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ABSTRACT

GRÖBNER-SHIRSHOV BASES AND NORMAL FORMS FOR SOME COXETER
GROUPS

PH.D. THESIS
UĞUR USTAOĞLU,

BOLU ABANT İZZET BAYSAL UNIVERSITY GRADUATE SCHOOL OF
NATURAL AND APPLIED SCIENCES
DEPARTMENT OF MATHEMATICS

(SUPERVISOR : ASSOC. PROF. DR. EROL YILMAZ)

BOLU, SEPTEMBER 2018

The Gröbner-Shirshov bases and normal forms of the infinite Coxeter groups of type
B̃n, C̃n and D̃n are obtained for the first time. New versions of Gröbner-Shirshov bases and
normal forms of the finite Coxeter groups of type An, Bn and Dn are also found. Using
combinatorial techniques, the product of two normal forms is attained as normal form in all
Coxeter groups mentioned above and the infinite Coxeter group of type Ãn. Hence all these
groups are completely revealed.

KEYWORDS: Finite Coxeter Groups, Infinite Coxeter Groups, Gröbner-Shirshov Bases,
Permutation Groups, Normal Forms, Composition-Diamond Lemma .
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ÖZET

BAZI COXETER GRUPLARI İÇİN GRÖBNER-SHIRSHOV TABANLARI VE
NORMAL FORMLAR

DOKTORA TEZİ
UĞUR USTAOĞLU,

BOLU ABANT İZZET BAYSAL UNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ
MATEMATİK ANABİLİM DALI

(TEZ DANIŞMANI : DOÇ. DR. EROL YILMAZ)

BOLU, EYLÜL 2018

B̃n, C̃n ve D̃n tipi sonsuz Coxeter gruplarının Gröbner-Shirshov tabanları ve normal
formları ilk defa bulundu. An, Bn and Dn tipi sonlu Coxeter gruplarının Gröbner-Shirshov
tabanlarının ve normal formlarının yeni versiyonları bulundu. Kombinatorik teknikler kulla-
nılarak, yukarıda bahsedilen bütün Coxeter gruplarda ve Ãn tipi sonsuz Coxeter grubunda,
iki tane normal formun çarpımının normal form olduğu elde edildi. Böylece tüm bu gruplar
tamamen açığa çıkarılmıştır.

ANAHTAR KELİMELER: Sonlu Coxeter Grupları, Sonsuz Coxeter Grupları, Gröbner-
Shirshov Tabanları, Permütasyon Grupları, Normal Formlar, Composition-Diamond Önsavı
.
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1. INTRODUCTION

Shirshov (1962) found linear bases for Lie algebras defined by generators and rela-

tions. He defined the composition of two Lie polynomials and using these compositions he

gave an infinite algorithm to find the desired linear basis. Buchberger (1965) developed a

similar algorithm for ideals in polynomial rings. Unlike Shirshov’s algorithm his algorithm

finds the basis after finitely many steps. He named these bases on behalf of his advisor as

Gröbner bases. Nowadays, especially in noncommutative settings, these bases are called

Gröbner-Shirshov bases. In fact Shirshov (1962) also implicitly gave an algorithm for as-

sociative algebras because he treated Lie algebras as subspace of Lie polynomials over free

associative algebras. Furthermore, the cases of semigroups and groups presented by gener-

ators and defining relations are just special cases of associative algebras. Hence Gröbner-

Shirshov bases for every Lie algebra, associative algebra, semigroup or group presented by

generators and defining relations can be found.

The Composition-Diamond lemma for Lie algebras’ (Shirshov (1962), Lemma 3)

relates Gröbner-Shirshov bases for Lie algebras to their linear bases. Associative algebra

version of this lemma gives a relation between Gröbner-Shirhov bases and normal forms of

semigroups or groups presented by generators and defining relations. Since late nineties,

finding Gröbner-Shirshov bases and normal forms of semigroups and groups are very active

research area. We recommend the survey by Bokut and Chen (2014) to those who are

interested in this subject.

Coxeter groups, sometimes called Weyl groups, are one of the most imported ex-

ample of groups presented by generators and defining relations. Because of this, finding

Gröbner-Shirshov bases of these groups attracted the attention of researchers. Gröbner-

Shirshov bases for finite Coxeter groups are found in Bokut and Shiao (2001). Svechkarenko

(2007) found Gröbner-Shirshov basis for finite exceptional Coxeter group of type E8. Lee

(2008) found Gröbner-Shirshov basis for finite exceptional Coxeter groups of type E6 and

E7. Then Yılmaz et al. (2014) obtained Gröbner-Shishov bases of infinite Coxeter (Weyl)

group of type Ãn. Karpuz et al. (2015) found Gröbner-Shirshov bases of some Weyl groups.

For the infinite exceptional Weyl group of type F4, Gröbner–Shirshov basis is constructed

by Lee (2016).
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The main purpose of this thesis is to obtain Gröbner-Shirshov bases and normal

forms for infinite Coxeter groups of type B̃n, C̃n and D̃n. We; however, observed that all

articles written so far has not been interested to find multiplication of normal forms. In fact

product of two normal forms is not generally a normal form. Of course, applying Shirshov’s

reduction process to the product one can obtain normal form but this is very time consuming.

We try to find a more explicit method for finding normal form of the multiplication of two

normal forms. To do this we used the combinatorial properties of Coxeter groups. In chapter

4, we reproduce Gröbner-Shirshov bases and normal forms of the finite Coxeter groups of

type An, Bn and Dn using a different order than Bokut and Shiao (2001). Using these new

normal forms we are able to find normal form of the product of two normal forms. Hence

these groups are completely revealed. In chapter 5, we acquired combinatorial meaning for

normal forms of the infinite Coxeter group of type Ãn given in Yılmaz et al. (2014). The

results of these two chapters are also to be published as an article ( see Ustaoğlu and Yılmaz

(2018)). The chapters 6, 7 and 8 are main results of this thesis. We respectively obtained

Gröbner-Shirshov bases, normal forms and normal form products of the infinite Coxeter

groups of type B̃n, C̃n and D̃n.
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2. BASIC CONCEPTS

2.1 Coxeter Groups

Generators and relations defined Coxeter Groups in an easy way.

A n×n symmetric matrixmwhose elements are positive integers or positive infinity

is called a Coxeter matrix if it satisfies mij = 1 if and only if i = j.

Let S = {s1, s2, . . . , sn}. A Coxeter matrix can be presented by a Coxeter graph

whose nodes are elements of S and whose edges are unordered pairs {si, sj} such that

mij ≥ 3. The edges with mij ≥ 4 are weighted by mij − 2. We can give an example

of correspondence of between the graph and the matrix.

Example 1. Let n× n symetric matrix m given by

m =


1 3 2 2

3 1 4 ∞
2 4 1 2

2 ∞ 2 1


and relation of between s1 and s2 is m12 − 2 = 1, then there is an edge between them;

relation of between s1 and s3 ism13−2 = 0, then there is no edge between them; relation of

between s1 and s4 is m14 − 2 = 0, then there is no edge between them; relation of between

s2 and s3 is m23−2 = 2, then there are two edges between them; relation of between s2 and

s4 is m24 − 2 =∞, then there are infinitely many edges between them; and finally relation

of between s3 and s4 is m34 − 2 = 0, then there is no edge between them. After then, the

graph is

s1 s2

s3

s4

2

∞

Also we now give the correspondence of the graph and the relations.
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Definition 2.1.1. A Coxeter matrix m specifies a group W . It has a presentation Generators

which are elements of S and Relations which satisfy (sisj)
mij = 1 where si and sj are

elements of S.

Because of mii = 1, we have that s2i = 1. It is simple to show that for i 6= j and

mij 6=∞, (sisj)
mij = 1 is equivalent to

mij

sisjsisj · · ·︸ ︷︷ ︸ =
mij

sjsisjsi · · ·︸ ︷︷ ︸
where length of both sides is mij .

In previous example, we can give the group determined by the above Coxeter dia-

gram has a presentation as {{s1, s2, s3, s4}, s21 = s22 = s23 = s24 = 1, s1s2s1 = s2s1s2, s1s3 =

s3s1, s1s4 = s4s1, s3s4 = s4s3, s2s3s2s3 = s3s2s3s2}.

(W,S) is called a Coxeter System if a groupW has a presentation such as generators

and relations where W and S are Coxeter group and the set of Coxeter generators, respec-

tively. The cardinality of S is rank of (W,S). If the Coxeter graph is connected, then the

system is irreducible.

In Bjorner and Brenti (2005), the following statements are equivalent and make ex-

plicit what it means for W to be determined by m via above presentation.

• If G is a group and f : S → G is a mapping such that

(f(si)f(sj))
mij = 1

for all (si, sj) ∈ S2, then there is a unique extention of f to a group homomorphism

f : W → G.

• W ∼= F/N , where F is the free group generated by S and N is the normal subgroup

generated by (sisj)
mij .

• Let S∗ be the free monoid generated by S(i.e., the set of words in the alphabet S with

concatenation as product). Let ≡ be the equivalence relation generated by allowing

insertion or deletion of any word of the form

(sisj)
mij =

2mij

sisjsisj · · ·︸ ︷︷ ︸ .
Then, S∗/ ≡ forms a group isomorphic to W .

4



Let (W,S) be a Coxeter system. Definition 2.1.1 leaves some uncertainty about the

orders of pairwise products sisj as elements of W where si, sj ∈ S. All that follows is that

the order of sisj divides mij if mij is finite. This leaves open the possibility that distinct

Coxeter graphs might determine isomorphic Coxeter systems. However, this is not the case.

Proposition 2.1.2 (Bjorner and Brenti (2005),Proposition 1.1.1). (W,S) is the Coxeter sys-

tem determined by a Coxeter matrix m. Let si and sj be distinct elements of S. Then, the

followings hold:

(i) si and sj are distinct in W .

(ii) The order of sisj in W is mij .

Theorem 2.1.3 ( Bjorner and Brenti (2005),Theorem 1.1.2). Up to isomorphism there is a

one-to-one correspondence between Coxeter matrices and Coxeter systems.

Assume that (W,S) is a Coxeter system. Then w = s1s2 · · · sk where si ∈ S is a

generator, 1 ≤ i ≤ k, for all w ∈ W . k is called the length of w denoted by l(w) = k. If k

is minimum for w, then word written as a product of generators is called a reduced word for

w.

The all finite irreducible Coxeter systems and some infinite Coxeter systems have

been classified (see Bjorner and Brenti (2005)). We give Coxeter graphs of the finite Coxeter

groups of type An, Bn and Dn and the infinite Coxeter groups of type Ãn, B̃n, C̃n and D̃n

in the following tables.

Table 2.1. The some finite irreducible Coxeter systems

Name Diagram

An (n ≥ 1)
r1 r2 r3 rn−1 rn

Bn (n ≥ 2)
r1 r2 rn−2 rn−1 rn

2

Dn (n ≥ 4)

r1 r2 rn−3
rn−2

rn−1

rn
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Table 2.2. The some infinite Coxeter systems

Name Diagram

Ãn (n ≥ 3)

r0

r1 r2 r3 rn−1 rn

C̃n (n ≥ 2)
r0 r1 r2 rn−2 rn−1 rn

2 2

B̃n (n ≥ 3)

r0

r1

r2 r3 rn−2 rn−1 rn

2

D̃n (n ≥ 4)

r0

r1

r2 r3 rn−3
rn−2

rn−1

rn

2.2 Poincaré Series

Definition 2.2.1. Let W be a Coxeter group and A ⊆ W . Define

A(x) :=
∑
w∈A

xl(w).

A(x) is called Poincaré series of A. (If |A| < ∞, then A(x) is the Poincaré polynomial of

A.)

Lemma 2.2.2 ( Bjorner and Brenti (2005),Theorem 7.1.1). Suppose that W =
∏k

i=1Wi,

where W1,W2, . . . ,Wk are irreducible Coxeter systems. Then

W (x) =
k∏
i=1

Wi(x).

Define [i]x = 1 + x+ x2 + . . .+ xi−1 for i ≥ 1.

Theorem 2.2.3 ( Bjorner and Brenti (2005),Theorem 7.1.5). Let (W,S) be a finite irre-

ducible Coxeter system, and n := |S|. Then, there exist positive integers e1, e2, . . . en such

that

W (x) =
n∏
i=1

[ei + 1]x.
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The integers e1, e2, . . . , en are called exponents of (W,S) which is given by the

following table for some finite Coxeter groups.

Table 2.3. Exponents for some finite Coxeter groups

Name Exponents
An (n ≥ 1) 1, 2 . . . , n

Bn (n ≥ 2) 1, 3 . . . , 2n− 1

Dn (n ≥ 4) 1, 3 . . . , 2n− 3, n− 1

After some easy computations, the orders of the finite Coxeter groups of type An,

Bn and Dn can be found as (n + 1)!, 2nn! and 2n−1n!, respectively (see Bjorner and Brenti

(2005) Appendix A1).

Theorem 2.2.4 ( Bjorner and Brenti (2005),Theorem 7.1.10). Let (W,S) be infinite Coxeter

system, and let e1, e2, . . . , en be the exponents of the corresponding finite group. Then,

W (x) =
n∏
i=1

[ei + 1]x
1− xei

.

If we remove r0 from the graph of C̃n, then it becomes same graph of the Coxeter

graph of Bn. Hence we can use the exponent of Bn for Poincaré Series of C̃n.

2.3 Some Basic Definitions of Gröbner-Shirshov Basis

First of all, we recall some concepts about the Gröbner-Shirshov basis theory. Let S

be a set and S∗ be the free monoid of words generated by S. We denote empty word by 1.

A well ordering < on S∗ is called monomial order if x < y implies axb < ayb for

all a, b ∈ S∗. We use degree lexicographic order in this work.

Let k〈S〉 be free associative algebra generated by S over a field k. Given 0 6= f ∈
k < S >, we denote by f the leading word in f , the biggest element of f with respect to

given monomial order.

For two monic polynomials f and g, if there is a word w such that w = fb = ag

for some a, b ∈ S∗, then the composition of f and g defined by < f, g >w= fb − ag. If

such a word w does not exist and f > g, then f = agb for some a, b ∈ S∗. In this case the

composition defined as < f, g >= f − agb.

7



The transformation f 7→ f−agb is called the elimination of the leading word (ELW)

of f in g. Let R ⊂ k〈S〉 be set of monic polynomials and f be another monic polynomial.

We say f is reduced to h modulo R if f is obtained by a sequence of ELW in elements of R

and further ELW of h is not possible. A set R ⊂ k〈S〉 is called a Gröbner-Shirshov Basis if

any composition of polynomials from R is reduced to zero modulo R.

IfR ⊂ k〈S〉 is not a Gröbner-Shirshov basis, then take a composition of polynomials

from R and reduce it modulo R. If reduction process produce a non zero polynomial r, then

enlarge the set R by r. Repeat this process for each composition of polynomials from R

until no more enlargement of R is necessary. Then the set you obtain is a Gröbner-Shirshov

basis. Such a process is called Shirshov algorithm.

The following well known lemma is useful for finding normal form of a group via

its Gröbner-Shirshov basis.

Lemma 2.3.1. (Composition-Diamond lemma for associative algebras)

Let k be a field, A = k〈S|R〉 = k〈S〉/Id(R) and < a monomial ordering on S∗,

where Id(R) is the ideal of k〈S〉 generated by R. Then the following statements are equiv-

alent:

(i) R is a Gröbner-Shirshov basis.

(ii) f ∈ Id(R)⇒ f = asb for some s ∈ R and a, b ∈ S∗.

(iii) The set of R-reduced words

Red(R) = {w ∈ S∗|w 6= asb, a, b ∈ S∗, s ∈ R}

is a k-linear basis for the algebra A = k〈S|R〉.

If a group G is defined by generators S and relations R, then we can identify each

relation a = b in R with a polynomial a − b. Thus the set of relations can be considered

as a subset of k〈S〉. Therefore one can find a Gröbner-Shirshov basis of R which we call a

Gröbner-Shirshov basis of the group G. Notice that R consists of "biwords", differences of

words. The Shirshov algorithm maintains this property throughout the entire computation.

Hence Gröbner-Shirshov basis of a group can be thought as a special set of relations for this

group. Furthermore the set Red(R) = {w ∈ S∗|w 6= asb, a, b ∈ S∗, s ∈ R} becomes the

set of all normal forms of G by the Composition-Diamond lemma.

8



3. MATERIALS AND METHODS

The main idea for finding Gröbner-Shirshov bases for the infinite Coxeter groups of

type Ãn, B̃n, C̃n and D̃n is to apply Shirshov algorithm for small n’s. Then we generalize

and prove the results for every n. This works for finite Coxeter groups. One; however, can

not apply Shirshov algorithm by hand for infinite Coxeter groups. Hence we wrote some

codes for Shirshov algorithm using Mathematica. But even with the help of the computer, we

have not succeeded in getting the Gröbner-Shirshov bases of infinite Coxeter groups. Then

we decided to partially apply Shirshov algorithm. After adding some new polynomials to

the basis, we found corresponding reduced words. To do this, we also wrote some codes in

Mathematica. Since number of elements in each length is known for Coxeter groups, we

checked that number of reduced words of each length is equal to this known number up to

certain lengths. If equality does not hold, then we continue to apply Shirshov algorithm.

If equality holds for large lengths, we supposed that we found the Gröbner-Shirshov basis

since Composition-Diamond lemma implies if the set of reduced words of given polyno-

mials is equal to the set of elements of the Coxeter group, then these polynomials form a

Gröbner-Shirshov basis. Then we generalize our results to every n and then try to prove

them using combinatorial techniques. If we were not able to prove our generalizations, then

we supposed that our generilazations were not correct. In this case we went back to the

algorithm and tried to find extra polynomials on the Gröbner-Shirshov basis.

9



4. GRÖBNER-SHIRSHOV BASES AND NORMAL FORMS FOR

SOME FINITE COXETER GROUPS

In this chapter, we will obtain Gröbner-Shirshov bases and normal forms of the finite

Coxeter groups of type An, Bn and Dn. We also find the product of two normal forms as a

normal form in all these Coxeter groups. Let us start with the finite Coxeter group of type

An.

4.1 The Finite Coxeter Group of Type An

Let S = {r1, r2, . . . , rn} and

rij =


riri+1 · · · rj if 1 ≤ i < j ≤ n ;

riri+1 · · · rnrn−1 · · · r2n−j if 1 ≤ i ≤ n < j ≤ 2n− i;
ri if j = i;

1 if j = i− 1.

Suppose that < is the degree lexicographic order on S. A set R is Gröbner-Shirshov

basis hereafter means it is a Gröbner-Shirshov basis with respect to <.

Definition 4.1.1. The finite Coxeter group of type An (n ≥ 1) is generated by S =

{r1, r2, · · · , rn} with defining relations:

(R1) riri = 1 for 1 ≤ i ≤ n,

(R2) rirj = rjri for 1 ≤ i < j − 1 ≤ n− 1,

(R3) riri+1ri = ri+1riri+1 for 1 ≤ i ≤ n− 1.

Hence An has a presentation An = 〈S | {R1, R2, R3}〉.

Proposition 4.1.2. A reduced Gröbner-Shirshov basis of the finite Coxeter group of type An

contains the following polynomials:

• f (i)
1 = riri − 1 for 1 ≤ i ≤ n,

10



• f (i,j)
2 = rirj − rjri for 1 ≤ i ≤ j − 1 ≤ n− 1,

• f (i)
3 = riri+1ri − ri+1riri+1 for 1 ≤ i ≤ n− 1,

• g(i,j) = rijri − ri+1rij for 1 ≤ i < j − 1 ≤ n− 1.

