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ABSTRACT

ON WEAKLY PRIME RADICAL
MSC THESIS
ZENNURE TUBA LACIN
BOLU ABANT IZZET BAYSAL UNIVERSITY GRADUATE SCHOOL OF
NATURAL AND APPLIED SCIENCES
DEPARTMENT OF MATHEMATICS
(SUPERVISOR: ASSIST. PROF. SIBEL KILICARSLAN CANSU)

BOLU, JULY 2018

If T isan S — module and Q is a submodule of T, which is proper, then Q is called
prime if xn € Q implies n € Q or xT < Q for some x €S, neT. Also, if
xym € Q impliesxm € Q or ym € Q for some x,y € S, m € T, then Q is called
weakly prime submodule. One can easily show that prime submodules are weakly
prime.

We get some properties of weakly prime radical which are always true for prime
radical. (Q : T) is always a prime ideal when Q is a prime submodule. We have
shown that if Q is a weakly prime submodule, (Q : m) is a prime ideal for every
meT—Q.

In this thesis, we give the definition of a weakly quasi-primary submodule which
generalizes the concept of a weakly primary submodule. Also we show that every
weakly quasi-primary submodule Q is weakly prime if and only if (E+(Q)) = Q.
If S is a commutative ring with identity whose prime ideals are totally ordered,
then it is shown that a weakly prime radical is a weakly prime submodule, and the
weakly radical formula holds for S. Finally, we prove that divided domains satisfy
weakly radical formula.

KEYWORDS: Weakly prime submodule, Weakly prime radical, Weakly radical
formula, Divided domain, Pseudo-valuation domain.



OZET

ZAYIF ASAL RADIKAL UZERINE
YUKSEK LISANS TEZI
ZENNURE TUBA LACIN
BOLU ABANT iZZET BAYSAL UNIVERSITESI
FEN BIiLIMLERI ENSTITUSU
MATEMATIK ANABILIM DALLI
(TEZ DANISMANI: DR. OG. UYESI SIBEL KILICARSLAN CANSU)

BOLU, TEMMUZ - 2018

T bir S modiil ve Q da T nin bir alt modiilii ise, eger x € S,n € T igin xn € Q
varken, n € Q ve ya xT € Q ise Q ya asal alt modiil denir. Diger taraftan
x,y €ESvemeT icin xym € Q varken xm € Q ya da ym € Q elde ediliyor
ise Q ya zayif asal alt modiil denir. Her asal alt modiiliin zayif asal alt modiil
oldugu agiktir.

Asal radikal i¢in her zaman dogru olan bazi 6zelliklerin zayif asal radikal i¢in
de saglandigin1 gosterdik. Q 'nun S —modiil, T’ nin asal bir alt modiilii olmasi
durumunda, (Q : T) nin asal ideal oldugu iyi bilinmektedir. Q 'nun zayif asal alt
modiil olmast durumunda (Q : m) nin her m € T — Q igin asal ideal oldugunu
gosterdik.

Bu tezde zayif asal alt modiil kavramini genellestiren zayif yari-asal alt
modiiller kavramini tanitiyoruz. Ayni zamanda, her zayif yari-asal alt modiil Q
'nun zayif asal alt modiil olabilmesi igin gerek ve yeter sartin (E+(Q)) = Q
oldugunu gosterdik. Eger S, asal idealleri tam sirali olan degismeli ve birimli
bir halka ise, zayif asal radikalin zayif asal alt modiil oldugu ve ayni zamanda
zayif radikal formiiliin S i¢in saglandig1 gosterildi. Son olarak, boliinmiis
bolgelerin zayif radikal formiiliinii sagladigini kanitladik.

ANAHTAR KELIMELER: Zayif asal alt modiil, Zayif asal radikal, Zayif
radikal formiil, Boliinmiis bolge, S6zde degerleme bolgesi.
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1. INTRODUCTION

If S is a commutative ring and A is an ideal of S, then radical of the ideal A is

defined as intersection of all prime ideals of S containing A. It is also defined by
VA = {s € §: st € A for some positive integer t}.

This characterization had been generalized to modules over a commutative ring
(McCasland and Moore, 1991). This generalization corresponds to two different
concepts in the modules. One of them is the radical of a submodule and the other is
the envelope of a submodule. A proper submodule Q of T, is g —prime (q —primary)
ifaneQ foraeS, neT givesneQ ora€eq=(Q:T) (n€EQ oraeq=
m) where (Q : T) is the set of all elements of S which takes every element of T
into Q. According to this definition, rad;(Q), prime radical of Q in T is just
intersection of all prime submodules of T containing Q. If there is no prime
submodule of T or no prime submodule of T contains Q, then rad;(Q) =T. The
envelope of Q in T, E+(Q), is the set of all elements y € T where there exists a € S,
n € T such that a®*n € Q and y = an for some positive integer k. The submodule
generated by envelope is denoted by (E-(Q)). Q satisfies the radical formula (Q
s.t.r.f) if rad;(Q) = (Er(Q)). If every submodule Q of T s.t.r.f., then T satisfies the
radical formula (T s.t.r.f.). Also if every S — module satisfies the radical formula,
then a ring S satisfies the radical formula. Since a ring S considered as an S —
module, every submodule of S satisfies the radical formula by the definition of the

radical of an ideal.

The notion of weakly prime submodule was introduced in (Behboodi at all,
2011). If forx,y e Sandn € T, xyn € Q implies xn € Q or yn € Q, then proper
submodule Q of an S — module T is weakly prime. A proper submodule Q of T is
weakly primary if xyn € Q where x,y € Sandn € T, then yn € Q or x'n € Q for
some t > 1. Also, Q is weakly quasi-primary, if xyn € Q implies either x'n € Q or
ytn € Q for some t € N where x,y € Sand n € T and Q is proper. The weakly

prime radical of Q in T, wrad;(Q), is the intersection of all weakly prime



submodules of T containing Q. If there is no weakly prime submodule containing Q,
then wrad;(Q) =T. So, wrad;(T) = T. Since every prime submodule is weakly
prime, wrad;(Q) < rad,(Q). If for a submodule Q of the module T, wrad;(Q) =
(Er(Q)), then it is said that Q satisfies the weakly radical formula. T satisfies the
weakly radical formula, if for every submodule Q of T, Q satisfies the weakly
radical formula. A ring S satisfies the weakly radical formula, if every S — module

satisfies the weakly radical formula.

