not exist a rigid motion between
a and y. For a, t and n are space-like however y is a space-like curve with time-

like normal vector.

In Lorentz-Minkowski space, there exists three different Frenet curves with

curvature x and torsion T.

3.3.6 Theorem

If wx(s) > 0 and 7(s), s € I, two differentiable maps then there exists three
different regular parametrized curves a:I - E3, a = a(s), with curvature k and

torsion 7. (Lopez, 2014)

3.3.7 Theorem

Let T:1 - R be a smooth function. There is a space-like curve with null

normal vector and a null curve with pseudo-torsion A. (Lopez, 2014)

3.3.8 Definition

Let a, B:1 — E3 be two unit velocity curve or parametrized by the pseudo-
arclength. We say that « and f have the same causal character of the Frenet frame if
ty,n, and b, have the same causal character than tg,mz and bg, respectively.

(Lopez, 2014)

3.3.9 Theorem

Let a, §:1 — E3 be two regular curves that have the same causal character of

the Frenet frame. They have the same k and 7, or they have same pseudo - torsion
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depending on the case = there exist a rigid motion M of E3 such that § = M o a.

(Carmo, 1976)

3.3.10 Example

Consider the curve a(s) = (s?,sinh(s?), cosh(s?)),s > 0. Then
a'(s) = (2s,2s cosh(s?).sinh(s?),2s sinh(s?). cosh(s?))
<a'(s),a'(s) >,=4s*> >0, a(s) is spacelike curve.

a''(s) = (2,2 cosh(s?) + 2s sinh(s?), 2sinh(s?) + 2s cosh(s?)).

Thus

space — like s € (0,/2)
a'(s)is { light — like s=+2
time — like s>2

However the parametrization by the arclength is

B(s) = (% ,sinh (%),cosh (%)) ,

which it is space-like.

We also examine curves in Lorentz -Minkowski Plane.

3.4 Curves In Lorentz-Minkowski Plane

We study plane curves in Minkowski space E3 giving a sign to the curvature k.
A problem appears in a first moment showing a difference with the Euclidean context.
We have two options. First, consider the two dimensional case of Lorentz-Minkowski
space, the Lorentz-Minkowski plane EZ. The second possibility is to consider a curve
of E3 included in an affine plane. There are three possibilities depending on whether
the plane is a space-like, time-like of light-like. If the plane is a space-like, the theory
corresponds to curves in a Riemannian surface.The plane is isometric to the Euclidean

plane E? and hence the theory is known ; the plane is time-like = it is isometric to EZ.
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Firstly denote EZ = (IR?, (dx)? — (dy)?) the Lorentz-Minkowski plane. We
describe the Frenet dihedron such that the curvature has a mark. Let a : [ > EZ be a
curve parametrized by arclength. Describe the tangent vector

t(s) = a'(s).

We get away light-like curves since in E? there are two linearly independent
directions of light-like vectors. Hence t(s) would be commensurate to a given
direction, obtaining that the curve is a straight-line. We assume that « is space-like or
time-like. The vector t'(s) is perpendicular to t(s). t(s) and n(s) will have different

causal character.

In E?, the unit normal n,(s) is chosen so { t(s),n.(s)} has a positively
oriented basis. In EZ we will again choose the Frenet frame as positively oriented
however the sequence of the vectors t and n is chosen under the stipulation that the
first vector is space-like and the second one is time-like. The situations are:

a) The curve is space-like. Decribe the normal vector n(s),

{ t(s),n(s) } is positively oriented.
b) The curve is time-like. Describe the normal vector n(s) ,

{n(s),t(s)} is positively oriented.

Let<t t>;= € € {—1,1} depending on whether the curve is a space-like
or time-like. < mn,n>;=—e. We describe the curvature of a as the function

k(s) such that

t'(s) = x(s).n(s).

Hence

k(s) = —e < t(s),n(s) >;.

The Frenet equations are
t'(s) = x(s).n(s)
n'(s) = k(s).t(s).

We have two equations in

()= G G ane ()
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3.4.1 Example

(1) The set A = {(x,y) € IR?: x?> — y? = —r?}consist of two components
At ={(x,y) €ed:y>0}, A~ ={(x,y) €EA:y <0}

For A",

Let a(s) = (r sinh(i ), T cosh(ri))

a'(s) =t(s) = (cosh(ri) ,sinh(;))

<a'(s),a'(s)>=1>0.

a is a space-like curve. t is a space-like vector.

a’(s) =t'(s) = (% sinh(%) ,%cosh(ri ))

0{”(5) — t’(s) — %(Smh(;) ,COSh(ri ))

n(s) = ( sinh(; ), cosh(ri ))

< n(s),n(s) > =-1.

n is a time-like vector.
K(s) = % .
For A~ ,
Let B(s) = (r sinh(3), - cosh(ri))
B'(5) = t(s) = (cosh(-) ,—sinh(>) )
<B GBS >1=1

p is a space-like curve. t is a space-like vector.
1 s 1 s
n — tl — ol h _ ,—— h . )
B'(s) = t/(s) = (~sinh(.), —~cosh()
1 S S
B"(s)=1t'(s) = —;(— smh(;) ,cosh(r—))

n(s) = (— sinh(; ), cosh(ri ))
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<n(s),n(s) >=-1<0.

n is a time-like vector.

1
K(S) = —F

(2) The set B = {(x,y) € IR?: x? — y? = r2} consist of two components
B*={(x,y)€B:x>0}, B~ ={(x,y) EB:x<0}.

For BY |
Let a(s) = ( r cosh(ri),rsinh(g ))
s s
a'(s) =t(s) = ( sinh(; ), cosh(r—) )
<a'(s),a'(s) >=-1.

« is a time-like curve. t is a time-like vector.
1 s 1 s
a’(s) =t'(s) = (;cosh(r— ),;smh(; ))
., . 1 s .
a’(s)=t'(s) = ;( cosh(r—) ,smh(; ))
S .S
n(s) = ( cosh(r—) ,smh(; ))

<n(s),n(s) > =1.

n is a space-like vector.

1
k(s) :?

For B~
Let B(s) = ( —-r cosh(ri) T sinh(% ))
S S
B'(s) =t(s) = ( —sinh(;) ,cosh(r—))
<B'(s),B'(s) >=-1

[ is a time-like curve. t is a time-like vector.
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1 1
B'"'(s)=t(s) = (—;cosh(ri ),;sinh(; ))
1 s s
B"(s) =t'(s) = —;( cosh(r—) ,—sinh(; ))
s S
n(s) = ( cosh(r—) ,— sinh(;))

<n(s),n(s) > =1.

n is a space-like vector.

1
k(s) = —?

For k, let

6(s) = fs k(t)dt.

0

Describe two curves a and f§ and curvature x, where « is space-like and f is

time-like:
S S
a(s) = (f cosh @ (t)dt,f sinh 6 (t)dt)
So So
S S
B(s) = <] sinh 6 (t)dt,f cosh @ (t)dt >
So So
3.4.2 Theorem

Let a : [ - E? be a time-like curve parametrized by arclength. Assume that
there exist a unit time-like vector v € EZ and t(s) and v lie in this same time-like

cone Vs . 6O is the angle between the tangent vector of @ and v =

K (s) = +6 (s). (Lopez, 2014)

Proof:

We know that —cosh(@(s)) =< t(s),v>,.
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By differentiating both sides ,

—-6'(s) sinh(e(s)) =<t'(s),v> + <t(s), 1\1’ >
0

—-0'(s) sinh(H(s)) =<t'(s),v>,

We know that t'(s) = x (s).n(s)
—0'(s) sinh(@(s)) =< x(s).n(s),v>,= x(s) <n(s),v> (*)
v = at(s) + bn(s)
< t(s) >, =a<t(s),t(s) > +b <t(s),n(s) >,

time—like 0
since orthogonal

<vt(s) >=a.(—1)+b.0

<vt(s) >,=—a
<v,n(s) > = a<t(s),n(s) >, +b <n(s),n(s) >,

8 space—like
since orthogonal

<v,n(s)>=a0+b.1

<v,n(s)>=»b
v=—<0t(s) >.t(s)+ < v,n(s) >,.n(s)
<v,v>,=<vtls) > (—D+<v,n(s) >2.(1)

time—like

—1=—-<v,t(s) >2 +< v,n(s) >?

We know that —cosh(@(s)) =< t(s),v>,
—1 = —cosh?(0(s)) + < v,n(s) >?

<v,n(s) >} = —1+ cosh?(0(s))

Since we know that cosh?(6) — sinh?(8) =1
< v,n(s) > = sinh?(0(s))
<v,n(s) > == sinh(H(s)) (xx)
—6'(s) sinh(@(s)) =< Kk(s).n(s), v >,= k(s) <n(s),v>, (*)

k(s) = iH’(s) since (*) and (x%).
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Finallly, for the curves in EZ of constant curvature. Suppose that the curvature

K is a constant a # 0. Then

S
0(s)=jadt=as+b, b € IR.
S

0

From

0(s) = f SK(t) dt ,

0

Curves have curvature a:

(1) The space-like curve
1
a(s) = a (sinh(as + b), cosh(as + b)).

<a'(s),a'(s) >,= 1.

(2) The time-like curve
1
B(s) = z (cosh(as + b), sinh(as + b)).

< B'(s),B'(s) >,= —1. (Lopez, 2014)

According to the Euclidean space , @ and S curves are Euclidean hyperbolas.

3.4.3 Theorem

Let a : I > E; be a Frenet curve included in a plane of E3. a is a circle <

k = ¢, c # 0 (where c is constant ) and the T =0. (Lopez, 2014)

3.4.4 Theorem

Let D be the light-like plane y = z. The only space-like curves in D with

constant pseudo torsion A # 0 are,

a(s) = (s+d,%e’“ +bs+c,/%e’15+bs+c ), a,b,c,d € IR. (Lopez, 2014)
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Proof:

Let a(s) = (x(s), y(s), y(s)). a is parametrized by arclength parameter then
x'(s) = +1 when x(s) =s

a'(s) =t(s) = (1,y'(s),y'(s))

< a'(s),a'(s) >,= 1 since a and tis a space — like.

n(s) = t(s) = (0,y"(s),y"(s))

< n(s),n(s) >,= 0 since n is a light — like.

b is unit null vector satisfiying <n,b >;= —1.
-1+ () 1+ ()?
b = (5 e )
y 2y 2y

y"" #0 because conversly, y(s) =as+ b, a,b € IR, showing that « is
straight-line. @(s) = (£s,as + b,as + b ). The computation of the pseudo torsion
A=—-<n',b>,.

n'(s) = (0,y"(s),y"(s))

nr _1+ N2 nr 1+ N2 "
/1:_<0+y (15099 _y™C fy))>:y_withy,,¢0_
2y 2y y

n

nr

Because 3;— = A by solving y(s) = /%e’ls + bs + c.

n

3.5 Helices In E3

A curve is called a general helix or cylindrical helix if its tangent makes a
constant angle with a fixed line in Euclidean space.. A curve is a general helix & T/
is a constant function. For instance, plane curves are helices. We expand this concept
to the Lorentz-Minkowski space. The problem is two defined the angle two vectors.

Difficulty is caused causal characters of vectors.
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3.5.1 Definition

A helix a : I — E3 is a unit velocity curve (or parametrized by the pseudo-
arclength if « is light-like ) such that there exists a vector w € E3 with < t(s),w >

is constant. Any line parallel to this direction w is named the axis of the helix.

Especially, a plane curve and a straight-line are helices. As a result T/ is

constant. (Lopez, 2014)

3.5.2 Theorem

Let B : I > E be aa Frenet curve. f is a helix &7/ is constant. (O’Neill,

1983)

67



4. SURFACES IN LORENTZ SPACE

First we will define the notion of space-like and time-like surface. We will
define the H and K for them. We will calculate these curvatures by using
parametrizations. We will define umbilical and minimal surfaces of E13. Nevertheless,
we will see the effect of causal characters, for instance , the surfaces can not be closed

and the Weingarten map for time-like surfaces might not be diagonalizable.

