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ABSTRACT

GROBNER-SHIRSHOV BASES AND NORMAL FORMS FOR SOME COXETER
GROUPS

PH.D. THESIS
UGUR USTAOGLU,
BOLU ABANT iZZET BAYSAL UNIVERSITY GRADUATE SCHOOL OF
NATURAL AND APPLIED SCIENCES
DEPARTMENT OF MATHEMATICS
(SUPERVISOR : ASSOC. PROF. DR. EROL YILMAZ)

BOLU, SEPTEMBER 2018

The Grobner-Shirshov bases and normal forms of the infinite Coxeter groups of type
En, én and lN)n are obtained for the first time. New versions of Grobner-Shirshov bases and
normal forms of the finite Coxeter groups of type A,, B, and D,, are also found. Using
combinatorial techniques, the product of two normal forms is attained as normal form in all
Coxeter groups mentioned above and the infinite Coxeter group of type gﬂ. Hence all these
groups are completely revealed.

KEYWORDS: Finite Coxeter Groups, Infinite Coxeter Groups, Grobner-Shirshov Bases,
Permutation Groups, Normal Forms, Composition-Diamond Lemma .



OZET

BAZI COXETER GRUPLARI ICIN GROBNER-SHIRSHOV TABANLARI VE
NORMAL FORMLAR

DOKTORA TEZi
UGUR USTAOGLU,
BOLU ABANT iZZET BAYSAL UNIVERSITESI FEN BILIMLERI ENSTITUSU
MATEMATIK ANABILIM DALI
(TEZ DANISMANI : DOC. DR. EROL YILMAZ)

BOLU, EYLUL 2018

B,,C,ve D, tipi sonsuz Coxeter gruplarinin Grobner-Shirshov tabanlar1 ve normal
formlari ilk defa bulundu. A, B,, and D, tipi sonlu Coxeter gruplarinin Grobner-Shirshov
tabanlarinin ve normal formlarinin yeni versiyonlari bulundu. Kombinatorik teknikler kulla-
nilarak, yukarida bahsedilen biitiin Coxeter gruplarda ve /Tn tipi sonsuz Coxeter grubunda,
iki tane normal formun ¢arpiminin normal form oldugu elde edildi. Bdylece tiim bu gruplar
tamamen agiga cikarilmistir.

ANAHTAR KELIMELER: Sonlu Coxeter Gruplari, Sonsuz Coxeter Gruplari, Grobner-
Shirshov Tabanlari, Permiitasyon Gruplari, Normal Formlar, Composition-Diamond Onsavi
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1. INTRODUCTION

Shirshov| (1962) found linear bases for Lie algebras defined by generators and rela-
tions. He defined the composition of two Lie polynomials and using these compositions he
gave an infinite algorithm to find the desired linear basis. Buchberger| (1965) developed a
similar algorithm for ideals in polynomial rings. Unlike Shirshov’s algorithm his algorithm
finds the basis after finitely many steps. He named these bases on behalf of his advisor as
Grobner bases. Nowadays, especially in noncommutative settings, these bases are called
Grobner-Shirshov bases. In fact [Shirshov) (1962) also implicitly gave an algorithm for as-
sociative algebras because he treated Lie algebras as subspace of Lie polynomials over free
associative algebras. Furthermore, the cases of semigroups and groups presented by gener-
ators and defining relations are just special cases of associative algebras. Hence Grobner-
Shirshov bases for every Lie algebra, associative algebra, semigroup or group presented by

generators and defining relations can be found.

The Composition-Diamond lemma for Lie algebras’ (Shirshov| (1962)), Lemma 3)
relates Grobner-Shirshov bases for Lie algebras to their linear bases. Associative algebra
version of this lemma gives a relation between Grobner-Shirhov bases and normal forms of
semigroups or groups presented by generators and defining relations. Since late nineties,
finding Grébner-Shirshov bases and normal forms of semigroups and groups are very active
research area. We recommend the survey by |[Bokut and Chen (2014) to those who are

interested in this subject.

Coxeter groups, sometimes called Weyl groups, are one of the most imported ex-
ample of groups presented by generators and defining relations. Because of this, finding
Grobner-Shirshov bases of these groups attracted the attention of researchers. Grobner-
Shirshov bases for finite Coxeter groups are found in Bokut and Shiao|(2001). Svechkarenko
(2007) found Grobner-Shirshov basis for finite exceptional Coxeter group of type Eg. Lee
(2008)) found Grobner-Shirshov basis for finite exceptional Coxeter groups of type Eg and
E;. Then Yilmaz et al. (2014) obtained Grobner-Shishov bases of infinite Coxeter (Weyl)
group of type Zn Karpuz et al. (2015) found Grobner-Shirshov bases of some Weyl groups.
For the infinite exceptional Weyl group of type F), Grobner—Shirshov basis is constructed

by |Lee (2016).



The main purpose of this thesis is to obtain Grobner-Shirshov bases and normal
forms for infinite Coxeter groups of type En 5n and lN)n We; however, observed that all
articles written so far has not been interested to find multiplication of normal forms. In fact
product of two normal forms is not generally a normal form. Of course, applying Shirshov’s
reduction process to the product one can obtain normal form but this is very time consuming.
We try to find a more explicit method for finding normal form of the multiplication of two
normal forms. To do this we used the combinatorial properties of Coxeter groups. In chapter
we reproduce Grobner-Shirshov bases and normal forms of the finite Coxeter groups of
type A,,, B, and D, using a different order than Bokut and Shiao| (2001)). Using these new
normal forms we are able to find normal form of the product of two normal forms. Hence
these groups are completely revealed. In chapter[5] we acquired combinatorial meaning for
normal forms of the infinite Coxeter group of type ﬁn given in [Yilmaz et al. (2014). The
results of these two chapters are also to be published as an article ( see Ustaoglu and Yilmaz
(2018)). The chapters [6] [7] and [§] are main results of this thesis. We respectively obtained
Grobner-Shirshov bases, normal forms and normal form products of the infinite Coxeter

groups of type B,, C, and D,,.



2. BASIC CONCEPTS

2.1 Coxeter Groups

Generators and relations defined Coxeter Groups in an easy way.

A n xn symmetric matrix m whose elements are positive integers or positive infinity

is called a Coxeter matrix if it satisfies m;; = 1 if and only if 7 = 7.

Let S = {s1,S2,...,5,}. A Coxeter matrix can be presented by a Coxeter graph
whose nodes are elements of S and whose edges are unordered pairs {s;, s;} such that
m;; > 3. The edges with m;; > 4 are weighted by m;; — 2. We can give an example

of correspondence of between the graph and the matrix.

Example 1. Let n X n symetric matrix m given by

N = = DN

3 ,
1 o0
4 2
o0 1

NN W

and relation of between s; and s, is mi5 — 2 = 1, then there is an edge between them;
relation of between s; and s3 is m13 — 2 = 0, then there is no edge between them; relation of
between s; and s4 is my4 — 2 = 0, then there is no edge between them; relation of between
59 and s3 1S Moz — 2 = 2, then there are two edges between them; relation of between s, and
54 18 Moy — 2 = 00, then there are infinitely many edges between them; and finally relation
of between s3 and s, is m34 — 2 = 0, then there is no edge between them. After then, the

graph is

S3

5S4

Also we now give the correspondence of the graph and the relations.
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Definition 2.1.1. A Coxeter matrix m specifies a group I¥. It has a presentation Generators
which are elements of S and Relations which satisfy (s;s;)"% = 1 where s; and s; are

elements of S.

Because of m;; = 1, we have that s? = 1. It is simple to show that for i # j and

mi; # 00, (s;8;)™ = 1is equivalent to

\SiSjSiSj . 1 = \SjSiSjSZ' . 1

~~
mij mij

where length of both sides is m;;.

In previous example, we can give the group determined by the above Coxeter dia-
gram has a presentation as {{sy, S2, 53, 4}, 57 = 55 = 52 = 57 = 1,51598] = 595189, 5183 =

5351, 5154 = 54851, 5354 = 5453, 52535253 = 53828352}-

(W, S) is called a Coxeter System if a group ¥ has a presentation such as generators
and relations where W and S are Coxeter group and the set of Coxeter generators, respec-
tively. The cardinality of S is rank of (W, S). If the Coxeter graph is connected, then the

system is irreducible.

In |Bjorner and Brenti| (2005), the following statements are equivalent and make ex-

plicit what it means for W to be determined by m via above presentation.

e If Gisagroup and f : S — G is a mapping such that

(f(5:)f(s5)™ =1

for all (s;, s;) € S? then there is a unique extention of f to a group homomorphism

W —=aG.

o W = F/N, where F is the free group generated by S and N is the normal subgroup

generated by (s;s;)™%.

e Let 5™ be the free monoid generated by S(i.e., the set of words in the alphabet S with
concatenation as product). Let = be the equivalence relation generated by allowing

insertion or deletion of any word of the form

(SiSj)mij = SiSjSiSj R
N———

27”1’]’

Then, S*/ = forms a group isomorphic to .

4



Let (W, S) be a Coxeter system. Definition leaves some uncertainty about the
orders of pairwise products s;s; as elements of I where s;, s; € S. All that follows is that
the order of s;s; divides m,; if m;; is finite. This leaves open the possibility that distinct

Coxeter graphs might determine isomorphic Coxeter systems. However, this is not the case.

Proposition 2.1.2 (Bjorner and Brenti (2005),Proposition 1.1.1). (W, S) is the Coxeter sys-
tem determined by a Coxeter matrix m. Let s; and s; be distinct elements of S. Then, the

followings hold:
(i) s; and s; are distinct in W.
(i1) The order of s;s; in W is m;.

Theorem 2.1.3 (Bjorner and Brenti (2005), Theorem 1.1.2). Up to isomorphism there is a

one-to-one correspondence between Coxeter matrices and Coxeter systems.

Assume that (W, S) is a Coxeter system. Then w = sysq- - S where s; € S is a
generator, 1 < ¢ < k, for all w € W. k is called the length of w denoted by I(w) = k. If k
is minimum for w, then word written as a product of generators is called a reduced word for

w.

The all finite irreducible Coxeter systems and some infinite Coxeter systems have
been classified (see Bjorner and Brenti (2005)). We give Coxeter graphs of the finite Coxeter
groups of type A,, B, and D,, and the infinite Coxeter groups of type A,, B, C, and D,

in the following tables.

Table 2.1. The some finite irreducible Coxeter systems

Name Diagram
An (n 2 1) 1 2 3 n—1 n
2
Bn(n>2) 1 o Th—2 Th—1 Tn
Tn—1
® o---@ Tp—2
T Ty Tn-3
Tn
D, (n>4)




Table 2.2. The some infinite Coxeter systems

Name Diagram

o T'n—1

D, (n>4) | *" Tn

2.2 Poincaré Series

Definition 2.2.1. Let W be a Coxeter group and A C W. Define

A(z) == Z 21

weEA

A(x) is called Poincaré series of A. (If |A| < oo, then A(x) is the Poincaré polynomial of

A)

Lemma 2.2.2 ( Bjorner and Brenti (2005),Theorem 7.1.1). Suppose that W = Hle Wi,

where Wy, Wy, ..., Wy, are irreducible Coxeter systems. Then

Define [i], = 1+ 2z + 2%+ ...+ 2"t fori > 1.

Theorem 2.2.3 ( Bjorner and Brenti (2005),Theorem 7.1.5). Let (W,S) be a finite irre-
ducible Coxeter system, and n := |S|. Then, there exist positive integers ey, es, . . . €, such

that

n

W(z) = []le: + 1.

=1
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The integers eq,es, ..., e, are called exponents of (W, S) which is given by the

following table for some finite Coxeter groups.

Table 2.3. Exponents for some finite Coxeter groups

Name Exponents
A, (n>1) 1,2...,n
B, (n>2) 1,3...,2n—1
D,(n>4)|1,3...,2n—3,n—1

After some easy computations, the orders of the finite Coxeter groups of type A,,
B, and D,, can be found as (n + 1)!, 2"n! and 2"~ 'n!, respectively (see Bjorner and Brenti

(2005) Appendix A1).

Theorem 2.2.4 (Bjorner and Brenti (2005),Theorem 7.1.10). Let (W, S) be infinite Coxeter

system, and let ey, es, . . . , €, be the exponents of the corresponding finite group. Then,
- [ei + 1]3:
W) =]] —=

If we remove r( from the graph of 6’n, then it becomes same graph of the Coxeter

graph of B,,. Hence we can use the exponent of 5,, for Poincaré Series of én.

2.3 Some Basic Definitions of Grobner-Shirshov Basis

First of all, we recall some concepts about the Grobner-Shirshov basis theory. Let .S

be a set and S* be the free monoid of words generated by S. We denote empty word by 1.

A well ordering < on S* is called monomial order if z < y implies axb < ayb for

all a,b € S*. We use degree lexicographic order in this work.

Let £(S) be free associative algebra generated by S over a field k. Given 0 # f €
k < S >, we denote by f the leading word in f, the biggest element of f with respect to

given monomial order.

For two monic polynomials f and g, if there is a word w such that w = fb = ag
for some a,b € S*, then the composition of f and g defined by < f,g >,= fb —ag. If
such a word w does not exist and f > 7, then f = agb for some a,b € S*. In this case the

composition defined as < f, g >= f — agb.



The transformation f — f —agb is called the elimination of the leading word (ELW)
of fing. Let R C k(S) be set of monic polynomials and f be another monic polynomial.
We say f is reduced to h modulo R if f is obtained by a sequence of ELW in elements of R
and further ELW of h is not possible. A set R C k(S) is called a Grébner-Shirshov Basis if

any composition of polynomials from R is reduced to zero modulo R.

If R C k(S) is not a Grobner-Shirshov basis, then take a composition of polynomials
from R and reduce it modulo . If reduction process produce a non zero polynomial 7, then
enlarge the set R by r. Repeat this process for each composition of polynomials from R
until no more enlargement of R is necessary. Then the set you obtain is a Grobner-Shirshov

basis. Such a process is called Shirshov algorithm.

The following well known lemma is useful for finding normal form of a group via

its Grobner-Shirshov basis.
Lemma 2.3.1. (Composition-Diamond lemma for associative algebras)

Let k be a field, A = k(S|R) = k(S)/Id(R) and < a monomial ordering on S*,
where [d(R) is the ideal of k(S) generated by R. Then the following statements are equiv-

alent:

(i) R is a Grobner-Shirshov basis.
(ii) f € Id(R) = f = asb for some s € R and a,b € S*.
(iii) The set of R-reduced words
Red(R) = {w € S*|w # asb,a,b € S*,s € R}

is a k-linear basis for the algebra A = k{S|R).

If a group G is defined by generators S and relations R, then we can identify each
relation @ = b in R with a polynomial @ — b. Thus the set of relations can be considered
as a subset of £(S). Therefore one can find a Grobner-Shirshov basis of R which we call a
Grobner-Shirshov basis of the group . Notice that R consists of "biwords", differences of
words. The Shirshov algorithm maintains this property throughout the entire computation.
Hence Grobner-Shirshov basis of a group can be thought as a special set of relations for this
group. Furthermore the set Red(R) = {w € S*|w # asb,a,b € S*,s € R} becomes the

set of all normal forms of G by the Composition-Diamond lemma.