Proof. The first three polynomials come from defining relations of the finite Coxeter group

of type An. We can obtain g(i,j) with the following compositions of inclusion.

< f
(i)
3 , f

(i,i+2)
2 > = (riri+1ri − ri+1riri+1)ri+2 − riri+1(riri+2 − ri+2ri)

= riri+1ri+2ri − ri+1riri+1ri+2

= g(i,i+2)

for 1 ≤ i ≤ n− 2.

< g(i,j), f
(i,j+1)
2 > = (rijri − ri+1rij)rj+1 − rij(rirj+1 − rj+1ri)

= ri,j+1ri − ri+1ri,j+1

= g(i,j+1)

for 1 ≤ i < j − 1 ≤ n− 2

Notice that we are not claiming that these polynomials form a Gröbner-Shirshov

basis for the finite Coxeter group of type An at this point. A Gröbner-Shirshov basis may

contain more polynomials.

We now give a well known combinatorial description of the finite Coxeter group of

type An.

Proposition 4.1.3. (Bjorner and Brenti (2005), Proposition 1.5.4) The symmetric group

Sn+1 with generating set S = {r1, . . . , rn} is the finite Coxeter group of type An where

ri = (i i+ 1) for i = 1, . . . , n.

Definition 4.1.4. Given u ∈ Sn+1, let

Ii(u) := {u(j) : u(j) > i for some j < u−1(i)}

for i = 1, . . . , n+ 1.

Lemma 4.1.5. Let u ∈ Sn+1 such that u(l) = l for 1 ≤ l ≤ k − 1 and let x = rkjk where

jk = |Ik(u)|+ k − 1. If v = ux−1, then v(l) = l for 1 ≤ l ≤ k and Ii(v) = Ii(u) for i 6= k.

11



Proof. Since u−1(l) = l for 1 ≤ l ≤ k − 1, |Ik(u)| = u−1(k) − k and then jk + 1 =

|Ik(u)| + k = u−1(k). Hence v(l) = u(x−1(l)) = u(l) = l for 1 ≤ l ≤ k − 1 and

v(k) = u(x−1(k)) = u(jk + 1) = k.

Let i 6= k. Notice that u−1(i) 6= jk+1 = u−1(k). Suppose t ∈ Ii(u). Then u(j) > i

for some j < u−1(i). Since u−1(i) 6= jk + 1, x preserve the inequality that is x(j) <

x(u−1(i)) = v−1(i). Therefore t = v(x(j)) > i for some x(j) < v−1(i). This implies

t ∈ Ii(v). Conversely suppose t ∈ Ii(v). Hence t = v(j) > i for some j < v−1(i).

Since v−1(i) = x(u−1(i)) 6= x(jk + 1) = k, x−1 preserve the inequality that is x−1(j) <

x−1(v−1(i)) = u−1(i). Therefore t = u(x−1(j)) > i for some x−1(j) < u−1(i). This

implies t ∈ Ii(u).

Theorem 4.1.6. Any w ∈ Sn+1 can be represented in a form rnjn · · · riji · · · r1j1 where

i− 1 ≤ ji = |Ii(w)|+ i− 1 ≤ n for i = 1, . . . , n.

Proof. Let v0 = w. Suppose that vk = vk−1(rkjk)
−1 where jk = |Ik(vk−1)| + k − 1 for

k = 1, . . . , n. Lemma 4.1.5 implies vk(l) = l for l = 1, . . . , k and Ii(vk) = Ii(vk−1) for

i 6= k. Hence

jk = |Ik(vk−1)|+ k − 1 = |Ik(vk−2)|+ k − 1 = · · · = |Ik(w)|+ k − 1

for k = 1, . . . , n. Furthermore vn = w(r1j1)
−1 · · · (rnjn)−1 is the identity element. Hence

w = rnjn · · · riji · · · r1j1 .

We can now give main result of this section.

Corollary 4.1.7. Let R be the set of polynomials given in Proposition 4.1.2. Then

(i) Red(R) = {rnjn · · · riji · · · r1j1|i− 1 ≤ ji ≤ n, i = 1, . . . , n}.

(ii) R is a Gröbner-Shirshov basis for the finite Coxeter group of type An.

Proof. (i) One can easily check that w ∈ Red(R) for any w ∈ A. Conversely if w ∈
Red(R) ⊂ S∗, then w corresponds to a permutation in Sn+1. Hence w ∈ A by

Theorem 4.1.6.
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(ii) If R was not a Gröbner-Shirshov basis, then R ⊂ R̄ where R̄ was a Gröbner-Shirshov

basis. So Red(R̄) should contain more words than Red(R) but there are (n+1)! words

in Red(R) which is exactly same as number of elements in the finite Coxeter group of

type An. Hence Red(R) is the set of normal forms and R is a Gröbner-Shirshov basis

for the finite Coxeter group of type An by the Composition-Diamond lemma.

Notice that Theorem 4.1.6 gives a method for converting any element of the finite

Coxeter group of type An into its normal form. Let us conclude this section by an example

of finding the normal form of the product of two normal forms.

Example 2. Let x = r4r23r14 and y = r5r4r35r25r14 in A5.

x = r4r23r14

= (4 5)(2 3 4)(1 2 3 4 5)

=

1 2 3 4 5 6

3 5 2 4 1 6


and

y = r5r4r35r25r14

= (5 6)(4 5)(3 4 5 6)(2 3 4 5 6)(1 2 3 4 5)

=

1 2 3 4 5 6

6 4 5 3 1 2


z = xy

=

1 2 3 4 5 6

3 5 2 4 1 6

1 2 3 4 5 6

6 4 5 3 1 2


=

1 2 3 4 5 6

6 4 1 2 3 5


Then |I5(z)| = 1, |I4(z)| = 1, |I3(z)| = 2, |I2(z)| = 2 and |I1(z)| = 2. Theorem 4.1.6

implies z = r5r4r34r23r12.

4.2 The Finite Coxeter Group of Type Bn

Now let us do similar computations for the finite Coxeter group of type Bn.
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Definition 4.2.1. The finite Coxeter group of type Bn (n ≥ 2) is generated by S =

{r1, r2, · · · , rn} with defining relations:

(R1) riri = 1 for 1 ≤ i ≤ n,

(R2) rirj = rjri for 1 ≤ i < j − 1 < n,

(R3) riri+1ri = ri+1riri+1 for 1 ≤ i < n− 1,

(R4) rn−1rnrn−1rn = rnrn−1rnrn−1.

Hence Bn has a presentation Bn =< S | {R1, R2, R3, R4} >.

Proposition 4.2.2. A reduced Gröbner-Shirshov basis of the finite Coxeter group of type Bn

contains the following polynomials:

• f (i)
1 = riri − 1 for 1 ≤ i ≤ n,

• f (i,j)
2 = rirj − rjri for 1 ≤ i < j − 1 < n,

• f (i,j)
3 = rijri − ri+1rij for 1 ≤ i ≤ n− 2 and i < j < 2n− i− 1,

• f (i)
4 = ri,2n−iri+1 − ri+1ri,2n−i.

Proof. The polynomials f (i)
1 and f

(i,j)
2 come from the defining relations (R1) and (R2),

respectively. Similarly the polynomials f (i,i+1)
3 and f (n−1)

4 comes from the defining relation

(R3) and (R4), respectively. Now let us apply the Shirshov algorithm to these polynomials.

< f
(i,j−1)
3 , f

(i,j)
2 >= f

(i,j)
3 for n ≥ j,

< f
(i,j−1)
3 , f

(i,2n−j)
2 >= f

(i,j)
3 for n < j,

< f
(i,2n−2−i)
3 , f

(i,i+1)
3 >= f

(i)
4 .

Notice again that a Gröbner-Shirshov basis of the finite Coxeter group of type Bn

may contain more polynomials.Using the combinatorial description of the finite Coxeter

group of type Bn, we will show that the polynomials given above proposition are in fact

form a Gröbner-Shirshov basis.
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Let SBn be the group of all permutationsw on [±n] = {−n,−(n−1), . . . ,−1, 1, . . . , n}
such that

w(−i) = −w(i)

for all i ∈ [±n]. Clearly, such aw is uniquely determined by its values on [n] = {1, 2, . . . , n}
and we write w = [w1, w2, . . . , wn] where wi = w(i) for i = 1, . . . , n. This notation is win-

dow notation for w. If u ∈ Sn, then its extension to SBn is [u] = [u1, u2, . . . , un] where

ui = u(i) for i = 1, 2, . . . , n.

Proposition 4.2.3. (Bjorner and Brenti (2005) ,Proposition 8.1.3) The group SBn with gen-

erating set S = {r1, . . . , rn} is the finite Coxeter group of type Bn where ri = [(i i+ 1)] for

i = 1, 2, . . . , n− 1 and rn = (n − n).

Lemma 4.2.4. The following equality holds in Bn

(i − i)riji = ri,2n−ji−1

where i− 1 ≤ ji ≤ n− 1 for 1 ≤ i ≤ n− 1.

Proof. First of all, ri,2n−i = [(i i + 1 · · · n)](n − n)[(n n − 1 · · · i)] = (i − i) for

i = 1, . . . , n. Then ri,2n−ji−1 = ri,2n−iriji = (i − i)riji for i− 1 ≤ ji ≤ n.

Theorem 4.2.5. Given w = [w1, w2, . . . , wn] ∈ SBn , let u ∈ Sn such that u(i) = |wi| for

i = 1 . . . , n. Then w can be uniquely represented in a form

rnjn · · · riji · · · r1j1

where ji = |Ii(u)|+ i− 1 if w−1(i) > 0 and ji = 2n− |Ii(u)| − i if w−1(i) < 0.

Proof. Clearly,

w = (
∏

w−1(i)<0

(i − i))[u]

Theorem 4.1.6 implies [u] has the unique representation

rnjn · · · riji · · · r1j1

where ji = |Ii(u)| + i− 1 for i = 1, . . . , n. Here we abuse the notation. In fact rn 6∈ An−1
but rnjn = 1 since jn = n− 1. Since (i − i) and rkjk commute when k > i, we can write

rnjn · · · riji · · · r1j1

where riji = riji if w−1(i) > 0 and riji = (i − i)riji if w−1(i) < 0.
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Since (i − i)riji = ri,2n−ji−1 by Lemma 4.2.4,

(i − i)ri,|Ii(u)|+i−1 = ri,2n−(|Ii(u)|+i−1)−1 = ri,2n−|Ii(u)|−i

when w−1 < 0. Hence w has desired representation.

As a consequence of this theorem, we can conclude the following.

Corollary 4.2.6. Let R be the set of polynomials given in Proposition 4.2.2. Then

(i) Red(R) = {rnjn · · · riji · · · r1j1|i− 1 ≤ ji ≤ 2n− i, i = 1, . . . , n}.

(ii) R is a Gröbner-Shirshov basis for the finite Coxeter group of type Bn.

Proof. The first statement is easily follows from Theorem 4.2.5 and the fact that the words

in the right hand side are in Red(R).

Notice that there are 2nn! words of the form rnjn · · · riji · · · r1j1 where i− 1 ≤ ji ≤
2n − i for i = 1, . . . , n. This is same as number of elements of the finite Coxeter group of

type Bn. This implies Red(R) is the set of normal forms and R is a Gröbner-Shirshov basis

for the finite Coxeter group of type Bn by the Composition-Diamond lemma.

Example 3. Let us take two different words in B4 such that x = r4r35r23r14 and y =

r34r25r16.

x = r4r35r23r14

= [1, 2, 3,−4][1, 2,−3, 4][1, 3, 4, 2][2, 3, 4,−1]

= [−3,−4, 2,−1]

and

y = r34r25r16

= [1, 2, 4,−3][1, 3,−2, 4][2,−1, 3, 4]

= [4,−1,−2,−3]

z = xy

= [−3,−4, 2,−1][4,−1,−2,−3]

= [−1, 3, 4,−2]

Let u ∈ S3 such that [u] = [1, 3, 4, 2]. Then |I4(u)| = 0, |I3(u)| = 0, |I2(u)| = 2 and

|I1(u)| = 0. Therefore z = r24r17 by Theorem 4.2.5.
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4.3 The Finite Coxeter Group of Type Dn

Finally we consider the finite Coxeter group of type Dn.

Definition 4.3.1. The finite Coxeter group of type Dn (n ≥ 4) is generated by S =

{r1, r2, · · · , rn} with defining relations:

(R1) riri = 1 for 1 ≤ i ≤ n,

(R2) rirj = rjri for 1 ≤ i < j − 1 < n except (i, j) = (n− 2, n),

(R3) rn−1rn = rnrn−1,

(R4) rn−2rnrn−2 = rnrn−2rn,

(R5) riri+1ri = ri+1riri+1 for 1 ≤ i < n− 1.

Hence Dn has a presentation Dn =< S|{R1, R2, R3, R4, R5} >.

Let

r̃ij =

 riri+1 · · · rn−2rnrn−1 · · · r2n−j, 1 ≤ i < n− 1 < j ≤ 2n− i,
rij, otherwise

Hence r̃ij and rij are interchangeable if i− 1 ≤ ji < n for 1 ≤ i ≤ n.

Proposition 4.3.2. A reduced Gröbner-Shirshov basis of the finite Coxeter group of typeDn

contains the following polynomials:

• f (i)
1 = riri − 1 for 1 ≤ i ≤ n,

• f (i,j)
2 = rirj − rjri for 1 ≤ i < j − 1 < n except (i, j) = (n− 2, n),

• f3 = rn−1rn − rnrn−1,

• f4 = r̃n−2,nrn−2 − rnr̃n−2,n,

• f (i,j)
5 = r̃ijri − ri+1r̃ij for (1 ≤ i < j − 1 ≤ n − 1) or (1 ≤ i < n − 2

n ≤ j ≤ 2n− 3 and 2n− j − 1 > 1),

• f (i)
6 = r̃i,2n−iri+1 − ri+1r̃i,2n−i for 1 ≤ i ≤ n− 3,

• f7 = r̃n−2,n+2rn − rn−1r̃n−2,n+2,

• f8 = r̃n−2,n+2rn−1 − rnr̃n−2,n+2.
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Proof. The polynomials f (i)
1 , f (i,j)

2 , f (i)
3 , f4, f

(i,i+1)
5 come across the defining relations (R1),

(R2), (R3), (R4) and (R5), respectively. Now let us apply the Shirshov algorithm to these

polynomials.

< f
(i,i+1)
5 , f

(i,i+2)
2 >= f

(i,i+2)
5 for 1 ≤ i < n− 2,

< f
(i,j−1)
5 , f

(i,j)
2 >= f

(i,j)
5 for i+ 3 ≤ j ≤ n− 1,

< f
(n−3,n−2)
5 , f

(n−3,n)
2 >= f

(n−3,n)
5 ,

< f
(i,n−2)
5 , f

(i,n)
2 >= f

(i,n)
5 for 1 ≤ i < n− 3,

< f
(i,2n−j−1)
5 , f

(i,j)
2 >= f

(i,2n−j)
5 for 1 ≤ i < n− 2, 3 ≤ j ≤ n− 1 and j − i > 1,

< f
(i,2n−i−2)
5 , f

(i,i+1)
5 >= f

(i)
6 for 1 ≤ i ≤ n− 3,

< f
(n−2,n)
5 , f4 >= rn−2f

(n−1)
3 rn−2rn − rn−1rn−2f (n−1)

3 rn−2 + f7,

< f4, f
(n−2,n)
5 >= f8.

We will show that the polynomials given in the above propositions form a Gröbner-

Shirshov basis using the technique used in the previous sections.

Let SDn be the subgroup of SBn consisting of all of the signed permutations having an

even number of negative entries in their window notation.

Proposition 4.3.3. (Bjorner and Brenti (2005),Proposition 8.2.3) The group SDn with gener-

ating set S is the finite Coxeter group of typeDn where ri = [(i i+1)] for i = 1, 2, . . . , n−1

and rn = [(n− 1 − n)].

Lemma 4.3.4. Let riji ∈ Dn where i − 1 ≤ ji ≤ n − 1 for 1 ≤ i ≤ n − 2. Then we have

the followings:

(i) riji(n − n) = (n − n)riji for i− 1 ≤ ji ≤ n− 2 and 1 ≤ i ≤ n− 2.

(ii) (i − i)riji = (n − n)r̃i,2n−ji−1 for i− 1 ≤ ji ≤ n− 2 and 1 ≤ i ≤ n− 2.

(iii) ri,n−1(n − n) = (i − i)ri,n−1 = (n − n)r̃in for 1 ≤ i ≤ n− 2.

(iv) (i − i)ri,n−1(n − n) = ri,n−1 = (n − n)2ri,n−1 for 1 ≤ i ≤ n− 2.
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Proof. (i) It is easily follows from definition of riji .

(ii) r̃i,2n−i = [(i i + 1 · · · n− 1)][(n− 1 − n)][(n n− 1 · · · i)] = (n − n)(i − i) for

i = 1, . . . , n− 2. So

r̃i,2n−ji−1 = r̃i,2n−iriji = (n − n)(i − i)riji

where i − 1 ≤ ji ≤ n − 2 for i = 1, 2, . . . , n − 2. Multiplying by (n − n) from the

left gives the desired equality.

(iii) r̃i,n−1(n − n) = [(i · · ·n)](n − n) = (i − i)[(i · · · n)] = (i − i)r̃i,n−1 =

(n − n)[(i · · · n)][(n− 1 − n)] = (n − n)r̃in for 1 ≤ i ≤ n− 2.

(iv) It is a consequence of part (iii).

We now ready to provide a representation for each element of SDn but we need one

more definition. Given w = [w1, w2, . . . , wn] ∈ SDn , define

neg(w, i) := |{{w1, w2, . . . , wn} : −i < wj < 0, 1 ≤ j ≤ n}|

for i = 1, . . . , n.

Theorem 4.3.5. Given w = [w1, w2, . . . , wn] ∈ SDn ,let u ∈ Sn such that u(i) = |wi| for

i = 1, . . . , n. Then w can be uniquely represented in a form

r̃njn · · · r̃iji · · · r̃1j1

where the indices are given by the following rules:

(i) If |Ii(u)| + i − 1 6= n − 1, then ji = |Ii(u)| + i − 1 when w−1(i) > 0 and ji =

2n− |Ii(u)| − i when w−1(i) < 0 for i = 1, . . . , n− 2,

(ii) If |Ii(u)| + i − 1 = n − 1, then ji = n when w−1(i)(−1)neg(w,i) < 0 and ji = n − 1

when w−1(i)(−1)neg(w,i) > 0 for i = 1, . . . , n− 2,

(iii) If |In−1(u)| = 0, then (jn−1, jn) = (n − 2, n − 1) when w−1(n − 1) > 0 and

(jn−1, jn) = (n− 1, n) when w−1(n− 1) < 0 and

(iv) If |In−1(u)| = 1, then (jn−1, jn) = (n− 1, n− 1) when w−1(n) > 0 and (jn−1, jn) =

(n− 2, n) when w−1(n) < 0.
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Proof. Clearly,

w = (
∏

w−1(i)<0

(i − i))[u]

Theorem 4.1.6 implies [u] has the unique representation

rn−1,jn−1
· · · riji · · · r1j1

where ji = |Ii(u)|+ i− 1 for i = 1, . . . , n− 1.

