# BOLU ABANT IZZET BAYSAL UNIVERSITY THE GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES DEPARTMENT OF CHEMISTRY



# COMPUTATIONAL INVESTIGATION OF ELECTRONIC AND OPTICAL PROPERTIES OF METAL NANO-CLUSTERS SUPPORTED ON N-DOPED BILAYER GRAPHENE STRUCTURES

## **DOCTOR OF PHILOSOPHY**

ÖZLEM ÜNLÜ

**BOLU, MARCH 2019** 

### **APPROVAL OF THE THESIS**

Computational Investigation of Electronic and Optical Properties of Metal Nano-Clusters Supported on N-Doped Bilayer Graphene Structures submitted by Özlem ÜNLÜ and defended before the below named jury in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Department of Chemistry, The Graduate School of Natural and Applied Sciences of Bolu Abant Izzet Baysal University in 29.03.2019 by

Examining Committee Members

Signature

Supervisor Prof. Dr. lzzet MORKAN Bolu Abant lzzet Baysal University

Member Assoc. Prof. Dr. Bahadır ALTINTAŞ Bolu Abant İzzet Baysal University

Member Assoc. Prof. Dr. Mecit AKSU Düzce University

Member Assist. Prof. Dr. Erhan BUDAK Bolu Abant İzzet Baysal University

Member Assist. Prof. Dr. Aliye KAHYAOĞLU Düzce University

Prof. Dr. Ömer ÖZYURT

Director of Graduate School of Natural and Applied Sciences

To my son, Attila Ozan

### DECLARATION

I hereby declare that all information in this document has been obtained and presented in accordance with academic rules and ethical conduct. I also declare that, as required by these rules and conduct, I have fully cited and referenced all material and results that are not original to this work.

Özlem ÜNLÜ

flem.

#### ABSTRACT

### COMPUTATIONAL INVESTIGATION OF ELECTRONIC AND OPTICAL PROPERTIES OF METAL NANO-CLUSTERS SUPPORTED ON N-DOPED BILAYER GRAPHENE STRUCTURES PHD THESIS ÖZLEM ÜNLÜ BOLU ABANT IZZET BAYSAL UNIVERSITY GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES DEPARTMENT OF CHEMISTRY (SUPERVISOR: PROF. DR. IZZET MORKAN)

#### **BOLU, MARCH 2019**

Graphene has attracted great interest in the last few years owing to its extraordinary properties with potential applications like nanoelectronics, batteries, and hydrogen storage. To investigate electronic and optical beaviours of some rare metal nanoclusters supported between bilayer graphene sheets, *ab initio* first principle Density Functional Theory (DFT) calculations were performed on Tungsten, Rhenium and Osmium nanoclusters and metal oxides of these transition metal structres supported between graphene layers. All of the  $\bar{A}$  D =  $\bar$ 

## 

□□□□□ries of metal and metal oxide inserted bilayer graphene structures were then analysed for investigation of electronic and optical properties with the change of nitrogen atom doping on graphene layers. It was concluded that the electronic and optical properties of metal inserted bilayer graphene structures are affected by the type of dopant and metal as a result of charge ransfer. Nitrogen doped graphene systems showed change in local density as a result of charge transfer due to its extra one electron. Intercalation of transition metal atoms lead to narrowing the band gap with an increase in conductor character. The data presented with this study can be used for further catalytic studies and guide the experimental studies.

**KEYWORDS:** Density Functional Theory, Electronic properties, Optical properties, Bilayer graphene systems, GGA.

## ÖZET

### AZOT KATKILI ÇİFT KATMANLI GRAFEN İLE DESTEKLENMİŞ METAL NANOKÜMELERİNİN ELEKTRONİK VE OPTİK ÖZELLİKLERİNİN HESAPLAMALI İNCELENMESİ DOKTORA TEZİ ÖZLEM ÜNLÜ BOLU ABANT İZZET BAYSAL ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ KİMYA ANABİLİM DALI (TEZ DANIŞMANI: PROF. DR. İZZET MORKAN)

#### **BOLU, MART - 2019**

Grafen sıradışı özelliklere sahip olmasının yanı sıra nano-elektronikler, sensörler, kompozitler, piller, süper kapasitörler ve hidrojen depolama gibi uygulamalarda kullanılabilme potansiyeli ile son yıllarda yoğun ilgi görmektedir. Çift katmanlı grafen yapıları arasına interkale edilmiş Renyum, Tungsten ve Osmiyum metal nanokümeleri ve bu metallerin oksitlerinin elektronik ve optik özellikleri temel set denklemi kullanılarak ab-inito temel-set Yoğunluk Fonksiyon Teoremi (DFT) ile hesaplanarak incelenmiştir. Tüm grafen yapılarının DFT hesaplamaları ab-initio pseudo-potansiyel yaklaşımı ile genelleştirilmiş gradiyent yaklaşımına (GGA) dayanarak BPW91 temel set denklemi kullanılarak hesaplanmıştır. Sonrasında optimizasyonu yapılmış geçiş metali ile desteklenmiş çift katmanlı grafen yapıları azot ile katkılanarak değişen elektronik ve optik davranışları incelenmiştir. Yapılan analizler sonucunda metal katılmış çift katmanlı grafen yapılarının elektronik ve optik özelliklerinin yük transferi nedeniyle metalin ve katkılayıcının türüne bağlı olduğu görülmüştür. Grafen sistemlerinin azot ile katkılanması içerdiği fazladan bir elektron sebebi ile lokal elektron voğunluğunda değisime sebep olmaktadır. Gecis metallerinin grafen sistemlerinin arasına interkale edilmesi, bant boşluğunun azalmasına ve dolayısıyla iletkenlik özelliğinin artmasına sebep olmuşturtur. Bu çalışmada hesaplanan veriler, gelecekte katalitik hesaplamalara ve deneysel çalışmalara rehberlik niteliği taşımaktadır.

**ANAHTAR KELİMELER:** Yoğunluk Fonksiyon Teorisi, Elektronik özellikler, Optik özellikler, Çift katmanlı grafen sistemleri, GGA.

## **TABLE OF CONTENTS**

## Page

| ABSTRACT                                                          | v    |
|-------------------------------------------------------------------|------|
| ÖZET                                                              | . vi |
| TABLE OF CONTENTS                                                 | vii  |
| LIST OF FIGURES                                                   | . ix |
| LIST OF TABLES                                                    | . xi |
| LIST OF ABBREVIATIONS AND SYMBOLS                                 | xiii |
| 1. INTRODUCTION                                                   | 1    |
| 1.1 Carbon Nanomaterials                                          | 3    |
| 1.2 Atomic structure of Graphene                                  | 5    |
| 1.3 Electronic structure of Graphene                              | 7    |
| 1.3.1 Electronic properties of Monolayer Graphene                 | 8    |
| 1.3.2 Electronic properties of Graphite                           | 13   |
| 1.3.3 Electronic properties of Bilayer Graphene                   | 19   |
| 1.4 Optical Properties of Graphene Structures                     | 22   |
| 1.4.1 Optical conductance of graphene structures                  | 22   |
| 1.4.2 Refractive Index                                            | 24   |
| 1.4.3 Optical properties of bilayer graphene                      | 26   |
| 1.5 Tailoring the graphene-based structures                       | 27   |
| 1.5.1 Nitrogen Doping                                             | 28   |
| 1.5.2 Metal Intercalation                                         | 29   |
| 2. AIM AND SCOPE OF THE STUDY                                     | 33   |
| 3. MATERIALS AND METHODS                                          | 35   |
| 3.1 Density Functional Theory                                     | 35   |
| 3.1.1 The Hohenberg-Kohn theorems                                 | 36   |
| 3.1.2 Kohn-Sham Equation                                          | 37   |
| 3.2 Quantumwise ATK-VNL Nanolab and its related functional theory | 38   |
| 4. RESULTS AND DISCUSSIONS                                        | 46   |
| 4.1 Geometry Ontimizations                                        | 46   |
| 4.2 Molecular Dynamic Analysis                                    | 49   |
| 4.3 Band Structure Analysis                                       | 54   |
| 4.4 Electron Density                                              | 60   |
| 4.5 Electron Difference Density                                   | 63   |
| 4.6 Electron Localization Functions                               | 65   |
| 4.7 Molecular Energy Analysis                                     | 65   |
| 4.8 Optical Properties                                            | 67   |
| 5. CONCLUSIONS AND RECOMMENDATIONS                                | 74   |
| 6. REFERENCES                                                     | 75   |
| 7. APPENDICES                                                     | 79   |

| 8. C | URRICULUM VITAE | 125 |
|------|-----------------|-----|
| Ap   | opendix A.4     | 113 |
| Ap   | opendix A.3     | 107 |
| Ap   | opendix A.2     | 101 |
| Ap   | opendix A.1     |     |



## **LIST OF FIGURES**

## Page

| Figure 1.1. Optical image of monolayer graphene                                         | 2  |
|-----------------------------------------------------------------------------------------|----|
| Figure 1.2. Steps in Mechanical exfoliation method on a substrate                       | 2  |
| Figure 1.3. Papers and patents in graphene research between 2004 and 2018               | 2  |
| Figure 1.4. Top research areas of graphene used studies                                 | 3  |
| Figure 1.5. Possible hybridizations of carbon.                                          | 4  |
| Figure 1.6. Allotropes of carbon.                                                       | 5  |
| Figure 1.7. Graphene, basic building block for graphitic materials                      | 6  |
| <b>Figure 1.8.</b> The $\sigma$ and $\pi$ bonding in graphene.                          | 7  |
| Figure 1.9. Lattice structure of graphene                                               | 7  |
| Figure 1.10. Graphene (a) The honeycomb structure, (b) The Brouillin zone               | 9  |
| Figure 1.11. The reciprocal lattice of graphene.                                        | 12 |
| Figure 1.12. The "Dirac cone" dispersion of the quasiparticles in graphene              | 13 |
| Figure 1.13. Graphite (a) AB- (b) ABC- (c) Unit cell (d) The Brillouin zone             | 15 |
| Figure 1.14. Graphite (a) The lattice structure (b) The Brillouin zone                  | 16 |
| Figure 1.15. Lattice structure of the graphene bilayer.                                 | 19 |
| Figure 1.16. Dispersions in the bilayer graphene.                                       | 21 |
| Figure 1.17. Tunable Fano resonance in back-gated bilayer graphene                      | 27 |
| Figure 1.19. Calculated band structures.                                                | 29 |
| Figure 1.20. Three adsorption sites on the graphene surfaces.                           | 30 |
| <b>Figure 1.21.</b> The sandwich like graphene-Cr-graphene structure                    | 31 |
| <b>Figure 1.22.</b> The effect of transition metal atoms on defective BLG               | 32 |
| Figure 3.1. Workflow chart of the study                                                 | 44 |
| <b>Figure 4.1.</b> Optimized geometries of graphene structures.                         | 47 |
| <b>Figure 4.2.</b> Angular distribution analysis.                                       | 50 |
| <b>Figure 4.3.</b> The radial distribution analysis                                     | 51 |
| Figure 4.4. Coordination number distribution analysis                                   | 52 |
| Figure 4.5. Mass density profile analysis                                               |    |
| <b>Figure 4.6.</b> Neutron scattering factor analysis                                   | 54 |
| Figure 4.7. Band structures of graphene, BLG, WBLG, ReBLG and OsBLG                     |    |
| <b>Figure 4.8.</b> Band structures of nitrogen doped metal bilaver graphene             |    |
| <b>Figure 4.9.</b> Band structures of metal oxides inserted bilaver graphene structures |    |
| Figure 4.10. Brilloin zones                                                             |    |
| Figure 4.11. Electron density scheme of BLG                                             | 60 |
| Figure 4.12. Electron density schemes of ReBLG.                                         | 61 |
| Figure 4.13. Electron density schemes of ReNBLG.                                        | 62 |
| Figure 4.14. Electron density schemes of OsOBLG.                                        | 62 |
| Figure 4.15. Summarization of Bader charges of the structures                           | 63 |
| Figure 4.16. Electron difference density schemes.                                       | 64 |
| Figure 4.17. ELF models                                                                 | 65 |
| <b>Figure 4.18.</b> Molecular energy spectrum analysis                                  | 66 |
| <b>Figure 4.19.</b> Energy-absorption spectra                                           | 67 |
| <b>Figure 4.20.</b> Energy-absorption spectra.                                          | 68 |
| <b>Figure 4.21.</b> Energy-absorption spectra                                           | 68 |
| <b>Figure 4.22.</b> Energy-Dielectric constant spectra                                  | 69 |
|                                                                                         |    |

| Figure 4.23. Energy-Dielectric constant spectra  | 69  |
|--------------------------------------------------|-----|
| Figure 4.24. Energy-Dielectric constant spectra  | 70  |
| Figure 4.25. Energy-optical conductivity spectra | 70  |
| Figure 4.26. Energy-optical conductivity spectra | 71  |
| Figure 4.27. Energy-optical conductivity spectra | 71  |
| Figure 4.28. Absorption-wavelenght spectra       | 72  |
| Figure 4.29. Absorption-wavelenght spectra.      | 72  |
| Figure 4.30. Absorption-wavelenght spectra.      | 73  |
| Figure 7.1. Angular distribution of graphene     | 101 |
| Figure 7.2. Angular distribution of BLG          | 101 |
| Figure 7.3. Angular distribution of WBLG         | 102 |
| Figure 7.4. Angular distribution of ReBLG        | 102 |
| Figure 7.5. Angular distribution of OsBLG        | 103 |
| Figure 7.6. Angular distribution of WNBLG        | 103 |
| Figure 7.7. Angular distribution of ReNBLG       | 104 |
| Figure 7.8. Angular distribution of OsNBLG       | 104 |
| Figure 7.9. Angular distribution of WOBLG        | 105 |
| Figure 7.10. Angular distribution of ReOBLG      | 105 |
| Figure 7.11. Angular distribution of OsOBLG      | 106 |
| Figure 7.12. Radial distribution of graphene     | 107 |
| Figure 7.13. Radial distribution of BLG          | 107 |
| Figure 7.14. Radial distribution of WBLG         | 108 |
| Figure 7.15. Radial distribution of ReBLG        | 108 |
| Figure 7.16. Radial distribution of OSBLG        | 109 |
| Figure 7.17. Radial distribution of WNBLG        | 109 |
| Figure 7.18. Radial distribution of ReNBLG       | 110 |
| Figure 7.19. Radial distribution of OsNBLG       | 110 |
| Figure 7.20. Radial distribution of ReOBLG       | 111 |
| Figure 7.21. Radial distribution of WOBLG        | 111 |
| Figure 7.22. Radial distribution of OsOBLG       | 112 |
|                                                  |     |

## LIST OF TABLES

## Page

| Table 1.1. Typical values of Slonczewski-Weiss-McClure parameters         18                          |
|-------------------------------------------------------------------------------------------------------|
| <b>Table 4.1</b> Bond lengths and distances between layers.         48                                |
| Table 4.2. The total energies    48                                                                   |
| Table 4.3. Chemical potential energies    60                                                          |
| Table 4.4. Molecular energy spectra    67                                                             |
| Table 7.1. Cartesian coordinates of BLG(2+2) before optimization                                      |
| Table 7.2. Fractional coordinates of BLG(2+2) before optimization                                     |
| Table 7.3. Cartesian coordinates of BLG(2+2) after geometry optimization79                            |
| Table 7.4. Fractional coordinates of BLG(2+2) after geometry optimization79                           |
| <b>Table 7.5.</b> Z-matrix of BLG(2+2)79                                                              |
| Table 7.6. Cartesian coordinates of BLG(4+4) before geometry optimization80                           |
| Table 7.7. Fractional coordinates of BLG(4+4) before geometry optimization80                          |
| Table 7.8. Z-matrix of BLG(4+4).         80                                                           |
| Table 7.9. Cartesian coordinates of BLG(4+4) after geometry optimization.                             |
| Table 7.10. Fractional coordinates of BLG(4+4) after geometry optimization81                          |
| <b>Table 7.11.</b> Z-matrix of BLG(4+4)                                                               |
| Table 7.12. Cartesian coordinates of MBLG before geometry optimization82                              |
| Table 7.13. Fractional coordinates of MBLG before geometry optimization82                             |
| Table 7.14. Cartesian coordinates of ReBLG after geometry optimization                                |
| Table 7.15. Fractional coordinates of ReBLG after geometry optimization                               |
| Table 7.16. Z-matrix of ReBLG.                                                                        |
| Table 7.17. Cartesian coordinates of WBLG after geometry optimization                                 |
| <b>Table 7.18.</b> Fractional coordinates of WBLG after geometry optimization                         |
| Table 7.19. 7-matrix of WBLG.       84                                                                |
| <b>Table 7.20.</b> Cartesian coordinates of MNBLG before geometry optimization 84                     |
| Table 7.21. Fractional coordinates of MNBLG before geometry optimization         85                   |
| Table 7.22. Cartesian coordinates of ReNBLG after geometry optimization     85                        |
| Table 7.23. Fractional coordinates of ReNBLG after geometry optimization     85                       |
| Table 7.24. 7-matrix of ReNBLG       RenBLG                                                           |
| Table 7.25. Cartesian coordinates of WNBLG after geometry optimization       86                       |
| Table 7.26. Cartesian coordinates of OsNBLG after geometry optimization     86                        |
| <b>Table 7.27</b> Fractional coordinates of OsNBLG after geometry optimization 87                     |
| Table 7.28. 7-matrix of OsNBLG after geometry optimization                                            |
| <b>Table 7.20.</b> Cartesian coordinates of WOBI G before geometry optimization 87                    |
| <b>Table 7.30</b> Eractional coordinates of WOBLG before geometry optimization                        |
| <b>Table 7.31</b> Cartesian coordinates of WOBLG after geometry optimization                          |
| <b>Table 7.32</b> Eractional coordinates of WOBLC after geometry optimization                         |
| Table 7.32. 7 matrix of WORLG                                                                         |
| Table 7.33. Z-Induity of WOBLO                                                                        |
| <b>Table 7.34.</b> Callesian coolumnates of ReOBLO before geometry optimization95                     |
| <b>Table 7.36.</b> Cortagion apprdinates of <b>D</b> <sub>2</sub> OPL C after accounting antimization |
| <b>Table 7.30.</b> Cartesian coordinates of ReOBLO after geometry optimization93                      |
| Table 7.39. 7 matrix of DeODLC                                                                        |
| <b>Table 7.30.</b> C-matrix of KeUBLG                                                                 |
| I able 7.39. Cartesian coordinates of OsOBLG after geometry optimization                              |

| <b>Table 7.40</b> | . Fractional coordinates of OsOBLG after geometry optimization | 99   |
|-------------------|----------------------------------------------------------------|------|
| <b>Table 7.41</b> | . Z-matrix of OsOBLG.                                          | .100 |
| <b>Table 7.42</b> | Bader charge volumes of MLG                                    | .113 |
| <b>Table 7.43</b> | Bader charge volumes of BLG                                    | .113 |
| <b>Table 7.44</b> | Bader charge volumes of ReBLG                                  | .115 |
| Table 7.45        | Bader charge volumes of WBLG                                   | .117 |
| Table 7.46        | Bader charge volumes of OsBLG                                  | .118 |
| <b>Table 7.47</b> | Bader charge volumes of ReNBLG.                                | .119 |
| <b>Table 7.48</b> | Bader charge volumes of WNBLG                                  | .120 |
| <b>Table 7.49</b> | Bader charge volumes of OsNBLG.                                | .121 |
| <b>Table 7.50</b> | The atomic charge volumes of ReOBLG structure                  | .122 |
| Table 7.51        | . The atomic charge volumes of WOBLG structure                 | .123 |
| <b>Table 7.52</b> | . The atomic charge volumes of OsOBLG structure.               | .124 |

## LIST OF ABBREVIATIONS AND SYMBOLS

| ATK          | : Atomistic Tool Kit                                      |
|--------------|-----------------------------------------------------------|
| BLG          | : Bilayer Graphene                                        |
| BPW91        | : Becke exchange combined with Perdew-Wang-91 correlation |
|              | functionals                                               |
| С            | : Carbon                                                  |
| CNT          | : Carbon Nanotube                                         |
| DFT          | : Density Functional Theory                               |
| ext          | : Electrostatic field expressions                         |
| GGA          | : General Gradient Approximation                          |
| Н            | : Hartree expressions                                     |
| НК           | : Hohenberg-Kohn expressions                              |
| HOMO         | : Highest Occupied Molecular Orbitals                     |
| KS           | : Kohn-Sham expressions                                   |
| LCAO         | : Lineer Combination of Atomic Orbitals                   |
| LUMO         | : Lowest Unoccupied Molecular Orbitals                    |
| MLG          | : Mono Layer Graphene                                     |
| Os           | : Osmium                                                  |
| OsBLG        | : Osmium Intercalated Bilayer Graphene                    |
| OsNBLG       | : N-doped Osmium Intercalated Bilayer Graphene            |
| OsOBLG       | : Osmium oxide Intercalated Bilayer Graphene              |
| Re           | : Rhenium                                                 |
| ReBLG        | : Rhenium Intercalated Bilayer Graphene                   |
| ReNBLG       | : N-doped Rhenium Intercalated Bilayer Graphene           |
| ReOBLG       | : Rhenium oxide Intercalated Bilayer Graphene             |
| Th-Fe        | : Thomas-Fermi expressions                                |
| VNL          | : Virtual Nanolab                                         |
| $\mathbf{W}$ | : Tungsten                                                |
| WBLG         | : Tungsten Intercalated Bilayer Graphene                  |
| WNBLG        | : N-doped Tungsten Intercalated Bilayer Graphene          |
| WOBLG        | : Tungsten oxide Intercalated Bilayer Graphene            |
| xc           | : Exchange-correlation expressions                        |

## ACKNOWLEDGEMENTS

I wish to express my deepest gratitude to my supervisor Prof. Dr. İzzet MORKAN for his guidance, advice, criticism, encouragements, and insight throughout the research. I sincerely thank the rest of my thesis committee: Assoc. Prof. Dr. Bahadır ALTINTAŞ, and Assist. Prof. Dr. Erhan BUDAK, for their insightful comments, encouragement, and support. I would like to thank the other faculty members especially Prof. Dr. Ayşe UZTETİK MORKAN for her moral support and motivation. I would like to thank Dr. Seda KARABOĞA for friendship and support as my lab partner. I am grateful to all my friends Dr. Bedirhan GÜLTEPE, Dr. Cantürk AKBEN and Dr. Ahmet Yasin ŞENYURT, for their technical support and help to fix my crashed computer. I especially thank my mother Nilgün İLKİN, my father Ersan İLKİN for my life and all the sacrifices they made for me. I dedicate this thesis to my lovely son Attila Ozan for making my life meaningful. This last word of acknowledgment I have saved for my soul-mate, best friend and husband, Dr. Ercan Selçuk ÜNLÜ. I would not have finished this thesis without his great support, unconditional love, faith, and patience.

This study was supported by the BAİBU BAP., Grant Nr: 2016.03.03.1110

### **1. INTRODUCTION**

As one of the most abundant element in universe, carbon has been known before the history itself (Greenwood N. N. 1997). In the era of nanotechnology, carbon has an outstanding importance in the scientific and technological areas with its unique allotropic forms. As an incredible element, carbon has the ability to bind itself and nearly all other elements in the periodic table. With an almost unlimited number of compounds, the carbon element has a very important role in a wide range of medicine, nutrition, energy and synthetic materials (Soukiassian and Rao, 2010; Hirsch, 2010).

Discovery of graphene has an important impact on nanotechnology research. Graphene structure was first proposed by the Canadian scientist Wallace in 1946 (Wallace 1947). He proposed that stacking one-atom thick graphene layers on top of each other could eventually form graphite. However, he also suggested that it was not experimentally possible to obtain one layer graphene sheet itself. Thus, twodimensional graphene was considered to be an exclusively theoretical material until Novoselov and Geim isolated graphene using the Scotch tape method (Novoselov et al. 2004). They simply exfoliated graphite to obtain mono-layer graphene sheets (Figure 1.1 and Figure 1.2). This simple method had a revolutionary impact on starting forthcoming studies. Later, investigations elucidated important physical properties of graphene. Findings proved that it is a super-strong, very thin, transparent and extremely light material. In addition, it has extremely unusual electronic properties such as high electrical and heat conductivity. Today, there are thousands of publications in a wide range of scientific fields about graphene (Figure 1.3 and Figure 1.4). Data presented in Figure 1.3 and Figure 1.4 were received from Web of Science (2018).



Figure 1.1. Optical image of monolayer grapheme (Terse-Thakoor, Badhulika & Mulchandani 2017).



Figure 1.2. Steps in Mechanical exfoliation method on a substrate (Dasari et al. 2017).



Figure 1.3. Papers and patents in graphene research between 2004 and 2018.



Figure 1.4. Top research areas of graphene used studies.

#### 1.1 Carbon Nanomaterials

Carbon atom can show three types of hybridization (sp, sp<sup>2</sup>, and sp<sup>3</sup>) depending on the number of mixing atomic orbitals in bonds (Figure 1.5). In sp hybridization, 2s and 2p orbitals are mixing to form two sp orbitals and leaving two p orbitals in unchanged state. The sp orbital consists of 50% of each s and p characters. Each sp orbital has one lobe larger than the other. When two sp orbitals (four lobes) set together, the larger lobes face together in linear 180° orientation. In sp<sup>2</sup> hybridization, one 2s and two 2p orbitals are hybridized to form three sp<sup>2</sup> orbitals consisting of 33% s and 67% p characters. To minimize the electronic repulsion, three sp<sup>2</sup> orbitals oriented with 120° angle where unchanged p<sub>z</sub> orbitals perpendicular to the plane. In sp<sup>3</sup> hybridization, one 2s and three 2p orbitals are mixed to form four sp<sup>3</sup> orbitals that each orbital has 75% p and %25 s characters. The sp<sup>3</sup> hybrids are oriented at 109° angle to each other in tetrahedral geometry.