4.1 Spacelike and Timelike Surfaces In E3

Let M be a smooth and connected surface for non-empty boundary dM. Let
x:M - E13 be an immersion, that is, a differentiable map such that its differentiable
map dx,:T,M — I R3 is injective. We identify the tangent plane T,M with
(dx)p(T,M ). x*(<,>L), is the pullback metric,

x"(<,>)p(w,v) =< dx,(u),dx,(v) >, where u,v € T,M.

x: ( M,x* (<, >L)) - (E},<,>,) is an isometric immersion. The metric
x* <,>; can be of 3-types,

a) T,M is a space-like plane when x* <, >, is positive definite.

b) T,M is a time-like plane when x* <,>; is a metric with index 1.

¢) T,M is a light-like plane when x* <,>; is a degenerate metric. (Lopez,

2014)

4.1.1 Definition

Let M be a surface. An immersion x:M — E3 is called space-like
(respectively time-like, light-like ) if all tangent planes (T,M,x*(<,>,)) are

space-like (respectively time-like, light-like ).

A space-like or time-like surface are a non-degenerate surface. As the curves

of E3, given an immersed surface in E, the causal character might change in different
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points of the same surface. A surface is not necessarily classified in one of the above
types. For instance , in the sphere
S2={(x,y,z) € IR? | x> +y*+2z> =1}

v=(xy2) €S? 2<vv > = x%+y%—z2

We know that x? +y2+2z2=1 = x2+y?=1— z2 So
v=(x,v2)€S? >2<vv > = x+y?—z2=1-2z*

(1) TheregionA = {(x,y,z) € S?| |z|< % }is time-like.
(2) TheregionB = {(x,y,z) € S?| |z|> % } is space-like.

(3) TheregionC = {(x,y,z) € S?| |z|= % } is light-like.

For a space-like (resp. time-like ) surface M and p € M we have the
decomposition Ef = (T,M) @ (T,M )*, where (T,M )* is a time-like (resp. space-
like ) subspace of dimension 1. A Gauss map is a differentiable map n: M — E3 such
that | n(p)| = 1 and n(p) € (T,M )* V p € M. For a non-degenerate surface this is

equivalent to existence of a Gauss map, also called an orientation of M. (Lopez, 2014)

4.1.2 Proposition

Let S be a compact surface and let x:S — E3 be a space-like, time-like or

light-like immersion. Then dS # @. (Lopez, 2014)

Proof:

Let dS = @. Consider that the immersion is space-like (respectively time-like
or light-like ). Let a € E3 be a space-like (respectively time-like ) vector. Since S is
compact, let py € S be the minimum point of the function
fp) =<x(p),a >,. As dS = @, then p, is critical point of the function f so
< (dx)p, (W), @ >, Yw € T, S . Then a€ (T, S)*, a contradiction because

(T, S )1 is time-like (respectively space-like or light-like).
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4.1.3 Proposition

Let x:S > E} be a space-like immersion of a surface S. Consider the
projectionmap m: S — IR?, n(x,y,z) = (x,y).
a) The projection m is local diffeomorphism.
b) Assume that S is compact and that x |55 is a diffeomorphism between 95
and a plane, closed, simple curve. Then x (S) is a graph on the planer

domain determined by x(85). (Lopez, 2014)

4.1.4 Example

A plane D = dy + span { w}! the causal character of D coincides with the
one of. wis a unit time-like or space-like vector = a Gauss map is a

n(d) = w. (Lopez, 2014)

4.1.5 Example

A hyperbolic plane of center p, € E; and radius v > 0 is
H?(r;po) ={p € E{ | <p—Po,p —Po >1,= —1%,<p—Dpoe5 >, <0}

here e; =(0,0,1). The set {p €EE}| <p—po,p—DPo >.= —T?} has two
connected components and that the condition < p — py,e3 >;< 0 chooses from
them. Let p, be origin in IR3 and r = 1 is denoted by H?(1; 0(0,0,0) ) = H?, that
is

H* ={p €E{|<p,p >,=—-1,<pe;s >,<0}

H? ={(x,y,z) €E}|x*+y?—z>=-1,2>0}.

This surface is one part of a hyperboloid of two sheets. A hyperbolic plane is
a space-like surface. Actually,if w € T,H?(r; po) and @ = a(t)cH?*(r; p,) is the
curve that represent w, then < a (t) — po, a (t) — p, >, = — r?. By differentiating
with respect to t
2< a'@®),at)—py >,=01lett=0=>< a'(0),a(0)—py >, =0=><w, p—p, >, = 0.

This means that T,S = span {p — po}*. As p — py is a time-like vector then S is a

space-like surface. Morever, n(p) =

(p_r—p‘)) is a Gauss map. Since < n, e; >, < 0,n is

future directed. (Lopez, 2014)
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Figure 4.1. Hyperbolic Plane of E3

4.1.6 Example

The pseudo-sphere of center p, and radius 7 is

Si(r;pe) ={p EE}| <p—po,p—Do >L= %}

The tangent plane at p is T,M = span { p — po}* and (p) = @_Tp"), n(p)isa
space-like since 72 > 0.n(p) is a space-like vector, so the surface is time-like. p is
the origin and r = 1 the surface is named The De Sitter Space and we denote by SZ.
Then

$? = (1;0(0,0,0)) =S? ={(x,y,2z) €EE}|x?+y?—2z2=1}.

According to Euclidean geometry, this surface is a ruled hyperboloid.

Additionally this surface called is a hyperboloid of one sheet. (Lopez, 2014)

Figure 4.2. Pseudo-sphere of E3
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4.1.7 Example

The light-like cone of center pj is
Cpo) ={P€E’| <p—pop—po >.= 0} —{po}
T, C (o) = span{p — po}*.

The surface is light-like. If pj is origin of IR3,then C(p,) is the light-like
cone C of E3.(Lopez, 2014)
€(0;0(000))=C= {(x,y,2) €E}|x*+y?*—2z2=0}-{(0,0,0)}.

Figure 4.3. Light-like Cone Of E;

4.1.8 Example

h: 2 cIR? — IR be a smooth function defined on a domain 2 — IR?. The

graph of h defined by
hy = graph (h) = {(x,y,h(x,y)) | (x,y) €2 }.

Consider h, as the image of immersion ¢,: £ — E3, given by
¢1 (x'y) = (x'yrh(x:y))'
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As ¢1x (XJY) = (11 0, hx)l ¢1y (xJY) = (Or 1, hy)
E=< ¢15 $1x >,=1-h
F =< ¢1x 1y >1= —hyhy

G=< ¢1y 1y >=1—h;

(1 —h2  —hyh, )
—hgh, 1-—h?
and determinant is 1 — hf — h3 = 1—|| V,h ||?
(1) ¢, is space-likeif || V,h ||? < 1.
() ¢ is time-like if || V, Rk || > 1.
(3) ¢ is light-like if || V,h [|2 = 1. (Lopez, 2014)
hy = graph (h) = {(x,y,h(x,y)) | (x,y) €2}
h, = graph (h) = {(x,h(x,2),2) | (x,2z) €N}
hs = graph (h) = {(h(y,2),y,2) | (y,2) €2 }

Consider hj as the image of immersion ¢3: 2 — E3, given by
¢3 (y.2) = (f(¥,2),9,2).
As ¢z, (y,2z) = (hyr 1, 0)' ¢3, (,2) = (h;,0,1).
E=< ¢1x, P1x >1=1 +h32/
F =< ¢1x, P15y >1L=hyh,
G=< ¢1y $1y > =hi—1

1+h2  hyh,
hyh, h2—1)

The determinat is —h3 + hZ — 1 which is different from 1— || V,h ||*and the
mark gives the causal character of the surface. Hence the same function h might give
a surface with a different causal character. For instance 2 = IR? and h(x,y) = 0 =

h, is a space-like plane but h; is a time-like plane.
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4.1.9 Example

Let f(x,y,z) = x*+ y? —z2. Thenp = (x,y,z) and v = (v, v, V3)
(df)p (v) = 2xv; + 2yv, — 2zv3 = (df), (v) = 2(xv; + yv, — ZV3).
p is critical point only if p = (0,0,0).£(0,0,0) =0and V a # 0,

S, = f71({a}) is a surface.

Vif = (2x,2y,2z) = 2(x,y,2)

V.f = (2x,2y,—2z) = 2(x,y,—2)
< VAV f>=4(x2+y?—2z3) =4 f(x,y,2) = 4a.

Consider a € {—1,1}.
i. Ifa<O0then< V. f,V,f >;= —4 the surface is space-like.
ii. Ifa > 0then < V. f,V,.f >;= 4 the surface is time-like. (Lopez, 2014)

4.1.10 Proposition

A space-like (respectively time-like) surface is locally the graph of a function

defined in the plane z = 0 (respectively x = 0 or y = 0). (Lopez, 2014)

4.1.11 Theorem

Let M be a surface and let x: M - E3 be space-like immersion. Then M is

orientable. (Lopez, 2014)

4.2 Mean Curvature Of Space-like And Time-like Surfaces

Let x: M - E3 be a space-like or time-like immersion of a surface M and let
n be its Gauss map. J(M) refers to be space of tangent vector fields to M itis denote
by VO the Levi-Civita connection of E3. If Y € J(M), we obtain the decomposition
VeY = (V3T + (VIN)*,
where T and L indicate the tangential part and the normal part according to M of
VOV, respectively. V refers the induced connection on M by the immersion x,

VyY = (Vi)
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We define the second fundamental form of x as the tensorial, symmetric map

a: J(M) x I(M) - J(M)*', (X, Y) = (V3¥)*"

The expression of the Gauss formula is

VoY = VuY + o(X,Y), X,Y € S(M) (4.1)

Consider Z as a normal vector field to x and let A;(X) be tangential
component of —V%Z ,

Az(X) = —(ng)T-

We have from (4.1)
<A;(X),Y>=<dX,Y),Z >,. (4.2)

Because o is symmetric, (4.2) implies

< Az(X),Y >L= < X,Az(Y) >L " (4‘ 3)

Ay is self-adjoint according to the metric of. Let N be a unit normal vector
field on M.The immersion is space-like = the surface is always orientable by 4.1.1

theorem.

Denote

—1 if M is space — like

<nn > = E{ 1 if M is time — like.

Take in the above formula Z = N. Since < N,N >; is constant, we have
< V9n,n >,= 0.Then VYN is tangent to M. Denote
—Von = Ay(X) (Weingarten formula) (4.4) (Lopez, 2014)

4.2.1 Definition

The Weingarten endomorphism at p € M is described by
Ay :TyM - T,M, A, = (Ay (n)),.
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Morever (4.4) gives
A, (0) ==Von = —(dN)p(v),v € T,M.

We will write AX instead of Ay (X).

Since o(X,Y ) is commensurate to n from (4. 1) and (4. 2)

cX,Y)=e< oX,Y),n > n=€e <AX,Y >, n.(4.5)

Now (*) writes as

VOY = V,Y + € < AX,Y >, n. (Lopez, 2014)

4.2.2 Definition

Let M be a surface and let x: M — E3 be a space-like or time-like immersion.

H is the mean curvature vector field.

