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NATURAL AND APPLIED SCIENCES 

DEPARTMENT OF MATHEMATICS 

(SUPERVISOR: ASSIST. PROF. SIBEL KILIÇARSLAN CANSU) 

 

BOLU, JULY 2018 

 

 

If 𝑇 is an 𝑆 − module and 𝑄 is a submodule of 𝑇, which is proper, then 𝑄 is called 

prime if 𝑥𝑛 ∈ 𝑄  implies 𝑛 ∈ 𝑄  or 𝑥𝑇 ⊆ 𝑄  for some 𝑥 ∈ 𝑆 , 𝑛 ∈ 𝑇 . Also, if 

𝑥𝑦𝑚 ∈ 𝑄 implies 𝑥𝑚 ∈ 𝑄 or 𝑦𝑚 ∈ 𝑄 for some 𝑥, 𝑦 ∈ 𝑆, 𝑚 ∈ 𝑇, then 𝑄 is called 

weakly prime submodule. One can easily show that prime submodules are weakly 

prime.  

  

We get some properties of weakly prime radical which are always true for prime 

radical. (𝑄 ∶ 𝑇) is always a prime ideal when 𝑄 is a prime submodule. We have 

shown that if 𝑄 is a weakly prime submodule, (𝑄 ∶ 𝑚) is a prime ideal for every 

𝑚 ∈ 𝑇 − 𝑄.  

 

In this thesis, we give the definition of a weakly quasi-primary submodule which 

generalizes the concept of a weakly primary submodule. Also we show that every 

weakly quasi-primary submodule 𝑄 is weakly prime if and only if 〈𝐸𝑇(𝑄)〉 = 𝑄. 

If 𝑆 is a commutative ring with identity whose prime ideals are totally ordered, 

then it is shown that a weakly prime radical is a weakly prime submodule, and the 

weakly radical formula holds for 𝑆. Finally, we prove that divided domains satisfy 

weakly radical formula. 
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𝑇 bir 𝑆 modül ve 𝑄 da 𝑇 nin bir alt modülü ise, eğer 𝑥 ∈ 𝑆, 𝑛 ∈ 𝑇 için 𝑥𝑛 ∈ 𝑄 

varken, 𝑛 ∈ 𝑄  ve ya 𝑥𝑇 ⊆ 𝑄  ise 𝑄  ya asal alt modül denir. Diğer taraftan 

𝑥, 𝑦 ∈ 𝑆  ve 𝑚 ∈ 𝑇  için 𝑥𝑦𝑚 ∈ 𝑄  varken 𝑥𝑚 ∈ 𝑄  ya da 𝑦𝑚 ∈ 𝑄  elde ediliyor 

ise 𝑄 ya zayıf asal alt modül denir. Her asal alt modülün zayıf asal alt modül 

olduğu açıktır. 

Asal radikal için her zaman doğru olan bazı özelliklerin zayıf asal radikal için 

de sağlandığını gösterdik. 𝑄 'nun 𝑆 −modül, 𝑇’nin asal bir alt modülü olması 

durumunda, (𝑄 ∶ 𝑇) nin asal ideal olduğu iyi bilinmektedir. 𝑄 'nun zayıf asal alt 

modül olması durumunda (𝑄 ∶ 𝑚) nin her 𝑚 ∈ 𝑇 − 𝑄 için asal ideal olduğunu 

gösterdik. 

Bu tezde zayıf asal alt modül kavramını genelleştiren zayıf yarı-asal alt 

modüller kavramını tanıtıyoruz. Aynı zamanda, her zayıf yarı-asal alt modül 𝑄 

'nun zayıf asal alt modül olabilmesi için gerek ve yeter şartın 〈𝐸𝑇(𝑄)〉 = 𝑄 

olduğunu gösterdik. Eğer 𝑆, asal idealleri tam sıralı olan değişmeli ve birimli 

bir halka ise, zayıf asal radikalin zayıf asal alt modül olduğu ve aynı zamanda 

zayıf radikal formülün 𝑆  için sağlandığı gösterildi. Son olarak, bölünmüş 

bölgelerin zayıf radikal formülünü sağladığını kanıtladık.  
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1. INTRODUCTION 

If 𝑆 is a commutative ring and 𝐴 is an ideal of 𝑆, then radical of the ideal  𝐴 is 

defined as intersection of all prime ideals of 𝑆 containing 𝐴. It is also defined by  

√𝐴 = {𝑠 ∈ 𝑆:  𝑠𝑡 ∈ 𝐴 𝑓𝑜𝑟 𝑠𝑜𝑚𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑖𝑛𝑡𝑒𝑔𝑒𝑟 𝑡}.  

This characterization had been generalized to modules over a commutative ring 

(McCasland and Moore, 1991). This generalization corresponds to two different 

concepts in the modules.  One of them is the radical of a submodule and the other is 

the envelope of a submodule. A proper submodule 𝑄 of 𝑇, is 𝑞 −prime (𝑞 −primary) 

if 𝑎𝑛 ∈ 𝑄  for 𝑎 ∈ 𝑆 , 𝑛 ∈ 𝑇  gives 𝑛 ∈ 𝑄  or 𝑎 ∈ 𝑞 = (𝑄 ∶ 𝑇)  ( 𝑛 ∈ 𝑄  or 𝑎 ∈ 𝑞 =

√𝑄: 𝑇) where (𝑄 ∶ 𝑇) is the set of all elements of 𝑆 which takes every element of  𝑇 

into 𝑄 . According to this definition, 𝑟𝑎𝑑𝑇(𝑄),  prime radical of 𝑄  in 𝑇  is just 

intersection of all prime submodules of 𝑇  containing 𝑄 . If there is no prime 

submodule of 𝑇 or no prime submodule of 𝑇 contains 𝑄, then 𝑟𝑎𝑑𝑇(𝑄) = 𝑇. The 

envelope of 𝑄 in 𝑇, 𝐸𝑇(𝑄), is the set of all elements 𝑦 ∈ 𝑇 where there exists 𝑎 ∈ 𝑆, 

𝑛 ∈ 𝑇 such that 𝑎𝑘𝑛 ∈ 𝑄  and 𝑦 = 𝑎𝑛 for some positive integer 𝑘 . The submodule 

generated by envelope is denoted by 〈𝐸𝑇(𝑄)〉. 𝑄  satisfies the radical formula (𝑄 

s.t.r.f.) if 𝑟𝑎𝑑𝑇(𝑄) = 〈𝐸𝑇(𝑄)〉. If every submodule 𝑄 of 𝑇 s.t.r.f., then 𝑇 satisfies the 

radical formula (𝑇 s.t.r.f.). Also if every 𝑆 − module satisfies the radical formula, 

then a ring 𝑆  satisfies the radical formula. Since a ring 𝑆  considered as an 𝑆 − 

module, every submodule of 𝑆 satisfies the radical formula by the definition of the 

radical of an ideal.  

The notion of weakly prime submodule was introduced in (Behboodi at all, 

2011). If for 𝑥, 𝑦 ∈ 𝑆  and 𝑛 ∈ 𝑇 , 𝑥𝑦𝑛 ∈ 𝑄  implies 𝑥𝑛 ∈ 𝑄  or 𝑦𝑛 ∈ 𝑄 , then proper 

submodule 𝑄 of an 𝑆 − module 𝑇 is weakly prime. A proper submodule 𝑄 of 𝑇 is 

weakly primary if 𝑥𝑦𝑛 ∈ 𝑄 where 𝑥, 𝑦 ∈ 𝑆 and 𝑛 ∈ 𝑇, then 𝑦𝑛 ∈ 𝑄 or 𝑥𝑡𝑛 ∈ 𝑄 for 

some 𝑡 ≥ 1. Also, 𝑄 is weakly quasi-primary, if 𝑥𝑦𝑛 ∈ 𝑄  implies either 𝑥𝑡𝑛 ∈ 𝑄 or 

𝑦𝑡𝑛 ∈ 𝑄  for some 𝑡 ∈ ℕ  where 𝑥, 𝑦 ∈ 𝑆  and 𝑛 ∈ 𝑇  and 𝑄  is proper. The weakly 

prime radical of 𝑄  in 𝑇 , 𝑤𝑟𝑎𝑑𝑇(𝑄) , is the intersection of all weakly prime 
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submodules of 𝑇 containing 𝑄. If there is no weakly prime submodule containing 𝑄, 

then 𝑤𝑟𝑎𝑑𝑇(𝑄) = 𝑇. So, 𝑤𝑟𝑎𝑑𝑇(𝑇) = 𝑇. Since every prime submodule is weakly 

prime, 𝑤𝑟𝑎𝑑𝑇(𝑄) ⊆ 𝑟𝑎𝑑𝑇(𝑄). If for a submodule 𝑄 of the module 𝑇, 𝑤𝑟𝑎𝑑𝑇(𝑄) =

〈𝐸𝑇(𝑄)〉, then it is said that 𝑄 satisfies the weakly radical formula. 𝑇 satisfies the 

weakly radical formula, if for every submodule 𝑄  of  𝑇 , 𝑄  satisfies the weakly 

radical formula. A ring 𝑆 satisfies the weakly radical formula, if every 𝑆 − module 

satisfies the weakly radical formula. 

Azizi (2007) gave the definition of the 𝑛𝑡ℎ envelope of a submodule. For a 

submodule 𝑄 of 𝑇, 𝐸0(𝑄) = 𝑄, 𝐸1(𝑄) = 𝐸𝑇(𝑄), 𝐸2(𝑄) = 𝐸𝑇(〈𝐸1(𝑄)〉), and for any 

positive integer 𝑘, 𝐸𝑘+1(𝑄) = 𝐸𝑇(〈𝐸𝑘(𝑄)〉) inductively. Here, 𝐸𝑘(𝑄) is called as the 

𝑘𝑡ℎ envelope of 𝑄 . Azizi defined the weakly radical formula of degree 𝑘  (Azizi, 

2009). If 〈𝐸𝑘(𝑄)〉 = 𝑤𝑟𝑎𝑑𝑇(𝑄)  for every submodule 𝑄  of 𝑇 , then 𝑇  satisfies the 

weakly radical formula of degree 𝑘  (s.t.w.r.f. of degree 𝑘 ). If every 𝑆 −  module 

satisfies weakly radical formula of degree 𝑘, then 𝑆 satisfies weakly radical formula 

of degree 𝑘 (𝑆 s.t.w.r.f. of degree 𝑘).  

For any submodule 𝑄 of 𝑀, we consider 𝑈𝐸𝑇(𝑄) = ⋃  〈𝐸𝑘(𝑄)〉𝑘∈ℕ . 𝑈𝐸𝑇(𝑄) 

is the union of envelopes of 𝑄  (Azizi, 2009). It is obvious 

𝑄 ⊆  〈𝐸𝑘(𝑄)〉  ⊆  𝑈𝐸𝑇(𝑄) ⊆  𝑤𝑟𝑎𝑑𝑇(𝑄) ⊆  𝑟𝑎𝑑𝑇(𝑄), for any 𝑘 ∈ ℕ. 

The weakly radical formula holds for 𝑇  if 𝑤𝑟𝑎𝑑𝑇(𝑄) = 𝑈𝐸𝑇(𝑄)  for every 

submodule 𝑄 of 𝑇 and if for every 𝑆 − module weakly radical formula holds, then it 

is said that the weakly radical formula holds for a ring 𝑆.  

An integral domain 𝑆 is called a valuation domain if all its ideals form a chain 

under inclusion and 𝑆 is a divided domain if each prime ideal is comparable to every 

principal ideal of 𝑆 . Badawi (1995) showed that prime ideals of 𝑆  are linearly 

ordered iff for each 𝑥, 𝑦 ∈ 𝑆, 𝑥|𝑦𝑡 or 𝑦|𝑥𝑡 for some 𝑡 ≥ 1 when 𝑆 is a commutative 

ring with identity. Also he gave some equivalent conditions for a ring 𝑆 with linearly 

ordered prime ideals. Also, Badawi showed that 𝑆 is a divided domain iff for every 

𝑥, 𝑦 ∈ 𝑆 , either 𝑥|𝑦  or 𝑦|𝑥𝑛  for some n ≥ 1  which implies that prime ideals of 

divided domains are totally ordered (Badawi, 1995). An integral domain 𝑆  is  

pseudo-valuation domain (PVD), if every prime ideal of  𝑆 is strongly prime. If 𝑆 is a 
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PVD, for non-unit elements 𝑥, 𝑦 of 𝑆, either 𝑥|𝑦 or 𝑦|𝑥2 (Badawi, 1995). Thus every 

PVD is a divided domain. 

This introduction forms Chapter 1. 

The definitions of weakly prime submodule and weakly prime radical are 

given in Chapter 2. Some characterizations of weakly prime submodules and the 

properties of weakly prime radical are stated in the second section of Chapter 2. In 

the third section, we discussed under what conditions weakly prime radical of a 

module is distributive over intersection. 