**Figure 1.5.** Possible hybridizations of carbon. (a) sp hybridization, (b) sp<sup>2</sup> hybridization, (c) sp<sup>3</sup> hybridization; note that there are unhybridized p orbitals in sp and sp<sup>2</sup> that are not shown here (Brinkley 1933).

When the orbitals overlap between two atoms, a chemical bond is formed between C atoms. For instance, in the case of sp<sup>2</sup> hybridization, there are three sp<sup>2</sup> hybrid orbitals can form bonds with other three C atoms. This overlapping hybrid orbitals create stronger covalent bonds ( $\sigma$ -bonds) in plane, while unhybridized p<sub>z</sub> orbital forms weaker out-of-plane  $\pi$ -bond (Brinkley, 1933; Greenwood NN, 1997).

Aforomentioned hybridization types enable carbon atoms to form four different allotropes (Figure 1.6). Carbon allotropes are categorized by their dimensions: i- Zero-dimensional (0D) fullerens and buckyballs; ii- One-dimensional (1D) carbon nanotubes (CNTs); iii- Two-dimensional (2D) graphene; iv- threedimensional (3D) diamond and graphite (Katsnelson, 2007; Li et al., 2015).



**Figure 1.6.** Allotropes of carbon. 3D: diamond and graphite, 2D: graphene, 1D: CNT, 0D: fullerenes (Katsnelson 2007).

3D carbon allotropes are bulk materials while others are classified under nanomaterials. Nanomaterial studies for carbon allotropes started with the discovery of  $C_{60}$  fullerene (i.e. Buckminsterfullerene) (Kroto et al. 1985). Fullerene is a zerodimensional series of hollow carbon molecules that form a closed cage (viz. buckyballs). In 1991, Sumio discovered carbon nanotubes (CNTs) with a cylindrical nanostructure (Iijima and Ichihashi, 1993). Two decades after the discovery of these carbon allotropes, Novosolov and Geim discovered graphene in 2004 (Novoselov et al., 2004).

#### **1.2** Atomic structure of Graphene

Graphene is a hexagonal honeycomb structure consisting of one-atom thick  $sp^2$  hybridized carbon atoms in two-dimension (Allen, Tung and Kaner, 2010; Soldano, Mahmood and Dujardin, 2010). Novoselov described graphene as the

"mother" of all graphitic carbon allotropes in other dimensions (Geim & Novoselov 2007). For example, stacking several layers of graphene sheets forms a three dimensional graphite while rolling graphene sheets with different boundaries leads to formation of one dimensional carbon nanotubes. Buckyballs can be produced by wrapping a graphene segment into a sphere structure. The formation scheme of these structures is illustrated in Figure 1.7 (Geim and Novoselov, 2007).



**Figure 1.7.** Graphene, basic building block for graphitic materials. a) 3D graphite, b) 1D carbon nanotube, and c) 0D graphite (Geim and Novoselov, 2007).

As previously mentioned, the 2s orbital overlap with  $2p_x$  and  $2p_y$  orbitals forming three sp<sup>2</sup> hybid orbitals in graphene which results with stronder  $\sigma$  bonds. The strength of these bonds are more than sp<sup>3</sup> interactions in diamonds. They are responsible for defined mechanical properties of graphene. On the other hand, the unhybridized  $p_z$  electrons are weakly bounded to the nuclei. They are responsible for relative delocalization of electrons and in turn  $\pi$  bond formation (Figure 1.8). Hybridization of  $\pi$ - and  $\pi$ \*-bands between  $\pi$ -bonds is responsible for graphene's electronic properties. One-atom thick layer of graphene shows hexagonal structure which requires alignment of three  $\sigma$ -bonds on each lattice. In this structure model, binding of  $sp^2$  hybridized carbon atoms with surrounding hybridized carbon atoms causes the formation of a benzene ring. Within this molecule, each atom donates an unpaired electron where bond length of carbon-carbon interaction is 0.142 nm (Figure 1.9). (Soldano, Mahmood and Dujardin, 2010).



**Figure 1.8.** The  $\sigma$  and  $\pi$  bonding in graphene.



Figure 1.9. Lattice structure of graphene (Zhen and Zhu, 2018).

#### **1.3** Electronic structure of Graphene

Graphene is considered as the thinnest material. The thickness of graphene layer is only 0.35 nm which is 1/200,000th the diameter of a human hair. Later studies of Novosolov and Geim showed that the electronic properties are highly depended on layer number of graphene (Geim and Novoselov, 2007). In order to understand graphene structures, some of the electronic structures of monolayer graphene, graphite and bilayer graphene are explained below.

#### **1.3.1** Electronic properties of Monolayer Graphene

In general, crystal structure can be defined by two different components: lattice and basis. Lattice structure is a regular arrangement of points in space where a group of repeating atoms at every point in the lattice to form the crystal structure. The lattice can be generated by three primitive lattice translation vectors (*viz.*  $a_1$ ,  $a_2$  and  $a_3$ ). Any two lattice points can be connected by the translational vector (*T*) and can be formulated as:

$$\Gamma = n_1 a_1 + n_2 a_2 + n_3 a_3 \tag{1.1}$$

Defining the periodic structures of lattices depend on investigation of reciprocal lattice. Assuming  $m_i$  as an integer value and  $b_1$ ,  $b_2$  and  $b_3$  as the primitive translation factors of reciprocal lattice, general translation vector (G) between any two reciprocal lattice points can be calculated using following formula:

$$G = m_1 b_1 + m_2 a b_2 + m_3 b_3 \tag{1.2}$$

As mentioned, one atom thick layer of graphene forms a hexagonal lattice with a honeycomb structure where each carbon atoms has four electrons in their valance shell. In order to fit the system into the usual Bloch state representation, it is essential to define the system as a triangular lattice with two basis carbon atoms per primitive cell. In this system, the equilateral parallelogram presents a unit cell with  $a_1$ ,  $a_2$  lattice vectors and A1, B1 sublattices (Figure 1.10a). The hexagonal reciprocal lattice of graphene is defined in Brilloin zone with the high symmetry points labelled  $\Gamma$ , K, and M (Figure 1.10b). The High symmetry points of lattice can be formulated as:

$$\Gamma = \{0, 0\}$$

$$n(r) = \sum_{\alpha} f \alpha |\varphi_{\alpha}(r)|^{2}$$

$$n(r) = \sum_{ij} D_{ij} \phi_{i}(r) \phi_{j}(r)$$

$$D_{ij} = \sum_{\alpha} f_{\alpha} c^{*}{}_{\alpha i} c_{\alpha i}$$

$$\Delta(n) = n(r) - \sum_{\mu} n^{atom} (r - R_{\mu})$$
(1.3)

$$\mathbf{K} = \left\{ \frac{1}{3}, \frac{1}{3} \right\} \tag{1.4}$$

$$\mathbf{M} = \left\{ 0, \frac{1}{2} \right\} \tag{1.5}$$



Figure 1.10.Graphene (a) The honeycomb structure, (b) The Brouillin zone

The real-space lattice vectors of graphene structure are given by the following equation where lattice constant  $a = \sim 1.4$  Å:

$$a_1 = \frac{a}{2} \left( 3, \sqrt{3} \right) \tag{1.6}$$

$$a_2 = \frac{a}{2} \left( 3, -\sqrt{3} \right) \tag{1.7}$$

In a simple model, the nearest neighbor to tight-binding Hamiltonian consist of only  $\pi$  orbital in each atom. The nearest neighbor distance is  $\sqrt{3}$ . The vectors connecting to these nearest neighbor atoms are given below.

$$\delta_1 = \frac{a}{2} \left( 1, \sqrt{3} \right) \tag{1.8}$$

$$\delta_2 = \frac{a}{2} \left( 1, -\sqrt{3} \right) \tag{1.9}$$

$$\delta_3 = a(-1,0) \tag{1.10}$$

The tight-binding model is required to define electron motion. Thus, it is suitable to introduce the operator (*c*) to system with  $\mathcal{C}_{\alpha j, R_i}^{\dagger}$ . R<sub>i</sub> refers to the position where the operator produces an electron on the lattice site while  $\alpha$  denotes the atom sublattice and j denotes the plane. Therefore, the tight-bonding Hamiltonian can be written as given in Equation 1.11 where *t* (approximately 3 eV for graphene) represents the energy associated with the bouncing of electrons between neighboring  $\pi$ -orbitals.

$$H_{t.b.} = -t \sum_{R_i} \sum_{j=1,2,3} \left( c^{\dagger}_{A1.R_i} c_{B1.R_i + \delta_j} + h.c. \right)$$
(1.11)

Next, it is possible to define Fourier-transformed operators where N represents the number of unit cells in the system.

$$c_{\alpha j.R_i} = \frac{1}{\sqrt{N}} \sum_{k} e^{ik.R_i} c_{\alpha j.k}$$
(1.12)

According to this basis, the tight-binding Hamiltonian:

$$H_{t.b.} = \sum_{k} \left[ \zeta(k) c_{A1.k}^{\dagger} c_{B1.k} + \zeta^{*}(k) c_{B1.k}^{\dagger} c_{A1.k} \right]$$
(1.13)

where

$$\zeta(k) = -t \sum_{k} e^{ik\delta_{i}} = -t e^{(ik_{x}a/2)} \left[ 2\cos\left(\frac{k_{y}a\sqrt{3}}{2}\right) + e^{i3k_{x}a/2} \right]$$
(1.14)

Since the sublattice structure can be described for the systems by a spinor,  $\psi_k^{\dagger}(c_{A1k}^{\dagger}, c_{B1k}^{\dagger})$ , the tight-binding Hamiltonian can be expresses as:

$$H_{t.b.} = \sum_{k} \boldsymbol{\psi}_{k}^{\dagger} \begin{pmatrix} 0 & \boldsymbol{\zeta}(k) \\ \boldsymbol{\zeta}^{*}(k) & 0 \end{pmatrix} \boldsymbol{\psi}_{k}$$
(1.15)

The primitive lattice vectors of  $b_1$  and  $b_2$  reciprocal lattices can be estimated by using the equations 1.2 and 1.3. The following equations can be used to calculate  $b_1$  and  $b_2$  vectors.

$$b_1 = \frac{2\pi}{3a} (1, \sqrt{3}) \tag{1.16}$$

$$b_2 = \frac{2\pi}{a} \left( 1, -\sqrt{3} \right) \tag{1.17}$$

The encircled K and K' corners of the Brilloin zone of graphene have the coordinates defined with:

$$\mathbf{K} = \frac{2\pi}{3\sqrt{3a}} \left(\sqrt{3}, 1\right) \tag{1.18}$$

$$K' = \frac{2\pi}{3\sqrt{3a}} \left(\sqrt{3}, -1\right)$$
(1.19)

If these corners of Brilloin zone expand correlated to k = K + q and, following equations can be written.

$$\zeta(q) \approx \frac{3at}{2} e^{\frac{i\pi}{6} + \frac{iq_x a}{2}} \left(q_x + iq_y\right) = v_F q e^{i\left(\phi - \frac{\pi}{6}\right)}$$
(1.20)

$$\zeta(q') \approx \frac{3at}{2} e^{-\frac{i\pi}{6} + \frac{iq_x a}{2}} \left( q'_x + iq'_y \right) = v_F q e^{i\left(\phi' - \frac{\pi}{6}\right)}$$
(1.21)

In the tight-binding model, the Fermi-Dirac velocity is given by  $v_F = 3ta$ . However, the extra phase of  $\pi/6$  in the equation above can be absorbed into the phases of B1 wavefunctions. In addition, during the construction of wavefunctions in both inequavalent corners of Brilloin zone,  $\pi/6$  is not necessary since it is the same for both K and K'points.

Alternatively, it is possible to use other pairs of corners of Brilloin zone since two Blotch states are equivalent. If the system defines b using the the other pair of corners in Brilloin zone instead of K and K' points, then these points can be

described as  $K = \frac{4\pi}{3\sqrt{3a}}(0, -1)$  and K' = -K. So, the equation is transformed to:

$$\zeta(q) \approx \frac{3at}{2} \left( -q_y + iq_x \right) = iv_F q e^{i\phi}$$
(1.22)

$$\zeta(q') \approx \frac{3at}{2} \left( q'_{y} + iq'_{x} \right) = iv_{F} q e^{-i\phi'}$$
(1.23)

This alternate has an advantage of easier implementation of time reversal symmetry. When the time reversal is k to -k, it results with the anti-unitary operator of complex

conjugate operation. As a consequence, time reversal exchange of the K and K' points in this alternative convention is presented in Figure 1.11.



**Figure 1.11.** The reciprocal lattice of graphene. It is a triangular lattice resulting in a hexagonal Brillouin zone. The two choices of the K and K' points are shown as the circles and the stars in the corners of the BZ.

For either convention, when the appropriate rotation of the coordinate system is established, the Hamiltonian forms close to the K point resulting with a two dimensional Dirac Hamiltonian of mass-free Fermions as shown in the following equation.

$$H_{Dirac} = v_F \sum_{q} \psi_q^{\dagger} \begin{pmatrix} 0 & q_x + q_y \\ q_x - iq_y & 0 \end{pmatrix} \psi_q$$
(1.24)

The final spectrum measured from the K-point is linear in the momentum,  $E_{\pm}(q) = \pm v_F q$ . This linear dispersion relation is unusual in condensed matter systems.

"Dirac point" can be defined as the contact points between the two bands. Dirac point of the bands in graphene is given at zero energy (Figure 1.12). Interestingly, there are two symmetrical Dirac points for graphene due to two existing sublattices in its structure. Thus, the energy at Dirac points is zero, and graphene is a gapless semiconductor.



Figure 1.12. The "Dirac cone" dispersion of the quasiparticles in graphene.

The Dirac Hamiltonian equation is not acceptable for all points in the Brilloin zone. For instance, when the momentum is far from the corners of Brilloin zone, the lattice structure will appear in the dispersion, and it cannot be cylindrically symmetric. Still, lineer spectrum gives acceptable approximation to study the low energy properties close to the Dirac point. However, it is required to introduce a cutoff value ( $\Lambda$ ) to arrange the formula at high energies because of the finite band width. Then, the linear spectrum is assumed to be valid for momenta,  $v_F q \ll \Lambda$ . A term can be obtained by demanding the number of states conserved within the linear approximation in the Brilloin zone. As shown in Figure 1.11, two circles of radii  $\Lambda$  covers the Brilloin zone and estimated by  $2\pi\Lambda^2 = (2\pi)^2/A_u$  where  $A_u$  is the area of the real space unit cell with  $A_u = \sqrt{27}a^2/2$ . In the natural unit, the Fermi-Dirac velocity

is equal to 1 which implies that  $\Lambda \approx t \sqrt{\pi \sqrt{3}} \approx 7 eV$ . The term "natural unit" implies energies and frequencies that have the same units as momenta and wavenumbers. Thus, the units of momenta is oftenly given in eV. For an electron pocket with a radius given by Q in eV, the resulting electron density is  $-v_4\sigma^*$ 

$$n = \frac{Q^2}{\pi} = \left(\frac{Q}{t}\right)^2 \frac{4}{9\pi a^2} \approx Q^2 \, 7.8 \, x 10^{13} \, cm^{-2} \quad \text{including both K-points and spin}$$

projections.

#### **1.3.2** Electronic properties of Graphite

As mentioned, formation of graphite requires stacking of graphene layers by Van der Waals interactions with approximately 3.44 Å interplane distance. Depending on the orientation of graphene layers, graphite can be exist in two stacking forms (viz. ABAB and ABCABC sequences) (Figure 1.13). The ABAB sequence, known as Bernal stacking, is found in hexagonal crystal form while the ABCABC sequence is found in rhombohedral form.For both sequence forms, there are four carbon atoms in a unit cell of graphite (Figure 1.13c). The primitive lattice vectors are given in the following equation where a = 2.461 Å is the lattice constant:

$$a_1 = a(1,1,0) \tag{1.25}$$

$$a_2 = a\left(-\frac{1}{2}, \frac{\sqrt{3}}{2}, 0\right)$$
 (1.26)

$$a_3 = a \left( 0, 0, \frac{c}{a} \right) \tag{1.27}$$

The nearest neighbor distance in-plane is 1.421 Å. The  $a_3$  vector is perpendicular to the layers in c-axis where distance value (c) is 6.708 Å, and the interplanar distance is calculated by c/2. The bonding strength between planes is weaker than that found in-plane bonds. The distance between nearest neighbor atoms on a plane is a factor of 2.36, which is larger than the distance between successive planes.

Reciprocal lattice vectors can be given in terms of primitive translation vectors as:

$$b_1 = \frac{2\pi}{\Omega} \left( a_2 x a_3 \right) \tag{1.28}$$

$$b_2 = \frac{2\pi}{\Omega} \left( a_3 x a_1 \right) \tag{1.29}$$

$$b_3 = \frac{2\pi}{\Omega} (a_1 x a_2) \tag{1.30}$$

where  $\Omega$  is the volume of the unit cell and given as  $\Omega = |a_1 \cdot (a_2 x a_3)|$ . By using equation 1.2 and equation 1.4, the primitive translation vectors of the reciprocal lattice of graphite can be found as follows:

$$b_1 = \frac{2\pi}{a} \left( 1, \frac{1}{\sqrt{3}}, 0 \right) \tag{1.31}$$

$$b_2 = \frac{2\pi}{a} \left( 0, \frac{2}{\sqrt{3}}, 0 \right) \tag{1.32}$$

$$b_3 = \frac{2\pi}{a} (0,0,1) \tag{1.33}$$

Thus, the reciprocal lattice of graphite is hexagonal in the first Brilloin zone with the high symmetry points labelled as  $\Gamma$ , K, and H (Figure 1.13d). The High symmetry points of lattice;

$$\Gamma = \{0, 0, 0\} \tag{1.34}$$

$$\mathbf{K} = \left\{ \frac{1}{3}, \frac{1}{3}, 0 \right\}$$
(1.35)

$$M = \left\{ 0, \frac{1}{2}, 0 \right\}$$
(1.36)

$$H = \left\{\frac{1}{3}, \frac{1}{3}, \frac{1}{2}\right\}$$
(1.37)

$$\mathbf{A} = \left\{0, 0, \frac{1}{2}\right\} \tag{1.38}$$



Figure 1.13. Graphite (a) AB- (b) ABC-. (c) Unit cell. It is the equilateral parallelogram (solid lines) with a1 and a2 lattice vectors. (d) The Brillouin zone.



Figure 1.14. Graphite (a) The lattice structure (b) The hexagonal Brillouin zone. A, B letters represents atoms while 1, 2 represents corresponding layers.

The Bernal phase is the most favorable form of graphite. Figure 1.14 represents lattice structure of ABAB sequence shaped by two planes and four atoms in the unit cell where the A and B atoms are inequivalent. Represented four-component (A1-B1 and A2-B2) spinor can be estimated by:

$$\boldsymbol{\psi}_{k}^{\dagger} = \left[ c_{A1,k}^{\dagger}, c_{B1,k}^{\dagger}, c_{A2,k}^{\dagger}, c_{B2,k}^{\dagger} \right]$$
(1.39)

The Hamiltonian for the system can be generally described as:

$$\mathbf{H}_{kin} = \sum_{q} \boldsymbol{\psi}_{q}^{\dagger} \mathbf{H}_{0} \left( q \right) \boldsymbol{\psi}_{q} \tag{1.40}$$

4x4 matrix  $\mathfrak{H}_{\mathbf{0}}(\mathbf{p})$  close to the K point can be calculated by:

$$H_{0}(p) = \begin{pmatrix} \Delta + \frac{\gamma_{5}\Gamma^{2}}{2} & v_{F}pe^{i\phi} & \gamma_{1}\Gamma & -v_{4}v_{F}p\Gamma e^{-i\phi} \\ v_{F}pe^{-i\phi} & \frac{\gamma_{2}\Gamma^{2}}{2} & -v_{4}v_{F}p\Gamma e^{-i\phi} & v_{3}v_{F}p\Gamma e^{i\phi} \\ \gamma_{1}\Gamma & -v_{4}v_{F}p\Gamma e^{-i\phi} & \Delta + \frac{\gamma_{5}\Gamma^{2}}{2} & v_{F}pe^{-i\phi} \\ -v_{4}v_{F}p\Gamma e^{-i\phi} & v_{3}v_{F}p\Gamma e^{i\phi} & v_{F}pe^{i\phi} & \frac{\gamma_{2}\Gamma^{2}}{2} \end{pmatrix}$$
(1.41)

In the matrix,  $v_{\mathfrak{g}} = \frac{\gamma_3}{\gamma_0}$  and  $v_{\mathfrak{q}} = \frac{\gamma_4}{\gamma_0}$ , and  $v_{\mathfrak{F}} p e^{i\mathfrak{g}}$  expressions come from the in-plane graphene dispersion. Hopping terms regard to nearest neighboring planes are different depending on the pair of atoms:  $\gamma_1(A \leftrightarrow A)$ ,  $\gamma_2(B \leftrightarrow B)$ , and  $\gamma_2$  and  $\gamma_5$ . They denotes a hopping between next nearest plane for B,(A) atoms. Thus,  $\Delta$ 

denotes the difference in on-site energies of atoms since they have different environments.

$$M_{1}(p) = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & e^{-i\phi} & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & e^{i\phi} \end{pmatrix}$$
(1.42)

The previous matrix used to perform the gauge transformation  $H_1 = M_1^{\dagger}(\phi) H_0 M_1(\phi)$ which moves all of  $e^{\pm i\phi}$  phase factors to the  $\gamma_{\epsilon}$  term:

$$H_{1}(p) = \begin{pmatrix} \Delta + \frac{\gamma_{5}\Gamma^{2}}{2} & v_{F}p & \gamma_{1}\Gamma & -v_{4}v_{F}p\Gamma \\ v_{F}p & \frac{\gamma_{2}\Gamma^{2}}{2} & -v_{4}v_{F}p\Gamma & v_{3}v_{F}p\Gamma \\ \gamma_{1}\Gamma & -v_{4}v_{F}p\Gamma & \Delta + \frac{\gamma_{5}\Gamma^{2}}{2} & v_{F}p \\ -v_{4}v_{F}p\Gamma & v_{3}v_{F}p\Gamma & v_{F}p & \frac{\gamma_{2}\Gamma^{2}}{2} \end{pmatrix}$$
(1.43)

This form clearly shows that the  $\gamma_{\Xi}$  term is responsible for trigonal distertion of the bands and breaking cylindrical symmetry structure. The symmetric/asymmetric combinations of A atoms that generates bonding/antibonding bands can be produced by the matrix:

$$M_{2} = \begin{pmatrix} 1/\sqrt{2} & 0 & -1/\sqrt{2} & 0 \\ 0 & 1 & 0 & 0 \\ 1/\sqrt{2} & 0 & 1/\sqrt{2} & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$
(1.44)

Then these bands are permuted with the matrix:

$$M_{3} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & -1 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & -1 \end{pmatrix}$$
(1.45)

Next, the transformed Hamiltonian  $H_2 = M_3^{\dagger}M_2^{\dagger}H_1M_2M_3$  becomes:

$$H_{2} = \begin{pmatrix} \Delta + \frac{\gamma_{5}\Gamma^{2}}{2} + \gamma_{1}\Gamma & 0 & (v_{4}\Gamma - 1)v_{F}p/\sqrt{2} & (v_{4}\Gamma - 1)v_{F}p/\sqrt{2} \\ 0 & \Delta + \frac{\gamma_{5}\Gamma^{2}}{2} + \gamma_{1}\Gamma & (1 + v_{4}\Gamma)v_{F}p/\sqrt{2} & -(1 + v_{4}\Gamma)v_{F}p/\sqrt{2} \\ (v_{4}\Gamma - 1)v_{F}p/\sqrt{2} & (1 + v_{4}\Gamma)v_{F}p/\sqrt{2} & \frac{\gamma_{2}\Gamma^{2}}{2} & v_{3}v_{F}p\Gamma e^{-3i\phi} \\ (v_{4}\Gamma - 1)v_{F}p/\sqrt{2} & -(1 + v_{4}\Gamma)v_{F}p/\sqrt{2} & v_{3}v_{F}p\Gamma e^{-3i\phi} & \frac{\gamma_{2}\Gamma^{2}}{2} \end{pmatrix} (1.46)$$

This matrix is the overall gauge transformation of a Slonczewski-Weiss-McClure model for graphite which is generally written as:

$$H_{SWMC} = \begin{pmatrix} E_{1} & 0 & H_{13} & H_{13}^{*} \\ 0 & E_{2} & -H_{23} & -H_{23}^{*} \\ H_{13}^{*} & H_{23}^{*} & E_{3} & H_{33} \\ H_{13} & -H_{23} & H_{33}^{*} & E_{3} \end{pmatrix}$$
(1.47)

where

$$E_1 = \Delta + \gamma_1 \Gamma + \frac{\gamma_5 \Gamma^2}{2} \tag{1.48}$$

$$E_2 = \Delta - \gamma_1 \Gamma + \frac{\gamma_5 \Gamma^2}{2} \tag{1.49}$$

$$E_3 = \frac{\gamma_5 \Gamma^2}{2} \tag{1.50}$$

$$H_{13} = \frac{1}{\sqrt{2}} \left( -\gamma_0 + \gamma_4 \Gamma \right) e^{i\alpha} \zeta \tag{1.51}$$

$$H_{23} = \frac{1}{\sqrt{2}} \left( \gamma_0 + \gamma_4 \Gamma \right) e^{i\alpha} \zeta \tag{1.52}$$

$$H_{33} = \gamma_3 \Gamma e^{i\alpha} \zeta \tag{1.53}$$

Table 1.1 represents most widely used values for Slonczewski-Weiss-McClure parameters (Brandt, 1988; Chung and Lu, 2002).