41
H = 3 trace (o).

The mean curvatures function H is defined by the relation H = Hn. For this

reason

H=ec<Hn>,

H is a vector field perpendicular to M, H e J(M)*. We can write Hand H
in terms of a local tangent basis. Let {e;, e,} be an orthonormal local tangent vector

fields on M where e, is space-like and < e,, e, >;= —e€. Then (4.5) gives

- 1 1

H = 3 trace (o) = 3 (a(el, e;) —ea(e, ,ez))
- 1
H = E(E < Ael,el >L - <Aez,ez >L )n

- 1 €
H=E(<Ae1,el > —€ <Ae,,e, >L)n=(§ traceA)n.
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On the other hand,
H=e<Hn > = §(< Aej, e > —€ < Aey,e, >p) = % trace (4). (Lopez,

2014)

4.2.3 Corollary
The mean curvature of a space-like or time-like surface is

H= % trace (4). (4.6)

We define the Gauss curvature K of the surface. For a surface, p = 2K where p

is the scalar curvature. We calculate the curvature tensor of the surface.

(O’Neill, 1983)

Denote by R® and R the curvature tensors of E; and M, respectively. Because
R® = 0, we can calculate. Let X ,Y,Z € J(M). We know that
RO(X,Y)Z = VVYZ — VYVRZ — Vi 2.

Also ,V2Z =VyZ + o(Y,Z). Since o(Y,Z) = e <AY,Z >, n, and using
(4.1) we have
VOVOZ = VY (VyZ) + Vo (Y, Z)
VOVOZ =VyVyZ + o(X,VyZ) — e <AY,Z >, AX + e < AY,Z >, n.

The tangential part on M is VyV,Z — € < AY,Z >; AX . Likewise, we
compute V9V$Z and V?X'Y]Z and considering the tangential parts. Using that R® = 0
and that R(X,Y)Z = VyVyZ — VyVyZ — V|x y1Z, we conclude

RX,)Y)Z=—€e<AY,Z> AX+ e < AX,Z >, AY
R(X,Y)Z = e(—< AY,Z >, AX+ < AX,Z >, AY ). (4.7)

Thus we calculate the Ricci tensor the scalar curvature p. For Ricci tensor, we
get
Ric (X,Y) =trace (v » R(X,v)Y) =< R(X,e,)Y,e; >,— € < R(X,e,)Y,e, >,
Ric (X,Y) = €(< AX,)Y >, (< Aey,e; >— € < Ae,, e, >L)) — € < AX,AY >,
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Ric (X,Y) = e(trace (A) < AX,Y >, —< AX,AY >)
Ric (X,Y) = 2H < AX,Y >,— € < AX,AY >,. Hence
p = trace (Ric) = R(e;,e;) — €R(e; , e5)
p=2H(< Aey,e; >,—€ < Aey,e;, >;) —€e(< Aej,eq >—€ < Aey, ey, >p1)
p = €(trace (4)% — trace (A%)) = 4eH? — € trace(4?)
p = 2e det(A). 4.8)

This matrix A in the basis {e;, e, } is

A—( < Aeq, e >p < Adey,eq > )
T \—e<de;,e, > —€<Aey,e, >1)

As = 2K, the Gauss curvature K is

K = edet(4) =< <4H2 — trace (AZ)). (4.9) (Lopez, 2014)

4.2.4 Corollary

The Weingarten map A of a space-like or time-like surface of E;.
K= edet(4). (4.10)

We can calculate K in 2 - dimensional manifold, the Gauss curvature coincides
with the local curvature of the 2 - dimensional plane generated by {e;,e,} of the
tangent plane. As a result of (4.7), we get

< R(ey,ez)ey e >
<eje; > < e e, > —<epep >t
€(< Aeq,e1 > < Aeyep > —< Aeq,e; > < Aey, e >1)
—€
K=—(<Aeye; >,<Aeye; > —< Aey,e; >1).

K=

This expression coincides with (4.9). (Lopez, 2014)

4.2.5 Definition

Let x:M — E3 a space-like or time-like immersion and p € M. If the
Weingarten map A, is diagonalizable, the eigenvalues of A, are called the principal

curvature at p. Denote by A, (p) and 1,(p). From (4.6) and (4.10) (Lopez, 2014)
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4.2.6 Corollary

Assume that 4,, is diagonalizable in a space-like or time-like surface of E3.

A1(p)+42(p)
2

H(p) =€ , K(p) =€ 41(p)A,(p). (Carmo, 1976)
4.2.7 Definition

Let x: M —> E be a space-like or time-like immersion. A point p € M is
named if 3 A(p) € IR such that
<o(uv),nlp) >=Ap) <uv >, u,v € T,M.

A surface is named completely umbilical if all points are umbilic.

Hence, an umbilic is a point where the first and the second fundamental forms
are proportional. Besides, it is equivalent to say that

<Apu,v > =Ap) <u,v >.

Especially, and from (4.2), A, must be diagonalizable since

< Ael, (=5} >L= 0.

Hence we can say that p is umbilical & A;(p) = A,(p). In Euclidean space, it

is well know the inequality H? — K > 0 and hold only in a umbilic. (Lopez, 2014)

4.2.8 Proposition

Suppose that M is a space-like or time-like surface of EZ, p € M and Ay is
diagonalizable.

H(p)? — eK(p) = 0
and the equality & p is umbilic. Especially, in a time-like surface.

H(p)? — K(p) < 0 = p is not umbilic. (Lopez, 2014)

Proof:

From the definition of H and K, we have
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A= ANY A+ A2
os(12 2) =<12 2) — A, = H? — ek,

Furthermore the equality holds at a point p & A,(p) = A,(p), that is, p is an
umbilic. The diagonalization of the Weingarten map depends on the existence of real
roots of its characteristic polynomial P(A). A simple calculation leads to

P(A) = 22 — 2HeA + €K and its discriminat is A= 4(H 2 — €K).
(1) H> —eK > 0 = there are two different real roots of P(1) and the
Weingarten map is diagonalizable.

(2) H? — €K < 0 = A is not diagonalizable.

(3) H? — eK = 0 = there is a double root of P(1).

a) € = —1 = the root A = —H is the eigenvalue of A and the point is
umbilic.

b) € = 1 = the matrix could be or not be diagonalizable.
2
lo|? = Z < Ae;,e; >f=4H* — 2¢K,
ij=1
and if A, is diagonalizable,|o|?> = A7 + A5. There exist non-umbilical time-like

surfaces such that H> — K = 0 on the surface.

4.2.9 Example
Plane

Consider a non-degenerate plane D = dy+ < x,x >7, with |x|, = L.n = x

and dn =0. Here A; = A, =H = K=0.

4.2.10 Example

Hyperbolic plane
H?(r;po) ={p €EE} | <p—DoP —Do >1= —T%,<p—po,e3 >, <0}

The unit normal vector pointing to the future of H2(7; py) is

n(p) = (p_TpO). Then A = I/r and
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M=A= _1/r'H = 1/r;K: 1/r2'

Hence a hyperbolic plane has constant negative curvature. H?(r; p,) is a 2

dimensional space form of negative curvature and called the hyperbolic plane.

4.2.11 Example

Pseudo-sphere

Si(r;po) ={p€E}| <p—Dpo,p—po >.= 1}

For S2(7;po), the Gauss map is n(p) = @. Then A = _I/r. In this way

M= = _1/r»H = _1/7‘»1(: 1/r2 .

Hence a pseudo-sphere has constant positive curvature.

4.3 Local Calculation of the Curvature and Examples

We calculate the curvatures of a space-like or time-like surface by using local

parametrization. (Carmo, 1976)

Consider a local parametrization
X:UcIR? - E}, X=X,v),
of a (space-like or time-like ) immersion x. Let B = {X,,, X,, } be a local basis of the
tangent plane at each point of X(U). The Lorentz - Minkowski 1st fundamental form
is the metric on T, M,
I, =<,>,: T,M XT,M — IR
L(u,v) =<u,v >,

| =< dX,dX >;= Edu®+ 2Fdudv + Gdv?

F

According to b, let (i G

) be the matricial phrase of the first fundamental

form, where

E=<X,X, >, F=<X,X, >.,6=<X,,X, >, .
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Denote det(I) = EG — F2. The surface is space-like if det(I) = EG — F? > 0

and it is time-like if det(I) = EG — F? < 0. We take the normal vector field
Xu ><L Xv
n=———.
|Xu ><L XvIL

We use the notation < n,n >;= € again. Here

X, X, Xyl = /—€(EG — F2) = \/—edet(]).

The Minkowski second fundamental form of p
0p: TpM XT,M — IR

op(u,v) = =< (dN),(w),v >,=<A4,(w),v >,

Il =< —dX,dn >;= Ldu® + 2Mdudv + Ndv?.

Let (L M) be a matricial phrase of ¢ with respect to

M N
L=<X,—n, > =<nX,, >
M=<X,—n,>=<X,,—n, > =<nX, >
L=<X,—n,>=<nX,, >

A is the Weingarten map. Then
-1
4= (z o) Gi W)

For this reason the Minkowski mean curvature H and Minkowski Gauss

curvature K are defined as expected by
EN + GL — 2MF
2(EG — F?)

detIl LN—M?
=€ =€
det! EG—F?

H=c¢

. (Weinstein, 1996)

4.3.1 Example

Let f € C%(2) be a smooth function and consider the surface M given by

z = f(x,y).Let: 2 — E} denote the usual parametrization

Y(x,y) =(xy f(x,y)).
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e (,9) = (1,0,£), ¥, (x,y) =(0,1,f).
First fundamental form coeffients are,
E=< iy Py >=1-f
F =< vy, Yy, >=—ff,
G=< Py, Py, > =1—f;

<1 - fxz _fxfy >
_fxfy 1- fyz .

Thus the det! = EG = F2 =1—f, — f3 = 1—|| V,f |[>.On 0
(1) Immersion is space-like if || V. f [|? < 1
(2) Immersion is time-like if || V. f ||? > 1.

The mean curvature H satisfies

(1= £2) fux + 2fefy + (1 = fOVfyy = —2H(—e(1 = |V, f [2))72.

Likewise, the Gauss curvature K is

_ fxxfyy—fﬁzcy
A-fi-1D"

4.3.2 Example

Let a:1 — E3 be anull curve and we denote by {t,n, b} the Frenet trihedron.

Let
X:1xIR - E} , X(s,t) = a(s) + tt(s).

This surface is named a B-scroll. (Graves, 1979)

We calculate the matrix of the Weingarten map the basis on {X,, X;}.
X¢=a +tb' = t+ttn and X; = b, then
E=< X, X, >,= t? 12
F=< X, X; >=-1
G=< X, X¢ >1=0
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E F\ _ (t*7® -1
(F G) B (—1 0 )
Thus the det] = EG — F? = —1. So the determinat is negative, the surface is

time-like. Since

Xgs = tT?t+ (1 + tT' )n + tth
X =1TN

Xee =0

The second fundamental form is

- ),

Thus the detI] = LN — M? = —12.

K:ﬂ:__‘tz:‘cz
det/ -1
_EN+GL—2MF _—2(=7).(-1) _
T T 2(EG-F?2) —2 g

Weingarten endomorphism
-1
=G ¢ (o ¥

A= (1 +Ttr’ (‘)c)

This matrix is not diagonalizable. Since H?> —eK=0,e =1 so it is not

umbical.

4.3.3 Example
The surfaces we will now examine are all minimal surfaces (H=0).
(Dillen, 1999), (Kobayashi, 1983), (Woestijne, 1990)
(1) Helicoid of the 1* kind is
X(s,t) = (scos(t),ssin(t),ht), s>h>0.
X, = (cos(t),sin(t),0)
X = (—ssin(t),scos(t),h)
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E=< X, X, >,=1
F=< X, X, >,=0
G:< XtIXt >L:SZ_h2

12(1€ 2)2((1) szghz)'

Thus the det] = EG — F? = s — h?, the surface X (s, t ) is space-like since
s>h>0.
Xs ><L Xt
n=————
|Xs Xp Xelp

1 .
n= ﬁ (hsin(t),—hcos(t),0)

X, =1(0,0,0)

X = (—sin(t) ,cos(t),0)
X = (—scos(t),—ssin(t),0)
L=<nX, >,=0
—h
s? — h?