In Chapter 3, the envelope of a module is introduced and modules which 

satisfy the weakly radical formula are investigated. If 𝑆 is a commutative ring with 

identity satisfying conditions of Theorem 1 of Badawi (1995) , then we showed that 

every proper submodule 𝑄 of an 𝑆 − module 𝑇 is weakly quasi-primary and hence 

𝑤𝑟𝑎𝑑𝑇(𝑄) is weakly prime submodule for any submodule 𝑄 of an 𝑆 − module 𝑇. 

Also, we showed that divided domains satisfy the weakly radical formula. 

Chapter 4 is the conclusion chapter which contains some suggestions for 

future study.  

Throughout 𝑆  is a commutative ring with identity and 𝑇  is a unitary 𝑆 − 

module. 
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2. WEAKLY PRIME RADICAL OF SUBMODULES 

2.1 Prime Submodules 

Definition 2.1 Let 𝑆 be a ring and 𝑇 be an 𝑆 − module. A submodule 𝑄 of  𝑇 

which is proper, is called prime if for some 𝑎 ∈ 𝑆, 𝑛 ∈ 𝑇, 𝑎𝑛 ∈ 𝑄 implies 𝑛 ∈ 𝑄 or 

𝑎𝑇 ⊆ 𝑄.   

Definition 2.2 Let 𝑄 be any submodule of an 𝑆 − module 𝑇. (𝑄 ∶ 𝑇) denotes 

the set of elements 𝑥 ∈ 𝑆 such that 𝑥𝑇 ⊆ 𝑄. This is usually called residual by 𝑸. 

(𝑄 ∶ 𝑇) is an ideal of 𝑆 and  (𝑄 ∶ 𝑇) is the annihilator of the module 𝑇/𝑄.  

For any ideal I  of S  (Q ∶T I)  denotes the set of elements n ∈ T  such that 

In ⊆ Q. 

If 𝑄 is prime submodule of 𝑇 with p = (𝑄 ∶ 𝑇), then 𝑄 is called 𝑝 − prime 

submodule. 

Example 2.3 Let 𝐾 be a field, 𝑈 be a vector space over the field 𝐾. Then 

every proper subspace 𝑉 of 𝑈 is a 〈0〉 −prime submodule of 𝑈. 

Proof. Let 𝑉 be a proper subspace of 𝑈 and 𝑓 ∈ 𝐾, 𝑢 ∈ 𝑈 such that 𝑓𝑢 ∈ 𝑉. If 𝑓 =

0, then 𝑓𝑈 ⊆ 𝑉. If 𝑓 ≠ 0, then 𝑓−1 exists and 𝑢 ∈ 𝑉. Thus, 𝑉 is a prime submodule. 

Since 𝑉 is proper subspace of 𝑈, (𝑉 ∶ 𝑈) = 〈0〉. □ 

            Lemma 2.4 (Jenkins, 1991, Lemma 1) Let 𝑆  be a ring and 𝑇 be an 

𝑆 −module. Then a submodule 𝑄 of  𝑇 is prime iff  P = (𝑄 ∶ 𝑇) is a prime ideal of 𝑆 

and 𝑇/𝑄 is torsion-free  𝑆/P −module. 

Lemma 2.5 Let { 𝑁𝑗 : 𝑗 ∈ 𝐽} be a family of submodules of  𝑇. Then  (⋂ 𝑁𝑗𝑗∈𝐽 ∶

𝑇) =  ⋂ (𝑁𝑗 ∶ 𝑇)𝑗∈𝐽 . 
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Proof. Let 𝑥 ∈ (⋂ 𝑁𝑗𝑗∈𝐽 ∶ 𝑇) . Then 𝑥𝑇 ⊆ ⋂ 𝑁𝑗 ⊆ 𝑁𝑗𝑗∈𝐽  for all 𝑗 ∈ 𝐽 . Therefore 

𝑥 ∈ (𝑁𝑗 ∶ 𝑇) for all 𝑗 ∈ 𝐽, so that 𝑥 ∈ ⋂ (𝑁𝑗 ∶ 𝑇)𝑗∈𝐽 . Conversely, let 𝑦 ∈ ⋂ (𝑁𝑗 ∶ 𝑇)𝑗∈𝐽 . 

Then 𝑦 ∈ (𝑁𝑗 ∶ 𝑇) for all 𝑗 ∈ 𝐽, and 𝑦𝑇 ⊆ ⋂ 𝑁𝑗𝑗∈𝐽 . Thus 𝑦 ∈ (⋂ 𝑁𝑗𝑗∈𝐽 ∶ 𝑇). □ 

Lemma 2.6 Let 𝑆 be a finitely generated module, { 𝑁𝑗 ∶ 𝑗 ∈ 𝐽} be a totally 

ordered family of prime submodules. Then (⋃ 𝑁𝑗 ∶ 𝑇) =  ⋃ (𝑁𝑗 ∶ 𝑇)𝑗∈𝐽𝑗∈𝐽 .  

Proof. Let 𝑥 ∈ (⋃ 𝑁𝑗 ∶ 𝑇)𝑗∈𝐽 . Then 𝑥𝑇 ⊆  ⋃ 𝑁𝑗𝑗∈𝐽 . Since 𝑇  is finitely generated, 

𝑇 = 𝑆𝑚1 + 𝑆𝑚2 + ⋯ + 𝑆𝑚𝑛  for some 𝑚1, 𝑚2, … , 𝑚𝑛 ∈ 𝑇 . Hence for all 𝑚𝑖 ∈ 𝑇 , 

𝑥𝑚𝑖 is an element of 𝑁𝑗𝑖
 for some 𝑗𝑖 ∈ 𝐽. Since { 𝑁𝑗: 𝑗 ∈ 𝐽}  is totally ordered, there 

exist 𝑘 ∈ 𝐼  such that 𝑁𝑗1
, 𝑁𝑗2

, … , 𝑁𝑗𝑛
⊆ 𝑁𝑘 . Thus  𝑥𝑇 ⊆ 𝑁𝑘  and 𝑥 ∈ ⋃ (𝑁𝑗 ∶ 𝑇)𝑗∈𝐽  

Now let  𝑥′ ∈ ⋃ (𝑁𝑗 ∶ 𝑇)𝑗∈𝐽 . Then 𝑥′ ∈ (𝑁𝑗 ∶ 𝑇)  for some 𝑗 ∈ 𝐽  and 𝑥′𝑇 ⊆ 𝑁𝑗 ⊆

 ⋃ 𝑁𝑗𝑗∈𝐽 . Hence 𝑥′ ∈ (⋃ 𝑁𝑗 ∶ 𝑇)𝑗∈𝐽 .□ 

Definition 2.7 Let 𝐴 be an ideal of a ring 𝑆. The set √𝐴 = {𝑠 ∈ 𝑆 ∶   𝑠𝑡 ∈

𝐴 𝑓𝑜𝑟 𝑠𝑜𝑚𝑒 𝑡 ∈ ℤ+} is called the radical of  𝐴. 

Definition 2.8 Let 𝑇  be an 𝑆 −  module. A submodule 𝑄  of 𝑇  is primary 

submodule if for 𝑥 ∈ 𝑆  and 𝑛 ∈ 𝑇 , 𝑥𝑛 ∈ 𝑄 implies 𝑛 ∈ 𝑄  or  𝑥𝑘𝑇 ⊆ 𝑄  for some 

positive integer 𝑘.  

If √(𝑄 ∶ 𝑇) = 𝑝, then 𝑄  is a 𝑝 − primary submodule. Clearly every prime 

submodule of a module 𝑇 is primary. 

Definition 2.9 Let 𝑇  be an 𝑆 −  module and 𝑄  be a submodule of 𝑇  with 

𝑄 ≠ 𝑇. The prime radical of 𝑄 in 𝑇, 𝑟𝑎𝑑𝑇(𝑄), is defined as the intersection of all 

prime submodules of  𝑇  containing 𝑄 . If no prime submodule contains 𝑄 , then 

𝑟𝑎𝑑𝑇(𝑄) = 𝑇, and thus 𝑟𝑎𝑑𝑇(𝑇) = 𝑇. 
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2.2 Weakly Prime Submodules and Weakly Prime Radical 

In this section we will deal with the weakly prime radical of submodules and 

its properties. 

Definition 2.10 Let 𝑇  be an 𝑆 −  module. A submodule 𝑊  of 𝑇  which is 

proper is weakly prime if 𝑎𝑏𝑛 ∈ 𝑊, where 𝑎, 𝑏 ∈ 𝑆 and 𝑛 ∈ 𝑇, then either 𝑎𝑛 ∈ 𝑊 

or 𝑏𝑛 ∈ 𝑊. 

Every prime submodule is weakly prime. Let us show by example that the 

converse is not true. 

Let 𝑆 = ℚ[𝑥, 𝑦], 𝑃 = 〈𝑥〉  be a non-zero prime ideal of  S , 𝑇  be a free 𝑆 − 

module 𝑆 ⊕ 𝑆 . Then 𝑄 = 0 ⊕ 𝑃  is weakly prime submodule of 𝑇  which is not 

prime. It is clear that (𝑄 ∶ 𝑇) = 0. Then if we take (0, 𝑦) ∉ 𝑄 and 𝑥 ∉ (𝑄 ∶ 𝑇), we 

have 𝑥(0, 𝑦) = (0, 𝑥𝑦) ∈ 𝑄  which means that 𝑄  is not prime. To show that 𝑄  is 

weakly prime, let 𝑎, 𝑏 ∈ 𝑆 , 𝑚 = (𝑚1, 𝑚2) ∈ 𝑇  such that 𝑎𝑏𝑚 ∈ 𝑄 . Then 𝑎𝑏𝑚 =

(𝑎𝑏𝑚1, 𝑎𝑏𝑚2) ∈  0 ⊕ 𝑃 implies that 𝑎𝑏𝑚1 = 0 and 𝑎𝑏𝑚2 ∈ 𝑃. Since 𝑆 is integral 

domain, 𝑎 = 0 or 𝑏𝑚1 = 0. If 𝑎 = 0, then 𝑎𝑚 ∈ 0 ⊕ 𝑃. If 𝑏𝑚1 = 0, then 𝑏 = 0 or 

𝑚1 = 0. 𝑏 = 0 implies that 𝑏𝑚 ∈ 0 ⊕ 𝑃  similar to the case 𝑎 = 0. Now suppose 

that 𝑚1 = 0 . 𝑎𝑏𝑚2 ∈ 𝑃  implies that 𝑎 ∈ 𝑃  or 𝑏𝑚2 ∈ 𝑃 . If 𝑎 ∈ 𝑃 , then 𝑎𝑚 =

𝑎(0, 𝑚2) ∈ 0 ⊕ 𝑃. If  𝑏𝑚2 ∈ 𝑃, then 𝑏𝑚 = 𝑏(0, 𝑚2) = (0, 𝑏𝑚2) ∈ 0 ⊕ 𝑃. Thus in 

each case 𝑎𝑚 ∈ 𝑄 or 𝑏𝑚 ∈ 𝑄. 

Proposition 2.11 Let 𝑊 be any weakly prime submodule of  𝑇 and 𝐼 be an 

ideal of S. Then (𝑊 ∶ 𝐼) = {𝑛 ∈ 𝑇 ∶ 𝐼𝑛 ⊆ 𝑊} is a weakly prime submodule of 𝑇.  

Proof. Let 𝑎, 𝑏 ∈ 𝑆 and 𝑛 ∈ 𝑇 such that 𝑎𝑏𝑛 ∈ (𝑊 ∶ 𝐼). We know that 𝐼(𝑎𝑏𝑛) ⊆ 𝑊, 

for every 𝑟 ∈ 𝐼 , 𝑟(𝑎𝑏𝑛) ∈ 𝑊  implies that 𝑟𝑛 ∈ 𝑊  or 𝑎𝑏𝑛 ∈ 𝑊  since 𝑊  is weakly 

prime. If 𝑟𝑛 ∈ 𝑊, then 𝑛 ∈ (𝑊 ∶ 𝐼). If 𝑎𝑏𝑛 ∈ 𝑊, then 𝑎𝑛 ∈ 𝑊 or 𝑏𝑛 ∈ 𝑊. Thus for 

all cases, 𝑎𝑛 ∈ (𝑊 ∶ 𝐼)  or 𝑏𝑛 ∈ (𝑊 ∶ 𝐼) . Therefore (𝑊 ∶ 𝐼)  is weakly prime 

submodule of 𝑇. □ 

Lemma 2.12 𝑊 is a weakly prime submodule of a module 𝑇 iff (𝑊 ∶ 𝑚) is a 

prime ideal for every 𝑚 ∈ 𝑇 − 𝑊. 
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Proof. Let 𝑎𝑏 ∈ (𝑊 ∶ 𝑚) and 𝑊 be a submodule of 𝑇 which is weakly prime. Hence 

𝑎𝑏𝑚 ∈ 𝑊  where 𝑎, 𝑏 ∈ 𝑆 , 𝑚 ∈ 𝑇 − 𝑊 . So that 𝑎𝑚 ∈ 𝑊  or 𝑏𝑚 ∈ 𝑊  implies that 

𝑎 ∈ (𝑊 ∶ 𝑚) or 𝑏 ∈ (𝑊 ∶ 𝑚). Conversely, suppose for every 𝑚 ∈ 𝑇 − 𝑊,  (𝑊 ∶ 𝑚) 

is prime ideal. Assume that 𝑎𝑏𝑚 ∈ 𝑊 for some 𝑚 ∈ 𝑇 − 𝑊. Then 𝑎𝑏 ∈ (𝑊 ∶ 𝑚). 