(i) Given 1 ≤ i ≤ n− 2, let ji 6= n− 1. If w−1(i) > 0, then

riji(n − n)neg(w,i) = (n − n)neg(w,i+1)riji

by part (i) of Lemma 4.3.4. If w−1(i) < 0, then

(i −i)riji(n −n)neg(w,i) = (n −n)neg(w,i+1)ri,2n−ji−1 = (n −n)neg(w,i+1)ri,2n−|Ii(u)|−i

by part (i) and (ii) of Lemma 4.3.4.

(ii) Given 1 ≤ i ≤ n− 2, let ji 6= n− 1. If w−1(i) < 0 and neg(w, i) is even, then

(i − i)ri,n−1(n − n)neg(w,i) = (i − i)ri,n−1 = (n − n)r̃in = (n − n)neg(w,i+1)r̃in

by part (iii) of Lemma 4.3.4. If w−1(i) > 0 and neg(w, i) is odd, then

ri,n−1(n − n)neg(w,i) = ri,n−1(n − n) = (n − n)r̃in = (n − n)neg(w,i+1)r̃in

by part (iii) of Lemma 4.3.4. If w−1(i) < 0 and neg(w, i) is odd, then

(i −i)ri,n−1(n −n)neg(w,i) = (i −i)ri,n−1(n −n) = ri,n−1 = (n −n)neg(w,i+1)ri,n−1

by part (iv) of Lemma 4.3.4. If w−1(i) > 0 and neg(w, i) is even, then clearly

ri,n−1(n − n)neg(w,i) = ri,n−1 = (n − n)neg(w,i+1)ri,n−1.

(iii) If |In−1(u)| = 0, then jn−1 = n − 2. Since number of negative entries is even in the

window notation ofw, w−1(n) and (−1)neg(w,n−1) have same sign whenw−1(n−1) >

0. In this case

(n − n)rn−1,n−2(n − n) = rn−1,n−2 = rn,n−1rn−1,n−2.

On the other hand, clearlyw−1(n) and (−1)neg(w,n−1) have opposite sign whenw−1(n−
1) < 0. In this case
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(n− 1 − (n− 1))rn−1,n−2(n − n) = (n− 1 − (n− 1))(n − n)rn−1,n−2

= [(n− 1 − n)][(n− 1 n)]

= rnrn−1.

(iv) If |In−1(u) = 1|. So jn−1 = n−1. If w−1(n) > 0, then w−1(n−1) and (−1)neg(w,n−1)

have same sign. In this case

(n− 1 − (n− 1))[(n− 1 n)](n − n) = [(n− 1 n)] = rn−1.

If w−1(n) > 0, then w−1(n− 1) and (−1)neg(w,n−1) have opposite sign. In this case

(n −n)[(n−1 n)](n −n) = (n −n)(n−1 −(n−1))[(n−1 n)] = [(n−1 −n)] = rn.

Corollary 4.3.6. Let R be the set of polynomials given in Proposition 4.2.2. Then

(i) Red(R) = {r̃njn r̃n−1,jn−1 · · · r̃iji · · · r̃1j1|i− 1 ≤ ji ≤ 2n− i, except n− 1 ≤ jn−1 ≤
n}.

(ii) R is a Gröbner-Shirshov basis for the finite Coxeter group of type Dn.

Proof. The first statement is easily follows from Theorem 4.3.5 the fact that the words in

the right hand side are in Red(R). Notice that there are exactly 2n−1n! words in Red(R).

This is same as number of elements of the finite Coxeter group of type Dn. This implies

Red(R) is the set of normal forms and R is a Gröbner-Shirshov basis for the finite Coxeter

group of type Dn by the Composition-Diamond lemma.

Let us end this section with an application of Theorem 4.3.5.

Example 4. Let w = [3,−5, 1, 4,−2] ∈ SD5 and u ∈ S5 such that [u] = [3, 5, 1, 4, 2]. Since

|I1(u)| = 2 and w−1(1) > 0, j1 = 2 by part (i) of Theorem 4.3.5. Similarly j3 = 2.

Since |I2(u)| = 3 and w−1(2)(−1)neg(w,2) < 0, j2 = 5 by part (ii) of Theorem 4.3.5. Since

|I4(u)| = 1 and w−1(5) < 0, j4 = 3 and j5 = 5 by part (iv) of Theorem 4.3.5. Hence

w = r̃5r̃25r̃12.
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5. GRÖBNER-SHIRSHOV BASIS AND NORMAL FORMS FOR

THE INFINITE COXETER GROUP OF TYPE Ãn

5.1 Gröbner-Shirshov Basis for The Infinite Coxeter Group of Type Ãn

Definition 5.1.1. For a positive integer n > 2, the infinite Coxeter group of type Ãn has a

presentation with generators S = {r0, r1, . . . , rn} and defining relations:

(R1) riri = 1 for 0 ≤ i ≤ n,

(R2) rirj = rjri for 0 ≤ i < j − 1 < n and (i, j) 6= (0, n),

(R3) riri+1ri = ri+1riri+1 for 1 ≤ i ≤ n− 1.

(R4) r0rnr0 = rnr0rn.

A Gröbner-Shirshov basis and corresponding normal forms for affine Coxeter group

of type Ãn are founded in Yılmaz et al. (2014). Notice that they called this group as infinite

Weyl group of type Ãn. The following theorem is just rewriting of their normal forms in the

new notation.

5.2 Normal Forms for The Infinite Coxeter Group of Type Ãn

Theorem 5.2.1 (Yılmaz et al. (2014), Theorem 21). Let

v = rnlnrn−1,ln−1 · · · r1l1

for k − 1 ≤ lk ≤ k, 1 ≤ k ≤ n; and

w = (r0rn,2n−qtr1pt)(r0rn,2n−qt−1r1pt−1) · · · (r0rn,2n−q1r1p1)

for 0 ≤ pk ≤ n, 2 ≤ qk ≤ n+ 1 satisfying the following conditions:

(i) pk > pk−1 and qk < qk−1 when 2 ≤ qk − pk < qk−1 − pk−1 ≤ n+ 1,

(ii) pk > pk−1 and qk ≤ qk−1 when −1 ≤ pk − qk ≤ n− 2 and 2 ≤ qk−1 − pk−1 ≤ n+ 1
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(iii) pk ≥ pk−1 and qk ≤ qk−1 when −1 ≤ pk−1 − qk−1 ≤ pk − qk ≤ n− 2.

Then any word u ∈ S∗ has a normal form u = vw.

After this point we try to give a combinatorial meaning of these normal forms. Let

N = n+ 1 and S̃AN be the group of all bijections u of Z in itself such that

u(i+N) = u(i) +N

for all i ∈ Z satisfying
N∑
i=1

u(i) =
N(N + 1)

2
.

By definition such a u ∈ S̃AN is uniquely determined by its values on {1, . . . , N}. Hence we

write u = [u1, . . . , uN ] where ui = u(i) for i = 1, . . . , N and call this window notation for

u.

Note that for all u ∈ S̃AN and i, j ∈ Z, u(i) 6≡ u(j) mod N if and only if i 6≡ j

mod N .

Proposition 5.2.2 (Bjorner and Brenti (2005), Proposition 8.3.3). The group S̃AN with gener-

ating set S = {r0, r1, . . . , rn} is the infinite Coxeter group of type Ãn where ri = [(i i+1)]

for i = 1, 2, . . . , n and

r0 = [0, 2, . . . , N − 1, N + 1].

Now for each u ∈ S̃AN we find a word in S∗. This word turn out to be a normal form

for u given in Theorem 5.2.1.

Lemma 5.2.3. Let u = [u1, . . . , uN ] ∈ S̃AN . For 1 ≤ i ≤ N − 1, 2 ≤ j ≤ N and

1 ≤ j − i ≤ N − 1 if

u(r0rn,2n−jr1,i−1)
−1 = [v1, . . . , vN ], then

vk =



uj −N, k = 1;

uk−1, 2 ≤ k < i+ 1;

uk, i+ 1 ≤ k < j;

uk+1, j ≤ k < N ;

ui +N, k = N.
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Proof. First of all, for any w ∈ S̃AN , wr0 = [wN − N,w2, . . . , wn, w1 + N ] since w(N) =

w(0 +N) = w(0) +N and w(N + 1) = w(1) +N . Then

u(r0rn,2n−jr1,i−1)
−1 = u(ri−1ri−1 · · · r1rjrj+1 · · · rnr0)

= u[(i i− 1 · · · 1)(j j + 1 · · · N)]r0.

Since j − 1 ≥ 1, two cycles in above equation are disjoint and the assertion easily follows.

Lemma 5.2.4. Let u = [u1, . . . , uN ] ∈ S̃AN . For 2 ≤ i ≤ N , 1 ≤ j ≤ N − 1 and

1 ≤ i− j ≤ N − 1 if

u(r0rn,2n−j−1r1,i−1)
−1 = [v1, . . . , vN ], then

vk =



uj −N, k = 1;

uk−1, 2 ≤ k < j + 1;

uk, j + 1 ≤ k < i;

uk+1, i ≤ k < N ;

ui +N, k = N.

Proof. For 1 ≤ i ≤ N , 1 ≤ j ≤ N + 1 and 1 ≤ i− j ≤ n,

u(r0rn,2n−j−1r1,i−1)
−1 = u(ri−1ri−1 · · · r1rj+1 · · · rnr0);

= u[(i i− 1 · · · 1)(j + 1 · · · N)]r0;

= u[(j j − 1 · · · 2 1 i i+ 1 · · · N ].

The assertion easily follows.

Definition 5.2.5. Given u = [u1, u2, . . . , uN ] ∈ S̃AN , define the following index set:

Iu = {(i, j)|ui < 0 and uj > N}.

Notice that if (i1, j1) ∈ Iu and (i2, j2) ∈ Iu such that i1−j1 = i2−j2, then (i, j) ∈ Iu
where i = min{i1, i2} and j = max{j1, j2}. Clearly j − i < j1 − i1 = j2 − i2. Hence there

exist unique (i, j) ∈ Iu such that

j − i = max{ik − jk|(ik, jk) ∈ Iu}.

We denote this element by max Iu.
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Corollary 5.2.6. Given u = [u1, u2, . . . , uN ] ∈ S̃AN , let (i1, j1) = max Iu, .

(i) If i1 < j1, v = u(r0rnj1r1,i1−1)
−1 and (i2, j2) = max Iv, then i2 > i1 and j2 < j1.

(ii) If i1 > j1, v = u(r0rn,2n−j−1r1,i−1)
−1 and (i2, j2) = max Iv, then i2 ≥ i1 and j2 ≤ j1.

Proof. Since ui1 < 0 and uj1 > N , VN = ui1 + N < N and v1 = uj1 − N > 0. This

implies i2 6= 1 and j1 6= N in both cases.

(i) Suppose that 1 < i2 ≤ i1 and j1 ≤ j2 < N . Then vi2 = ui2−1 and vj2 = uj1+1 by

Lemma 6.2.2. This is however a contradiction to (i1, j1) = max Iu.

(ii) Suppose that 1 < i2 < i1 and j1 < j2 < N . Then vi2 = ui2 and vj2 = uj2 by Lemma

6.2.4.This is again a contradiction to (i1, j1) = max Iu.

Theorem 5.2.7. Any u ∈ S̃AN has a normal form representation as it is given in Theorem

5.2.1.

Proof. Let u ∈ S̃AN . If Iu = ∅, then u ∈ Sn+1 and Theorem 4.1.6 implies that u has a normal

form representation

v = rnlnrn−1,ln−1 · · · r1l1

where li = |Ii(u)|+ i− 1 for i = 1, . . . , n. In this case we take w = 1.

Suppose that Iu 6= ∅. Let u(0) = u and u(k) = u(k−1)(r0rn,2n−qkr1pk)−1 where the indices

pk and qk are determined as follows. Let (ik, jk) = max Iu(k) . If ik < jk, then qk = jk and

pk = ik − 1; and if ik > jk, then qk = jk + 1 and pk = ik − 1. Notice that if 1 ≤ −jk ≤ n,

then 2 ≤ pk− qk ≤ n− 1; and if 1 ≤ jk− ik ≤ n, then−1 ≤ qk− pk ≤ n− 1. Furthermore

Corollary 6.2.3 implies that the indices satisfy the conditions given Theorem 5.2.1.

Since
∑N

i |u(k)(i)| =
∑N

i |u(k−1)(i)| − 2N , after finitely many steps

ut = u(r0rn,2n−q1r1p1)
−1 · · · (r0rn,2n−qtr1pt)−1

where Iu(t) = ∅. Hence u(t) has a normal form representation v = rnlnrn−1,ln−1 · · · r1l1 and

then vw is a normal form representation for u where

w = (r0rn,2n−qtr1pt)(r0rn,2n−qt−1r1pt−1) · · · (r0rn,2n−q1r1p1).
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Let us finish this chapter with an illustration of the previous theorem.

Example 5. Let u = u(0) = [17,−1,−5, 6,−2] ∈ S̃A5 . So max Iu(0) = (2, 4) and

u(1) = [17,−1,−5, 6,−2](r0r4r1)
−1 = [1, 17,−5,−2, 4].

Then max Iu(1) = (3, 2) implies

u(2) = [1, 17,−5,−2, 4](r0r45r12)
−1 = [12, 1,−2, 4, 0].

Since max Iu(2) = (3, 1),

u(3) = [12, 1,−2, 4, 0](r0r46r12)
−1 = [7, 1, 4, 0, 3].

Applying the process one more time max Iu(3) = (4, 1) and

u(4) = [7, 1, 4, 0, 3](r0r46r13)
−1 = [2, 1, 4, 3, 5] = r3r1.

Hence

u = (r3r1)(r0r46r13)(r0r46r12)(r0r45r12)(r0r4r1).
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6. GRÖBNER-SHIRSHOV BASIS AND NORMAL FORMS FOR

THE INFINITE COXETER GROUP OF TYPE C̃n

6.1 Gröbner-Shirshov Basis for The Infinite Coxeter Group of Type C̃n

Definition 6.1.1. For a positive integer n ≥ 2, the infinite Coxeter group of type C̃n has a

presentation with generators S = {r0, r1, . . . , rn} and defining relations:

(R1) riri = 1 for 0 ≤ i ≤ n,

(R2) rirj = rjri for 0 ≤ i < j − 1 < n,

(R3) riri+1ri = ri+1riri+1 for 1 ≤ i < n− 1,

(R4) rn−1rnrn−1rn = rnrn−1rnrn−1,

(R5) r0r1r0r1 = r1r0r1r0.

Lemma 6.1.2. Suppose that< is the degree lexicographic order on S∗. A Gröbner-Shirshov

basis for the infinite Coxeter group of type C̃n with respect to < contains the following

polynomials:

• f (i)
1 = riri − 1 for 0 ≤ i ≤ n,

• f (i,j)
2 = rirj − rjri for 0 ≤ i < j − 1 < n,

• f (i,j)
3 = rijri − ri+1rij for 1 ≤ i ≤ n− 2 and i < j < 2n− i− 1,

• f (i)
4 = ri,2n−iri+1 − ri+1ri,2n−i for 1 ≤ i ≤ n− 1,

• f (i)
5 = r0r1ir0r1i − r1r0r1ir0r1,i−1 for 1 ≤ i ≤ n− 1,

• f (i)
6 = r0r1,2n−ir0r1,2n+1−i − r1r0r1,2n−ir0r1,2n−i for 2 ≤ i ≤ n.

Proof. The polynomials f (i)
1 and f

(i,j)
2 come from the defining relations (R1) and (R2),

respectively. Similarly the polynomials f (i,i+1)
3 and f (n−1)

4 come from the defining relation

(R3) and (R4), respectively. Now let us apply the Shirshov algorithm to these polynomials.

< f
(i,j−1)
3 , f

(i,j)
2 >= f

(i,j)
3 for n ≥ j > i and 1 ≤ i ≤ n− 2,
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< f
(i,j−1)
3 , f

(i,2n−j)
2 >= f

(i,j)
3 for n < j < 2n− i− 1 and 1 ≤ i < n− 2 and

< f
(i,2n−2−i)
3 , f

(i,i+1)
3 >= f

(i)
4 for 1 ≤ i < n− 1.

The polynomial f (1)
5 comes from the defining relation (R5). Adding this polynomial,

let us continue to apply Shirshov algorithm.

< f
(i−1)
5 , f

(i−1,i)
3 > =

i−2∑
k=1

r0r1,i−1r0r1,k−1f
(k,i)
2 rk+1,i + r0r1,i−1f

(0,i)
2 r1,i

−
i−2∑
k=1

r1r0r1,i−1r0r1,k−1f
(k,i)
2 rk+1,i−1 − r1r0r1,i−1f (0,i)

2 r1,i−1 + f
(i)
5

for 1 < i ≤ n− 1,

< f
(n−1)
5 , f

(n−1)
4 > =

n−2∑
k=1

r0r1,n−1r0r1,k−1f
(k,n)
2 rk+1,n+1 + r0r1,n−1f

(0,n)
2 r1,n+1

−
n−2∑
k=1

r1r0r1,n−1r0r1,k−1f
(k,n)
2 rk+1,n − r1r0r1,n−1f (0,n)

2 r1,n + f
(n)
6

< f
(i+1)
6 , f

(i−1)
4 > =

i−2∑
k=1

r0r1,2n−i−1r0r1,k−1f
(k,i)
2 rk+1,2n−i+1 + r0r1,2n−i−1f

(0,i)
2 r1,2n−i+1

− r1r0r1,2n−i−1r0r1,i−2f (i−1,i+1)
3 ri

−
i−2∑
k=1

r1r0r1,2n−i−1r0r1,k−1f
(k,i)
2 rk+1,2n−i

− r1r0r1,2n−i−1f (0,i)
2 r1,2n−i + f

(i)
6

for 2 ≤ i < n.

At this point we are not able to show that polynomials given above lemma form

Gröbner-Shirshov basis for the infinite Coxeter group of type C̃n.

6.2 Normal Forms for The Infinite Coxeter Group of Type C̃n

We now give a combinatorial description of the infinite Coxeter group of type C̃n

(see Bjorner and Brenti (2005)). Let S̃Cn be the group of all permutations u of Z in itself

such that

u(i+ 2n+ 1) = u(i) + 2n+ 1
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and

u(−i) = −u(i)

for all i ∈ Z. Notice that

u(k(2n+ 1)) = k(2n+ 1)

for all k ∈ Z

Clearly, such a u is uniquely determined by its values on [n] = {1, 2, . . . , n}, and we

write u = [u1, u2, . . . , un] where ui = u(i) for i = 1, . . . , n. We call this window notation

for u. Hereafter we set N = 2n+ 1.

Proposition 6.2.1 (Bjorner and Brenti (2005), Proposition 8.4.3). The group S̃Cn with gen-

erating set S = {r0, r1, r2, · · · , rn} is the infinite Coxeter group of type C̃n where r0 =

[2n, 2, . . . , n], ri = [(i i+ 1)] for i = 1, 2, . . . , n− 1 and rn = [(n − n)].

Lemma 6.2.2. Let u = [u1, . . . , un] ∈ S̃Cn . If

u(r0r1i)
−1 = [v1, . . . , vn] for some 0 ≤ i ≤ n− 1, then

vj =


N − ui+1, j = 1;

uj−1, 1 < j ≤ i+ 1;

uj, j > i+ 1.

Proof. Clearly [u1, . . . , un]r0 = [N − u1, u2, . . . , un] = u(r0)
−1 since

u(2n) = u(−1 +N) = u(−1) +N = N − u1.

Since (r0r1i)
−1 = riri−1 · · · r1r0, u(r0r1i)

−1 = u[(i+1 i · · · 1)]r0 for i = 1, . . . , n−1.

The assertion easily follows.