3. MATERIALS AND METHODS

The main idea for finding Grobner-Shirshov bases for the infinite Coxeter groups of
type A, En CN’n and lN?n is to apply Shirshov algorithm for small n’s. Then we generalize
and prove the results for every n. This works for finite Coxeter groups. One; however, can
not apply Shirshov algorithm by hand for infinite Coxeter groups. Hence we wrote some
codes for Shirshov algorithm using Mathematica. But even with the help of the computer, we
have not succeeded in getting the Grobner-Shirshov bases of infinite Coxeter groups. Then
we decided to partially apply Shirshov algorithm. After adding some new polynomials to
the basis, we found corresponding reduced words. To do this, we also wrote some codes in
Mathematica. Since number of elements in each length is known for Coxeter groups, we
checked that number of reduced words of each length is equal to this known number up to
certain lengths. If equality does not hold, then we continue to apply Shirshov algorithm.
If equality holds for large lengths, we supposed that we found the Grobner-Shirshov basis
since Composition-Diamond lemma implies if the set of reduced words of given polyno-
mials is equal to the set of elements of the Coxeter group, then these polynomials form a
Grobner-Shirshov basis. Then we generalize our results to every n and then try to prove
them using combinatorial techniques. If we were not able to prove our generalizations, then
we supposed that our generilazations were not correct. In this case we went back to the

algorithm and tried to find extra polynomials on the Grobner-Shirshov basis.



4. GROBNER-SHIRSHOV BASES AND NORMAL FORMS FOR
SOME FINITE COXETER GROUPS

In this chapter, we will obtain Grobner-Shirshov bases and normal forms of the finite
Coxeter groups of type A,,, B,, and D,,. We also find the product of two normal forms as a

normal form in all these Coxeter groups. Let us start with the finite Coxeter group of type
A,

4.1 The Finite Coxeter Group of Type A,

Let S = {ry,rq,...,r,} and

¢

gy .. ifl<i<j<n:

Tilip1 =+ TnTp—1- Top—y 1 <i<n<j<2n—74;
Tij = .

T lf]:Z;

1 ifj—i—1.

Suppose that < is the degree lexicographic order on S. A set R is Grobner-Shirshov

basis hereafter means it is a Grobner-Shirshov basis with respect to <.

Definition 4.1.1. The finite Coxeter group of type A, (n > 1) is generated by S =

{ry,ra, -+ ,r,} with defining relations:

(Rl) 7"1‘7"1':1 for 1§Z§7’L,
(RQ) Tir; =TT for 1§Z<]—1§n—1,

(Rg) Tirie1Ti = Ti1TiTi1 for 1 S 1 S n—1.

Hence A,, has a presentation A, = (S | { Ry, Ry, R3}).

Proposition 4.1.2. A reduced Gréibner-Shirshov basis of the finite Coxeter group of type A,

contains the following polynomials:

ofl(i):riri—l for 1 <i<n,

10



oféivj):rirj—rjm Jor 1<i<j—-1<n-1
° f?fi) = TiTi1li — TivaTiliv1 for 1 <i<mn—1,
° g(i’j) =TTy — Tig1Vi fOl" 1<i<j— l<n-L

Proof. The first three polynomials come from defining relations of the finite Coxeter group

of type A,,. We can obtain ¢(»/) with the following compositions of inclusion.

(1) p(3,i+2) _
< f3 y J2 > = (Tiriﬂ?"i - 7"i+17“z‘7“z‘+1)7“z‘+2 - TiTi+1(Ti7“¢+2 - 7“¢+2T’i)
=TiTip1Ti2Ts — Vi1 TiTi1 T2
o (3,i42)
= g(
forl1 <:<n-—2.
ij) pd+1)
< 9( ])7 fa > = (Tijri - 7“i+17'z‘j)7’j+1 = Tij(rirj-&-l - Tj+17’i)

= Tij+17i = Tit1T4,5+1
— g(i,j+1)
forl1<i<j—1<n-—2

]

Notice that we are not claiming that these polynomials form a Grobner-Shirshov
basis for the finite Coxeter group of type A, at this point. A Grobner-Shirshov basis may

contain more polynomials.

We now give a well known combinatorial description of the finite Coxeter group of

type A,,.

Proposition 4.1.3. (Bjorner and Brenti (2005), Proposition 1.5.4) The symmetric group
Sni1 with generating set S = {ry,...,r,} is the finite Coxeter group of type A, where
ri=Gi+1)fori=1,...,n

Definition 4.1.4. Given u € 5,1, let
Li(u) := {u(j) : u(j) > i for some j < u~'(i)}
forer=1,....,n+ 1.

Lemma 4.1.5. Let u € S, such that u(l) =l for 1 <1 < k — 1 and let x = ry;, where
Je = [In(u)| + k — 1. Ifv=uz"1, thenv(l) =l for 1 <1 < k and I;(v) = I;(u) fori # k.

11



Proof. Since u'(l) = I for1 <1 < k— 1, |Ix(u)] = v (k) — k and then j + 1 =
[I;(u)| + £ = u (k). Hence v(l) = u(z™'(l)) = u(l) = lfor1 <1 < k—1and
v(k) = u(z™(k)) = u(jx + 1) = k.

Let i # k. Notice that u='(i) # jry1 = u (k). Suppose t € I;(u). Then u(j) > i

for some j < u‘l(z’). Since u~'(i) # j. + 1, = preserve the inequality that is z(j) <

(u™ (1)

) = v~!(i). Therefore t = v(x(j)) > i for some x(j) < v~'(7). This implies
t € I;(v). Conversely suppose ¢ € I;(v). Hence t = v(j) > i for some j < v'(i).
-1

Since v (i) = z(u'(i)) # z(jr + 1) = k, 27! preserve the inequality that is z7!(j) <

Y v71(i)) = w (7). Therefore t = u(z~'(j)) > i for some x7(j) < u~1(i). This
implies t € I;(u). O

Theorem 4.1.6. Any w € S,y can be represented in a form r,;, -- -1, ---1r1;, where

i—1<ji=L(w)|+i—1<nfori=1,...,n

Proof. Let vy = w. Suppose that vy = vj_1(rpjr) "+ where ji, = |[Ix(vp_1)| + k — 1 for
k=1,...,n. Lemma implies vi(l) = lforl = 1,...,k and I;(vy) = I;(vg_1) for
1 # k. Hence

Je = r(ve-a)[ +k =1 = [L(ve2)| + k=1 =" = [Ip(w)| + k-1
for k = 1,...,n. Furthermore v, = w(ry;,) "'+ (rp;,) " is the identity element. Hence

w :Tnjn rl_jz ...7*1].1.

We can now give main result of this section.

Corollary 4.1.7. Let R be the set of polynomials given in Proposition Then
(l) Red(R) = {Tnjn . 'Tiji . "T1j1|7: — 1 S jz S n, ’L = ]_,. .. 77’L}.
(ii) R is a Grobner-Shirshov basis for the finite Coxeter group of type A,,.

Proof. (i) One can easily check that w € Red(R) for any w € A. Conversely if w €
Red(R) C S*, then w corresponds to a permutation in S,.;. Hence w € A by

Theorem

12



(ii) If R was not a Grobner-Shirshov basis, then R C R where R was a Grobner-Shirshov
basis. So Red(RR) should contain more words than Red(R) but there are (n+1)! words
in Red(R) which is exactly same as number of elements in the finite Coxeter group of
type A,,.. Hence Red(R) is the set of normal forms and R is a Grobner-Shirshov basis

for the finite Coxeter group of type A,, by the Composition-Diamond lemma.

O

Notice that Theorem [{.1.6] gives a method for converting any element of the finite
Coxeter group of type A, into its normal form. Let us conclude this section by an example

of finding the normal form of the product of two normal forms.
Example 2. Let x = ryrozriy and y = ryryrasrasris in As.
T = T4T23T14

=(45)(234)(12345)

12 3 45 6
352 416

Y = Ts5T4T35T25714

=(56)(45)(3456)(23456)(12345)

123456
6 4 5 3 1 2

=2y
(123456 1 23456
352416 6 4 53 1 2
123456

Then |I5(z)| = 1, [14(2)| = 1, |I3(2)| = 2, |I2(2)] = 2 and |I;(z)| = 2. Theorem [4.1.6]

implies z = r574734723712.

4.2 The Finite Coxeter Group of Type B,

Now let us do similar computations for the finite Coxeter group of type B,,.

13



Definition 4.2.1. The finite Coxeter group of type B, (n > 2) is generated by S =

{ry,ra, -+ ,r,} with defining relations:

(Rl) rir; = 1 for 1 S 1 S n,
(Rg) Ty =TT for 1§i<j—1<n,
(Rg) TiTig1Ti = Tip1TiTi41 for 1<i<n-—1,

(R4) T'n—1T"nT"n—1Tn = "nTn—1"nTn—1.

Hence B, has a presentation B,, =< S | { Ry, Ro, R3, R4} >.

Proposition 4.2.2. A reduced Grobner-Shirshov basis of the finite Coxeter group of type B,,

contains the following polynomials:

o fV=rpi—1 for 1<i<n,
on(iJ):riTj—TjTi for 1§Z<]_]‘<n’
o f§7) =ryri—riary for 1<i<n—2and i<j<2n-—i-1,

(9 _
o fy = Tion—iTi+1 — Ti+17%,2n—i-

Proof. The polynomials fl(i) and fQ(i’j ) come from the defining relations (R;) and (Rs),

respectively. Similarly the polynomials féi’iﬂ) and fin_l) comes from the defining relation

(R3) and (R,), respectively. Now let us apply the Shirshov algorithm to these polynomials.
< SO = (59 for n >

< f3i’j_1), émn_j) >= fy’j) for n < j,

< féi,2n727i)’f§i,i+l) — ff)-

Notice again that a Grobner-Shirshov basis of the finite Coxeter group of type B,
may contain more polynomials.Using the combinatorial description of the finite Coxeter
group of type B,,, we will show that the polynomials given above proposition are in fact

form a Grobner-Shirshov basis.

14



Let S5 be the group of all permutations w on [+n] = {—n, —(n—1),...,—=1,1,...,n}

such that

w(—1i) = —w(i)
forall i € [£n]. Clearly, such a w is uniquely determined by its values on [n] = {1,2,...,n}
and we write w = [wy, wa, . .., w,| where w; = w(i) for i = 1,... n. This notation is win-
dow notation for w. If u € S, then its extension to SZ is [u] = [uy,us, ..., u,] where
u; =wu(i)fori=1,2,... ,n.

Proposition 4.2.3. (Bjorner and Brenti (2005)) ,Proposition 8.1.3) The group SP with gen-
erating set S = {ry,...,r,} is the finite Coxeter group of type B, where r; = [(i i+ 1)] for

i=1,2,...,n—1landr, = (n —n).
Lemma 4.2.4. The following equality holds in B,
(& = i)rij, = Tign—ji—1

wherei — 1< 5, <n—1for1<i:i<n-—1.

Proof. Firstof all, r;0,—; = [({ i+ 1 --- n)[(n —n)[(nn—-1 --- 4] = (i —1) for

1= 1, e, N Then Tion—ji—1 = Ti2n—iTij; = (Z e i)riji fore —1 < jz <n. ]
Theorem 4.2.5. Given w = [wy,wy, ..., w,] € SB, let u € S,, such that u(i) = |w;| for
1 =1...,n. Then w can be uniquely represented in a form

Trgn = Tigi " Ty

where j; = |L;(u)| + i — 1ifw ' (i) > 0 and j; = 2n — |L;(u)| — i if w™' (i) < 0.

Proof. Clearly,
w=( [ G -l

w—1(3)<0

Theorem {4.1.6]implies [u] has the unique representation

’r‘n‘j—n..-riﬁ.--rlj—l

where j; = |I;(u)| +i — 1 fori = 1,...,n. Here we abuse the notation. In fact r,, & A, _;

but 7, = 1 since Jn =mn — 1. Since (i — i) and 7}, commute when k > i, we can write
Trgn =+ Tigi " Tl

where 7;;, = 75 if w™'(i) > 0and ry;, = (i —i)r;; if w™'(7) <0.

15



Since (i — i)rij, = Ti.2n—j,—1 by Lemma[4.2.4]
(i — )71, ()| +i-1 = Ti,2n— (L ()| +i—1)—1 = Ti,20—|L; (u)|—i

when w™! < 0. Hence w has desired representation.

As a consequence of this theorem, we can conclude the following.

Corollary 4.2.6. Let R be the set of polynomials given in Proposition Then

(l) R@d(R):{Tnjn’f’ZhT1h|l—1 S]z SQ?’L—Z, Z:L,TL}

(ii) R is a Grobner-Shirshov basis for the finite Coxeter group of type B,,.

Proof. The first statement is easily follows from Theorem and the fact that the words
in the right hand side are in Red(R).

Notice that there are 2"n! words of the form r,,;, - - -7y, - --r1;, wherei — 1 < j; <
2n — i fori = 1,...,n. This is same as number of elements of the finite Coxeter group of

type B,,. This implies Red(R) is the set of normal forms and R is a Grébner-Shirshov basis

for the finite Coxeter group of type B,, by the Composition-Diamond lemma. [
Example 3. Let us take two different words in B, such that x = ryrssrosryy and y =
T'347257'16-

T = T4T35723714
=11,2,3,—4][1,2,-3,4][1, 3,4, 2][2, 3,4, —1]
=[-3,—-4,2,—1]

and

Y = 134725716
=[1,2,4,-3][1,3,-2,4][2, -1, 3, 4]
=4,-1,-2,-3]

z=ay
=1[-3,-4,2,—1][4,—-1,-2,-3]
=1[-1,3,4,-2]

Let u € S5 such that [u] = [1,3,4,2]. Then |I4(u)| = 0,
|11 (u)| = 0. Therefore z = 794717 by Theorem[4.2.5]

Iz(u)| = 0,

I(u)] = 2 and

16



4.3 The Finite Coxeter Group of Type D,

Finally we consider the finite Coxeter group of type D,,.
Definition 4.3.1. The finite Coxeter group of type D, (n > 4) is generated by S =
{ry,ra, -+ ,r,} with defining relations:
(Ry) riry=1 for 1 <3 <n,
(Ry) rirj=mrr; for 1<i<j—1<n except (i,5)=(n—2,n),
(R3) Tn-1Tn = TnTn—1,
(R4) Tp—2TnTn—2 = TnTn—2Tn,

(Rs) TiTi1Ti = Tig1TiTi+1 for 1<i<n-—1.

Hence D,, has a presentation D,, =< S|{ Ry, Ry, R3, R4, R5} >.
Let
" TiTit1 " Tp—2TpTn—1" Ton—j, 1 <i<n—1<j<2n—1,

Tij = .
Tij, otherwise

Hence 7;; and 7;; are interchangeable if : — 1 < j; <nforl <i <n.
Proposition 4.3.2. A reduced Grobner-Shirshov basis of the finite Coxeter group of type D,,
contains the following polynomials:
° fl(i):rm—l for 1<i<n,
. féi’j) =rirj—rjr; for 1<i<j—1<n except (i,j)=(n—2,n),
® f3="Tn1Tn — TpTn_1,
o fi= ’Fn—2,nrn—2 - rnFn—Q,n;

o [ = Fir =iy for 1<i<j—1<n-1) or 1<i<n-—2
n<j<2n—-3 and 2n—j—1>1),

() _ ~ ~ .
® fo' =TioniTit1 — Tix1Tign—i for 1<i<n -3,
L f? =Tn—2n+2"n — "n—-1"n—2n+2,
L f8 = Tn—2n+2"n—-1 — "nTn—2 n42-

17



Proof. The polynomials f\, fi"7) f3 s fas f5l 1) come across the defining relations (R;),
(Rs), (R3), (R4) and (Rj5), respectively. Now let us apply the Shirshov algorithm to these

polynomials.

< flD i) o p0D) o 1 << n—2,

<f(” D) 5= fZJ for i+3<j<n-—1,
<SETEET =

< f(m 2) ,fQi’n) >= féi’n) for 1 <i<n—3,

< P ) s fl2) for 1<i<n—2,3<j<n—1and j—i>1,

< plimn=i=d) i) o 0 gor 1 < <n—3,

(n=1)

—2, —1
< f5(n n); f4 >= rn—2f3(n )rn—QTn - Tn—lrn—Qfgn Tn—2 + f?a

< fu, [ s= g

]

We will show that the polynomials given in the above propositions form a Grobner-

Shirshov basis using the technique used in the previous sections.

Let SP be the subgroup of SZ consisting of all of the signed permutations having an

even number of negative entries in their window notation.