Since (𝑊 ∶ 𝑚)  is prime, 𝑎 ∈ (𝑊 ∶ 𝑚) or 𝑏 ∈ (𝑊 ∶ 𝑚). Then 𝑎𝑚 ∈ 𝑊 or 𝑏𝑚 ∈ 𝑊. 

Therefore 𝑊 is weakly prime submodule. □ 

            Azizi (2008) showed that if 𝑄 is a weakly prime submodule, then 

{(𝑄 ∶ 𝑚) ∶ 𝑚 ∈ 𝑇 − 𝑄} 

forms a chain of prime ideals. Hence (𝑄 ∶ 𝑇) is a prime ideal. 

We can write the following definition, since every prime submodule is 

weakly prime. 

Definition 2.13 Let 𝑇 be an 𝑆 − module. and 𝑄  be a submodule of 𝑇 with 

𝑄 ≠ 𝑇. The weakly prime radical of 𝑄 in 𝑇, 𝑤𝑟𝑎𝑑𝑇(𝑄), is defined as the intersection 

of all weakly prime submodule of 𝑇  containing 𝑄 . If there is no weakly prime 

submodule containing 𝑄, then 𝑤𝑟𝑎𝑑𝑇(𝑄) = 𝑇, and thus 𝑤𝑟𝑎𝑑𝑇(𝑇) = 𝑇. 

Proposition 2.14 Let {𝑊𝑖 ∶ 𝑖 ∈ 𝐼}  be a non-empty family of weakly prime 

submodules of an 𝑆 −  module 𝑇 . Suppose that the family is totally ordered by 

inclusion. Then ⋂ 𝑊𝑖𝑖∈𝐼  is a weakly prime submodule of 𝑇. 

Proof. Let 𝑥𝑦𝑚 ∈ ⋂ 𝑊𝑖𝑖∈𝐼  for 𝑥, 𝑦 ∈ 𝑆  and 𝑚 ∈ 𝑇 . Then 𝑥𝑦𝑚 ∈ 𝑊𝑖  for all 𝑖 ∈ 𝐼 . 

Since 𝑊𝑖 is weakly prime,  𝑥𝑚 ∈ 𝑊𝑖 or 𝑦𝑚 ∈ 𝑊𝑖. Since the family is totally ordered, 

𝑥𝑚 ∈ ⋂ 𝑊𝑖𝑖∈𝐼  or 𝑦𝑚 ∈ ⋂ 𝑊𝑖𝑖∈𝐼 . Thus, ⋂ 𝑊𝑖𝑖∈𝐼  is a weakly prime submodule. □ 

Proposition 2.15 Let 𝑇  be an 𝑆 −  module. If a submodule 𝑁  of  𝑇  is 

contained in a weakly prime submodule 𝐾, then 𝐾 contains a minimal weakly prime 

submodule of 𝑁. 

Proof. Let 𝐴 = {𝐿 ∶  𝐿 𝑖𝑠 𝑤𝑒𝑎𝑘𝑙𝑦 𝑝𝑟𝑖𝑚𝑒 𝑠𝑢𝑏𝑚𝑜𝑑𝑢𝑙𝑒 𝑜𝑓 𝑇 𝑎𝑛𝑑 𝑁 ⊆  𝐿 ⊆  𝐾} . 

𝐴 ≠ ∅ since 𝐾 ∈ 𝐴. If  𝐿1, 𝐿2 ∈ 𝐴, then let us define a relation ≤ such that 𝐿1 ≤ 𝐿2 if 

𝐿2 ⊆ 𝐿1. This gives a partial order on 𝐴. Let 𝐴′ be a non-empty totally ordered subset 



8 

 

of 𝐴 . Consider the intersection of all the elements of 𝐴′ , say �̅� = ⋂ 𝐿𝑖𝑖∈𝐼  where 

𝐿𝑖 ∈ 𝐴′. Since 𝐴′ is totally ordered, �̅� is a weakly prime submodule. Then 𝑁 ⊆ �̅� ⊆

𝐾. Hence 𝐿 ̅∈ A and �̅� ⊆ 𝐿𝑖  for all 𝐿𝑖 ∈ 𝐴′. We have 𝐿𝑖  ≤  �̅�. Thus �̅�  is an upper 

bound for 𝐴′. By Zorn’s lemma, 𝐴 contains a maximal element, say 𝑌. Since 𝑌 ∈ 𝐴, 

we have 𝑁 ⊆ 𝑌 ⊆ 𝐾 and 𝑌 is a weakly prime submodule of 𝑇. To complete the proof 

we will show that 𝑌 is a minimal weakly prime submodule of 𝑁. Now suppose �̅� is a 

weakly prime submodule of 𝑇  such that 𝑁 ⊆ �̅� ⊆ 𝐾  and �̅� ⊆ 𝑌 . Then �̅� ∈ 𝐴  and 

𝑌 ≤ �̅�. Thus, 𝑌 = �̅�, since 𝑌 is a maximal element of 𝐴. Therefore 𝑌 is a minimal 

weakly prime submodule of 𝑁.□ 

Corollary 2.16 Every proper submodule of finitely generated module 

possesses at least one minimal weakly prime submodule. 

Proof. Let 𝑇 be a finitely generated module, 𝑄 be a proper submodule of 𝑇. Then 

there exists submodule 𝑁′ of 𝑇  such that 𝑄 ⊆ 𝑁′  and 𝑁′ is maximal. Since 𝑁′  is 

maximal, it is a prime submodule and hence 𝑁′ is weakly prime (Lu, 1984). Then by 

Proposition 2.15, 𝑁′ contains a minimal weakly prime submodule of 𝑄. Thus 𝑄 has 

at least one minimal weakly prime submodule. □ 

           By using above corollary, we can give the characterization of the weakly 

prime radical of submodules of finitely generated modules. 

Theorem 2.17 Let 𝑇 be finitely generated 𝑆 − module. Then the weakly prime 

radical of a proper submodule 𝑁 of 𝑇 is just the intersection of its minimal weakly 

prime submodules. 

Proof. Let 𝑁 be submodule of 𝑇 with 𝑁 ≠ 𝑇. By Corollary 2.16, 𝑁 has at least one 

minimal weakly prime submodule, say 𝑊𝑖. Let 𝐿 be the intersection of all minimal 

weakly prime submodules of 𝑇  containing 𝑁 . By the definition of 𝑤𝑟𝑎𝑑𝑇(𝑁) , 

𝑤𝑟𝑎𝑑𝑇(𝑁) ⊆ ⋂ 𝑊𝑖 = 𝐿𝑖∈𝐼 . On the other hand, if 𝑊 is any weakly prime submodule 

containing 𝑁, then 𝑊 contains some minimal weakly prime submodule 𝑄𝑖 of 𝑁 by 

Proposition 2.16.  Hence 𝐿 = ⋂ 𝑊𝑖𝑖∈𝐼 ⊆  𝑤𝑟𝑎𝑑𝑇(𝑁). □  

In the following proposition we will give some basic properties of the weakly 

prime radical. 
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Proposition 2.18 Let 𝑇 be an 𝑆 − module, 𝐽 be an index set and let 𝑁, 𝑁𝑗  be 

submodules of 𝑇 for 𝑗 ∈ 𝐽 and 𝐼 be an ideal of 𝑆. Then 

(i)  𝑁 ⊆ 𝑤𝑟𝑎𝑑𝑇(𝑁), 

(ii) 𝑤𝑟𝑎𝑑𝑇(𝑤𝑟𝑎𝑑𝑇(𝑁)) =  𝑤𝑟𝑎𝑑𝑇(𝑁), 

(iii) 𝑤𝑟𝑎𝑑𝑇(⋂ 𝑁𝑗𝑗∈𝐽 ) ⊆  ⋂ 𝑤𝑟𝑎𝑑𝑇𝑗∈𝐽 (𝑁𝑗) =  𝑤𝑟𝑎𝑑𝑇(⋂ 𝑤𝑟𝑎𝑑𝑇𝑗∈𝐽 (𝑁𝑗)) 

(iv) ∑ 𝑤𝑟𝑎𝑑𝑇𝑗∈𝐽 (𝑁𝑗) ⊆  𝑤𝑟𝑎𝑑𝑇(∑ 𝑁𝑗𝑗∈𝐽 ) =  𝑤𝑟𝑎𝑑𝑇(∑ 𝑤𝑟𝑎𝑑𝑇𝑗∈𝐽 (𝑁𝑗)) 

(v) 𝑤𝑟𝑎𝑑𝑇(𝐼𝑇) =  𝑤𝑟𝑎𝑑𝑇(√𝐼𝑇) =  𝑤𝑟𝑎𝑑𝑇(𝐼𝑛𝑇)  for every ideal 𝐼  and 

for every positive integer 𝑛. 

(vi) √(𝑁 ∶ 𝑇) ⊆ (𝑤𝑟𝑎𝑑𝑇(𝑁) ∶ 𝑇), 

(vii) If 𝑇 is finitely generated, then 𝑤𝑟𝑎𝑑𝑇(𝑁) = 𝑇 iff 𝑁 = 𝑇 

Proof. (i) Let 𝑥 ∈ 𝑁 . Then 𝑥 ∈ 𝑊  for every weakly prime submodule 𝑊  of 𝑇 

containing 𝑁. Hence  𝑥 ∈ 𝑤𝑟𝑎𝑑𝑇(𝑁).  

(ii) 𝑤𝑟𝑎𝑑𝑇(𝑁) ⊆  𝑤𝑟𝑎𝑑𝑇(𝑤𝑟𝑎𝑑𝑇(𝑁))  is clear by (i). Since 𝑁 ⊆

𝑤𝑟𝑎𝑑𝑇(𝑁) ⊆ 𝑊𝑖 for all weakly prime submodules 𝑊𝑖 containing    𝑤𝑟𝑎𝑑𝑇(𝑁), we 

have ⋂ 𝑊𝑖𝑖∈𝐼 ⊆ 𝑃𝑗  for all weakly prime submodules 𝑃𝑗  containing 𝑁 . Hence  

𝑤𝑟𝑎𝑑𝑇(𝑤𝑟𝑎𝑑𝑇(𝑁)) = ⋂ 𝑊𝑖𝑖∈𝐼 ⊆  𝑤𝑟𝑎𝑑𝑇(𝑁). 

(iii) Let 𝑤𝑟𝑎𝑑𝑇(⋂ 𝑁𝑗𝑗∈𝐽 ) = ⋂ 𝑊𝑖𝑖∈𝐼  for all weakly prime submodules                

𝑊𝑖  containing ⋂ 𝑁𝑗𝑗∈𝐽  and let {𝑄𝑖𝑗}  be the set of weakly prime submodules 

containing 𝑁𝑗 . Since ⋂ 𝑁𝑗𝑗∈𝐽 ⊆ 𝑁𝑗 ⊆ 𝑄𝑖𝑗  for all 𝑖  and 𝑗 , 𝑤𝑟𝑎𝑑𝑇(⋂ 𝑁𝑗𝑗∈𝐽 ) ⊆

𝑤𝑟𝑎𝑑𝑇(𝑁𝑗). Hence 𝑤𝑟𝑎𝑑𝑇(⋂ 𝑁𝑗𝑗∈𝐽 ) ⊆ ⋂ 𝑤𝑟𝑎𝑑𝑇𝑗∈𝐽 (𝑁𝑗). 

Since ⋂ 𝑤𝑟𝑎𝑑𝑇𝑗∈𝐽 (𝑁𝑗) ⊆ 𝑤𝑟𝑎𝑑𝑇(𝑁𝑗)  for all 𝑗 ∈ 𝐽 , 

𝑤𝑟𝑎𝑑𝑇 (⋂ 𝑤𝑟𝑎𝑑𝑇𝑗∈𝐽 (𝑁𝑗)) ⊆ 𝑤𝑟𝑎𝑑𝑇 (𝑤𝑟𝑎𝑑𝑇(𝑁𝑗)) = 𝑤𝑟𝑎𝑑𝑇(𝑁𝑗)  for all 𝑗 ∈ 𝐽 . 