N=<nX; >,=0

u-( )( N —>

M =< n,Xst >L:

1/52 — h?
2 h2
detll =LN - M’ = — —

o detll h*
~ detl (s2 _hz)z
_EN +GL—2MF _
~ 2(EG-F%»

The Weingarten map is
-1

=G o) (G w)
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A=/ h
\ _

(2) Helicoid of the 2" kind is
X(s,t) = (ht,scosh(t),ssinh(t)),
X, = (0, cosh(t),sinh(t) )
X: = (h,ssinh(t),s cosh(t))
E=< X, X, >,=1
F=< X, X, >,=0
G =< X, X, >,= h?—s?

=G 6)=( w’e)

Thus the det] = EG — F? = h? — s% < 0, the surface X (s, t ) is time-like.

_d Xs XL Xt
|Xs X X¢lp

h>0, s € (h, ).

n

z—hz (s,hsinh(t),hcosh(t))
S —

X, =10(0,0,0)
X = (0,sinh(t) ,cosh(t) )
X = (0,scosh(t),ssinh(t) )

n =

L=< n,XSS >L: 0
M=<nX ___h
IR

N=<nX; >,=0

—h
-G, >( . —>
N

h2
— 2 _
det/l = LN = M? = — ——

o detll h?
~detl (s2 — hz)z
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_EN+GL—-2MF _
~ 2(EG—-F%»

The Weingarten map is
-1
=G e (u w)

[ ° ===

A=| —h |
_ 0
Js2 -y /
This matrix is not diagonalizable. Since H? — K < 0, so it is not umbical.

(3) Helicoid of the 3™ is parametrization
X(s,t) = (ht,ssinh(t),scosh(t)),
X, = (0,sinh(t), cosh(t) )
X: = (h,scosh(t),ssinh(t))
E=< X, X; >=-1
F=< X, X >=0
G =< X, X, >,=h? +s?

=G o) = (o wersd)

h>0, s € IR.

Thus the det] = EG — F? = —h? — 52 < 0, the surface X(s,t ) is time-like.
Xs XL Xt
n=——————
|Xs XL Xelp
1

n=-——
N

(—s,hcosh(t),hsinh(t))

Xss =1(0,0,0)
X = (0, cosh(t) ,sinh(t))
X¢ = (0,ssinh(t), s cosh(t) )

L=< n,XSS >L: 0
h

RN

N =< n,Xtt >L: 0
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M N h
Vs2 + hZ?
h2
det/] =LN —M?= ————
€ s2 + h?

_detll R

"~ detl! _(52+h2)2
_EN +GL—2MF _
~ 2(EG—-F%»

The Weingarten map is

=G0 G W

—h
0 N
Vs2 + h?
A= h 0

/(sz + h2)°/2

This matrix is not diagonalizable. Since H? — K < 0, so it is not umbical.

(4) The Cayley’s surface is
3 3

X(S,t)=<st—ht+h%,S+ht2,st+ht+h%>, h,s > 0.
X, =(t,1,t)
X; = (s — h + ht?,2th,s + h + ht?)
E=< X, X, > =1
F=< X, X; >=0
G =< X, Xy >,=—4sh

I'= (1€ 1;) - ((1) —gsh)'

Thus the det] = EG — F? = —4sh < 0, the surface X (s, t ) is time-like.
Xs ><L Xt
n=—————
|Xs X1 Xelo
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1
n= s+ h — ht? —2ht,s — h — ht?
2Vsh ( )

X, =1(0,0,0)
X, =(1,0,1)
X¢ = (—2ht, 2h, 2kt )
L=<nXy >,=0

h
M =< n,Xst >L= j;

h
N =<nX; >,= 2\/; t(—s — h + ht?)

L M 0 g
11=(M N)z _ ;
- 2 |- t(—s — h + ht?)
S S
h
detII=LN—M2=—;
_detll 1
~ det] ~ 4s?
_EN +GL—2MF _
~ 2(EG-F%*»

The Weingarten map is
-1

1= G o) G w)

0 h
A= s

-1
4Vs3h

St RS 2
2\/mt( s—h+ ht?)

This matrix is not diagonalizable. Since H? — K < 0, so it is not umbical.

4.3.4 Example

Ruled surfaces is a class of surfaces of interest in Minkowski space E13. (Dillen,

1999). We will use examples of ruled surface to calculate H and K. The samples we
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will give. The surface is time-like and the Weingarten endomorphism map is not

diagonalizable and H?> — K = 0.
(1) Consider the immersion
X(s,t) = (scos(t),ssin(t),s + ht), h > 0.

X, = (cos(t),sin(t),1)

X = (—ssin(t),scos(t),h)

E=< X, X, >,=0

F=< X, X, >=—h

G=< X, X; >,=s%—h?

I'= (16 1;) - (—Oh 52_—hh2)'

Thus the det! = EG — F? = —h?, the surface X(s,t) is time-like since
h>0.
Xs ><L Xt
n=——————
|Xs %1 Xelp

n= % (hsin(t) — s cos(t),—hcos(t) — ssin(t),s)

Xss =(0,0,0)

X = (—sin(t) ,cos(t),0)
X = (—scos(t),—ssin(t),0)
L=<nX, >,=0
M=<nX; > = -1

SZ

N =< n,Xtt >L= 7

L M 0o -1
— _ 2
1= N)_(—l S—)
h
detll = LN — M? = — 1
_detll 1
72

K_detI _h
_EN+GL-2MF 1
~ 2(EG—-F%» h’

The Weingarten map is

=G G W

90



o
I
e =R
[
[N

S

This matrix is not diagonalizable. Since H®* —K=0 ande =1 so it is not

umbical.
(2) Let a # 0. The surface
X(s,t) = (ht, (s + a) cosh(t) + s sinh(t), (s + a)sinh(t) + s cosh(t)).
Xs = (0,cosh(t) + sinh(t), sinh(t) + cosh(t))

X = (h, (s + a)sinh(t) + s cosh(t) , (s + a) cosh(t) + s sinh(t))
E=< X, X, >,=0
F=< X, X, >=—-a

G =< X, X; >,=h? —2sa — a?

' 4 (i I;) :(—Oa hz—Z_SC;—az)'

Thus the det] = EG — F? = —a? < 0, the surface X(s, t ) is time-like.
Xs ><L Xt
n=———————
|Xs X Xelp

1

n= m (a, hsinh(t) + hcosh(t) , hcosh(t) + hsinh(t))

X, =1(0,0,0)
X5t = (0, cosh(t) + sinh(t), sinh(t) + cosh(t) )
X¢t = (0, (s + a) cosh(t) + ssinh(t), (s + a)sinh(t) + s cosh(t)).
L=<nX, >=0
M=<nX, >=0

1
N =< n,Xtt >L:_ ha

la|
L M 0 0

_ — 1
”_(M N)‘(O —ha)
la|
detl] =LN —M? =0

detII_

detl
_EN +GL—2MF _
~ 2(EG-F%*»

K=
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The Weingarten map is

=G0 G W

0 h
A =( |a|>-
0 0

This matrix is not diagonalizable. Since H=K=0ande =1

so it iS not
umbical.

(3) The parabolic null cylinder is

t3 t3
X(S,t)=<s+h<—t+§>,ht2,s+h(t+§>>, h > 0.

X,=(101)

X; = (—h + ht?,2th,h + ht?)
E=< X, X; >,=0
F=< X, X, >.=—2h
G=< X, X, >,=0

1:(11:3 f;)z(—(z)h _(Z)h)'

Thus the det] = EG — F? = —4h? < 0, the surface X (s, t) is a time-like.
Xs ><L Xt
n=————————
|Xs Xy Xelo

n= % (—2ht, —2ht, —2ht )
X, =1(0,0,0)
X, = (0,0,0)
X: = (2ht, 2h, 2ht )
L=<nXy, >,=0
M=<nXy, >=0
N =<n, Xy >=—2h

”:(1Lw ]1\(/) - (8 —02h)

det/l = LN — M? = 0
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detl]
K= =

det]
_EN+GL—-2MF _
~ 2(EG—-F%»

The Weingarten map is
-1
4= (s o) Go W)
1=(y o)

This matrix is not diagonalizable. Since H =K=0ande =1 so it is not

umbical.

4.3.5 Theorem

The only totally umbilical surfaces in Lorentz - Minkowski space are a plane,

these are the pseudosphere or hyperbolic plane. (Lopez, 2014)
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S. MINIMAL AND MAXIMAL SURFACES

The study of minimal surfaces started with the more intuitive meaning of
minimal surfaces, namely surfaces of least area among a family of surfaces having the
same boundary. Lagrange defined in 1760 the minimal surfaces as surfaces whose
mean curvature vanishes. A surface M in E{' is called minimal if and only if the mean

curvature vector field is equal to zero, so H = 0.

The minimal surfaces in the Lorentz-Minkowski space E;® with metric

g = dx? + dx% — dx% were studied by Kobayashi in 1983. He classified all the
spacelike minimal — he called them ‘maximal’ because the second variation of volume
is always negative definite for spacelike surfaces in E;* — rotation surfaces and ruled

surfaces.

4.4 Minimal Surfaces In E3

A minimal surface is a surface M with mean curvature H = 0 at all points
p € M. The mean curvature is the average of the principal curvatures. Denote by the

principal curvatures k; and k,, then
ki +k,
>

A linear transformation from the tangent space of the surface at that point to

itself S,: T,M — T,,M. We use the shape operator to find the mean curvature.

Let a surface M € E3 be parametrized by x (u,v): 2 € IR? - M. Then the

unit normal vector to the surface is

L Xy X X
n=—————.
|Xs X X¢
Define E,F,G ,L,M and N as
E=<X,x,>
F=<X,x,>
G=<Xp,x,>

\O
=



The shape operator is

S 1 (GL—FM (M4—FN)

~ EG—F2\EM —FL EN —FM

The mean curvature is
_EN+GL—2MF_1t )
206G — FD) =3 race(S).

5.1.1 Example (Minimal Surface)

The helicoid of parametrizations
X(s,t) = (scos(t),ssin(t),ht), s>h>0
X, = (cos(t),sin(t),0)
X = (—ssin(t),scos(t),h)
E=< X, X;>=1
F=< X, X, >=0
G=< X, X, >=5s?—h?

1= 6)=(0 2 )

Thus the det] = EG — F? =s2 —h? > 0,sinces >h > 0.
X, % X,
n=——
|Xs X X¢l

1
n = ——— (hsin(t),—hcos(t),0
— )
X, =10(0,0,0)

X = (—sin(t) ,cos(t),0)
X = (—scos(t),—ssin(t),0)
L=<nX,>=0
M=<nX,>= _h

N=<Tl,Xtt>=0
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”=G}%)=k-m ) )
N

2
s2 — h2

_detll _ K
~detl (s2 _hz)z

detll = —

_EN+GL—-2MF _
~ 2(EG—-F%»

H =0 = X(s,t) is minimal surface.

In conclusion, all of the helicoids variety are minimal surfaces.

5.1.2 Isothermal Patch

If E=GandF = 0thenx (u,v): 2 - M is a patch such that it is called an
isothermal patch. We can say that geometrically means x,, and x,, are orthogonal,
therefore angles are preserved X~ stretches the patch the same amount in the u and v

directions.