Proposition 4.3.3. (Bjorner and Brenti (2005), Proposition 8.2.3) The group S with gener-
ating set S is the finite Coxeter group of type D,, where r; = [(i i+1)| fori =1,2,...,n—1
andr, =[(n—1 —n)].

Lemma 4.34. Let r;;, € D, wherei —1 < j; <n —1forl <i <n — 2. Then we have

the followings:

(i) rij(n —n)=(n —n)ry, for i—1<j;<n—2and 1<i<n-—2
(ii) (i —i)rij, =(n —n)an—j—1 for i—1<j<n—2and 1 <i<n-—2.
(iii) Tin—1(n —n)= (i —)rip_1=(n —n)ry, for 1 <i<n-—2.

(iv) (i —i)rin_1(n —n)=ri,1=Mn —n)*rin for 1<i<n-—2

18



Proof. (1) Itis easily follows from definition of 7;;,.

() Tion—i=[Gi+1---n—=1)rn—1 —=n)l[(nn—-1---49)]=(n —n)(i —1i) for
1=1,...,mn—2. S0

?i,Qn—ji—l = ?i,Zn—iTiji = (n - n)(z - i)riji

where i — 1 < j; <n—2fori=1,2,...,n — 2. Multiplying by (n — n) from the
left gives the desired equality.

(i) Fona(n —n) = (im0 —n) = (i — DG - 0] = (i — D)oy =

(n —n)[(7 - n)][n—1 —n)]=(n —n)ry, forl <i<n-—2.
(iv) Itis a consequence of part (iii).

]

We now ready to provide a representation for each element of S but we need one

more definition. Given w = [wy, wy, . . ., w,| € SP, define

neg(w,i) == [{{w,wq, ..., w,} : =i <w; <0, 1<j5<n}

fort=1,...,n.
Theorem 4.3.5. Given w = [wy,wsy,...,w,] € SPlet uw € S, such that u(i) = |w;| for
1 =1,...,n. Then w can be uniquely represented in a form

Trge * Tigi T
where the indices are given by the following rules:
(i) If |Li(w)| +i—1 # n—1, then j; = |L;(u)] +i — 1 when w™'(i) > 0 and j; =
2n — |I;(u)] — i whenw™ (i) < Ofori=1,...,n—2,

(ii) If |Ii(w)| +i — 1 =n — 1, then j; = n when w=(i)(—1)"99) < 0 and j; = n — 1

when w=(i)(—1)"9) > 0 fori=1,...,n— 2,

(iii) If |I,_1(u)] = O, then (jo_1,jn) = (n —2,n — 1) when w™'(n — 1) > 0 and
(Jn_1,Jn) = (n — 1,n) when w=(n — 1) < 0 and

(iv) If [Lnoa(u)| = 1, then (ju—1,jn) = (n — 1,n — 1) when w='(n) > 0 and (ju-1, jn) =

(n —2,n) when w=*(n) < 0.
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Proof. Clearly,
w=( [[ G-l

w~1(4)<0
Theorem implies [u] has the unique representation

Pty = TG, TG

where j, = |[;(u)| +i—1fori=1,...,n— 1.

(i) Given1 <i<n-—2letj, #n— 1. Ifw (i) > 0, then

i n =) = (e

by part (i) of Lemma If w™(i) < 0, then
(i —i)riz,(n —n)" 9D = (n —n) 9@y, = (0 =n) Y )i

by part (i) and (ii) of Lemma[4.3.4]
(i) Given1 <i<n—2,letj;, #n— 1. If w™ (i) < 0 and neg(w, 7) is even, then

neg(w,i—l—l)’?;j

(i —)rip1(n —n)"9@D) = (i — i)y = (n —n)Fm = (n —n) in

by part (iii) of Lemma If w™(i) > 0 and neg(w, 7) is odd, then

Fine1(n —n)" 9 = 1(n —n) = (n —n)F, = (n —n)"9t R,

by part (iii) of Lemma If w™' (i) < 0 and neg(w, 7) is odd, then

(i —i)Tin_1(n —n)"9) = (i —i)rip1(n —n) =71ip_g = (n —n) 9@+

by part (iv) of Lemma If w™' (i) > 0 and neg(w, i) is even, then clearly

ri,nfl(n . n)neg(w,i) = Tip1 = (TL o n)neg(w,iJrl)Ti’nil.

(iii) If |1,—1(u)| = 0O, then j,—; = n — 2. Since number of negative entries is even in the
window notation of w, w™'(n) and (—1)"*9(*"»~1) have same sign when w™!(n—1) >

0. In this case

(7’L - n>Tn—1,n—2(n - TL) =Tn-1n-2 = T"nn-1Tn—1,n—2-

On the other hand, clearly w™!(n) and (—1)"°9*»~1) have opposite sign when w™= (n—

1) < 0. In this case
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m—1 —Mm—=1))rp_1po2m —n) = (n—1 —(n—1)(n —n)rp_1,-2
= [(n=1 =n)]{(n—1n)]

= T'pnrp-1-

GQv) If |1, (u) = 1|. S0 jp_1 = n—1. Ifw™(n) > 0, thenw ' (n—1) and (—1)"es(w:n=1)

have same sign. In this case
(=1 = (- D)= 1ml(n —n) = [(n—1n)] = ras.
If w='(n) > 0, then w™'(n — 1) and (—1)"*9(*"»=1) have opposite sign. In this case

(n =n)[(n=1n)](n —n) = (n —n)(n—=1 —(n=1))[(n=1n)] = [(n=1 =n)] = ry.

]

Corollary 4.3.6. Let R be the set of polynomials given in Proposition Then

(i) Red(R) = {rnj,Tn-1,_y -+ Tigi -+ T30 =1 < Ji < 20—, except n—1 < jng <

(ii) R is a Grobner-Shirshov basis for the finite Coxeter group of type D,,.

Proof. The first statement is easily follows from Theorem [{.3.5] the fact that the words in
the right hand side are in Red(R). Notice that there are exactly 2" 'n! words in Red(R).
This is same as number of elements of the finite Coxeter group of type D,,. This implies
Red(R) is the set of normal forms and R is a Grobner-Shirshov basis for the finite Coxeter

group of type D,, by the Composition-Diamond lemma. 0

Let us end this section with an application of Theorem 4.3.5]

Example 4. Letw = [3,—5,1,4,—2] € SP and u € S5 such that [u] = [3,5, 1,4, 2]. Since
|I1(u)] = 2 and w'(1) > 0, j1 = 2 by part (i) of Theorem [4.3.5] Similarly j; = 2.
Since |I5(u)| = 3 and w'(2)(—1)"9?) < 0, j, = 5 by part (ii) of Theorem 4.3.5 Since
|I4(u)| = 1and w(5) < 0, j4 = 3 and j5 = 5 by part (iv) of Theorem 4.3.5| Hence

W = T5TrosT12.-
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5. GROBNER-SHIRSHOV BASIS AND NORMAL FORMS FOR
THE INFINITE COXETER GROUP OF TYPE 4,

5.1 Grobner-Shirshov Basis for The Infinite Coxeter Group of Type A,

Definition 5.1.1. For a positive integer n > 2, the infinite Coxeter group of type A, has a
presentation with generators S = {r¢,r1,...,r,} and defining relations:

(Rl) rir; = 1 for 0O < 1 <n,

(Ry) rirj=mrr; for 0<i<j—1<n and (i,7) # (0,n),

(Rg) TiTri1Ts = Tia1TiTi for 1 S 1 S n — 1.

(R4) rornTo = T'nToTn-

A Grobner-Shirshov basis and corresponding normal forms for affine Coxeter group
of type A, are founded in |Y1lmaz et al. (2014). Notice that they called this group as infinite
Weyl group of type A,. The following theorem is just rewriting of their normal forms in the

new notation.

5.2 Normal Forms for The Infinite Coxeter Group of Type A,

Theorem 5.2.1 (Yilmaz et al.| (2014), Theorem 21). Let
V="nl,"n-11,_1" """ T1l
fork —1<1, <k 1<k<n;and
W = (T0Tn20n—q,T1p: ) (T0Tn20—q 1 T1py1) =+ (T0Tn2n—q1 T1py )

for 0 < pr <n, 2 < qr < n+ 1satisfying the following conditions:

(i) pr > pr—1 and g, < qp—1 when 2 < @ — pr < Qg—1 — pr—1 < n+1,
(ii) pr > pr—1 and q < qp—1 when —1 <pp —q. <n—2and2 < qp_1 —pr—1 <n+1
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(iii) pr, > pr—1 and g, < q—1 when =1 <py_1 — g1 <pr—qx <n — 2.
Then any word v € S* has a normal form u = vw.

After this point we try to give a combinatorial meaning of these normal forms. Let

N=n+1land$S 4+ be the group of all bijections u of Z in itself such that
uw(i+ N) =u(i) + N

for all 7 € Z satisfying
N

N(N +1
S iy = YD
, 2
=1
By definition such a u € S 4 is uniquely determined by its values on {1,..., N}. Hence we
write u = [uq, ..., uy] where u; = u(i) fori = 1,..., N and call this window notation for

u.

Note that for all u € S4 and i,j € Z, u(i) # u(j) mod N if and only if i # j
mod N.

Proposition 5.2.2 (Bjorner and Brenti|(2005), Proposition 8.3.3). The group gj@ with gener-
ating set S = {ro,r1, ..., } is the infinite Coxeter group of type A, where r; = (i i+1)]
fori=1,2,... nand

ro=10,2,...,N —1,N +1].

Now for each u € S 4 we find a word in S*. This word turn out to be a normal form

for u given in Theorem [5.2.1]

Lemma 5.2.3. Let u = [uy,...,uy] € gjﬁ‘f Forl1 <i: < N-1,2 <35 < N and
1<j—i<N-1ff

w(rorpon—iT1i-1) " = [v1,...,vN], then

;

uj — N, k=1;

Up_1, 2<k<i+1;
Vp =4 Ug, 1+ 1< k<y;
upy1,  J < k<N;
u; + N, k= N.
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Proof. First of all, for any w € SA wry = [wy — N,wa, ..., w,, w; + NJ| since w(N) =
w(0+ N) =w(0) + N and w(N + 1) = w(1) + N. Then
u(rorn,anjrl,ifl)il = u<7'i717ai71 Tl 'ano)
= wuf@@i=1---1)(GJj+1- N)ro.

Since j — 1 > 1, two cycles in above equation are disjoint and the assertion easily follows.

]

Lemma 5.24. Let u = [uy,...,uy] € 5}3 For2 < i< N,1<j< N-—1and
1<i—j<N-1if

w(rornon—j—171-1)" " = [v1, ..., vN], then
( uj — N, k=1;
Up_1, 2<k<j+1,;
Uk = § Uk, ji+1<k<ui;
U1, 1< k<N
u; + N, k= N.

\

Proof. For1 <:< N,1<j<N+landl<71—75<n,

u(rorn,anjflrl,ifl)il = U(Tz'flrrifl R A KRS I 'ano);
= wf@@i—1---1)(F+1- - N)ro;
= u[(jj—l---Qlii+1---N].

The assertion easily follows. 0
Definition 5.2.5. Given u = [uy, us, ..., uy] € S 4, define the following index set:
I, ={(i,7)|u; < 0 and u; > N}.
Notice that if (i1, j1) € I, and (42, jo) € I, such thati; —j; = is—jo, then (i, j) € I,

where i = min{iy, i} and j = max{ji, jo}. Clearly j — i < j; — iy = jo — 5. Hence there

exist unique (7, j) € I, such that
j —i=max{ix — Ji|(ix, Jx) € L.}
We denote this element by max [,,.
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Corollary 5.2.6. Given u = [uy,us,...,uyn| € S4 let (11,71) = max [,,, .

(i) IfZl < jl, V= u<7"07’nj17’17i1,1)_1 and (ig,jg) = max [, then i9 > i1 and jg < j1~

(ii) Ifiy > j1, v = u(rorpon—j—171:-1) " and (i, jo) = max I,, then iy > iy and jo < ji.

Proof. Since u;; < Oand u;; > N, Vy = u;; + N < N and v; = u;; — N > 0. This
implies i3 # 1 and j; # N in both cases.

(i) Suppose that 1 < iy < 77 and j; < jo < N. Then v;, = u;,—1 and vj, = w41 by
Lemma This is however a contradiction to (i1, j;) = max [,,.

(i1) Suppose that 1 < iy < 47 and j; < j» < NN. Then v;, = u;, and v;, = u;, by Lemma
This is again a contradiction to (i, j;) = max I,,.

]

Theorem 5.2.7. Any u € S4 has a normal form representation as it is given in Theorem

521

Proof. Letu € g]‘i‘, If I, = (), thenu € S, 41 and Theoremimplies that « has a normal

form representation

V="nl,"n-1l,_1" """ T1l
where [; = |I;(u)| + i — 1 fori = 1,...,n. In this case we take w = 1.
Suppose that I, # 0. Let u® = wand u® = u*=V(rgr, 9, 71,,) "' where the indices
pr and gy are determined as follows. Let (i, ji) = max [,x . If iy < jg, then ¢y = ji and
pr = i, — 1; and if 7 > jg, then ¢ = jx + 1 and py = i, — 1. Notice thatif 1 < —j, < n,
then2 < pr—qr <n—1;andif 1 < jp —ix < n,then —1 < g — pr < n — 1. Furthermore
Corollary [6.2.3]implies that the indices satisfy the conditions given Theorem[5.2.1]

Since 2 [u® (3)] = SOV [u* =D (i)| — 2N, after finitely many steps

U = u(rorngn—qp) (Forn2n—q1ip) "

where I, = (). Hence u® has a normal form representation v = 7y, p—1,4, , - - "1, and

then vw is a normal form representation for u where

w = (Torn,Zn—qtrlpt)(T()Tn,2n—qt,1r1pt,1) t (TOTnQn—qlrlpl)-

25



Let us finish this chapter with an illustration of the previous theorem.

Example 5. Let u = u© = [17,—1,-5,6,—2] € SA. So max I,,0) = (2,4) and
ut) = [17,—1,-5,6, —2|(rorar) "t = [1,17, =5, =2, 4].

Then max [,,1) = (3, 2) implies

u® = (1,17, =5, =2, 4] (rorasr12) " = [12,1, -2, 4, 0].
Since max I, 2y = (3,1),

u® = (12,1, -2,4,0](roraer12) " = [7,1,4,0,3].

Applying the process one more time max [,,s) = (4, 1) and

u® = [7,1,4,0,3)(roraers) "t = [2,1,4,3,5] = rgry.

Hence

U= (T3T1)(TOT4GT13)(TOT467"12)(T0T45r12)(TOT4T1)-
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6. GROBNER-SHIRSHOV BASIS AND NORMAL FORMS FOR
THE INFINITE COXETER GROUP OF TYPE C,

6.1 Grobner-Shirshov Basis for The Infinite Coxeter Group of Type 511

Definition 6.1.1. For a positive integer n > 2, the infinite Coxeter group of type C, has a
presentation with generators S = {rg,r1,...,r,} and defining relations:
(Ry) riri=1 for 0<17<n,
(Ry) rirj=mrr; for 0<i<j—1<n,
(R3) miripir; = riririe for 1 <i<n—1,
(Ry) Tha"nTn1Tn = "pTn_1TnTn_1,
(Rs5) rorirori = rirorivo-
Lemma 6.1.2. Suppose that < is the degree lexicographic order on S*. A Grobner-Shirshov
basis for the infinite Coxeter group of type én with respect to < contains the following
polynomials:
° fl(i):riri—l for 0<i<n,
. fQ(i’j) =rir;—rr for 0<i<j—1<n,
° féi’j) =11 —Tipary; for 1<i<n—-2andi<j<2n-—i-1,
] ff) = Tion—iTit1 — Vix1Tion—i for 1 <i<n—1,
L f5(i) = ToT1;ToT1; — T1To 1T 1,i—1 for 1 <i<n—1,

(@) _ .
® fo ! = ToT1on—iT0 1 2n+1—i — T1T0T1,2n—iT0T1,2n—i for 2 <i <.