Hence 𝑤𝑟𝑎𝑑𝑇 (⋂ 𝑤𝑟𝑎𝑑𝑇𝑗∈𝐽 (𝑁𝑗)) ⊆ ⋂ 𝑤𝑟𝑎𝑑𝑇𝑗∈𝐽 (𝑁𝑗) . By (i), ⋂ 𝑤𝑟𝑎𝑑𝑇𝑗∈𝐽 (𝑁𝑗) =

𝑤𝑟𝑎𝑑𝑇 (⋂ 𝑤𝑟𝑎𝑑𝑇𝑗∈𝐽 (𝑁𝑗)) is clear. 

(iv) Since 𝑁𝑗 ⊆ ∑ 𝑁𝑗𝑗∈𝐽  for all 𝑗 , 𝑤𝑟𝑎𝑑𝑇(𝑁𝑗) ⊆ 𝑤𝑟𝑎𝑑𝑇(∑ 𝑁𝑗𝑗∈𝐽 ) . Then 

∑ 𝑤𝑟𝑎𝑑𝑇𝑗∈𝐽 (𝑁𝑗) ⊆ 𝑤𝑟𝑎𝑑𝑇(∑ 𝑁𝑗𝑗∈𝐽 ) . Let us show that 𝑤𝑟𝑎𝑑𝑇(∑ 𝑁𝑗𝑗∈𝐽 ) =
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 𝑤𝑟𝑎𝑑𝑇(∑ 𝑤𝑟𝑎𝑑𝑇(𝑁𝑗𝑗∈𝐽 )) . It is clear that ∑ 𝑁𝑗𝑗∈𝐽 ⊆ ∑ 𝑤𝑟𝑎𝑑𝑇𝑗∈𝐽 (𝑁𝑗) . Then 

𝑤𝑟𝑎𝑑𝑇(∑ 𝑁𝑗𝑗∈𝐽 ) ⊆ 𝑤𝑟𝑎𝑑𝑇 (∑ 𝑤𝑟𝑎𝑑𝑇𝑗∈𝐽 (𝑁𝑗)). 

Let {𝑄𝑖}  be a set of weakly prime submodules of 𝑇  containing 

∑ 𝑤𝑟𝑎𝑑𝑇𝑗∈𝐽 (𝑁𝑗)  and let 𝑊𝑘  be any weakly prime submodule of 𝑇  such that 

∑ 𝑁𝑗𝑗∈𝐽 ⊆ 𝑊𝑘 . Since 𝑁𝑗 ⊆ ∑ 𝑁𝑗𝑗∈𝐽 , 𝑤𝑟𝑎𝑑𝑇(𝑁𝑗) ⊆ 𝑊𝑘  for all 𝑗 . Hence 

∑ 𝑤𝑟𝑎𝑑𝑇(𝑁𝑗𝑗∈𝐽 ) ⊆ 𝑊𝑘 for all weakly prime submodules 𝑊𝑘 of 𝑇 containing ∑ 𝑁𝑗𝑗∈𝐽 . 

Then ⋂ 𝑄𝑖 ⊆ 𝑊𝑘𝑖∈𝐼  for all 𝑊𝑘 . Therefore 

𝑤𝑟𝑎𝑑𝑇(∑ 𝑤𝑟𝑎𝑑𝑇(𝑁𝑗)) ⊆ 𝑤𝑟𝑎𝑑𝑇(∑ 𝑁𝑗) 𝑗∈𝐽𝑗∈𝐽 . 

(v) This is trivially true if 𝑤𝑟𝑎𝑑𝑇(𝐼𝑇) = 𝑇. If 𝑤𝑟𝑎𝑑𝑇(𝐼𝑇) ≠ 𝑇, then there 

exists a weakly prime submodule 𝑄 such that 𝐼𝑇 ⊆ 𝑄. We know 𝐼 ⊆ (𝐼𝑇 ∶ 𝑇) ⊆ (𝑄 ∶

𝑇). Then √𝐼 ⊆ √(𝑄 ∶ 𝑇) = (𝑄 ∶ 𝑇). If 𝑥 ∈ √𝐼 , then there exists 𝑘 ∈ ℤ+  such that 

𝑥𝑘 ∈ 𝐼 ⊆ (𝑄 ∶ 𝑇) . Hence 𝑥 ∈ (𝑄 ∶ 𝑇) . So that √𝐼𝑇 ⊆ (𝑄 ∶ 𝑇)𝑇 = 𝑄 . Thus 

𝑤𝑟𝑎𝑑𝑇(√𝐼𝑇) ⊆ 𝑤𝑟𝑎𝑑𝑇(𝐼𝑇) . Since 𝐼 ⊆ √𝐼 , 𝐼𝑇 ⊆ √𝐼𝑇  and 𝑤𝑟𝑎𝑑𝑇(𝐼𝑇) ⊆

𝑤𝑟𝑎𝑑𝑇(√𝐼𝑇). 

Since √𝐼𝑛 = √𝐼  for every positive integer 𝑛 , 

𝑤𝑟𝑎𝑑𝑇(𝐼𝑛𝑇) = 𝑤𝑟𝑎𝑑𝑇(√𝐼𝑛𝑇) =  𝑤𝑟𝑎𝑑𝑇(√𝐼𝑇) = 𝑤𝑟𝑎𝑑𝑇(𝐼𝑇). 

(vi) Let 0 ≠ 𝑧 ∈ √(𝑁 ∶ 𝑇) . Then there exists 𝑘 ∈ ℤ+ such that 𝑧𝑘 ∈ (𝑁 ∶ 𝑇), 

which implies that 𝑧𝑘𝑇 ⊆ 𝑁 ⊆ 𝑊 for all weakly prime submodules 𝑊 containing 𝑁. 

Therefore 𝑧𝑘 ∈ (𝑊 ∶ 𝑇)  and 𝑧 ∈ (𝑊: 𝑇) since (𝑊 ∶ 𝑇) is a radical ideal. So𝑧𝑇 ⊆

𝑤𝑟𝑎𝑑𝑇(𝑁) and thus 𝑧 ∈ (𝑤𝑟𝑎𝑑𝑇(𝑁): 𝑇). Therefore√(𝑁 ∶ 𝑇) ⊆ (𝑤𝑟𝑎𝑑𝑇(𝑁): 𝑇). 

(vii) Let 𝑁 = 𝑇, then 𝑤𝑟𝑎𝑑𝑇(𝑁) =  𝑤𝑟𝑎𝑑𝑇(𝑇) = 𝑇. Conversely assume that 

𝑤𝑟𝑎𝑑𝑇(𝑁) = 𝑇 and 𝑁 ≠ 𝑇. By Corollary 2.16, 𝑁 has at least one minimal weakly 

prime submodule 𝑊  such that 𝑁 ⊆ 𝑊  since 𝑇  is finitely generated. Hence 𝑇 =

 𝑤𝑟𝑎𝑑𝑇(𝑁) ⊆ 𝑊 and 𝑇 ⊆ 𝑊. This contradicts with the fact that 𝑊 is weakly prime. 

Therefore 𝑁 = 𝑇. 

Corollary 2.19 Let 𝑇 be finitely generated module, 𝑌 and 𝐾 be submodules of  

𝑇. Then 𝑤𝑟𝑎𝑑𝑇(𝑌) + 𝑤𝑟𝑎𝑑𝑇(𝐾) = 𝑇 if and only if  𝑌 + 𝐾 = 𝑇. 
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Proof. Assume that 𝑤𝑟𝑎𝑑𝑇(𝑌) + 𝑤𝑟𝑎𝑑𝑇(𝐾) = 𝑇. Then by above proposition (vii), 

𝑤𝑟𝑎𝑑𝑇(𝑤𝑟𝑎𝑑𝑇(𝑌) + 𝑤𝑟𝑎𝑑𝑇(𝐾)) = 𝑇. By the same proposition 𝑤𝑟𝑎𝑑𝑇(𝑌 + 𝐾) =

𝑇 and 𝑌 + 𝐾 = 𝑇. 

Conversely, suppose that 𝑌 + 𝐾 = 𝑇 . Then by using above proposition, 

𝑇 =  𝑤𝑟𝑎𝑑𝑇(𝑌 + 𝐾) = 𝑤𝑟𝑎𝑑𝑇(𝑤𝑟𝑎𝑑𝑇(𝑌) + 𝑤𝑟𝑎𝑑𝑇(𝐾)) . Hence 𝑤𝑟𝑎𝑑𝑇(𝑌) +

𝑤𝑟𝑎𝑑𝑇(𝐾) = 𝑇. □ 

Proposition 2.20 Let 𝑄 be a submodule of an 𝑆 − module 𝑇and 𝐼 be an ideal 

of 𝑆. Then 𝑤𝑟𝑎𝑑𝑇(𝑤𝑟𝑎𝑑𝑇(𝑄): 𝐼) = (𝑤𝑟𝑎𝑑𝑇(𝑄): 𝐼). 

Proof. Let 𝑥 ∈ (𝑤𝑟𝑎𝑑𝑇(𝑄): 𝐼). Then 𝑥 ∈ 𝑃 for all weakly prime submodule 𝑃 of 𝑇 

containing 𝑤𝑟𝑎𝑑𝑇(𝑄): 𝐼 . Hence 𝑥 ∈ 𝑤𝑟𝑎𝑑𝑇(𝑤𝑟𝑎𝑑𝑇(𝑄): 𝐼) . Now assume that 

𝑤𝑟𝑎𝑑𝑇(𝑄) = ⋂ 𝑊𝑗𝑗∈𝐽 , for all weakly prime submodule 𝑊𝑗 of 𝑇 containing 𝑄. Then 

𝑤𝑟𝑎𝑑𝑇(𝑤𝑟𝑎𝑑𝑇(𝑄) ∶ 𝐼) =  𝑤𝑟𝑎𝑑𝑇(⋂ 𝑊𝑗 ∶ 𝐼) = 𝑤𝑟𝑎𝑑𝑇(⋂ (𝑊𝑗 ∶ 𝐼))𝑗∈𝐽𝑗∈𝐽 and  

𝑤𝑟𝑎𝑑𝑇(⋂ (𝑊𝑗 ∶ 𝐼)𝑗∈𝐽 ) ⊆  ⋂ 𝑤𝑟𝑎𝑑𝑇(𝑊𝑗 ∶ 𝐼)𝑗∈𝐽  by Proposition 2.18. Proposition 2.11 

implies that ⋂ 𝑤𝑟𝑎𝑑𝑇(𝑊𝑗 ∶ 𝐼) =  ⋂ (𝑊𝑗 ∶ 𝐼) ⊆ (𝑊𝑗 ∶ 𝐼)𝑗∈𝐽𝑗∈𝐽 , for all weakly prime 

submodule 𝑊𝑗  of 𝑇  containing 𝑄 . 𝐼(𝑤𝑟𝑎𝑑𝑇(𝑤𝑟𝑎𝑑𝑇(𝑄): 𝐼)) ⊆ 𝐼(𝑊𝑗 ∶ 𝐼) ⊆ 𝑊𝑗 and 

then 𝐼(𝑤𝑟𝑎𝑑𝑇(𝑤𝑟𝑎𝑑𝑇(𝑄) ∶ 𝐼)) ⊆ 𝑤𝑟𝑎𝑑𝑇(𝑁) . Hence 𝑤𝑟𝑎𝑑𝑇(𝑤𝑟𝑎𝑑𝑇(𝑄) ∶ 𝐼) ⊆

(𝑤𝑟𝑎𝑑𝑇(𝑄) ∶ 𝐼). □ 

Corollary 2.21 Let 𝑄 be a submodule of an 𝑆 − module 𝑇and 𝐽 be an ideal of 

𝑆. Then 𝑤𝑟𝑎𝑑𝑇(𝑄 ∶ 𝐽) ⊆ (𝑤𝑟𝑎𝑑𝑇(𝑄) ∶ 𝐽). 

Proof. We know that 𝑄 ⊆ 𝑤𝑟𝑎𝑑𝑇(𝑄) . Then(𝑄 ∶ 𝐽) ⊆ (𝑤𝑟𝑎𝑑𝑇(𝑄) ∶ 𝐽) . We have 

𝑤𝑟𝑎𝑑𝑇(𝑄 ∶ 𝐽) ⊆  𝑤𝑟𝑎𝑑𝑇(𝑤𝑟𝑎𝑑𝑇(𝑄) ∶ 𝐽) and then by Proposition 2.20,  𝑤𝑟𝑎𝑑𝑇(𝑄 ∶

𝐽) ⊆ (𝑤𝑟𝑎𝑑𝑇(𝑄) ∶ 𝐽). □ 

Proposition 2.22 Let 𝑄 be a submodule of 𝑆 − module 𝑇, 𝐼 and 𝐽 be  ideals of 

𝑆. Then 𝑤𝑟𝑎𝑑𝑇(𝐼𝐽𝑄) =  𝑤𝑟𝑎𝑑𝑇(𝐼𝑄) ∩ 𝑤𝑟𝑎𝑑𝑇(𝐽𝑄).  