EN+EL N+L
2(E?)  2E

X is an isothermal patch = H =

Any surface can be parametrized using an isothermal patch. Every minimal

surface IR3 has locally isothermal parametrization. (Oprea, 2007)

5.1.2.1 Theorem

If x (u,v) is isothermal, then AX = (2EH). 7. (Oprea, 2007)

Proof:

We know that Ax = x,,, + Xy
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Eu E‘V —
xuuzﬁxu ﬁxv+Ln

E G
xuv=ﬁxu—ﬁxv+Mﬁ

G, G
xwz—ﬁxu+ﬁxv+Nn

Since X is isothermal E = G and F = 0

Ax = xyqy + Xy

A—(E” Ey +L*>+( Cu +G" +N*>
X g T 2F v T T

Ax = (L+ N).7n
We know that

H i L+ N =2EH
= = .
2E

AX = (2EH).7. (Oprea, 2007)

5.1.2.2 Corollary

A surface M:X'(w,v) = (x*(w,v),x%(w,v),x3(w,v)), with isothermal

coordinates is minimal if and only if x*, x? and x? are all harmonic. (Oprea, 2007)

Proof:

(= ) If Mis minimal, then H =0 = AX = (2EH).71 = 0 = x!,x?, x3 are
harmonic.
(&) x1,x2, x3 are harmonic = AX* = 0 = (2EH).71 = 0.7 is unit normal

vector, So 1 # 0 and E =<X,,xy >= |xy|? # 0. Therefore H=0 = M is
minimal.

For a curve (a ) parametrized by arc length,

dT
K = |E =

d’a
ds? |
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Because x (u, v) is not parametrized by arc length, the principle curvatures are

not exactly the magnitude of the second derivatives | X, | and | x*,,, |, but they are

certainly related.

Q_C)I];u + 551];.1; =0forj€{1,2,3}=k; + k, = 0 and vice versa.

5.1.3 Transition to Holomorphic Functions from Isothermal Patches

Let M be a minimal surface described by isothermal patch x (u,v). Let

z=u+ivand Z=u—iv, sothen

0 _1¢o oy 0 _1¢0 .0
&‘E(E ‘%) n a?‘i(@ ‘%)'

Notice that z+ Z = 2u and z — Z = 2vi, so

zZ+Z d zZ—Z
u= and v = 4
2 20

This means that x (u, v) may be written as
x(z,2) = (x'(2,2),x*(z,2),x%(z,2)),

and the derivative of j* components is

ox) 1, . .
g = E(xfl - lxé).
Define
0x
d) = 5 = (x; lxzz ,x23)
(@)% = ()% + (x> + (x>
Then

(@2 = (x))? = (5 (xd — ix)))? = S ((x)? = (x))? = 2ix}x) ), s0
@ = %Z((xi)z ~ (xly? - 2ixjx))
=
1
(¢)2 = Z(lxu |2 - |x |2 — 20Xy, Xy)

() = %(E — G — 2iF).
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Since X~ is isothermal,

(¢)? = 5 (E — E) = 0. (Oprea 2007)

5.1.3.1 Lemma

o [0x 1
—| = | = = AX. (Oprea 2007), (Stein and Shakarchi 2003)
0z \ 0z 4

Proof:

(azf 02X 0%x 622’)

5.1.3.2 Theorem

i

Assume M is a surface with patch X", Let q_b) = 3—2 and suppose (¢)? =0

(i.e., x is isothermal ). M is minimal < each d)j is holomorphic. (Oprea, 2007)

Proof:

f is holomorphic (:)% = 0 (Stein and Shakarchi, 2003)

(®) M is minimal = x/ is harmonic for j € {1,2,3 }.

. 1 0 [ 0%
x’ harmonic = AX =0=-AX=0=>—( — | = 0 by the 5.1.2.1 lemma
4 0z \ 0z
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0%
0z

Because %( ) = 0, ¢/ is holomorphic.

(&) ¢/ is holomorphic = % = 0.

b a [o%\ 1 . ) . _ L
—=0>>=—| — =ZAx=0=>Ax=O=>Vx1harmon1c = M is minimal.

5.1.3.3 Corollary

x1(z,2) = ¢j + 2Re(j ¢’dz).(Oprea 2007)

Proof:
Zz=u+iv 2>dz=du+ idv

, g . 1. . , 1 . .
Pldz = > (%} — ix))(du + idv) = > (x}du + x}dv) + Ei(x{ldv — xJdu)

_. 1, . : 1, . . 1 . .
¢ldz = E(x’]‘ + ix))(du — idv) = p (x}du + x}dv) — Ei(x{ldv — x,du)

Then we have
dx/ = a—xjdz + a—x]dz'
0z 0z
dx/ = ¢p/dz+ ¢p/dz
R . 1. . .
dx! = > (x}du + x}dv) + > (x} du + x} dv)

dx’ = x{;du + x,{dv

dx/ = 2Re( qudz) = x/ = 2Re (j ¢jdz> +¢; ¢ is constant.

5.1.4 Weierstrass-Enneper Representations of Minimal Surfaces

We will give the Weierstrass-Enneper Representation for minimal surfaces

might be established.
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5.1.4.1 Theorem (The Weierstrass-Enneper Representation I )

If f is holomorphic on a domain D, g is meromorphic on , and fg? is
holomorphic on D, then a minimal surface is defined by
X' (z,2) = (x'(2,2),x%(2,2),x%(2,2)) ,

where
x(z,2) =Re<f%f(1—g2) dz)
x%(z,2) = Re(f%f(1+g2)dz>

x3(z,2) = Re(ffgdz).

(Oprea, 2007), (Weinstein, 1996)

Proof:

We know that M is a minimal surface defined by isothermal parametrizations
X (z,Z). Since M is minimal we know that ¢/s are complex analytic functions. Since
x

is isothermal we have

(#)? = 231 (C)? = (x)? —2ix)x) ) = 0.

Since M is minimal we have
(@) + (@2 + (¢°)* =0
(P2 + (92)* = —(¢°)?
(P +ip?).(¢" — ip?) = —(¢*)%

3

For non-zero ¢ — igp2. Let f = ¢l —i¢p? and g = ¢T

(' +ig?).(¢' —i9*) _ —(¢°)°

(' —igp?) (- id?)
N %
(p' +ip?) = D)
¢3

13 742y — _ 43
(¢ +l¢) %(¢1;l¢2)

(' +ip*) =—fg.9= —fg°
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We have ¢! —igp? = f and ¢ + i¢p? = —fg?
(@' +ip?) + (@' —ip?) =—fg*> + [ =2¢' = f(1 - g%

1 1
@' =510 - g =22 =Re( [ 5701 - g dz)
(9! +i¢%) — (@' —i9?) = (~fg)) — f = 2i¢* = ~f(1 + g°)
¢* = %if(l +9%) = x*(z,2) = Re(f%f(l +g2)dz>

3

g=%=>¢3=fg = x3(z,2) = Re(ffgdz).

5.1.4.2 Theorem (The Weierstrass-Enneper Representation II )

For any holomorphic function F(t), a minimal surface is defined by

x(z,2) = (xX(z,2),x*(2,2),x*(2,2))

where
x1(z,Z) = Re ( f(l —12) F(T)d‘[)
x%(z,2) = Re(fi(l +12) F(T)d‘[)

x3(z,2) = Re(fZT F(7)dt )

(Oprea, 2007), (Weinstein, 1996)

Proof:

Suppose in The Weierstrass-Enneper Representation I using only one
holomorphic function that is a composition of functions. g is holomorphic with
g~ lis also holomorphic = we consider g as a new complex variable T = g with
dt = g'dz (which means & = d—g). Define

dz az
F(r) = § and obtain F(t)dt = fdz.

Substitute 7 for g and F(t)dt for fdz in the Weierstrass-Enneper

Representation I, we get
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x1(z,Z) = Re ( f(l —12) F(T)d‘[)
x%(z,2) = Re(fi(l +12) F(T)d‘[)

x3(z,2) = Re(fZT F(7)dr )

5.1.4.2.1 Example

The most common parametrization for Enneper’s surface is

1 1
x(u,v) = (u —§u3 + uv?, —v —u?v +§v3,u2 — v2>.

First show that this is an isothermal patch.
X, = (1 —u?+v?% —2uv,2u)
X, = Quv,—1 —u? +v? -2v)
E=<X,,% >=1+2u®+2v%+ 2u®v? +u* +v*
G=<X,,%,>=1+2u?+2v%+2u?v? + u* + v*
F=<%,,%>=2uv(l—u?+v?) - 2uv(—1—u? +v?) — 4uv = 0.

Because E =G and = 0,x(u,v) is isothermal. Let z=wu+iv and
é = %, — i%,. Then
¢ =1 —u?+v?%-2uv,2u) — iQuv,—1 — u? + v?,—-2v)
b= ((1 —u? + v? — 2uw), —2uv — i(—1 — u? + v?), Qu + i2v))
b= (1— (2 +i2uv — +v2), —2uv + i + iu? — v, 2(u + iv))
é=01-@w+iv)?i(l+u+i2uv —v2),2(u+v))
d=1-@w+w)?i(l+u+iv)?),2(u+iv))
é=01-2%i1+2%),2z)

Note that ¢1(z) =1—122%, ¢p?(z) =1+2z% and ¢3(z) =2z are all
holomorphic. (Koreavar, 2002)
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g -
Now we will examine the reversal. We know ¢ = x, —ix,

.

and

P1(z) =1—22%, $p?(2) = 1+ 22, and $p3(2) = 2z, and we want X (u, v) to be real-

valued. Let
(1) xX =Re(J(1—2%)dz)

1
x?! =Re(z—§ 23)
1
x! =Re(u+iv — §(u +iv)?)
.1 . .
x! = Re (u +iv — §(u3 + 3u?vi — 3uv? + Lv3)>

xl = u—§u3+uv2

(2 x2=Re([i(1+2z*)dz)

w2 =re(i(z452))

x2 = Re (i (u +iv+ %(u + iv)g))

1
x? = Re (ui —v+ §(u3 + 3u?vi — 3uv? + iv3)>

1
x2=—v+§v3—uv2

(3) x> =Re ([ 2zdz)
x3 = Re (z%)
x3 =Re ((u+iv)?)
x3 = Re (u? + 2uvi — v?)

x3 = y? —p?

We get,

1 1
x(u,v) = (u —§u3 +uv?, —v —u?v +§v3,u2 - v2>

which is Enneper’s surface. (Koreavar, 2002)

The enneper’s surface may be obtained from f = 1and g = z.
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5.1.4.2.2 Example

A helicoid may be obtained from F(t) = # where T = e”. (Oprea, 2007)

2

Notice that T = e?,77! = Log (z) ,and F(e?) = are all holomorphic

2e2Z
on the domain of Log (z). I have used Log (z) instead of log(z) because Log (z) is
the principal branch of the log and branches of the /og are holomorphic, but log itself

is not.
() x* =Re( f(1-1%)—dr)

xl—Re<_—i—£T)
B 2T 2

[
x! =Re (—E(e‘z + ez)>
[ . .
x! = Re <_§(e—(u+w) + e(u+w))>

x! = Re (—%(e‘”(cos(—v) + isin(—v)) + e”(cos(v) + isin(v))))

i 1 i 1
x! = Re (— Ee‘” cos(—v) + Ee‘” sin(—v) — Ee” cos(v) + Ee“ sin(v))

1 1
x! = e ¥sin(—v) +=e%sin(v)
2 2
2 _ ; 2y_L
2) x*= Re(fl(1+r )ZTZdT)

2_ p (1 1 )
x* = Re| 5-—57
1
x% = Re <§ (e7% — ez)>

x2 = Re <% (e—(u+iv) + e(u+iv))>
x?> =Re <% (e‘”(cos(—v) + isin(—v)) — e“(cos(v) + isin(v))))
x? = Re (%e‘“ cos(—v) + %e‘” sin(—v) — % e cos(v) + %e“ sin(v))

1
x? = Ee‘“ cos(—v) — Ee“ cos (v)
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(3) x* =Re( [21(55)dr)
x3= Re(iLog|T|)

x3 = Re(iLog|e?|)
x3 = Re(iz)
x3 = Re(i(u+iv))
x3 = Re(iu —v)

X~ = —-Vv

So x(u,v)= (%e‘” sin(—v) +%eu sin(v) ,%e‘u cos(—v) —%e” cos (v), —v)

1s an isothermal patch for the helicoid.
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Figure 5.2. Helicoid of Minimal Surface
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5.2 Maximal Surface In E3

A spacelike surface in H = 0 is called a maximal surfaces.