Azizi (2007) gave the definition of the nth envelope of a submodule. For a
submodule Q of T, Eo(Q) = Q, E1(Q) = Er(Q), E2(Q) = Er({E1(Q))), and for any
positive integer k, E,,1(Q) = E;r({E,(Q))) inductively. Here, E}, (Q) is called as the
kth envelope of Q. Azizi defined the weakly radical formula of degree k (Azizi,
2009). If (E(Q)) = wrad;(Q) for every submodule Q of T, then T satisfies the
weakly radical formula of degree k (s.t.w.r.f. of degree k). If every S — module
satisfies weakly radical formula of degree k, then S satisfies weakly radical formula

of degree k (S s.t.w.r.f. of degree k).

For any submodule Q of M, we consider UE;(Q) = Ugen (Ex(Q)). UE+(Q)

is the union of envelopes of Q (Azizi, 2009). It is obvious
Q € (Ex(Q)) € UE;(Q) € wradr(Q) € rads(Q), forany k € N.

The weakly radical formula holds for T if wrad;(Q) = UE;(Q) for every
submodule Q of T and if for every S — module weakly radical formula holds, then it

is said that the weakly radical formula holds for aring S.

An integral domain S is called a valuation domain if all its ideals form a chain
under inclusion and S is a divided domain if each prime ideal is comparable to every
principal ideal of S. Badawi (1995) showed that prime ideals of S are linearly
ordered iff for each x,y € S, x|y® or y|xt for some t > 1 when S is a commutative
ring with identity. Also he gave some equivalent conditions for a ring S with linearly
ordered prime ideals. Also, Badawi showed that S is a divided domain iff for every
x,y €S, either x|y or y|x™ for some n > 1 which implies that prime ideals of
divided domains are totally ordered (Badawi, 1995). An integral domain S is

pseudo-valuation domain (PVD), if every prime ideal of S is strongly prime. If S is a



PVD, for non-unit elements x,y of S, either x|y or y|x? (Badawi, 1995). Thus every
PVD is a divided domain.

This introduction forms Chapter 1.

The definitions of weakly prime submodule and weakly prime radical are
given in Chapter 2. Some characterizations of weakly prime submodules and the
properties of weakly prime radical are stated in the second section of Chapter 2. In
the third section, we discussed under what conditions weakly prime radical of a

module is distributive over intersection.

In Chapter 3, the envelope of a module is introduced and modules which
satisfy the weakly radical formula are investigated. If S is a commutative ring with
identity satisfying conditions of Theorem 1 of Badawi (1995) , then we showed that
every proper submodule Q of an S — module T is weakly quasi-primary and hence
wradr(Q) is weakly prime submodule for any submodule Q of an S — module T.

Also, we showed that divided domains satisfy the weakly radical formula.

Chapter 4 is the conclusion chapter which contains some suggestions for

future study.

Throughout S is a commutative ring with identity and T is a unitary S —

module.



2. WEAKLY PRIME RADICAL OF SUBMODULES

2.1 Prime Submodules

Definition 2.1 Let S be a ring and T be an S — module. A submodule Q of T
which is proper, is called prime if for somea € S,n € T, an € Q impliesn € Q or
aT < Q.

Definition 2.2 Let Q be any submodule of an S — module T. (Q : T) denotes
the set of elements x € S such that xT < Q. This is usually called residual by Q.
(Q : T)isanideal of S and (Q : T) is the annihilator of the module T /Q.

For any ideal I of S (Q :t I) denotes the set of elements n € T such that
In € Q.

If Q is prime submodule of T with p = (Q : T), then Q is called p — prime

submodule.

Example 2.3 Let K be a field, U be a vector space over the field K. Then

every proper subspace V of U is a (0) —prime submodule of U.

Proof. Let IV be a proper subspace of Uand f € K, u € U such that fu e V. If f =
0, then fU S V. If f # 0, then f~1 exists and u € V. Thus, V is a prime submodule.
Since V is proper subspace of U, (V : U) = (0). [

Lemma 2.4 (Jenkins, 1991, Lemma 1) Let S be a ring and T be an
S —module. Then a submodule Q of T is prime iff P = (Q : T) is a prime ideal of S
and T/Q is torsion-free S/ —module.

Lemma 2.5 Let { N, : j € J} be a family of submodules of T. Then (Nj¢; N; :

T) = N (N; : T).



Proof. Let x € (Nje;N;j: T). Then xT € Nje; N; € N; for all j €] . Therefore
x € (N;: T)forall j € J,sothatx € Nc;(N; : T). Conversely, lety € Ne;(N; : T).
Theny € (N; : T) forall j € J,and yT S Nje; N;. Thus y € (Njgy N = T). O

Lemma 2.6 Let S be a finitely generated module, { N; : j € J} be a totally
ordered family of prime submodules. Then (Uje; N; : T) = Uje;(N; : T).

Proof. Letx € (Uje; N; : T). Then xT € Uje; N;. Since T is finitely generated,
T =Smy +Sm, + .-+ Sm,, for some m;,m,,..,m, € T. Hence for all m; €T,
xm; is an element of N; for some j; € J. Since { N;:j € J} is totally ordered, there
exist k € I such that N; ,N;,,...,N;, € N,. Thus xT S N and x € Uje;(N; : T)

Now let x" € Ujg;(N;:T). Then x" € (N; : T) for some j €] and x'T S N; &
Ujes N;. Hence x" € (Uje; N; : T).[

Definition 2.7 Let A be an ideal of a ring S. The setvVA={s€S: ste€

A for some t € Z*} is called the radical of A.

Definition 2.8 Let T be an S — module. A submodule Q of T is primary
submodule if for x e Sand n € T, xn € Qimplies n € Q or x*T < Q for some

positive integer k.

If /(Q:T)=p, then Q is a p — primary submodule. Clearly every prime

submodule of a module T is primary.

Definition 2.9 Let T be an S — module and Q be a submodule of T with
Q # T. The prime radical of Q in T, rad;(Q), is defined as the intersection of all
prime submodules of T containing Q. If no prime submodule contains Q, then
rad;(Q) =T, and thus rad(T) =T.