Proof. Let 𝐴1 =  {W ∶  W is a weakly prime submodule of T such that IJQ ⊆  W} ,  

𝐴2 =  {W′ ∶  W′  is a weakly prime submodule of T such that IQ ⊆  W′ },        and  

𝐴3 =  {W̅: W̅ is a weakly prime submodule of T such that JQ ⊆  W̅ } . Since each 
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𝑊 ∈ 𝐴1  is weakly prime, 𝐼𝐽𝑄 ⊆ 𝑊  implies that 𝐼𝑄 ⊆ 𝑊  or 𝐽𝑄 ⊆ 𝑊 . Therefore 

𝐴1 = 𝐴2 ∪ 𝐴3  and 𝑤𝑟𝑎𝑑𝑇(𝐼𝐽𝑄) = ⋂ 𝑊𝑊∈𝐴1
= (⋂ 𝑊′

𝑊′∈𝐴2
) ∩ (⋂ �̅��̅�∈𝐴3

). Then 

𝑤𝑟𝑎𝑑𝑇(𝐼𝐽𝑄) = 𝑤𝑟𝑎𝑑𝑇(𝐼𝑄) ∩ 𝑤𝑟𝑎𝑑𝑇(𝐽𝑄). □ 

Definition 2.23 Let 𝑇 be an 𝑆 − module, 𝑄 be a submodule of 𝑇 with 𝑄 ≠ 𝑇. 

𝑄  is weakly primary if 𝑥𝑦𝑚 ∈ 𝑄 , where 𝑥, 𝑦 ∈ 𝑆 , 𝑚 ∈ 𝑇 , implies 𝑥𝑚 ∈ 𝑄  or 

𝑦𝑛𝑚 ∈ 𝑄 for some integer 𝑛. 

Proposition 2.24 Let 𝑇 be a finitely generated 𝑆 − module. M be a maximal 

ideal of 𝑆, and 𝑄  be a weakly primary submodule of 𝑇 such that √(𝑄 ∶ 𝑇) = M. 

Then 𝑤𝑟𝑎𝑑𝑇(𝑄)  is a weakly prime submodule with (𝑤𝑟𝑎𝑑𝑇(𝑄): 𝑇) = M  and 

𝑤𝑟𝑎𝑑𝑇(𝑄) = 𝑤𝑟𝑎𝑑𝑇(𝑄 +M 𝑇) = 𝑄 +M 𝑇. 

Proof. By Proposition 2.18 (vi), M = √(𝑄 ∶ 𝑇) ⊆ (𝑤𝑟𝑎𝑑𝑇(𝑄): 𝑇) . Since M  is a 

maximal ideal, (𝑤𝑟𝑎𝑑𝑇(𝑄) ∶ 𝑇) = 𝑆 or M. If (𝑤𝑟𝑎𝑑𝑇(𝑄): 𝑇) = 𝑆, then 𝑇 = 𝑆𝑇 ⊆

𝑤𝑟𝑎𝑑𝑇(𝑄) . By Proposition 2.18 (vii),  𝑄 = 𝑇  which is a contradiction. Hence 

(𝑤𝑟𝑎𝑑𝑇(𝑄): 𝑇) = M . Then 𝑤𝑟𝑎𝑑𝑇(𝑄)  is a prime submodule (Lu, 1984). Thus 

𝑤𝑟𝑎𝑑𝑇(𝑄) is a weakly prime submodule. 

Every weakly prime submodule containing 𝑄 +MT also contains 𝑄. Hence 

𝑤𝑟𝑎𝑑𝑇(𝑄) ⊆ 𝑤𝑟𝑎𝑑𝑇(𝑄 +M𝑇). Now assume that 𝑤𝑟𝑎𝑑𝑇(𝑄) = ⋂ 𝑃𝑖𝑖∈ 𝐼  for every 

weakly prime submodule 𝑃𝑖 of 𝑇 containing 𝑄. Then √(𝑄 ∶ 𝑇) ⊆ (𝑤𝑟𝑎𝑑𝑇(𝑄): 𝑇) =

(⋂ 𝑃𝑖: 𝑇) = ⋂ (𝑃𝑖: 𝑇)𝑖∈𝐼 ⊆ (𝑃𝑖: 𝑇)𝑖∈ 𝐼  for every 𝑖 ∈ 𝐼 , by Proposition 2.18. Hence 

M𝑇 ⊆ (𝑃𝑖: 𝑇)𝑇 ⊆ 𝑃𝑖 , so that 𝑄 +M𝑇 ⊆ 𝑄 + 𝑃𝑖 = 𝑃𝑖  for every 𝑖 ∈ 𝐼 . Thus 

𝑤𝑟𝑎𝑑𝑇(𝑄 +M𝑇) ⊆  ⋂ 𝑃𝑖𝑖∈𝐼 = 𝑤𝑟𝑎𝑑𝑇(𝑄) . In order to complete the proof, it is 

enough to show that 𝑤𝑟𝑎𝑑𝑇(𝑄 +M𝑇) = 𝑄 +MT . It is clear that 𝑄 +M𝑇 ⊆

𝑤𝑟𝑎𝑑𝑇(𝑄 +M𝑇) =  𝑤𝑟𝑎𝑑𝑇(𝑄) . Since M𝑇 ⊆ 𝑄 +M𝑇 , we have (M𝑇: 𝑇) ⊆

((𝑄 +M𝑇): 𝑇) ⊆ (𝑤𝑟𝑎𝑑𝑇(𝑄): 𝑇). Thus ((𝑄 +M𝑇): 𝑇) = M, so that 𝑄 +MT is 

a weakly prime submodule of 𝑇. Hence 𝑤𝑟𝑎𝑑𝑇(𝑄) ⊆ 𝑄 +M𝑇 since 𝑄 ⊆ 𝑄 +MT. 

Therefore 𝑤𝑟𝑎𝑑𝑇(𝑄 +  M𝑇) = 𝑄 +M𝑇. □ 
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2.3 The Weakly Prime Radical of an Intersection 

The equality 𝑤𝑟𝑎𝑑𝑇(𝑁⋂𝐿) = 𝑤𝑟𝑎𝑑𝑇(𝑁)⋂𝑤𝑟𝑎𝑑𝑇(𝐿)  is not always true for 

submodules 𝑁 and 𝐿.  If 𝑈 is a vector space, and 𝑊1, 𝑊2 are subspaces of 𝑈, then 

𝑤𝑟𝑎𝑑𝑈(𝑊1⋂𝑊2) = 𝑤𝑟𝑎𝑑𝑈(𝑊1)⋂𝑤𝑟𝑎𝑑𝑈(𝑊2). 

In this section, we will investigate the under which conditions this equality is 

true. 

Lemma 2.25 Let 𝑄  and 𝐿  be submodule of an 𝑆 − module 𝑇 , and 𝐾  be a 

weakly prime submodule of 𝑇 with 𝑄⋂𝐿 ⊆ 𝐾. If  (𝑄 ∶ 𝑇) ⊈ (𝐾 ∶ 𝑇), then 𝐿 ⊆ 𝐾 . 

Proof. Suppose  𝑄 ∩ 𝐿 ⊆ 𝐾 , (𝑄 ∶ 𝑇) ⊈ (𝐾 ∶ 𝑇)  and  𝐿 ⊈ K . Since  𝑄 ∩ 𝐿 ⊆ 𝐾 , 

((𝑄⋂𝐿): 𝑇) ⊆ (𝐾 ∶ 𝑇)  so that (𝑄 ∶ 𝑇)⋂(𝐿 ∶ 𝑇) ⊆ (𝐾 ∶ 𝑇) . Then (𝑄 ∶ 𝑇) ⊆ (𝐾 ∶ 𝑇) 

or (𝐿 ∶ 𝑇) ⊆ (𝐾 ∶ 𝑇). This gives us that (𝑄 ∶ 𝑇) ⊆ (𝐾 ∶ 𝑇) since 𝐿 ⊈ K . This is a 

contradiction. Therefore 𝐿 ⊆ K. □ 

Proposition 2.26 Let 𝑀 be a submodule of an 𝑆 − module 𝑇, 𝐼 be an ideal of 

𝑆. If  𝑄 is a weakly prime submodule of  𝑇 such that 𝐼𝑇 ∩ 𝑀 ⊆ 𝑄, then   𝐼𝑇 ⊆ 𝑄 or 

𝑀 ⊆ 𝑄. 

Proof. Since 𝐼𝑇 ∩ 𝑀 ⊆ 𝑄 , ((𝐼𝑇⋂𝑀): 𝑇) ⊆ (𝑄 ∶ 𝑇). We have (𝐼𝑇 ∶ 𝑇)⋂(𝑀 ∶ 𝑇) ⊆

(𝑄 ∶ 𝑇). Then (𝐼𝑇 ∶ 𝑇) ⊆ (𝑄 ∶ 𝑇) or (𝑀 ∶ 𝑇) ⊆ (𝑄 ∶ 𝑇). If (𝐼𝑇 ∶ 𝑇) ⊆ (𝑄 ∶ 𝑇), then 

𝐼 ⊆ (𝐼𝑇 ∶ 𝑇) ⊆ (𝑄 ∶ 𝑇). This gives that 𝐼𝑇 ⊆ (𝑄 ∶ 𝑇)𝑇 ⊆ 𝑄. If  (𝐼𝑇 ∶ 𝑇) ⊈ (𝑄 ∶ 𝑇), 

then 𝑀 ⊆ 𝑄 by Lemma 2.25. □ 

Proposition 2.27 Let 𝐾 and 𝑀 be submodules of an 𝑆 − module 𝑇 such that 

whenever 𝐾 ∩ 𝑀 ⊆ 𝑊, we have 𝐾 ⊆ 𝑊 or 𝑀 ⊆ 𝑊 for any weakly prime submodule 

𝑊 of 𝑇. Then 𝑤𝑟𝑎𝑑𝑇(𝐾 ⋂𝑀) = 𝑤𝑟𝑎𝑑𝑇(𝐾)⋂𝑤𝑟𝑎𝑑𝑇(𝑀). 

Proof. If 𝑤𝑟𝑎𝑑𝑇(𝐾 ⋂𝑀) = 𝑇 , then 𝑤𝑟𝑎𝑑𝑇(𝐾) = 𝑤𝑟𝑎𝑑𝑇(𝑀) = 𝑇  and 

𝑤𝑟𝑎𝑑𝑇(𝐾 ⋂𝑀) = 𝑤𝑟𝑎𝑑𝑇(𝐾)⋂𝑤𝑟𝑎𝑑𝑇(𝑀). If  𝑤𝑟𝑎𝑑𝑇(𝐾⋂𝑀) ≠ 𝑇, then there exists 

a weakly prime submodule 𝑊 of 𝑇 such that 𝐾⋂𝑀 ⊆ 𝑊. By hypothesis, 𝐾 ⊆ 𝑊 or 

⊆ 𝑊  . So that 𝑤𝑟𝑎𝑑𝑇(𝐾) ⊆ 𝑊  or 𝑤𝑟𝑎𝑑𝑇(𝑀) ⊆ 𝑊 . Since this is true for every 
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weakly prime submodule 𝑇  containing 𝐾 ∩ 𝑀 , 𝑤𝑟𝑎𝑑𝑇(𝐾)⋂𝑤𝑟𝑎𝑑𝑇(𝑀) ⊆

𝑤𝑟𝑎𝑑𝑇(𝐾⋂𝑀). Therefore 𝑤𝑟𝑎𝑑𝑇(𝐾⋂𝑀) = 𝑤𝑟𝑎𝑑𝑇(𝐾)⋂𝑤𝑟𝑎𝑑𝑇(𝑀). □ 

            Proposition 2.28 Let 𝐾  and 𝑀  be submodules of an 𝑆 −module 𝑇  where 

√(𝐾 ∶ 𝑇) +  √(𝑀: 𝑇) = 𝑆. Then 𝑤𝑟𝑎𝑑𝑇(𝐾⋂𝑀) = 𝑤𝑟𝑎𝑑𝑇(𝐾)⋂𝑤𝑟𝑎𝑑𝑇(𝑀). 

Proof. Suppose 𝑊 is a weakly prime submodule containing 𝐾⋂𝑀 with 𝑃 = (𝑊 ∶ 𝑇). 