We will give Weierstrass-Enneper representation for these surfaces and also

explain with examples.

5.2.1 Weierstrass-Enneper Formulas for Maximal Surfaces E3

For a space-like surface in E;, the Gauss map is described to be a mapping

which appoints to each point of the surface the unit normal vector at the point.

Therefore
H? ={(x,y,z) €EE}|x*+y?>—22=-1,2>0},
which has constant negative curvature —1 according to the induced metric. We
describe a stereographic mapping o for H?

—2Rez —2Imz |z|*+1
2|2 =1"|z[* =1 "|z]* -1

o:C\{|z| =1} > H?; z- < > and o () = (0,0,1).

o(z) is the intersection of H? and the line joining (Re z,Im z,0) and the

"north pole" (0,0,1) of H?. (Kobayashi 1983)

5.2.1.1 Theorem (Weierstrass-Enneper Formula of 1st Kind )

Any maximal spacelike surface in E3 is represented as

6@ = ke [ (370 +90570-g0~fg )z zeD, ()
where D is a domain in C, and f (respectivelyg) is a holomorphic (respectively
meromorphic ) function on D such that |g(z)| # 1 for z € D. Morever,
(1) The Gauss map n is given by n(z) = a(g(z)), where ¢ is a map defined
o:C\{lz| = 1} - H?;

—2Rez —2Imz |z|*?+1
zZ- ) )
|z|? =1 " |z]> =1 "|z|* -1

> and g(o0) = (0,0,1) ;
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(2) The induced metric is

g - (Ifl. |12— |g|2> dz]

(3) The Gauss curvature is

K { 4lg'] }2
IF1(1 = 1g]*)?
(Kobayashi, 1983)

Proof:

Suppose that ¢:D — E is a maximal space-like surface. From the
maximality, A¢p = 0 where A is the Laplacian defined by the induced metric on
D, which is a positive definite Riemannian metric. In particular, D can not be a closed
surface. Thus, taking the universal covering of D.We might suppose D is domain in

€ and that ¢ is a conformal mapping. Set

d 1,0 0
20,0 = (@1, 9% ¢3) where—=—(——i—), zZ=u-+iv.

0z 2\0u Ov
Then, the conformality of ¢ implies that (¢p1)? + (¢?)? — (¢3)? = 0, and
A¢ = 0 implies that d,0,¢ = 0, i.e., ¢ are holomorphic.
(@H%+ (@ —(9°)? =0
(@H?* + (9%)?* = (¢°)°
(' +igp?). (@' — ip?) = (¢°)?

3
Let f = ¢! —i¢p? and g=—(fc—.

(@' +id?). (¢ —ip?) _ (¢°)?
(P! —igp?) (P! —igp?)
(¢3)?
(P! —ip?)
_¢3
(p" +ip?) = —(¢°). (m)
(¢' +ip?) =fg.9= fg*

(¢ +ig?) =

We have ¢! +ip? = fg? and p* —i¢p?> = f
(P +ip?) + (" —ip*) = fg* + [ = 2¢" = fF(1 + g%)
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20,6 = (¢, ¢% %)
# =3+ g9 > 810 = Re( [ 2f1+ g7 dz )
=5 g = > g
(¢! +ig?) — (' — ip?) = (FgD) — f = fg? — f = 2id? = (1 — g?)
) |
¥ =5if (1= g = ¢*) = Re( [ 5701 - g dz )

_¢3
I77F

> ¢3=—fg = ¢3(2) = Re(f—fgdz).

Holomorphic function F(7), a maximal surface is

¢'(z) = Re ( j(l + 72) F(T)dr)
$?*(z) =Re ( f i(1—12) F(T)d‘[)

P3(2) = Re(f—ZT F(t)dt )

Suppose in the Weierstrass-Enneper Representation of the 15* kind using only
one holomorphic function that is a composition of functions.g is holomorphic and

with g talso holomorphic = we consider g as a new complex variable T = g with

_ - ar _dg\ por
dt=g'dz (Wthh means — = —~ ) Define

!

F(r) = L and obtain F(7)dt = Zdz.
29 2

Substitute 7 for g and F(t)dt for fdz in the Weierstrass-Enneper

Representation of the 15t kind then we get
¢'(z) = Re (f (1+17?) F(T)dr)
$*(z) =Re ( f i(1—12) F(T)d‘[)

$3(2) = Re(f—ZT F(7)dt )

(1) Unit normal vector is defined as

n= ¢u XL ¢v
|¢u ><L ¢V|L.
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i j —k
¢y X, ¢, = [2Rep? 2Rep? 2Rep?
2Im¢r 2Im¢p? 2ImPp3
¢, X, ¢, = —4(Re p%Im ¢p3 — Re ¢p3Im ¢p?,Re ¢p3Im ¢ — Re pIm ¢3,Re ¢p?Im ¢p* — Re p*Im ¢p?)

bu X, ¢y = —4(Im(¢p% ¢%), Im(¢*¢1), Im (¢?¢"))

We know that ¢! ==f(1+ g?),¢? =if (1 — g*),and ¢* = —fg
5 =511~ g9).(-F9) = ~5if (1~ g).(F.9)
$F =~ F - 0.5 =~ 2|1 - G6)
08 = If (1.5 +1.6.9.9) = 5 |I2(~i.g + iglgl?)
@™ %) = Im [ 1f12(~i.g + iglgl?)
Im($2.§%) = 3 |f2Iml(~i.g + iglgl?)
Im(@2 6% = 1 Flim(~i.g) + || Im(i. 9]
Im(@2.6%) = 3 IfF[-Re (9) + lgI*. Re(g)]
(@2 6% = 5 /12 Re()llg* ~ 1]

6 = ~fg |5 FA+ | = ~5 79 F.G+ 6P
BB =~ fol [+ @) =~ f.f 9.1+ )]
$F =5 IfPlg+9.6°1 = ~51/P[g+9.9.9
PPt = —31f1%(g + 719
Im($%6Y) = Im [~ 217129 + 5.1
Im($*@Y) = ~ 31/ [(g + 7. 1g1)]
Im($26Y) =~ IfPLm (9) + |gI%.Im (7))

_ 1
Im( ") = —Elflz[lm (9) — lg|*.Im (g)]
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Im($°@Y) = S |fI2[-Im (9) + lg . Im (g)]
Im( @Y = 5 |f12m () IgI* ~ 1]
$¢ =5 f0 - g5 FAT 9P| =5 f4-g).[ £+ 7]
PP =5 [F.(0- g1+ 5D = SIFEA+ G~ g? — g% 57)
6" = LIFE(L+ % — g2~ lgl*)
PP = IF G+ i gt~ kg~ i1gl*)

(6261 = Im| 317G+ 1.6~ g7~ igl*)
m($261) = g IfPIm G+ 0,67~ i.g? = i.1g1*)]
Im($26Y) = 3\ IPLim (D) + Im(i. %) ~ Im(i.g®) ~ |g|*.Im(D) ]
Im($26Y) = 31F P11+ Im(g) ~ Im(g) ~ gI*.1]
Im($2¢Y) = 7112~ lg1*)

Im($2@Y) = 2 1fXgl* ~ 1)

—_ 1
Im($*¢") = —2If1>.[1g1* = 1].[1g]* +1]

by X1 Py = —4(Im(¢% ¢3),Im(¢p*$3), Im (p?¢1))
du X, ¢y = IfI2[1gl* —1].(=2Re(g),—2Im (g), lg|*+1)

We use the notation < n,n >;= € = —1 since the surface is space-like. Here

|y X1 Pyl = —€(EG — F?2) = \/—edet(I) = \/det(I) = \/(E.E) = E.

Since ¢ (u, v) is isothermal. We define |¢, X, ¢,|, = E = A% and we shall
find E = A2,
0x 0x; 0x, 0xs3 1 a2 a3
_E_ (E’E,E> - (d) ’¢ ’¢ )
|17 = 1911 + 1?17 — |$°|?

Since x is isothermal parametrization
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= |xyl> =%,/ =G and F =< x,,x, >,=0.

Let A* = |xu|2 = |xv|2

6x1 dx,1°  10x3)°
2 _ 2 2 2 _ — | = |—
B2 = 19112 + 1071 — 1¢°] = - |=
5|2 = 1 6x1 axl 2 1 Oxz Oxz 1 6x3 6x3 2
¢ av av av

We note that

1 axk _axk 2 _ [1 axk axk] 1 axk axk)]

2Vu  Yov 2" 0u ov 2 au
%%_-% 2 [(aﬁ)z (%)2] for k=1,2,3
91” = Z |Gz + Cye| = gl +5 bl
|¢|2=;E+;E=;Az

A =20¢12 =2 ("7 +19%1° = 19°1%)

We will use

¢l = -1+ 1F (@), 2 = ~i(1 - t2)F (1), ¢* = —TF (1).
Then letting F = (F (T))

2 =2( |50+ @ + 1510 - DF@F - |-F@I? )
2 = 2.2 [FI (L4 T + i1~ )2 — 4l1]?)

22 = % IFPCA+ DA +7) + (1 -1 - 72) — 4]t?)

%= %IFIZ( 1+ @+ )+ |z]* + 1 - (% + 72) + |t|* — 4|7]*)

1
A% =S IFIP2 — 4lel® + 2121

A% = |FI?(1 =2|t|* + |7]")
2= |FPA-1t>)? =E
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n= ¢u ><L ¢v
|¢u XL valL

by X1 ¢p = IfI>.[1gl* = 1].(=2Re(g),—21Im (g), lg|* +1)
lpu X1, @yl =E = |FI*(1—[7])* = |[F(D)|*(1 — |7]?)?
Py X1 Gul =E = |fI?[1g]> = 11[1g]* - 1]
|pu X1 Pl = IfI?[1gl? = 11[1g]* — 1]
. If12.[1g1?> — 1]
If12[1g12 = 1][1gl? —1]

B (—2 Re(g) —2Im(g) |gl*+ 1>
lgl?—=1" |gl?=1 "|g|*>-1

(—2Re(9),—-2Im(g), lgl*+1)

So n(z) = a(g(z))

(2) The induced metric is given by
ds? = Edu? + 2Fdudv + Gdv?
ds? = E(du® + dv?) sinceE = Gand F =0
ds? = 2%|dt|?

We know that A2 = |F|?(1 — |1]?)?
ds? = |F|>(1 — |7]%)? |dz|?

We defined T = g withdt = g'dz (WhiCh means 2 = d—g) and
dz az

F(r) = L and obtain F(t)dt = zdZ.
2g' 2

2_|f|2 2\2 2
ds —T(l—lgl )“ |dz|

So

o (|f|.|12— |g|2|> @l

(3) We know that Gauss Theorem Egregium. The Gauss curvature K depends
on the metric E,G,F = 0:

K- () ()
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We know that is isothermal E = G, F =0and A2 = E

Ke - L [0/ 0 /(A
v aeze\ov\yizaz) ou\vazaz
_ 1 (0 (@A, a [((A%)y
k= 222 £<\/1212>+£<\/1212>

K= —— az U ,12)+a2 (In 12)
= 212 n n

1
— 2
K=—o5@ma?)