**Table 1.1.** Typical values of Slonczewski-Weiss-McClure parameters.

| Yo   | γ1    | Yz     | γ <sub>s</sub> | Ye    | Υ <sub>5</sub> | ¥6=Δ  | $\epsilon_F$ |
|------|-------|--------|----------------|-------|----------------|-------|--------------|
| 3.16 | 0.39  | -0.02  | 0.315          | 0.044 | 0.038          | 0.008 | -0.024       |
| 3.12 | 0.377 | -0.020 | 0.29           | 0.120 | 0.0125         | 0.004 | -0.0206      |

These common parameters show that in the Brilloin zone electrons and holes are near to K and H points, respectively. These electron and holes pockets are mainly generated by coupling of  $\gamma_2$  in the tight binding model resulting with a hopping among B atoms of next close planes. This process involves a hopping of a distance to maximum 7 Å.

Comparison of deriving Slonczewski-Weiss-McClure parameters for 2D graphene and bulk graphite is a major focus in graphene related studies. Studies suggested an important difference between the graphite and bilayer graphene based on the analysis of Ramanscattering and a number of *ab initio* calculations (Zhang et al., 2008). Yet, these theoretical studies does not include a clear discussion of the Slonczewski-Weiss-McClure parameters.

#### **1.3.3** Electronic properties of Bilayer Graphene

As a nanomaterial, bilayer graphene consists of two graphene sheets. It is a system intermediate between monolayer graphene and graphite. Bilayer graphene can be obtained in three forms: AA stacking, AB (or Bernal phase) stacking, and twisted bilayer. AA stacking form is the simplest structure where each carbon atom of the second layer is placed exactly above the aligned atom of the first carbon sheet (Liu et al., 2009). AB stacking form is the most stable structure where half of the carbon atoms of the top layer are above the aligned carbon atoms of the lower layer while other atoms lie above the centers of the lower-layer hexagons (Rozhkov et al., 2016). Twisted bilayer graphene is also a stable structure where the top carbon layer is rotated with respect to the lower layer by  $\theta$  angle (Lopes dos Santos, Peres and Castro Neto, 2007).



Figure 1.15. Lattice structure of the graphene bilayer.

Bernal (AB) stacking graphene (Figure 1.15) consists of two coupled graphene layers of carbon atoms — each of them are in the honeycomb lattice structure. These two planes have inequivalent sites namely A1-B1 and A2-B2 on the graphane layers. Since A, B atoms are equivalent in their physical properties with inequivalent layers, it gives the advantage to evaluate two layers together. The

aforementioned A1-B1 and A2-B2 notations are also valid for tight bonding electronic model of bilayer graphene. So, using the four-component spinor (equation 1.30) and Hamiltonian matrix (equation 1.32) defined for the graphite with  $\Gamma = 1$  and  $\gamma_{\Xi} = \gamma_{\Xi} = 0$  parameters lead to:

$$H_{0}(p) = \begin{pmatrix} \Delta & v_{F} p e^{i\phi} & t_{\perp} & -v_{4} v_{F} p e^{i\phi} \\ v_{F} p e^{-i\phi} & 0 & -v_{4} v_{F} p e^{-i\phi} & v_{3} v_{F} p e^{i\phi} \\ t_{\perp} & -v_{4} v_{F} p e^{i\phi} & \Delta & v_{F} p e^{-i\phi} \\ -v_{4} v_{F} p e^{i\phi} & -v_{4} v_{F} p e^{-i\phi} & v_{F} p e^{i\phi} & 0 \end{pmatrix}$$
(1.54)

Two-dimensional bilayer graphene system is only relative to the atomic positions; therefore, hopping term between A1(B1) and A2(B2) atoms are local in real space. Thus, the  $t_{\perp}$  constant in momentum space is defined for Hamiltonian matrix. The hopping term,  $B1 \rightarrow A1$  [A1  $\rightarrow B1$ ], in graphene improves to the factor  $\zeta(k)\zeta^*(k)$ ], where  $\zeta(k)$  defined as:

$$\zeta(k) = -t \sum_{k} e^{ik, \delta_{i}} = -t e^{ik_{x}a/2} \left[ 2\cos\left(\frac{k_{y}a\sqrt{3}}{2}\right) + e^{i3k_{x}a/2} \right]$$
(1.55)

The geometrical role of A and B atoms alternate between planes 1 and 2, so  $A2 \rightarrow B2 \ [B2 \rightarrow A2]$  hopping gives rise to the factor  $\zeta(k)[\zeta^*(k)]$  in Fourier space. The opposite direction in the  $B1 \rightarrow B2$  hopping associates with  $v_3\zeta^*(k)$  factor where  $v_3 = \frac{v_3}{0}$ . Here, the hopping energy is  $\gamma_3$  and  $\gamma_1 = 0$ . Likewise,  $B1 \rightarrow A2$  hopping direction similar to  $B1 \rightarrow A1$  hopping leads to  $v_4\zeta(k)$  term along with  $B1 \rightarrow A2$  hopping. Therefore the full tight-binding Hamiltonian matrix becomes:

$$H_{\iota,b}(k) = \begin{pmatrix} \Delta & \zeta(k) & t_{\perp} & -v_{4}\zeta^{*}(k) \\ \zeta^{*}(k) & 0 & -v_{4}\zeta^{*}(k) & v_{3}\zeta(k) \\ t_{\perp} & -v_{4}\zeta(k) & \Delta & \zeta^{*}(k) \\ -v_{4}\zeta(k) & v_{3}\zeta^{*}(k) & \zeta(k) & 0 \end{pmatrix}$$
(1.56)



**Figure 1.16.** Dispersions in the bilayer graphene. Four bands near K-point labeled by the numbers 1 to 4 in the bilayer graphene system.

If the expressions in the Equation.1.55 expands close to the K point, the characteristic behaviour of the bands obtained from this equation force band 3 and band 4 to move away from the Dirac point by the energy of  $t_{\perp}$  (Figure 1.16). In addition, the potential energy parameter V can be included in the planes of bilayer graphene. That term generally generated by an electric field perpendicular to layers. Voltage applied systems has a gap in the spectrum unlike natural gapless bilayer graphene system. When V parameter is included to hoppings from the tight-binding picture by expanding matrix in Equation 1.46 close to the K-point, then the matrix becomes:

$$H_{0}(p) = \begin{pmatrix} \frac{V}{2} + \Delta & \sigma & t_{\perp} & -v_{4}\sigma^{*} \\ \sigma^{*} & \frac{V}{2} & -v_{4}\sigma^{*} & v_{3}\sigma \\ t_{\perp} & -v_{4}\sigma & -\frac{V}{2} + \Delta & \sigma^{*} \\ -v_{4}\sigma & v_{3}\sigma^{*} & \sigma & -\frac{V}{2} \end{pmatrix}$$
(1.57)

Two of the bands are moved away from the Dirac point by inter plane hopping term energy with  $V \ll t_{\perp}$ . Thus, the application of tranverse voltage opens a gap in the spectrum. The existence of this gap was also experimentally confirmed (Rozhkov et al., 2016). In bilayer graphene studies, tailoring this gap attracts attention from both theoretical and experimental studies. The possibility of obtaining semiconductor graphene with controlled gap is a promising area with a wide range of applications.

#### 1.4 Optical Properties of Graphene Structures

The optical properties of graphene-based structures have been attracted by researchers due to the discovery of outstanding optical properties of graphene. Considering the optical properties of graphene, they are the most promising material for future technologies as optoelectronic devices. It is obvious that most of graphene related studies have been focused on electronic behaviours of graphene like structures and less information is available for optical properties of these materials. However, demonstration of the universal conductivity at different energy levels, increased the value of experimental and theoretical studies regarding to optical behaviours of graphene systems. So, in order to understand these extraordinary optical properties of graphene based systems, optical conductions and transitions should be discussed in details.

#### 1.4.1 Optical conductance of graphene structures

The optical conductance of single layer graphene can be defined as:

$$\sigma = \sigma_{\pi - \pi^*} + \sigma_{\sigma - \sigma^*} \tag{1.58}$$

where  $\sigma_{\pi-\pi^*}$  and  $\sigma_{\sigma-\sigma^*}$  terms indicate conductance contributions from interband transitions of  $\pi - \pi^*$  and  $\sigma - \sigma^*$ . The transitions between  $\sigma$  and  $\pi$  bands are forbidden due to the wavefunction symmetry. Optical conductance can be shown as a complex number for the transitions:

$$\sigma_{\pi-\pi^*} = \sigma_{r1} + i\sigma_{i1} \tag{1.59}$$

The real and imaginary conductivity of monolayer graphene is represented as:

$$\sigma_{r1} = \sigma_0 \left[ \frac{1}{2} + \frac{\left(\hbar\omega\right)^2}{72\xi^2} \right] x \left( \tanh\frac{\hbar\omega + 2\mu}{4k_BT} + \tanh\frac{\hbar\omega - 2\mu}{4k_BT} \right)$$
(1.60)

$$\sigma_{i1} = \sigma_0 \left[ \frac{\mu}{\hbar\omega} \frac{4}{\pi} \left( 1 - \frac{2}{9} \frac{\mu^2}{\xi^2} \right) - \log \frac{|\hbar\omega + 2\mu|}{\hbar\omega - 2\mu} \left( \frac{1}{\pi} + \frac{1}{36\pi} \left( \frac{\hbar\omega}{\xi} \right)^2 \right) \right]$$
(1.61)
In thight bonding model  $\xi$ , the closest neighbor hopping parameter value for unhybridized  $p_z$  electrons is approximately 3 eV that  $\mu$  is the chemical potential according to the Dirac point,  $r_0$  is the universal optical conductance in the l,m,t of massless Dirac band structure, and  $\hbar \omega$  is the incident photon energy:

$$\sigma_0 = \frac{\pi}{2} \frac{e^2}{h} = \frac{e^2}{4\hbar} \sim 6.08 \, x 10^{-5} \Omega^{-1} \tag{1.62}$$

In the case of low doping ( $\mu=0$  and T=300 K and  $\hbar\omega=550$ nm),  $\sigma_{i1} = 1.016\sigma_0$  and  $\sigma_{i1}$  is calculated approximately zero. When  $\sigma_{\pi-\pi^*}$  is nearly equal to  $\sigma_0$ , the optical conductance of graphene at  $\pi - \pi^*$  transitions is almost identical to the universal optical conductance.

The  $\sigma - \sigma^*$  transitions in the optical conductance results with a phase shift of optical waves, since the energy gap is larger than visible photon energies. For multilayer graphene structures,  $\sigma - \sigma^*$  transitions have more critical role.

The  $\sigma - \sigma^*$  bands can be modelled via the dielectric constant as:

$$n = \sqrt{\frac{\partial}{\partial_0}} = \sqrt{1+x} \tag{1.63}$$

In Equation 1. 63, the susceptibility term  $x = \frac{e^2 N}{mc_0 \omega_0^2} \frac{\omega_0^2}{\omega_0^2 - \omega^2 + j\omega\Delta\omega}$  defined for a

two-level system where N is the number of charges, and  $\omega_0$  is resonant angular frequency. It is more convenient to use Lorentzian function for better estimation of far below bands since the  $\sigma - \sigma^*$  transitions have energy bands for visible photons. So, for a large detunning, the susseptibility term equation can be simplified as:

$$x = \frac{e^2}{m \dot{o}_0} \frac{\hbar^2}{{\dot{o}_0}^2 - {\dot{o}}^2} N$$
(1.64)

If  $\sigma$  defines as a function of *x*,

$$\sigma_{\sigma-\sigma^*} = i\omega \delta_0 x \delta = i \frac{e^2}{m} \frac{\partial \hbar}{\partial_0^2 - \partial^2} N \delta$$
(1.65)

where  $\delta$  represents thickness of graphene, and *m* represents the bare electron mass. The charge density of  $\sigma - \sigma^*$  bands must be taken into account for determination of *N* $\delta$ . From the calculations of primitive unit cell area, *N* $\delta$  term can be calculated as

$$N\delta = \frac{2}{|a_1 x a_2|} = \frac{2}{\frac{\sqrt{3}}{2}a^2} = 3.82 x 10^{19} m^{-2}$$
(1.66)

Therefore, the contributions of  $\sigma - \sigma^*$  transitions to the conduction band is  $\sigma_{\sigma - \sigma^*} = 0.85 r_0 i$ . So, the total conductance of graphene is:

$$\sigma = \sigma_{\pi - \pi^{*}} + \sigma_{\sigma - \sigma^{*}}$$
  

$$\sigma = (\sigma_{0} + 0i) + (0 + 0.85r_{0}i)$$
(1.67)  

$$\sigma = \sigma_{0} [1 + 0.85i]$$

## 1.4.2 Refractive Index

As an optical phenomena, the refractive index is the measure of light-bending ability of a specific medium. The optical properties of graphene-based structures can be described by the refractive index measurements. So, the bulk graphite can be used in order to model the optical response of graphene by the means of refractive index.

The refractive index of graphene can be defined from the optical conductivity, displacement  $\vec{D}$ , magnetic field  $\vec{H}$ , and surface current  $\vec{I}$  in the Maxwell equations:

$$\vec{D} = \dot{o}_0 \vec{E} + \vec{P} = \dot{o}_0 \dot{\rho}_r \vec{E} \tag{1.68}$$

$$\overline{J} = \frac{\sigma}{d}\overline{E}$$
(1.69)

$$\nabla x \vec{H} = \frac{\delta \vec{D}}{\delta t} = \vec{J} + \dot{o}_0 \frac{\delta \vec{E}}{\delta t}$$
(1.70)

 $\vec{P}$  indicates the dielectric polarization,  $\epsilon_0$  represents free space permittivity, and  $\epsilon_r$  shows relative material permittivity. By the substitution of Equation 1.50, it can be simplified as following when  $\epsilon_r = 1 + \sigma / j_{\omega} \epsilon_0$ :

$$\frac{\sigma}{\delta}\vec{E} + i\omega e_0\vec{E} = i\omega e_0e_r\vec{E}$$
(1.71)

Then, the definition of refractive index of the medium is  $n = \sqrt{\varepsilon_r \mu_r}$  which reveals the transmission efficiency of the medium. When linear susceptibility  $(\mu_r)$  equals to zero then the refractive index (n) is  $\sqrt{\varepsilon_r}$ . Therefore, the refractive index of graphene

becomes 
$$n = \sqrt{\varepsilon_r} = \sqrt{1 + \sigma_{j\omega\varepsilon_0}}$$
.

The optical character of graphene is directly related to its honeycomb hexagonal lattice structure of carbon atoms. The relation of linear energy dispersion on graphene layer enables the distribution of surface plasmons. They are charge density waves moving at the graphene interface and electric materials. This allows gating the materials easily by varying their plasmatic states, broadly. In other words, graphene is a feasible material for plasmonic applications from terahertz to mid point infrared frequencies due to flexible plasma states. Structural gating consists of two varieties (*viz.* back-gating and top-gating). Both of them can accomodate the carrier charge concentrations of graphene with proper modifications. The tuned carrier concentration (N) with an applied voltage of V can be defined as:

$$N = \frac{\dot{o}_{DC} \left| V_G - V_{CNP} \right|}{ed} \tag{1.72}$$

where  $\epsilon_{DC}$  represents the dielectric constant,  $V_G$  represents the voltage applied between graphene and back-gate, and  $V_{CNP}$  is the voltage of the charge neutrality point. The strength of the tuning of graphene depends on its surrounding dielectric environment. So, it is important to examine the range of dielectric properties for graphene.

#### **1.4.3** Optical properties of bilayer graphene

Bilayer graphene shows similar properties with monolayer graphene such as high electrical mobility, high mechanical strength, flexibility and chemical stability. On the other hand, the structure difference between bilayer and monolayer graphene leads to a plethora of different electronic and optical properties. The most notable differences are the ability to open a band gap and the infrared activity of the  $\Gamma$ -point optical phonon (Mak et al., 2009; Mccann and Koshino 2013; Xia et al., 2010; Zhang et al., 2009).

The gamma-point optical phonon in prinstine bilayer graphene has a small electrical dipole moment. That, it can be detected in infrared absorption spectrum (Cappelluti, Benfatto and Kuzmenko, 2010). However, the corresponding phonon has zero electrical dipole for monolayer graphene, since A- and B- sublattices are equivalent. In addition, the bilayer graphene systems consist of only one type of atoms, and it has a dipole moment for the lattice vibration, suprisingly. The dipole moment in the  $E_u$  vibrational mode comes from the inequivalent A1(A2) and B1(B2) atoms. The vibrations between the atoms replacing in one direction on dimer site and the atoms replacing in the other direction on non-dimer site creates a macroscopic dipole moment with coupling of light. The  $E_g$  vibrational mode of prisitine bilayer graphene has zero dipole moment. In addition, asymmetric doping in upper and lower layers of graphene cause  $E_g$  mode to have a dipole moment and to become IR-active, as well (Cappelluti et al., 2012; Cappelluti, Benfatto and Kuzmenko, 2010). The vibrational phonon modes of bilayer graphene structures are given in the Figure 1.17a.

The IR-activity of the optical phonon in bilayer graphene structure can be detected on IR-spectroscopy. The phonon IR-spectra of bilayer graphene depends mostly on the Fermi energy and electric field across two layers of graphene. Figure 1.17b shows the contribution of the phonon at different gates to the optical conductivity of bilayer graphene(Cappelluti et al., 2012; Cappelluti, Benfatto and Kuzmenko, 2010; Kuzmenko et al., 2009; Tang et al., 2010). Both shape and intensity of the peak depend on the gate voltage ( $V_g$ ). Phonon peak is nearly invisible at  $V_g$ = -30 V. However, the phonon gains intensity with the increase in doping of

both electron and hole sites, and it creates Fano asymmetric line-shape (Fano, 1961). In addition, the magnitude of  $E_u$  vibrational mode dipole moment is smaller then those of typical spectra. This can be explain by charged phonon theory where dipole moment and IR-activity is strengthened by charge carriers. The Fano line-shape in the spectra can be explained by the optical transition through phonon excitation which causes a wide optical absorption spectra from electronic transitions and reveals a Fano resonance system(Fano, 1961).



**Figure 1.17.** Tunable Fano resonance in back-gated bilayer graphene. a) Sketch of the Eu phonon and Eg phonon modes. b) Extracted optical conductivity in the phonon region for different gate voltages. c, d) The expanded view of the phonon spectra in the electron and hole doping regime.

## **1.5** Tailoring the graphene-based structures

Graphene possess zero band gap that weakens its potential in the field of semiconductors. It increases the number of studies on functionalization of graphene structures and its derivatives with organic and inorganic molecules. To modify electronic structure of graphene based systems, doping, intercalation and striping would be useful.

#### **1.5.1** Nitrogen Doping

One of the most widely used method for tuning and controlling the electronic properties of graphene-based systems is doping with heteroatoms. For subsitutional doping of graphene, boron and nitrogen are the best candidates. They both have atomic sizes, hole acceptor capabilities and electron donor capabilities similar to carbon atoms in graphene. Doping with boron causes graphene to behave like a ptype material whereas doping with nitrogen causes graphene to behave like an n-type material. In addition, nitrogen doping results a direct substitution of carbon atoms in the lattice structure due to the one extra electron in nitrogen atom.



**Figure 1.18.** Schematic representation of different types of N atoms in graphene; graphitic [red atoms (bulk), yellow (edge)], pyridinic (green atoms) and pyrrolic N (blue).

Nitrogen doping of graphene provides three different bonding configurations (Figure 1.18); pyridinic nitrogen, pyrrolic nitrogen and the graphitic nitrogen. In pyridinic N doping, each nitrogen atom is bonded to two carbon atoms by donating one  $\pi$ -electron to the  $\pi$  system. In the pyrrolic N doping, nitrogen atoms are incorporated into the heterocyclic rings where nitrogen atom is bonded to two carbon atoms contributing two  $\pi$ -electrons to the  $\pi$  system. Finally, in graphitic N doping, the nitrogen atoms replaced with carbon atoms in the graphene plane. Graphitic N-doped configuration can change the local density state around the Fermi level which may play an important role in tailoring the electronic properties of graphene-based systems.

Nitrogen doped graphene was first synthesized by Wei in 2009. Later, extraordinary properties of nitrogen functionalized graphene have been explored. There are several potential applications proposed for using nitrogen functionalized graphene systems such as development of lithium batteries, hydrogen storage technologies, biosensors and catalysts in oxygen reduction reactions. In addition to the experimental studies, many theoretical studies have also been dedicated to the nitrogen-doping graphene with a focus of turning it to semiconductor materials. The spin-polarized band structures from the studies for different nitrogen doping models is given in Figure 1.19. It can be seen that, pristine graphene shows zero band gap with 6V vacancies where the Dirac point close to K point is stable. However, in the graphitic N-doping band structure, there is ~0.04 eV change at Fermi level which causes an opening in band gap.



Figure 1.19. Calculated band structures. (a) ideal graphene (b) graphitic N-doped graphene.

Thus, nitrogen doping of graphene-based systems provide the possibility of tunning the band gap of graphene. Converting the electronic properties from semimetal to semiconductor by increasing the number of dopants allows applications in wide range of electronic devices.

### **1.5.2** Metal Intercalation

Intercalation takes place by inserting different species between two dimensional graphene layers. It is an effective way to tailor electronic properties of these systems. Metal interactions with monolayer graphene and bilayer graphene have been investigated by both experimental and theoretical aspects. Novoselov et al. continued their studies with exploring surface interactions between one-atom thick graphene and Au, Fe, and Cr metals by using scanning transmission electron microscopy (Zan et al., 2011). According to Takashi and co-workers intercalation takes place when metal atoms are inserted between two graphene layers. They experimentally synthesized Li-intercalated bilayer graphene on SiC(0001) substrate and characterized the substance by low-energy electron diffraction (LEED) and angle-resolved photoemission spectroscopy (ARPES) (Sugawara et al., 2011). Their studies led the development of nano-scale lithium ion batteries. In 2014 Wang and co-workers investigated the energetics of Li, Na, K alkali metal intercalations between graphite layers by Van der Waals density functionals. Their study showed that the intercalation of alkali metals induces a small increase in bond lengths between two carbon atoms neighboring to alkali metals without any breakage of hexagonal symmetry (Wang, Selbach and Grande, 2014). Two years ago, superconductivity in calcium intercalated bilayer graphene was suggested by using in situ electrical transport measurements by Hasegawa and co-workers (Ichinokura et al., 2016). The development of computational tools for density functional theory calculations have been showed significant efforts in nanomaterial science field. However, the interactions of transition metal in bilayer graphene systems has not been investigated in details using computer based systems. Nakada and Ishii investigated the decorations of alkali, alkali earth and transition metals on graphene structure by using DFT calculations. In most cases, the studies showed that metal atom tends to locate on the hexagonal adsorption site (H) while some of the metal atoms may prefer bridge (B) or top (T) adsorption site of hexagonal structure (Figure 1.20) (Nakada, Torobu and Ishii, 2012).



Figure 1.20. Three adsorption sites on the graphene surfaces. H: hexagonal, B: bridge and T: top.

For example, the intercalation of transition metal chromium was reported as most stable form when it interacts on the hexagonal (H) adsorption site of graphene

sheets (Bui et al., 2013). The sandwich like graphene-Cr-graphene structure is prensented in Figure 1.21. Giovanetti reported the interactions between graphene and different transition metal atoms (Al, Ag, Cu, Au, and Pt). Their results showed that weaking the graphene-metal bond causes approximately 0.5 eV shift in the Fermi level in DFT calculations. The interactions of nickel and copper on graphene was investigated theoretically by Xu and Buehler (Xu and Buehler, 2010). They demonstrated that the adhesive energy of nickel-graphene was much stronger than energy of copper-graphene. Decorating transition metal atoms on graphene layers reveals magnetic behaviour which is the main topic of spintronics. The spintronic applications of graphene-ferromagnet interfaces of Co(111) and Ni(111) were explained by Maasseen and co-workers by using DFT calculations. They reported that spin effeciencies of Co(111) and Ni(111) as 80% and 60%, respectively. In addition, Liao reported the stable structure configurations of scandium- and titaniumintercalated bilayer graphene structures using first-principle calculations (Liao et al., 2016). In general, the effect of transition metal intercalation on graphene-based systems alters the electronic and magnetic behaviour of the defective system (Figure 1.22) (Zhang et al., 2017). Recently, the structures and electronic properties of VB transition metals intercalated with bilayer graphene have been studied. Adding some VB metals (vanadium, niobium and tantalum) between two graphene layers can lead to control the band structure of bilayer graphene. In summary, this study showed that tuning of the electronic band gap between valence and conduction bands results with appearence of a Dirac cone only in vanadium-intercalated bilayer graphene (Pakhira, Lucht and Mendoza-Cortes, 2018).



**Figure 1.21.** The sandwich like graphene-Cr-graphene structure (Zhang et al., 2017).



Figure 1.22. The effect of transition metal atoms on defective BLG (TM@dBLGs, TM = Ti-Fe) (Zhang et al., 2017).

In conclusion, bilayer graphene shows high potential for nanomaterial related research and applications. In this study, we aimed to explore electronical and optical properties of bilayer graphene systems by tailoring the band gap structure. This study is motivated to fulfill the gap in the literature by presenting valuable data on transition metal-intercalated graphene systems. We calculated structural properties of N-doped bilayer graphene intercalated with rhenium, tungsten, osmium and their oxides. The main motivation of this study to increase the understanding of bilayer graphene nanoparticles to guide further experimental approaches on nanocatalyst synthesis.