2.2  Weakly Prime Submodules and Weakly Prime Radical

In this section we will deal with the weakly prime radical of submodules and

its properties.

Definition 2.10 Let T be an S — module. A submodule W of T which is
proper is weakly prime if abn € W, where a,b € S and n € T, then either an € W
orbneWw.

Every prime submodule is weakly prime. Let us show by example that the

converse is not true.

Let S = Q[x,y], P = (x) be a non-zero prime ideal of S, T be a free S —
module S@ S. Then Q =0 P is weakly prime submodule of T which is not
prime. It is clear that (Q : T) = 0. Then if we take (0,y) € Qand x & (Q : T), we
have x(0,y) = (0,xy) € Q which means that Q is not prime. To show that Q is
weakly prime, let a,b € S, m = (m;,m,) € T such that abm € Q. Then abm =
(abmy,abm,) € 0 @ P implies that abm; = 0 and abm, € P. Since S is integral
domain,a=00rbm; =0. Ifa=0, thename 0@ P. If bm; =0, thenb =0 or
my = 0. b = 0 implies that bm € 0 @ P similar to the case a = 0. Now suppose
that m; = 0. abm, € P implies that a € P or bm, € P. If a€ P, then am =
a(0,m,) € 0P P. If bm, € P, then bm = b(0,m,) = (0,bm,) € 0 P P. Thus in

each case am € Q or bm € Q.

Proposition 2.11 Let W be any weakly prime submodule of T and I be an
ideal of S. Then (W : I) = {n € T : In € W} is a weakly prime submodule of T

Proof. Leta,b € S and n € T such that abn € (W : I). We know that I(abn) € W,
for every r € I, r(abn) € W implies that rn € W or abn € W since W is weakly
prime. Ifrn € W, thenn € (W : I). If abn € W, then an € W or bn € W. Thus for
all cases, ane (W :1) or bne€ (W : 1) . Therefore (W :1) is weakly prime
submodule of T'. []

Lemma 2.12 W is a weakly prime submodule of a module T iff (W : m) is a

prime ideal foreverym e T — W.



Proof. Let ab € (W : m) and W be a submodule of T which is weakly prime. Hence
abm € W where a,b € S, meT —W. So that am € W or bm € W implies that
a € (W :m)orb € (W :m). Conversely, suppose for everym e T — W, (W :m)
Is prime ideal. Assume that abm € W for some m € T —W. Then ab € (W : m).
Since (W :m) is prime,a € (W :m)orb € (W :m). Thenam € W orbm e W.

Therefore W is weakly prime submodule. []
Azizi (2008) showed that if Q is a weakly prime submodule, then
{Q:m):meT - Q}
forms a chain of prime ideals. Hence (Q : T) is a prime ideal.

We can write the following definition, since every prime submodule is

weakly prime.

Definition 2.13 Let T be an S — module. and Q be a submodule of T with
Q # T. The weakly prime radical of Q in T, wrad(Q), is defined as the intersection
of all weakly prime submodule of T containing Q. If there is no weakly prime

submodule containing Q, then wrad;(Q) = T, and thus wrad,(T) = T.

Proposition 2.14 Let {W; : i € I} be a non-empty family of weakly prime
submodules of an S — module T. Suppose that the family is totally ordered by

inclusion. Then N;¢; W; is a weakly prime submodule of T.

Proof. Let xym € Ny, W; for x,yeSand meT. Then xym e W, for all i € I.
Since W; is weakly prime, xm € W; or ym € W;. Since the family is totally ordered,

xm € Nie; Wi or ym € N W;. Thus, N W is a weakly prime submodule. [

Proposition 2.15 Let T be an S — module. If a submodule N of T is
contained in a weakly prime submodule K, then K contains a minimal weakly prime

submodule of N.

Proof. Let A= {L: Lisweaklyprimesubmoduleof Tand N € L € K} .
A+ @sinceK € A. If L, L, € A, then let us define a relation < such that L; < L, if

L, € L,. This gives a partial order on A. Let A’ be a non-empty totally ordered subset

7



of A. Consider the intersection of all the elements of A’, say L = N;¢; L; Where
L; € A'. Since A’ is totally ordered, L is a weakly prime submodule. Then N € L C
K. Hence LeAand L< L; for all L; € A’. We have L; < L. Thus L is an upper
bound for A’. By Zorn’s lemma, A contains a maximal element, say Y. Since Y € A,
we have N € Y € K and Y is a weakly prime submodule of T. To complete the proof
we will show that Y is a minimal weakly prime submodule of N. Now suppose Y is a
weakly prime submodule of T such that NS Y S KandY Y. Then Y € 4 and
Y<Y.Thus, Y =Y, sinceY is a maximal element of A. Therefore Y is a minimal

weakly prime submodule of N.[]

Corollary 2.16 Every proper submodule of finitely generated module

possesses at least one minimal weakly prime submodule.

Proof. Let T be a finitely generated module, Q be a proper submodule of T. Then
there exists submodule N’ of T such that Q € N' and N’ is maximal. Since N’ is
maximal, it is a prime submodule and hence N is weakly prime (Lu, 1984). Then by
Proposition 2.15, N' contains a minimal weakly prime submodule of Q. Thus Q has

at least one minimal weakly prime submodule. []

By using above corollary, we can give the characterization of the weakly
prime radical of submodules of finitely generated modules.

Theorem 2.17 Let T be finitely generated S — module. Then the weakly prime
radical of a proper submodule N of T is just the intersection of its minimal weakly

prime submodules.

Proof. Let N be submodule of T with N # T. By Corollary 2.16, N has at least one
minimal weakly prime submodule, say W;. Let L be the intersection of all minimal
weakly prime submodules of T containing N. By the definition of wrad;(N),
wrad;(N) € N;e; W; = L. On the other hand, if W is any weakly prime submodule
containing N, then W contains some minimal weakly prime submodule Q; of N by

Proposition 2.16. Hence L = N;je; W; € wrady(N). [

In the following proposition we will give some basic properties of the weakly

prime radical.