Then (𝐾 ∶ 𝑇)⋂(𝑀 ∶ 𝑇) ⊆ 𝑃  so that (𝐾 ∶ 𝑇) ⊆ 𝑃  or (𝑀 ∶ 𝑇) ⊆ 𝑃 . If (𝐾 ∶ 𝑇) ⊆ 𝑃 , 

then (𝑀 ∶ 𝑇) ⊈ 𝑃. Hence 𝐾 ⊆ 𝑊 by Lemma 2.25. Therefore 𝐾 ⊆ 𝑊 or 𝑀 ⊆ 𝑊. By 

Proposition 2.27,  𝑤𝑟𝑎𝑑𝑇(𝐾⋂𝑀) = 𝑤𝑟𝑎𝑑𝑇(𝐾)⋂𝑤𝑟𝑎𝑑𝑇(𝑀). □ 
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3. PSEUDO-VALUATION DOMAIN 

McCasland and Moore (1991), generalized the concept of radical of an ideal 

to modules over commutative rings. The definitions of the radical and envelope of a 

submodule are the result of this generalization. McCasland and Smith (2008), gave 

on algorithm for the computation of radical of a submodule over a Noetherian ring. 

There is no known algorithm for the computation of weakly prime radical. 

In this thesis, we tried to find an algorithm for the computation of weakly 

prime radical. At the same time, we tried the find conditions on modules and rings 

which satisfy the weakly radical formula. 

In the first section of this chapter, the information about the envelope of a 

submodule is given. The second section concerns the modules satisfying weakly 

radical formula. 

3.1 The Envelope of a Submodule 

Let 𝑇 be an 𝑆 − module, 𝐴 be an ideal of 𝑆. It is well-known, that the radical 

of 𝐴 is √𝐴 = {𝑠 ∈ 𝑆 ∶ 𝑠𝑛 ∈ 𝐴, 𝑓𝑜𝑟 𝑠𝑜𝑚𝑒 𝑛 ∈ ℤ+}. A similar definition is possible for 

modules which is called the envelope of a submodule. 

Definition 3.1 Let 𝑇  be an 𝑆 −  module and 𝑄  be a submodule of 𝑇 . The 

envelope of 𝑄 in 𝑇, 𝐸𝑇(𝑄), is defined as the set  

{𝑠𝑛 ∶ 𝑠 ∈ 𝑆, 𝑛 ∈ 𝑇 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 𝑠𝑘𝑛 ∈ 𝑄 𝑓𝑜𝑟 𝑠𝑜𝑚𝑒 𝑘 ∈ ℤ+}. 

In general, 𝐸𝑇(𝑄) is not a submodule. For example, if we take 𝑇 = ℤ ⊕ ℤ, 

𝑄 = (3,0)ℤ  and 𝑆 = ℤ , then (10,0) = 2(5,0) ∈ 𝐸𝑇(𝑄)  since 25(5,0) = (150,0) =

50(3,0) ∈ 𝑄 . Also it is clear that (3,0) ∈ 𝐸𝑇(𝑄) . But (10,0) − (3,0) = (7,0) ∉

𝐸𝑇(𝑄) since there does not exist any 𝑘 ∈ ℤ+ such that 7𝑘(1,0) ∈ (3,0)ℤ. So we are 

considering the submodule generated by envelope, 〈𝐸𝑇(𝑄)〉. 
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 It is clear that 〈𝐸𝑇(𝑄)〉 is always contained in 𝑟𝑎𝑑𝑇(𝑄) for any submodule 

𝑄. 

          Theorem 3.2 (Yılmaz and Cansu, 2014, Theorem 2.5) Let 𝑀 be a submodule 

of module 𝑇  over  𝑆 , where 𝑀 =  𝑄1 ∩ 𝑄2 ∩ … ∩ 𝑄𝑙  is a minimal primary 

decomposition of 𝑀 such that  √(𝑄𝑖 ∶ 𝑇) =  𝑝𝑖 for all 𝑖 = 1,2, … , 𝑙. If 𝐴 = {1,2, … , 𝑙} 

and ∅ ≠ 𝑇 ⊊ 𝐴, then   

〈𝐸𝑇(𝑀)〉 = 𝑀 + (⋂ 𝑝𝑖

𝑙

𝑖=1

) 𝑇 + ∑ ( ⋂ 𝑝𝑖

𝑖∈𝑇

) ( ⋂ 𝑄𝑖

𝑖∈𝐴−𝑇

) 

∅ ≠𝑇⊊𝐴

 

           Corollary 3.3 (Yılmaz and Cansu, (2014), Lemma 3.1) If 𝑄 is a weakly prime 

submodule of an 𝑆 −module 𝑇, then 〈𝐸𝑇(𝑄)〉 = 𝑄. 

3.2 Pseudo-valuation Domain 

Main results obtained in the thesis are given in this section. First we will give 

some necessary definitions and then we will give the results we have found. 

Definition 3.4 An integral domain 𝑆 is valuation domain if all its ideals form 

a chain under inclusion. 

Definition 3.5 An integral domain 𝑆 is divided domain if for every prime 

ideal 𝑃 of 𝑆,  either 𝑃 ⊆ 〈𝑥〉 or 〈𝑥〉 ⊆ 𝑃 for all 𝑥 ∈ 𝑆. 

Definition 3.6 Let 𝑆 be an integral domain and 𝐾 be the set of all non-zero 

elements in 𝑆. Then the ring of quotients of 𝑆 by 𝐾, 𝐾−1𝑆, will be a field and it is 

called as the quotient field of an integral domain 𝑆.  

Proposition 3.7 (Larsen and McCarthy, 1971) For an integral domain 𝑆, the 

following statements are equivalent. 

(i) 𝑆 is a valuation domain. 

(ii) If  𝑎, 𝑏 ∈ 𝑆, then either 〈𝑎〉 ⊆ 〈𝑏〉 or 〈𝑏〉 ⊆ 〈𝑎〉. 

(iii) If 𝑥 belongs to the quotient field 𝐷 of 𝑆, then either 𝑥 ∈ 𝐷 or 𝑥−1 ∈ 𝐷 
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Definition 3.8 Let 𝑆 be an integral domain with quotient field 𝐷. A prime 

ideal 𝑄 of 𝑆 is strongly prime if 𝑢, 𝑣 ∈ 𝐷 and 𝑢𝑣 ∈ 𝑄 implies 𝑢 ∈ 𝑄 or 𝑣 ∈ 𝑄. 

Definition 3.9 An integral domain 𝑆 is called a pseudo-valuation domain 

(PVD) if every prime ideal of 𝑆 is strongly prime. 

Proposition 3.10 Every valuation domain is a PVD. 

Proof. Let 𝐷 be a valuation domain and 𝑈 be the quotient field of 𝐷. Let 𝑄 be a 

prime ideal of 𝐷. Assume 𝑎𝑏 ∈ 𝑄 where 𝑎, 𝑏 ∈  𝑈. If both 𝑎 and 𝑏 are in 𝐷, it is 

done. If 𝑎 ∉ 𝐷, then 𝑎−1 ∈ 𝐷. Thus 𝑏 = 𝑎𝑏𝑎−1 ∈ 𝑄, as desired. □ 

            Theorem 3.11 (Badawi, 1995, Theorem 1) If 𝑆 is a commutative ring with 

identity,  then the following statements are equivalent. 

a) The prime ideals of 𝑆 are linearly ordered. 

b) The radical ideals of 𝑆 are linearly ordered. 

c)  Each proper radical ideal of 𝑆 is prime. 

d)  The radicals of principal ideals of 𝑆 are linearly ordered. 

e) For each 𝑥, 𝑦 ∈ 𝑆, there is an 𝑛 ≥ 1 such that either 𝑥|𝑦𝑛 or y|𝑥𝑛. 

Proposition 3.12 If 𝑆 is a divided domain, then prime ideals of 𝑆 are totally 

ordered. 

Proof. Let 𝑃, 𝑄 be two prime ideals of 𝑆 and 𝑃 ⊈ 𝑄. Then 〈𝑥〉 ⊆ 𝑃 or 𝑃 ⊆ 〈𝑥〉 for all 

𝑥 ∈ 𝑄. Since 𝑃 ⊈ 𝑄, 〈𝑥〉 ⊆ 𝑃, which means that 𝑥 ∈ 𝑃 for all 𝑥 ∈ 𝑄. Thus 𝑄 ⊆ 𝑃. □ 

By using the following proposition, we can give the characterization of 

divided domains. 

Proposition 3.13 (Badawi, 1995, Proposition 2) If 𝑆 is an integral domain, 

then the following statements are equivalent. 

a) 𝑆 is a divided domain. 

b) The ideals 𝐼 and √𝐽 are comparable for every pair of proper ideals 𝐼 

and 𝐽 of 𝑆.  
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c)  The ideals 〈𝑥〉 and √〈𝑦〉 are comparable, for every 𝑥, 𝑦 ∈ 𝑆.  

d)  For every 𝑥, 𝑦 ∈ 𝑆, either 𝑥|𝑦 or 𝑦|𝑥𝑘 for some 𝑘 ≥ 1. 

If 𝑆 is a PVD, Badawi (1995) showed that for any non-unit elements 𝑥, 𝑦 of 

𝑆, either 𝑥|𝑦 or 𝑦|𝑥2. In the same paper, he gave the following characterization of 

PVDs. 

Proposition 3.14 (Badawi, 1995, Proposition 3) Let 𝑆 be an integral domain 

and 𝐾 be the set of all non-unit elements of 𝑆. Then the followings are equivalent. 

a) 𝑆 is a PVD with the maximal ideal 𝐾, 

b) For every proper ideal 𝐴 of 𝑆,  either 𝐽 ⊂ 𝐼 or 𝐼𝐴 ⊂ 𝐽 for each pair 𝐼 

and 𝐽 of ideals of 𝑆. 

c) For every 𝑝, 𝑞 ∈ 𝑆 , either 𝑞𝑆 ⊂ 𝑝𝑆  or 𝑝𝑧𝑆 ⊂ 𝑞𝑆  for every non-unit 

𝑧 ∈ 𝑆. 

d)  For every 𝑝, 𝑞 ∈ 𝑆, either 𝑝|𝑞 or 𝑞|𝑝𝑧 for every non-unit 𝑧 ∈ 𝑆. 

e)  For every 𝑝, 𝑞 ∈ 𝑆, either 𝑞𝑆 ⊂ 𝑝𝑆 or 𝑝𝐾 ⊂ 𝑞𝑆. 

f) For every 𝑝, 𝑞 ∈ 𝑆, either 𝑞𝐾 ⊂ 𝑝𝑆 or 𝑝𝑆 ⊂ 𝑞𝐾. 

Definition 3.15 Let 𝑇 be an 𝑆 − module. A submodule 𝑄 of 𝑇 with 𝑄 ≠ 𝑇, is 

weakly quasi-primary if 𝑎𝑏𝑚 ∈ 𝑄 , then either 𝑎𝑘𝑚 ∈ 𝑄  or 𝑏𝑘𝑚 ∈ 𝑄  for some 

𝑘 ∈ ℕ where 𝑎, 𝑏 ∈ 𝑆, 𝑚 ∈ 𝑇. 

If 𝑄 is a weakly quasi-primary submodule, then by the definition √(𝑄: 𝑇) is a 

prime ideal.  

We know that the envelope of every weakly prime submodule equals itself. In 

the following lemma, we proved that every weakly quasi- primary submodule is 

weakly prime iff 〈𝐸𝑇(𝑄)〉 = 𝑄. 

Lemma 3.16 Let 𝑇 be an 𝑆 − module, 𝑄 be a proper submodule of 𝑇. 

(i) Suppose that 𝑄 is a weakly primary submodule. Then 𝑄 is weakly prime 

iff  〈𝐸𝑇(𝑄)〉 = 𝑄. 
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(ii) Suppose that 𝑄 is a weakly quasi-primary submodule. Then 𝑄 is weakly 

prime if and only if 〈𝐸𝑇(𝑄)〉  = 𝑄. 

Proof. If 𝑄 is weakly prime, then 〈𝐸𝑇(𝑄)〉  = 𝑄, so we have to show only one side of 

the assertion. Hence suppose that 〈𝐸𝑇(𝑄)〉  = 𝑄. 

(i) Let 𝑥𝑦𝑚 ∈ 𝑄 where 𝑥, 𝑦 ∈ 𝑆, 𝑚 ∈ 𝑇. If 𝑥𝑚 ∉ 𝑄 then 𝑦𝑘𝑚 ∈ 𝑄 for 𝑘 ≥ 1 since 𝑄 

is weakly primary. Then 𝑦𝑚 ∈ 𝑄 since 〈𝐸𝑇(𝑄)〉  = 𝑄. Therefore 𝑄 is a weakly prime 

submodule of 𝑇. 