# 2. AIM AND SCOPE OF THE STUDY

Graphene is one of the most studied topic due its remarkable properties. Over the past decade, graphene research has promised potential applications especially for high efficient batteries, solar cells, corrosion prevention systems, electronical devices and medicinal technologies.

There are several studies focusing on bilayer graphene which shows similar properties to graphene. The results suggest that bilayer graphene shows superior characteristics when compared to mono layer graphene. The richer electronic structure in bilayer graphene give rise to many outstanding phenomena with the potential applications for modifying electronic states through interlayer-coupling.

Tailoring the band gap of bilayer graphene structure is crucial for investigation of electronic and optical properties of such systems. There are several methods such as applying an electric field, heteroatom doping and metal intercalation to modify electronic band gap. The main object of this thesis study is to tune electronic properties of bilayer graphene systems by intercalation of transition metal atoms between graphene layers by using *ab inito* first principle density functional theory calculations. There are limited number of studies on this subject since the investigations on metal-intercalated graphene systems have started just a decade ago. The data produced in this study will contribute understanding the effects of inserting transition metals between bilayer graphene sheets.

In this study, first principles *ab initio* density functional computituonal methods were used for exploring the electronic structure of bilayer graphene systems. To modify electronical and optical properties of bilayer graphene systems, nitrogen doping and intercalation of some rare transition metal atoms (rhenium, tungsten and osmium) between layers of graphene were applied to computational calculations. The objectives of this study are the following:

- 1. Building of bilayer graphene structures and geometry optimizations
- 2. Calculations of bond lengths and total energies
- 3. Analysing the molecular dynamic simulations

- 4. Analysing the band structures and effective masses of bilayer graphene systems
- 5. Analysing the electronic properties of bilayer graphene systems by the means of electron density, electron difference density and electron localization density.
- 6. Analysing the optical properties of bilayer graphene systems by the means of adsorption, refractive index, dielectric constant and phonon energy.



# **3. MATERIALS AND METHODS**

There are two common approaches to derive the electronic spectra of graphene systems, as well as many other materials: the "*ab-initio*" Density Functional Theory (DFT) calculations and the tight-binding approximation (Rozhkov et al., 2016). In many cases, hopping amplitudes in tight-binding approximations are calculated by DFT method.

In this study, the Atomistic-ToolKit (ATK) (version 2017.2) (Atomistix Toolkit version 2017.2 2017) software package (Synopsys QuantumWise A/S) was utilized to carry out the *ab initio* DFT calculations for geometry optimizations and investigations of electronic and optical properties for transition metal (Re, W, Os) incalated BLG systems. First-principles DFT calculations were performed by using generalized gradient approximation (GGA) for the exchange–correlation interactions. The BPW91 basis set was used for DFT calculations with linear combination of atomic orbitals (LCAO) calculator while setting electron temperature 300 K, k points (3, 3, 1), mesh cutoff 75 Hartree.

In the following subsections, the Density Functional theory (DFT) and Quantumwise ATK-VNL Nanolab and its related functional theory will be evaluated to understand the methodology about the computational studies in this work.

### **3.1 Density Functional Theory**

As an advanced theoretical formalism, Density Functioal Theory is mainly based on the theories stated by Hohenberg and Kohn in 1964 (Hohenberg and Kohn, 1964). Among the importance of these theorems, DFT has become more popular in practise with the Kohn and Sham approach (Kohn and Sham, 1965).

#### 3.1.1 The Hohenberg-Kohn theorems

Density Functional Theory is mainly based on the Hohenberg-Kohn (HK) theorems. The statement of the first HK theorem is the replacement of wavefunction by the ground state electron density with no loss of information. The second theorem is the equivalent of the variational principle in standard quantum mechanics. Before the giving detailed explanation for two theorems, it is convenient to give the Hamiltonian. First two terms are universal and the third term defines the Hamiltonian as:

$$H = T + V_{ee} + V_{ext} \tag{1.73}$$

The first Hohenberg-Kohn theorem states that the external potential of any system  $\vec{V}_{exc}(r)$ , is incomparably determined by the particle density of the ground state,  $\rho_0(r)$ . Since the Hamiltonian is mainly specified by the external potential, it can be said that it is determined by ground state electron density. In other words, Hohenberg and Kohn proved that the electron density is the main variable where the external potential energy defines uniquely the charge density and vice versa. Also ground state density is a basic variable to obtain the information about the electron densities.

The Second HK theorem is the "Variational Principle" which can be expressed only in terms of the charge density:

$$E_{v}\left[\rho(\vec{r})\right] = F\left[\rho(\vec{r})\right] + \int V_{ext}(\vec{r})\rho(\vec{r})d\vec{r} \ge E_{0}$$
(1.74)

$$F[n(r)] = T_s[n(r)] + E_H[n(r)] + E_{xc}[n(r)]$$
(1.75)

$$E_{H}\left[n(r)\right] = \frac{1}{2} \iint \frac{n(r_{1})n(r_{2})}{|r_{1} - r_{2}|} dr_{1} dr_{2}$$
(1.76)

As presented in the equations, the second HK theorem states that if and only if the input density is  $\rho_0$ ,  $E_{\nu}[\rho(\vec{r})]$  delivers the lowest energy.

## 3.1.2 Kohn-Sham Equation

Kohn and Sham described a non-interacting reference system in which the electrons have no interaction and live in an external potential. Thus, their ground state electron density is equal to the electron density of interacting system. This system is called as Kohn-Sham system where the electrons refer as the Kohn-Sham electrons and the external potential refers as Kohn-Sham potential.

For a such system with zero interacting electrons, Slater determinant is the right wave-function and the kinetic energy can be defined as:

$$T_s = -\frac{1}{2} \sum_{i}^{N} \varphi_i \left| \nabla^2 \right| \varphi_i$$
(1.77)

For non-interacting reference system where the electrons moves only in an effective potential  $V_s(\vec{r_i})$ , the Hamiltonian can be written as:

$$H_{s} = -\frac{1}{2} \sum_{i}^{N} \nabla_{i}^{2} + \sum_{i}^{N} V_{s}\left(\vec{r_{i}}\right)$$
(1.78)

The Hamiltonion operator  $H_s$  includes no interaction between electrons for that reason it defines a non-interacting system. For each specific orbital we have:

$$f^{RS} = -\frac{1}{2}\nabla^2 + V_s(\bar{r})$$
(1.79)

The  $f^{KS}$  operator which is a one-electron Kohn-Sham operator can be defined as:

$$f^{KS} = -\frac{1}{2}\nabla^2 + V_s(\vec{r})$$
(1.80)

So for any specific orbital in a real system we can have:

$$\left[-\frac{1}{2}\nabla^{2}+V_{H}(r)+V_{XC}(r)+V_{ext}(r)\right]\varphi_{i}(r)=H_{KS}\varphi(r)=\varepsilon_{i}\varphi_{i}(r) \qquad (1.81)$$

$$V_{KS}(r) = \int \frac{n(r')}{|r-r'|} dr + V_{XC}(r) + V_{ext}(r)$$
(1.82)

$$V_{H}(r) = \int \frac{n(r')}{|r-r'|} dr', \ V_{XC}(r) = \frac{\delta Exc}{\delta n(r)}, \ n(r) = \sum_{i=1}^{N} \left| \varphi_{i}(r) \right|^{2}$$
(1.83)

In these equations the exact kinetic energy of the Khon-Sham reference system is used as that of the real, interacting one. The true kinetic energy of the interacting system is not equal to the kinetic energy in the non-interacting system. Also the residual part has been added to the exchange-correlation energy  $E_{xc}$  which contains a number of unknowns. The  $V_{xc}$  as the exchange-correlation potential can be defined as the derivative of  $E_{xc}$  with respect to n(r).

As a result, the Kohn-Sham approach is an exact theory in principle. The exchange-correlation energy  $E_{xc}$  has a good approximation, and the calculation is easier than the Hartree-Fock approach.

#### **3.2** Quantumwise ATK-VNL Nanolab and its related functional theory

Atomistix ToolKit (ATK) and Virtual Nanolab (VNL) are included in a commercial software package by Quantumwise Snopsis Inc. that offers unique capabilities for simulating electrical transport properties of nanodevices on the atomic scale. The program scripted in Python and based on an open architecture that integrates a with a graphical user interface. Quantum ATK-VNL uses both accurate first-principles density functional theory and fast semi-empirical methods and classical potentials. Since 2006, the software used by many research laboratories, governments and companies with more than a thousand scientific publication. That numbers reveals that Quantumwise ATK-VNL is a useful tool for investigation of electronic and optical properties of nano-scale structures.

In this study, we mainly used the classical DFT to calculate the properties of bilayer graphene nanoclusters. To understand the algoritms in the Quantumwise ATK-VNL, many-body problem should be given by the means of different approximations and methods. These can be listed as Schrödinger Equation, Variational Principle, Born-Oppenheimer Approximation, Mean Field Approach, Hatree-Fock Approximation, and Thomas-Fermi Approach

In the time dependent Schrödinger Equation,

$$-\frac{\hbar^2}{2m}\nabla^2\Psi(\vec{r},t) + V(\vec{r},t)\Psi(\vec{r},t) = i\hbar\frac{\partial\Psi(\vec{r},t)}{\partial t}$$
(1.84)

If potential assumed to be time independent, then the equation becomes as,

$$-\frac{\hbar^2}{2m}\nabla^2\Psi(\vec{r},t) + V(\vec{r},*)\Psi(\vec{r},t) = i\hbar\frac{\partial\Psi(\vec{r},t)}{\partial t}$$
(1.85)

When this equation is solved by separation of variables method,  $\Psi(\vec{r},t) = \varphi(\vec{r}) f(t)$ is inserted to the equation 3.13, and separate sides of equation with different variables become equals to constant *E*. This yields:

$$i\hbar \frac{d}{dt} f(t) = Ef(t) \Rightarrow f(t) = \exp\left(-i\frac{E}{\hbar}t\right)$$
 (1.86)

$$\left[-\frac{\hbar^2}{2m}\nabla^2 + V(\vec{r})\right]\varphi(\vec{r}) = E\varphi(\vec{r})$$
(1.87)

Using equations 3.14 and 3.15, we get the time independent Schrödinger Equation which describes the stationary states. The final form of this equation is shown in Equation 3.16 where Hamiltonian  $H = -\frac{\hbar^2}{2m}\nabla^2 + V(\vec{x})$ .

$$H\varphi(x) = E\varphi(\vec{r}) \tag{1.88}$$

If the state represented by following wavefunction form then, it is called stationary.

$$\Psi(x,t) = \varphi(x) f(t) = \varphi(x) \exp\left(-i\frac{E}{\hbar}t\right)$$
(1.89)

The probability of a finding an electron in x and t can be decribed as  $\|\Psi(x,t)\|^2$  for a stationary state which is time independent.

$$\left\|\Psi(x,t)\right\|^{2} = \left\|\varphi(x)\exp\left(-i\frac{E}{\hbar}t\right)\right\|^{2} = \left\|\varphi(x)\right\|^{2}$$
(1.90)

The first step of solving the Schrödinger Equation is to set up the specific Hamitonian operator for an atom or a molecule system. Then, the eigenfunctions  $\psi_i$ and corresponding eigenvalues  $E_i$  of Hamiltonan operator should be find. Once the eigenfunction is defined, all the properties can be determined by applying the proper operators to the wavefunction. This simple approach is not suitable for the exact solution of Schrödinger Equation for atomic and molecular systems. In this case, the variational principal method offers a solution by systematical approach to the ground state wavefunction  $\psi_0$ . In the principal state for a trial wavefunction  $\varphi$ , the expectation value of  $\overline{H}$  should be even or higher than the true energy of  $\psi_0$ :

$$E[\phi] = \frac{\left\langle \phi \middle| H \middle| \phi \right\rangle}{\left\langle \phi \middle| \phi \right\rangle} \tag{1.91}$$

$$E[\phi] \ge E_0 \tag{1.92}$$

For the many-body system, Hamiltonian can be written as a collection of atoms:

$$H = T_{e} + T_{N} + V_{e-e} + V_{N-N}V_{e-N}$$
(1.93)

$$T_{e} = -\frac{1}{2} \sum_{i} \nabla_{i}^{2}$$

$$V_{e \rightarrow N} = \sum_{i} \left[ \sum_{i} V(\vec{R}_{i} - \vec{r}_{i}) \right]$$

$$V_{e \rightarrow e} = \sum_{i} \sum_{j \rightarrow i} \frac{1}{\left| \vec{r}_{i} - \vec{r}_{j} \right|}$$
(1.94)

$$H\Psi(r_1,...,r_n,R_1,...,R_N) = E_{tot}\Psi(r_1,...,r_n,R_1,...,R_N)$$
(1.95)

This is called as the Born-Oppenheimer approximation where the electrons are treated as quantum particles in the field. It has the advantage of mass difference between electron and nuclei. Nuclei has a greater mass than electron. Thus, the Born-Oppenheimer approximation allows electrons to move in a field of fixed nuclei. Since the nuclei has no motion, the kinetic energy is zero, and the repulsion between nuclei-nuclei is almost a constant. In this case, Hamiltonian can be reduced and called as electronic Hamiltonian:

$$H = T_e + V_{e-e} + V_{e-N} \tag{1.96}$$

Thus, according to the Born-Oppenheimer approximation the Schröinger Equation can be simplied as:

$$H_{elec}\Psi_{elec} = E_{elec}\Psi_{elec} \tag{1.93}$$

The many-body problem is very complicated to get a single wave function. Thus, the mean field approximation is used for complicated calculations. According to the Hartree, in the independent particle model each electron moves in an effective potential which represents the avarege effect of the repulsive interactions and the attraction of the nuclei. So the mean field approxiamation described wavefunction for many-body system as follows:

$$\Psi\left(\vec{r}_{1},...,\vec{r}_{n}\right) = \varphi_{1}\left(\vec{r}_{1}\right)\varphi_{2}\left(\vec{r}_{2}\right)...\varphi_{n}\left(\vec{r}_{n}\right)$$
(1.94)

$$\left[-\frac{1}{2}\nabla^{2} + \sum_{I}V\left(\vec{R}_{I}-\vec{r}_{i}\right) + \sum_{j\neq i}\int\left|\varphi_{j}\left(\vec{r}_{j}\right)\right|^{2}\frac{1}{\left|\vec{r}_{j}-\vec{r}_{i}\right|}d\vec{r}_{j}\right]\varphi_{i}\left(\vec{r}_{i}\right) = \mathcal{E}\varphi_{i}\left(\vec{r}_{i}\right) (1.95)$$

Here the effect of interactions of electrons with each other considered as a whole to make the calculation more simplified.

In the Hatree approximation, electrons are treated as distinguishable particles, but they are indistinguishable fermions. It is known that a set of identical fermions has an antisymmetric wavefunction according to the spin statics. Therefore, when two electrons are exchanged, the sign of wave function must be changed from positive to negative in Hatree-Fock Approximation:

$$\Psi(\vec{r}_1, \vec{r}_2, ..., \vec{r}_j, ..., \vec{r}_k, ..., \vec{r}_n) = -\Psi(\vec{r}_1, \vec{r}_2, ..., \vec{r}_j, ..., \vec{r}_k, ..., \vec{r}_n)$$
(1.96)

Unlike the Hartree approximation, equation 3.28 contains an antisymmetric wavefunction, constructed via Slater determinant of individual orbitals:

$$\Psi\left(\vec{r}_{1},\vec{r}_{2},...,\vec{r}_{n}\right) = \frac{1}{\sqrt{n!}} \begin{vmatrix} \varphi_{\alpha}\left(\vec{r}_{1}\right) & \varphi_{\beta}\left(\vec{r}_{1}\right) & \cdots & \varphi_{V}\left(\vec{r}_{1}\right) \\ \varphi_{\alpha}\left(\vec{r}_{1}\right) & \varphi_{\beta}\left(\vec{r}_{1}\right) & \cdots & \varphi_{V}\left(\vec{r}_{1}\right) \\ \vdots & \vdots & \ddots & \vdots \\ \varphi_{\alpha}\left(\vec{r}_{1}\right) & \varphi_{\beta}\left(\vec{r}_{1}\right) & \cdots & \varphi_{V}\left(\vec{r}_{1}\right) \end{vmatrix}$$
(1.97)

To derive the Hartree equation, the self consisting field equation should be determined as:

$$\left[-\frac{1}{2}\nabla^{2}+\sum_{I}V\left(\vec{R}_{I}-\vec{r}_{i}\right)\right]\varphi_{\lambda}\left(\vec{r}_{i}\right)+\left[\sum_{\mu}\int\varphi_{\mu}^{*}\left(\vec{r}_{j}\right)\frac{1}{\left|\vec{r}_{j}-\vec{r}_{i}\right|}\varphi_{\mu}\left(\vec{r}_{j}\right)d\vec{r}_{j}\right]\varphi_{\lambda}\left(\vec{r}_{i}\right)-$$

$$\left[\sum_{\mu} \int \varphi_{\mu}^{*}\left(\vec{r}_{j}\right) \frac{1}{\left|\vec{r}_{j}-\vec{r}_{i}\right|} \varphi_{\lambda}\left(\vec{r}_{i}\right) d\vec{r}_{j}\right] \varphi_{\mu}\left(\vec{r}_{i}\right) = \varepsilon \varphi_{\lambda}\left(\vec{r}_{i}\right)$$
(1.98)

The Hartree equation depends on one-electron orbital which basically neglects other electrons in the system. Simultaneous integro-differential equations defines n number of orbitals The solution of Hartree equation is repitative, and it requires self consistency. Due to the Hartree-Fock approximation, the wave function is the main parameter that all information for the system can be retrieved from it. However, for each n electrons, there are a number of variables which leads to a serious problem because the actual systems contain too many atoms and a great number of electrons. This results with unmanagable wavefunction calculations. Thus, the Hartree-Fock approximation is convinient to use for atoms, only.

In 1927 Thomas and Fermi used the electron density instead of the wavefunction to get information about atoms and molecular systems. They used a local density approximation to obtain the kinetic energy term:

$$T\left(\vec{r}\right) = A\rho^{\frac{5}{3}}\left(\vec{r}\right) \tag{1.99}$$

With the combination of the classical expression for the potential of nuclei-electron, and that of electron-electron, the Thomas-Fermi expression for the energy of an atom can be described as

$$E_{Th-Fe}[\rho] = A \int \rho^{\frac{5}{3}}(\vec{r}) d\vec{r} + \int \rho(\vec{r}) V_{ext}(\vec{r}) d\vec{r} + \frac{1}{2} \iint \frac{\rho(\vec{r_1}) \rho(\vec{r_2})}{|\vec{r_1} - \vec{r_2}|} d\vec{r_1} d\vec{r_2}$$
(1.100)

This approach is not good for non-homogeneous systems because of poor approximation of true kinetic energy. However the Thomas-Fermi approach is very important since it is the ancestor of actual density functional theory.

In the self-consistent calculation of the Kohn–Sham equations the key parameter is the density matrix, which defines the electron density. The electron density then sets up an effective potential, which is given by the Hartree, exchangecorrelation, and external potential. When the effective potential is known the Kohn– Sham Hamiltonian can be obtained. Quantumwise ATK-DFT can model the electronic and optical properties of many body systems by using the liner combination of atomic orbital (LCAO) calculator which provides a description of electronic structure using DFT and norm-conserving pseudopotentials. For a self consisting loop, Quantumwise ATK-DFT is used for calculating the effective potential, solving the Kohn-sham equations and evaluating the electron density and total evergy. The workflow chart of this study is given in the Figure 3.1.



Figure 3.1. Workflow chart of the study.

Free total energies were calculated by equation 3.33 in ATK where *n* is the electron density, T[n] is the kinetic energy of the Kohn-Sham orbitals,  $E^{xc}[n]$  is the exchange-correlation energy,  $E^{H}[n]$  includes all the electrostatic terms,  $E^{ext}[n]$  is the interaction energy with an external field and  $-\sigma S$  is the entropy contribution due to smearing of the occupation function.

$$F[n] = T[n] + E^{xc}[n] + E^{H}[n] + E^{exc}[n] - \sigma S$$

$$(1.101)$$

The effective potential,  $V^{eff}[n]$ , has three contributions, the first two terms are due to electron–electron interactions, which depend on the electron density.

$$V^{eff}[n] = V^{H}[n] + V^{XC}[n] + V^{ext}$$
(1.102)

The first term,  $V^{H}[n]$ , is the Hartree potential due to the mean-field electrostatic interaction between the electrons. The second term,  $V^{xc}[n]$ , is the exchange-correlation potential, which arises from the quantum mechanical nature of the electrons.

The potential V<sup>ext</sup> represents any other electrostatic fields in the system. It can be separated into two contributions; the electrostatic potential of ions (given by norm-conserving pseudopotentials) and external electrostatic fields (given by one or more external sources).

The electron density of the many-electron system is given by the occupied eigenstates of the Kohn–Sham Hamiltonian. The key parameter in the self-consisted calculation of Kohn-Sham equations is the density matrix, which defines the electron density. For open systems, the density matrix is calculated using non-equilibrium Green's functions while for closed or periodic systems it is calculated by diagonalization of the Kohn-Sham Hamiltonian. The elecetron density then sets up an effective potential that is given by the Hartree, exchange-correlation, and external potential allows us to obtain the Kohn-Sham Hamiltonian.

$$n(r) = \sum_{\alpha} f_{\alpha} \left| \varphi_{\alpha}(r) \right|^{2}$$
(1.103)

where  $f_{\alpha}$  is the occupation level denoted by  $\alpha$ . For finite tempertature calculation, the occupations are determined by the Fermi-Dirac distrubition.

The electron density can be expressed in terms of the density matrix:

$$n(r) = \sum_{ij} D_{ij} \phi_i(r) \phi_j(r)$$
(1.104)

Where the density matrix is given by the basis set expansion coefficients  $c_{\alpha i}$ :

$$D_{ij} = \sum_{\alpha} f_{\alpha} c^*_{\alpha i} c_{\alpha i}$$
(1.105)

The electron difference density is simply defined as the electron valence density minus the neutral atom electron density. It is often convient to compare the electron density of the many-body system to a superposition of individual atombased electron densities. In order to understand the total electron charge density distrubitions it is efficient to examine difference in charge densities.

Electron difference density can be expressed as

$$\Delta(n) = n(r) - \sum_{\mu} n^{atom} \left( r - R_{\mu} \right)$$
(1.106)

where  $\Delta(n)$  is the electron difference density and  $R_{\mu}$  is the position of atom  $\mu$  in the many-body system.

## 4. RESULTS AND DISCUSSIONS

## 4.1 Geometry Optimizations

Geometry optimization is the first step for further DFT calculations. The optimization of geometries involves minimizing the atomic forces for molecules and clusters, while for crystals, the shape and the size of the unit cell as well as any external pressure must also be taken into account. In this study, the geometry optimization calculations were performed for twelve different graphene structures; MLG, BLG(8+8), WBLG, ReBLG, OsBLG, BLG(32+32) WNBLG, ReNBLG, OsNBLG, WOBLG, ReBLG, OsOBLG. First-principles DFT calculations were performed by using generalized gradient approximation (GGA) for the exchange–correlation interactions. The BPW91 basis set was used for DFT calculations with linear combination of atomic orbitals (LCAO) calculator.

Bilayer graphene structure (AB stacking form) was built from graphite structure. The initial bilayer graphene structure contains 4 atoms; 2 atoms in each layer, (2+2). Repeating operations were applied on C-axis until the bilayer graphene pattern is suitable for transition metal intercalation. BLG (2+2), BLG (8+8) and BLG (32+32) structures were builded and calculated to optimize geometries. BLG(8+8) structure was chosen for transition metal intercalation where metal atoms were placed exactly in the center of graphene layers followed by optimization of geometries for each structure. Calculation parameters were set as 300 K electron temperature, k points (3,3,1) and 75 Hartree mesh cutoff. Geometrically optimized transition metal intercalated bilayer graphene structures (WBLG, ReBLG, OsBLG) were doped with nitrogen atoms by graphitic N-doped configuration. In graphitic Ndoping, nitrogen atoms were replaced with carbon atoms to change local density state around the Fermi level. Geometry optimizations were carried out for designed Ndoped structures (WNBLG, ReNBLG, OsNBLG). Finally, BLG (32+32) structure was chosen for transition metal oxide intercalation. Rhenium (VI) oxide, Tungsten (VI) oxide and Osmium (VI) oxide were placed exactly in the center of bilayer

graphene structure followed by geometry optimizations. The geometrically optimized MLG, BLG (2+2), BLG (8+8), BLG (32+32), WBLG, ReBLG, OsBLG, WOBLG, ReBLG, OsOBLG structures contain 2, 4, 16, 64, 17, 17, 17, 17, 17, 17, 17, 17, 67, 75, 69 atoms, respectively (Figure 4.1).



Figure 4.1. Optimized geometries of graphene structures (a) MGL, (b) BLG (2+2), (c) BLG (4+4), (d) BLG (32+32), (e) ReBLG, (f) WBLG, (g) OsBLG, (h) ReNBLG, (i) WNBLG, (j) OsNBLG, (k) ReOBLG, (l) WOBLG, (m) OSOBLG grey atoms represents carbons and blue one represents M: Re, W, Os, purple atoms represents nitrogen and red atoms represents oxygen atoms.