The following corollary is an easy consequence of the above lemma.

Corollary 6.2.3. Given u = [u1, . . . , un] ∈ S̃Cn there exists w = (r0r1i1) · · · (r0r1is) where

0 ≤ is < · · · < i1 ≤ n− 1 satisfying uw−1 = [v1, . . . , vn] with vi ≤ n for i = 1, . . . , n.

Proof. If ui ≤ n for i = 1, . . . , n, then w = 1. Otherwise let j1 > · · · > js be the all the

indices satisfying ujk > n. By Lemma 6.2.2,

[v1, . . . , vn] = u(r0r1js−1)
−1 · · · (r0r1j1−1)−1,

where vi ≤ n for i = 1, . . . , n. Hence w = (r0r1i1) · · · (r0r1is) where ik = jk − 1 is the

desired element.
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Lemma 6.2.4. Let u = [u1, . . . , un] ∈ S̃Cn . If u(r0r1i)
−1 = [v1, . . . , vn] for some n ≤ i ≤

2n− 1, then

vj =


ut+1 +N, j = 1;

uj−1, 1 < j ≤ t+ 1;

uj, j > t+ 1.

where t = 2n− i− 1.

Proof. For n ≤ i ≤ 2n − 1, r1i = r1,2n−1r1t = (1 − 1)r1t where t = 2n − i − 1. Then

(r0r1i)
−1 = (rtrt−1 · · · r1)(1 − 1)r0 and u(r1i)

−1 = [v1, . . . , vn] where

vj =


ut+1 +N, j = 1;

uj−1, 1 < j ≤ t+ 1;

uj, j > t+ 1.

by Lemma 6.2.2.

Corollary 6.2.5. Given u = [u1, . . . , un] ∈ S̃Cn such that ui ≤ n for i = 1, . . . , n there

exists w = (r0r1is)
ps · · · (r0r1i1)p1 where n ≤ i1 < · · · < is ≤ 2n − 1 satisfying uw−1 =

[v1, . . . , vn] with vi ∈ [±n] = {±1, . . . ,±n} for i = 1, . . . n.

Proof. If ui ∈ [±n] for i = 1, . . . n, then w = 1. Otherwise let v(0) = u and v(j+1) =

v(j)(r0r1ij)
−1 where tj = 2n − ij is the largest index satisfying v(i)tj > −n in the windows

notation of v(j). Lemma 6.2.4 implies that tj ≥ tj+1 and there exists M ∈ N such that

v
(M)
k ∈ [±n] for k = 1, . . . , n in the windows notation of v(M). Hence

w = (r0r1iM )(r0r1iN−1
) · · · (r0r1i1)

is the desired element.

Definition 6.2.6. Given u = [u1, . . . , un] ∈ S̃Cn satisfying 0 < ui ≤ n, define

Ii(u) := {uj : uj > i for some j < u−1(i)}

for i = 1, . . . , n.

Lemma 6.2.7. Suppose u = [u1, . . . , un] ∈ S̃Cn such that u(l) = l for 1 ≤ l ≤ k − 1 and

0 < ui ≤ n for all i’s. Let x = rkjk where jk = |Ik(u)|+ k − 1. If v = ux−1, then v(l) = l

for 1 ≤ l ≤ k and Ii(u) = Ii(v) for i 6= k.
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Proof. Since u−1(l) = l for 1 ≤ l ≤ k − 1, |Ik(u)| = u−1(k) − k and then jk + 1 =

|Ik(u)| + k = u−1(k). Hence v(l) = u(x−1(l)) = u(l) = l for 1 ≤ l ≤ k − 1 and

v(k) = u(x−1(k)) = u(jk + 1) = k.

Let i 6= k. Notice that u−1(i) 6= jk+1 = u−1(k). Suppose t ∈ Ii(u). Then u(j) > i

for some j < u−1(i). Since u−1(i) 6= jk + 1, x preserves the inequality that is x(j) <

x(u−1(i)) = v−1(i). Therefore t = v(x(j)) > i for some x(j) < v−1(i). This implies

t ∈ Ii(v). Conversely suppose t ∈ Ii(v). Hence t = v(j) > i for some j < v−1(i).

Since v−1(i) = x(u−1(i)) 6= x(jk + 1) = k, x−1 preserves the inequality that is x−1(j) <

x−1(v−1(i)) = u−1(i). Therefore t = u(x−1(j)) > i for some x−1(j) < u−1(i). This

implies t ∈ Ii(u).

Corollary 6.2.8. Given w = [w1, w2, . . . , wn] ∈ S̃Cn such that wi ∈ [±n] for i = 1, . . . , n,

let u ∈ Sn such that u(i) = |wi| for i = 1, . . . , n. Then

w = rn−1jn−1 · · · riji · · · r1j1

where ji = |Ii(u)|+ i− 1 if w−1(i) > 0 and ji = 2n− |Ii(u)| − i if w−1(i) < 0.

Proof. Let v0 = u. Suppose that vk = vk−1(rkjk)−1 where jk = |Ik(vk−1)| + k − 1 for

k = 1, . . . , n. Lemma 6.2.7 implies vk(l) = l for l = 1, . . . , k and Ii(vk) = Ii(vk−1) for

i 6= k. Hence

jk = |Ik(vk−1)|+ k − 1 = |Ik(vk−2)|+ k − 1 = · · · = |Ik(u)|+ k − 1

for k = 1, . . . , n. Furthermore vn = w(r1j1)
−1 · · · (rnjn)−1 is the identity element. Hence

u = rnjn · · · riji · · · r1j1 .

Notice that ri,2n−i = [(i i+ 1 · · · n)](n − n)[(n n− 1 · · · i)] = (i − i) for

i = 1, . . . , n. Then (i − i)riji = ri,2n−iriji = ri,2n−ji−1. Clearly,

w = [w1, . . . , wn] =
( ∏
w−1(i)<0

(i − i)
)
[u1, . . . , un].

Since (i i) commutes with rkjk for k > i and (i − i)riji = ri,2n−ji−1,

w = rn−1jn−1 · · · riji · · · r1j1

where ji = |Ii(u)|+ i−1 if w−1(i) > 0 and ji = 2n−(|Ii(u)|+ i−1)−1 = 2n−|Ii(u)|− i
if w−1(i) < 0.
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Definition 6.2.9. Let

j 0 i =

 j < i, if j < n;

j ≤ i, if j ≤ n.

Definition 6.2.10. Let

WC = {(rnln · · · rili · · · r1l1)
t∏

k=1

(r0r1jk)}

where i− 1 ≤ li ≤ 2n− i, 0 ≤ jk 0 jk−1 ≤ 2n− 1 and t ∈ N.

Theorem 6.2.11. Any u ∈ S̃Cn can be represented with a word in WC .

Proof. Let Let u = [u1, . . . , un] ⊂ S̃Cn . If u = 1, then clearly u ∈ WC with ji = i − 1

f and αi = for all i’s. Given u = [u1, . . . , un] ⊂ S̃Cn we can find a word p satisfying

v = [u1, . . . , un] = up−1 such that vi ≤ n for i = 1, . . . , n and at least one vj < −n
by Corollary 6.2.3. Then we can find a word q satisfying w = [w1, . . . , wn] = vq−1 such

that wi ∈ [±n] by Corollary 6.2.5. Furthermore w ∈ WC by Corollary 6.2.8 and clearly

u = wqp ∈ WC .

Before giving the main result, we need the following lemma.

Lemma 6.2.12. For n ∈ N,
n∏
i=1

1 + xi

1− xi+n
=

n∏
i=1

1

1− x2i−1
.

Proof. The equation is valid when n = 1. Assume that
n∏
i=1

1 + xi

1− xi+n
=

n∏
i=1

1

1− x2i−1

Then
n+1∏
i=1

1 + xi

1− xi+n+1
=

(1 + xn+1)(1 + xn) · · · (1 + x)

(1− x2n+2)(1− x2n+1)(1− x2n) · · · (1− xn+2)

=
(1 + xn+1)(1− xn+1)

(1− x2n+2)(1− x2n+1)

n∏
i=1

1 + qi

1− xi+n

=
1

(1− x2n+1)

n∏
i=1

1

1− x2i−1

=
n+1∏
i=1

1

1− x2i+1
.
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Lemma 6.2.13. The generating function for words in WC is

n∏
i=1

(1 + x+ . . .+ x2i−1)
1 + xi

1− xn+i
.

Proof. The generating function for the words of the form rnln · · · rili · · · r1l1 is

n∏
i=1

(1 + x+ . . .+ x2i−1).

The generating function for the word of the form (r0r1jk)t where n ≤ jk ≤ 2n − 1 and

t ∈ N is 1
1−xjk+1 and for (r0r1jk)t where 0 ≤ jk < n and t ∈ {0, 1} is 1 + xjk+1. Hence the

generating function for the words
∏t

k=1(r
C
0 r

C
1jk

) where t ≥ 0 and 0 ≤ jk 0 jk−1 ≤ 2n− 1

is
n∏
i=1

1 + xi

1− xn+i
.

Notice that the generating function for the infinite Coxeter group of type C̃n is

n∏
i=1

1 + x+ . . .+ x2i−1

1− x2i−1
.

By Lemma 6.2.12

n∏
i=1

1 + x+ . . .+ x2i−1

1− x2i−1
=

n∏
i=1

(1 + x+ . . .+ x2i−1)
1 + xi

1− xn+i

which is equal to generating function of words in WC .

Now we are ready to find the main result.

Theorem 6.2.14. Let RC be the set of all polynomials given in Lemma 6.1.2. Then

(i) WC = Red(RC).

(ii) RC is a Gröbner-Shirshov basis for the infinite Coxeter group of type C̃n.

Proof. (i) It is easy to see that any word in WC is RC-reduced. Hence WC ⊆ Red(RC).

Conversely if w ∈ Red(RC), then w can be written as a permutation in S̃Cn and this

permutation has a corresponding word in WC by Theorem 6.2.11. Hence Red(RC) ⊆
WC .
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(ii) We know that any polynomial in RC is a part of a Gröbner-Shirshov basis of the

infinite Coxeter group of type C̃n. If RC were not a Gröbner-Shirshov basis, then

Red(RC) = WC should be a proper subset of the set of normal forms of the infinite

Coxeter group of type C̃n by Composition-Diamond lemma. This contradicts to the

fact that WC and normal forms of the infinite Coxeter group of type C̃n have same

generating functions.

Notice that Theorem 6.2.11 gives a method converting any u ∈ S̃Cn into its normal

form. Let us finish this chapter with an example of this conversion.

Example 6. Let u = [24, 38, 17,−5] ∈ S̃C4 . Corollary 6.2.3 implies uw−1 = [−8,−29,−15,−5]

where w = r0r12r0r1r0. Applying the process explained in the proof of the Corollary 6.2.5,

we get

[−8,−29,−15,−5](r0r14)
−1 = [4,−8,−29,−15],

[4,−8,−29,−15](r0r14)
−1 = [−6, 4,−8,−29],

[−6, 4,−8,−29](r0r14)
−1 = [−20,−6, 4,−8],

[−20,−6, 4,−8](r0r14)
−1 = [1,−20,−6, 4],

[1,−20,−6, 4](r0r15)
−1 = [3, 1,−20, 4],

[3, 1,−20, 4](r0r15)
−1 = [−11, 3, 1, 4] and

[−11, 3, 1, 4](r0r17)
−1 = [−2, 3, 1, 4].

Thus

[−8,−29,−15,−5]((r0r17)(r0r15)
2(r0r14)

4)−1 = [−2, 3, 1, 4].

Corollary 6.2.8 implies [−2, 3, 1, 4] = r26r12.

Hence u = (r26r12)(r0r17)(r0r15)
2(r0r14)

4(r0r12r0r1r0).
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7. GRÖBNER-SHIRSHOV BASIS AND NORMAL FORMS FOR

THE INFINITE COXETER GROUP OF TYPE B̃n

7.1 Gröbner-Shirshov Basis for The Infinite Coxeter Group of Type B̃n

Definition 7.1.1. For a positive integer n ≥ 2, the infinite Coxeter group of type B̃n has a

presentation with generators S = {r0, r1, . . . , rn} and defining relations:

(R1) riri = 1 for 0 ≤ i ≤ n,

(R2) rirj = rjri for 0 ≤ i < j − 1 < n but (i, j) 6= (0, 2),

(R3) riri+1ri = ri+1riri+1 for 1 ≤ i < n− 1,

(R4) r0r1 = r1r0,

(R5) rn−1rnrn−1rn = rnrn−1rnrn−1,

(R6) r0r2r0 = r2r0r2.

After this point we will not use superscripts unless we need to distinguish between

groups B̃n and C̃n.

Lemma 7.1.2. Suppose that< is the degree lexicographic order on S∗. A Gröbner-Shirshov

basis for the infinite Coxeter group of type B̃n with respect to < contains the following

polynomials:

• g(i)1 = riri − 1 for 0 ≤ i ≤ n,

• g(i,j)2 = rirj − rjri for 0 ≤ i < j − 1 < n but (i, j) 6= (0, 2),

• g(i,j)3 = rijri − ri+1rij for 1 ≤ i ≤ n− 2 and i < j < 2n− i− 1,

• g(i)4 = ri,2n−iri+1 − ri+1ri,2n−i for 1 ≤ i ≤ n− 1,

• g(i)5 = r0r2ir1i − r1r0r2ir1,i−1 for 1 ≤ i ≤ n− 1,

• g(i)6 = r0r2,2n−ir1,2n−i+1 − r1r0r2,2n−ir1,2n−i for 2 ≤ i ≤ n,
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• g(i,j)7 = r0r2ir1jr0 − r2r0r2ir1j for 2 ≤ i ≤ 2n− 3 and 0 ≤ j ≤ 1,

• g(i,j)8 = r0r2ir1jr0r2j − r2r0r2ir1jr0r2,j−1 for 2 ≤ j < i ≤ n,

• g(i,j)9 = r0r2,2n−ir1jr0r2j − r2r0r2,2n−ir1jr0r2,j−1,

for 3 ≤ i ≤ n− 1 and 2 ≤ j ≤ n− 1,

• g(i,j)10 = r0r2,2n−2r1ir0r2jr1 − r2r0r2,2n−2r1ir0r2j ,
for 1 ≤ i ≤ 2 and 2 ≤ j ≤ 2n− 3,

• g(i,j)11 = r0r2,2n−2r1ir0r2jr1,i−1 − r2r0r2,2n−2r1ir0r2jr1,i−2,

for 3 ≤ i ≤ n− 1, 3 ≤ j ≤ n and i ≤ j,

• g12 = r0r2,2n−2r0r2 − r2r0r2,2n−2r0,

• g(i,j)13 = r0r2,2n−2r1ir0r2,2n−jr1i − r2r0r2,2n−2r1ir0r2,2n−jr1,i−1,
for 2 ≤ j ≤ i ≤ n− 1,

• g(i,j)14 = r0r2,2n−2r1,2n−i−1r0r2,2n−jr1,2n−i − r2r0r2,2n−2r1,2n−i−1r0r2,2n−jr1,2n−i−1,
for 2 ≤ j ≤ i ≤ n− 1,

• g(i,j)15 = r0r2,2n−ir1,2n−j−1r0r2,2n−j − r2r0r2,2n−ir1,2n−j−1r0r2,2n−j−1,
for 2 ≤ i− 1 ≤ j ≤ n− 1,

• g16 = r0r2,2n−2r1r0r2,2n−2r1r2 − r2r0r2,2n−2r1r0r0r2,2n−2r1,
for 2 ≤ i− 1 ≤ j ≤ n− 1,

• g(i,j)17 = r0r2,2n−2r1jr0r2,2n−ir1,j−1 − r2r0r2,2n−2r1jr0r2,2n−ir1,j−2,
for 3 ≤ j < i ≤ n− 1.

Proof. g(i)1 , g
(i,j)
2 , g

(i,i+1)
3 , g

(n−1)
4 , g

(1)
5 and g(2,0)7 are defining relations for the infinite Coxeter

group of type B̃n.

< g
(i,i+1)
3 , g

(i,i+2)
2 >= g

(i,i+2)
3 ,

< g
(i,j−1)
3 , g

(i,j)
2 >= g

(i,j)
3 for i+ 2 < j ≤ n,

< g
(i,j)
3 , g

(i,2n−j−1)
2 >= g

(i,j+1)
3 for n < j < 2n− i− 1,

< g
(i,2n−i−2)
3 , g

(i,i+1)
3 >= g

(i)
4 for 1 ≤ i < n− 1,

36



< g
(i−1)
5 , g

(i−1,i)
3 > =

i−2∑
k=1

r0r2,i−1r1,k−1g
(k,i)
2 rk+1,i

−
i−2∑
k=1

r1r0r2,i−1r1,k−1g
(k,i)
2 rk+1,i−1 + g

(i)
5

for 1 < i ≤ n− 1,

< g
(n−1)
5 , g

(n−1)
4 > =

n−2∑
k=1

r0r2,n−1r1,k−1g
(k,n)
2 rk+1,n+1 −

n−2∑
k=1

r1r0r2,n−1r1,k−1g
(k,n)
2 rk+1,n

+ g
(n)
6 ,

< g
(i+1)
6 , g

(i−1)
4 > =

i−2∑
k=1

r0r2,2n−i−1r1,k−1g
(k,i)
2 rk+1,2n−i+1

− r1r0r2,2n−i−1r1,i−2g(i−1,2n−i−1)3 ri

−
i−2∑
k=1

r1r0r2,2n−i−1r1,k−1g
(k,i)
2 rk+1,2n−i + g

(i)
6 ,

< g
(i−1,0)
7 , g

(0,i)
2 >= g

(i,0)
7 for 3 ≤ i ≤ 2n− 3,

< g
(2,0)
7 , g

(1)
5 >= g

(2,1)
7 ,

< g
(i−1,1)
7 , g

(0,i)
2 >= r0r2,i−1g(1,i)r0 − r2r0r2,i−1g(1,i) + g

(i,1)
7 for 3 ≤ i ≤ n,

< g
(i−1,1)
7 , g

(0,2n−i)
2 >= r0r2,2n−i+1g(1,i)r0 − r2r0r2,i−1g(1,i) + g

(i,1)
7 for n < i ≤ 2n− 3,

< g
(i,1)
7 , g7(2, 0) >= g

(i,2)
8 for 3 ≤ i ≤ n,

< g
(i,j−1)
8 , g

(j−1,j)
3 > =

j−2∑
k=1

r0r2ir1,j−1r0r2,k−1g
(k,j)
2 rk+1,j + r0r2ir1,j−1g

(0,j)
2 r2,j

−
j−2∑
k=1

r2r0r2ir1,j−1r0r2,k−1g
(k,j)
2 rk+1,j−1

− r2r0r2ir1,j−1g(0,j)2 r2,j−1 + g
(i,j)
8

for 3 ≤ j < i ≤ n,

< g
(2n−i,1)
7 , g

(2,0)
7 >= g

(i,2)
9 for 3 ≤ i ≤ n− 1,
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< g
(i,j−1)
9 , g