Proposition 2.18 Let T be an S — module, J be an index set and let N, N; be

submodules of T for j € J and I be an ideal of S. Then

() N € wrad;(N),

(i)  wradr(wrady(N)) = wrad;(N),

(iii) WradT(ﬂjE] Nj) € Njeywradr (N]) = wradr(Nje; wradr (N]))

(iv)  Xjegwradr (N]) c wradT(ZjE] Nj) = wradr(Xje;wrady (N]))

()  wrad;(IT) = wrad;(VIT) = wrad(I"T) for every ideal I and
for every positive integer n.

(i) (N:T)<S (wrady(N):T),
(vii)  If T is finitely generated, then wrad;(N) =T iff N =T

Proof. (i) Let x € N. Then x € W for every weakly prime submodule W of T

containing N. Hence x € wrad;(N).

(i) wrad;(N) € WradT(WradT(N)) is clear by (i). Since N C
wrady(N) € W; for all weakly prime submodules W; containing wrad(N), we

have N;e; W; € P; for all weakly prime submodules P; containing N . Hence

wradr(wrad;(N)) = N W; € wrady(N).

(iii) Let wradT(ﬂjE]Nj)zﬂiE,Wi for all weakly prime submodules
W; containing N;¢; N; and let {Q;;} be the set of weakly prime submodules
containing N; . Since N;e;N; € N; € Q;; for all i and j, wrady(Nje N;) €

wradr(N;). Hence WradT(ﬂjE] N]) € Njeywradr (N;).

Since Njeywrady (N]) € wrady(N;) for all j€E] :
wrady (ﬂjej wrady (N])) C wrady (WradT(Nj)) =wradr(N;) for all jej.
Hence wrad; (ﬂjej wrady (M)) C Njegywradyr (N;). By (i), Nje;wradr (N]) =

wradr (nje] wradr (N])) is clear.

(iv) Since N; € X, N; for all j, wradr(N;) € wradr(X;e; N;) . Then

ZjejwradT(Nj)QwradT(ZjeJNj). Let us show that WradT(ZjE]Nj)z



wradr (X jeywradr(N;)) . It is clear that Y e, N; € Yje;wradr (N;) . Then

WradT(Zje] N]) C wradry (2]-61 wrady (N]))

Let {Q;} be a set of weakly prime submodules of T containing

Yjeywradr (N;) and let W, be any weakly prime submodule of T such that
YiegN; €Wy . Since N; S YN, , wradp(N;) €W, for all j . Hence
Yjeywradr(N;) € W for all weakly prime submodules W, of T containing . j¢; N;.
Then Nie; Qi € Wy for all Wi . Therefore
wradr (X jeywradr(N;)) € wradr (X je; N))

(v) This is trivially true if wrad;(IT) =T. If wrad;(IT) # T, then there
exists a weakly prime submodule Q such that IT <€ Q. We know I < (IT : T) < (Q :
T). Then I ¢ m =(Q:T). If x € VI, then there exists k € Z* such that
xkelc(@Q:T). Hence x€(Q:T). So that VITS(Q:T)T=0Q . Thus
wrad;(VIT) € wrad;(IT) . Since 1<vVI , ITSVIT and wrad;(IT) <
wrady (VIT).

Since  VI®=+1  for  every  positive integer n
wradr(I"T) = wrad;(VI"T) = wrad;(VIT) = wrad;(IT).

(vi) Let 0 # z € \/(N : T) . Then there exists k € Z* such that zX € (N : T),
which implies that z*T € N € W for all weakly prime submodules W containing N.

Therefore z8 € (W : T) and z € (W:T) since (W : T) is a radical ideal. SozT <
wradr(N) and thus z € (wrad;(N): T). Therefore,/(N : T) € (wrad;(N):T).

(vii) Let N =T, then wrad;(N) = wrad;(T) = T. Conversely assume that
wradr(N) =T and N # T. By Corollary 2.16, N has at least one minimal weakly
prime submodule W such that N € W since T is finitely generated. Hence T =
wrad;(N) € W and T € W. This contradicts with the fact that W is weakly prime.
Therefore N = T.

Corollary 2.19 Let T be finitely generated module, Y and K be submodules of
T.Thenwrad;(Y) + wrad;(K) =T ifandonlyif Y + K =T.

10



Proof. Assume that wrad;(Y) + wrad(K) = T. Then by above proposition (vii),
wradT(wradT(Y) + wradT(K)) = T. By the same proposition wrad;(Y + K) =
TandY +K =T.

Conversely, suppose that Y + K =T . Then by using above proposition,
T = wrad;(Y +K) = wradT(wradT(Y) + WradT(K)) . Hence wrad;(Y) +
wrad;(K) =T. [

Proposition 2.20 Let Q be a submodule of an S — module Tand I be an ideal
of S. Then wrad;(wrad;(Q):1) = (wrad;(Q):1).

Proof. Let x € (wrad,(Q):I). Then x € P for all weakly prime submodule P of T
containing wrad;(Q):1 . Hence x € wradr(wrad;(Q):1) . Now assume that

wradr(Q) = Nje; W, for all weakly prime submodule W; of T containing Q. Then
wradr(wradr(Q) : 1) = wradr(Nje; W : 1) = wradr(Nje;(W; : 1)) and
wradr(Nje;(W; : 1)) € Nje;wrady(W; : I) by Proposition 2.18. Proposition 2.11
implies that N e, wrad (W : 1) = N, (W, : 1) € (W : I), for all weakly prime
submodule W; of T containing Q . I(wrad;(wrad;(Q):1)) € I(W; : I) € W; and
then I(WradT(WradT(Q) : I)) c wrady(N) . Hence wradr(wrad;(Q):1) S
(wradr(Q) : ). [

Corollary 2.21 Let Q be a submodule of an S — module Tand J be an ideal of
S. Thenwrad;(Q : J) € (wrad+(Q) : ]).

Proof. We know that Q € wrad(Q). Then(Q : J) € (wrad+(Q) : J). We have
wrad;(Q : J) € wradr(wrad(Q) : J) and then by Proposition 2.20, wrad;(Q :

D € (wradr(Q) : )). U

Proposition 2.22 Let Q be a submodule of S — module T, I and J be ideals of
S. Then wrad;(I]Q) = wrad;(I1Q) N wrad;(JQ).