Bond lenghts of metal bonded bilayer graphene structures were calculated before and after geometrical optimizations. Bond lenghts between certain atoms in graphene structures were calculated and given in Table 4.1. It was shown that metal intercalation resulted with a distance widening between graphene layers. Although inserting a metal between graphene layer does not have an important effect on the C-C bond, nitrogen doping was shown to increase the layer distance. However, the insertion of metal oxides between graphene layers did not have common effect on bond lenghts and layer distance, because rhenium (IV) oxides widening the layer distance, tungsten (VI) oxide narrows the layer distance.

M-C C-C C-N C-0 Layer Distance MLG 1.43 BLG (2+2) 1.42 4.64 BLG (8+8) 1.44 4.36 ReBLG 2.37 4.25 1.43 WBLG 1.47 2.13 4.26 OsBLG 1.41 2.11 4.28 ReNBLG 1.43 2.15 1.44 4.37 1.44 2.17 1.44 4.32 WNBLG 1.44 2.18 1.44 4.21 OsNBLG 1.42 2.36 1.24 5.73 ReOBLG 1.87 1.39 3.65 WOBLG 1.42

**Table 4.1** Bond lengths and distances between layers.

Total energies of these graphene based structures were calculated, where k-point grid was 3x3x1 and the number of irreducible k-points was 5. Free total energies were calculated in ATK (Table 4.2).

|        | Exchange-<br>Correlation<br>(eV) | Kinetic<br>Energy<br>(eV) | Electrostatic<br>Energy<br>(eV) | Entropy-<br>Term<br>(eV) | Total free<br>energy<br>(eV) |
|--------|----------------------------------|---------------------------|---------------------------------|--------------------------|------------------------------|
| MLG    | -900.9235                        | 2064.5812                 | -3987.5916                      | -0.11946                 | -2824.0534                   |
| BLG    | -769.26344                       | 1709.9959                 | -3413.1910                      | -0.16284                 | -2472.6214                   |
| WBLG   | -1105.5955                       | 1950.7320                 | -3777.8264                      | -0.0393                  | -2932.8256                   |
| ReBLG  | -1007.7792                       | 2022.0774                 | -3925.3023                      | -0.0353                  | -2911.1295                   |
| OsBLG  | -1041.57103                      | 2103.07913                | -4102.0871                      | -0.0156                  | -3040.6843                   |
| MNBLG  | -1284.5901                       | 1908.1415                 | -3951.5136                      | -0.0422                  | -3329.0044                   |
| WOBLG  | -4701.8064                       | 12573.7989                | -30409.932                      | -0.9372                  | -22538.8766                  |
| ReOBLG | -3662.8427                       | 8653.7755                 | -18445.402                      | -0.5159                  | -13454.9853                  |
| OsOBLG | -4066.2655                       | 9841.7169                 | -22513.924                      | -0.4959                  | -16738.9685                  |

Table 4.2. The total energies.

The total free energies with external field, exchange-correlation, kinetic energy, electrostatic energy, entropy-term values are given in Table 4.2 for graphene

structures. Total energies of these structures showed that bilayer graphene has less free energy than mono layer graphene. In other words, the more layers added to the graphene structure, the more stable inhence it becomes. On the other hand, inserting metal between graphene layers caused an increase in all terms of energy; however inserting metal oxides to bilayer graphene lowered the free total energy, only.

## 4.2 Molecular Dynamic Analysis

Molecular dynamic (MD) analysis visualize the MD results for single atom configurations to large scale complex as radial/angular distribution function, local mass density profile, coordination number, neutron scattering factor and voidsize distrubituion.

The square of the angular distribution function shows the probability of finding the electron at dihedral angles. The square of radial distribution shows the probability of finding an electron at a given distance from the nucleus, whereas the square of radial distribution shows the probability of finding an electron at a given distance from the nucleus.

The Angular/radial distribution graphs of graphene structures were given in Figures 4.2 and 4.3. The angular and radial distributions of mono layer graphene shows only one peak at 120° however radial distribution of MLG shows three proportional peaks due to the even distributons of carbon atom in hexagonal honeycomb structure. On the other hand, the angular and radial distributions of bilayer graphene show numbers of uneven peaks because of Bernard stacking configuration. When metal atom inserted between layers of graphene, carbon-metal shows higher angular/radial distrubitions than carbon-carbon atoms, and the highest distrubition observed in MNBLG structures as expected. In addition, coordination number, mass density profile, and neutron scattering factor were also calculated and given in Figures 4.4, 4.5 and 4.6, respectively.



Figure 4.2. Angular distribution analysis. (a) MLG, (b) BLG, (c) WBLG, (d) WNBLG, (e) WOBLG.



Figure 4.3. The radial distribution analysis. (a) MLG, (b) BLG, (c) WBLG, (d) WNBLG, (e) WOBLG.



**Figure 4.4.** Coordination number distribution analysis. (a) MLG, (b) BLG, (c) ReBLG, (d) WNBLG, (e) ReOBLG.



Figure 4.5. Mass density profiles analysis. (a) MLG, (b) BLG, (c) WBLG, (d) ReNBLG, (e) ReOBLG.



**Figure 4.6.** Neutron scattering factor analysis. (a) MLG, (b) BLG, (c) WBLG, (d) ReNBLG, (e) ReOBLG.

## 4.3 Band Structure Analysis

Band structure analysis is important for modification and tailoring the electronic properties for the compunds after structure relaxations. Band structure analysis was examined by using an *ab initio* pseudopotential approach using the exchange and correlation in the GGA Perdew Wang (BPW91) formalism. Band

structures of graphene, bilayer graphene and metal inserted bilayer graphene structure were given in Figure 4.7. Band structures of nitrogen doped metal bilayer graphene were given in Figure 4.8 and those of metal oxides inserted bilayer graphene structures were given in Figure 4.9.

Electronic band structure of graphene shows zero band gap at K point. For opening a band gap in bilayer graphene structure, an electric field could be applied by setting the voltage to 0 V for the first metallic region, and 10 V for the second. Bilayer graphene structures were enlarged by repeating operations in C-axis. Thus, BLG (8+8) was enlarged enough to cover entire hexagonal unit cell. The applied voltage results in 4 V/nm in the z direction, just above the field that has been found experimently to open a band gap (Zhang et al., 2009). The theoretical lattice constant for bilayer graphene structure at 2.4612 Å band gap energy was found as 1.1682 eV at Fermi level. Intercalation of transition metals of tungsten, rhenium and osmium to a bilayer graphene resulted in narrowing band gap due to the decreasing of atomic radii of metals. Tungsten metal inserted bilayer graphene band gap was 0.04617 eV, structure with rhenium metal band gap was 0.086524 eV while osmium metal band gap was 0.11472 eV.

The band gap analyses showed nitrogen doping of metal inserted bilayer graphene structures results in a small broadening in band gap. For instance, WNBLG band gap was calculated as 0.076143 eV at Fermi level. This indicates that nitrogen doping and transition metal insertion lead to narrow the band gap and increasing the conductor character of structures.

The band structure analyses of metal oxides inserted bilayer graphene structures did not give efficient band structure data due to the high electron density in bulky systems. Therefore, ATK software cannot support the same route as metal inserted bilayer graphene structures.



Figure 4.7. Band structures of graphene, BLG, WBLG, ReBLG and OsBLG.



Figure 4.8. Band structures of nitrogen doped metal bilayer graphene. WNBLG, ReNBLG, OsNBLG.



Figure 4.9. Band structres of metal oxides inserted bilayer graphene structures.
Brillouin zones of lattice structures are particular choices of the unit cells in reciprocal spaces. The planes are perpendicular to the connection line from the origin to each lattice point. *Brillouin zones* were represented in the Fig.4.10 for all the lattice structures.



Figure 4.10. Brilloin zones. (a) MLG, (b) BLG, (c) WBLG, (d) WNBLG, (e) WOBLG.

**Table 4.2** The effective mass analysis of all lattice structures.

|         | Band Index | Energy (eV) | $m^{*}(m_{e})$ |
|---------|------------|-------------|----------------|
| MLG     | 4          | -13.403     | 0.233          |
| MEO     | 5          | -13.403     | 0.088          |
| RIG     | 4          | -15.765     | 0.062          |
| DLO     | 5          | -14.158     | 0.648          |
| WGI     | 0          | -19.663     | 1.440          |
| WOL     | 1          | -19.514     | 1.448          |
| ReGL    | 0          | -20.324     | 1.442          |
|         | 1          | -20.138     | 1.448          |
| WNDI C  | 0          | -22.416     | 2.010          |
| WINDLO  | 1          | -22.248     | 2.200          |
| DaNRI G | 4          | -23.538     | -0.426         |
| KEINDLU | 5          | -20.619     | 11.369         |
| O NRI C | 4          | -23.274     | -102.963       |
| OSINDLO | 5          | -20.401     | 18.810         |
| WORLG   | 0          | -76.316     | 3708918        |
| WODLO   | 1          | -75.677     | -8854841.910   |
| ReOBLG  | 0          | -81.636     | 4970761.801    |
|         | 1          | -44.091     | 6442404.130    |
| O OBLC  | 0          | 87.120      | 2210512.452    |
| USOBLO  | 1          | -86.147     | -1308890.405   |

The effective mass of holes and electrons fitting a parabola to the minimum/maximum of the conduction/valence bands were computed for all lattice structures for various band index, and given in Table 4.2.

The chemical potentials were computed for each structure and modeled with GGA, BPW91 formalism by using numerical linear combination of atomic orbitals basis sets as given in Table 4.3.

 Table 4.3. Chemical potential energies.

| BLG -   | 5.565939 eV |
|---------|-------------|
| WBLG -  | 7.419938 eV |
| WNBLG - | 6.655812 eV |
| WOBLG - | 5.925405 eV |

#### 4.4 Electron Density

Electron densities of each structure were modeled with GGA BPW91 formalism by using numerical linear combination of atomic orbitals basis sets.



Figure 4.11. Electron density schemes of BLG. (a) isosurface, (b) cut-plane.

The electron density schemes of bilayer graphene structure in isosurface and 3D cut plane models for each structure were given in Figure 4.11. They show an equal distrubition since there were only carbon atoms in Bernal stacking. Electron

density analysis of rhenium, tungsten and osmium metals intercalated to the center of bilayer graphene were carried out. The analyses showed that intercalation of rhenium metal to bilayer graphene leads to move the electron density through the centeral metal atom (Figure 4.12.a). Comparision of cut-plane illustrations of bilayer graphene (Figure 4.11.b) and transition metal intercalated bilayer graphene (Figure 4.12c) shows a significant change in charge density. Nitrogen doping and metal oxides intercalation also result in change of electron densities as shown in Figures 4.13 and 4.14, respectively. 1D projection plots were exported from the electron density analysis of ATK for sum of spin up and spin down projections of a, b and c axis with unit of 1/Angs<sup>3</sup>.



Figure 4.12. Electron density schemes of ReBLG. (a) isosurface-1, (b) isosurface-2 (c) 3D cut plane models and (d) 1D projection plot.



Figure 4.13. Electron density schemes of ReNBLG. (a) isosurface-1, (b) isosurface-2 (c) 3D cut plane models and (d) 1D projection plot



**Figure 4.14.** Electron density schemes of OsOBLG. (a) isosurface, (b) 3D cut plane models and (c) 1D projection plot

To understand the effect of changing atoms on the charge density, it is necessary to examine the partial charges in the structure. Richard Bader developed a method to divide molecules into atoms based on the electronic charge density. Bader analysis is a very useful method to examine the effects of dopants and metal intercalation on charge distiribution. The overall Bader charge analysis is summarized in Figure 4.15 and Bader analysis of each structure are given in Appendix A.4.



Figure 4.15. Summarization of Bader charges of the structures.

The Bader analysis revealed that charge distribution shows a significant change on carbon atoms which neigbouring metal and nitrogen atoms. Thus, total charge maxima is balanced by decreasing of charge density on the other carbon atoms in hexagonal carbon structure. Metal oxides inserted between the layers of bilayer graphene is shown in Figure 4.14. The topological sheme of charge density is legitimate when it is compared to the high total free energies and high electron density between the layers. This implies that transition metal oxide intercalation is not stable.

#### 4.5 Electron Difference Density

Electron difference density models were computed by using LCAO basis sets of GGA exchange correlation B3PW91 formalism as shown in Figure 4.16.



Figure 4.16. Electron difference density schemes. (a) MLG, (b) BLG, (c) MBLG, (d) MNBLG, (e) MOBLG.

Electron difference density analyses of graphene structures showed that oxygen in metal oxide structures consist of high charge difference with its electronrich character. Nitrogen doped metal inserted bilayer graphene (MNBLG) showed unequal distrubition of charge difference, whereas metal inserted bilayer graphene has equal distribution of electron difference density where metal and metal bonded carbon atoms have greater difference.

#### 4.6 Electron Localization Functions

The electron-localization function (ELF) was originally defined by Becke provides an alternative real-space function for the analysis of non-trivial bonding situations. ELF is a 3D function with the values between 0 to 1. ELF values closer to 1, basically represent the positions where the electrons are localized.

Electron localization function analysis of bilayer graphene structures were computed by first-principles DFT calculations using generalized gradient approximation (GGA) for the exchange–correlation interactions and BPW91 basis set for DFT with linear combination of atomic orbitals (LCAO) calculator as shown in Figure 4.17.



Figure 4.17. ELF models. (a) MBLG, (b) MNBLG (c) MOBLG.

Electron localization function schemes revealed that the molecular distribution of the pairs of electrons on each configuration can be visualized by means of the topological description of the ELF. The electrons were mostly localized in carbon atoms on graphene layers (pink areas).

#### 4.7 Molecular Energy Analysis

Frontier molecular orbitals (*viz.* highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO) give important parameters for

computational chemistry about  $\pi$  systems and transition mechanisms of electrons. To investigate chemical stability for both HOMO and LUMO energies, the energy difference between these molecular orbitals should be evaluated. For identaification of HOMO and LUMO energies, molecular energy analysis were calculated by using the exchange–correlation interactions with BPW91 basis set for DFT. The molecular energy spectra of the structures were given in Figure 4.18. HOMO and LUMO energies of the structures calculated from molecular energy spectra are given in Table 4.4.

In summary, the energy difference between HOMO and LUMO shows a decreased when transition metal intercalation and N-doping applied to the pure bilayer graphene system. This change in HOMO-LUMO band gap can be explained by electronic transitions in MBLG, MNBLG, and MOBLG systems.



**Figure 4.18.** Molecular energy spectrum analysis. (a) MLG, (b) BLG, (c) ReBLG, (d) ReNBLG, (e) ReOBLG.

Table 4.4. Molecular energy spectra.

|        | HOMO (eV)  | LUMO (eV) |
|--------|------------|-----------|
| MLG    | -3.087631  | 5.75000   |
| BLG    | -0.0142857 | 1.0002    |
| ReBLG  | -1.0009    | 0.60021   |
| ReNBLG | -0.17857   | 0.35714   |
| ReOBLG | -0.06      | 0.041     |

#### 4.8 **Optical Properties**

The optical spectroscopy analysis is a powerful tool to determine the overall band behavior of the structures. The optical spectrum analyses were performed by using the exchange–correlation interactions with basis set BPW91.

The energy absorption spectra are shown in Figures 4.19, 4.20 and 4.21 for graphene based structures. The optical absorption of pure bilayer graphene undergoes shift on metal intercaltation and N-doping. The absorption of bilayer graphene reduces on intercalation and doping and increases again with transition metal oxide intercalation.



Figure 4.19. Energy-absorption spectra. (a) MLG, (b) BLG, (c) WBLG, (d) ReBLG, (e) OsBLG.



Figure 4.20. Energy-absorption spectra. (a) WNBLG, (b) ReNBLG, (c) OsNBLG.



Figure 4.21. Energy-absorption spectra. (a) WOBLG, (b) ReOBLG, (c) OsOBLG.

Figures 4.22, 4.23 and 4.24 show the spectra of the real and imaginary parts of the complex dielectric function versus the photon energy. The lowest energy part of spectra (from 0 to 5.0 eV) is characterized by two sharp peaks of strongest intensity for metal inserted structures. This can be explained by electronic transitions from the valence band to the isolated low energy block in the conduction band.



Figure 4.22. Energy-Dielectric constant spectra. (a) MLG, (b) BLG, (c) WBLG, (d) ReBLG, (e) OsBLG.



Figure 4.23. Energy-Dielectric constant spectra. (a) WNLG, (b) ReNBLG, (c) OsNBLG.



Figure 4.24. Energy-Dielectric constant spectra. (a) WOBLG, (b) ReOBLG, (c) OsOBLG.

Refractive index is related with the linear electro-optical coefficient that in turn determines the photorefractive sensitivity of the structure. Refractive indexenergy spectra of the real and imaginary parts analysed as shown in Figures 4.25, 4.26 and 4.27. The refraction index reaches maximal values for the energies near the absorption threshold of bilayer graphene systems.



Figure 4.25. Energy-optical conductivity spectra. (a) WBLG, (b) ReBLG, (c) OsBLG.



Figure 4.26. Energy-optical conductivity spectra. (a) WNBLG, (b) ReNBLG, (c) OsNBLG.



Figure 4.27. Energy-optical conductivity spectra of WOBLG, ReOBLG and OsOBLG.

Finally, absorption-wavelenght spectra were analyzed by using the exchange– correlation interactions with BPW91 basis set and shown in Figures 4.28, 4.29 and 4.30.



Figure 4.28. Absorption-wavelenght spectra of MLG, BLG, WBLG, ReBLG and OsBLG.



Figure 4.29. Absorption-wavelenght spectra of WNBLG, ReNBLG and WNBLG.



Figure 4.30. Absorption-wavelenght spectra of WOBLG, ReOBLG and OsOBLG.

The optical absorption-wavelenght spectra of designed structures show legitimate results with energy-absorption spectra. Absorption of pure bilayer graphene is 400 nm. The absorption-wavelenght spectra rises with metal intercalation (~600 nm) and N-doping (~500 nm). The relation of wavelength shift on absorption spectra is consistent with total free energy calculations of the bilayer graphene systems.

#### **5. CONCLUSIONS AND RECOMMENDATIONS**

In this study, we have shown the first principles *ab initio* density functional computituonal methods for exploring the electronic structure of BLG systems with nitrogen doping of BLG and intercalation of some rare transition metal atoms (M: W, Re, Os) between layers of graphene. Structural comparison with MLG structure was carried out. All twelve different graphene based nanostructures modeled from the lattice constant of graphite structure and geometry optimization calculations were carried out for the most stable configurations. Electronic band behaviours with the change of structures computed through band structure analysis. At first, BLG shows zero band gap at K point. Electric fields were applied by changing the voltage of the second metallic region for opening a band gap, and then cell size was set to cover hexagonal unit cell. Applied voltage was changed 4V/nm in z-direction which is just above the experimental data. Theoretical lattice constant of BLG was found 2.4612 Å and band gap energy at Fermi level was found 1.1682 eV. The band structure calculations of rhenium, tungsten and osmium metals inserted bilayer graphene structures showed band gap 0.04617 eV, 0.086524 eV ve 0.11472 eV, respectively. As a nitrogen doped system, the band gap of WNBLG was calculated as 0.076143 eV at Fermi level. Thus, the modifications of band gap tailoring by inserting metal atoms to the graphene layer enhances conductivity. Then, each nanostructure was investigated by electron density, electron difference density and electron localization function analyses to understand the behaviours of electrons. Finally, molecular orbital analyses were carried out to determine HOMO and LUMO energies. In the second part of the study, the optical properties of each structure were analyzed in terms of energy, absorption, reflectivity and dielectric properties.

The electronic and optical properties of metal inserted bilayer graphene structures are affected by the type of dopant and metal, the data presented in this study can be used for further nanotechnology research and guide the experimental studies.

#### **6. REFERENCES**

- Allen MJ, Tung, VC and Kaner, RB (2010). "Honeycomb Carbon: A Review of Graphene", Chemical Reviews, 110(1): 132–145.
- Atomistix Toolkit version 2017.2 (2017). Synopsys Quantum ATK.
- Brandt RB (1988). "The Structure of Virtue", Midwest Studies In Philosophy, 13(1): 64–82.
- Brinkley SR (1933). "Principles of General Chemistry", Journal of the American Chemical Society, vol. 55(11): 4732.
- Bui VQ, Le HM, Kawazoe Y & Nguyen-Manh D (2013). "Graphene-Cr-Graphene Intercalation Nanostructures: Stability and Magnetic Properties from Density Functional Theory Investigations", The Journal of Physical Chemistry C, 117(7): 3605–3614.
- Cappelluti E, Benfatto L and Kuzmenko AB (2010). "Phonon switching and combined Fano-Rice effect in optical spectra of bilayer graphene", Physical Review B, 82(4): 041402.
- Cappelluti E, Benfatto L, Manzardo M and Kuzmenko AB (2012). "Charged-phonon theory and Fano effect in the optical spectroscopy of bilayer graphene", Physical Review B, 86(11): 115439.
- Chung F and Lu L (2002). "The average distances in random graphs with given expected degrees", Proceedings of the National Academy of Sciences of the United States of America, 99(25): 15879–82.
- Dasari BL, Nouri JM, Brabazon D and Naher S (2017). "Graphene and derivatives Synthesis techniques, properties and their energy applications", Energy, 140: 766–778.
- Fano U (1961). "Effects of Configuration Interaction on Intensities and Phase Shifts", Physical Review, 124(6): 1866–1878.
- Geim AK and Novoselov KS (2007). "The rise of graphene", Nature Materials, 6(3): 183–191.
- Greenwood NN and Earnshaw A (1997). Chemistry of the Elements, Second Edition, Elsevier.
- Hirsch A (2010). "The era of carbon allotropes", Nature Materials, 9(11): 868-871.
- Hohenberg P and Kohn W (1964) "Inhomogeneous Electron Gas", Physical Review, 136(3B): B864–B871.

- Ichinokura S, Sugawara K, Takayama A, Takahashi T and Hasegawa S (2016). "Superconducting Calcium-Intercalated Bilayer Graphene", ACS Nano, 10(2): 2761–2765.
- Iijima S and Ichihashi T (1993). "Single-shell carbon nanotubes of 1-nm diameter", Nature, 363(6430): 603–605.
- Katsnelson MI (2007). "Graphene: carbon in two dimensions", Materials Today, 10(1-2): 20–27.
- Kohn W and Sham LJ (1965). "Self-Consistent Equations Including Exchange and Correlation Effects", Physical Review, 140(4A): A1133–A1138.
- Kroto HW, Heath JR, O'Brien SC, Curl RF and Smalley RE (1985). "C60: Buckminsterfullerene", Nature, 318(6042): 162–163.
- Kuzmenko AB, Benfatto L, Cappelluti E, Crassee I, van der Marel D, Blake P, Novoselov KS and Geim AK (2009). "Gate Tunable Infrared Phonon Anomalies in Bilayer Graphene", Physical Review Letters, 103(11): 116804.
- Li Z, Liu Z, Sun H and Gao C (2015). "Superstructured Assembly of Nanocarbons: Fullerenes, Nanotubes, and Graphene", Chemical Reviews, 115(15): 7046– 7117.
- Liao JH, Zhao YJ, Tang JJ, Yang XB and Xu H (2016). "High-coverage stable structures of 3d transition metal intercalated bilayer graphene", Physical Chemistry Chemical Physics, 18(21): 14244–14251.
- Liu Z, Suenaga K, Harris PJF and Iijima S (2009). "Open and Closed Edges of Graphene Layers", Physical Review Letters, 102(1): 015501.
- Lopes dos Santos JMB, Peres NMR and Castro Neto AH (2007). "Graphene Bilayer with a Twist: Electronic Structure", Physical Review Letters, 99(25): 256802.
- Mak, KF, Lui, CH, Shan, J & Heinz, TF (2009). "Observation of an Electric-Field-Induced Band Gap in Bilayer Graphene by Infrared Spectroscopy", Physical Review Letters, 102(25): 256405.
- Mccann, E & Koshino, M (2013). "The electronic properties of bilayer graphene", 76(5): 056503.
- Nakada K, Torobu T and Ishii A (2012). "Investigation of Hf Adatom Adsorption on Graphene Using Density Functional Theory Calculations", e-Journal of Surface Science and Nanotechnology, 10(0) 325–330.
- Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y, Dubonos S V, Grigorieva IV and Firsov AA (2004). "Electric field effect in atomically thin carbon films", Science, 306(5696): 666–669.

Pakhira S, Lucht KP and Mendoza-Cortes JL (2018). "Dirac cone in two dimensional

bilayer graphene by intercalation with V, Nb, and Ta transition metals", The Journal of Chemical Physics, 148(6): 064707.