(j−1,j)
3 > =

j−2∑
k=1

r0r2,2n−ir1,j−1r0r2,k−1g
(k,j)
2 rk+1,j + r0r2,2n−ir1,j−1g

(0,j)
2 r2,j

−
j−2∑
k=1

r2r0r2,2n−ir1,j−1r0r2,k−1g
(k,j)
2 rk+1,j−1

− r2r0r2,2n−ir1,j−1g(0,j)2 r2,j−1 + g
(i,j)
9

for 3 ≤ i ≤ n− 1 and 3 ≤ j ≤ n− 1,

< g
(2n−3,0)
7 , g

(2,0)
7 >= g12,

< g12, g
(2)
5 >= g

(1,2)
10 − r2r0r2,2n−2g(1)5 r2,

< g
(1,j−1)
10 , g

(1,j)
2 >= g

(1,j)
10 for 2 < j ≤ n,

< g
(1,j)
10 , g

(j,1)
7 >= g

(2,j)
10 − r2r0r2,2n−2r1g(j,0)7 for 2 ≤ j ≤ n,

< g
(i,n)
10 , g

(1,n−1)
2 >= g

(i,n+1)
10 for 1 ≤ i ≤ 2,

< g
(i,2n−j−1)
10 , g

(1,j)
2 >= g

(i,2n−j)
10 for 1 ≤ i ≤ 2 and 3 ≤ j < n− 1,

< g
(2,j)
10 , g

(1,2)
3 > = r0r2,2n−2r12r0g

(2,j)
3 r12 + r0r2,2n−2r12g

(0,3)
2 r2,jr12

− r2r0r2,2n−2r12r0g(2,j)3 r1 − r2r0r2,2n−2r12g(0,3)2 + g
(3,j)
11

for 3 ≤ j ≤ n,

< g
(i−1,j)
11 , g

(i−2,i−1)
3 > =

i−3∑
k=1

r0r2,2n−2r1,i−1r0r2jr1,k−1g
(k,i−1)
2 rk+1,i−1

+ r0r2,2n−2r1,i−1r0r2,i−2g
(i−1,j)
3 r1,i−1

−
i−3∑
k=1

r2r0r2,2n−2r1,i−1r0r2jr1,k−1g
(k,i−1)
2 rk+1,i−2

− r2r0r2,2n−2r1,i−1r0r2,i−2g(i−1,j)3 r1,i−2 + g
(i,j)
11

for 4 ≤ i ≤ n− 1, 4 ≤ j ≤ n and i ≤ j,

< g
(2,2n−3)
10 , g

(1,2)
3 >= g

(2,2n−2)
13 ,
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< g
(i−1,j)
13 , g

(i−1,i)
3 > =

i−2∑
k=1

r0r2,2n−2r1,i−1r0r2,2n−jr1,k−1g
(k,i)
2 rk+1,i

+ r0r2,2n−2r1,i−1r0r2,i−2g
(i−1)
4 r2n−i+2,2n−jr1i

−
i−2∑
k=1

r2r0r2,2n−2r1,i−1r0r2,2n−jr1,k−1g
(k,i)
2 rk+1,i−1

− r2r0r2,2n−2r1,i−1r0r2,i−2g(i−1)4 r2n−i+2,2n−jr1,i−1 + g
(i,j)
13

for 2 ≤ j < i ≤ n− 1,

< g
(i,i−1)
13 , g

(i−2,i)
3 > =

i−3∑
k=1

r0r2,2n−2r1ir0r2,2n−i+1r1,k−1g
(k,i−1)
2 rk+1,i

+ r0r2,2n−2r1ir0r2,2n−ig
(i−1)
1 r1i

− r2r0r2,2n−2r1ir0r2,2n−i+1r1,i−3g
(i−2,i−1)
3

−
i−3∑
k=1

r2r0r2,2n−2r1ir0r2,2n−i+1r1,k−1g
(k,i−1)
2 rk+1,i−1

− r2r0r2,2n−2r1ir0r2,2n−ig(i−1)1 r1,i−1 + g
(i,i)
13

for 3 ≤ i ≤ n− 1,

< g
(n−1,j)
13 , g

(n−1)
4 > =

n−2∑
k=1

r0r2,2n−2r1,n−1r0r2,2n−jr1,k−1g
(k,n)
2 rk+1,n+1

+

j∑
k=n+2

r0r2,2n−2r1,n−1r0r2,k−1g
(2n−k,n)
2 rk+1,2n−jr1,n+1

+ r0r2,2n−2r1,n−1r0r2,n−2g
(n−1)
4 rn+2,2n−jr1,n+1

+
n−2∑
k=2

r0r2,2n−2r1,n−1r0r2,k−1g
(k,n)
2 rk+1,2n−jr1,n+1

+ r0r2,2n−2r1,n−1g
(0,n)
2 r2,2n−jr1,n+1

−
n−2∑
k=1

r2r0r2,2n−2r1,n−1r0r2,2n−jr1,k−1g
(k,n)
2 rk+1,n

−
j∑

k=n+2

r2r0r2,2n−2r1,n−1r0r2,k−1g
(2n−k,n)
2 rk+1,2n−jr1,n

− r2r0r2,2n−2r1,n−1r0r2,n−2g(n−1)4 rn+2,2n−jr1n

−
n−2∑
k=2

r2r0r2,2n−2r1,n−1r0r2,k−1g
(k,n)
2 rk+1,2n−jr1,n

− r2r0r2,2n−2r1,n−1g(0,n)2 r2,2n−jr1,n

+ g
(n−1,j)
14
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for 2 ≤ j ≤ n− 1,

< g
(i+1,j)
14 , g

(i)
4 > =

i−1∑
k=1

r0r2,2n−2r1,2n−i−2r0r2,2n−jr1,k−1g
(k,i+1)
2 rk+1,i−1ri,2n−i

+
i−1∑
k=j

r0r2,2n−2r1,2n−i−2r0r2,2n−k−1g
(k,i+1)
2 r2n−k+1,2n−jr1,2n−i

+ r0r2,2n−2r1,2n−i−1r0r2,i−1g
(i)
4 r2n−i+1,2n−jr1,2n−i

+
i−1∑
k=2

r0r2,2n−2r1,2n−i−2r0r2,k−1g
(k,i+1)
2 rk+1,2n−jr1,2n−i

+ r0r2,2n−2r1,2n−i−2g
(0,i+1)
2 r2,2n−jr1,2n−i

− r2r0r2,2n−2r1,2n−i−2r0r2,2n−jr1,i−1g(i,2n−i−2)3 ri+1

−
i−1∑
k=1

r2r0r2,2n−2r1,2n−i−2r0r2,2n−jr1,k−1g
(k,i+1)
2 rk+1,i−1ri,2n−i

−
i−1∑
k=j

r2r0r2,2n−2r1,2n−i−2r0r2,2n−k−1g
(k,i+1)
2 r2n−k+1,2n−jr1,2n−i−1

− r2r0r2,2n−2r1,2n−i−2r0r2,i−1g(i)4 r2n−i+1,2n−jri,2n−i−1

−
i−1∑
k=2

r2r0r2,2n−2r1,2n−i−2r0r2,k−1g
(k,i+1)
2 rk+1,2n−jri,2n−i−1

− r2r0r2,2n−2r1,2n−i−2g(0,i+1)
2 r2,2n−jri,2n−i−1 + g

(i,j)
14

for 2 ≤ j ≤ i < n− 1,

< g
(i,n−1)
9 , g

(n−1)
4 > =

n−2∑
k=2

r0r2,2n−ir1,n−1r0r2,k−1g
(k,n)
2 rk+1,n+1

+ r0r2,2n−ir1,n−1g
(0,n)
2 r2,n+1

−
n−2∑
k=2

r2r0r2,2n−ir1,n−1r0r2,k−1g
(k,n)
2 rk+1,n

− r2r0r2,2n−ir1,n−1g(0,n)2 r2,n + g
(i,n−1)
15

for 3 ≤ i ≤ n− 1,

< g
(n,n−1)
8 , gn−14 > =

n−2∑
k=2

r0r2,nr1,n−1r0r2,k−1g
(k,n)
2 rk+1,n+1

+ r0r2,nr1,n−1g
(0,n)
2 r2,n+1

−
n−2∑
k=2

r2r0r2,nr1,n−1r0r2,k−1g
(k,n)
2 rk+1,n

− r2r0r2,nr1,n−1g(0,n)2 r2,n + g
(n,n−1)
15 ,
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< g
(i,j+1)
15 , g

(j)
4 > =

j−1∑
k=2

r0r2,2n−ir1,2n−j−2r0r2,k−1g
(k,j+1)
2 rk+1,2n−j

+ r0r2,2n−ir1,2n−j−2g
(0,j+1)
2 r2,2n−j

− r2r0r2,2n−ir1,2n−j−2r0r2,j−1g(j,2n−j−2)3 rj+1

−
j−1∑
k=2

r2r0r2,2n−ir1,2n−j−2r0r2,k−1g
(k,j+1)
2 rk+1,2n−j−1

− r2r0r2,2n−ir1,2n−j−2g(0,j+1)
2 r2,2n−j−1 + g

(i,j)
15

for 2 ≤ i− 1 ≤ j < n− 1,

< g
(1,2n−3)
10 , g

(1,2)
3 >= g16,

< g
(2,i)
10 , g

(1,2)
3 >= r0r2,2n−2r12r0g

(2,2n−i)
3 r12 − r2r0r2,2n−2r12r0g(2,2n−i)3 r1 + g

(i,3)
17 for 3 <

i ≤ n− 1,

< g
(i,j−1)
17 , g

(j−2,j−1)
3 > =

j−3∑
k=1

r0r2,2n−2r1,j−1r0r2,2n−ir1,k−1g
(k,j−1)
2 rk+1,j−1

+ r0r2,2n−2r1,j−1r0r2,j−2g
(j−1,2n−i)
3 r1,j−1

+

j−2∑
k=2

r0r2,2n−2r1,j−1r0r2,k−1g
(k,j)
2 rk+1,2n−ir1,j−1

+ r0r2,2n−2r1,j−1g
(0,j)
2 r2,2n−ir1,j−1

−
j−3∑
k=1

r2r0r2,2n−2r1,j−1r0r2,2n−ir1,k−1g
(k,j−1)
2 rk+1,j−2

− r2r0r2,2n−2r1,j−1r0r2,j−2g(j−1,2n−i)3 r1,j−2

−
j−2∑
k=2

r2r0r2,2n−2r1,j−1r0r2,k−1g
(k,j)
2 rk+1,2n−ir1,j−2

− r2r0r2,2n−2r1,j−1g(0,j)2 r2,2n−ir1,j−1 + g
(i,j)
17

for 4 ≤ j < i ≤ n− 1.

At this point we are not able to show that polynomials given above lemma form

Gröbner-Shirshov basis for the infinite Coxeter group of type B̃n.
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7.2 Normal Forms for The Infinite Coxeter Group of Type B̃n

For v ∈ S̃n
C

define

v[i, j] = |{k ∈ Z : k ≤ i, v(k) ≥ j}|

for all i, j ∈ Z.

Let S̃Bn = {u ∈ S̃Cn : u[n, n+ 1] ≡ 0 mod 2} It is clear that S̃Bn is a subgroup of S̃Cn
of index 2. Furthermore for any u ∈ S̃Bn

u = (rCnjnr
C
n−1,jn−1

· · · rC1j1)(r
C
0 r

C
1,2n−1)

α2n−1 · · · (rC0 rC1 )α1(rC0 )α0

where
∑2n−1

k=0 αk is an even number.

The following proposition says that S̃Bn is the infinite Coxeter group of type B̃n.

Proposition 7.2.1. (Bjorner and Brenti (2005), Proposition 8.5.3)

The group S̃Bn with generating set {rB0 , rB1 , . . . , rBn } is the infinite Coxeter group of type B̃n

where rBi = rCi for i = 1, 2, . . . , n and rB0 = [2n− 1, 2n, 3, . . . , n].

We now try to find normal form representations of elements of B̃n with respect to

these generators. First of all, we give some relations between words in B̃n and words in C̃n.

Lemma 7.2.2. The followings are equivalent.

(i) rC0 r
C
1 r

C
0 = rB0 ,

(ii) (rC0 r
C
1i)(r

C
0 r

C
1j) = rB0 r

B
2ir

B
1j for 0 ≤ j 0 i ≤ 2n− 2.

Proof. (i)

rC0 r
C
1 r

C
0 = [2n, 2, . . . , n][2, 1, 3, . . . , n][2n, 2, . . . , n],

= [2n− 1, 2n, 3, . . . , n],

= rB0 .

(ii)

rB0 r
B
2ir

B
1j = rC0 r

C
1 r

C
0 r

C
2ir

C
1j,

= rC0 r
C
1ir

C
0 r

C
1j by a series of ELW inf (0,k)

2 .

42



Notice that length of word in C̃n is two more than the length of corresponding word

in B̃n.

Lemma 7.2.3. In the infinite Coxeter group of type C̃n, we have

(rC0 r
C
1,2n−2)(r

C
0 r

C
1j)(r

C
0 r

C
1i) =


(rC0 r

C
1,2n−1)(r

C
0 r

C
1i)(r

C
0 r

C
1,j−1), if i+ j < 2n,

(rC0 r
C
1,2n−1)(r

C
0 r

C
1,i−1)(r

C
0 r

C
1j), if i+ j ≥ 2n.

for 1 ≤ i, j ≤ 2n− 1 satisfying j ≤ i when i < n or i < j when i ≥ n.

Proof. If i + j < 2n, there are two possibilities: either 1 ≤ j ≤ i < n or 1 ≤ j < n ≤ i <

2n− j. In both cases we have

(rC0 r
C
1,2n−2)(r

C
0 r

C
1j)(r

C
0 r

C
1i) = (rC0 r

C
1,2n−1)(r

C
0 r

C
1j)(r

C
0 r

C
1j−1)(r

C
0 r

C
j+1,i) by an ELW in f (j)

5 ,

= (rC0 r
C
1,2n−1)(r

C
0 r

C
1i)(r

C
0 r

C
1,j−1) by a series of ELW in f2.

If 2n ≤ i+ j, then n ≤ j < i ≤ 2n− 2. Let i = 2n− k and j = 2n− l. Therefore

(rC0 r
C
1,2n−2)(r

C
0 r

C
1j)(r

C
0 r

C
1i) = (rC0 r

C
1,2n−1)(r

C
0 r

C
1j)(r

C
0 r

C
1j)rl−2rl−3 · · · rk

by ELW in f (j)
6 . Furthermore

(rC0 r
C
1j)rt = (rc0r

C
1,t−1)r

C
t+1r

C
tj by an ELW in f (t,j)

3 ,

= rCt+1r
C
1j by a series of ELW in f2.

for l − 2 ≤ t ≤ k. Then desired equality easily follows.

Corollary 7.2.4.

(rC0 r
C
1,2n−1)(r

C
0 r

C
1i)(r

C
0 r

C
1j) =

 (rB0 r
B
2,2n−2r

B
1,j+1)(r

C
0 r

C
1i), i+ j < 2n− 1,

(rB0 r
B
2,2n−2r

B
1j)(r

C
0 r

C
1,i+1), i+ j ≥ 2n− 1.

for 1 ≤ j 0 i ≤ 2n− 2.

Lemma 7.2.5. Let m ≥ 1.
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(i) (rC0 r
C
1,2n−1)

2m = (rB0 r
B
2,2n−2r

B
1 )2m,

(ii) (rC0 r
C
1,2n−1)

2m−1(rC0 r
C
1j) = (rB0 r

B
2,2n−2r

B
1 )2m−1(rB0 r

B
2j) for 2 ≤ j ≤ 2n− 2,

(iii) (rC0 r
C
1,2n−1)

2m−1rC0 = (rB0 r
B
2,2n−2r

B
1 )2(m−1)(rB0 r

B
2,2n−2)(r

B
0 ),

Proof.

(i) We use induction on m.

(rB0 r
B
2,2n−2r

B
1 )(rB0 r

B
2,2n−2r

B
1 ) = (rC0 r

C
1,2n−2r

C
0 r

C
1 )(rC0 r

C
1,2n−2r

C
0 r

C
1 ),

= (rC0 r
C
1,2n−2)(r

C
1 r

C
0 r

C
1 r

C
0 )(rC2,2n−2r

C
0 r

C
1 ),

= (rC0 r
C
1,2n−1)(r

C
0 r

C
1,2n−2)(r

C
0 r

C
0 r

C
1 ),

= (rC0 r
C
1,2n−1)

2.

First equality comes from Lemma 7.2.2, second and third equalities come from ELW

in f (1)
5 and f (0,k)

2 , respectively.

Suppose that (rB0 r
B
2,2n−2r

B
1 )2k = (rC0 r

C
1,2n−1)

2k for a positive integer k. Then

(rB0 r
B
2,2n−2r

B
1 )2(k+1) = (rC0 r

C
1,2n−1)

2k(rB0 r
B
2,2n−2r

B
1 )2

= (rC0 r
C
1,2n−1)

2(k+1)

(ii)

(rB0 r
B
2,2n−2r

B
1 )2m+1(rB0 r

B
2j) = (rC0 r

C
1,2n−1)

2m(rC0 r
C
1,2n−2r

C
0 r

C
1 )(rC0 r

C
1jr

C
0 ) by Lemma 7.2.2,

= (rC0 r
C
1,2n−1)

2mrC0 r
C
1,2n−2r

C
1 r

C
0 r

C
1 r

C
0 r

C
2jr

C
0 by ELW inf (1)

5 ,

= (rC0 r
C
1,2n−1)

2m+1rC0 r
C
1jr

C
0 r

C
0 by a series of ELW inf (0,k)

2 ,

= (rC0 r
C
1,2n−1)

2m+1rC0 r
C
1j by ELW inf (0)

1 .

(iii)

(rB0 r
B
2,2n−1)(r

B
0 ) = (rC0 r

C
1,2n−2r

C
0 )(rC0 r

C
1 r

C
0 ) by Lemma 7.2.2

= rC0 r
C
1,2n−1r

C
0
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The rest is an easy consequence of part (i).

Notice that length of word in C̃n is 2m more than the length of the corresponding

word in B̃n.

Definition 7.2.6. We define the following words in B̃n :

(i) w0 = rBnln · · · r
B
ili
· · · rB1l1 for i− 1 ≤ li ≤ 2n− i and i = 1, . . . , n.

(ii) w1 =
∏t

k=1(r
B
0 r

B
2,2n−2r

B
1ik

) for t ≥ 0 and 1 ≤ ik 0 ik−1 ≤ 2n− 2.

(iii) w2 =
∏s

k=1(r
B
0 r

B
2,j2k−1

rB1j2k) for s ≥ 0 and 0 ≤ jk 0 jk−1 ≤ 2n− 3.

(iv) w3 =


(rB0 r

B
2n−2r

B
1 )2m,

(rB0 r
B
2n−2r

B
1 )2m−1(rB0 r

B
2j),

(rB0 r
B
2n−2r

B
1 )2(m−1)(rB0 r

B
2,2n−2)r

B
0 .

for m ≥ 0 and 1 ≤ j ≤ 2n− 2,

(v) w4 = w0w1w2 where it ≥ 2 and either j1 0 it or j1 60 it but j2 0 it, it + j1 ≥ 2n;

j2 + 1 < it, it + j1 < 2n.
,

(vi) w5 = w0w1w3.

Let WB = {w4, w5}.

Theorem 7.2.7. Any word w ∈ WC in which number of appearance of r0 is even can be

transformed a word in WB.

Proof. Since rBi = rCi for i = 1, . . . , n, we only consider the word of the form

w = (rC0 r
C
1,2n−1)

m

t∏
k=1

(rC0 r
C
1jk

)

where m+ t is even 0 ≤ jk 0 jk−1 ≤ 2n− 2.
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If m = 0, then Lemma 7.2.2 implies that

w =

t
2∏

k=1

(rB0 r
B
2,j2k−1

rBj2k).

Therefore w ∈ WB.