Proof. Let A; = {W: W is a weakly prime submodule of T such that [[Q € W},
A, = {W' : W' is a weakly prime submodule of T such thatIQ € W'}, and
A; = {W: W is a weakly prime submodule of T such thatJQ € W }. Since each
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W € A; is weakly prime, IJQ € W implies that IQ € W or JQ € W . Therefore
Ay =A,UA; and wradr(IJQ) = Nwea, W = (Nwrea, W) N (Nipea, W). Then
wradr(IJQ) = wrad;(1Q) N wrad;(JQ). [

Definition 2.23 Let T be an S — module, Q be a submodule of T with Q # T.
Q is weakly primary if xym € Q, where x,y €S, m €T, implies xm € Q or

y™"m € Q for some integer n.

Proposition 2.24 Let T be a finitely generated S — module. 7 be a maximal
ideal of S, and Q be a weakly primary submodule of T such that \/(Q—T =M.
Then wrad;(Q) is a weakly prime submodule with (wrad;(Q):T) = M and
wrad;(Q) = wrad(Q + MT) =Q + MT.

Proof. By Proposition 2.18 (vi), M =/(Q : T) € (wrad;(Q):T). Since M is a
maximal ideal, (wrad;(Q) : T) =S or M. If (wrad;(Q):T) =S, thenT = ST <
wradr(Q). By Proposition 2.18 (vii), Q =T which is a contradiction. Hence
(wrad;(Q):T) = M. Then wrad(Q) is a prime submodule (Lu, 1984). Thus

wrad;(Q) is a weakly prime submodule.

Every weakly prime submodule containing Q + 2MT also contains Q. Hence
wradr(Q) € wrad;(Q + MT). Now assume that wrad;(Q) = N;e; P; for every
weakly prime submodule P; of T containing Q. Then m C (wrad;(Q):T) =
(NiePi:T) = N (Pi:T) < (P;:T) for every i € I, by Proposition 2.18. Hence
MT < (P:T)T<SP;, so that Q + MT < Q + P, =P; for every i €. Thus
wradr(Q + MT) € Nig P; = wrad(Q). In order to complete the proof, it is
enough to show that wrad;(Q + MT) =Q + MT. It is clear that Q + MT <
wradr(Q + MT) = wrady(Q) . Since MT <€ Q + MT , we have (!MT:T) <
((Q + MT):T) € (wrad;(Q):T). Thus ((Q + MT):T) = M, so that Q + MT is
a weakly prime submodule of T. Hence wrad;(Q) € Q + MT since Q < Q + MT.
Therefore wrad(Q + MT) = Q + MT. []
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2.3  The Weakly Prime Radical of an Intersection

The equality wrad(NNL) = wrad(N)Nwrad(L) is not always true for

submodules N and L. If U is a vector space, and W;, W, are subspaces of U, then
wrady(W,NW,) = wrady (W) Nwrady(W,).

In this section, we will investigate the under which conditions this equality is

true.

Lemma 2.25 Let Q and L be submodule of an S — module T, and K be a
weakly prime submodule of T with QNL € K. If (Q:T)<Z (K:T),thenL € K.

Proof. Suppose Q NL<S K, (Q:T)E (K:T) and LK. Since QNL<S K,
((QNL):T) = (K :T) so that (Q: T)N(L:T)<S (K:T). Then (Q:T) S (K : T)
or(L:T)< (K:T). This gives us that (Q : T) € (K : T) since L £ K. This is a

contradiction. Therefore L € K. []

Proposition 2.26 Let M be a submodule of an S — module T, I be an ideal of
S. If Q is a weakly prime submodule of T such thatIT N M < Q, then IT < Q or
M c Q.

Proof. Since IT nM < Q, (UITNM):T) < (Q : T). We have (IT : T)N(M : T) <
@Q:T). Then(UT:T)<S (Q:T)or(M:T)< (Q:T). f(IT:T)< (Q:T), then
[S(T:T)<(Q:T). This gives that IT € (Q : T)T S Q. If (IT:T)Z (Q:T),
then M < Q by Lemma 2.25. []

Proposition 2.27 Let K and M be submodules of an S — module T such that
whenever K N M € W, we have K € W or M < W for any weakly prime submodule
W of T. Then wrad(K NM) = wrad(K)Nwrad;(M).

Proof. If wrad;(KNM)=T , then wrad;(K)=wrad;(M)=T and
wradr(K NM) = wrad;(K)Nwrady(M). If wrad;(KNM) # T, then there exists
a weakly prime submodule W of T such that KNM < W. By hypothesis, K € W or
C W . So that wrad;(K) € W or wradr(M) € W. Since this is true for every
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weakly prime submodule T containing KNM , wrad;(K)Nwrad;(M) S
wrad(KNM). Therefore wrad;(KNM) = wrad(K)Nwrad(M). [J

Proposition 2.28 Let K and M be submodules of an S —module T where

JE :T)+ J(M:T) = S. Then wrad(KNM) = wrad;(K)Nwrad(M).

Proof. Suppose W is a weakly prime submodule containing KNM with P = (W : T).
Then (K:T)N(M:T)<Pso that (K:T)SPor(M:T)<cP. If(K:T)CP,
then (M : T) € P. Hence K € W by Lemma 2.25. Therefore K € W or M € W. By
Proposition 2.27, wrad;(KNM) = wrad;(K)Nwrad;(M). []
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3. PSEUDO-VALUATION DOMAIN

McCasland and Moore (1991), generalized the concept of radical of an ideal
to modules over commutative rings. The definitions of the radical and envelope of a
submodule are the result of this generalization. McCasland and Smith (2008), gave
on algorithm for the computation of radical of a submodule over a Noetherian ring.

There is no known algorithm for the computation of weakly prime radical.

In this thesis, we tried to find an algorithm for the computation of weakly
prime radical. At the same time, we tried the find conditions on modules and rings

which satisfy the weakly radical formula.

In the first section of this chapter, the information about the envelope of a
submodule is given. The second section concerns the modules satisfying weakly

radical formula.