(ii) Let 𝑥𝑦𝑚 ∈ 𝑄 where 𝑥, 𝑦 ∈ 𝑆, 𝑚 ∈ 𝑇. Assume that 𝑥𝑚 ∉ 𝑄. Then 𝑥𝑘𝑚 ∉ 𝑄 for 

any 𝑘. Otherwise 〈𝐸𝑇(𝑄)〉  = 𝑄 implies that 𝑥𝑚 ∈ 𝑄. Therefore 𝑦𝑘𝑚 ∈ 𝑄 for some 

𝑘 ≥ 1. Then 𝑦𝑚 ∈ 𝑄 since 〈𝐸𝑇(𝑄)〉  = 𝑄. Thus 𝑄 is a weakly prime submodule of 

𝑇. 

           Theorem 3.17 Let 𝑆 be a commutative ring with identity whose prime ideals 

are totally ordered and 𝑇 be an 𝑆 − module. Then each proper submodule 𝑄 of 𝑇 is 

weakly quasi-primary. Furthermore, every proper submodule 𝑄  of  𝑇  is weakly 

prime if and only if 𝑄 = 〈𝐸𝑇(𝑄)〉.  

Proof. Let 𝑥, 𝑦 ∈ 𝑆 and 𝑚 ∈ 𝑇\𝑄, so (𝑄 ∶  𝑚) is a proper ideal of 𝑆. We suppose that 

𝑥𝑦𝑚 ∈ 𝑄. Therefore 𝑥𝑦 ∈ (𝑄 ∶ 𝑚) ⊆ √(𝑄 ∶ 𝑚). Since √(𝑄 ∶ 𝑚) is a proper radical 

ideal of 𝑆, √(𝑄 ∶ 𝑚) is a prime ideal. So either 𝑥 ∈ √(𝑄 ∶ 𝑚) or 𝑦 ∈ √(𝑄 ∶ 𝑚). This 

implies either 𝑥𝑡𝑚 ∈ 𝑄 or 𝑦𝑡𝑚 ∈ 𝑄 for some positive integer 𝑡. Since every proper 

submodule of 𝑇 is weakly quasi-primary by above theorem, the proof is clear by 

Lemma 3.16. □ 

                Chin-Pi Lu (1990) prove that if 𝑇 is finitely generated 𝑆 −module, M is 

maximal ideal of 𝑆 and 𝑄 is primary submodule of 𝑇 with √(𝑄 ∶ 𝑇) = M, then 

𝑟𝑎𝑑𝑇(𝑄) = 𝑟𝑎𝑑𝑇(𝑄 +M𝑇) = 𝑄 +M𝑇. In the following lemma we showed that 

𝑤𝑟𝑎𝑑𝑇(𝑁) =  𝑤𝑟𝑎𝑑𝑇(𝑁 + 𝑝𝑇) for every submodule 𝑁 of a module 𝑇, if  𝑆 is a ring 

with totally ordered prime ideals and √(𝑁 ∶ 𝑇) = 𝑝 is a prime ideal. 
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            Lemma 3.18 Let 𝑆 be a ring with totally ordered prime ideals. Then 

𝑤𝑟𝑎𝑑𝑇(𝑁) = 𝑤𝑟𝑎𝑑𝑇(𝑁 + 𝑝𝑇) for every submodule 𝑁 of an 𝑆 −module 𝑇 where 

𝑝 = √(𝑁 ∶ 𝑇) is a prime ideal. 

Proof. 𝑤𝑟𝑎𝑑𝑇(𝑁) ⊆ 𝑤𝑟𝑎𝑑𝑇(𝑁 + 𝑝𝑇) is clear. We say, 𝑤𝑟𝑎𝑑𝑇(𝑁) =  ⋂ 𝑊𝑖𝑖∈𝐼  where 

𝑊𝑖 is weakly prime submodule containing 𝑁 with 𝑞𝑖 = (𝑊𝑖 ∶ 𝑇). Therefore (𝑁 ∶

𝑇) ⊆ (𝑊𝑖 ∶ 𝑇) implies that 𝑝 ⊆ 𝑞𝑖 . So that 𝑝𝑇 ⊆  𝑞𝑖𝑇. Hence 𝑁 + 𝑝𝑇 ⊆ 𝑊𝑖 + 𝑝 𝑇 ⊆

𝑊𝑖 + 𝑞𝑖𝑇 = 𝑊𝑖 for every 𝑖. Hence 𝑤𝑟𝑎𝑑𝑇(𝑁 + 𝑝𝑇) ⊆ 𝑤𝑟𝑎𝑑𝑇(𝑁) and thus  

𝑤𝑟𝑎𝑑𝑇(𝑁 + 𝑝𝑇) = 𝑤𝑟𝑎𝑑𝑇(𝑁). □ 

            Lemma 3.19 Let 𝑆 be a ring with totally ordered prime ideals, 𝑇 be an 𝑆 − 

module and  p be a maximal ideal of 𝑆. If  (𝑁 ∶ 𝑇) =  p, then 𝑤𝑟𝑎𝑑𝑇(𝑁) = 𝑁 +  p𝑇 

for any submodule 𝑁 of 𝑇. 

Proof.  𝑁 +  p𝑇 ⊆ 𝑤𝑟𝑎𝑑𝑇(𝑁 + p𝑇) = 𝑤𝑟𝑎𝑑𝑇(𝑁) , by above lemma. Therefore 

p𝑇 ⊆ 𝑁 + p𝑇  implies that p ⊆ ((𝑁 + p𝑇) ∶ 𝑇) ⊆ (𝑤𝑟𝑎𝑑𝑇(𝑁) ∶ 𝑇) . Since 

𝑤𝑟𝑎𝑑𝑇(𝑁)  is a weakly prime submodule, (𝑤𝑟𝑎𝑑𝑇(𝑁) ∶ 𝑇)  is a prime ideal. So 

(𝑤𝑟𝑎𝑑𝑇(𝑁) ∶ 𝑇) =  p  and hence ((𝑁 + p𝑇) ∶ 𝑇) =  p . Then 𝑁 + p𝑇  is a prime 

submodule; thus a weakly prime submodule of 𝑇 containing 𝑁. So that 𝑤𝑟𝑎𝑑𝑇(𝑁) ⊆

𝑁 + pT. Therefore 𝑤𝑟𝑎𝑑𝑇(𝑁) = 𝑁 + p𝑇. □ 

           Azizi (2009) gave the definition of 𝑘𝑡ℎ envelope of a submodule and union of 

envelopes. 

Definition 3.20 For a submodule 𝑄 of 𝑇, define 𝐸0(𝑄) = 𝑄, 𝐸1(𝑄) = 𝐸𝑇(𝑄), 

𝐸2(𝑄) = 𝐸𝑇(〈𝐸1(𝑄)〉), and for any  𝑘 ∈ ℤ+, 𝐸𝑘+1(𝑄) = 𝐸𝑇(〈𝐸𝑘(𝑄)〉).  

For any submodule 𝑄 of the module 𝑇, 

UET(Q) = ⋃  〈Ek(Q)〉k∈ℕ ; 

is called the union of envelopes of 𝑄. It is clear that  

𝑄 ⊆  〈𝐸𝑘(𝑄)〉  ⊆  𝑈𝐸𝑇(𝑄) ⊆  𝑤𝑟𝑎𝑑𝑇(𝑄) ⊆  𝑟𝑎𝑑𝑇(𝑄), for any k ∈ ℕ (Azizi, 2009). 
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            Definition 3.21 Let 𝑇 be an 𝑆 −module. If  𝑈𝐸𝑇(𝑄) = 𝑤𝑟𝑎𝑑𝑇(𝑄), for every 

submodule 𝑄 of 𝑇, it is said that weakly radical formula holds for 𝑇. If the weakly 

radical formula holds for every 𝑆 −module, then weakly radical formula holds for a 

ring 𝑆.  

Definition 3.22 Let 𝑧 ∈ ℤ+. If  〈𝐸𝑧(𝑁)〉 =  𝑤𝑟𝑎𝑑𝑇(𝑁) for every submodule 𝑁 

of  𝑇, then we will say 𝑇 satisfies the weakly radical formula (s.t.w.r.f.) of degree 𝒛. 

If every 𝑆 − module s.t.w.r.f. of degree 𝑧, then 𝑆 is called s.t.w.r.f. of degree 𝑧. 

In any module, intersection of weakly prime submodules is not weakly prime. 

In the following theorem we gave some conditions, to guarantee that this intersection 

is weakly prime. 

Definition 3.23 Let 𝑆  be a ring and 𝑇  be an 𝑆 −  module. An increasing 

sequence 𝑄1 ⊆ 𝑄2 ⊆ 𝑄3 ⊆ ⋯ of submodules of 𝑇is called as an ascending chain. If 

every ascending chain of submodules of 𝑇  is finite, it is said that 𝑇  satisfies 

ascending chain condition (ACC). 

Theorem 3.24 Let 𝑆 be a valuation domain. If 𝑇 is an 𝑆 − module satisfying 

ACC, then 𝑤𝑟𝑎𝑑𝑇(𝑀) is weakly prime for any submodule 𝑀 of 𝑇. 

Proof. Let 𝑀 be a submodule of  𝑇. Since 𝑇 satisfies ACC, 𝑀 will be written as an 

intersection of finite number of primary submodules. In particular 𝑀 has a minimal 

primary decomposition where 𝑀 = 𝑄1 ∩ 𝑄2 ∩ … ∩ 𝑄𝑠  and each 𝑄𝑠  is 𝑃𝑠 − primary. 

Since 𝑆 is a valuation ring, prime ideals form a chain. So we may assume, after 

renumbering of 𝑄𝑠 ’s if necessary 𝑃1 ⊆ 𝑃2 ⊆ ⋯ ⊆ 𝑃𝑠 . Yılmaz and Cansu (2014, 

Theorem 3.4), implies that if 〈𝐸𝑇(𝑀)〉  = 𝑀, then 𝑀 is a weakly prime submodule. 

So  𝑀 = 𝑤𝑟𝑎𝑑𝑇(𝑀) . If 〈𝐸𝑇(𝑀)〉  ≠ 𝑀 , we can apply the same argument to 

〈𝐸𝑇(𝑀)〉. Hence we obtain a chain of submodules 𝑀 ⊆ 〈𝐸𝑇(𝑀)〉 ⊆ 〈𝐸2(𝑀)〉 ⊆ ⋯ 

where 𝐸𝑘(𝑀) =< 𝐸𝑘−1(𝑀) >  for 𝑘 = 2,3, …  and 𝐸1(𝑀) = 〈𝐸𝑇(𝑀)〉 . Since 𝑇 

satisfies ACC, this chain must be terminates, that is there exists a positive integer 𝑘 

such that 〈𝐸𝑘(𝑀)〉  =  〈𝐸𝑙(𝑀)〉  for 𝑙 ≥ 𝑘 . Hence 〈𝐸𝑘(𝑀)〉  is a weakly prime 

submodule and furthermore 〈𝐸𝑘(𝑀)〉 =  𝑤𝑟𝑎𝑑𝑇(𝑀). □ 
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Also we can show that if 𝑆 is a commutative ring with identity whose prime 

ideals are totally ordered, then 𝑤𝑟𝑎𝑑𝑇(𝑄) is weakly prime for any submodule 𝑄 of  

𝑇. 

Theorem 3.25 Let 𝑆 be a commutative ring with identity whose prime ideals 

are totally ordered. Let 𝑇 be an 𝑆 − module. 

a) If 𝑄 =  ⋂ 𝑃𝑖𝑖∈𝐼  where 𝑃𝑖’s are weakly prime submodules of  𝑇, then 𝑄 

is also a weakly prime submodule. 

b) For any submodule 𝐿 of  𝑇, 𝑤𝑟𝑎𝑑𝑇(𝐿) is a weakly prime submodule. 

Proof. (a) By Theorem 3.17,  𝑄 is weakly quasi-primary submodule. Let 𝑥𝑦𝑚 ∈ 𝑄 

where 𝑥, 𝑦 ∈ 𝑆, 𝑚 ∈ 𝑇, then either 𝑥𝑘𝑚 ∈ 𝑄 or 𝑦𝑘𝑚 ∈ 𝑄 for some positive integer 

𝑘. Hence either 𝑥𝑘𝑚 ∈ 𝑃𝑖 or 𝑦𝑘𝑚 ∈ 𝑃𝑖 for every 𝑖 ∈ 𝐼. Since each 𝑃𝑖 is weakly prime 

submodule, either 𝑥𝑚 ∈ 𝑃𝑖 or 𝑦𝑚 ∈ 𝑃𝑖 for every 𝑖 ∈ 𝐼. This implies either 𝑥𝑚 ∈ 𝑄 or 

𝑦𝑚 ∈ 𝑄. Thus 𝑄 is a weakly prime submodule. 