Suppose that m ≥ 1 and 2n− 2 = j1 = j2 = · · · = jl > jl+1. Then

w =
( b l+1

2
c∏

k=1

(rB0 r
B
2,j2k−1

rB1,j2k)
)
w
′

where

w
′
= (rC0 r

C
1,2n−1)

m

t∏
k=2b l+1

2
c+1

(rC0 r
C
1jk

)

by several application of Corollary 7.2.4 and Lemma 7.2.2.

Let us rewrite w′ as follows

w
′
= (rC0 r

C
1,2n−1)

m(rC0 r
C
1i)

p∏
k=0

(rC0 r
C
1ik

).

Suppose that i + k + ik ≥ 2n − 1 for 0 ≤ k ≤ q ≤ p and i + q + 1 + ik < 2n − 1

for q + 1 ≤ k ≤ p.

Let a = (2n− 2)− i. Now we investigate case by case.

Case (i): q ≥ a− 1 and m > a.

Corollary 7.2.4 and Lemma 7.2.2 imply that

w
′
=

a∏
k=0

(rB0 r
B
2,2n−2r

B
1ik

)w
′′

w
′

=
a−1∏
k=0

(rB0 r
B
2,2n−2r

B
1ik

)(rC0 r
C
1,2n−1)

m−a(rC0 r
C
1,2n−2)

p∏
k=a

(rC0 r
C
1,ik

)

=
a∏
k=0

(rB0 r
B
2,2n−2r

B
1ik

)w
′′

where

w
′′

= (rC0 r
C
1,2n−1)

m−a
p∏

k=a+1

(rC0 r
C
1,ik

).
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Now same process can be applied to w′′ . This should be repeated until one of the conditions

is not met. Hence we can assume that w′ does not satisfy one of the conditions without loss

of generality.

Case (ii): q ≥ a− 1 and m = a Corollary 7.2.4 and Lemma 7.2.2 imply that

w
′
=

m∏
k=0

(rB0 r
B
2,2n−2r

B
1ik

)

p
2∏

k=m+2
2

(rB0 r
B
2,i2k−1

r1,i2k)

Since ia 0 ia+1, w′ ∈ WB and so is w.

Case (iii): q ≥ a− 1 and m < a

Corollary 7.2.4 and Lemma 7.2.2 implies that

w
′

=
(m−1∏
k=0

(rB0 r
B
2,2n−2r

B
1ik

)
)
(rC0 r

C
1,i+m)

p∏
k=m

(rC0 r
C
1,ik

)

=
(m−1∏
k=0

(rB0 r
B
2,2n−2r

B
1ik

)
)
(rB0 r

B
2,i+mr

B
1im)

p
2∏

k=m+2
2

(rB0 r
B
2,i2k−1

r1,i2k).

If i + m 0 im−1, then clearly w′ ∈ WB which implies w ∈ WB. Suppose i + m 60 im−1.

Since im−1 +m+ i ≥ 2n and im 0 im−1, w
′ ∈ WB and so is w.

Case (iv): q < a− 1 and m ≤ q

Same as case (iii).

Case (v): q < a− 1 and q < m ≤ p

w
′

=
( q∏
k=0

(rB0 r
B
2,2n−2r

B
1ik

)
)
(rC0 r

C
1,2n−1)

m−q−1(rC0 r
C
1,i+q+1)

p∏
k=q+1

(rC0 r
C
1ik

)

=
( q∏
k=0

(rB0 r2,2n−2r
B
1ik

)
)( m−1∏

k=q+1

(rB0 r
B
2,2n−2r

B
1ik+1)

)
(rB0 r

B
2,i+q+1r

B
1im)

p
2∏

k=m+2
2

(rB0 r
B
2,i2k−1

r1,i2k)

by Corollary 7.2.4 and Lemma 7.2.2. Notice that iq > iq+1. If i + q + 1 0 im−1 + 1,

then clearly w′ ∈ WB which implies w ∈ WB. Suppose i + q + 1 60 im−1 + 1. Then
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im−1 + 1 ≤ i + q + 1 and im + i + q + 1 < 2n − 1. This implies im < n and then

im + 1 < im−1 + 1. Hence w′ ∈ WB and so is w.

Case (vi): Applying Corollary 7.2.4 and Lemma 7.2.2 several times gives

w
′

=
( q∏
k=0

(rB0 r2,2n−2r
B
1ik

)
)( p∏

k=q+1

(rB0 r
B
2,2n−2r

B
1ik+1)

)
(rC0 r

C
1,2n−1)

m−p−1(rC0 r
C
1,i+q+1)

=
( q∏
k=0

(rB0 r2,2n−2r
B
1ik

)
)( p∏

k=q+1

(rB0 r
B
2,2n−2r

B
1ik+1)

)
w
′′

where

w
′′

=


(rB0 r

B
2,2n−2r

B
1 )m−p, i+ q + 1 = 2n− 2

(rB0 r
B
2,2n−2r

B
1 )m−p−1(rB0 r

B
2,i+q+1), 1 ≤ i+ q + 1 ≤ 2n− 3

(rB0 r
B
2,2n−2r

B
1 )m−p−2(rB0 r

B
2,2n−2)(r

B
0 ), i+ q + 1 = 0

by Lemma 7.2.5. Then clearly w′ ∈ WB and so is w.

Lemma 7.2.8. The generating function for words in WB is

n∏
i=1

(1 + x+ · · ·+ x2i−1)
1 + xi

1− xn+i
.

Proof. We found one to one corresponding between words in WB and words in WC with

number of occurrence of r0 is even. Let w = (rCnlnr
C
n−1,ln−1

· · · rC1l1)
∏t

k=1(r
C
0 r

C
1jk

) where t is

even and 0 ≤ jk 0 jk−1 ≤ 2n− 1. Since rCi = rBi for i = 1, . . . , n, rCnlnr
C
n−1,ln−1

· · · rC1l1 =

rBnlnr
B
n−1,ln−1

· · · rB1l1 . Clearly its generating function is

n∏
i=1

(1 + x+ x2 + · · ·+ x2i−1).

When converting the
∏t

k=1(r
C
0 r

C
1jk

) into a word in WB, the corresponding word losses its

length by number of occurrence of r0. The generating function for the words in the form∏t
k=1(r

C
0 r

C
1jk

) where t ≥ 0 in WC is

n∏
i=1

1 + xi

1− xn+i
.

Hence generating function for the corresponding words in WB is

1

1− xn
n−1∏
i=1

1 + xi

1 + xn+i
=

n−1∏
i=1

1 + xi

1− xn+i
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since 1
1−xn = 1+xn

1−x2n . Notice that we consider all words of the form
∏t

k=1(r
C
0 r

C
1jk

) where

t ≥ 0. We can add or remove rC0 to end of the word if number of occurrence rC0 is odd and

this will not change the result.

Notice that the generating function for the infinite Coxeter group of type B̃n is

n∏
i=1

1 + x+ · · ·+ x2i−1

1− x2i−1
.

By Lemma 6.2.12

n∏
i=1

(1 + x+ · · ·+ x2i−1)(
1 + xi

1− xn+i
) =

n∏
i=1

1 + x+ cdots+ x2i−1

1− x2i−1

which is equal to generating function of words in WB.

Now we are ready to find the main result.

Theorem 7.2.9. Let RB be the set of all polynomials given in Lemma 7.1.2. Then

(i) WB = Red(RB).

(ii) RB is a Gröbner-Shirshov basis for the infinite Coxeter group of type B̃n.

Proof. (i) It is easy to see that any word in WB is RB-reduced. Hence WB ⊆ Red(RB).

Conversely if w ∈ Red(RB), then w can be written as a permutation in S̃Bn and this

permutation has a corresponding word in WB by Theorem 7.2.7. Hence Red(RB) ⊆
WB.

(ii) We know that any polynomial in RB is a part of a Gröbner-Shirshov basis of the

infinite Coxeter group of type B̃n. If RB were not a Gröbner-Shirshov basis, then

Red(RB) = WB should be a proper subset of the set of normal forms of the infinite

Coxeter group of type B̃n by Composition-Diamond lemma. This contradicts to the

fact that WB and normal forms of the infinite Coxeter group of type B̃n have same

generating functions.

Let us finish the chapter by an example.

Any word w ∈ WC with the number of appearance of r0 is even can be transformed a word

in WB by Theorem 7.2.7. This transformation can be made by using Corollary 7.2.4 and
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Lemma 7.2.5 repeatedly. Now we will take a word w ∈ S̃Bn and we find corresponding word

in the infinite Coxeter group of type C̃n. Using the techniques given in Chapter 6, then we

convert it into a word in the infinite Coxeter group of type B̃n.

Example 7. Let u = [42, 5, 17,−20] ∈ S̃B4 . Since S̃B4 ⊆ S̃C4 , u ∈ S̃C4 . Now we will deal

with in S̃C4 . Corollary 6.2.3 implies uw−1 = [−8, 4,−33,−20] where w = r0r12r0r1r0.

Applying the process explained in the proof of the Corollary 6.2.5, we get

[−8, 4,−33,−20](r0r14)
−1 = [−11,−8, 4,−33],

[−11,−8, 4,−33](r0r14)
−1 = [−24,−11,−8, 4],

[−24,−11,−8, 4](r0r15)
−1 = [1,−24,−11, 4],

[1,−24,−11, 4](r0r15)
−1 = [−2, 1,−24, 4],

[−2, 1,−24, 4](r0r15)
−1 = [−15,−2, 1, 4],

[−15,−2, 1, 4](r0r17)
−1 = [−6,−2, 1, 4] and

[−6,−2, 1, 4](r0r17)
−1 = [3,−2, 1, 4].

Thus [−8, 4,−33,−20]((r0r17)
2(r0r15)

3(r0r14)
2)−1 = [3,−2, 1, 4].

Corollary 6.2.8 implies [3,−2, 1, 4] = r25r12. Hence

u = (r25r12)(r0r17)
2(r0r15)

3(r0r14)
2(r0r12r0r1r0) ∈ S̃C4 .

Applying Corollary 7.2.4 repeatedly the word (r0r17)
2(r0r15)

3(r0r14)
2(r0r12r0r1r0) can be

converted the following words in each step.

(rC0 r
C
17)(r

C
0 r

C
17)(r

C
0 r

C
15)(r

C
0 r

C
15)(r

C
0 r

C
15)(r

C
0 r

C
14)(r

C
0 r

C
14)(r

C
0 r

C
12)(r

C
0 r

C
1 )(rC0 )

= (rC0 r
C
17)(r

B
0 r

B
26r

B
15)(r

C
0 r

C
16)(r

C
0 r

C
15)(r

C
0 r

C
14)(r

C
0 r

C
14)(r

C
0 r

C
12)(r

C
0 r

C
1 )(rC0 )

= (rB0 r
B
26r

B
15)(r

C
0 r

C
17)(r

C
0 r

C
16)(r

C
0 r

C
15)(r

C
0 r

C
14)(r

C
0 r

C
14)(r

C
0 r

C
12)(r

C
0 r

C
1 )(rC0 )

= (rB0 r
B
26r

B
15)(r

B
0 r

B
26r

B
15)(r

C
0 r

C
17)(r

C
0 r

C
14)(r

C
0 r

C
14)(r

C
0 r

C
12)(r

C
0 r

C
1 )(rC0 )

= (rB0 r
B
26r

B
15)(r

B
0 r

B
26r

B
15)(r

B
0 r

B
26r

B
14)(r

C
0 r

C
15)(r

C
0 r

C
12)(r

C
0 r

C
1 )(rC0 )

Applying Lemma 7.2.2,

(rC0 r
C
15)(r

C
0 r

C
12)(r

C
0 r

C
1 )(rC0 ) = (rB0 r

B
15r

B
12)(r

B
0 ).
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Since rBi = rCi for i 6= 0, then rC25r
C
12 = rB25r

B
12.

Therefore

u = (rB25r
B
12)(r

B
0 r

B
26r

B
15)

2(rB0 r
B
26r

B
14)(r

B
0 r

B
15r

B
12)(r

B
0 ) ∈ S̃B4 .
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8. GRÖBNER-SHIRSHOV BASIS AND NORMAL FORMS FOR

THE INFINITE COXETER GROUPS OF TYPE D̃n

8.1 Gröbner-Shirshov Basis for The Infinite Coxeter Group of Type D̃n

Definition 8.1.1. For a positive integer n ≥ 4, the infinite Coxeter group of type D̃n has a

presentation with generators S = {r0, r1, . . . , rn} and defining relations:

(R1) riri = 1 for 0 ≤ i ≤ n,

(R2) rirj = rjri for 0 < i < j − 1 < n but (i, j) 6= (0, 2) and (i, j) 6= (n− 2, n),

(R3) riri+1ri = ri+1riri+1 for 1 ≤ i < n− 1,

(R4) rn−2rnrn−2 = rnrn−2rn,

(R5) r0r2r0 = r2r0r2.

For convenience let us define

rij =


riri+1 · · · rj, if 1 ≤ i < j < n ;

riri+1 · · · rn−2rnrn−1 · · · r2n−j, if 1 ≤ i ≤ n− 1 < j ≤ 2n− i;
ri, if j = i;

1, if j = i− 1.

After this point we will not use superscripts unless we need to distinguish between

groups B̃n and D̃n.

Lemma 8.1.2. Suppose that< is the degree lexicographic order on S∗. A Gröbner-Shirshov

basis for the infinite Coxeter group of type D̃n with respect to < contains the following

polynomials:

• h(i)1 = riri − 1 for 0 ≤ i ≤ n,

• h(i,j)2 = rirj − rjri for 1 < j − i but (i, j) 6= (0, 2) and (i, j) 6= (n− 2, n),

• h(i)3 = ri,i+1 − ri+1ri for i = 0, n− 1,
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• h4 = rn−2,nrn−2 − rnrn−2,n,

• h(i,j)5 = rijri − ri+1rij for (1 ≤ i < j ≤ n− 1) or (1 ≤ i < n− 2

and n ≤ j ≤ 2n− 3 and 2n− j − 1 > 1),

• h(i)6 = ri,2n−iri+1 − ri+1ri,2n−i for 1 ≤ i ≤ n− 3,

• h7 = rn−2,n+2rn − rn−1rn−2,n+2,

• h8 = rn−2,n+2rn−1 − rnrn−2,n+2,

• h(i,j)9 = r0r2ir1jr0 − r2r0r2ir1j for 0 ≤ j ≤ 1 and 2 ≤ i ≤ 2n− 3,

• h(i)10 = r0r2ir1i − r1r0r2ir1,i−1 for 2 ≤ i ≤ n− 1,

• h11 = r0r2nr1n − r1r0r2nr1,n−2,

• h12 = r0r2,n−1r1,n+1 − r1r0r2,n−1r1n,

• h(i)13 = r0r2,2n−ir1,2n−i+1 − r1r0r2,2n−ir1,2n−i for 2 ≤ i < n,

• h(i,j)14 = r0r2ir1jr0r2j − r2r0r2ir1jr0r2,j−1 for (2 ≤ j ≤ n− 1

and n ≤ i ≤ 2n− 3) or (2 ≤ j < n− 1 and 3 ≤ i ≤ n− 1 and j < i),

• h15 = r0r2,n−1r1nr0r2n − r2r0r2,n−1r1nr0r2,n−2,

• h(i,j)16 = r0r2,2n−2r1ir0r2jr1,i−1 − r2r0r2,2n−2r1ir0r2jr1,i−2 for 2 ≤ i ≤ j ≤ n− 1,

• h17 = r0r2,2n−2r0r2 − r2r0r2,2n−2r0,

• h(i,j)18 = r0r2,2n−2r1ir0r2jr1 − r2r0r2,2n−2r1ir0r2j
for (i = 1 and 2 ≤ j ≤ n− 1) or (1 ≤ i ≤ 2 and n ≤ j ≤ 2n− 3),

• h(i)19 = r0r2,2n−ir1,n−1r0r2,n+1 − r2r0r2,2n−ir1,n−1r0r2n for 3 ≤ i ≤ n,

• h(i)20 = r0r2,2n−ir1nr0r2n − r2r0r2,2n−ir1nr0r2,n−2 for 3 ≤ i ≤ n− 1,

• h(i)21 = r0r2,2n−2r1ir0r2,2n−2r12 − r2r0r2,2n−2r1ir0r2,2n−2r1 for 1 ≤ i ≤ 2,

• h22 = r0r2,2n−2r1nr0r2nr1,n−2 − r2r0r2,2n−2r1nr0r2nr1,n−3,

• h(i)23 = r0r2,2n−2r1,n−1r0r2,2n−ir1n − r2r0r2,2n−2r1,n−1r0r2,2n−ir1,n−2
for 2 ≤ i ≤ n− 1,

• h(i)24 = r0r2,2n−2r1nr0r2,2n−ir1,n−1 − r2r0r2,2n−2r1nr0r2,2n−ir1,n−2
for 2 ≤ i ≤ n− 1,
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• h(i,j)25 = r0r2,2n−2r1,2n−ir0r2,2n−jr1,2n−i+1 − r2r0r2,2n−2r1,2n−ir0r2,2n−jr1,2n−i
for 2 ≤ j < i ≤ n,

• h(i,j)26 = r0r2,2n−ir1,2n−jr0r2,2n−j+1 − r2r0r2,2n−ir1,2n−jr0r2,2n−j
for 3 ≤ i ≤ j ≤ n− 1,

• h(i,j,k)27 = r0r2,2n−2r1ir0r2,2n−jr1k − r2r0r2,2n−2r1ir0r2,2n−jr1,k−1
for (k = i and 2 ≤ j ≤ n− 2 and 3 ≤ i ≤ n− 2)

or (k = i− 1 and 3 ≤ i ≤ n− 2 and i < j ≤ n),

Proof. h(i)1 , h
(i,j)
2 , h

(i)
3 , h4, h

(i,i+1)
5 and h

(2,0)
9 are defining relations for the infinite Coxeter

group of type D̃n.