3.1  The Envelope of a Submodule

Let T be an S — module, A be an ideal of S. It is well-known, that the radical

of AisvA={s €S :s™€ A, for somen € Z*}. A similar definition is possible for

modules which is called the envelope of a submodule.

Definition 3.1 Let T be an S — module and Q be a submodule of T. The
envelope of Q in T, E-(Q), is defined as the set

{sn:s € S,n €T such that s*n € Q for some k € Z*}.

In general, E-(Q) is not a submodule. For example, if we take T =Z @ Z,
Q = (3,0)Z and S = Z, then (10,0) = 2(5,0) € E;(Q) since 25(5,0) = (150,0) =
50(3,0) € Q. Also it is clear that (3,0) € E;(Q). But (10,0) — (3,0) = (7,0) ¢
E-(Q) since there does not exist any k € Z* such that 7%(1,0) € (3,0)Z. So we are

considering the submodule generated by envelope, (E+(Q)).

15



It is clear that (E-(Q)) is always contained in rad;(Q) for any submodule

Theorem 3.2 (Yilmaz and Cansu, 2014, Theorem 2.5) Let M be a submodule
of module T over S, where M= Q;NQ,N..NQ; IS a minimal primary
decomposition of M such that \/(Q; : T) = p;foralli=12,..,L. IfA={1,2,..,1}
and @ # T & A, then

(Er(M)) = M + ﬁpi T+ ) (ﬂp)(ﬂ Qi>

i=1 @ #TSA \ (€T IEA-T

Corollary 3.3 (Yiimaz and Cansu, (2014), Lemma 3.1) If Q is a weakly prime
submodule of an S —module T, then (E+(Q)) = Q.

3.2 Pseudo-valuation Domain

Main results obtained in the thesis are given in this section. First we will give

some necessary definitions and then we will give the results we have found.

Definition 3.4 An integral domain S is valuation domain if all its ideals form

a chain under inclusion.

Definition 3.5 An integral domain S is divided domain if for every prime
ideal P of S, either P € (x) or (x) € P forall x € S.

Definition 3.6 Let S be an integral domain and K be the set of all non-zero
elements in S. Then the ring of quotients of S by K, K~1S, will be a field and it is

called as the quotient field of an integral domain S.

Proposition 3.7 (Larsen and McCarthy, 1971) For an integral domain S, the

following statements are equivalent.

(i) S isavaluation domain.

(i) If a,b € S, then either (a) < (b) or (b) < (a).

(iii) If x belongs to the quotient field D of S, then either x € D or x™* € D
16



Definition 3.8 Let S be an integral domain with quotient field D. A prime

ideal Q of S is strongly prime if u,v € D and uv € Q impliesu € Q or v € Q.

Definition 3.9 An integral domain S is called a pseudo-valuation domain

(PVD) if every prime ideal of S is strongly prime.
Proposition 3.10 Every valuation domain is a PVD.

Proof. Let D be a valuation domain and U be the quotient field of D. Let Q be a
prime ideal of D. Assume ab € Q where a,b € U. If botha and b are in D, it is

done. Ifa & D, thena™! € D. Thus b = aba™! € Q, as desired. [

Theorem 3.11 (Badawi, 1995, Theorem 1) If S is a commutative ring with

identity, then the following statements are equivalent.

a) The prime ideals of S are linearly ordered.

b) The radical ideals of S are linearly ordered.

c) Each proper radical ideal of S is prime.

d) The radicals of principal ideals of S are linearly ordered.

e) Foreachx,y € S, thereisann > 1 such that either x|y™ or y|x".

Proposition 3.12 If S is a divided domain, then prime ideals of S are totally

ordered.

Proof. Let P, Q be two prime ideals of Sand P € Q. Then (x) < P or P < (x) for all
x € Q.Since P € Q, (x) € P, which means that x € P forall x € Q. Thus Q < P. [

By using the following proposition, we can give the characterization of
divided domains.

Proposition 3.13 (Badawi, 1995, Proposition 2) If S is an integral domain,

then the following statements are equivalent.

a) S isadivided domain.
b) The ideals I and ﬁ are comparable for every pair of proper ideals I

and J of S.
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c) The ideals (x) and /(y) are comparable, for every x,y € S.

d) Foreveryx,y € S, either x|y or y|x* for some k > 1.

If Sis a PVD, Badawi (1995) showed that for any non-unit elements x, y of
S, either x|y or y|x2. In the same paper, he gave the following characterization of
PVDs.

Proposition 3.14 (Badawi, 1995, Proposition 3) Let S be an integral domain

and K be the set of all non-unit elements of S. Then the followings are equivalent.

a) SisaPVD with the maximal ideal K,

b) For every proper ideal A of S, either ] c I or IA c ] for each pair I
and J of ideals of S.

c) For every p,q € S, either gS c pS or pzS c S for every non-unit
Z€ES.

d) Foreveryp,q € S, either p|q or q|pz for every non-unit z € S.

e) Foreveryp,q € S, either gS c pS or pK c gS.

f) Foreveryp,q € S, either gK c pS or pS c gK.

Definition 3.15 Let T be an S — module. A submodule Q of T withQ # T, is
weakly quasi-primary if abm € Q, then either a*m € Q or b*m € Q for some
k € Nwherea,be S, meT.

If Q is a weakly quasi-primary submodule, then by the definition \/(Q:T) is a

prime ideal.

We know that the envelope of every weakly prime submodule equals itself. In
the following lemma, we proved that every weakly quasi- primary submodule is
weakly prime iff (E+(Q)) = Q.

Lemma 3.16 Let T be an S — module, Q be a proper submodule of T.

(i) Suppose that Q is a weakly primary submodule. Then Q is weakly prime

iff (E7(Q)) = Q.
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(i) Suppose that Q is a weakly quasi-primary submodule. Then Q is weakly
prime if and only if (E-(Q)) = Q.

Proof. If Q is weakly prime, then (E+(Q)) = Q, so we have to show only one side of

the assertion. Hence suppose that (E-(Q)) = Q.

(i) Let xym € Q where x,y € S, m € T. If xm & Q then y*m € Q for k > 1 since Q
is weakly primary. Then ym € Q since (E+(Q)) = Q. Therefore Q is a weakly prime

submodule of T.