Proof. The polynomials fl(i) and fQ(i’j ) come from the defining relations (Ry) and (R»),
respectively. Similarly the polynomials f;i’iﬂ) and f4n_1) come from the defining relation
(R3) and (R,), respectively. Now let us apply the Shirshov algorithm to these polynomials.
<f(i’j_1) f(i’j) >= f(i’j) for n>j7>7and 1<i<n-—2

3 o Jo = f3 >j>diand 1 <i<n-—2,
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< b= plianmd) o — 00 for p<j<2n—i—1and 1 <i<n-—2and

< f(z 2n—2— ’fg(i,i+1) > ff) for 1<i<n-—1.

The polynomial fél) comes from the defining relation ( R;). Adding this polynomial,

let us continue to apply Shirshov algorithm.

i—2
(i—1) i—1,3) o
< f3 af > = E T0T1,i-17071,k— 1f2 Tk+1z+7’o7“1z 1f2 T,
k=1
i—2
(ki) (0,9) 7
- g 7’17”07“1,i—17’07”1,k—1f2 Tk+1,i—1—7“17"07‘1,z‘—1f2 7’1,i—1+f5
k=1
for 1<i<n-—1,
n—2
(n=1) ¢(n=1) _ _ (k,n) (0,n)
<[ 7f4 > = E Tor1m—170T1k—1S2  Thtimel T T0T1n-1S2  Tint1
k=1
(k,n) (0,n) (n)
—E P10 1n—1T0" k=12 Thtim — T1T0T1m—1f2  Tin + fg
k=1
i—2
(%+1 (=1  _
< fs 4 > = E T0T1,2n—i—17071,k— 1f2 Tk;+12n i+t1 T 7071 2n—i— 1f2 T1,2n—¢+1
k=1
(i—1,i+1)
—Trror1,2n—i—17071,i— 2f Ty
i—2
(ki)
- 7“17“07‘1,2n—z‘—17“07“1,k—1f2 Tk+1,2n—i
k=1

(0,9) i
— "7 1 2n—i—1fa T12n—i + fg

for 2<i<n.

At this point we are not able to show that polynomials given above lemma form

Grobner-Shirshov basis for the infinite Coxeter group of type 671

6.2 Normal Forms for The Infinite Coxeter Group of Type én

We now give a combinatorial description of the infinite Coxeter group of type én

(see Bjorner and Brenti (2005)). Let 5*,? be the group of all permutations u of Z in itself

such that
u(i+2n+1)=u(i)+2n+1
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and
u(—1i) = —u()
for all = € Z. Notice that
u(k(2n+1)) =k(2n+1)

forall k € Z
Clearly, such a u is uniquely determined by its values on [n] = {1,2,...,n}, and we
write u = [uq, ug, . .., u,] where u; = u(i) fori = 1,... n. We call this window notation

for u. Hereafter we set N = 2n + 1.

Proposition 6.2.1 (Bjorner and Brenti| (2005)), Proposition 8.4.3). The group §,§‘ with gen-
erating set S = {ro,11,79, -+ , T} is the infinite Coxeter group of type C,, where 1 =

2n,2,... 0|, m =[(¢ i+ 1)|fori=1,2,...,.n—1andr,=[n —n))
Lemma 6.2.2. Let u = [uy, . .., u,] € SC. If
u(rory) ™t = [vi, ..., v,] for some 0 < i < n —1, then

N—-uy1, =1,

v; = Uj—1, I<y<i+1;
u, j>i+ 1
Proof. Clearly [uy, ..., un|r0 =[N — ug,ug, ..., u,] = u(ry) ™! since

u2n) =u(-14+ N)=u(-1)+ N=N —u;.
Since (rory;) ™t =1y -, u(rory) T = w[(i+1 @ .- 1)refori=1,...,n—1.
The assertion easily follows. 0
The following corollary is an easy consequence of the above lemma.
Corollary 6.2.3. Given u = [uy,...,u,] € §S there exists w = (1114, )« -+ (ror15,) where
0<iz <---<iy <n—1satisfying uw™"' = [v1,...,v,] withv; <nfori=1,...,n.
Proof. If u; < nfori=1,... n,then w = 1. Otherwise let j; > --- > j, be the all the
indices satisfying u;, > n. By Lemma[6.2.2]

o1,y vn] = ulrory )™t (rorig—1) 7

where v; < n fori = 1,...,n. Hence w = (rory) - - (rory;,) where iy = j — 1 is the

desired element. O]
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Lemma 6.24. Let u = [uy,...,u,| € §g‘ If u(rory) ™t = [v1, ..., v, for somen < i <
2n — 1, then
w1+ N, j=1;

V; = Uj—1, I<y<t+1;
Uj, ] > t—|— 1.
wheret = 2n — 1 — 1.
Proof. Forn <i<2n—1,r; =7 9,171t = (1 —1)r;; wheret = 2n — i — 1. Then
(ror1;) ™t = (ryrg_y---r1) (1 — 1)rgand u(ry;) ™ = [vy,...,v,] where

w1 + N, j=1;

Vi = Ui-1, I<y<t+1;
Uj, ] >t+4 1.
by Lemmal6.2.2]
L]
Corollary 6.2.5. Given u = [uy,...,u,] € §f;‘ such that u; < n fori = 1,...,n there
exists w = (rory, )P -+ (rory, )P wheren < iy < -+ < iy, < 2n — 1 satisfying uw™! =

[V1, ... op] withv; € [£n] ={£1,...,£n}fori=1,...n.

Proof. If u; € [£n] fori = 1,...n, then w = 1. Otherwise let v(® = v and vV =
v (rory;) ! where t; = 2n — i; is the largest index satisfying vt(;)

notation of v¥). Lemma implies that ¢; > ¢, and there exists M/ € N such that

> —n in the windows

v,iM) € [+n] for k = 1,...,n in the windows notation of v(*), Hence
w = (ror1iy ) (ror1in ) -+ (rori,)
is the desired element. [

Definition 6.2.6. Given u = [uy, ..., u,| € 55 satisfying 0 < u; < n, define
Ii(u) :== {u; : u; > i forsome j < u '(i)}
fort=1,...,n.

Lemma 6.2.7. Suppose v = [uy,...,u,] € 55 such that u(l) = lfor 1 <1 <k —1and
0 < wu; < nforalli’s. Let & = ryj, where j, = |I;(u)| + k — 1. If v =ux™", then v(l) =
forl1 <l <kandI;(u) = I;(v) fori # k.
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Proof. Since u'(l) = I for1 <1 < k— 1, |Ix(u)] = v (k) — k and then j + 1 =
[I;(u)| + £ = u (k). Hence v(l) = u(z™'(l)) = u(l) = lfor1 <1 < k—1and
v(k) = u(z™(k)) = u(jx + 1) = k.

Let i # k. Notice that u='(i) # jry1 = u (k). Suppose t € I;(u). Then u(j) > i

for some j < u‘l(z’). Since u~!(i) # ji + 1, x preserves the inequality that is z(j) <

(u™ (1)

) = v~!(i). Therefore t = v(x(j)) > i for some x(j) < v~'(7). This implies
t € I;(v). Conversely suppose ¢ € I;(v). Hence t = v(j) > i for some j < v'(i).
-1

Since v71(i) = z(u'(i)) # x(jr + 1) = k, x~! preserves the inequality that is x7'(j) <

Y v71(i)) = w (7). Therefore t = u(z~'(j)) > i for some x7(j) < u~1(i). This
implies t € I;(u). O

Corollary 6.2.8. Given w = [wy, w,, ..., w,] € SC such that w; € [£n] fori =1,...,n,
let u € S,, such that u(i) = |w;| fori =1,...,n. Then

W= Tn—1j,—1"""Tij; " T

where j; = |L;(u)| + i — Lifw™' (i) > 0 and j; = 2n — |L;(u)| — i if w™' (i) < 0.

Proof. Let vy = u. Suppose that v, = vg_1(rgj, )" where ji = |Ix(vp—1)| + k — 1 for
k=1,...,n. Lemma implies vy () = [ forl = 1,...,k and [;(vy) = I;(vg_q) for
1 # k. Hence

g = He(ve-1)| + k=1 = Li(ve2)[ + k=1 =" = |Li(u)| + k-1
for k =1,...,n. Furthermore v, = w(ry;,) "' - -+ (rnj,) " is the identity element. Hence

u:Tn]nszl “'lel‘

Notice that 79, = [(¢ i+1 -+ n)](n —n)[(n n—1 --- )= —1i)for
1= 1, oo, n. Then (Z — /L')riji = Ti2n—iTij; = Ti2n—j;—1- Clearly,
w=[wi,...,w,] = ( H (i =) |w,. .. u
w—1(4)<0
Since (¢ ¢) commutes with 7;, fork > iand (i  —i)ri;, = rion—ji—1

w = rnfljnfl [N rl]z e rljl

where j; = |[;(u)|+i—1ifw (i) > 0and j; = 2n— (|;(u)|+i—1)—1 = 2n—|[;(u)| —i
if w (i) < 0. O
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Definition 6.2.9. Let

o j <, ifj<mng
J<r=
J<i, ifj<n.

Definition 6.2.10. Let

t

We = {(Tnln : ATH H 7’0T1]k

k=1

where: — 1 <[; <2n—1,0< ., € jr1 <2n—1landt € N.

Theorem 6.2.11. Any u € §,§ can be represented with a word in W.

Proof. Let Let u = [uy,...,u,| C 5,? If u = 1, then clearly u € W with j; =i — 1
f and o; = for all i’s. Given v = [uy,...,u,] C 55 we can find a word p satisfying
v = [ug,...,u,] = up~' such that v; < n fori = 1,...,n and at least one v; < —n
by Corollary Then we can find a word ¢ satisfying w = [wy, ..., w,] = vqg~' such
that w; € [+n] by Corollary Furthermore w € W by Corollary and clearly
u = wqp € We. O

Before giving the main result, we need the following lemma.

Lemma 6.2.12. Forn € N,

Hl_miun_Hl_xzz r

=1

Proof. The equation is valid when n = 1. Assume that
Tol+a - 1
H 1_ pitn H 1 _ g2t
=1 i=1
Then

N (142" (1 +2") - (1+2)
H 1— $z+n+1 -

(1 — $2n+2)(1 _ $2n+1>(1 _ xQn) Ce (1 — $n+2)

(1 + xn+1)(1 o anrl) n 14 qz
(1 _ x2n+2)(1 _ x2n+1> J 1 — gitn
=1

=1

n

1 1
- (1 — z20t7) H 1 _ g2t
i=1

n+1
1

= Ui

i=1
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Lemma 6.2.13. The generating function for words in W is

n

, 1+ 2
1 e -y _—
E( o+t )1_$nH
Proof. The generating function for the words of the form 7, - - - ry, - - - 1y, 1S

n

[Ja+z+.. +27)
i=1
The generating function for the word of the form (r¢ry;, )" where n < ji < 2n — 1 and
t € Nis ——r and for (rory;, )' where 0 < j, < nandt € {0,1} is 1 4+ x7+*'. Hence the
C,.C

generating function for the words [, _, (7§ r1;,) wheret > 0and 0 < ji € jr 1 < 2n —1

is

Notice that the generating function for the infinite Coxeter group of type C, is

n

1+x+...+z21
H 1 — p2i-1 :

i=1
By Lemma [6.2.12]

T -
e |
i=1 =1

142
1_xn+i

which is equal to generating function of words in W.

Now we are ready to find the main result.

Theorem 6.2.14. Let RC be the set of all polynomials given in Lemma Then

(i) We = Red(RC).
(ii) RC is a Grobner-Shirshov basis for the infinite Coxeter group of type Ch.
Proof. (i) Itis easy to see that any word in W is R-reduced. Hence W C Red(RY).
Conversely if w € Red(R®), then w can be written as a permutation in :S’v,? and this

permutation has a corresponding word in W by Theorem[6.2.11] Hence Red(R®) C
We.
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(ii) We know that any polynomial in R® is a part of a Grobner-Shirshov basis of the
infinite Coxeter group of type én If R were not a Grobner-Shirshov basis, then
Red(R®) = W should be a proper subset of the set of normal forms of the infinite
Coxeter group of type C, by Composition-Diamond lemma. This contradicts to the
fact that W and normal forms of the infinite Coxeter group of type én have same

generating functions.

]

Notice that Theorem |6.2.11| gives a method converting any © € 55 into its normal

form. Let us finish this chapter with an example of this conversion.

Example 6. Letu = [24, 38,17, —5] € S¢. Corollary|6.2.3|implies uw ! = [—8, —29, —15, —5]
where w = roriaroriro. Applying the process explained in the proof of the Corollary [6.2.5]

we get
[—8, =29, —15, =5|(ror1s) = [4, =8, —29, —15],
4, =8, —29, —15](roris) ' = [-6,4, —8, —29],
[—6,4, =8, —29](rgr14) ! = [—20, —6, 4, —8],
[—20, —6,4, —8](ror14) ! = [1, —20, —6, 4],
[1, =20, —6,4](rory5) " = [3,1, —20, 4],
3,1, —20,4](ror15) " = [—11,3,1,4] and
[—11,3,1,4](ror17) "t = [-2,3,1,4].
Thus

[—8,—29, —15, =5]((ror17)(ror15)*(roria)*) ™" = [-2,3, 1, 4].
Corollary[6.2.8implies [—2, 3, 1, 4] = ro6712.

Hence u = (7"267"12)(7’07"17)(7“07"15)2(7"07’14)4(7’07’127"07’17“0).
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7. GROBNER-SHIRSHOV BASIS AND NORMAL FORMS FOR
THE INFINITE COXETER GROUP OF TYPE B,

7.1 Grobner-Shirshov Basis for The Infinite Coxeter Group of Type B,

Definition 7.1.1. For a positive integer n > 2, the infinite Coxeter group of type B, has a
presentation with generators S = {rg, 71, ..., 7, } and defining relations:
(Rl) rir; = 1 for OSZSTL,
(Ry) mirj=mrr; for 0<i<j—1<n but (i,j)#(0,2),
(Rg) TiTig1Ti = Tip1TiTi41 for 1<i<n-—1,
(Ry) ror1 = 1170,
(RS) Tn—1"nTn—1Tn = "nTn—-1Tn"n—1,
(Rg) roraro = rarors.