1
K= —A—Z(Alnl)

2 =|FP1=It%)? = 2 = [Fl.]1 - |||

K = ~ e gz (A In(FL 1= [221))

A In|F| + A In(|1 — |7]?])
|FI2(1 = |z|?)?

Ah = 4 ( )
a(In|F|) 9 [ d(In(F.F)'/2)
AlnlF| = 4 (ar( ot >> Yot < ot )

A In|F| = 26 <6(1n(F F))) 261(6(1nF+In17)>

0t 0t
d(InF d(InF
AInIFI—Z—( UnF)  oln )>

We know that

T

ot ot ot

A1|F|—2a R
n ot\F ' F

Since F is holomorphic, then F can not be holomorphic. (Oprea, 2007)
Thus, (E,) = 0. this implies that

AIIFI—Za(FT>—0
M =25:\F) =

116



. F, .
Since, F;, and, hence, FT are holomorphic, we also have that

2 _ 4 [0 (0Un(1—7I?])
AlIn(]1 = |z|°]) = 4 (af( - >)

0 < o(In(1—r1. f)))

AIn(J1 —|7)?D) = 4—

ot Jdt
Aln(|1—|7)%]) = 4i_ (— d )
0T 1—|7]?
i - o) = —4( 15T
(1 —|z?)?
A1 - 22 = —4 (1 — |7]? + |r|2>
(1—[z?)?

Aln(]1 - 7)?]) = (_—4)

(1—|7]?)?
_ AIn|F|+AIn(]1 - |7?])
- |F|2(1 — |7]2)2
-4
x4 a ((1—|r|2>2)
|F|2(1 — |7]2)2
4 4

K

TIFRA -k IF@PEA - tD)*

We defined T = g withdt = g'dz (WhiCh means £ = d—g) and
dz az

F(t) = 2fg€2) and obtain F(t)dt = gdz
K = 4 _ 4.4 \g'(2)|?
IO (1= 1g@y TEOPA-lg@R!

K={ 4lg' (@) }
F@IA-19@1)?)

As an immediate consequence.
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5.2.1.2 Theorem (Weierstrass-Enneper Formula of 2™ Kind )

Any maximal space-like surface in E; is represented as

1 1
¢(z) = Re j(if(gz +1), ifg,gf(g2 -1 )) dz, Reg #0, (x*)

The Gauss map n is

n@) = o (2;3) (Kobayashi, 1983)

Proof:

Replace f and g in (*) by

M and M respectively
2 (1+g)° |

b, ! _1(f(1+g)* 1-9)\
¢1—5““92)—z<z—>-(“(<1+g>>)

20+¢9\ 1.
W>_§f(g + 1).

1 1 (f(1+g)? (1-9)\°
-5 (6

¢2=%i(f(1;g)2>.< ) =ifg

1
¢t = Z(f 1+ g)z)-(

(1+9)?
_ _ (fa+g?) (A=) 1
PRI SE A NCED) T

5.2.2 Examples Of Maximal Surfaces

5.2.2.1 Example

The first example of maximal surfaces in E; is a space-like plane. The only
complete maximal surface in E3 is plane with g isconstantin (x) or (x).

(Calabi 1970, Cheng and Yau 1976)
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5.2.2.2 Example (Enneper’s Surface of 1% Kind)
Setf =2, g=zandD =C\{|z| <1}in
¢(z) = Re f(%f(l +g2),%f(1 —g%),—fg)dz, z € D where z = u + iv.
1 .
¢(z) = Re j(EZ(l + 22),%2(1 —z%),-2z)dz
¢(z) = Re f((l +2z2),i(1 — z?), -2z )dLz.
¢t =Re<f(z2 + 1)dz>
1 1
Pl = Re<z+§ Z3> = Re<u+iv+ §(u+iv)3)
1
Pl = Re(u + iv +§(u3 + 3u?vi — 3uv? — iv3)>
1
Pl = (u—uvz +—u3>
3
¢? =Re<fi(1—zz)dz>

1 1
¢? = Re (i (z—§ Z3)> = Re <i (u+iv—§(u+iv)3>>
1
$2 = Re (i (u +iv — §(u3 + 3u?vi — 3uv? — iv3)>>
1
¢? =Re (ui —v— §(u3i —3u?v — 3uv?i + v3)>
1
P? = (—v + u?v — §v3)

b3 = Re(f—szz) — Re (—=2%) = Re ( — (u + iv)?)
¢3 = Re (—u? — 2uiv + v?)
¢ = w7 —u?)
We have a maximal surface given by

1 1
¢ (z) = (u—uv2+§u3,—v+u2v—§v3,v2—uz) where z = u + iv

(Kobayashi, 1983)
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w* +v? <1}

1 1
fy =0} {vz—guzzl}u{uz—gvzzl}

Figure 5.3. Enneper's Surface of the 1¢ Kind
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5.2.2.3 Example (Enneper’s Surface of 2™¢ Kind )
This given by putting f = 2a, g = z in
1 1
¢(2) = Re f <§f(g2 +1,if9,5f(g* —1 )) dz,Re g #0,
where a is a non-zero real constant.
1 1
¢(z) = Re f > 2a.(z% + 1),i2az,§.2a. (z2—-1) ) dz
¢(z) = Re j(oc. (z2+1),i2az,a.(z2 = 1)) dz
Pl = Re(ja'(z2 + 1)dz>
1 1
¢! = a.Re (z+§ 23) = a.Re<u+ v+ §(u+ iv)3>
1
Pl = a.Re(u + iv +§(u3 + 3u?vi — 3uv? — iv3)>
1
Pl = a(u—uv2 +§u3>
¢? = Re ( j 2zai dz) = a.Re (z%) = a.Re (i (u + iv)?)

¢? = a.Re (u?i + 2uv — iv?)

¢? = a(—2uv)
¢3 =Re<foc(zz—1)dz)
¢3 = a'ReG 23 —z> = a.Re(%(u+iv)3 —u+iv)
¢3 = a.Re (% (u? + 3u?vi — 3uv? —ivd) — (u + iv))

1
3 =a(—u—uv2+§u3)

Then we have a maximal surface an explicit formula is given as follows:

1 1
¢ (Z) =a (u—uvz +§u3,—2uv,_u_u2v+§u3)
where z = u + iv,u # 0. This surface is a rotation surface with a light-like axis

(1,0, 1), which can be seen from the following expression (5.2.3):
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u

WlQ

(ieh o 3 (e
(o

¢ (2) = —v v u#:O.
1 1 —au+ u

2
_— 1
217 v +2v

As shown in below. (Kobayashi, 1983)

e T S = =
L

Figure 5.4. Enneper's Surface of the 2™ Kind
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5.2.2.4 Example (Conjugate of Ennper’s Surface of the 2"? Kind )

We define the conjugate surface of Enneper’s surface of the 2™® kind by

putting f = 2ai, g =z in

1 1
¢(2) = Re f <§f(g2 +1),ifg,5f(g* —1 )) dz,Re g # 0.

(z) =R f l2 . (z2+1),i.2a.i 12 i.(z2—-1)|d
¢(z) = Re > ai. (z , 0. Ol.l.Z,Z. ai. (z A
¢(z) = Re f(ai. (z% +1),—2az,ai.(z> — 1)) dz
¢1=Re(fai(zz+1)dz>
d)l=a.Re(zi+éz3>=a.Re(ui—v+%(u+iv)3>

i
Pl = a.Re(ui—v+§(u3 + 3u?vi — 3uv? —iv3)>

1
Pl =a(—v—u2v+§v3)

# = Re( [ ~2zwdz) = a.Re (~2%) = a.Re (~ -+ )

¢? = a.Re (— u? — 2uvi + v?)

#? = a(v? - u?)
¢3 =Re<fai(zz—1)dz)
[ i
¢3 = a.Re <§ z3 —zi) = a.Re<§(u+iv)3 —ul +v>
[
¢3 = a.Re (§ (u® + 3u?vi — 3uv? —ivd) —ui + v)

1
¢)3=a(v—u2v+§v3)

Then we have a maximal surface

1 1
p(2)=«a (—v—u2v+§v3,v2— uz,v—u2v+§v3>

1 1
¢(Z)=a<—U+§U3,v2,v+§v3)—auz(v,l,v), u # 0.

As a consequence, this is a ruled surface.
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As shown below. (Kobayashi, 1983)

2 1 4
{yi:Ea}U{u‘—gv‘E 1}

Figure 5.5. Conjugate of Enneper's surface of the 2" Kind

5.2.2.5 Example (Catenoid of the 15¢ Kind )
This rotattion surface is defined by
z
2 2 _ 212 (2
x“ + y* — a®sinh (a)—O, (z+0),

where « is a non-zero real. In view of the Weierstrass-Enneper formula, it is given by

putting f = az™?

¢(z) = Re f(%f(1+g2),%f(1—gz),—fg)dz, z € D where z = u + iv.

, g =zin
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As shown below. (Kobayashi, 1983)

WD =em e e cEm e e Em Em s Ems e Ems aEmES-

Figure 5.6. Catenoid of the 15! Kind

5.2.2.6 Example (Helicoid)

The conjugate surface of a catenoid of the 1st kind, that is, the surface defined
by setting f = iaz™2, g = zin
¢(z) = Re f(%f(l + gz),éf(l —g%),—fg)dz, z € D where z = u + iv,
is given by

¢(z) =(0,0,a8) + acosh (logr (—siné,cosH,0)), z=rel, (r+1.
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Note that this is an open subset of the usual helicoid;

X COS (é) + y sin (g) = 0.

Hence, it is also a minimal surface with respect to the metric
dx? + dy? + dz?. Conversely, this property characterizes the helicoid.
(Kobayashi, 1983)

5.2.2.7 Example (Catenoid of the 2™? Kind )

This is a rotation surface defined by setting f = az™2, g = zin

1 1
¢(2) = Re f <§f(g2 +1),ifg,5f(9* —1 )> dz,Re g # 0.

coshlogr 0 sinhlogr 0
¢(z) = ( 0 1 0 )( —afb ), z=re¥, (cosd #0).

ocos 0

sinhlogr 0 coshlogr

As shown in below. (Kobayashi, 1983)

Figure 5.7. Catenoid of the 2™ Kind
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5.2.2.8 Example (Helicoid of 2™? Kind )

This is a ruled surface defined by

Z + x tanh (%) =0 (xz < a? cosh (g) ),

which corresponds to f = iaz™?%, g = zin

1 1
¢(2) = Re f <§f(g2 +1),ifg,5f(g* ~1 )> dz,Re g # 0.

(Kobayashi, 1983)

5.2.2.9 Example (Scherk’s Surface of the 15¢ Kind)

This is maximal surface defined by
z = logcoshy —log coshx, (cosh™2x + cosh™2y > 1),
which is obtained by setting f = 4(1 —z*)"1, g = zin

¢(z) = Re f(%f(l +g2),2£f(1 —g%),—fg)dz, z € D where z =u + iv.

As shown below. (Kobayashi, 1983)

L]
L]
i
i
[
1
1
1
]
]
i
]
I

Figure 5.8. Helicoid of the 2™ Kind
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5.2.3 Rotation Surfaces

The purpose of this section is to determine the maximal rotation surfaces in E3.
A surface is called a rotation surface with axis [ if it is invariant under the action of the

group of motions in E3 which fix each point of the line I.

5.2.3.1 Theorem

Every maximal rotation surface in E3 is congruent to a part of one of the
following:
i. (x,y)-plane;
ii. Catenoid of the 1°¢ kind ;
iii. Catenoid of the 2% kind ;

iv. Enneper’s surface of the 2™ kind. (Kobayashi, 1983)

Proof:

The (x, y) - plane is obviously a rotation surface with time-like axis, and every
space-like plane is congruent to it. So, we suppose that the given maximal rotation

surface is not a plane.