< h
(i,i+1)
5 , h

(i,i+2)
2 >= h

(i,i+2)
5 for 1 ≤ i < n− 2,

< h
(i,j−1)
5 , h

(i,j)
2 >= h

(i,j)
5 for i+ 3 ≤ j ≤ n− 1,

< h
(n−3,n−2)
5 , h

(n−3,n)
2 >= h

(n−3,n)
5 ,

< h
(i,n−2)
5 , f

(i,n)
2 >= h

(i,n)
5 for 1 ≤ i < n− 3,

< h
(i,2n−j−1)
5 , h

(i,j)
2 >= h

(i,2n−j)
5 for 1 ≤ i < n− 2, 3 ≤ j ≤ n− 1 and j − i > 1,

< h
(i,2n−i−2)
5 , h

(i,i+1)
5 >= h

(i)
6 for 1 ≤ i ≤ n− 3,

< h
(n−2,n)
5 , h4 >= rn−2h

(n−1)
3 rn−2rn − rn−1rn−2h(n−1)3 rn−2 + h7,

< h4, h
(n−2,n)
5 >= h8,

< h
(i−1,0)
9 , h

(0,i)
2 >= h

(i,0)
9 for 3 ≤ i < n,

< h
(n−2,0)
9 , h

(0,n)
2 >= h

(n,0)
9 ,

< h
(2n−i−1,0)
9 , h

(0,i)
2 >= h

(2n−i,0)
9 for 3 ≤ i ≤ n− 1,

< h
(2,0)
9 , h

(0)
3 >= h

(2,1)
9 ,

< h
(i−1,1)
9 , h

(0,i)
2 >= r0r2,i−1h

(1,i)
2 r0 − r2r0r2,i−1h(1,i) + h

(i,1)
9 for 3 ≤ i < n,

< h
(2n−i,0)
9 , h

(0)
3 >= h

(2n−i,1)
9 for 3 ≤ i ≤ n,

< h
(0)
3 , h

(1,2)
5 >= h

(2)
10 ,
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< h
(i−1)
10 , h

(i−1,i)
5 > =

i−2∑
k=1

r0r2,i−1r1,k−1h
(k,i)
2 rk+1,i −

i−2∑
k=1

r1r0r2,i−1r1,k−1h
(k,i)
2 rk+1,i−1

+ h
(i)
10

for 3 ≤ i ≤ n− 1,

< h
(n−2)
10 , h4 > =

n−3∑
k=1

r0r2,n−2r1,k−1h
(k,n)
2 rk+1,n −

n−3∑
k=1

r1r0r2,n−2r1,k−1h
(k,n)
2 rk+1,n−2

+ h11,

< h
(n−1)
10 , h

(n−1)
3 >= h12;

< h12, h8 > =
n−3∑
k=1

r0r2,n−1r1,k−1h
(k,n)
2 rk+1,n+2 + r0r2,n−2h

(n−1)
3 r1,n+2

− r1r0r2,n−1r1,n−3h4rn−1 −
n−3∑
k=1

r1r0r2,n−1r1,k−1h
(k,n)
2 rk+1,n+1

− r1r0r2,n−2h(n−1)3 r1,n+1 + h
(n−1)
13 ,

< h
(i+1)
13 , h

(i−1)
6 > =

i−2∑
k=1

r0r2,2n−i−1r1,k−1h
(k,i)
2 rk+1,2n−i+1

− r1r0r2,2n−i−1r1,i−2h(i−1,2n−i−1)5 ri

−
i−2∑
k=1

r1r0r2,2n−i−1r1,k−1h
(k,i)
2 rk+1,2n−i + h

(i)
13

for 2 ≤ i ≤ n− 2,

< h
(i,1)
9 , h

(2,0)
9 >= h

(i,2)
14 for 3 ≤ i ≤ 2n− 3,

< h
(i,j−1)
14 , h

(j−1,j)
5 > =

j−2∑
k=2

r0r2ir1,j−1r0r2,k−1h
(k,j)
2 rk+1,j

−
j−2∑
k=2

r2r0r2ir1,j−1r0r2,k−1h
(k,j)
2 rk+1,j−1

+ h
(i,j)
14

for 3 ≤ i ≤ 2n− 3,
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< h
(n−1,n−2)
14 , h4 > =

n−3∑
k=1

r0r2,n−1r1,n−2r0r2,k−1h
(k,n)
2 rk+1,n + r0r2,n−1r1,n−2h

(0,n)
2 r2n

−
n−3∑
k=1

r2r0r2,n−1r1,n−2r0r2,k−1h
(k,n)
2 rk+1,n−2

− r2r0r2,n−1r1,n−2h(0,n)2 r2,n−2 + h15,

< h
(2n−3,i)
14 , h

(i)
10 > = r0r2,2n−3h

(1,i)
5 r0r2ir1,i−1 − r2r0r2,2n−3r1ih(i−1)10 ri

− r2r0r2,2n−3h(1,i)5 r0r2,i−1r1,i−2ri

−
i−2∑
k=1

r2r0r2,2n−2r1ir0r2,i−1r1,k−1h
(k,i)
2 rk+1,i−1 + h

(i,i)
16

for 2 ≤ i < n,

< h
(i,j−1)
16 , h

(i−1,j)
2 > =

i−2∑
k=1

r0r2,2n−2r1ir0r2,j−1r1,k−1h
(k,j)
2 rk+1,i−1

−
i−2∑
k=1

r2r0r2,2n−2r1ir0r2,j−1r1,k−1h
(k,j)
2 rk+1,i−2

+ h
(i,j)
16

for 2 ≤ i < j ≤ n− 1,

< h
(2n−3,0)
9 , h

(2,0)
9 >= h17,

< h17, h
(2)
10 >= h

(1,2)
18 ,

< h
(1,i−1)
18 , h

(1,i)
2 >= h

(1,i)
18 for 2 < i < n,

< h
(1,n−2)
18 , h

(1,n)
2 >= h

(1,n)
18 ,

< h
(1,2n−j−1)
18 , h

(1,j)
2 >= h

(1,2n−j)
18 for 3 ≤ j < n,

< h
(2,n−2)
16 , h

(1,n)
2 >= h

(2,n)
18 ,

< h
(2,2n−j−1)
18 , h

(1,j)
2 >= h

(2,j)
18 ,

< h
(2n−i,n−1)
14 , h

(n−1)
3 >= h

(i)
19 for 3 ≤ i ≤ n,
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< h
(2n−i,n−2)
14 , h4 > =

n−3∑
k=2

r0r2,2n−ir1,n−2r0r2,k−1h
(k,n)
2 rk+1,n−2rk+1,n

+ r0r2,2n−ir1,n−2h
(0,n)
2 r2n

−
n−3∑
k=2

r2r0r2,2n−ir1,n−2r0r2,k−1h
(k,n)
2 rk+1,n−2

− r2r0r2,2n−ir1,n−2h(0,n)2 r2,n−2 + h
(i)
20

for 3 ≤ i < n,

< h
(i,2n−3)
18 , h

(1,2)
5 >= h

(i)
21 for 1 ≤ i ≤ 2,

< h
(3)
20 , h11 > = r0r2,2n−3h

(1,n)
5 r0r2nr1,n−2 −

n−3∑
k=1

r2r0r2,2n−3r1nr0r2,2n−2r1,k−1h
(k,n)
2 rk+1.n−3

+ h22,

< h
(n−1,n−1)
16 , h4 > =

n−3∑
k=1

r0r2,2n−2r1,n−1r0r2,n−1r1,k−1h
(k,n)
2 rk+1,n

+ r0r2,2n−2r1,n−1r0r2,n−2h
(n−1)
3 r1n

−
n−3∑
k=1

r2r0r2,2n−2r1,n−1r0r2,n−1r1,k−1h
(k,n)
2 rk+1,n−2

− r2r0r2,2n−2r1,n−1r0r2,n−2h(n−1)3 r1,n−2 + h
(n−1)
23 ,

< h
(i+1)
23 , h

(i−1,n)
5 > =

i−2∑
k=1

r0r2,2n−2r1,n−1r0r2,2n−i−1r1,k−1h
(k,i)
2 rk+1,n

− r2r0r2,2n−2r1,n−1r0r2,2n−i−1r1,i−2h(i−1,n−2)5

−
i−2∑
k=1

r2r0r2,2n−2r1,n−1r0r2,2n−i−1r1,k−1h
(k,i)
2 rk+1,n−2

+ h
(i)
23 , 2 ≤ i < n− 1

for 2 ≤ i < n− 1,

< h22, h
(n−2,n−1)
5 > =

n−3∑
k=1

r0r2,2n−2r1nr2nr1,k−1h
(k,n−1)
2 rk+1,n−1

−
n−3∑
k=1

r2r0r2,2n−2r1nr2nr1,k−1h
(k,n−1)
2 rk+1,n−2

+ h
(n−1)
24 ,

57



< h
(i+1)
24 , h

(i−1,n−1)
5 > =

i−2∑
k=1

r0r2,2n−2r1nr0r2,2n−i−1r1,k−1h
(k,i)
2 rk+1,n−1

− r2r0r2,2n−2r1nr0r2,2n−i−1r1,i−2h(i−1,n−2)5

−
i−2∑
k=1

r2r0r2,2n−2r1nr0r2,2n−i−1r1,k−1h
(k,i)
2 rk+1,n−2

+ h
(i)
24

for 2 ≤ i < n− 1,

< h
(j)
24 , h

(n−1)
3 >= h

(n,j)
25 for 2 ≤ j < n,

< h
(j)
23 , h7 > =

n−3∑
k=1

r0r2,2n−jr1,n−1r0r2,2n−jr1,k−1h
(k,n−1)
2 rk+1,n+2

+
n−3∑
k=j

r0r2,2n−jr1,n−1r0r2,2n−k−1h
(k,n−1)
2 r2n−k+1,2n−jr1,n+2

+ r0r2,2n−jr1,n−1r0r2,2n−3h8rn+3,2n−jr1,n+2

+
n−3∑
k=2

r0r2,2n−jr1,n−1r0r2,k−1h
(k,n)
2 rk+1,2n−jr1,n+2

+ r0r2,2n−jr1,n−1h
(0,n)
2 r2,2n−jr1,n+2

+ r0r2,2n−jr1,n−2h
(n−1)
3 r0r2,2n−jr1,n+2

− r2r0r2,2n−jr1,n−1r0r2,2n−jr1,n−3h(n−2)5 rn

− r2r0r2,2n−jr1,n−1r0r2,2n−jr1,n−3rn−1rn−2h(n−1)3

−
n−3∑
k=1

r2r0r2,2n−jr1,n−1r0r2,2n−jr1,k−1h
(k,n−1)
2 rk+1,n+1

−
n−3∑
k=j

r2r0r2,2n−jr1,n−1r0r2,2n−k−1h
(k,n−1)
2 r2n−k+1,2n−jr1,n+1

− r2r0r2,2n−jr1,n−1r0r2,n−3h8rn+3,2n−jr1,n+1

−
n−3∑
k=2

r2r0r2,2n−jr1,n−1r0r2,k−1h
(k,n)
2 rk+1,2n−jr1,n+1

− r2r0r2,2n−jr1,n−1h(0,n)2 r2,2n−jr1,n+1

− r2r0r2,2n−jr1,n−2h(n−1)3 r0r2,2n−jr1,n+1 + h
(n−1,j)
25

for 2 ≤ j < n− 1,
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< h
(i+1,j)
25 , h

(i−1)
6 > =

i−2∑
k=1

r0r2,2n−2r1,2n−i−1r0r2,2n−jr1,k−1h
(k,i)
2 rk+1,2n−i+1

+
i−2∑
k=j

r0r2,2n−2r1,2n−i−1r0r2,2n−k−1h
(k,i)
2 r2n−k+1,2n−jr1,2n−i+1

+ r0r2,2n−2r1,2n−i−1r0r2,i−2h
(i−1)
6 r2n−i+2,2n−jr1,2n−i+1

+
i−2∑
k=2

r0r2,2n−2r1,2n−i−1r0r2,k−1h
(k,i)
2 rk+1,2n−jr1,2n−i+1

+ r0r2,2n−2r1,2n−i−1h
(0,i)
2 r2,2n−jr1,2n−i+1

− r2r0r2,2n−2r1,2n−i−1r0r2,2n−jr1,i−2h(i−1,2n−i−1)5 ri

−
i−2∑
k=1

r2r0r2,2n−2r1,2n−i−1r0r2,2n−jr1,k−1h
(k,i)
2 rk+1,2n−i

−
i−2∑
k=j

r2r0r2,2n−2r1,2n−i−1r0r2,2n−k−1h
(k,i)
2 r2n−k+1,2n−jr1,2n−i

− r2r0r2,2n−2r1,2n−i−1r0r2,i−2h(i−1)6 r2n−i+2,2n−jr1,2n−i

−
i−2∑
k=2

r2r0r2,2n−2r1,2n−i−1r0r2,k−1h
(k,i)
2 rk+1,2n−jr1,2n−i

− r2r0r2,2n−2r1,2n−i−1h(0,i)2 r2,2n−jr1,2n−i + h
(i,j)
25

for 3 ≤ i ≤ n− 2 and 2 ≤ j < i,

< h
(i)
19 , h8 > =

n−3∑
k=2

r0r2,2n−ir1,n−1r0r2,k−1h
(k,n)
2 rk+1,n+2

+ r0r2,2n−ir1,n−1h
(0,n)
2 r2,n+2

− r2r0r2,2n−ir1,n−1r0r2,n−3h4rn−1

−
n−3∑
k=2

r2r0r2,2n−ir1,n−1r0r2,k−1h
(k,n)
2 rk+1,n+1

− r2r0r2,2n−ir1,n−1h(0,n)2 r2,n+1 + h
(i,n−1)
26

for 3 ≤ i < n,
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< h
(i,j+1)
26 , h

(j−1)
6 > =

j−2∑
k=2

r0r2,2n−ir1,2n−j−1r0r2,k−1h
(k,j)
2 rk+1,2n−j+1

+ r0r2,2n−ir1,2n−j−1h
(0,j)
2 r2,2n−j+1

− r2r0r2,2n−ir1,2n−j−1r0r2,j−2h(j−1,2n−j−1)5 rj

−
j−2∑
k=2

r2r0r2,2n−ir1,2n−j−1r0r2,k−1h
(k,j)
2 rk+1,2n−j

− r2r0r2,2n−ir1,2n−j−1h(0,j)2 r2,2n−j + h
(i,j)
26

for 3 ≤ i < n, 3 ≤ j < n and i ≤ j

< h
(2,2n−j)
18 , h

(1,2)
5 > = r0r2,2n−2r12r0h

(2,2n−j)
5 r12 + r0r2,2n−2r12h

(0,3)
2 r2,2n−jr12

− r2r0r2,2n−2r12r0h(2,2n−j)5 r1 − r0r2,2n−2r12h(0,3)2 r2,2n−jr1

+ h
(3,j,2)
27

for 3 < j ≤ n,

< h
(i−1,j,i−2)
27 , h

(i−2,i−1)
5 > =

i−3∑
k=1

r0r2,2n−2r1,i−1r0r2,2n−jr1,k−1h
(k,i−1)
2 rk+1,i−1

+ r0r2,2n−2r1,i−1r0r2,i−2h
(i−1,2n−j)
5 r1,i−1

+
i−2∑
k=2

r0r2,2n−2r1,i−1r0r2,k−1h
(k,i)
2 rk+1,2n−jr1,i−1

+ r0r2,2n−2r1,i−1h
(0,i)
2 r2,2n−jr1,i−1

−
i−3∑
k=1

r2r0r2,2n−2r1,i−1r0r2,2n−jr1,k−1h
(k,i−1)
2 rk+1,i−2

− r2r0r2,2n−2r1,i−1r0r2,i−2h(i−1,2n−j)5 r1,i−2

−
i−2∑
k=2

r2r0r2,2n−2r1,i−1r0r2,k−1h
(k,i)
2 rk+1,2n−jr1,i−2

− r2r0r2,2n−2r1,i−1h(0,i)2 r2,2n−jr1,i−2 + h
(i,j,i−1)
27

for 3 < i ≤ n− 2, i < j ≤ n and k = i− 1,

< h
(i,i+1,i−1)
27 , h

(i−1,i)
5 > =

i−2∑
k=1

r0r2,2n−2r1ir0r2,2n−i−1r1,k−1h
(k,i)
2 rk+1,i

−
i−2∑
k=1

r2r0r2,2n−2r1ir0r2,2n−i−1r1,k−1h
(k,i)
2 rk+1,i−1

+ h
(i,i,i)
27
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for 3 ≤ i ≤ n− 2,

< h
(i,j+1,i)
27 , h

(j−1,i)
5 > =

j−2∑
k=1

r0r2,2n−2r1ir0r2,2n−j−1r1,k−1h
(k,j)
2 rk+1,i

− r2r0r2,2n−2r1ir0r2,2n−j−1r1,j−2h(j−1,i−1)5

−
j−2∑
k=1

r2r0r2,2n−2r1ir0r2,2n−j−1r1,k−1h
(k,j)
2 rk+1,i−1

h
(i,j,i)
27

for 3 ≤ i ≤ n− 2 and 2 ≤ j < i

At this point we are not able to show that polynomials given above lemma form

Gröbner-Shirshov basis for the infinite Coxeter group of type D̃n.

8.2 Normal Forms for The Infinite Coxeter Group of Type D̃n

For v ∈ S̃n
C

define

v[i, j] = |{k ∈ Z : k ≤ i, v(k) ≥ j}|

for all i, j ∈ Z.

S̃Bn is a subgroup of S̃Cn of index 2.

Let S̃Dn be the subgroup of S̃Bn consisting of all the elements of S̃Bn that have, in their

complete notation, an even number of negative entries to the right of 0.

S̃Dn = {u ∈ S̃Bn : u[0, 1] ≡ 0 (mod2)}

Thus, S̃Dn is a subgroup of S̃Bn of index 2.

Proposition 8.2.1. (Bjorner and Brenti (2005), Proposition 8.6.3)

The group S̃Dn with generating set {rD0 , rD1 , . . . , rDn } is the infinite Coxeter group of type D̃n

where rDi = rBi for i = 0, 1, 2, . . . , n− 1 and rDn = [(n− 1 − n)].

We now try to find normal form representations of elements of D̃n with respect to

these generators. First of all, we give some relations between words in D̃n and words in B̃n.

61



Lemma 8.2.2. (i) rBn r
B
n−1 = rDn r

B
n ,

(ii) rBn r
B
n−1r

B
n = rDn ,

(iii) rBn−1r
B
n r

B
n−1 = rDn r

D
n−1r

B
n ,

(iv) rBn r
B
n−1r

B
n r

B
n−1 = rDn r

D
n−1.

Proof. (i)

rBn r
B
n−1 = [(n − n)][(n− 1 n)]

= [(n− 1 − n)][(n − n)]

= rDn r
B
n

(ii)

rBn r
B
n−1r

B
n = rDn r

B
n r

B
n by part (i)

= rDn since rBn r
B
n = 1

(iii)

rBn−1r
B
n r

B
n−1 = rBn−1r

D
n r

B
n by part (i)

= rDn−1r
D
n r

B
n since rBn−1 = rDn−1

= rDn r
D
n−1r

B
n by ELW in h(n−1)3

(iv)

rBn r
B
n−1r

B
n r

B
n−1 = rDn r

B
n−1 by part (ii)

= rDn r
D
n−1 since rBn−1 = rDn−1

Lemma 8.2.3. For 1 ≤ i ≤ n− 2

rBiji =


rDiji , ji < n;

rDi,n−1r
B
n , ji = n;

rDijir
B
n , ji > n.
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Proof. Since rBi = rDi for 1 ≤ i ≤ n − 1, rBiji = rDiji for ji < n. Similarly rBin = rDi,n−1r
B
n .

Suppose that ji > n and i ≤ n− 2. Then

rDijir
B
n = rBi,n−2r

B
n r

B
n−1r

B
n r

B
n−1 · · · rB2n−jir

B
n by part (ii) of Lemma 8.2.2,

= rBi,n−2r
B
n r

B
n−1r

B
n r

B
n−1r

B
n · · · rB2n−ji by ELW′s in g

(k,n)
2 k = 2n− ji, . . . , n− 2,

= rBi,n−2r
B
n r

B
n r

B
n−1r

B
n r

B
n−1 · · · rB2n−ji by ELW′s in g

(n−1)
4 ,

= rBiji since rBn r
B
n = 1.

Lemma 8.2.4. For 1 ≤ i ≤ n− 2

rBn r
B
iji

=


rDijir

B
n , ji ≤ n− 2;

rDinr
B
n , ji = n− 1;

rDin, ji = n;

rDiji , ji > n.

Proof. (i)

rBn r
B
iji

= [(n − n)][(i i+ 1 · · · ji + 1)]

= [(i i+ 1 · · · ji + 1)][(n − n)]

= rBijir
B
n since ji + 1 < n

= rDijir
B
n since rBiji = rDiji

(ii)

rDinr
B
n = rBi,n−2r

B
n r

B
n−1r

B
n r

B
n

= rBi,n−2r
B
n r

B
n−1 by ELW′s in g

(n)
1

= rBn r
B
i,n−1 by ELW′s in g

(k,n)
2 for k = n− 2, . . . , i

(iii)

rBn r
B
in = rBn r

B
i,n−1r

B
n

= rDi,nr
B
n r

B
n by part (ii)

= rDi,n since rBn r
B
n = 1.