After this point we will not use superscripts unless we need to distinguish between
groups B, and C,,.
Lemma 7.1.2. Suppose that < is the degree lexicographic order on S*. A Grobner-Shirshov
basis for the infinite Coxeter group of type En with respect to < contains the following
polynomials:

oggi):rm—l for 0<i<n,

gg’j) =nrr;—rr; for 0<i<j—1<mnbut(ij)+#(0,2),

(4,9)

® g3 =ryr; —ripry for 1<i<n-—2andi<j<2n-—1i—1,
[ gé(f) = Ti,2n—iri+1 - Ti+1ri,2n—i fOl" 1 S ( S n-— ]"
° géi) = ToroiT1; — T1ToT2iT1,i—1 for 1 <1< n—1,

(@) _ .
96 = ToT2.2n—iT12n—i+1 — T1T0T2,2n—iT1,2n—i for 2 <i <m,
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° géi’j) = ToT2iT1jT0 — T2ToT2ir1; for 2 <1 <2n—3and0 < j <1,

(4,9)

® gy = ToTaT1ToT2j — TaroT2T1iToT2, -1 for 2 < j <i<mn,
(4.3) _
® gg = = ToT22n—iT1570725 — 27072, 2n—iT157072,5—1,

for 3<i<n—1 and 2<j<n-—1,

L Q%J) = ToT2,2n—2T1:T072;T1 — T2T072,2n—271:T0725,
for 1<:i<2 and 2<j5<2n-—3,

hd 952173) = T0oT2,2n—271iT07271,i—1 — 727072 2n—271:T072;71,i—2,
for 3<i<n—-1,3<7<n and 1<},

® Ji12 = ToT2,2n—27072 — T27072,2n—270,
° (3,5) _ ) Y ’ e
9137 = ToT2,2n—2T1iT072,2n—571: — T2T072,2n—271:T072,2n—71,i—1,
for 2<7<i1<n-—1,
914" = Tor2,2n—2T12n—i—17072,2n—j71,2n—i — 727072 2n—271 2n—i—17072,2n—571,2n—i—1,
for 2<j3<i1<n-—1,
o b1 — ) ) F_ ) . )
915" = Tor2,2n—iT1,2n—j—17T0722n—j5 — T2T072,2n—iT1,2n—j—17072,2n—j—1,
for 2<i—-1<j53<n-—1,

® Ji6 = ToT2,2n—2717072,2n—2"T1T2 — T2T072,2n—2"71707072,2n—271,
for 2<i—-1<j53<n-—1,
o b1 — ) - ) -
G177 = ToTr22n—2"T157072,2n—iT1,5—1 — 727072, 2n—27157072,2n—iT1,5—2,

Jor 3<j<i<n-—1L1

Proof. QY), géi’j)y géi’”l), gi"_l), gél) and g§2’°) are defining relations for the infinite Coxeter

group of type B,.

iitl) (4,042 ii42
< gyt gl s = gl

< gl gl = D) for i+ 2 < j <,

) g I s GBI forn < j < 2n — i — 1,

< g3 P

< gl2n=m2) G S D o1 <i<n— 1,
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(iil) (’L*lal) — (k,l)
<G5 ;93 > = ToT2,i-1T1,k—192 Tk+1,
k=1
i—2
(ki) (2)
- g T17T0T2,i-1T1,k—192  Tk+1,i—1 + G5
k=1
forl<i<n-—1,
n—2 n—2
(n=1) (n—1)  __ (k,n) (k,n)
<G5 594 > = E roT2n—1T1,k-193  Thk+ln+l — E T1ToT2,n—1"T1,k-192  Tk+ln
k=1 k=1
(n)
+96 )
i—2
(i+1)  (i-1) _ _ (ki)
<095 ;94 > = T0T2,2n—i—1T1,k—195  Tk+1,2n—it+1
k=1
(i—1,2n—i—1)
— TTor2,2n—i—171,:—293 i
i—2
) (@)
— g T17072,2n—i-1T1,k—192  Tk+1,2n—i T Jg >
k=1

< g8t g >= gl for 3 <i<2n -3,

2,0 1 2.1

i—1,1) (0, i1 .
< 9? )79§ D >= T072,i—~19(1,:)T0 — T2V072,i-19(1,5) + gé’ ) for 3<i<n,
(i-1,1)  (02n—i) _ (i,1) ‘
<97 » 92 >=T0T22n—i+19(1,i)T0 — T2T072,i-19(1,:) T 97 for n <i<2n-—3,
< géi’l),g7(2, 0) >= gém) for 3<i<m,
=
D) (-l . 0,
< 95(;” ),g:()’y D> = Z’fo?‘mﬁ,jq'f’o?”z,kAQé J)Tk+1,j + 7’07”21'7“1,3‘7195 J)T2,j
k=1
j—2
_ P (k.4) ,
T2ToT2iT1,j—1T072,k—192 ~ Tk+1,j—1
k=1

(4,9)

( j>7”2,j—1 + 93

03
— ToToT2i71,j—192

for 3<j5<1<n,

< gt g0 S 0D for 3<i<n—1,
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<
|
N

_ - (k)
= To"2,2n—iT1,j—1T072,k—192
=1

< Y9 » 93 Tkl T T072,2n—i"1,j-19

ol

2

j_
- (k,5) )
ToT0T2,2n—iT1,j-17072,k—192 ~ Tk+1,j-1
k=

—_

(0,5) (4,9)
— ToTloT22n—iT1,j-192 = T2,j—1 1 Jo

for 3<i<n—land3<j3<n—1,

2n—3,0) (2,0
< gé )79§ ) >— g12,

(2)

2 1,2
< 912, 95 (0 )

(1)
>= g9 = — T2ToT2,2n—295 T2,

< g%’j),gg’” >= g%j) — 7‘27’07"272”_27’19?’0) for 2<5<n,

< g, g >=glemt for 1<i<2,

< g%%*j*l),gél’j) >= g%%*j) for 1<i<2and 3<j<n—1,

(25) (1,2) (2,5)

2, (0,3)
< G109 593~ > =ToT22n—2T12T003 ~T12 T T0T22n—27120s 12,712

(2,9) (0,3) (3,9)
— ToTlgT2,2n—2T12T093 ~'T1 — T2T0T2,2n—271295  ~ + 911

for 3<7<n,

i—3
(i—=1j)  (i—2,4-1) (kyi—1)
<911 » 93 > = T072,2n—271,i—17072571,k—19> Thil,i—1
k=1
+ roT2,2n—271,i-17072,i—293 T14-1
i—3
(ki—1)
- T2ToT2,2n—271,i—17072;71,k—192 Tk+1,i—2
k=1
(i—1,9) (1,9)
— IaToT2,2n—271,i—17072,i—293 T14-2 1T 911

for 4<i<n—-1,4<j7<nand: <},

22n-3) (1,2 2.2n—2
< ggo )7g2g ) >= 953 )’
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i—2
(7‘_17.]) (1—1,7,) (k,l)
<Gi3 7,93 > = E ToT2.2n—2"1,i—17072,2n—jT1,k—192  Tk+1,

k=1

(i-1)
+ T0T2,2n—271,i-17072,i—294 Ton—i+2,2n—j714
i—2
(Ky3)
- T2To"22n—271,i-170722n—5T1,k—192  Tk+1,i—1
k=1
(i-1) (4,4)
— ToToT2,2n—271,i-17072,i-294  T2n—i+2,2n—571,i—1 + J13
for 2<j7<1<n—1,
i—3
(,i—1)  (i—-2,) _ (k,i—1)
< 913 y 93 > = E T072,2n—271i7072,2n—i+171,k—192 Tk+1,
k=1
(i-1)
+ ror22n—2r1iT0"2,2n—ig1 Tl
(i—2,i—1)
— T2T072,2n—271i7072,2n—i+171,i—393
i—3
(kzifl)
- T2T0"2,2n—2T1i7072,2n—i+171,k—192 Tk+1,i—1
k=1
(i-1) (4,7)
— ToToT22n—2T1iT072,2n—i91  T1,-1 t 913

for 3<i<n-—1,

n—2
(n—=1j) (n—1) _ _ (kn)
< 913 94 >—§ roT2.2n—2"1,n—17072,2n—jT1,k—192  Tk+1n+1
k=1
J
(2n—k,n)
+ ToTr2,2n—2T1,n—17072,k—192 Tk+1,2n—571,n+1
k=n+2

(n—1)
+ roT22n—2"1,n—170"2,n—291  Tn+22n—5T1n+1
n—2

(k7n)
+ Tor2,2n—2T1n—1T0"T2k—192 "Tk+12n—5T1,n+1
k=2

(0,m)

+ ror22on—2T1m-192  T2.2n—jT1,n+1

n—2

(k,n)

- raToT2,2n—2"1,n—170"722n—571,k—192  "Tk+1,n

k=1

J
(2n—k,n)

- r2ToT2,2n—271,n—17072,k—199 Tk+1,2n—5T1n

k=n+2

(n—1)
— T2ror22n—2"1,n—170"2,n—294  Tn+22n—5T1n

n—2

(k,n)
—E ToT0T2,2n—2T1,n—17072k—192  Tk+1,2n—jT1,n
k=2

(0,m)
— Toror22n—2"1n-192  T22n—iT1,n

+ gt
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for 2<57<n—-1,

i—1
(i+13) ()  _ (k,i+1)
< 914 y9a >—§ To"2,2n—2"1,2n—i—27072,2n—;71,k—192 Tk+1,i—1Ti2n—
k=1
i—1
(k,i+1)
+ ToTr2,2n—-2"71,2n—i—27072,2n—k—192 T'on—k+1,2n—571,2n—i
J
k=j

(@)
+ ror2,2n—2T1,2n—i—17072,i-194 T2n—i+1,2n—j71,2n—i
i—1
(yi4+1)
+ T072,2n—271,2n—i—27072,k—195 Tk+1,2n—5T1,2n—i
k=2

(0,i+1)
+ ror2,2n—271,2n—i—295 r2,2n—571,2n—4

(i,2n—i—2)
— Ioror2,2n—2"1,2n—i—27072,2n—571,i—193 Tit1

1—1
(k,i+1)
- r2T0T2,2n—271,2n—i—27072,2n—71,k—192 Tk4+1,i—174,2n—i
k=1

i—1
(kyi+1)
o T2T072,2n—271,2n—i—27072,2n—k—192 Ton—k+1,2n—571,2n—i—1
k=3

(4)
— ToToT2,2n—271,2n—i—27072,i—194  T2n—i+1,2n—;57i,2n—i—1

i—1
(k,i+1)
— T2T072,2n—271,2n—i—27072,k—192 Tk+1,2n—57i,2n—i—1
k=2
(0,i+1) (4,9)
— I2ToT2,2n—271,2n—i—292 T2.9n—jTi2n—i—1 + 914
for 2<7<1<n—1,
n—2
(ivnfl) (nfl) . (k‘,TL)
< Gy 94 > = E T0T2,2n—iT1,n—17072,k—192  Tk+1n+1
k=2
(0,n)
+ ror2on—iT1,n—192  T2n+1
n—2
(k,n)
- raror2,2n—i"1,n—-17072,k—192 "Tk+1n
k=2
(0,n) (i,n—1)

— ToToT22n—iT1,n—19s T2.n + 915

for 3<i<n-—1,

n—2
(n,n—1)  n—1 o (k,n)
< g3 94 >—E ToT2nT1,n—-1T072,k—192  Tk+1n+1
k=2
(0,m)
+ o2 1m—19s T2+l
n—2
(k,n)
- r2To"2,nT1n—-1T0"2,k—192 "Tk+1,n
k=2
(0,n) (n,n—1)

—ToroT2n 1n-19>  T2m + Ji5 ;
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j—1

(t,J+1) ()  _ (k,j+1)

< 915 gy > = E T072,2n—i"1,2n—5—27072,k—195 Tk41,2n—j
k=2
(0,5+1)
+ 1072,2n—iT1,2n—j—295 T2,2n—j
— . . . (4,2n—j—2) .
T2T072,2n—iT1,2n—5—27072,5—-193 Tj+1
j—1
(kg +1)
- T2T072,2n—iT1,2n—5—2T7072,k—192 Tk+1,2n—j—1
k=2
(0,5+1) (4,)
— T2T0T2,2n—iT1,2n—j—292 T292n—j—1 1+ 915
for 2<i—1<j3<n-—1,

(1,2n=3) (1,2)
< 91 93 " >= Ji6»

(Qai) (172) - (272”’71’) (272’”’71') (7'73)
< G190 593 ~ >=ToT22n—2712T093 T12 — T2T0T'2,2n—27127093 ri+gy; for 3<
1 <n—1,

j—3
(1,5=1)  (j—2,5—1) (k,j—1)
< G177 593 > = T072,2n—271,j—17072,2n—iT1,k—190 Thil,j-1
k=1
(j—1,2n—1)

+ ToT2,2n—2T1,5-1T072,j—293 T1,5—1

j—2

, (k.5) L

+ ToT2,2n—271,j-17072,k—192 = Tk+1,2n—iT1,j—1

k=2

(0.4)
+ 1or2,2n—271,j-19 ' T2,2n—iT1,j-1
J J
j—3
T2ToT2,2n—271,5—17072,2n—iT1,k—199 Tk4+1,5—2
k=1
(—1,2n—1)

— ToroTr2,2n—271,j—17072,j—293 1,5-2

j—2
_ . (k.5) g

T2T0T2,2n—2"T1,—1T072,k—192 = Tk4+1,2n—iT1,j—2
k=2
(0,5) (4,9)

— ToT0T2,2n—271,j—-193 = T22n—iT1,j—1 + 917

for 4<j<i<n—1. O

At this point we are not able to show that polynomials given above lemma form

Grobner-Shirshov basis for the infinite Coxeter group of type B,.
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7.2 Normal Forms for The Infinite Coxeter Group of Type B,

For v € :9\;0 define
vfi,jl = {k € Z : k <i,v(k) > j}|
forallz,j € Z.
Let S8 = {u € SO : u[n,n+ 1] = 0 mod 2} It is clear that S5 is a subgroup of S
of index 2. Furthermore for any u € gf

¢ .C c )( c.C )0427171.. ( C C)Oq( C)ao

u = (Tnjnrnfl,jn_l T N To T 2n—1 To Ty Ty

-1 .
where > ", oy, is an even number.

The following proposition says that 55 is the infinite Coxeter group of type én

Proposition 7.2.1. (Bjorner and Brenti| (2005), Proposition 8.5.3)

The group §f with generating set {rf r2 ... rB} is the infinite Coxeter group of type En
where r2 = 1S fori=1,2,... .nandrf =[2n —1,2n,3,... n).

We now try to find normal form representations of elements of B,, with respect to

these generators. First of all, we give some relations between words in En and words in én

Lemma 7.2.2. The followings are equivalent.

(i) 7"07"17’0 —Tég»

(ii) (r§ rh)(rgrg) =Ty r21r1jfor0 <j<i<2n-2

Proof. (1)
r$rérS = [2n,2,...,n]2,1,3,...,n][2n,2,...,n],
= [2n—1,2n,3,...,n],
= 5.
(i1)
’1"037"2%7“1'3 = Tg’l"lc’l"g?"g;?"lc;,

_ ,0.C.C.C . . 2(0,k)
= ryryTory; by aseries of ELW inf,™.
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Notice that length of word in C,, is two more than the length of corresponding word

in B,,.

Lemma 7.2.3. In the infinite Coxeter group of type C.,, we have

(1ErC N (1CrC (1) (Tgrl%n—l)(7"007"%)0’(?7’16:]'—1)7 if i +j < 2n,
ToT1,2n—2)\To T1;)\To T13) =

(rgrlc:anl)(ngrgifl)(rgrlc;’)a ifi+j > 2n.

for1l <i,5 <2n — 1 satisfying 7 <1 whent <nori < jwheni>n.

Proof. 1If i + 7 < 2n, there are two possibilities: either ] < j <i<norl <j<n<i<

2n — j. In both cases we have

(16 T2n-2) (rGT55) (7 T15) 01 2n-1)(TG T,

= (rg 7"1,2n—1)(T0 7“1j)(7"g7"%—1)(7’007’jc+1,i) by an ELW in f5(]),
= (rgrfzn_l)(rgrg)(rgrlc’j_l) by a series of ELW in f5.

If2n <i+4j,thenn < j <i <2n— 2. Leti = 2n — k and j = 2n — [. Therefore

(6 020 -2) (I 1) (G T5) = (75 100 1) (G T (G T ricamas -+ 7

by ELW in féj ). Furthermore

c.c c c .C . t,j
(7g le)rt = (r(c)rl,t—l)rt—i-lrtj by an ELW in f:’f J)7

rglrﬁ by a series of ELW in f.

for [ — 2 <t < k. Then desired equality easily follows.

]
Corollary 7.2.4.
(rgrPan orti)(r§rs)), 47 <2n—1,
(6 11 an—1) (G T5) (16 1) = ’ o

(T(j)grz?anleBj)(rngHl)’ i+j2>2n—1

Lemma 7.2.5. Let m > 1.
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)Qm _ ( B,.B B)Qm

(i) (To Tl 2n—1 = To T2 2n-2"1

’

(ii) (7”0 7”1 In— 1)2m_1(7"g7"16;') = (T(J)S’ngn—27’1B)2m_l(r 7“2])f0r2 <j<2n-2

)2m—1 Cc _ ( B,.B )2(m 1)( B,.B )( B)

e C C
(iii) (1o TV 9,1 To = \ToT22n—2"1 To T22n—2)\T0 )»

Proof.