- Rozhkov AV, Sboychakov AO, Rakhmanov AL and Nori F (2016). "Electronic properties of graphene-based bilayer systems", Physics Reports, 648(1): 104.
- Soldano C, Mahmood A and Dujardin E (2010). "Production, properties and potential of graphene", Carbon, 48(8): 2127–2150.
- Soukiassian PG and Rao MSR (2010). "Carbon-based nanoscience and nanotechnology: Where are we, where are we heading?", Journal of Physics D: Applied Physics, 43(37): 42–43.
- Sugawara K, Kanetani K, Sato T and Takahashi T (2011). "Fabrication of Liintercalated bilayer graphene", AIP Advances, 1(2): 022103.
- Tang TT, Zhang Y, Park CH, Geng B, Girit C, Hao Z, Martin MC, Zettl A, Crommie MF, Louie SG, Shen YR and Wang F (2010). "A tunable phonon–exciton Fano system in bilayer graphene", Nature Nanotechnology, 5(1): 32–36.
- Terse-Thakoor T, Badhulika S and Mulchandani A (2017). "Graphene based biosensors for healthcare", Journal of Materials Research, 32(15): 2905–2929.
- Wallace PR (1947). "The Band Theory of Graphite", Physical Review, 71(9): 622–634.
- Wang Z, Selbach SM and Grande T (2014). "Van der Waals density functional study of the energetics of alkali metal intercalation in graphite", RSC Adv., 4(8): 3973–3983.
- Xia F, Farmer DB, Lin Y and Avouris P (2010). "Graphene Field-Effect Transistors with High On/Off Current Ratio and Large Transport Band Gap at Room Temperature", Nano Letters, 10(2): 715–718.
- Xu Z and Buehler MJ (2010). "Interface structure and mechanics between graphene and metal substrates: a first-principles study", Journal of Physics: Condensed Matter, 22(48): 485301.
- Zan R, Bangert U, Ramasse Q and Novoselov KS (2011). "Metal–Graphene Interaction Studied via Atomic Resolution Scanning Transmission Electron Microscopy", Nano Letters, 11(3): 1087–1092.
- Zhang LM, Li ZQ, Basov DN, Fogler MM, Jiang Z, Hao Z, Martin MC, Henriksen EA, Kim P and Stormer HL (2008). "Determination of the electronic structure of bilayer graphene from infrared spectroscopy results" Phys. Rev. B, 78: 235408.
- Zhang X, Xu W, Dai J and Liu Y (2017). "Role of embedded 3d transition metal atoms on the electronic and magnetic properties of defective bilayer graphene", Carbon, 118: 376–383.

Zhang Y, Tang TT, Girit C, Hao Z, Martin MC, Zettl A, Crommie MF, Shen YR and Wang F (2009). "Direct observation of a widely tunable bandgap in bilayer graphene", Nature, 459(7248): 820–823.

Zhen Z and Zhu H (2018). Graphene, Elsevier, United Kingdom.



## 7. APPENDICES

#### **Appendix A.1**

Cartesian and Fractional Coordinates, and Z-matrix Tables of graphene structures before and after geometry optimizations are given in Tables from 7.1 to 7.41.

|   | Element | x(Å)    | y(Å)    | z(Å)    |
|---|---------|---------|---------|---------|
| 0 | Carbon  | 10.0000 | 10.7105 | 10.0000 |
| 1 | Carbon  | 10.0000 | 10.7105 | 13.3545 |
| 2 | Carbon  | 11.2306 | 11.4210 | 10.0000 |
| 3 | Carbon  | 11.2326 | 10.0000 | 13.3545 |
| 4 | Carbon  | 10.0000 | 10.7105 | 10.0000 |
| 5 | Carbon  | 10.0000 | 10.7105 | 13.3545 |
| 6 | Carbon  | 11.2306 | 11.4210 | 10.0000 |
| 7 | Carbon  | 11.2306 | 10.0000 | 13.3545 |

**Table 7.1.** Cartesian coordinates of BLG(2+2) before optimization.

Table 7.2. Fractional coordinates of BLG(2+2) before optimization.

|   | Element | а        | b        | c        |
|---|---------|----------|----------|----------|
| 0 | Carbon  | 0.471018 | 0.5      | 0.428183 |
| 1 | Carbon  | 0.471018 | 0.5      | 0.571817 |
| 2 | Carbon  | 0.528982 | 0.533168 | 0.428183 |
| 3 | Carbon  | 0.528982 | 0.533168 | 0.571817 |
| 4 | Carbon  | 0.471018 | 0.5      | 0.428183 |
| 5 | Carbon  | 0.471018 | 0.5      | 0.571817 |
| 6 | Carbon  | 0.528982 | 0.533168 | 0.428183 |
| 7 | Carbon  | 0.528982 | 0.466832 | 0.571817 |

**Table 7.3.** Cartesian coordinates of BLG(2+2) after geometry optimization.

|   | Element | x(Å)   | y(Å)    | z(Å)    |
|---|---------|--------|---------|---------|
| 0 | Carbon  | 0.6153 | 0.0000  | 10.8228 |
| 1 | Carbon  | 0.6153 | 0.0000  | 14.1772 |
| 2 | Carbon  | 1.8459 | 0.7105  | 10.8228 |
| 3 | Carbon  | 1.8459 | -0.7105 | 14.1772 |

**Table 7.4.** Fractional coordinates of BLG(2+2) after geometry optimization.

|   | Element | a        | b        | c       |
|---|---------|----------|----------|---------|
| 0 | Carbon  | 0.25     | 0.25     | 0.43291 |
| 1 | Carbon  | 0.25     | 0.25     | 0.56709 |
| 2 | Carbon  | 0.583333 | 0.916667 | 0.56709 |
| 3 | Carbon  | 0.916667 | 0.583333 | 0.56709 |

#### **Table 7.5.** Z-matrix of BLG(2+2).

|   | Element | d (Å)   | θ (°)   | φ (°)    |
|---|---------|---------|---------|----------|
| 0 | Carbon  | 3.3545  |         |          |
| 1 | Carbon  | 3.64305 | 22.9576 |          |
| 2 | Carbon  | 3.64305 | 22.4924 |          |
| 3 | Carbon  |         |         | -117.996 |

|    | Element | x(Å)    | y(Å)    | z(Å)    |
|----|---------|---------|---------|---------|
| 0  | Carbon  | 3.07829 | 4.73135 | 0.71709 |
| 1  | Carbon  | 3.07851 | 7.57300 | 0.88824 |
| 2  | Carbon  | 0.61717 | 4.71864 | 0.95762 |
| 3  | Carbon  | 1.83685 | 2.60621 | 0.95809 |
| 4  | Carbon  | 1.85879 | 6.86923 | 0.95812 |
| 5  | Carbon  | 3.07853 | 3.31762 | 0.96846 |
| 6  | Carbon  | 4.30248 | 5.43744 | 0.96992 |
| 7  | Carbon  | 1.85480 | 5.43734 | 0.94285 |
| 8  | Carbon  | 1.85127 | 4.01940 | 4.83534 |
| 9  | Carbon  | 4.30584 | 4.01930 | 4.43758 |
| 10 | Carbon  | 3.07844 | 6.14475 | 4.84106 |
| 11 | Carbon  | 1.85667 | 2.59034 | 4.85175 |
| 12 | Carbon  | 1.83883 | 6.85339 | 4.85227 |
| 13 | Carbon  | 0.61708 | 4.73774 | 4.85298 |
| 14 | Carbon  | 3.07858 | 1.88532 | 4.91462 |
| 15 | Carbon  | 3.07828 | 4.72755 | 5.03784 |

**Table 7.6.** Cartesian coordinates of BLG(4+4) before geometry optimization.

**Table 7.7.** Fractional coordinates of BLG(4+4) before geometry optimization.

|    | Element | a        | b        | с        |
|----|---------|----------|----------|----------|
| 0  | Carbon  | 0.625298 | 0.500232 | 0.124699 |
| 1  | Carbon  | 0.625344 | 0.800671 | 0.154328 |
| 2  | Carbon  | 0.125367 | 0.498888 | 0.166382 |
| 3  | Carbon  | 0.373123 | 0.275547 | 0.166463 |
| 4  | Carbon  | 0.377579 | 0.726264 | 0.166468 |
| 5  | Carbon  | 0.625347 | 0.350762 | 0.168266 |
| 6  | Carbon  | 0.873969 | 0.574885 | 0.168518 |
| 7  | Carbon  | 0.376768 | 0.574874 | 0.169028 |
| 8  | Carbon  | 0.376051 | 0.424959 | 0.840117 |
| 9  | Carbon  | 0.874652 | 0.424949 | 0.840506 |
| 10 | Carbon  | 0.625329 | 0.649667 | 0.841111 |
| 11 | Carbon  | 0.377148 | 0.273869 | 0.842968 |
| 12 | Carbon  | 0.373353 | 0.724588 | 0.84306  |
| 13 | Carbon  | 0.125348 | 0.500908 | 0.843182 |
| 14 | Carbon  | 0.625357 | 0.199329 | 0.853893 |
| 15 | Carbon  | 0.625295 | 0.49983  | 0.875301 |

**Table 7.8.** Z-matrix of BLG(4+4).

|    | Element | d (Å)   | θ (°)   | φ (°)    |
|----|---------|---------|---------|----------|
| 0  | Carbon  |         |         |          |
| 1  | Carbon  | 2.84676 |         |          |
| 2  | Carbon  | 3.76967 | 40.9938 |          |
| 3  | Carbon  | 2.43926 | 109.224 | 6.10421  |
| 4  | Carbon  | 4.26308 | 30.2963 | 1.13255  |
| 5  | Carbon  | 3.75524 | 19.2497 | 179.543  |
| 6  | Carbon  | 2.44779 | 48.9558 | 179.729  |
| 7  | Carbon  | 2.44768 | 59.9963 | 0.337981 |
| 8  | Carbon  | 4.11453 | 90.1145 | 69.9206  |
| 9  | Carbon  | 2.45457 | 90.0008 | 0.037231 |
| 10 | Carbon  | 2.4544  | 59.9925 | 69.9206  |
| 11 | Carbon  | 3.75855 | 48.9755 | 0.394018 |
| 12 | Carbon  | 4.26308 | 19.2101 | 179.76   |
| 13 | Carbon  | 2.44307 | 30.2455 | 179.53   |
| 14 | Carbon  | 3.76818 | 109.199 | 1.02928  |
| 15 | Carbon  | 2.84491 | 40.9195 | 4.56768  |

|    | Element | x(Å)    | y(Å)    | z(Å)     |
|----|---------|---------|---------|----------|
| 0  | Carbon  | 3.08207 | 4.34892 | 0.227190 |
| 1  | Carbon  | 3.09259 | 7.78396 | 0.353528 |
| 2  | Carbon  | 0.65842 | 4.98026 | 0.246254 |
| 3  | Carbon  | 2.03669 | 1.94827 | 0.356814 |
| 4  | Carbon  | 2.36111 | 6.71641 | 0.335902 |
| 5  | Carbon  | 2.73593 | 3.02711 | 0.268888 |
| 6  | Carbon  | 4.41518 | 4.76203 | 0.236394 |
| 7  | Carbon  | 2.01629 | 5.39280 | 0.241883 |
| 8  | Carbon  | 2.01673 | 3.63138 | 3.266410 |
| 9  | Carbon  | 4.41590 | 4.27429 | 3.292710 |
| 10 | Carbon  | 2.73023 | 5.99986 | 3.228800 |
| 11 | Carbon  | 2.36187 | 2.30853 | 3.152340 |
| 12 | Carbon  | 2.05081 | 7.08721 | 3.128670 |
| 13 | Carbon  | 0.68685 | 4.04117 | 3.297340 |
| 14 | Carbon  | 3.09532 | 1.24290 | 3.155800 |
| 15 | Carbon  | 3.08185 | 4.68130 | 3.278520 |

**Table 7.9.** Cartesian coordinates of BLG(4+4) after geometry optimization.

**Table 7.10.** Fractional coordinates of BLG(4+4) after geometry optimization.

|    | Element | а        | b        | c        |
|----|---------|----------|----------|----------|
| 0  | Carbon  | 0.604171 | 0.481775 | 0.06446  |
| 1  | Carbon  | 0.606233 | 0.862311 | 0.100305 |
| 2  | Carbon  | 0.13436  | 0.551716 | 0.069869 |
| 3  | Carbon  | 0.399249 | 0.215831 | 0.101237 |
| 4  | Carbon  | 0.462843 | 0.744047 | 0.095304 |
| 5  | Carbon  | 0.536318 | 0.335344 | 0.07629  |
| 6  | Carbon  | 0.865498 | 0.52754  | 0.067071 |
| 7  | Carbon  | 0.395249 | 0.597417 | 0.068628 |
| 8  | Carbon  | 0.395335 | 0.402286 | 0.926766 |
| 9  | Carbon  | 0.86564  | 0.473508 | 0.934226 |
| 10 | Carbon  | 0.535202 | 0.664667 | 0.916094 |
| 11 | Carbon  | 0.462992 | 0.25574  | 0.8944   |
| 12 | Carbon  | 0.402016 | 0.785125 | 0.887686 |
| 13 | Carbon  | 0.134641 | 0.447682 | 0.93554  |
| 14 | Carbon  | 0.606769 | 0.137689 | 0.895381 |
| 15 | Carbon  | 0.604128 | 0.518597 | 0.930202 |

Table 7.11. Z-matrix of BLG(4+4).

|    | Element | d (Å)   | θ (°)   | φ (°)    |
|----|---------|---------|---------|----------|
| 0  | Carbon  |         |         |          |
| 1  | Carbon  | 3.43739 |         |          |
| 2  | Carbon  | 3.69685 | 40.4524 |          |
| 3  | Carbon  | 3.32131 | 115.243 | 4.19135  |
| 4  | Carbon  | 4.7792  | 27.9567 | 0.322084 |
| 5  | Carbon  | 3.7089  | 9.77793 | -168.829 |
| 6  | Carbon  | 2.41472 | 49.8975 | -174.374 |
| 7  | Carbon  | 2.48044 | 60.6672 | -2.2912  |
| 8  | Carbon  | 3.50006 | 82.7507 | 59.8068  |
| 9  | Carbon  | 2.48396 | 83.051  | 26.2014  |
| 10 | Carbon  | 2.41312 | 60.666  | 59.277   |
| 11 | Carbon  | 3.71045 | 50.0964 | -2.96722 |
| 12 | Carbon  | 4.78885 | 9.53556 | -174.193 |
| 13 | Carbon  | 3.34174 | 27.955  | -165.507 |
| 14 | Carbon  | 3.69474 | 114.983 | 1.08063  |
| 15 | Carbon  | 3.44062 | 40.4655 | 4.79641  |

**Table 7.12.** Cartesian coordinates of MBLG before geometry optimization.(M; W, Re, Os.)

|    | Element | x(Å)    | y(Å)     | z(Å)      |
|----|---------|---------|----------|-----------|
| 0  | Carbon  | 0.61530 | 0.00000  | 10.822800 |
| 1  | Carbon  | 1.84590 | 2.13146  | 10.822800 |
| 2  | Carbon  | 1.84590 | -2.13146 | 10.822800 |
| 3  | Carbon  | 3.07650 | 0.00000  | 10.822800 |
| 4  | Carbon  | 0.61530 | 0.00000  | 14.177200 |
| 5  | Carbon  | 1.84590 | 2.13146  | 14.177200 |
| 6  | Carbon  | 1.84590 | -2.13146 | 14.177200 |
| 7  | Carbon  | 3.07650 | 0.00000  | 14.177200 |
| 8  | Carbon  | 1.84590 | 0.71049  | 10.822800 |
| 9  | Carbon  | 3.07650 | 2.84195  | 10.822800 |
| 10 | Carbon  | 3.07650 | -1.42097 | 10.822800 |
| 11 | Carbon  | 4.30710 | 0.71049  | 10.822800 |
| 12 | Carbon  | 1.84590 | -0.71049 | 14.177200 |
| 13 | Carbon  | 3.07650 | 1.42097  | 14.177200 |
| 14 | Carbon  | 3.07650 | -2.84195 | 14.177200 |
| 15 | Carbon  | 4.30710 | -0.71049 | 14.177200 |
| 16 | Metal   | 3.07650 | 0.00000  | 12.500000 |

**Table 7.13.** Fractional coordinates of MBLG before geometry optimization.(M; W, Re, Os).

|    | Element | a        | b        | с       |
|----|---------|----------|----------|---------|
| 0  | Carbon  | 0.125    | 0.125    | 0.43291 |
| 1  | Carbon  | 0.125    | 0.625    | 0.43291 |
| 2  | Carbon  | 0.625    | 0.125    | 0.43291 |
| 3  | Carbon  | 0.625    | 0.625    | 0.43291 |
| 4  | Carbon  | 0.125    | 0.125    | 0.56709 |
| 5  | Carbon  | 0.125    | 0.625    | 0.56709 |
| 6  | Carbon  | 0.625    | 0.125    | 0.56709 |
| 7  | Carbon  | 0.625    | 0.625    | 0.56709 |
| 8  | Carbon  | 0.291667 | 0.458333 | 0.43291 |
| 9  | Carbon  | 0.291667 | 0.958333 | 0.43291 |
| 10 | Carbon  | 0.791667 | 0.458333 | 0.43291 |
| 11 | Carbon  | 0.791667 | 0.958333 | 0.43291 |
| 12 | Carbon  | 0.458333 | 0.291667 | 0.56709 |
| 13 | Carbon  | 0.458333 | 0.791667 | 0.56709 |
| 14 | Carbon  | 0.958333 | 0.291667 | 0.56709 |
| 15 | Carbon  | 0.958333 | 0.791667 | 0.56709 |
| 16 | Metal   | 0.625    | 0.625    | 0.5     |

 Table 7.14. Cartesian coordinates of ReBLG after geometry optimization.

|    | Element | x(Å)    | y(Å)     | z(Å)      |
|----|---------|---------|----------|-----------|
| 0  | Carbon  | 0.61521 | -0.01123 | 10.572300 |
| 1  | Carbon  | 1.85609 | 2.13795  | 10.572400 |
| 2  | Carbon  | 1.83557 | -2.12501 | 10.572100 |
| 3  | Carbon  | 3.07631 | 0.00051  | 10.367400 |
| 4  | Carbon  | 0.61515 | 0.01056  | 14.429800 |
| 5  | Carbon  | 1.83607 | 2.12533  | 14.430100 |
| 6  | Carbon  | 1.85547 | -2.13764 | 14.429700 |
| 7  | Carbon  | 3.07628 | -0.00051 | 14.619700 |
| 8  | Carbon  | 1.85062 | 0.70796  | 10.594900 |
| 9  | Carbon  | 3.07632 | 2.84219  | 10.505100 |
| 10 | Carbon  | 3.07631 | -1.41514 | 10.593000 |
| 11 | Carbon  | 4.30213 | 0.70801  | 10.592900 |
| 12 | Carbon  | 1.84962 | -0.70849 | 14.409600 |
| 13 | Carbon  | 3.07624 | 1.41621  | 14.411400 |
| 14 | Carbon  | 3.07626 | -2.84216 | 14.493500 |
| 15 | Carbon  | 4.30305 | -0.70857 | 14.411800 |
| 16 | Rhenium | 3.08024 | -0.00014 | 12.491700 |

|    | Element | а        | b        | с        |
|----|---------|----------|----------|----------|
| 0  | Carbon  | 0.126299 | 0.123665 | 0.422894 |
| 1  | Carbon  | 0.126308 | 0.62783  | 0.422896 |
| 2  | Carbon  | 0.622145 | 0.123658 | 0.422884 |
| 3  | Carbon  | 0.624901 | 0.625022 | 0.414696 |
| 4  | Carbon  | 0.123732 | 0.126208 | 0.577193 |
| 5  | Carbon  | 0.123723 | 0.622284 | 0.577202 |
| 6  | Carbon  | 0.62767  | 0.12622  | 0.577187 |
| 7  | Carbon  | 0.625016 | 0.624897 | 0.584789 |
| 8  | Carbon  | 0.292922 | 0.458996 | 0.423797 |
| 9  | Carbon  | 0.291603 | 0.958326 | 0.420205 |
| 10 | Carbon  | 0.790943 | 0.458978 | 0.42372  |
| 11 | Carbon  | 0.790948 | 0.957034 | 0.423715 |
| 12 | Carbon  | 0.458855 | 0.292658 | 0.576385 |
| 13 | Carbon  | 0.45884  | 0.791056 | 0.576457 |
| 14 | Carbon  | 0.958309 | 0.291593 | 0.579742 |
| 15 | Carbon  | 0.957286 | 0.79107  | 0.576472 |
| 16 | Rhenium | 0.625776 | 0.625743 | 0.49967  |

 Table 7.15. Fractional coordinates of ReBLG after geometry optimization.

**Table 7.16.** Z-matrix of ReBLG.

|    | Element | d (Å)   | θ (°)   | φ (°)    |
|----|---------|---------|---------|----------|
| 0  | Carbon  |         |         |          |
| 1  | Carbon  | 2.48168 |         |          |
| 2  | Carbon  | 4.26301 | 29.7252 |          |
| 3  | Carbon  | 2.46965 | 30.3382 | 170.554  |
| 4  | Carbon  | 4.74981 | 70.7684 | 53.458   |
| 5  | Carbon  | 2.4419  | 75.0983 | 177.912  |
| 6  | Carbon  | 4.26301 | 30.2599 | -62.2596 |
| 7  | Carbon  | 2.46857 | 30.2898 | -171.231 |
| 8  | Carbon  | 4.26653 | 85.9324 | -62.9846 |
| 9  | Carbon  | 2.46279 | 92.024  | -177.714 |
| 10 | Carbon  | 4.25823 | 29.8699 | 71.8725  |
| 11 | Carbon  | 2.45162 | 30.0212 | -175.823 |
| 12 | Carbon  | 4.75279 | 58.9249 | 72.0076  |
| 13 | Carbon  | 2.45335 | 58.9679 | 179.984  |
| 14 | Carbon  | 4.25916 | 30.0188 | -71.9389 |
| 15 | Carbon  | 2.4625  | 29.8986 | 176.108  |
| 16 | Rhenium | 2.38407 | 91.6429 | -54.7214 |

 Table 7.17. Cartesian coordinates of WBLG after geometry optimization.

|    | Element  | x(Å)    | y(Å)     | z(Å)    |
|----|----------|---------|----------|---------|
| 0  | Carbon   | 0.61478 | -0.01063 | 10.5589 |
| 1  | Carbon   | 1.85640 | 2.13997  | 10.5594 |
| 2  | Carbon   | 1.83446 | -2.12306 | 10.5594 |
| 3  | Carbon   | 3.07590 | 0.00209  | 10.3190 |
| 4  | Carbon   | 0.61469 | 0.00848  | 14.4543 |
| 5  | Carbon   | 1.83644 | 2.12412  | 14.4536 |
| 6  | Carbon   | 1.85428 | -2.13893 | 14.4530 |
| 7  | Carbon   | 3.07589 | -0.00171 | 14.6391 |
| 8  | Carbon   | 1.85241 | 0.70807  | 10.5741 |
| 9  | Carbon   | 3.07612 | 2.84373  | 10.4895 |
| 10 | Carbon   | 3.07614 | -1.41165 | 10.5697 |
| 11 | Carbon   | 4.30009 | 0.70817  | 10.5712 |
| 12 | Carbon   | 1.84888 | -0.70987 | 14.4366 |
| 13 | Carbon   | 3.07605 | 1.41549  | 14.4423 |
| 14 | Carbon   | 3.07619 | -2.84395 | 14.5159 |
| 15 | Carbon   | 4.30345 | -0.70997 | 14.4389 |
| 16 | Tungsten | 3.08163 | -0.00074 | 12.4673 |

|    | Element  | а        | b        | c        |
|----|----------|----------|----------|----------|
| 0  | Carbon   | 0.126141 | 0.123648 | 0.422375 |
| 1  | Carbon   | 0.126136 | 0.628131 | 0.41276  |
| 2  | Carbon   | 0.621691 | 0.123662 | 0.578171 |
| 3  | Carbon   | 0.624633 | 0.625123 | 0.578142 |
| 4  | Carbon   | 0.123882 | 0.12587  | 0.578121 |
| 5  | Carbon   | 0.12394  | 0.622217 | 0.585565 |
| 6  | Carbon   | 0.627578 | 0.125826 | 0.422966 |
| 7  | Carbon   | 0.625076 | 0.624674 | 0.419581 |
| 8  | Carbon   | 0.293273 | 0.459372 | 0.422966 |
| 9  | Carbon   | 0.291381 | 0.958466 | 0.419581 |
| 10 | Carbon   | 0.7905   | 0.459355 | 0.42279  |
| 11 | Carbon   | 0.790513 | 0.956637 | 0.422848 |
| 12 | Carbon   | 0.458866 | 0.292344 | 0.577465 |
| 13 | Carbon   | 0.458866 | 0.790932 | 0.577694 |
| 14 | Carbon   | 0.958506 | 0.291369 | 0.580636 |
| 15 | Carbon   | 0.95753  | 0.790985 | 0.577555 |
| 16 | Tungsten | 0.626129 | 0.625955 | 0.498693 |

 Table 7.18. Fractional coordinates of WBLG after geometry optimization.