(iv)

rBn r
B
iji

= rBn r
B
i,nr

B
n−1 · · · rB2n−ji

= rDinr
B
n−1 · · · rB2n−ji by part (iii)

= rDiji since rBk = rDk fork 6= n.
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Definition 8.2.5. Let w = rBnjnr
B
n−1,jn−1

· · · rBiji · · · r
B
1j1

where i − 1 ≤ ji ≤ 2n − i for

1 ≤ i ≤ n. Define n(w) to be number of appearance of rn in w.

The following corollary is a consequence of the equalities rBn r
B
0 = rB0 r

B
n , rB0 = rD0

and the above lemmas.

Corollary 8.2.6. Let 1 ≤ j 0 i ≤ 2n− 2.

rB0 r
B
2ir

B
1j =



rD0 r
D
2ir

D
1j, i ≤ n− 1 or j > n

rD0 r
D
2,n−1r

D
1jr

B
n , i = n and j < n− 1

rD0 r
D
2,n−1r

D
1nr

B
n , i = n and j = n− 1

rD0 r
D
2,n−1r

D
1n, i = n and j = n

rD0 r
D
2ir

D
1jr

B
n , i > n and j < n− 1

rD0 r
D
2ir

D
1nr

B
n , i > n and j = n− 1

rD0 r
D
2ir

D
1n, i > n and j = n

Corollary 8.2.7. Let 1 ≤ j 0 i ≤ 2n− 2.

rBn r
B
0 r

B
2ir

B
1j =


rD0 r

D
2ir

D
1jr

B
n , i ≤ n− 1 or j > n

rD0 r
D
2nr

D
1jr

B
n , i = n− 1

rD0 r
D
2ir

D
1j, i ≥ n and j < n

rD0 r
D
2ir

D
1,n−1r

B
n , i ≥ n and j = n

Definition 8.2.8.

il j =


i ≤ j, if i ≥ n+ 1;

j = n− 1 or j ≥ n+ 1, if i = n;

i < j, if i ≤ n− 1.

Notice that n and n− 1 are not comparable by themselves but nl n− 1 and n− 1 l n.

Definition 8.2.9.

i . j =


i ≤ j, if i ≥ n;

j = n− 1 or j ≥ n+ 1, if i = n− 1;

i < j, if i < n− 1.

Notice that n and n− 1 are not comparable by each other.

Definition 8.2.10. We define the following words in D̃n,

64



(i) w0 = rDnln · · · r
D
ili
· · · rD1l1 where i − 1 ≤ li ≤ 2n − i for i = 1, . . . , n except n − 2 ≤

ln−1 ≤ n− 1.

(ii) w1 =
∏t

k=1(r
D
0 r

D
2,2n−2r

D
1,ik

) for t ≥ 0, 1 ≤ ik . ik−1 ≤ 2n− 2.

(iii) w2 =
∏s

k=1(r
D
0 r

D
2,j2k−1

rD1,j2k) for s ≥ 0, 1 ≤ jk l jk−1 ≤ 2n− 3.

(iv) w3 =


(rD0 r

D
2,2n−2r

D
1,j2k

)2m,

(rD0 r
D
2,2n−2r

D
1,j2k

)2m−1(rD0 r
D
2j),

(rD0 r
D
2,2n−2r

D
1,j2k

)2(m−1)(rD0 r
D
2,2n−2)r

D
0 ,

for m ≥ 0 and 1 ≤ j ≤ 2n− 2.

(v) w4 = w0w1w2 where it ≥ 2 and either j1lit or j1 6 lit but

 j2 . it, it + j1 ≥ 2n;

j2 + 1 < it, it + j1 < 2n.

(vi) w5 = w0w1w3

Let WD = {w4, w5}.

Theorem 8.2.11. Any word w ∈ WB where n(w) is even can be transformed a word in WD.

Proof. Let w0 = rBnjnr
B
n−1,jn−1

· · · rBiji · · · r
B
1j1

where i− 1 ≤ ji ≤ 2n− i for 1 ≤ i ≤ n. Let

ti = n(rBnjn · · · r
B
i+1,ji+1

). Then

w0 =

 (rDn,ln · · · r
D
ili
· · · rD1,l1), n(w) is even;

(rDn,ln · · · r
D
ili
· · · rD1,l1)r

B
n , n(w) is odd.

where

ln =

 n, jn = n or jn−1 = n+ 1;

n− 1, otherwise.
,

ln−1 =


n− 1, jn−1 = n− 1 or jn−1 = n; and jn = n− 1;

n− 1, jn−1 = n+ 1;

n− 2, otherwise.

and

li =


ji, ji 6= n− 1, n;

n− 1, ji = n− 1 or ji = n; and ti is even;

n, ji = n− 1 or ji = n; and ti is odd.

for i = n− 2, n− 3, . . . , 1.
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Here the values of ln and ln−1 are easily follows from Lemma 8.2.2. The values of

other li’s can be obtained by recursively applying either Lemma 8.2.3 or Lemma 8.2.4 for

i = n− 2, n− 3, . . . , 1 and using the fact rBn r
B
n = 1.

Let w1 =
∏t

k=1(r
B
0 r

B
2,2n−2r

B
ik

) for t ≥ 0 and 1 ≤ ik 0 ik−1 ≤ 2n − 2 and let ζ be

the number of ik’s which is less than or equal to n − 1 in w1. Then several applications of

Corollary 8.2.6 and Corollary 8.2.7 imply that

w1 =


∏t

k=1(r
D
0 r

D
2,2n−2r

D
ik

), ζ is even;

(
∏t

k=1(r
D
0 r

D
2,2n−2r

D
ik

))rB0 , ζ is odd.

where jk = ik if ik 6= n− 1 and jk = n if ik = n− 1.

Now consider w̄1 = rBnw1. Similarly

w̄1 =


∏t

k=1(r
D
0 r

D
2,2n−2r

D
ik

), ζ is odd;

(
∏t

k=1(r
D
0 r

D
2,2n−2r

D
ik

))rB0 , ζ is even.

where jk = ik if ik 6= n and jk = n− 1 if ik = n.

Hence both w1 and w̄1 can be transformed one of the following


∏t

k=1(r
D
0 r

D
2,2n−2r

D
ik

),

(
∏t

k=1(r
D
0 r

D
2,2n−2r

D
ik

))rB0 ,

where for t ≥ 0, 1 ≤ ik . ik−1 ≤ 2n− 2.

Lemma 8.2.12.

n−1∏
i=1

[(1+x+x2 + . . .+xi)(1+xi)] = (1+x+x2 + . . .+xn−1)
n−1∏
i=1

(1+x+x2 + . . .+x2i−1)

Proof. We use case analysis. If n is odd, then we must show that

n−3
2∏

k=1

(1 + x+ x2 + · · ·+ x2k)
n−1∏
t=1

(1 + xt) =

n−3
2∏

m=0

(1 + x+ x2 + · · ·+ xn+2m)
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Let us prove that
n−3
2∏

k=1

(1 + x+ x2 + · · ·+ x2k)
n−1∏
t=1

(1 + xt) =

n−3
2∏

k=1

(
1− x2k+1

1− x
)
n−1∏
t=1

(
1− x2t

1− xt
)

=
(1− xn+1)(1− xn+3) · · · (1− x2n−2)

(1− x)
n−1
2

=
1− xn+1

1− x
1− xn+3

1− x
· · · 1− x

2n−2

1− x

=

n−3
2∏

m=0

(1 + x+ x2 + · · ·+ xn+2m).

If n is even, then we must show that
n−2
2∏

k=1

(1 + x+ x2 + · · ·+ x2k)
n−1∏
t=1

(1 + xt) =

n−1
2∏

m=0

(1 + x+ x2 + · · ·+ xn+2m−2).

Let us prove that
n−2
2∏

k=1

(1 + x+ x2 + · · ·+ x2k)
n−1∏
t=1

(1 + xt) =

n−2
2∏

k=1

(
1− x2k+1

1− xk
)
n−1∏
t=1

(
1− x2t

1− xt
)

=
(1− xn)(1− xn+2) · · · (1− x2n−2)

(1− x)
n
2

=
1− xn

1− x
1− xn+2

1− x
· · · 1− x

2n−2

1− x

=

n−1
2∏

m=0

(1 + x+ x2 + · · ·+ xn+2m−2).

Lemma 8.2.13. The generating function for word in WD is

1 + x+ x2 + · · ·+ xn−1

1− xn−1
n−1∏
i=1

1 + xi

1− xn−1+i
.

Proof. We found one to one corresponding between words inWD and the words inWC with

number of occurrences of r0 and rn are even. Let

w = (rCnlnr
C
n−1,ln−1

· · · rC1,l1)
t∏

k=1

(rC0 r
C
1jk

)

where t is even, n(w) is even and 0 ≤ jk 0 jk−1 ≤ 2n− 1.

First consider the part of rCnlnr
C
n−1,ln−1

· · · rC1,l1 = rBnlnr
B
n−1,ln−1

· · · rB1,l1 . Theorem 8.2.11 im-

plies that corresponding word in WD is of the form

rDn r
D
n−1r

D
n−2,jn−2

· · · rD1j1
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where i− 1 ≤ ji ≤ 2n− i. The generating function for these words in this form is

(1 + x)2
∏n−1

i=2 (1 + x+ x2 + · · ·+ xi−1 + 2xi + xi+1 + · · ·+ x2i)

=
∏n−1

i=1 (1 + x+ · · ·+ xi)(1 + xi)

= (1 + x+ x2 + · · ·+ xn−1)
∏n−1

i=1 (1 + x+ x2 + · · ·+ x2i−1) by Lemma 8.2.12.

Consider the word w =
∏t

k=1(r
C
0 r

C
1jk

) where t is even and n(w) is even. Notice that we

assume n(rBnjnr
B
n−1,jn−1

· · · rB1,j1) is even; otherwise, we have to consider the word rBnw.

When converting the word
∏t

k=1(r
C
0 r

C
1jk

) into a word in WD, the corresponding word losses

its length by number of occurrence of r0 and rn. The generating function for the words in

the form
∏t

k=1(r
C
0 r

C
1jk

) in WC is
n∏
i=1

1 + xi

1− xn+i
.

Hence generating function for the corresponding word in WD is

(1 + x)(1 + x2) · · · (1 + xn−1)

(1− xn−1)(1− xn) · · · (1− x2n−2)
=

1

xn−1

n−1∏
i=1

1 + xi

1− xn−1+i
.

Notice that the generating function for the infinite Coxeter group of type D̃n is

1 + x+ x2 + · · ·+ xn−1

1− xn−1
n−1∏
i=1

1 + x+ . . .+ x2i−1

1− x2i−1
.

By Lemma 6.2.12

1 + x+ x2 + · · ·+ xn−1

1− xn−1
n−1∏
i=1

1 + x+ . . .+ x2i−1

1− x2i−1
= (

n−1∏
i=1

(1+x+. . .+x2i−1)(
1 + xi

1− xn−1+i
))

which is equal to generating function of words in WD.

Now we are ready to find the main result.

Theorem 8.2.14. Let RD be the set of all polynomials given in Lemma 8.1.2. Then

(i) WD = Red(RD).

(ii) RD is a Gröbner-Shirshov basis for the infinite Coxeter group of type D̃n.

Proof. (i) It is easy to see that any word in WD is RD-reduced. Hence WD ⊆ Red(RD).

Conversely if w ∈ Red(RD), then w can be written as a permutation in S̃Dn and this

permutation has a corresponding word in WD by Theorem 8.2.11. Hence Red(RD) ⊆
WD.
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(ii) We know that any polynomial in RD is a part of a Gröbner-Shirshov basis of the

infinite Coxeter group of type D̃n. If RD were not a Gröbner-Shirshov basis, then

Red(RD) = WB should be a proper subset of the set of normal forms of the infinite

Coxeter group of type D̃n by Composition-Diamond lemma. This contradicts to the

fact that WD and normal forms of the infinite Coxeter group of type D̃n have same

generating functions.

Let us finish this chapter with an example. We will take u ∈ S̃Dn ⊆ S̃Cn . First we find

corresponding word in WC . Then we convert it a word in WB and find a word in WD.

Example 8. Let u = [44, 7, 31,−6] ∈ S̃D4 . Since S̃D4 ⊆ S̃C4 , u ∈ S̃C4 . Now we will deal

with in S̃C4 . Corollary 6.2.3 implies uw−1 = [−22, 2,−35,−6] where w = r0r12r0r1r0.

Applying the process explained in the proof of the Corollary 6.2.5, we get

[−22, 2,−35,−6](r0r14)
−1 = [3,−22, 2,−35],

[3,−22, 2,−35](r0r14)
−1 = [−26, 3,−22, 2],

[−26, 3,−22, 2](r0r15)
−1 = [−13,−26, 3, 2],

[−13,−26, 3, 2](r0r16)
−1 = [−17,−13, 3, 2],

[−17,−13, 3, 2](r0r16)
−1 = [−4,−17, 3, 2],

[−4,−17, 3, 2](r0r16)
−1 = [−8,−4, 3, 2] and

[−8,−4, 3, 2](r0r17)
−1 = [1,−4, 3, 2].

Thus [−22, 2,−35,−6]((r0r17)(r0r16)
3(r0r15)(r0r14)

2)−1 = [1,−4, 3, 2].

Corollary 6.2.8 implies [1,−4, 3, 2] = r4r3r23. Hence

u = (r4r3r23)(r0r17)(r0r16)
3(r0r15)(r0r14)

2(r0r12r0r1r0) ∈ S̃C4 .

Applying the process of the Corollary 7.2.4,

(rC0 r
C
17)(r

C
0 r

C
16)(r

C
0 r

C
16)(r

C
0 r

C
16)(r

C
0 r

C
15)(r

C
0 r

C
14)(r

C
0 r

C
14)(r

C
0 r

C
12)(r

C
0 r

C
1 )(rC0 )

= (rB0 r
B
26r

B
16)(r

C
0 r

C
17)(r

C
0 r

C
16)(r

C
0 r

C
15)(r

C
0 r

C
14)(r

C
0 r

C
14)(r

C
0 r

C
12)(r

C
0 r

C
1 )(rC0 )

= (rB0 r
B
26r

B
16)(r

B
0 r

B
26r

B
15)(r

C
0 r

C
17)(r

C
0 r

C
14)(r

C
0 r

C
14)(r

C
0 r

C
12)(r

C
0 r

C
1 )(rC0 )
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= (rB0 r
B
26r

B
16)(r

B
0 r

B
26r

B
15)(r

B
0 r

B
26r

B
14)(r

C
0 r

C
15)(r

C
0 r

C
12)(r

C
0 r

C
1 )(rC0 ).

Applying the process of the Lemma 7.2.2,

(rB0 r
B
26r

B
16)(r

B
0 r

B
26r

B
15)(r

B
0 r

B
26r

B
14)(r

C
0 r

C
15)(r

C
0 r

C
12)(r

C
0 r

C
1 )(rC0 )

= (rB0 r
B
26r

B
16)(r

B
0 r

B
26r

B
15)(r

B
0 r

B
26r

B
14)(r

B
0 r

B
25r

B
12)(r

B
0 ).

Since rCi = rBi for i 6= 0, then (rC4 r
C
3 r

C
23) = (rB4 r

B
3 r

B
23). Hence

u = (rB4 r
B
3 r

B
23)(r

B
0 r

B
26r

B
16)(r

B
0 r

B
26r

B
15)(r

B
0 r

B
26r

B
14)(r

B
0 r

B
25r

B
12)(r

B
0 ) ∈ S̃B4 .

Now we convert u from B̃4 to D̃4 using the techniques in this chapter.

rB4 r
B
3 = rD4 r

B
4 by Lemma 8.2.2, then

u = (rD4 r
B
4 r

B
23)(r

B
0 r

B
26r

B
16)(r

B
0 r

B
26r

B
15)(r

B
0 r

B
26r

B
14)(r

B
0 r

B
25r

B
12)(r

B
0 ),

rB4 r
B
23 = rD24r

B
4 by Lemma 8.2.4, then

u = (rD4 r
D
24r

B
4 )(rB0 r

B
26r

B
16)(r

B
0 r

B
26r

B
15)(r

B
0 r

B
26r

B
14)(r

B
0 r

B
25r

B
12)(r

B
0 ),

rB4 r
B
0 r

B
26r

B
16 = rD0 r

D
26r

D
16r

B
4 by Corollary 8.2.7, then

u = (rD4 r
D
24)(r

D
0 r

D
26r

D
16r

B
4 )(rB0 r

B
26r

B
15)(r

B
0 r

B
26r

B
14)(r

B
0 r

B
25r

B
12)(r

B
0 ),

rB4 r
B
0 r

B
26r

B
15 = rD0 r

D
26r

D
15r

B
4 by Corollary 8.2.7, then

u = (rD4 r
D
24)(r

D
0 r

D
26r

D
16)(r

D
0 r

D
26r

D
15r

B
4 )(rB0 r

B
26r

B
14)(r

B
0 r

B
25r

B
12)(r

B
0 ),

rB4 r
B
0 r

B
26r

B
14 = rD0 r

D
26r

D
13r

B
4 by Corollary 8.2.7, then

u = (rD4 r
D
24)(r

D
0 r

D
26r

D
16)(r

D
0 r

D
26r

D
15)(r

D
0 r

D
26r

D
13r

B
4 )(rB0 r

B
25r

B
12)(r

B
0 ),

rB4 r
B
0 r

B
25r

B
12 = rD0 r

D
25r

D
12 by Corollary 8.2.7, then

u = (rD4 r
D
24)(r

D
0 r

D
26r

D
16)(r

D
0 r

D
26r

D
15)(r

D
0 r

D
26r

D
13)(r

D
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9. CONCLUSION AND RECOMMENDATION

In this thesis we found Gröbner-Shirshov basis and normal forms for the infinite

Coxeter groups of type Ãn, B̃n, C̃n and D̃n with respect to degree lexicographic order and

we order the generators as r0 > r1 > · · · > rn. We also made some experiments by

changing the order of the generators. The resulting bases were more complex than our

original basis. Experiments can be carried out using orders other than degree lexicographic

order.

As a further study, Gröbner-Shirshov basis and normal form calculations can be

made for the infinite Coxeter groups of type Ẽ6, Ẽ7 and Ẽ8. But even Gröbner-Shirshov

bases of the finite Coxeter groups of type E6 ,E7 and E8 are quite complicated. Calculations

for infinite groups of these types require serious programming knowledge and patience.

Using the combinatorial meanings that we found some new combinatorial properties

of the Coxeter groups can be obtained for normal forms. For example deciding two elements

are comparable with respect to Bruhat order is open problem for the infinite Coxeter groups

of type B̃n and D̃n. We will try to use our normal forms and their combinatorial meanings

to solve this problem.

71



10. REFERENCES

Bjorner A and Brenti F (2005) Combinatorics of Coxeter groups, Springer Verlag, New York.

Bokut L and Chen Y (2014) “Gröbner–Shirshov bases and their calculation”, Bull. Math. Sci.,
4(325).

Bokut L and Shiao L (2001) “Gröbner-Shirshov bases for Coxeter groups”, Comm. in Algebra,
29:4305–4319.

Buchberger B (1965) “An algorithm for finding a basis for the residue class ring of a zero-
dimensional polynomial ideal”, Ph. D. thesis, University of Innsbruck,Austria.
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