(i) We use induction on m.

(BB B)(BB B)

c C..C\..C.C c.C
ToT92n—2"T1 )\T0 T'2.2n—271 1 ) ),

2n—2"0 71 )\To "1 2n—2T0 1

=Q

2n— 2)(7'107“57“107”00)(7“202” 27"007'10)

c

0

C

0

g ¢ 1)(T()Crlc2n 2)(7’(?7’(?7’10)
c

0

First equality comes from Lemma second and third equalities come from ELW

in fs(l) and f2(0’k), respectively.

Suppose that (r§rf,, _,rf)?* = (r§r{,,_,)* for a positive integer k. Then
2k+1) _  (,.C..C \2k(,.B,.B B2
(7“0 7"2 2n—2T1 ) = (rg Tl,Zn—l) (ro'rs 2n—2T1 )
_(CC 2kt )
= (rg 7“1,2n—1)

(i1)
B,.B B\2m+1.,.B. B\ _ (.C.C 2 c,.cC C’C’C
(7o T2,2n—2T1 )" (g TQJ) = (rg 71 2n— 1) m(ro Tl 2n—2T0T1 )(ro 7’1]7”0 by Lemma([7.2.2}

_ c,.C 2m,.C,.C c,.c.Cc C.C.C (1)
= (107 20-1)""T0 12027170 71 7o T2;Tg by ELW infs™,
= (rgr{on_)?" i rirg TS by aseries of ELW inf{"",
_ c,.C 2m+1,.C,.C . (0
= (rg T1on— ) r1; by ELW inf]

(iii)

B,.B B c.cC cy(..C,.C c
(roTy 2n— D(re) = (rory 2n—270 )(rgriTg) by Lemmal([7.2.2]

_ .C.C C
= ToT12n-1"0
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The rest is an easy consequence of part (1). [

Notice that length of word in CN'n is 2m more than the length of the corresponding

word in B,,.

Definition 7.2.6. We define the following words in B, :

() wo=ry, -y --rg fori—1<[;<2n—diandi=1,...,n.

(i) wy = [[ou, (rPrP,, orE ) fort > 0and 1 < iy, € ip_q < 2n — 2.

(iii) wy = [Tp_,(rgrd,,  71,) fors > 0and 0 < ji € jp_1 < 2n — 3.

(rg ran—o71')™™,

(V) ws =9 (rfry, _orP)* " (rfrs)), form >0and1 < j <2n—2,

(g5 o) D (1155 )7E

(V) wy = wowiwse Where i; > 2 and either j; € #; or j; Z i; but
j2 < ita it _I_]l Z 2”7

2

Jo+1 <y, 9471 <2n.

(Vl) Wy = WoW1W3.

Let WB = {w4, ’LU5}.

Theorem 7.2.7. Any word w € W in which number of appearance of 1 is even can be

transformed a word in W .

Proof. Since r? = r¢ fori = 1,...,n, we only consider the word of the form

t

w = (T(?Tlc:Zn—l)m H(rgrlc;-k)
k=1

where m +tiseven 0 < jip € 51 < 2n — 2.
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If m = 0, then Lemma|[7.2.2]implies that

t

2

w= H(TO rQJZk 1TJB2k)

k=1
Therefore w € Wpg.

Suppose that m > land 2n — 2 = j; = jo = --- = j; > Ji+1. Then

i
!
I I T2]2k 1T1]2k))w

where

t
w (7'007’10271 )™ H (rocrlc]k)
k=241 ]+1
by several application of Corollary and Lemma([7.2.2]

Let us rewrite w' as follows
p
!
w' = (r§ 1y, )" (ST [ (r§r5,).
k=0

Suppose thatt + k + i > 2n—1forO0 < k< g<pandi+q+ 1+ <2n—1
forg+ 1<k <p.

Let a = (2n — 2) — i. Now we investigate case by case.

Case (i): g > a—1and m > a.

Corollary[7.2.4 and Lemma([7.2.2)imply that

a

!’ o B B B 1"
w = H(To T2.n—2T13, )W

k=0
a—1 p
I
wo = H(T§T§2n 2T5k>(r(?r102n )" (Tgrlc2n 2) H<T007,10Zk)
k=0 k=a
a
"
= H(T(])BrzB% 27"5,)“1

k=0

where
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Now same process can be applied to w”. This should be repeated until one of the conditions
is not met. Hence we can assume that w’ does not satisfy one of the conditions without loss

of generality.

Case (ii): ¢ > a — 1 and m = a Corollary and Lemma imply that

M|

/
w =[085 orf) T] 03 rria)

= —_m+2
k=0 k_ﬂ%,

Since 1, € iq41, w € Wg and so is w.
Case (iii): g >a—landm < a

Corollary and Lemma implies that

,_.

m— p

!
w = H To 7’2 2n— 27”1%)) (Tgrlcwm) H (rg,rlczk)

k=m

O

3 w
L
NS

__m+2
k==5= 2

il
=)

Ifi+m <€ 4,_1, then clearly w' € Wg which implies w € Wpg. Suppose i + m £ iy,_1.

Since i, 1 +m +1i > 2nand i, € i1, w € Wy and so is w.
Case (iv): g <a—1landm < gq
Same as case (iii).

Case (v):g<a—landg<m<p

q p
! —_—
w = ( | |(r§r§2n_2rﬁk))(rocrf2n )" 1(7“(?7’101+q+1) | | (Tocrlczk)

k=0 k=q+1

[MS]

q m—1

= (H(T(J)STZ,%—?TE,C)) ( H (TOBTQBQn 27“{3%“)) (T§T§i+q+lrﬁm) H (7"(])37’231% i)

k=0 k=q+1 k=mT+2

by Corollary and Lemma Notice that 7, > 4g4q. If i + ¢+ 1 € 41 + 1,
then clearly w' € Wp which implies w € Wp. Suppose i + ¢ + 1 # 4,,_1 + 1. Then
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tm1+1<i4+qg+1landi, +72+q+ 1 < 2n — 1. This implies ¢, < n and then

i +1<14, 1+ 1. Hence w € Wy and so is w.

Case (vi): Applying Corollary[7.2.4]and Lemma([7.2.2] several times gives

w = Hro 990 grhk))(
)(

P
B,.B B c,C m—p—1/,.C C
H (ro T9 on— 2T11k+1>) (7o Tl,anl) (ro 7y z+q+1)
k=q+1
q P
_ B..B B "
= H To T2,2n— 27"1zk H (ro 7220 2T11k+1>)w
k=0 q+1
where
B,.B B\m—p ; —
(ro T3on—2"1 ) ) i1+q+1=2n—2
17
— B,.B Bym—-p—1(,.B,.B : o
w (7o Tyon_oT1) (ro T2,i+q+1)u 1<i+q¢g+1<2n-3
B,.B B\m—p—2/(,.B,.B B - il
(70 990271 ) (1o T39n2)(rg), i+q+1=0
I .
by Lemma Then clearly w € Wp and so is w. 0

Lemma 7.2.8. The generating function for words in Wg is

n

2i—1

i=1

Proof. We found one to one corresponding between words in W and words in W with
c t c,.C :
oy ) Tleet (76 rljk) where t is

_ ,.B _ c ..C c _
=r7fort=1,...,n, Tty Tty " 71y =

number of occurrence of rq is even. Letw = (r$, r$_ |,

—Liln—-1
even and 0 < jx € Jr_1 < 2n — 1. Since rz-c

B

B B . . . .
Tty Tn—11,_, " 71, - Clearly its generating function is

n

[[a+z+2”+- 2.

i=1

When converting the szl('rg 7’16; ) into a word in W, the corresponding word losses its
length by number of occurrence of ry. The generating function for the words in the form

Hk 1(7"007"1 ) where t > 0 in W is

Hence generating function for the corresponding words in W is

n—1 i n—1

1 1+ 1+a
1—x”gl+x”+i_gl—x”+i
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c,C

25 Notice that we consider all words of the form [T, (57§ %.) Where

. 1 .
since 127 — 1=
t > 0. We can add or remove 7§’ to end of the word if number of occurrence 7§ is odd and

this will not change the result. [

Notice that the generating function for the infinite Coxeter group of type En is

1+ + -4 2!
H — p2i-1 ’
1=1

By Lemma [6.2.12]

n

. 14+ 2t - 1—|—m+cdots—|—x211
21—1
H(1+x+-~+m )1_In+l 11

x?z 1
which is equal to generating function of words in Wp.

Now we are ready to find the main result.

Theorem 7.2.9. Let RP be the set of all polynomials given in Lemma Then

(i) W = Red(RB).

(ii) R is a Grobner-Shirshov basis for the infinite Coxeter group of type B,.

Proof. (i) Itis easy to see that any word in Wp is RP-reduced. Hence W5 C Red(RP).
Conversely if w € Red(R?), then w can be written as a permutation in :S‘vf and this
permutation has a corresponding word in W5 by Theorem Hence Red(RP) C
Wpg.

(ii) We know that any polynomial in R? is a part of a Grobner-Shirshov basis of the
infinite Coxeter group of type En If RB were not a Grobner-Shirshov basis, then
Red(RP) = Wp should be a proper subset of the set of normal forms of the infinite
Coxeter group of type En by Composition-Diamond lemma. This contradicts to the
fact that W and normal forms of the infinite Coxeter group of type B, have same

generating functions.

Let us finish the chapter by an example.

Any word w € W with the number of appearance of 7( is even can be transformed a word

in Wp by Theorem This transformation can be made by using Corollary and
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Lemma repeatedly. Now we will take a word w € gf and we find corresponding word
in the infinite Coxeter group of type 5n Using the techniques given in Chapter |§|, then we

convert it into a word in the infinite Coxeter group of type B,.

Example 7. Let u = [42,5,17, —20] € SB. Since SB C 5S¢, u € S§. Now we will deal
with in §f Corollary implies vw™ = [—8,4, —33, —20] where w = rorioreriro.
Applying the process explained in the proof of the Corollary [6.2.5] we get

[—8,4,—33, —20](ror14) ! = [—11, —8,4, —33],

[—11, —8,4, —33](ror1a) " = [~24, 11, -8, 4],

[—24, =11, =8, 4] (ror15) ' = [1, —24, —11,4],

[1,—24, —11, 4](7“07’15)_1 =[-2,1,-24,4],

[—2,1,—24, 4] (7’07“15)_1 = [-15,-2,1,4],
[—15,—2,1,4](rory7) "t = [-6,—2,1,4] and

(=6, —2,1,4](ror17) " = [3, =2, 1,4].

Thus [—8,4, —33, —20]((ror17)*(ror15)?(ror14)?) ! = [3, =2, 1, 4].
Corollary[6.2.8]implies [3, —2, 1, 4] = r95712. Hence

u = (7"257’12)(7’07’17)2(7’07"15)3(7"07’14)2(7’07“127"07“17°o) € §40

Applying Corollary repeatedly the word (rory7)?(roris)®(roria)(roriaroriTo) can be

converted the following words in each step.

(r§ ) (i) (G i) (r§ i) (g i) (G ) (rG ) (rG i) (rG ) ()

= (r§ ) (g raer i) (r§ i) (G ris) (r§ ) (rG i) (5 ) (rG e ) ()
= (rgraeris) (G i) (r§ i) (rG ris) (r§ ) (rG i) (r§ ) (rG e ) ()
= (rgraer15) (rg raer i) (r§ ri7) (rG i) (r§ i) (rG i) (rG ) ()

= (rg'ragris) (rg ragris) (rg ragria) (r i) (rg ri) (G ri) (rG)
Applying Lemma |/.2.2}

(r§ ) (G rR) (r§ ) (rG) = (rgriri) (rg)-
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. B _ ,.C for s c,C _ ,.B.B
Since ;> = r; fori # 0, then 75517, = 15:715-

Therefore

u = (rasry) (rg raer i) (rg raeria) (rg risrs) () € 77
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8. GROBNER-SHIRSHOV BASIS AND NORMAL FORMS FOR
THE INFINITE COXETER GROUPS OF TYPE D,

8.1 Grobner-Shirshov Basis for The Infinite Coxeter Group of Type D,

Definition 8.1.1. For a positive integer n > 4, the infinite Coxeter group of type D, has a
presentation with generators S = {rg,r1,...,r,} and defining relations:

(Ry) rr;=1 for 0 <i<n,

(Ry) rirj=mrjr; for 0<i<j—1<mn but (i,j5)#(0,2) and (7,7) # (n — 2,n),
(R3) miripir; = ripaririy for 1 <i<n—1,

(R4) Tn-oTnTp—2 = I'nTn_2Tn,

(R5) 7morarg = T2ToT2.

For convenience let us define

Tilig1 T, ifl<i<j<n;

/rairi+1.../r’n_Q’["n’r’n_l---T'zn_j, lfl S'I/Sn_l <J S Qn_Z7
Tij = o - .

rs, if j =1

1 ifj=1—1

\ Y

After this point we will not use superscripts unless we need to distinguish between

groups B, and D,,.
Lemma 8.1.2. Suppose that < is the degree lexicographic order on S*. A Grobner-Shirshov
basis for the infinite Coxeter group of type l~7n with respect to < contains the following
polynomials:

° h(li):riri—lfor 0<t<n,

o ni) = rir; —r;ri for 1< j—1 but (i,7) # (0,2) and (i,j) # (n —2,n),

. héf) = Tiiy1 — TigaTi for i=0,n—1,
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h4 =Tn—2n"n—2 — "nTn-2n,

héi,j)zrijri_ri+1rz‘j for (1<i<j<n—1)or (1<i<n-—2
and n<j<2n-3 and 2n—j—1>1),

héi) = Tion—iTit1 — Tit1Ti2n— for 1 <1 <n—3,

h7 =Tn—2n+2"Tn — "'n—-1"n—2n+2,

hS = Tp—2n4+2Tn—1 — "nTn—2n42

hg’j) = ToT2iT1jT0 — T2ror2T1; for 0 <7 <1 and 2 <1i<2n -3,
hﬁ? = ToT2T1i — T1T0T2i"1,i—1 for 2 <1 <n—1,

hi1 = Toronrin — 17roT2nT1,n—2

hiy = To"2n—1T1,n+1 — T17072,n—1"1n,

hﬁ? = T0T2,2n—iT1,2n—i+1 — T170T2,2n—iT1,2n—i for 2 <1i <mn,

(4,9) )
hiy”’ = rorairijroTe; — reToraiTjTor2,—1 for (2 <j<n-—1
and n<i<2n—-3) or 2<j<n—1and 3<i<n-—1 and j <i),
his = ToT2,n—1T1nT0"2n — 727072 n—1"1nT072,n—2,
(4,3) _ . .
hig” = Tor2,on—2T1iT0T2;T1,i—1 — T2T0T2,2n—2T1iT0T2;T1,i—2 for 2 <i<j <mn—1,

hi7 = ToT2,2n—2T0T2 — T2T072,2n—270,

(4,)
h18 = ToT2,2n—271iT072;T1 — T27072,2n—2715T072;

for (i=1and 2<j<n-—1) or (1<i<2and n<j<2n-3),
hﬁig) = T072,2n—iT1,n—170"2,n+1 — T27072,2n—i"1,n—170"2n for 3 <1 <n,
hgg = T0T2,2n—iT1nT0T2n — T2T0T22n—iT1nT0T2,n—2 for 3 <t <n —1,
th1) = ToT2,2n—271i7072,2n—2712 — 270722027 13707220271 for 1 <i <2,
hoy = ToTr22n—2T1nT0"2nT1,n—2 — T2T072,2n—2T10nT072n7T1,n—3,

(5 _
h23 =To"22n—2"1,n—-17T072,2n—iT1n — T27072,2n—271,n—17072,2n—iT1,n—2
for 2<i<n-—1,