Table 7.19. Z-matrix of WBLG.

|    | Element | d (Å)   | θ (°)   | φ (°)    |
|----|---------|---------|---------|----------|
| 0  | Carbon  |         |         | ·        |
| 1  | Carbon  | 2.48328 |         |          |
| 2  | Carbon  | 4.26308 | 29.7046 |          |
| 3  | Carbon  | 2.47289 | 30.4639 | 168.923  |
| 4  | Carbon  | 4.81228 | 70.1754 | 52.3974  |
| 5  | Carbon  | 2.44307 | 75.2344 | 177.561  |
| 6  | Carbon  | 4.26308 | 30.2455 | -62.6536 |
| 7  | Carbon  | 2.46873 | 30.2717 | -171.367 |
| 8  | Carbon  | 4.30405 | 86.0382 | -63.3394 |
| 9  | Carbon  | 2.46286 | 91.9603 | -177.873 |
| 10 | Carbon  | 4.25613 | 29.8147 | 72.0665  |
| 11 | Carbon  | 2.44779 | 30.0205 | -175.987 |
| 12 | Carbon  | 4.79174 | 59.2303 | 72.1355  |
| 13 | Carbon  | 2.4542  | 59.3235 | 179.959  |
| 14 | Carbon  | 4.26007 | 30.0236 | -72.1475 |
| 15 | Carbon  | 2.46292 | 29.9066 | 176.145  |
| 16 | Tunsten | 2.42545 | 91.5914 | -55.4926 |

**Table 7.20.** Cartesian coordinates of MNBLG before geometry optimization.(M; W, Re, Os.)

|    | Element  | x(Å)    | y(Å)    | z(Å)     |
|----|----------|---------|---------|----------|
| 0  | Carbon   | 0.62911 | 4.82514 | 0.851517 |
| 1  | Carbon   | 1.89579 | 7.01886 | 0.851679 |
| 2  | Carbon   | 1.87780 | 2.66171 | 0.851757 |
| 3  | Carbon   | 3.14471 | 4.83542 | 0.729906 |
| 4  | Carbon   | 0.62910 | 4.84139 | 4.869200 |
| 5  | Carbon   | 1.87778 | 7.00483 | 4.868950 |
| 6  | Carbon   | 1.89579 | 2.64768 | 4.869030 |
| 7  | Carbon   | 3.14471 | 4.83114 | 4.990980 |
| 8  | Nitrogen | 1.88726 | 5.56086 | 0.886771 |
| 9  | Carbon   | 3.14462 | 7.73968 | 0.802885 |
| 10 | Carbon   | 3.14464 | 3.38329 | 0.886470 |
| 11 | Carbon   | 4.40179 | 5.56084 | 0.886734 |
| 12 | Nitrogen | 1.88727 | 4.10566 | 4.833970 |
| 13 | Carbon   | 3.14465 | 6.28322 | 4.834270 |
| 14 | Carbon   | 3.14464 | 1.92686 | 4.917830 |
| 15 | Carbon   | 4.40181 | 4.10570 | 4.834010 |
| 16 | Metal    | 3.14574 | 4.83327 | 2.860400 |

# **Table 7.21.** Fractional coordinates of MNBLG before geometry optimization.(M; W, Re, Os.)

|    | Element  | а        | b        | с        |
|----|----------|----------|----------|----------|
| 0  | Carbon   | 0.125049 | 0.499159 | 0.148844 |
| 1  | Carbon   | 0.376829 | 0.726099 | 0.148872 |
| 2  | Carbon   | 0.373253 | 0.275353 | 0.148885 |
| 3  | Carbon   | 0.625079 | 0.500223 | 0.127586 |
| 4  | Carbon   | 0.125046 | 0.50084  | 0.851127 |
| 5  | Carbon   | 0.373249 | 0.724647 | 0.851084 |
| 6  | Carbon   | 0.376828 | 0.273902 | 0.851098 |
| 7  | Carbon   | 0.625078 | 0.49978  | 0.872414 |
| 8  | Nitrogen | 0.375133 | 0.575269 | 0.155006 |
| 9  | Carbon   | 0.625061 | 0.800667 | 0.140343 |
| 10 | Carbon   | 0.625064 | 0.35     | 0.154953 |
| 11 | Carbon   | 0.87495  | 0.575267 | 0.154999 |
| 12 | Nitrogen | 0.375135 | 0.42473  | 0.84497  |
| 13 | Carbon   | 0.625067 | 0.649997 | 0.845021 |
| 14 | Carbon   | 0.625064 | 0.199333 | 0.859627 |
| 15 | Carbon   | 0.874954 | 0.424733 | 0.844976 |
| 16 | Metal    | 0.625283 | 0.5      | 0.499993 |

 Table 7.22. Cartesian coordinates of ReNBLG after geometry optimization.

|    | Element  | x(Å)    | y(Å)    | z(Å)     |
|----|----------|---------|---------|----------|
| 0  | Carbon   | 4.30758 | 4.79562 | 4.740090 |
| 1  | Carbon   | 3.06596 | 4.79512 | 2.589490 |
| 2  | Carbon   | 3.08790 | 4.79515 | 6.852520 |
| 3  | Carbon   | 1.84646 | 5.03553 | 4.727370 |
| 4  | Carbon   | 4.30767 | 0.90026 | 4.720980 |
| 5  | Carbon   | 3.08592 | 0.90097 | 2.605340 |
| 6  | Carbon   | 3.06809 | 0.90149 | 6.868390 |
| 7  | Carbon   | 1.84648 | 0.71540 | 4.731170 |
| 8  | Nitrogen | 3.06995 | 4.78039 | 4.021390 |
| 9  | Carbon   | 1.84624 | 4.86500 | 1.885730 |
| 10 | Carbon   | 1.84622 | 4.78478 | 6.141110 |
| 11 | Carbon   | 0.62228 | 4.78332 | 4.021290 |
| 12 | Nitrogen | 3.07349 | 0.91790 | 5.439330 |
| 13 | Carbon   | 1.84631 | 0.91218 | 3.313970 |
| 14 | Carbon   | 1.84617 | 0.83861 | 7.573410 |
| 15 | Carbon   | 0.61892 | 0.91566 | 5.439430 |
| 16 | Rhenium  | 1.84074 | 2.88720 | 4.730200 |

## **Table 7.23.** Fractional coordinates of ReNBLG after geometry optimization.

|    | Element  | a        | b        | с        |
|----|----------|----------|----------|----------|
| 0  | Carbon   | 0.874354 | 0.833887 | 0.501112 |
| 1  | Carbon   | 0.622329 | 0.8338   | 0.273756 |
| 2  | Carbon   | 0.626783 | 0.833806 | 0.724434 |
| 3  | Carbon   | 0.374795 | 0.875603 | 0.499768 |
| 4  | Carbon   | 0.874372 | 0.156541 | 0.499092 |
| 5  | Carbon   | 0.626381 | 0.156664 | 0.275431 |
| 6  | Carbon   | 0.62276  | 0.156756 | 0.726111 |
| 7  | Carbon   | 0.374798 | 0.124397 | 0.50017  |
| 8  | Nitrogen | 0.62314  | 0.831238 | 0.425133 |
| 9  | Carbon   | 0.37475  | 0.84595  | 0.199355 |
| 10 | Carbon   | 0.374746 | 0.832001 | 0.649225 |
| 11 | Carbon   | 0.12631  | 0.831748 | 0.425122 |
| 12 | Nitrogen | 0.623856 | 0.15961  | 0.575034 |
| 13 | Carbon   | 0.374764 | 0.158615 | 0.350346 |
| 14 | Carbon   | 0.374736 | 0.145823 | 0.800645 |
| 15 | Carbon   | 0.125628 | 0.15922  | 0.575045 |
| 16 | Rhenium  | 0.373633 | 0.502041 | 0.500067 |

# Table 7.24. Z-matrix of ReNBLG.

|    | Element  | d (Å)   | θ (°)   | φ (°)    |
|----|----------|---------|---------|----------|
| 0  | Carbon   |         |         |          |
| 1  | Carbon   | 3.22011 |         |          |
| 2  | Carbon   | 2.53316 | 66.8572 |          |
| 3  | Carbon   | 4.35719 | 29.7661 | 42.7123  |
| 4  | Carbon   | 2.51892 | 30.1144 | 174.46   |
| 5  | Carbon   | 4.84377 | 72.453  | 57.0969  |
| 6  | Carbon   | 2.49794 | 75.0109 | 178.872  |
| 7  | Carbon   | 4.35719 | 30.2293 | -62.1989 |
| 8  | Nitrogen | 2.51837 | 30.1223 | -174.452 |
| 9  | Carbon   | 4.3541  | 87.5034 | -65.6801 |
| 10 | Carbon   | 2.51699 | 91.8466 | -178.228 |
| 11 | Carbon   | 4.35719 | 29.9889 | 71.5943  |
| 12 | Nitrogen | 2.51439 | 30.0176 | -176.168 |
| 13 | Carbon   | 4.90113 | 59.0985 | 72.0374  |
| 14 | Carbon   | 2.51451 | 59.0977 | 179.995  |
| 15 | Carbon   | 4.35716 | 30.0217 | -72.0405 |
| 16 | Rhenium  | 2.51691 | 29.9846 | 176.17   |

 Table 7.25. Cartesian coordinates of WNBLG after geometry optimization.

|    | Element  | x(Å)    | y(Å)    | z(Å)     |
|----|----------|---------|---------|----------|
| 0  | Carbon   | 1.36887 | 1.40802 | 1.285436 |
| 1  | Carbon   | 1.24471 | 1.40797 | 1.070377 |
| 2  | Carbon   | 1.24690 | 1.40798 | 1.496679 |
| 3  | Carbon   | 1.12276 | 1.43201 | 1.284164 |
| 4  | Carbon   | 1.36888 | 1.01849 | 1.283525 |
| 5  | Carbon   | 1.24670 | 1.01856 | 1.071961 |
| 6  | Carbon   | 1.24492 | 1.01861 | 1.498266 |
| 7  | Carbon   | 1.12276 | 1.00000 | 1.284544 |
| 8  | Nitrogen | 1.24510 | 1.40650 | 1.213566 |
| 9  | Carbon   | 1.12273 | 1.41496 | 1.000000 |
| 10 | Carbon   | 1.12273 | 1.40694 | 1.425538 |
| 11 | Carbon   | 1.00034 | 1.40679 | 1.213556 |
| 12 | Nitrogen | 1.24546 | 1.02025 | 1.355360 |
| 13 | Carbon   | 1.12274 | 1.01968 | 1.142825 |
| 14 | Carbon   | 1.12273 | 1.01232 | 1.568768 |
| 15 | Carbon   | 1.00000 | 1.02003 | 1.355370 |
| 16 | Tungsten | 1.12218 | 1.21718 | 1.284447 |

 Table 7.26. Cartesian coordinates of OsNBLG after geometry optimization.

|    | Element  | x(Å)    | y(Å)    | z(Å)     |
|----|----------|---------|---------|----------|
| 0  | Carbon   | 0.61618 | 4.70708 | 0.877624 |
| 1  | Carbon   | 1.85624 | 6.85507 | 0.877792 |
| 2  | Carbon   | 1.83722 | 2.59218 | 0.877799 |
| 3  | Carbon   | 3.07731 | 4.71817 | 0.715932 |
| 4  | Carbon   | 0.61618 | 4.72854 | 4.769200 |
| 5  | Carbon   | 1.83740 | 6.84377 | 4.769030 |
| 6  | Carbon   | 1.85605 | 2.58088 | 4.769040 |
| 7  | Carbon   | 3.07731 | 4.71769 | 4.927720 |
| 8  | Nitrogen | 1.84878 | 5.42712 | 0.911720 |
| 9  | Carbon   | 3.07739 | 7.55990 | 0.818531 |
| 10 | Carbon   | 3.07729 | 3.29917 | 0.911160 |
| 11 | Carbon   | 4.30588 | 5.42714 | 0.911754 |
| 12 | Nitrogen | 1.84854 | 4.00860 | 4.739020 |
| 13 | Carbon   | 3.07729 | 6.13697 | 4.739430 |
| 14 | Carbon   | 3.07738 | 1.87598 | 4.827160 |
| 15 | Carbon   | 4.30612 | 4.00858 | 4.739020 |
| 16 | Osmium   | 3.07774 | 4.71774 | 2.821900 |

|    | Element  | а        | b        | с        |
|----|----------|----------|----------|----------|
| 0  | Carbon   | 0.125181 | 0.498849 | 0.155506 |
| 1  | Carbon   | 0.377109 | 0.72649  | 0.155536 |
| 2  | Carbon   | 0.373243 | 0.274715 | 0.155537 |
| 3  | Carbon   | 0.625177 | 0.500024 | 0.126856 |
| 4  | Carbon   | 0.125181 | 0.501123 | 0.845055 |
| 5  | Carbon   | 0.373281 | 0.725292 | 0.845025 |
| 6  | Carbon   | 0.37707  | 0.273518 | 0.845026 |
| 7  | Carbon   | 0.625177 | 0.499973 | 0.873144 |
| 8  | Nitrogen | 0.375592 | 0.575157 | 0.161548 |
| 9  | Carbon   | 0.625193 | 0.801186 | 0.145036 |
| 10 | Carbon   | 0.625174 | 0.34964  | 0.161449 |
| 11 | Carbon   | 0.87477  | 0.575159 | 0.161554 |
| 12 | Nitrogen | 0.375544 | 0.424826 | 0.839708 |
| 13 | Carbon   | 0.625174 | 0.650386 | 0.83978  |
| 14 | Carbon   | 0.625192 | 0.198814 | 0.855326 |
| 15 | Carbon   | 0.874819 | 0.424823 | 0.839707 |
| 16 | Osmium   | 0.625265 | 0.499978 | 0.500013 |

**Table 7.27.** Fractional coordinates of OsNBLG after geometry optimization.

Table 7.28. Z-matrix of OsNBLG.

|    | Element  | d (Å)   | θ (°)   | φ (°)    |
|----|----------|---------|---------|----------|
| 0  | Carbon   |         |         | •        |
| 1  | Carbon   | 2.48025 |         |          |
| 2  | Carbon   | 4.26293 | 29.7427 |          |
| 3  | Carbon   | 2.46655 | 30.2126 | 172.499  |
| 4  | Carbon   | 4.74197 | 71.6302 | 55.2503  |
| 5  | Carbon   | 2.44245 | 75.0682 | 178.392  |
| 6  | Carbon   | 4.26293 | 30.2506 | -62.198  |
| 7  | Carbon   | 2.46629 | 30.2052 | -172.645 |
| 8  | Nitrogen | 4.25921 | 86.6069 | -64.1498 |
| 9  | Carbon   | 2.46311 | 92.0645 | -177.863 |
| 10 | Carbon   | 4.26175 | 29.9435 | 71.8003  |
| 11 | Carbon   | 2.45717 | 30.0228 | -175.634 |
| 12 | Nitrogen | 4.76432 | 58.966  | 72.1758  |
| 13 | Carbon   | 2.45759 | 58.9623 | -179.997 |
| 14 | Carbon   | 4.26189 | 30.0214 | -72.0351 |
| 15 | Carbon   | 2.46284 | 29.9507 | 175.878  |
| 16 | Osmium   | 2.38477 | 91.6778 | -54.683  |

**Table 7.29.** Cartesian coordinates of WOBLG before geometry optimization.

|    | Element | x(Å)     | y(Å)    | z(Å)    |
|----|---------|----------|---------|---------|
| 0  | Carbon  | 10.88090 | 0.69479 | 0.58531 |
| 1  | Carbon  | 15.14390 | 0.69479 | 3.04651 |
| 2  | Carbon  | 6.61801  | 0.69479 | 3.04651 |
| 3  | Carbon  | 10.88090 | 0.69479 | 5.50771 |
| 4  | Carbon  | 13.00970 | 0.66369 | 1.81873 |
| 5  | Carbon  | 17.26670 | 0.66369 | 4.27993 |
| 6  | Carbon  | 8.74081  | 0.66369 | 4.27993 |
| 7  | Carbon  | 13.00370 | 0.66369 | 6.74113 |
| 8  | Carbon  | 8.76794  | 1.06778 | 1.79335 |
| 9  | Carbon  | 13.03090 | 1.06778 | 4.25455 |
| 10 | Carbon  | 4.50501  | 1.06778 | 4.25455 |
| 11 | Carbon  | 8.76794  | 1.06778 | 6.71575 |
| 12 | Carbon  | 10.89710 | 0.62420 | 3.02264 |
| 13 | Carbon  | 15.16000 | 0.62420 | 5.48384 |
| 14 | Carbon  | 6.63414  | 0.62420 | 5.48384 |
| 15 | Carbon  | 10.89710 | 0.62420 | 7.94504 |
| 16 | Carbon  | 8.96338  | 4.52520 | 0.63940 |
| 17 | Carbon  | 13.22630 | 4.52520 | 3.10060 |
| 18 | Carbon  | 4.70046  | 4.52520 | 3.10060 |
| 19 | Carbon  | 8.96338  | 4.52520 | 5.56180 |
| 20 | Carbon  | 11.07710 | 4.23606 | 1.86083 |
| 21 | Carbon  | 15.34000 | 4.23606 | 4.32203 |
| 22 | Carbon  | 6.81414  | 4.23606 | 4.32203 |
| 23 | Carbon  | 11.07710 | 4.23606 | 6.78323 |
| 24 | Carbon  | 6.83582  | 4.54244 | 1.87867 |
| 25 | Carbon  | 11.09870 | 4.54244 | 4.33987 |
| 26 | Carbon  | 2.57290  | 4.54244 | 4.33987 |
| 27 | Carbon  | 6.83582  | 4.54244 | 6.80107 |
| 28 | Carbon  | 8.93785  | 4.62583 | 3.07366 |
| 29 | Carbon  | 13.20080 | 4.62583 | 5.53486 |
| 30 | Carbon  | 4.67493  | 4.62583 | 5.53486 |

|    | Element  | x(Å)     | y(Å)    | z(Å)    |
|----|----------|----------|---------|---------|
| 31 | Carbon   | 8.93785  | 4.62583 | 7.99606 |
| 32 | Carbon   | 11.58580 | 0.66863 | 1.83371 |
| 33 | Carbon   | 15.84870 | 0.66863 | 4.29491 |
| 34 | Carbon   | 7.32288  | 0.66863 | 4.29491 |
| 35 | Carbon   | 11.58580 | 0.66863 | 6.75611 |
| 36 | Carbon   | 13.70480 | 0.59702 | 3.07946 |
| 37 | Carbon   | 17.96780 | 0.59702 | 5.54066 |
| 38 | Carbon   | 9.44191  | 0.59702 | 5.54066 |
| 39 | Carbon   | 13.70480 | 0.59702 | 8.00186 |
| 40 | Carbon   | 9.48952  | 1.04355 | 3.07517 |
| 41 | Carbon   | 13.75240 | 1.04355 | 5.53637 |
| 42 | Carbon   | 5.22659  | 1.04355 | 5.53637 |
| 43 | Carbon   | 9.48952  | 1.04355 | 7.99757 |
| 44 | Carbon   | 11.55580 | 1.03222 | 4.25565 |
| 45 | Carbon   | 15.81870 | 1.03222 | 6.71685 |
| 46 | Carbon   | 7.29286  | 1.03222 | 6.71685 |
| 47 | Carbon   | 11.55580 | 1.03222 | 9.17805 |
| 48 | Carbon   | 8.25588  | 4.55598 | 1.88626 |
| 49 | Carbon   | 12.51880 | 4.55598 | 4.34746 |
| 50 | Carbon   | 3.99296  | 4.55598 | 4.34746 |
| 51 | Carbon   | 8.25588  | 4.55598 | 6.80866 |
| 52 | Carbon   | 10.35090 | 4.24308 | 3.12161 |
| 53 | Carbon   | 14.61380 | 4.24308 | 5.58281 |
| 54 | Carbon   | 6.08794  | 4.24308 | 5.58281 |
| 55 | Carbon   | 10.35090 | 4.24308 | 8.04401 |
| 56 | Carbon   | 6.13459  | 4.60666 | 3.13228 |
| 57 | Carbon   | 10.39750 | 4.60666 | 5.59348 |
| 58 | Carbon   | 1.87167  | 4.60666 | 5.59348 |
| 59 | Carbon   | 6.13459  | 4.60666 | 8.05468 |
| 60 | Carbon   | 8.27676  | 4.23398 | 4.30744 |
| 61 | Carbon   | 12.53970 | 4.23398 | 6.76864 |
| 62 | Carbon   | 4.01383  | 4.23398 | 6.76864 |
| 63 | Carbon   | 8.27676  | 4.23398 | 9.22984 |
| 64 | Tungsten | 8.54113  | 2.55928 | 6.62702 |
| 65 | Tungsten | 12.05850 | 3.23031 | 1.41897 |
| 66 | Tungsten | 11.35060 | 1.50066 | 4.55305 |
| 67 | Oxygen   | 9.70851  | 3.79970 | 7.57524 |
| 68 | Oxygen   | 13.22580 | 4.47073 | 2.36720 |
| 69 | Oxygen   | 12.51800 | 2.74107 | 5.50128 |
| 70 | Oxygen   | 11.33130 | 2.65785 | 3.06306 |
| 71 | Oxygen   | 12.86130 | 0.62798 | 3.83483 |
| 72 | Oxygen   | 13.37660 | 1.88717 | 1.55322 |
| 73 | Oxygen   | 9.83994  | 2.37333 | 5.27127 |
| 74 | Oxygen   | 11.36990 | 0.34346 | 6.04304 |
| 75 | Oxygen   | 9.32463  | 1.11415 | 7.55288 |

# Table 7.30. (continued) Cartesian coordinates of WOBLG before geometry optimization.

|    | Fl       | _        | L.       | _        |
|----|----------|----------|----------|----------|
|    | Element  | a        | b        | c        |
| 0  | Carbon   | 0.54845  | 0.139816 | 0.059634 |
| 1  | Carbon   | 0.763321 | 0.139816 | 0.310389 |
| 2  | Carbon   | 0 333579 | 0.139816 | 0 310389 |
| 2  | Carbon   | 0.54845  | 0.120816 | 0.561144 |
| 3  | Carbon   | 0.54645  | 0.139810 | 0.301144 |
| 4  | Carbon   | 0.655449 | 0.133557 | 0.185299 |
| 5  | Carbon   | 0.87032  | 0.133557 | 0.436054 |
| 6  | Carbon   | 0.440577 | 0.133557 | 0.436054 |
| 7  | Carbon   | 0.655449 | 0 133557 | 0.686809 |
| ,  | Carbon   | 0.441045 | 0.214976 | 0.182712 |
| 8  | Carbon   | 0.441945 | 0.214876 | 0.182712 |
| 9  | Carbon   | 0.656816 | 0.214876 | 0.433468 |
| 10 | Carbon   | 0.227074 | 0.214876 | 0.433468 |
| 11 | Carbon   | 0.441945 | 0.214876 | 0.684223 |
| 12 | Carbon   | 0 549263 | 0.125611 | 0 307957 |
| 12 | Carbon   | 0.7(4124 | 0.125011 | 0.559712 |
| 15 | Carbon   | 0.764134 | 0.125611 | 0.558712 |
| 14 | Carbon   | 0.334392 | 0.125611 | 0.558712 |
| 15 | Carbon   | 0.549263 | 0.125611 | 0.809467 |
| 16 | Carbon   | 0.451796 | 0.910632 | 0.065144 |
| 17 | Carbon   | 0.666668 | 0.910632 | 0.315800 |
| 17 | Carbon   | 0.000008 | 0.910032 | 0.315000 |
| 18 | Carbon   | 0.236925 | 0.910632 | 0.313899 |
| 19 | Carbon   | 0.451796 | 0.910632 | 0.566654 |
| 20 | Carbon   | 0.558336 | 0.852448 | 0.189587 |
| 21 | Carbon   | 0.773207 | 0.852448 | 0.440342 |
| 22 | Carbon   | 0 343465 | 0.852448 | 0.440342 |
| 22 | Carbon   | 0.5-5-05 | 0.052440 | 0.01000  |
| 23 | Carbon   | 0.358336 | 0.852448 | 0.091098 |
| 24 | Carbon   | 0.344557 | 0.914103 | 0.191405 |
| 25 | Carbon   | 0.559429 | 0.914103 | 0.44216  |
| 26 | Carbon   | 0.129686 | 0.914103 | 0.44216  |
| 27 | Carbon   | 0 344557 | 0.914103 | 0.692915 |
| 27 | Carbon   | 0.45051  | 0.020882 | 0.012154 |
| 28 | Carbon   | 0.45051  | 0.930883 | 0.313154 |
| 29 | Carbon   | 0.665381 | 0.930883 | 0.563909 |
| 30 | Carbon   | 0.235638 | 0.930883 | 0.563909 |
| 31 | Carbon   | 0.45051  | 0.930883 | 0.814664 |
| 32 | Carbon   | 0 583979 | 0.134552 | 0 186824 |
| 22 | Carbon   | 0.70895  | 0.124552 | 0.100024 |
| 55 | Carbon   | 0.79883  | 0.134332 | 0.437379 |
| 34 | Carbon   | 0.369107 | 0.134552 | 0.437579 |
| 35 | Carbon   | 0.583979 | 0.134552 | 0.688334 |
| 36 | Carbon   | 0.690788 | 0.120143 | 0.313745 |
| 37 | Carbon   | 0.905659 | 0.120143 | 0.5645   |
| 38 | Carbon   | 0.475917 | 0.120143 | 0.5645   |
| 20 | Carbon   | 0.600789 | 0.120143 | 0.815256 |
| 39 | Carbon   | 0.090788 | 0.120143 | 0.212200 |
| 40 | Carbon   | 0.478316 | 0.209999 | 0.313308 |
| 41 | Carbon   | 0.693187 | 0.209999 | 0.564063 |
| 42 | Carbon   | 0.263445 | 0.209999 | 0.564063 |
| 43 | Carbon   | 0.478316 | 0.209999 | 0.814819 |
| 44 | Carbon   | 0 582465 | 0 20772  | 0.43358  |
| 45 | Carbon   | 0.707227 | 0.20772  | 0.694424 |
| 43 | Carbon   | 0.797337 | 0.20772  | 0.084434 |
| 46 | Carbon   | 0.367594 | 0.20772  | 0.684434 |
| 47 | Carbon   | 0.582465 | 0.20772  | 0.93509  |
| 48 | Carbon   | 0.416135 | 0.916827 | 0.192179 |
| 49 | Carbon   | 0.631006 | 0.916827 | 0.442934 |
| 50 | Carbon   | 0.201264 | 0.016827 | 0.442024 |
| 50 |          | 0.201204 | 0.910027 | 0.442734 |
| 51 | Carbon   | 0.416135 | 0.916827 | 0.693689 |
| 52 | Carbon   | 0.521732 | 0.853861 | 0.31804  |
| 53 | Carbon   | 0.736603 | 0.853861 | 0.568795 |
| 54 | Carbon   | 0.30686  | 0.853861 | 0.568795 |
| 55 | Carbon   | 0 521732 | 0.853861 | 0.81955  |
| 55 | Calbon   | 0.321732 | 0.033001 | 0.01933  |
| 56 | Carbon   | 0.309212 | 0.927027 | 0.319127 |
| 57 | Carbon   | 0.524083 | 0.927027 | 0.569889 |
| 58 | Carbon   | 0.094341 | 0.927027 | 0.569889 |
| 59 | Carbon   | 0.309212 | 0.927027 | 0.820638 |
| 60 | Carbon   | 0.417197 | 0.852020 | 0.438956 |
| 00 | Carbon   | 0.41/10/ | 0.052027 | 0.430030 |
| 01 | Carbon   | 0.032039 | 0.852029 | 0.089011 |
| 62 | Carbon   | 0.202316 | 0.852029 | 0.689611 |
| 63 | Carbon   | 0.417187 | 0.852029 | 0.940366 |
| 64 | Tungsten | 0.430513 | 0.51502  | 0.675182 |
| 65 | Tungsten | 0.607803 | 0.650054 | 0 46388  |
| 66 | Tungston | 0.572124 | 0.201096 | 0.46200  |
| 00 | rungsten | 0.372124 | 0.501980 | 0.40388  |
| 67 | Oxygen   | 0.489354 | 0.764637 | 0.771791 |
| 68 | Oxygen   | 0.666644 | 0.899671 | 0.241178 |
| 69 | Oxygen   | 0.630965 | 0.551602 | 0.560488 |
| 70 | Oxygen   | 0.57115  | 0.534855 | 0.312075 |
| 71 | Ovvgen   | 0.648269 | 0 126372 | 0 390705 |
| 71 | Orygen   | 0.070209 | 0.120372 | 0.159247 |
| 12 | Oxygen   | 0.0/4243 | 0.3/9/00 | 0.138247 |
| 73 | Oxygen   | 0.495979 | 0.4776   | 0.537055 |
| 74 | Oxygen   | 0.573098 | 0.069117 | 0.615685 |
| 75 | Oxygen   | 0.470005 | 0.224206 | 0.769513 |