(i) Let xym € Q where x,y € S, m € T. Assume that xm & Q. Then x*m ¢ Q for
any k. Otherwise (Er(Q)) = Q implies that xm € Q. Therefore y*m € Q for some
k > 1. Then ym € Q since (E;(Q)) = Q. Thus Q is a weakly prime submodule of
T.

Theorem 3.17 Let S be a commutative ring with identity whose prime ideals
are totally ordered and T be an S — module. Then each proper submodule Q of T is
weakly quasi-primary. Furthermore, every proper submodule Q of T is weakly
prime if and only if Q = (E;(Q)).

Proof. Let x,y € Sand m € T\Q, so (Q : m) is a proper ideal of S. We suppose that
xym € Q. Therefore xy € (Q : m) € ,/(Q : m). Since ,/(Q : m) is a proper radical
ideal of S, \/(Q : m) is a prime ideal. So either x € \/(Q : m) or y € ,/(Q : m). This

implies either x'm € Q or y‘m € Q for some positive integer ¢. Since every proper

submodule of T is weakly quasi-primary by above theorem, the proof is clear by
Lemma 3.16. [

Chin-Pi Lu (1990) prove that if T is finitely generated S —module, M is

maximal ideal of S and Q is primary submodule of T with \/(Q : T) = M, then
rad;(Q) = rad;(Q + MT) = Q + MT. In the following lemma we showed that
wradr(N) = wrad;(N + pT) for every submodule N of a module T, if S isaring

with totally ordered prime ideals and /(N : T) = p is a prime ideal.
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Lemma 3.18 Let S be a ring with totally ordered prime ideals. Then

wrady(N) = wrad(N + pT) for every submodule N of an S —module T where

p =+ (N:T)isaprime ideal.

Proof. wrad;(N) € wrad(N + pT) is clear. We say, wrad;(N) = N;e; W; where
W; is weakly prime submodule containing N with q; = (W; : T). Therefore (N :

T) € (W; : T) implies that p € q; . So that pT < ¢;T.Hence N+ pT € W; +pT <
W; + q;T = W, for every i. Hence wrad (N + pT) < wrad(N) and thus
wrady(N + pT) = wrad(N). [

Lemma 3.19 Let S be a ring with totally ordered prime ideals, T be an S —
module and 2 be a maximal ideal of S. If (N : T) = g then wradr(N) = N + 2T

for any submodule N of T.

Proof. N+ pT < wrad;(N + pT) = wrad(N), by above lemma. Therefore
pT SN+ pT implies that pc ((N + pT) : T) C (wrady(N):T) . Since
wradr-(N) is a weakly prime submodule, (wrad;(N) : T) is a prime ideal. So
(wradr(N) : T) = p and hence ((N + pT) : T) = p. Then N + pT is a prime
submodule; thus a weakly prime submodule of T containing N. So that wrad(N) S

N + pT. Therefore wrady(N) = N + pT. L]

Azizi (2009) gave the definition of kth envelope of a submodule and union of

envelopes.

Definition 3.20 For a submodule Q of T, define E,(Q) = Q, E1(Q) = Er+(Q),
E5(Q) = Er((E1(Q))), and for any k € Z¥, Ey11(Q) = Er({Ex(Q))).

For any submodule Q of the module T,

UET(Q) = Uken (Ex(Q));

is called the union of envelopes of Q. It is clear that

Q € (Ex(Q)) € UE;(Q) € wradr(Q) € rady(Q), forany k € N (Azizi, 2009).
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Definition 3.21 Let T be an S —module. If UE;(Q) = wrad;(Q), for every
submodule Q of T, it is said that weakly radical formula holds for T. If the weakly
radical formula holds for every S —module, then weakly radical formula holds for a

ring S.

Definition 3.22 Let z € Z*. If (E,(N)) = wrad;(N) for every submodule N
of T, then we will say T satisfies the weakly radical formula (s.t.w.r.f.) of degree z.

If every S — module s.t.w.r.f. of degree z, then S is called s.t.w.r.f. of degree z.

In any module, intersection of weakly prime submodules is not weakly prime.
In the following theorem we gave some conditions, to guarantee that this intersection

is weakly prime.

Definition 3.23 Let S be a ring and T be an S — module. An increasing
sequence Q; € Q, S Q5 < --- of submodules of T'is called as an ascending chain. If
every ascending chain of submodules of T is finite, it is said that T satisfies

ascending chain condition (ACC).

Theorem 3.24 Let S be a valuation domain. If T is an S — module satisfying

ACC, then wrad (M) is weakly prime for any submodule M of T.

Proof. Let M be a submodule of T. Since T satisfies ACC, M will be written as an
intersection of finite number of primary submodules. In particular M has a minimal
primary decomposition where M = Q; N Q, N ...N Q5 and each Qg is P, — primary.
Since S is a valuation ring, prime ideals form a chain. So we may assume, after
renumbering of Q’s if necessary P; € P, € -+ € P;. Yilmaz and Cansu (2014,
Theorem 3.4), implies that if (E;(M)) = M, then M is a weakly prime submodule.
So M =wrady(M). If (E(M)) +# M, we can apply the same argument to
(Er(M)). Hence we obtain a chain of submodules M € (E;(M)) S (E,(M)) S -+
where E, (M) =< E,_4(M) > for k=23,... and E;(M) =(Ex(M)) . Since T
satisfies ACC, this chain must be terminates, that is there exists a positive integer k
such that (E,(M)) = (E;(M)) for L > k. Hence (E,(M)) is a weakly prime
submodule and furthermore (E,(M)) = wrad;(M). [
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Also we can show that if S is a commutative ring with identity whose prime
ideals are totally ordered, then wrad;(Q) is weakly prime for any submodule Q of
T.

Theorem 3.25 Let S be a commutative ring with identity whose prime ideals

are totally ordered. Let T be an S — module.

a) If Q = N;¢ P; where P;’s are weakly prime submodules of T, then Q
is also a weakly prime submodule.

b) For any submodule L of T, wrad;(L) is a weakly prime submodule.