(4)
h24 = ToT2,2n—2T1nT072,2n—iT1,n—1 — 727072 2n—271nT072,2n—iT1,n—2

Jor 2<i:<n-—1,
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(7;7j) —
i h25 =T0T2,2n—271,2n—iT072,2n—jT1 2n—i+1 — 727072, 2n—271,2n—iT072,2n—371,2n—i

Jor 2<j3<1<n,

(4,9) _
i h26 = T0oT2,2n—iT1,2n—57072,2n—j4+1 — T27072,2n—i71,2n—57072,2n—j

Jor 3<i<j3<n—1,

® oy = ToTr2,2n—2T1iT072,2n—3T1k — T27072,2n—271:7072 2n—j71,k—1
for (k=i and 2<j<n—2 and 3<i<n-—2)
or (k=i—1 and 3<i<n-—2 andi<j<n),

Proof. hgi), hg’j ), hgi), hy, hg’iﬂ) and hs(f’o) are defining relations for the infinite Coxeter

group of type D,.
< RO St s = D) for ) < < — 2,
< BT B s= i) fori+3<j<n—1,

< hénf?),an), hgnfB,n) —— hgn73,n)’

< B2l S ™ for 1 < i < — 3,

< BT B = pP D for 1 <i<n—2,3<j<n—landj—i> 1,
< RSP ) S — p O for 1 < i < — 3,

< hé"d’n), hy >= rn,ghgnfl)rn,grn = rn,lrn,ghgnfl)rnfg + hy,

< hy, BTE = g,

< hg_l’o), héo’i) >= héi’o) for3 <1 <n,

< ng 2O B >= h{HY,

< hF" O P s= p$ T for 3 < i <n— 1,

< h$O Y >= Y,

< hg_l’l), héo’i) >= T0T27i_1h§17i)7"0 — 1rororei—1h(i,i) + hg’l) for 3 <1 < n,
< hE"0 R >=hE" T for 3 < i <,

< h h{? >=hi),
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i—2 i—2
(7’_1) (Z_lvl) _ (k),l) (k:vl)
< hyy 7, hs > = E ToT2,i—1T1k—1Ny  Thili — E T1T0r2,i—1T1, k-1 Thi1,i—1

k=1 k=1
i
+ Al
for 3<i<n-—1,
n—3 n—3
(TL*Q) _ (k‘,TL) (kan)
<hjyy T hy>= E ToT2,n—2T1k—11y  Thtin — E T1T0T2m—2T1 k=113 Tht1,n—2
k=1 k=1
+ hlla

< BV RS >= hays

n—3
< hig,hg > = Z 7"07“2,n—17“1,k—1hgk’n)mﬂ,nw + 7’07”2,n—2h§,n_1)7’1,n+2
k=1
n—3
— T1T0T2,n—1"T1n—3N4Tn—1 — Z r1iroron—171 k—lh(k’n)r
s s 4 s 2 k+1,n+1
k=1

(n—1) (n—
— rroTon—2y  Tine1 + hyz

2
(z+1) i—1 (ki
< hy h E ToT2,2n—i—171 k— 1hy” Tk;+1 2n—i+1
k=1

i—1,2n—i—1
2h(z n—i )T'

—TiTor2,2n—i—171,i— i

i—2
— 27”17"07’2 m—i—1T1,k— 1h Tk+1 on—i + h
k=1
for 2<i<n-—2,
< h{"Y Y >= 0l for 3<i<2n—3,
j—2

(Z7] 1 (]_17])
< h h5 > = ToT2iT1,j—17072,k— 1h Tk+1,g

(]

k=2
7j—2

- T2T0T2iT1,j—1T072,k— 1h 7°k+1,g 1
k=2

+ pD)
for 3<¢<2n—3,
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n—3

n—1,n—2) o (k,n) (0,n)
< h yhy > = E T0T2,n—1T1,n—2T0"2 k=11 " "Thin + ToT2n—1T1,n—2hs T

k=1
n—3

h(kvn)
- a2 n—1T1,n—270"T2 k—119  "Tk+1n-2
k=1

(0,m)
— TorT2n—1"1,n—2hy T2 n—2 + his,

(2n 3,4) 1.(2) (i-1)
< h hlo =Tor2,2n— 3h T0T2z7“1 i—1 — 2ToT2,2n— 37”1@]110 T

h (1,3)
— TaToT2,2n—3M5 "ToT2,i-171,i-27

1—2
— E roT0T2,2n—27157072,i—171,k— 1h Tk+1z 1+h
k=1
for 2<i<n,
i—2
i,5—1) 3 (i—1,9) -
< h , ha > = ror2,2n—2"1iT072,5—171,k— 1h2 rk+11 1
k=1
1—2

a g T2T0T2,2n—271i7072,5—171,k— 1h Tk+1z 2

k=1
+ Ry
for 2<i<j<n-—1,
< hg%‘3’°>,h§2’0’ o= o,

< hir, by >=hig?,
< h(“ 2 h(“) >= h(“) for 2 <i<n,

(1,n—2) hél,n) >— hglg,n),

<h
<h12’”1) h( >= hm’” for 3 <7 <mn,
<h2n 2) hél,n) >— h§28,n),

< B 0D s = B9 for 3< i <,
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n—3
(2n—i,n—2) (k,n)
< h Jhy > = E T0T2,2n—iT1,0—2T0T2k—115  Tht1n—2Tk+1n
k=2
(0,n)
+ 1072,2n—iT1n—2Ry " Top
n—3
h(kvn)
- raToT2,2n—iT"1n—2T072,k—1109 ~ "Tk+1,n—2
k=2

(0,n) (@)
— ToT0T2.2n—iT1,n—2Ms " Ton—2 + hag

for 3 <1i < n,

< B2 102 S - 0 for 1< <2,

n—3
(3) o (1,n) (k,n)
< hyy, hi1 > = roraon—shs T2, T1n—2 — E T9T072,2n—3T1nT072,2n—2T1 k—11y  Tht1n—3
k=1
S h227
n—3
n—1,n—1) (k,n)
< h yhe > = E T0T2,2n—2T1n—1T0T2,n—1T1,k—=19  Tkt1,n
k=1
(n—1)
+ 70T2,2n—2T1,n—1T0T2n—2R3  'Tin
n—3
h(kun)
F raror2,2n—2"1,n—1"T0"2n—1"1,k—119  "Tk+1n—2
k=1
(n—1) n— 1)
— ToToT2,2n—2T1,n—1T0"2,n—2hy 71 p_o + h
i—2
(i+1) 4 (i—1,n) (ki)
< h h5 > = g 7“07”2,2n—27‘1,n—17‘07”2,2n—¢—17”1,k—1h2 Tk+1n
k=1
h(ifl,an)
— aror2,2n—2T1,n—170"2,2n—i—171,i—2/5
i—2
- T2ToT2,2n—2T1,n—17T072,2n—i—171,k—1/9  "Tk+1,n—2
k=1
+h), 2<i<n-—1
for 2<i<n-—1,
n—3
(n—2,n—1) o (k,n—1)
< haa, hy > = E T072,2n—2T1nT2nT1 k—1h5 Tktln—1
k=1
n—3
h(k,nfl)
- 727072 2n—2T1nT2nT1 k115 Tk+1,n—2
k=1
+ Ry Y,
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i—2
(i+1) ;(G—1,n—-1) _ (ki)
< h24 7h’5 > = E 7107'2,27172Tlnror2,2n72¥17ﬂl,k71h2 Tk4+1,n—1

k=1
h(z‘—l,n—Q)
— T2ToT2,2n—2T1nT072,2n—i—171,i—2/15
i—2
- 27072, 2n—2T10T072,2n—i—1"T1,k—19  "Tk4+1,n—2
k=1
i
+h)
for 2<i<n-—1,
(4) p(n=1) __ 3 (ng) :
< h3, hg >= hys' for 2 <5 <mn,
n—3
(4) A (k,n—1)
< h23 ) h7y > = 7“07“2,2n—j7"1,n—17“07“2,2n—j7“1,k—1hg Tk4+1,n+2
k=1
n—3
+ ToT"2,2n—3T1,n—1T072,2n—k—1/19 Ton—k+1,2n—571,n+2
k=5

+ 7"07“2,2n—j7“1,n—17“07“2,2n—3h87“n+3,2n—j7“1,n+2
n—3

h(kvn)
+ Tor2,2n—5T1n—-170"2,k—1M9  "Tk+12n—571n4+2
k=2

(0,n)
+10722n—iT1,n—11y " T2.20—T1 42

(n—1)
+Tor22n—iT1n—2hs  T0T220—jT1 42

h(”—Z)
— eror2,2n—5T1,n—-17072,2n—71,n—-3"5 'n

h(”—l)
— Toror2.2n—T1,n—-17072,2n—jT1,n—3"n—-1"n—2/13
n—3
h(k,nfl)
- 27072, 2n—jT1,n—17T072,2n—571,k—1113 Tk+1,n+1
k=1
n—3
h(k,nfl)
- T2T072,2n—jT1,n—1T072,2n—k—1113 Ton—k+1,2n—j71,n+1
k=j

- r2r0T2,2n7j7’1,n717,0702,7173h87ﬁn+3,2nfj7ﬁ1,n+1
n—3
h(kvn)
- T2T0T2,2n—jT1,n—1T072,k—1/09  "Tk+1,2n—5T1,n+1
k=2
h(ovn)
— Taror22n—T1,n—119 T2 2n—5T1,n+1

(n—1) (n—1,5)
- 7’27”07“2,2n—j7‘1,n—2h3 roT2,2n—T1,n+1 1 h25

for 2<j57<n—1,
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< B D 5

i—2
ToT2.2n—2T12n—i—17072,2n—jT1 k—119  "Tk+12n—i+1
k=1
i—2
+ ToT"2,2n—2"T12n—i—17072,2n—k—119 " "T2n—k+1,2n—571,2n—i+1
k=j

h(ifl)

+ ror22n—2T1 2n—i—17072i—21¢ "Ton—it+2,2n—571,2n—i+1
i—2

+ ToTr2,2n—2"T12n—i—17072,k—119  Tk4+1,2n—571,2n—i+1
k=2

(0,3)
+ T0T2,2n—271,2n—i—1 hz T2,9n—571,2n—i+1

h(ifl,anifl)
— T2ToT2,2n—271,2n—i—17072,2n—;T1,i—2/15 i

i—2
- raTor2,2n—271,2n—i—17072,2n—j71,k—119  "Tk41,2n—i
k=1
i—2
— T2T072,2n—271,2n—i—17072 2n—k—1M19  "Ton—k+1,2n—571,2n—i
k=j

(i-1)
- 7“27"07”2,271727“1,2114717“07"2,i72h6 Ton—i+2,2n—571,2n—i
i—2
5 T2T0"2,2n—2T1 2n—i—17T072, k-1 "Tk4+1,2n—571,2n—i
k=2

(0,%) (3.4)
— T9T0T2,9n—2T1 2n—i—1Ny T2.2n—T1 9n—i + Ros

for 3<i<n—2 and 2< ) <u,

n—3

(4) _ (k)
< hyg, hg > = E T0T2,.2n—iT1,n—1T0T2,k—15 " Thi 1,42

k=2

(0,m)
+10T2,2n—iT1n—1R9  T2nt2

- 7“27‘07“2,2n—i7“1,n—17“07“2,n—3h47”n—1

n—3

h(kvn)
- T2ToT2,2n—iT"1n—1T0T2,k—1109 ~ "Tk4+1,n+1

k=2

(O,n)
— ToT0T2,2n—iT1n—1N9  T2nt1 + Nog

for 3<i<n,

(i,n—1)
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j—2
(w+1) (G-1)
< hy , hg > = T072,2n—iT1,2n—j—17072 k— 1h Tk+12n —j+1
k=2
+ 107220 —iT1,2n—j— 1h 7’22n —j+1

hg 1,2n—j5— 1)

— T2roT2,2n—iT1,2n—j—17072,5—2 ]
j—2

- g T2T0T2,2n—iT1,2n—5—17072,k— 1h Tk:—i—l 2n—j
k=2

— T2T0T2,2n—iT1,2n—j— 1h T22n ]+h

for 3<i<n, 3<j<n and 71 <

(2,2n—j3) 1(1,2) - —7) (0,3)
< h Jhe ™ > = roroon— 27"127"0}1 T12 + ToT2,2n—2T12M5 " T2 90— T12

(2,2n—j) (0,3)
- 7"27’07”2,2%27“127”0}15 ™ — 7“07”2,211727’12}12 r2,2n—5T1
35,2
+ hgp??
for 3 <j<n,
i—3
7.7 7’72) (17272'71) — (kvifl)
< h ,h5 > = 7007"2,27172711,1'717007'2,2n7j7"1,k71hz Tk+1,i—1
k=1
h(i—lﬁn—j)
+ ror2,2n—271,i—1T072,i—2"5 T15i-1
i—2
(k1)
+ E T0T2,2n—271,i—170T2, k=19  Tht1,2n—5T1,i—1
k=2

+ roT2,2n— 2T1z—1h 7"22n §T1,i—1

i—3
h(k,i—l)
- roTo”2,2n—271,i-17072,2n—571,k—1119 Th+1,5-2
k=1
h —1,2n—j)
— T2ToT2,2n—271,i—17072,i—2 T1,i—2
i—2
- E raTor2,2n—271,i-17072,k— 1h Tk-i—l 2n—35T1,i—2
k=2
h h 1,5,i—1)
— T2T072,2n—271,i—119 7’22n jT1,i—2 +
for 3<i<n—-2,1<j<nand k=17—1,
i—2
(3,4+1,3—1) 4 (i—1,0) (k)
< h D > = T0T2,2n—271iT072,2n—i— 171 k-1 Tht1,i
k=1
i—2
- E T2ToT2,2n—271iT072,2n—i—171 k— 1h 7’k+1 i—1
k=1
+ h (4,4,2)
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for 3<i<n-—2,

<
|
N

(4,3+14) 4 (5—1,9) (k,5)
< hyy ;g > = T0T2,2n—271iT072,2n—j— 171 k—1Ry "~ Thy1,i

1

e
Il

)

h(jfl,ifl
— TaT0T2,2n—271:T072,2n—j—171,j—2115
j—2
_ . ) h(k’j) ]
raTroT2,2n—271:7072,2n—j—171,k—119 ~"Tk41,i—1
k=1

i

for 3<:<n—-2 and 2< 5 <1 L]

At this point we are not able to show that polynomials given above lemma form

Grobner-Shirshov basis for the infinite Coxeter group of type 15n

8.2 Normal Forms for The Infinite Coxeter Group of Type f)n

For v € fS;C define
i, jl =k € Z:k <i,v(k) > j}|

foralli,j € Z.

S5 is a subgroup of 57? of index 2.

Let SP be the subgroup of S5 consisting of all the elements of SZ that have, in their

complete notation, an even number of negative entries to the right of 0.

SP = {ue 8P : u0,1] =0 (mod2)}

Thus, S2 is a subgroup of SZ of index 2.

Proposition 8.2.1. (Bjorner and Brenti (2005), Proposition 8.6.3)

The group SP with generating set {r? . rP ... rPY is the infinite Coxeter group of type D,

wherer? =B fori=0,1,2,...,n—landr? =[(n —1 —n)].