If the axis is time-like (respectively space-like ), we might assume that the axis
is the z — axis (respectively y — axis ), because every time-like (respectively space-
like ) unit vector is transformed to (0,0,1) (respectively (0,1,0)) by a Lorentz

transformation. Then the surface is expressed as follows:

Case 1:

X(u,v) =(fWw)cosuy, f(v)sinu,g(v)) if the axis is timelike. The
maximal surface equation is then given by f.f" = (f)? — 1 for (f)?—1> 0.
X, = (— f(v)sinuy, f(v) cosu,0)
X, = (f'(v)sinuy, f'(v) cosu, g’ (v))
E=< X, X, >= (f®)°
F=< X, X, >,= 0
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G =< X,,X, >1= (f’(v))2 - (g’(v))z = 1 since profile curve is unit velocity.
I = Edu? + 2Fdudv + Gdv?
I = (f(v))zdu2 + 2.0dudv + 1dv?

I = (f(v))zdu2 + dv?

[ = (1€ I(;) — <(f(g))2 (1)> = detl = (f(v))z

II = Ldu? + 2Mdudv + Ndv?
L=< nX, > M=<nX,, > and N=< nX,, >,
Xyu = (—f (W) cosu,—f(v) sinu,0)
Xy = (—f'(v) sinu, f'(v) cosu, 0)

Xpy = (f""(v) cos u, f"(v) sinu, g"(v))
n=(f(v)g'w)cosu, f(v)g'(W)sinu, f(v)f'(v))
L=fwg W)

M=0
N=f"wg' W) - f'wg" )

Il = (f(v)g’(v))du2 + 2.0 dudv + (f”(v)g’(v) — f’(v)g”(v))dv2
1= (f()g'W)du® + (f"(v)g' () — f'(w)g" (v))dv?

=05 0 g )
(o ot
sp=|7r .
0 fllgl _ flgn

Since profile curve is unit velocity curve (f')? — (g')? = 1. Differentiate
bothsides 2. f'.f" —2.9g'.g" = 0 = f'.f"=g".9"

(f”g’ _f’gll)'gl — f”. g" g’ _fl' gI" gl

f"g' = f'9")-g" =f"@¥-f.(f"f"

(f"g' = f'g".g' =f" (@) -U)f"

(f"g' = f'g"-g' = f"((g)?* = (f')*).We know that (f')*> — (g")* = 1.
(f"g' = f'9")-9" =—f"(f)? - (g")?)

1
(f”gl _f’gll)'gl — _f’l

"o/ III__f
f'9'"—f'g 7
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_1 "o I g’
H—g(fg —f'g +7>

_1 _fll gl
”‘5(7+7>

X is maximal if and only if g7 = % = (g")? = f.f". We know that

(f)?-0@r=1=0@r=>¢(r-1
(= 1=f.f"
Solving the differentiable equation let h = ', f' = o

dv
_dh _dh df  dh
dv dfdv df

4

dh
f. "= -1 =>fh5=h2—1, g #0, h? # 1.

hdh [ df
h2—-1 ) f
h=4a*f?+1

df _ df

h=4a%*f?+1 = dv

| =]

dv

Let af =0 = adf =df = df = - d6

a

1-]' de
—_ =7
al Voz+1
1
—sinh ™10 =v
a
1
Esinh‘l(af) =v+b
sinh™(af) = a(v + b)
af = sinha(v + b)
f = a lsinh(av + b)
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Case 2:

X(u,v) = (g)sinhu, f(t), g(v) coshu) if the axis is spacelike. The
maximal surface equation is then given by g.g” = (g')?> — 1 for (g")?—-1<0.
X, = (g(v) coshu,0,g(v)sinhu)
X, = (g'(w) sinhu, f'(v),g'(v) coshu)
E=< X4, X, >= (g)°
F=< X,X, >=0
G=< X,,X, > = (f’(v))2 - (g’(v))2 = 1 since profile curve is unit velocity.
I = Edu® + 2Fdudv + Gdv*
I = (g(v))zdu2 + 2.0dudv + 1dv?

= (g(v))zdu2 + dv?

= (? g) = ((g(g))z (1)> = detl = (g(v))z

Il = Ldu?* + 2Mdudv + Ndv?
L=< nXy,, >, M=<nXy, > and N=< n,X,, >,
Xy = (g(v) sinhu, 0, g(v) coshu)
Xy = (g'(v) coshu,0,g'(v) sinhu)
Xy = (g"(w)sinhu, f""(v),g" (v) coshu)
n = (—f"'(v)coshu,—g'(v),—f'(v) coshu )
L=f'w.g)
M=0
N=f'(wg"W) - f"wg )
1= (f').g()du?+ 2.0 dudv + (f'(v)g" ) — ' (v)g'(v))dv?

sp = <92 0>_1 fg 0 .
0 1 0 flgn _ fllgl
r 0
Sp - g ! 144 144 ! ’
0 flg"—f"g

Since profile curve is unit velocity curve (f')? — (g')? = 1. Differentiate
bothsides 2. f'.f" —2.9g'.g" = 0 = f'.f"=g".9"
F'9"=1r"9).f=f.1f.9" -4 /i':_]i’
(f'g" —f"g").f'=4g". (f)¥?-g.("9"
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(f'g" = f"g)f = 9" (f') = (g').g"
(f'g" = £"9)-f' = g"((F)? = (g')?). We know that (f')? = (g)* = 1.
(F'g" = f"g)f = 9" (FI2 = (")
1
(flgll _fllgl).fl — gll

n

o Ill_g_
fl9g"—r"g i

_1 r_r o f,
H—E(fg —f"g +E>
_Le” -
n=3(5+L)

X is maximal if and only if — %= % = (f)? = —g.g". We know that
f?-@)¥=1=>")=>@r+1

(gl)z_l_l — _g'gll

Solving the differentiable equationleth = g’ , g’ = Z—i

, _dh_dh dg  dh

9 Tdv dgdv_ Tdg

dh
-g9.9" =(@g)*+1 :—gh@= h? +1, f'#0, h? # —1.
fhdh _(dg
h2+1 ) g
[1=aZg?
ag
dg J1—a?g? ag dg

< - h= = =dv

dv ag JI-(ag)?
agdg
j\/l—(ag)z ok

h =

Let ag =60 =>adg=d9zdg=id9

1f de
Z —
a) V1-62
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—cos 19 =v
a

1
acos‘l(ag) =v+b

cos 1(ag) = a(v + b)
ag = cos a(v + b)

g =a tcos (av + c)

Thus, we have f(v) = a”lsinh(av + b) and g(v) = a~! cos (av + ¢), where a

and b are integral constants.

Hence, the surface is locally congruent to a catenoid of the 1* kind or a catenoid

of the 2" kind according to that the axis is time-like or space-like.

If the axis is light-like, we might suppose that it is IR.( 1,0, 1). Note that the
subgroup of the Lorentz group which fixes (1,0, 1) is

(1 u? u? \
2 Y9

—-u 1 u ;U EIR ;.

|

Thus, the surface can be written as

u? u?
=7 7\‘ h(v) +v
X(u,v) = -u 1 u < 0 ) (*)

u? u/ h(v) —v
—7 Uu 1+E

The maximal surface equation for (*) is given by

vh' —2h' =0, v+0, h'>0.

Hence, we have the solution h(v) = at® + b, a > 0, which shows that the

surface is Enneper’s surface of the 2" kind.
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5.2.4 Ruled Surfaces

As for maximal ruled surfaces, we have following:

5.2.4.1 Theorem

Every maximal ruled surfaces in E7 is congruent to a part of one of the
following:
i. (x,y) -plane;
ii. Helicoid;
iii. Helicoid of the 2™ kind;
iv. Conjugate of Enneper’s surface of the 2% kind. (Kobayashi, 1983)

Proof:

Every space-like ruled surface can be written
X(t,s) = a(s) + t.n(s)
a'(s) = t(s)
<a'(s),a'(s)>=1

span{ t(s) = a’(s) }* is a time-like subspace EZ.
t'(s) may be space-like.
t'(s) may be time-like.
t'(s) may be light-like.
We will examine t'(s) may be space-like.

t'(s) is a space-like vector.

k() =<ts)ns) > = t(s) =x(s). ns)
—— N——
space—like space—like

<n(s),n(s) >,=1
<t(s),t(s)>=1 = <t(s),t'(s) >=0=><t(s),n(s) >,=0
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where a(s) is a space-like curve in E; with arclength parameter and n(s) is a unit
normal vector field along a(s). Note that n(s) is an asymptotic vector field on the
surface and that

a'(s) +t.n'(s) = t(s) + t.n'(s) is perpendicular to n(s).

It follows from the maximality that a’(s) + t.n’(s) is an asymptotic direction.
Especially, putting t = 0, we can see that n(s) is the principal normal vector of a(s).
Thus, we need only to determine the curve a(s) to get the surface

X(t,s) = a(s) + t.n(s),
<a'(s),a' (s) >, =<n(s),n(s) > =1, (5.1)
< t(s),n(s) >,=0.

Denoting by b(s) the binormal vector of (s), we have the Frenet-Serret
formula:
t'(s) = x(s).n(s)
n'(s) = —(xs).t(s) + ©(s).b(s), (5.2)
b'(s) = t(s).n(s)
where kand T are curvature and torsion of a(s), respectively. Hence,
t(s) + t.n'(s) = t(s) + t(—x(s). t(s) + 7(s). b(s))
t(s) +t.n'(s) = t(s) — t.x(s).t(s) + t.T(s). b(s)
t(s) +t.n'(s) = t(s)(1 —t. (xs)) + t.T(s).b(s) (5.3)
t'(s) +t.n'"(s)

k(s).n(s) 7(s).n(s)

k(s).n(s) + t <—K(S). n'(s) +1(s). b (s) —K’(s).t(s)+r’(s).b(s)>

Kk(s).n(s) + ¢ (—K(S). (x5). 1(S) + T(5).T(s). n(S) — % (5). t(S) + T (5). b(s))

t'(s) + t.n"(s)

n(s) (x(s) = t(x())” + t(z()") + t(—' (). t(s) + (). b(s)).  (5.4)

Since a’ + tn' is an asymptotic direction, @” + tn" is tangent to the surface.
That is t(—K’(s). t(s) + 7'(s). b(s)) must be parallel to
t(s)(l —t. K(s)) + t.7(s). b(s) for any t and s.

Thus ,x and T are constant.
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Then, if || > |T| > 0 (respectively |t| > || >0),
1(s) = a(s) + (5——) n(s)
als) = a(s peppy LG

is a time-like (respectively space-like ) line by (5.3) and (5.4). Therefore,

from (5.2), we can see that a(s) is congruent to

(ﬁcos (\/ K2 — ‘tz)s L‘[Zsin (\/ K2 — 12 )S ,ﬁ S) (5.5)

2 —
if |x|>|t]>0;

Or

(1'2 E > cosh( T2 — KZ) & T L sinh( 2 _ Kz) s) (5.6)

if |t| > |x| > 0.
The surface defined by (5. 1) is compatible to a part of helicoid or 2™ kind.

If |z| =|x| #0, we have n"" =0 by (5.2), hence ¢’ =0.a(s) is a

polynomial of degree 3. We have the conjugate of Enneper’s surface of the 2% kind.
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6. CONCLUSION

Curves and surfaces in E5 have some similar properties with these in E3. We
have seen that curves and surfaces in E; differs by their causal character.We
investigate Weierstrass-Enneper representation the surfaces by comparing minimal
surfaces in E3 with maximal surfaces in E3. The Weierstrass-Enneper representation
of minimal and maximal surfaces gives linkage between differential geometry and
complex analysis. This representation is used for the classification of these surfaces.
These methods might be used for the surfaces in E{* and classification of these opens

a way to investigate new examples.
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