Proof. (a) By Theorem 3.17, Q is weakly quasi-primary submodule. Let xym € Q
where x,y € S, m € T, then either x*m € Q or y*m € Q for some positive integer
k. Hence either x*m € P; or y*m € P; for every i € I. Since each P; is weakly prime
submodule, either xm € P; or ym € P; for every i € 1. This implies either xm € Q or

ym € Q. Thus Q is a weakly prime submodule.
(b) It is clear by (a).

Theorem 3.26 Let S be a commutative ring with identity whose prime ideals
are totally ordered. If an S — module T satisfies ACC, then T satisfies weakly radical

formula of degree k for some positive integer k.

Proof. Let L be a submodule of T. We can obtain the following chain of submodules
C (E{(L)) < (E,(L)) < ---. Notice that each submodule on the chain is weakly
quasi-primary. Since T satisfies ACC, this chain terminates. Hence there exists an
integer [ such that (E;(L)) = (E;+1(L)) = ---. This implies that (E;(L)) is weakly
prime submodule of T. So wrad;(L) € (E;(L)). On the other hand (E;(L)) <
wradr (L) is always true. Thus (E;(L)) = wrady(L). [

Yilmaz and Cansu (2014) showed that if N = Q; N Q, N ...N Q, is the reduced

primary decomposition of N with chain of prime ideals

then
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(Er(N)) =N +p, T+ X5, p:(NSZ1 Q).

Theorem 3.26 implies that if S is a commutative ring with identity whose prime

ideals are totally ordered and T satisfies ACC, then for any submodule N of T
(Ex(N)) = wradr(N)

for some positive integer k. We think that we can find a method for computing
wrady(N) by applying the envelope formula of Yilmaz and Cansu for the
submodules N, (E{(N)),{E>(N)), ..., {E(N)) for some positive integer k.

Also, we can give the following theorem.

Theorem 3.27 Let S be a commutative ring with identity whose prime

ideals are totally ordered. Then weakly radical formula holds for S.

Proof. Let N be a submodule of an S — module T. It suffices to show that U;¢; E;(N)
is a weakly prime submodule of T. Let abx € U;¢; E;(N) for some a,b € S and
x € T. Then either a™ = bt or b™ = as for some s,t € S. We may assume a™ = bt.
It is clear that (ab)"x = b"*ltx € U;¢; E;(N). Therefore b™*1tx € (E; (N)) for
some k € N. This implies that btx € (Er{(Ex(N))) = (Ex+1(N)) . Therefore
a™x = btx € (Ex4,1(N)) implies that ax € (E;.2(N)) € U, E;(N). I

Lemma 3.28 Let S be a divided domain, N be a submodule of an § — module
T. If s"x € (E;(N)), then sx € (E;(N)) for some s € S and x € N.

Proof. Suppose that s™x € (E;(N)) and sx € (Ex(N)). Then s"x = a;m; + -+ +
aymy, a; €S, m; €T, 1 <i < ksuch that a;tim; € N. Let t = max{ty, ty, ..., ty},
then a;m; € N. Since S is a divided domain, a;|a,%, that is, a;* = a;u; for some
u; € S. Thus a,**m; = (a;u;)'m; = a;*u;tm; € N. Since S is a divided domain,
sMa; or ag|(s™t. If a;|s™, then s™ = a,u for some u € S. So s™M@+y =
(s™)snx = a,*%ut*(Y a;m;) € N, implies that sx € (Ep(N)), which is a
contradiction. Hence, s™|a,, which means that a, = s™l, for some [, € S. Therefore
s"(x = Limy) = ¥, am; and  (sl)"my = (s"LMmy o (MLm=

(s™)t1, LD, e Nimplies that slym, € (Ep(N)). If we say y = x — l;my,
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then sy = sx — slym,. Since sx € (Er(N)), sy € (Er(N)). Now we can apply the
same argument to s™y. After k steps, we get sx = Y. sl;m;, where sl;m; €

(Er(N)).Sosx € (Er(N)). [l
Theorem 3.29 Divided domains satisfy the weakly radical formula.

Proof. Let S be a divided domain, T be an S — module and Q be a submodule of T.
Suppose that xym € (E;(Q)) for some x,y € S and m € T. Since S is a divided
domain, either x|y or y|x™ for some n € Z*. If a|b, then b = au for some u € S.
Then b*m = uabm € (Er(N)). By Lemma 3.28, bm € (Ez(N)). If a™ = ub for
some u € S, then a"*'m = ubam € (E;(N)) and am € (E;(N)) by Lemma 3.28.
Hence (E-(N)) is weakly prime. Thus wrad;(N) = (Ex(N)). [
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4. CONCLUSIONS AND RECOMMENDATIONS

In this thesis, we show that for any weakly prime submodule of an S —
module T and for any ideal I, (W : I) is a weakly prime submodule of T. Also we
prove that weakly prime radical of any submodule of a finitely generated module is
just the intersection of its minimal weakly prime submodules. In the second section
of the second chapter of the thesis, we state some properties of weakly prime radical.
Also, we tried to find some equalities about the weakly prime radical of the

intersection of two submodules.

We show that weakly quasi-primary submodule Q is weakly prime if and
only if (E;-(Q)) = Q. If S is a ring with identity where its prime ideals are totally
ordered, then it is shown that every proper submodule Q of a module T is weakly
quasi-primary. The intersection of weakly prime submodules is not weakly prime in
general, we prove that if S is a valuation domain and T is an S — module satisfying

ACC, then wrad (M) is weakly prime for any submodule M of T.

In the second section of third chapter, we deal with the commutative ring S
with identity whose prime ideals are totally ordered. We prove that for any

submodule L of an S — module T, wrad(L) is weakly prime and wrad;(L) =
wrady(L + pT) if p = /(L : T) is a prime ideal. We show that wrad;(L) = L +
pT for any submodule L of T if p = (N : T) is a maximal ideal.

Theorem 3.27 showed that weakly radical formula holds for S. The main
result of the thesis gives that if T is an S — module where S is divided domain, then
T satisfies the weakly radical formula. A commutative ring S is called treed ring if
Spec(S) as a poset under inclusion is a tree, that is, no maximal ideal of S contains
incomparable prime ideals. Since every divided domain is a treed ring, the question
that we want to answer is that; does every module T over a treed ring satisfy the

weakly radical formula.

Another related question for our future study is to find a method for
computing the weakly prime radical of a submodule.
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