RS

We now try to find normal form representations of elements of lN)n with respect to

these generators. First of all, we give some relations between words in D,, and words in B,,.
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\ »B.B _ .D.B
Lemma 8.2.2. (i) r;)r,) ,=1,1,,

(ii) r5rE B =rp,

(iii) v yryry =y,
. B,.B ..B,.B D,.D
(ZV) rn 7“” 1Tn rn—l = rn Tn—l
Proof. (1)
B..B
T"nTpn-1 = [(n - n)][(n —1 n)]
= [(n=1 =n)][(n —n)]
- et
(ii)
rerh e = ryrPry by part (i)
= rP since rPr? =1
(iii)
B _.B.B B ..D.B .
T 1Tn T = Tn. 47,7, by part(i)
= 7“7?_17“7? rf since Tf_l = rf_l
= rPrP pB by ELW in A"
(iv)
B.B _B.B D..B s
ToTrm1TnTn1 = T,T,_; by part(il)
= rf 7",?_1 since Tf_l = rf_l
Lemma 8.2.3. For1 <i<n-—2
D . .
rijia Ji <N
rB = rP B o= n:
)i iwn—1"n> Ji 3
D.,.B .
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Proof. Since rP = rP for1 <i <n—1,r] =rl for j; < n. Similarly r[},

174

Suppose that j; > n and 7 < n — 2. Then

rgirf = Tfn_Qrf rf_lrf rf x 7‘51 i, rn by part (ii) of Lemma@
= rfnﬁrfrfflrfrfflrf cerd ;. by ELW’s in g2 " k=9 — i,
= rfnﬁrfrfrilrfrfﬁl e rzifji by ELW's in g4n_1),
= B . since rf f =1

Lemma 8.24. For1 <i<n-—2

(
D, B )
TiiTms Ji Sn—2
DB o
BB TinTr, Ji=mn—1;
Tn Tijz - D .
Tins Ji =N,
D
Proof. (i)
B B o F .
"ol = [(n —=n)][(Ei+1 - ji+1)]
= [(@i+1-- ji+1D][(n —n)]
= rgrfsinceji+1<n
_ ..D.B_: B _ .D
= 1,7y, since v =1
(i1)
D.B _ B B.B .B,B
T.inrn - Tzn 2rn rn 1rn rn
_ ..B ! (n)
= Tin— ,r2rB by ELW's in ¢;
= B by ELW's in ¢{*™ for k =n — 2,.
- n zn 1 y g
(i11)
B.B _ ,B.B B
rnrin - anzn 1’/“
_ .D
- Tzn nrn by part (11)
= rP since rZrf = 1.
(iv)
B.B _ .B.B . B B
rnriji - rnrz,nrn 1"'T2n—ji
_ ..D.B
= T Tn 1 7”2n —i by part (iii)

— D —
= ;. since rp = rP fork # n.
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O
oqe o B B B B . . .
Definition 8.2.5. Let w = r; 7,7, -1 -1y, where i — 1 < j; < 2n — 4 for

1 <4 < n. Define n(w) to be number of appearance of r,, in w.

; : oo BB _ BB B _ ,.D
The following corollary is a consequence of the equalities r,,ry = ryr,, ry =1

and the above lemmas.

Corollary 8.2.6. Let1 < j <1 < 2n — 2.

D,.D,.D ‘ :
To T2 1<n-—1lorj>n

p,.D ,.D,B ; _ ;
To Top-1T1jTn, t=mnandj<n-—1

D.,.D D,B ; _ .
70 T2m—1"1n"n > t=nandj=n—1

B B, B __ D..D D

To 2715 = § 70 T2n—1"1n> t=nandj=n
T(?TﬁrleTf, t>nandj<n-—1
TODTQT{%TE, t>nandj=n—1

\7“(?7’57"%, t>nandj=n

Corollary 8.2.7. Let1 < j <1< 2n— 2.

O TR i<n—1lorj>n
D,.D,.D,B _
BB BB ) T0OT0m T 1=n-—1
TnTo T2y =
J D..D..D . .
o T2 1) t>nandj<n
D,.D,.D B -
[ 7072 1T, t=nandj=n
Definition 8.2.8.
i< ifi>n+1;
1<j=4¢ j=n—1lorj>n+1, ifi=nmn;
v <7, ifi<n-—1.

Notice that n and n — 1 are not comparable by themselves butn <n —1landn — 1 < n.

Definition 8.2.9.
i <7, ifi > n;
iSj=4 j=n—lorj>n+1, ifi=n—1;
i < 7, ifi <n—1.

Notice that n and n — 1 are not comparable by each other.

Definition 8.2.10. We define the following words in 13,“
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(i) wo=rp ---rh---rf] wherei—1<1; <2n—ifori=1,...,nexceptn —2 <

ln—l S n — 1.
Gi) wy; =T, (P22, rP. Y fort > 0,1 < iy <ipq < 2n— 2.
k=1\"0 "22n—2"1i; ~

(iil) wy = [T, (rg’rs,, _r1s,) fors > 0,1 < jp < jp1 < 2n — 3.

D,.D D 2
(ro 7“2,2n—27’1,j2k) ™,
: _ D,.D D \2m-1(,.D,.D ;
@iv) ws = (rg 7"2,2n—27"1,j2k) m=l(rg 7”2j)7 form>0and 1 < j <2n— 2.

(7’(?7”2[,)2%27’5]'%)2<m_1)<7a5)7€2n72)7ag)a

e . S o,
. . o . . J2 S 1w+ J1 = 2n
(V) wy = wowywy where i; > 2 and either j; <<i; or j; 4, but ’ '

Jo+ 1<y, 14+ 71 < 2n.

(Vi) ws = wow w3

Let WD = {w4, w5}.

Theorem 8.2.11. Any word w € W where n(w) is even can be transformed a word in Wp,.

Proof. Let wy = r,%nr,il’jn_l . ~r5-i > ~rlBj1 where i — 1 < j; < 2n —ifor1 <i < n. Let
_ B B
i = (T, Tit1,,)- Then
D D D . .
w (rmln ST .rul), n(w) is even;
0=
D D D \,.B .
(Tmln T T’Lll)?"n , n(w) is odd.
where
] n, Jn=mnorj,_1=n+1;
n — X y
n — 1, otherwise.
n—1, jo.1=n—1lorj, 1 =mn; and j, =n — 1;
lnfl: n—l, jn_1:n+1,
n — 2, otherwise.
and
Jis Ji #n—1,n;
li=¢ n—1, ji=n—1orj, =n; and t; is even;
n, ji=n—1or j =n; and t; is odd.
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Here the values of [, and [,,_; are easily follows from Lemma The values of
other /;’s can be obtained by recursively applying either Lemma [8.2.3] or Lemma for

i=n—2,n—3,...,1and using the fact rZr2 = 1.

n

Let wy = [[,_,(rfrP,, orP) fort > 0and 1 < i), € i)y < 2n — 2 and let { be
the number of ¢;’s which is less than or equal to n — 1 in w;. Then several applications of

Corollary [8.2.6]and Corollary imply that

[T (Do, orP), ¢ is even;

t :
(szl(rfré?gn_ﬂfi))rf, ¢ is odd.

w1 =

where j, =i if iy, #n — land jp =nifiy =n — 1.

Now consider w; = rBw,. Similarly

HZ:1(7”(?7’2[,)271727”¢D,9), ¢ is odd;

t .
(Thes (1300 —ar))rd’ s (s even.

w1, =

wherejk = Zk lek #nandjk =n — 1lflk = n.

Hence both w; and w; can be transformed one of the following

t
Hk:1(7”é)7£2n—27"ilz)a

(Iies (180 omi))

where fort > 0, 1 <ij S ipq < 2n — 2.

Lemma 8.2.12.

n—1 n—1

H[(1+x+x2+...+$i)(1+xi)] — (1+x+x2—|—...—i-x"*l)H(1+x+x2+...+x2i*1)
=1 i=1

Proof. We use case analysis. If n is odd, then we must show that

n—3

n—1 2
Q+ata®+-+2™) JJ0+2") = [JA+z+2"+- 2"

t=1 0

w

n—

v ‘

e
Il
—

3
I
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Let us prove that

= n—l "3 1 — g2kl b oot
Ateta’+ [0+ = [[7— I
k=1 t=1 k=1 =
B (1 _ [L’n+l)<1 _ In+3) .. (1 _ x2n—2)
(1-2)%
1_xn+11_l,n+3 1_x2n72
B 1—=x I

3
w

v ‘

— (1—|—ZC+SL‘2+"~+ZL‘n+2m).

m=0
If n is even, then we must show that
nTﬂ n—1 nT71
[[a+z+2>++2) [[a+2") = [Ja+2+2®+ -+ 2",
k=1 t=1 m=0

Let us prove that

3
|
N

1 — g2k+1 n—1 1 — 2t

[[a+z+2 4+ J[a+2") = ][] - )H(l—xt)

(1 — ™ (1 — x”J:?) (1= 222)

Lemma 8.2.13. The generating function for word in Wp, is

= R

1 — gn—1 1— xn*1+i'
i=1

Proof. We found one to one corresponding between words in W and the words in W with

number of occurrences of ry and r,, are even. Let
t
_(.C C c c,C
w = (Tnznrn—un,l n '7“1,z1) H(To lek)
k=1

where ¢ is even, n(w) is even and 0 < ji € jx—1 < 2n — 1.
B B

B .
il =10y T Theorem [8.2.11|im-

plies that corresponding word in Wp, is of the form

- : c ,.C co_
First consider the part of rp;; vy, -+ 77, =T

D_.D D D
T Tn1"n—2,j,_2 """ T1j
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where ¢ — 1 < j; < 2n — 4. The generating function for these words in this form is
(42?2 +a+a?+ -+t + 22 42+ 4o 4 2%)
=[5 (ot o)L+ o)

—(+z+2®+ - +2" V][5 A+z+2?+ -+ 2% ') by Lemmal8.2.12)

Consider the word @ = [[,_,(r§ r{;.) where ¢ is even and n(w) is even. Notice that we

B ,.B

assume n(r T . ..pB ) is even; otherwise, we have to consider the word rBw.
n— 17]”—1 17,71 n

c,C

When converting the word [ ;_, (r§'r¢ ~.) into a word in Wp, the corresponding word losses

its length by number of occurrence of ry and r,,. The generating function for the words in

the form szl(rocrlc;k) in We is

e
H 1 — gnti’
i=1
Hence generating function for the corresponding word in Wp, is

1+x)(1+2%) - (1+2") y 1:[ 1+4a

(1-55”71)(1—1'”)(1—332" 2 — gn— 1+4°
]
Notice that the generating function for the infinite Coxeter group of type lN)n is
l+z+a2 442" 5 1+z+.. 2%
1 — gn—1 H 1 — gp2i-1 ’
i=1
By Lemma [6.2.12]
l+a4+a24 42" 5 l+o+. . 2%t g, 142
1 — g1 H 1 _ p2i1 - (H(1+x+...+x Mm))

i=1 i=1

which is equal to generating function of words in Wp,.
Now we are ready to find the main result.
Theorem 8.2.14. Let RP be the set of all polynomials given in Lemma Then
(i) Wp = Red(RP).

(ii) RP is a Grobner-Shirshov basis for the infinite Coxeter group of type D,.

Proof. (i) Itis easy to see that any word in Wp is R”-reduced. Hence Wp C Red(RP).
Conversely if w € Red(RP”), then w can be written as a permutation in §,? and this
permutation has a corresponding word in Wp by Theorem|8.2.11| Hence Red(RP) C
Whp.
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(ii) We know that any polynomial in R” is a part of a Grobner-Shirshov basis of the
infinite Coxeter group of type lN)n If R were not a Grobner-Shirshov basis, then
Red(R”) = Wy should be a proper subset of the set of normal forms of the infinite
Coxeter group of type D, by Composition-Diamond lemma. This contradicts to the
fact that Wp and normal forms of the infinite Coxeter group of type lN)n have same

generating functions.

Let us finish this chapter with an example. We will take u € g,? C §nc . First we find

corresponding word in W¢. Then we convert it a word in W and find a word in Wp,.

Example 8. Let u = [44,7,31,—6] € SP. Since SP C S¢, u € S¢. Now we will deal
with in 540 Corollary implies vw™! = [-22,2, —35, —6] where w = roriareriro.
Applying the process explained in the proof of the Corollary [6.2.5] we get

(22,2, —35, —6](roria)~" = [3, —22,2, —35],

13, 22,2, —35](rgr1s) " = [~26,3, —22,2),

[—26,3, —22,2](ror15)~" = [~13, —26,3,2),

[—13,-26,3,2](ror) " = [-17,—-13,3, 2],

[—17, —13,3, 2] (ror16) " = [~4, —17,3,2],

[—4, —17,3,2)(roris) " = [~8, —4,3,2] and

[—8,—4,3,2](ror17) ' = [1,—4,3,2].

Thus [—22,2, —35, —6]((ror17)(ror16)> (1or15) (ror14)%) 1 = [1, —4, 3, 2].
Corollary[6.2.8]implies [1, —4, 3, 2] = r47r3723. Hence

U = (7“47‘37”23)(7‘07“17)(7‘07“16)3(7“07“15)(7”07“14)2(7“07‘127”07“17’0) S §40

Applying the process of the Corollary[7.2.4]

(Tgrlc;)(Tocrlc(sx?"()crlcﬁ)(rgrlcﬁ)(ro r15) (15 1) (1g 7’14)(7()07’102)(7“007"10)(7’(30)

= (rg'rasm16) (G rin) (rg i) (6 ris) (G ri) (rG i) (rg i) (r r) ()
:(BB B)(BB B)(CC)(CC)(CC)(CC)(CC)(C)

To To6T16)\To T26715)\T0 T17)\T0 T1a)\To T14)\Tg T12)\Tg 1 )\Tg
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= (rg'ragrie) (rg ragris) (rg ragra) (G i) (rG i) (g ) (6.

Applying the process of the Lemma[7.2.2]

(rg raerie) (rg rae715) (g o) (16 ris) (G i) (r§ ) ()

= (rg'ragris) (ro ragris) (rg ragra) (rg rasr1) (1)

~ C _ B o C.Co.C\ — (1B,.B,.B
Since 1y = 1y’ fori # 0, then (ryr§rs;) = (ryr3r35). Hence

u = (r{rgry) (rgraeris) g ragris) (g roer ) (rg rasris) () € 577

Now we convert u from By to D, using the techniques in this chapter.
rPr8 = rPrP by Lemmal8.2.2] then

u = (i) (rg ragrie) (rg ragris) (rg ragr) (rg r25715) (1),

r8r = rDrP by Lemmal8.2.4} then

u = (r{rrd ) (rg rasrie) (rg raeris) (rg raeria) (rg rasres) (')

B,.B,.B.B _ D D D B
rPrlrBarl = rPrErirE by Corollary[8.2.7, then

u = (ryro) (rg ragrigra) ) (rg' raeris) (rg ragrts) (rg rasriz) (g,

B,.B,B,B _ .D.D,D,B
rPrBrirE = rPrlrlrB by Corollary [8.2.7} then

u = (rry) (g ragrie) (rg raerisry ) (rg ragria) (g rasria) (rg):

rPrBrBrB = rPrDrDrB by Corollary [8.2.7} then

u = (i) (g ragrie) (rg rogriz) (rg raerizrd)) (g rasr i) (rg),

rPrBrlrB = rPrlrL) by Corollary[8.2.7] then

u = (i) (rg ragrie) (ro raeris) (rg ragris) (rg ra5r12) (19),

Since rf = r{, then

u = (r{r) (g ragrie) (rg raeris)* (rg ragriz) (rg rasriz) € S5
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9. CONCLUSION AND RECOMMENDATION

In this thesis we found Grobner-Shirshov basis and normal forms for the infinite
Coxeter groups of type A, En C, and D,, with respect to degree lexicographic order and
we order the generators as ro > r, > --- > 71,. We also made some experiments by
changing the order of the generators. The resulting bases were more complex than our
original basis. Experiments can be carried out using orders other than degree lexicographic

order.

As a further study, Grobner-Shirshov basis and normal form calculations can be
made for the infinite Coxeter groups of type 56, E; and Eg. But even Grobner-Shirshov
bases of the finite Coxeter groups of type Fg ,F; and Eg are quite complicated. Calculations

for infinite groups of these types require serious programming knowledge and patience.

Using the combinatorial meanings that we found some new combinatorial properties
of the Coxeter groups can be obtained for normal forms. For example deciding two elements
are comparable with respect to Bruhat order is open problem for the infinite Coxeter groups
of type én and En We will try to use our normal forms and their combinatorial meanings

to solve this problem.
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