(b) It is clear by (a). 

Theorem 3.26 Let 𝑆 be a commutative ring with identity whose prime ideals 

are totally ordered. If an 𝑆 − module 𝑇 satisfies ACC, then 𝑇 satisfies weakly radical 

formula of degree 𝑘 for some positive integer 𝑘. 

Proof. Let 𝐿 be a submodule of 𝑇. We can obtain the following chain of submodules 

⊆ 〈𝐸1(𝐿)〉  ⊆  〈𝐸2(𝐿)〉  ⊆ ⋯ . Notice that each submodule on the chain is weakly 

quasi-primary. Since 𝑇 satisfies ACC, this chain terminates. Hence there exists an 

integer 𝑙 such that 〈𝐸𝑙(𝐿)〉  =  〈𝐸𝑙+1(𝐿)〉  = ⋯ . This implies that 〈𝐸𝑙(𝐿)〉 is weakly 

prime submodule of 𝑇 . So 𝑤𝑟𝑎𝑑𝑇(𝐿) ⊆  〈𝐸𝑙(𝐿)〉 . On the other hand 〈𝐸𝑙(𝐿)〉  ⊆

 𝑤𝑟𝑎𝑑𝑇(𝐿) is always true. Thus 〈𝐸𝑙(𝐿)〉  =  𝑤𝑟𝑎𝑑𝑇(𝐿). □ 

        Yılmaz and Cansu (2014) showed that if 𝑁 = 𝑄1 ∩ 𝑄2 ∩ … ∩ 𝑄𝑠 is the reduced 

primary decomposition of 𝑁 with chain of prime ideals  

𝑝1 = √𝑄1: 𝑇 ⊆ 𝑝2 = √𝑄2: 𝑇 ⊆ ⋯ ⋯ ⊆ 𝑝𝑠 = √𝑄𝑠: 𝑇, 

then 



23 

 

〈𝐸𝑇(𝑁)〉  = 𝑁 + 𝑝1𝑇 + ∑ 𝑝𝑖(⋂ 𝑄𝑗
𝑖−1
𝑗=1 )𝑠

𝑖=2 . 

Theorem 3.26 implies that if 𝑆 is a commutative ring with identity whose prime 

ideals are totally ordered and 𝑇 satisfies ACC, then for any submodule 𝑁 of 𝑇 

〈𝐸𝑘(𝑁)〉 = 𝑤𝑟𝑎𝑑𝑇(𝑁) 

for some positive integer 𝑘 . We think that we can find a method for computing 

𝑤𝑟𝑎𝑑𝑇(𝑁)  by applying the envelope formula of Yılmaz and Cansu for the 

submodules 𝑁, 〈𝐸1(𝑁)〉 , 〈𝐸2(𝑁)〉 , … , 〈𝐸𝑘(𝑁)〉 for some positive integer 𝑘. 

Also, we can give the following theorem. 

                Theorem 3.27 Let 𝑆  be a commutative ring with identity whose prime 

ideals are totally ordered. Then weakly radical formula holds for 𝑆. 

Proof. Let 𝑁 be a submodule of an 𝑆 − module 𝑇. It suffices to show that ⋃ 𝐸𝑖(𝑁)𝑖∈𝐼  

is a weakly prime submodule of 𝑇 . Let 𝑎𝑏𝑥 ∈ ⋃ 𝐸𝑖(𝑁)𝑖∈𝐼  for some 𝑎, 𝑏 ∈ 𝑆  and 

𝑥 ∈ 𝑇. Then either  𝑎𝑛 = 𝑏𝑡 or 𝑏𝑛 = 𝑎𝑠 for some 𝑠, 𝑡 ∈ 𝑆. We may assume 𝑎𝑛 = 𝑏𝑡. 

It is clear that (𝑎𝑏)𝑛𝑥 =  𝑏𝑛+1𝑡𝑥 ∈ ⋃ 𝐸𝑖(𝑁)𝑖∈𝐼 . Therefore 𝑏𝑛+1𝑡𝑥 ∈ 〈𝐸𝑘(𝑁)〉  for 

some 𝑘 ∈ ℕ . This implies that 𝑏𝑡𝑥 ∈  〈𝐸𝑇〈𝐸𝑘(𝑁)〉〉  =  〈𝐸𝑘+1(𝑁)〉 . Therefore 

𝑎𝑛𝑥 = 𝑏𝑡𝑥 ∈  〈𝐸𝑘+1(𝑁)〉 implies that 𝑎𝑥 ∈  〈𝐸𝑘+2(𝑁)〉 ⊆  ⋃ 𝐸𝑖(𝑁)𝑖∈𝐼 . □ 

Lemma 3.28 Let 𝑆 be a divided domain, 𝑁 be a submodule of an 𝑆 − module  

𝑇. If 𝑠𝑛𝑥 ∈ 〈𝐸𝑇(𝑁)〉, then 𝑠𝑥 ∈ 〈𝐸𝑇(𝑁)〉 for some 𝑠 ∈ 𝑆 and 𝑥 ∈ 𝑁. 

Proof. Suppose that 𝑠𝑛𝑥 ∈ 〈𝐸𝑇(𝑁)〉 and 𝑠𝑥 ∉  〈𝐸𝑇(𝑁)〉. Then 𝑠𝑛𝑥 =  𝑎1𝑚1 + ⋯ +

𝑎𝑘𝑚𝑘 , 𝑎𝑖 ∈ 𝑆, 𝑚𝑖 ∈ 𝑇, 1 ≤ 𝑖 ≤ 𝑘 such that 𝑎𝑖
𝑡𝑖𝑚𝑖 ∈ 𝑁 . Let 𝑡 = max {𝑡1, 𝑡2, … , 𝑡𝑘}, 

then 𝑎𝑖
𝑡𝑚𝑖 ∈ 𝑁. Since 𝑆 is a divided domain, 𝑎𝑖|𝑎1

𝑑 , that is, 𝑎1
𝑑 = 𝑎𝑖𝑢𝑖  for some 

𝑢𝑖 ∈ 𝑆. Thus 𝑎1
𝑡𝑑𝑚𝑖 = (𝑎𝑖𝑢𝑖)𝑡𝑚𝑖 = 𝑎𝑖

𝑡𝑢𝑖
𝑡𝑚𝑖 ∈ 𝑁 . Since  𝑆  is a divided domain, 

𝑠𝑛|𝑎1  or 𝑎1|(𝑠𝑛)𝑙 . If 𝑎1|𝑠𝑛𝑙 , then 𝑠𝑛𝑙 = 𝑎1𝑢  for some 𝑢 ∈ 𝑆 . So 𝑠𝑛(𝑑𝑡𝑙+1)𝑥 =

(𝑠𝑛𝑙)𝑡𝑑𝑠𝑛𝑥 = 𝑎1
𝑡𝑑𝑢𝑡𝑑(∑ 𝑎𝑖𝑚𝑖) ∈ 𝑁 , implies that 𝑠𝑥 ∈ 〈𝐸𝑇(𝑁)〉 , which is a 

contradiction. Hence, 𝑠𝑛|𝑎1, which means that 𝑎1 = 𝑠𝑛𝑙1 for some 𝑙1 ∈ 𝑆. Therefore 

𝑠𝑛(𝑥 − 𝑙1𝑚1) =  ∑ 𝑎𝑖𝑚𝑖
𝑘
𝑖=2  and (𝑠𝑙1)𝑛𝑡𝑑𝑚1 = (𝑠𝑛𝑙1

𝑛)𝑡𝑑𝑚1 , (𝑠𝑛𝑙1
𝑛)𝑡𝑑𝑚1 =

 (𝑠𝑛)𝑡𝑑𝑙1
𝑡𝑑𝑙1

𝑡𝑑(𝑛−1)𝑚1 ∈ 𝑁 implies that 𝑠𝑙1𝑚1 ∈ 〈𝐸𝑇(𝑁)〉. If we say 𝑦 = 𝑥 − 𝑙1𝑚1, 
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then 𝑠𝑦 = 𝑠𝑥 − 𝑠𝑙1𝑚1. Since 𝑠𝑥 ∉  〈𝐸𝑇(𝑁)〉, 𝑠𝑦 ∉  〈𝐸𝑇(𝑁)〉. Now we can apply the 

same argument to 𝑠𝑛𝑦 . After 𝑘  steps, we get 𝑠𝑥 = ∑ 𝑠𝑙𝑖𝑚𝑖
𝑘
𝑖=1 , where 𝑠𝑙𝑖𝑚𝑖 ∈

〈𝐸𝑇(𝑁)〉 . So 𝑠𝑥 ∈ 〈𝐸𝑇(𝑁)〉. □ 

Theorem 3.29 Divided domains satisfy the weakly radical formula. 

Proof. Let 𝑆 be a divided domain, 𝑇 be  an 𝑆 − module and 𝑄 be a submodule of 𝑇. 

Suppose that 𝑥𝑦𝑚 ∈ 〈𝐸𝑇(𝑄)〉  for some 𝑥, 𝑦 ∈ 𝑆  and 𝑚 ∈ 𝑇 . Since 𝑆  is a divided 

domain, either 𝑥|𝑦 or 𝑦|𝑥𝑛  for some 𝑛 ∈ ℤ+. If 𝑎|𝑏, then 𝑏 = 𝑎𝑢 for some 𝑢 ∈ 𝑆 . 

Then 𝑏2𝑚 = 𝑢𝑎𝑏𝑚 ∈ 〈𝐸𝑇(𝑁)〉 . By Lemma 3.28, 𝑏𝑚 ∈ 〈𝐸𝑇(𝑁)〉 . If 𝑎𝑛 = 𝑢𝑏  for 

some 𝑢 ∈ 𝑆 , then 𝑎𝑛+1𝑚 = 𝑢𝑏𝑎𝑚 ∈ 〈𝐸𝑇(𝑁)〉 and 𝑎𝑚 ∈ 〈𝐸𝑇(𝑁)〉 by Lemma 3.28. 

Hence 〈𝐸𝑇(𝑁)〉 is weakly prime. Thus  𝑤𝑟𝑎𝑑𝑇(𝑁) = 〈𝐸𝑇(𝑁)〉. □ 
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4.  CONCLUSIONS AND RECOMMENDATIONS 

            In this thesis, we show that for any weakly prime submodule of an 𝑆 − 

module 𝑇 and for any ideal 𝐼, (𝑊 ∶ 𝐼) is a weakly prime submodule of  𝑇. Also we 

prove that weakly prime radical of any submodule of a finitely generated module is 

just the intersection of its minimal weakly prime submodules. In the second section 

of the second chapter of the thesis, we state some properties of weakly prime radical. 

Also, we tried to find some equalities about the weakly prime radical of the 

intersection of two submodules. 

             We show that weakly quasi-primary submodule 𝑄 is weakly prime if and 

only if 〈𝐸𝑇(𝑄)〉 = 𝑄. If 𝑆 is a ring with identity where its prime ideals are totally 

ordered, then it is shown that every proper submodule 𝑄 of a module 𝑇 is weakly 

quasi-primary. The intersection of weakly prime submodules is not weakly prime in 

general, we prove that if 𝑆 is a valuation domain and 𝑇 is an 𝑆 − module satisfying 

ACC, then 𝑤𝑟𝑎𝑑𝑇(𝑀) is weakly prime for any submodule 𝑀 of 𝑇. 

In the second section of third chapter, we deal with the commutative ring 𝑆 

with identity whose prime ideals are totally ordered. We prove that for any 

submodule 𝐿  of an 𝑆 −  module 𝑇 , 𝑤𝑟𝑎𝑑𝑇(𝐿)  is weakly prime and 𝑤𝑟𝑎𝑑𝑇(𝐿) =

𝑤𝑟𝑎𝑑𝑇(𝐿 + 𝑝𝑇) if 𝑝 = √(𝐿 ∶ 𝑇) is a prime ideal. We show that 𝑤𝑟𝑎𝑑𝑇(𝐿) = 𝐿 +

𝑝𝑇 for any submodule 𝐿 of 𝑇 if 𝑝 = (𝑁 ∶ 𝑇) is a maximal ideal. 

Theorem 3.27 showed that weakly radical formula holds for 𝑆 . The main 

result of the thesis gives that if 𝑇 is an 𝑆 − module where 𝑆 is divided domain, then 

𝑇 satisfies the weakly radical formula. A commutative ring 𝑆 is called treed ring if 

𝑆𝑝𝑒𝑐(𝑆) as a poset under inclusion is a tree, that is, no maximal ideal of 𝑆 contains 

incomparable prime ideals. Since every divided domain is a treed ring, the question 

that we want to answer is that; does every module 𝑇 over a treed ring satisfy the 

weakly radical formula. 

Another related question for our future study is to find a method for 

computing the weakly prime radical of a submodule. 
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