 Table 7.31. Fractional coordinates of WOBLG before geometry optimization.

|    |          |           | (1)      |          |
|----|----------|-----------|----------|----------|
|    | Element  | X(A)      | y(A)     | Z(A)     |
| 0  | Carbon   | 0.58531   | 10.88090 | 0.62221  |
| 1  | Carbon   | 3.04651   | 15,14390 | 0.62221  |
| 2  | Carbon   | 2 04651   | 6 61801  | 0.62221  |
| 2  | Carbon   | 5.04051   | 0.01801  | 0.02221  |
| 3  | Carbon   | 5.50771   | 10.88090 | 0.59110  |
| 4  | Carbon   | 1.81873   | 13.00370 | 0.59110  |
| 5  | Carbon   | 4 27993   | 17 26670 | 0 59110  |
| 6  | Carbon   | 4 27082   | 8 74091  | 0.50110  |
| 0  | Carbon   | 4.27983   | 8.74081  | 0.39110  |
| 7  | Carbon   | 6.74113   | 13.00370 | 0.99520  |
| 8  | Carbon   | 1.79335   | 8.76794  | 0.99520  |
| 9  | Carbon   | 4.25455   | 13.03090 | 0.99520  |
| 10 | Carbon   | 1 26511   | 5 40401  | 0.00520  |
| 10 | Calbon   | 4.50544   | 5.40401  | 0.99320  |
| 11 | Carbon   | 6./15/5   | 8.76794  | 0.55162  |
| 12 | Carbon   | 3.02264   | 10.89710 | 0.55162  |
| 13 | Carbon   | 5.48384   | 15,16000 | 0.55162  |
| 14 | Carbon   | 5 60485   | 6 63/11/ | 0.55162  |
| 15 | Carbon   | 7.04504   | 10 90710 | 4.452(2  |
| 15 | Carbon   | 7.94304   | 10.89710 | 4.43262  |
| 16 | Carbon   | 0.63940   | 8.96338  | 4.45262  |
| 17 | Carbon   | 3.10060   | 13.22630 | 4.45262  |
| 18 | Carbon   | 3,19850   | 4,70046  | 4.45262  |
| 10 | Carbon   | 5 56190   | 8 06228  | 4 16249  |
| 19 | Carbon   | 5.50180   | 8.90338  | 4.10348  |
| 20 | Carbon   | 1.86083   | 11.07710 | 4.16348  |
| 21 | Carbon   | 4.32203   | 15.34000 | 4.16348  |
| 22 | Carbon   | 4.26420   | 6.81414  | 4.16348  |
| 23 | Carbon   | 6 78323   | 11.07710 | 4 16348  |
| 23 | Carbon   | 1 07027   | 6 02502  | 4 46006  |
| 24 | Carbon   | 1.8/80/   | 0.83382  | 4.40980  |
| 25 | Carbon   | 4.33987   | 11.09870 | 4.46986  |
| 26 | Carbon   | 4.33987   | 2.57290  | 4.46986  |
| 27 | Carbon   | 6.80107   | 6.83582  | 4.46986  |
| 29 | Carbon   | 2.07266   | 0.05502  | 4.55225  |
| 28 | Carbon   | 5.07500   | 8.93783  | 4.33323  |
| 29 | Carbon   | 5.53486   | 13.20080 | 4.55325  |
| 30 | Carbon   | 5.53486   | 4.67493  | 4.55325  |
| 31 | Carbon   | 7 99606   | 8 93785  | 4 55325  |
| 22 | Carbon   | 1 92271   | 11 59590 | 0.50605  |
| 32 | Carbon   | 1.85571   | 11.38380 | 0.59605  |
| 33 | Carbon   | 4.29491   | 15.84870 | 0.59605  |
| 34 | Carbon   | 4.29491   | 7.32288  | 0.59605  |
| 35 | Carbon   | 6.75677   | 11.58580 | 0.59605  |
| 36 | Carbon   | 3.07946   | 13 70480 | 0.52444  |
| 27 | Carbon   | 5.67940   | 17.0(780 | 0.52444  |
| 37 | Carbon   | 5.54066   | 17.96780 | 0.52444  |
| 38 | Carbon   | 5.54066   | 9.44191  | 0.52444  |
| 39 | Carbon   | 8.00186   | 13.70480 | 0.52444  |
| 40 | Carbon   | 3.07517   | 9 48952  | 0.97096  |
| 41 | Carbon   | 5 52627   | 12 75240 | 0.07006  |
| 41 | Carbon   | 3.33037   | 13.73240 | 0.97090  |
| 42 | Carbon   | 5.53637   | 5.22659  | 0.97096  |
| 43 | Carbon   | 7.99757   | 9.48952  | 0.97096  |
| 44 | Carbon   | 4.25565   | 11.55580 | 0.95964  |
| 45 | Carbon   | 6 71685   | 15 81870 | 0.95964  |
| 16 | Carbon   | 6 71695   | 7 20286  | 0.05064  |
| 40 | Carbon   | 0.71085   | 7.29280  | 0.93904  |
| 47 | Carbon   | 9.17805   | 11.55880 | 0.95964  |
| 48 | Carbon   | 1.88626   | 8.25588  | 4.48340  |
| 49 | Carbon   | 4.34746   | 12.51880 | 4.48340  |
| 50 | Carbon   | 4 34746   | 3 99296  | 4 48340  |
| 51 | Carbon   | 6 00066   | 0 75500  | 4 40240  |
| 51 | Carbon   | 0.80800   | 0.23388  | 4.40340  |
| 52 | Carbon   | 3.12161   | 10.35090 | 4.17050  |
| 53 | Carbon   | 5.58281   | 14.61380 | 4.17050  |
| 54 | Carbon   | 5.58281   | 6.08794  | 4.17050  |
| 55 | Carbon   | 8 04401   | 10 35090 | 4 17050  |
| 55 | Carbon   | 2 12220   | 6 12450  | A 52400  |
| 50 | Carbon   | 5.15228   | 0.13439  | 4.33408  |
| 57 | Carbon   | 5.59348   | 10.39750 | 4.53408  |
| 58 | Carbon   | 5.59348   | 1.87167  | 4.53408  |
| 59 | Carbon   | 8.05468   | 6.13459  | 4.53408  |
| 60 | Carbon   | 4 30744   | 8 27676  | 4 16140  |
| 61 | Corbon   | 676964    | 12 52070 | 4 16140  |
| 01 | Carbon   | 0.70804   | 12.35970 | 4.10140  |
| 62 | Carbon   | 6.76864   | 4.01383  | 4.16140  |
| 63 | Carbon   | 9.22984   | 8.27676  | 4.16140  |
| 64 | Tungsten | 4.32203   | 6.81414  | 2.21398  |
| 65 | Tungsten | 4 32203   | 13 13440 | 2 21398  |
| 05 | Tungsten |           | 0.07407  | 2.21370  |
| 66 | Iungsten | 0.14653   | 9.97427  | 2.21398  |
| 67 | Oxygen   | 4.32203   | 6.81414  | 4.16348  |
| 68 | Oxygen   | 4.32203   | 13.13440 | 4.16348  |
| 69 | Oxygen   | 6,14653   | 9,97427  | 4,16348  |
| 70 | Oxygen   | 4 81820   | 9 97/27  | 2 21308  |
| 70 | Oxygen   | 7.01027   | 2.27427  | 2.21320  |
| /1 | Oxygen   | /.4/4/6   | 11.31420 | 2.21398  |
| 72 | Oxygen   | 6.14653   | 13.61470 | 2.21398  |
| 73 | Oxygen   | 4.81829   | 13.61470 | 2.21398  |
| 74 | Oxygen   | 7,47476   | 8.63438  | 2,21398  |
| 75 | Owneen   | 6 14652   | 6 22290  | 2.21390  |
| 15 | Uxvgen   | 0.140.3.3 | 0.33380  | 2.21.398 |

| <b>Table 7.32.</b> Cartesian coordinates of WOBLG after geometry obti | ptimization. |
|-----------------------------------------------------------------------|--------------|
|-----------------------------------------------------------------------|--------------|

|    |          |          | 1         |          |
|----|----------|----------|-----------|----------|
|    | Element  | a        | b         | c        |
| 0  | Carbon   | 0.059634 | 0.54845   | 0.122537 |
| 1  | Carbon   | 0.310389 | 0.763321  | 0.122537 |
| 2  | Carbon   | 0.210280 | 0.222570  | 0.122527 |
| 2  | Carbon   | 0.510389 | 0.535579  | 0.122537 |
| 3  | Carbon   | 0.561144 | 0.54845   | 0.122537 |
| 4  | Carbon   | 0.185299 | 0.655449  | 0.116412 |
| 5  | Carbon   | 0.436054 | 0.87032   | 0.116412 |
| 6  | Carbon   | 0.436054 | 0.440577  | 0.116412 |
| 0  | Carbon   | 0.450054 | 0.440377  | 0.116412 |
| 7  | Carbon   | 0.686809 | 0.655449  | 0.116412 |
| 8  | Carbon   | 0.182712 | 0.441945  | 0.195995 |
| 9  | Carbon   | 0.433468 | 0.565816  | 0.195995 |
| 10 | Carbon   | 0.433468 | 0.227074  | 0.195995 |
| 10 | Carbon   | 0.433408 | 0.441045  | 0.195995 |
| 11 | Carbon   | 0.684223 | 0.441945  | 0.195995 |
| 12 | Carbon   | 0.307957 | 0.549263  | 0.108636 |
| 13 | Carbon   | 0.558712 | 0.764134  | 0.108636 |
| 14 | Carbon   | 0.558712 | 0 334392  | 0.108636 |
| 15 | Carbon   | 0.800467 | 0.5301392 | 0.109626 |
| 15 | Carbon   | 0.809407 | 0.349203  | 0.108030 |
| 16 | Carbon   | 0.065144 | 0.451796  | 0.876898 |
| 17 | Carbon   | 0.315899 | 0.666668  | 0.876898 |
| 18 | Carbon   | 0.315899 | 0.236925  | 0.876898 |
| 10 | Carbon   | 0.566654 | 0.451796  | 0.876808 |
| 19 | Carbon   | 0.100507 | 0.451790  | 0.870898 |
| 20 | Carbon   | 0.18958/ | 0.558336  | 0.819950 |
| 21 | Carbon   | 0.440342 | 0.773207  | 0.819956 |
| 22 | Carbon   | 0.440342 | 0.343465  | 0.819956 |
| 23 | Carbon   | 0.691098 | 0 558336  | 0.819956 |
| 24 | Carbon   | 0.101405 | 0.244557  | 0.000005 |
| 24 | Carbon   | 0.191405 | 0.344337  | 0.000295 |
| 25 | Carbon   | 0.44216  | 0.559429  | 0.880295 |
| 26 | Carbon   | 0.44216  | 0.129686  | 0.880295 |
| 27 | Carbon   | 0.692915 | 0.344557  | 0.880295 |
| 29 | Carbon   | 0.212154 | 0.45051   | 0.806716 |
| 20 | Carbon   | 0.313134 | 0.43031   | 0.890710 |
| 29 | Carbon   | 0.563909 | 0.665381  | 0.896716 |
| 30 | Carbon   | 0.563909 | 0.235638  | 0.896716 |
| 31 | Carbon   | 0.814664 | 0.45051   | 0.896716 |
| 32 | Carbon   | 0.186824 | 0 583070  | 0.117385 |
| 32 | Carbon   | 0.100824 | 0.303979  | 0.117305 |
| 33 | Carbon   | 0.437579 | 0.79885   | 0.11/385 |
| 34 | Carbon   | 0.437579 | 0.369107  | 0.117385 |
| 35 | Carbon   | 0.688334 | 0.583989  | 0.117385 |
| 36 | Carbon   | 0 313745 | 0.690788  | 0 103284 |
| 27 | Carbon   | 0.5645   | 0.005650  | 0.103284 |
| 37 | Carbon   | 0.3645   | 0.905659  | 0.103284 |
| 38 | Carbon   | 0.5645   | 0.475917  | 0.103284 |
| 39 | Carbon   | 0.815256 | 0.690788  | 0.103284 |
| 40 | Carbon   | 0.313308 | 0.478316  | 0.191222 |
| 41 | Carbon   | 0.564063 | 0.602197  | 0 101222 |
| 41 | Carbon   | 0.504005 | 0.093187  | 0.191222 |
| 42 | Carbon   | 0.564063 | 0.263445  | 0.191222 |
| 43 | Carbon   | 0.814819 | 0.478316  | 0.191222 |
| 44 | Carbon   | 0.43358  | 0.582465  | 0.188992 |
| 45 | Carbon   | 0.684335 | 0 797337  | 0 188992 |
| 16 | Carbon   | 0.684225 | 0.267504  | 0.188002 |
| 40 | Carbon   | 0.084555 | 0.30/394  | 0.188992 |
| 47 | Carbon   | 0.93509  | 0.582465  | 0.882961 |
| 48 | Carbon   | 0.192179 | 0.416135  | 0.882961 |
| 49 | Carbon   | 0.442934 | 0.631006  | 0.882961 |
| 50 | Carbon   | 0.442934 | 0.201264  | 0.882961 |
| 51 | Carbon   | 0.602600 | 0.416125  | 0.002201 |
| 51 | Carbon   | 0.093689 | 0.410135  | 0.821338 |
| 52 | Carbon   | 0.31804  | 0.521732  | 0.821338 |
| 53 | Carbon   | 0.568795 | 0.736603  | 0.821338 |
| 54 | Carbon   | 0.568795 | 0.30686   | 0.821338 |
| 55 | Carbon   | 0.81955  | 0 521732  | 0.892942 |
| 55 | Carter   | 0.210127 | 0.200212  | 0.802042 |
| 20 | Carbon   | 0.31912/ | 0.309212  | 0.892942 |
| 57 | Carbon   | 0.569883 | 0.524083  | 0.892942 |
| 58 | Carbon   | 0.569883 | 0.094341  | 0.892942 |
| 59 | Carbon   | 0.820638 | 0.309212  | 0.819546 |
| 60 | Carbon   | 0.438856 | 0.417187  | 0.819546 |
| 60 | Carbon   | 0.400211 | 0.622050  | 0.010540 |
| 01 | Carbon   | 0.089011 | 0.032039  | 0.819340 |
| 62 | Carbon   | 0.689611 | 0.202316  | 0.819546 |
| 63 | Carbon   | 0.940366 | 0.417187  | 0.819546 |
| 64 | Tungsten | 0.440342 | 0.343465  | 0.436022 |
| 65 | Tungetan | 0.440342 | 0.662035  | 0.436022 |
| 05 | Tungsten | 0.440342 | 0.002033  | 0.426022 |
| 66 | Tungsten | 0.626229 | 0.50275   | 0.436022 |
| 67 | Oxygen   | 0.440342 | 0.343465  | 0.819956 |
| 68 | Oxygen   | 0.440342 | 0.662035  | 0.819956 |
| 69 | Oxygen   | 0.626229 | 0 50275   | 0.819956 |
| 70 | Ovygon   | 0.020229 | 0.50275   | 0.426022 |
| 70 | Oxygen   | 0.490903 | 0.570287  | 0.430022 |
| 71 | Oxygen   | 0.761554 | 0.570287  | 0.436022 |
| 72 | Oxygen   | 0.626229 | 0.686246  | 0.436022 |
| 73 | Oxygen   | 0.490903 | 0.435213  | 0.436022 |
| 74 | Oxygen   | 0.761554 | 0.435213  | 0.436022 |
| /4 | Oxygen   | 0.701334 | 0.433213  | 0.430022 |
| 15 | Oxygen   | 0.626229 | 0.319253  | 0.436022 |

| <b>Table 7.55.</b> Fractional coordinates of wOBLG after geometry optimization | Table 7.33.         Fractional coord | dinates of WOBL | G after geometry | y optimization. |
|--------------------------------------------------------------------------------|--------------------------------------|-----------------|------------------|-----------------|
|--------------------------------------------------------------------------------|--------------------------------------|-----------------|------------------|-----------------|

|    |          |         | <b>a</b> (0) | (0)      |
|----|----------|---------|--------------|----------|
|    | Element  | d (A)   | θ (°)        | φ (°)    |
| 0  | Carbon   |         |              |          |
| 1  | Carbon   | 4 9224  |              |          |
| 2  | Carbon   | 0.52595 | 20           |          |
| 2  | Carbon   | 8.52585 | 30           | 100      |
| 3  | Carbon   | 4.9224  | 30           | -180     |
| 4  | Carbon   | 4.25627 | 89.918       | -0.41868 |
| 5  | Carbon   | 4 9224  | 89 918       | 180      |
| 6  | Carbon   | 9 52595 | 20           | 0.41969  |
| 0  | Carbon   | 0.32303 | 30           | 0.41808  |
| 1  | Carbon   | 4.9224  | 30           | 180      |
| 8  | Carbon   | 6.25278 | 19.7425      | 10.563   |
| 9  | Carbon   | 4.9224  | 19.7425      | -180     |
| 10 | Carbon   | 8 52585 | 30           | -10 563  |
| 11 | Cartan   | 4.0224  | 30           | 190      |
| 11 | Carbon   | 4.9224  | 30           | -180     |
| 12 | Carbon   | 4.28591 | 89.9642      | -5.94064 |
| 13 | Carbon   | 4.9224  | 89.9642      | -180     |
| 14 | Carbon   | 8.52585 | 30           | 5.94064  |
| 15 | Carbon   | 4 9224  | 30           | -180     |
| 16 | Carbon   | 9 50466 | 51 214       | 26.0460  |
| 10 | Carbon   | 8.30400 | 51.214       | 30.0409  |
| 17 | Carbon   | 4.9224  | 51.214       | 180      |
| 18 | Carbon   | 8.52585 | 30           | -36.0469 |
| 19 | Carbon   | 4.9224  | 30           | 180      |
| 20 | Carbon   | 4 27182 | 89 732       | -3.881   |
| 20 | Carbon   | 4.0224  | 80 722       | 190      |
| 21 | Carbon   | 4.9224  | 09.132       | 180      |
| 22 | Carbon   | 8.52585 | 30           | 3.881    |
| 23 | Carbon   | 4.9224  | 30           | -180     |
| 24 | Carbon   | 6.49128 | 19.3313      | 8.19726  |
| 25 | Carbon   | 4 9224  | 19 3313      | -180     |
| 25 | Carbon   | 0 52505 | 20           | 9 10726  |
| 20 | Carbon   | 0.32383 | 30           | -0.19/20 |
| 27 | Carbon   | 4.9224  | 30           | 180      |
| 28 | Carbon   | 4.28008 | 89.4204      | 1.11634  |
| 29 | Carbon   | 4.9224  | 89.4204      | -180     |
| 30 | Carbon   | 8 52585 | 30           | -1 11634 |
| 21 | Carbon   | 4.0224  | 20           | 180      |
| 31 | Calbon   | 4.9224  | 30           | -180     |
| 32 | Carbon   | 1.18153 | 84.1926      | -30.7149 |
| 33 | Carbon   | 4.9224  | 84.1926      | -180     |
| 34 | Carbon   | 8.52585 | 30           | 30.7149  |
| 35 | Carbon   | 4.9224  | 30           | -180     |
| 36 | Carbon   | 4 24419 | 89 957       | -0.96667 |
| 27 | Carbon   | 4.0224  | 80.057       | 190      |
| 37 | Carbon   | 4.9224  | 89.937       | 180      |
| 38 | Carbon   | 8.52585 | 30           | 0.966661 |
| 39 | Carbon   | 4.9224  | 30           | -180     |
| 40 | Carbon   | 6.49927 | 19.8292      | 11.6852  |
| 41 | Carbon   | 4.9224  | 19.8292      | 180      |
| 42 | Carbon   | 9 52595 | 20           | 11 6852  |
| 42 | Carbon   | 4.0224  | 30           | -11.0052 |
| 45 | Carbon   | 4.9224  | 30           | 180      |
| 44 | Carbon   | 4.27452 | 88.9072      | -0.15181 |
| 45 | Carbon   | 4.9224  | 88.9072      | -180     |
| 46 | Carbon   | 8.52585 | 30           | 0.15181  |
| 47 | Carbon   | 4 9224  | 30           | -180     |
| 19 | Carbon   | 9 74508 | 41.0527      | 27.0664  |
| 40 | Carbon   | 0.74508 | 41.9527      | 37.0004  |
| 49 | Carbon   | 4.9224  | 41.9527      | -180     |
| 50 | Carbon   | 8.52585 | 30           | -37.0664 |
| 51 | Carbon   | 4.9224  | 30           | 180      |
| 52 | Carbon   | 4.2522  | 89.6063      | -4.22003 |
| 53 | Carbon   | 4 9224  | 89 6063      | -180     |
| 54 | Carbon   | 8 57595 | 30           | 4 22002  |
| 54 | Carbon   | 0.32303 | 30           | 4.22005  |
| 55 | Carbon   | 4.9224  | 30           | -180     |
| 56 | Carbon   | 6.48338 | 19.612       | 9.6179   |
| 57 | Carbon   | 4.9224  | 19.612       | -180     |
| 58 | Carbon   | 8.52585 | 30           | -9.6179  |
| 59 | Carbon   | 4 9224  | 30           | 180      |
| 60 | Carbon   | 1 32220 | 80 756       | 1 02496  |
| 00 | Carbon   | 4.33239 | 09.750       | -4.93460 |
| 61 | Carbon   | 4.9224  | 89.750       | 180      |
| 62 | Carbon   | 8.52585 | 30           | 4.93486  |
| 63 | Carbon   | 4.9224  | 30           | -180     |
| 64 | Tungsten | 5.4789  | 47.2288      | -28.9603 |
| 65 | Tungsten | 6 32025 | 74 5169      | 165 45   |
| 66 | Tungston | 2 640   | 20           | 21 6422  |
| 00 | rungsten | 3.049   | 50           | 21.0432  |
| 67 | Oxygen   | 4.13712 | 116.168      | -31.6707 |
| 68 | Oxygen   | 6.32025 | 40.1955      | -24.0011 |
| 69 | Oxygen   | 3.649   | 30           | -46.897  |
| 70 | Oxygen   | 2.71295 | 47.7384      | 76.1585  |
| 71 | Oxvgen   | 2.65647 | 60 6862      | 105 342  |
| 70 | Ovygon   | 2.00047 | 60.0002      | 103.542  |
| 12 | Oxygen   | 2.0304/ | 00           | -124.301 |
| 73 | Oxygen   | 5.15443 | 44.9329      | 0        |
| 74 | Oxygen   | 2.65647 | 75.0671      | 0        |
| 75 | Oxygen   | 2.65647 | 60           | -180     |

# Table 7.34. Z-matrix of WOBLG.

|          | Flomont | v(Å)     | v(Å)    | <b>7</b> (Å) |
|----------|---------|----------|---------|--------------|
| 0        | Corbon  | 10,88000 | 0.62221 | 0.58521      |
| 0        | Carbon  | 10.88090 | 0.62221 | 0.58551      |
| 1        | Carbon  | 15.14390 | 0.62221 | 3.04651      |
| 2        | Carbon  | 6.61801  | 0.62221 | 3.04651      |
| 3        | Carbon  | 10.88090 | 0.62221 | 5.50771      |
| 4        | Carbon  | 13.00370 | 0.59110 | 1.81873      |
| 5        | Carbon  | 17.26670 | 0.59110 | 4.27993      |
| 6        | Carbon  | 8.74081  | 0.59110 | 4.27993      |
| 7        | Carbon  | 13 00370 | 0 59110 | 6 74113      |
| 8        | Carbon  | 8 76794  | 0.99520 | 1 70335      |
| 0        | Carbon  | 12 02000 | 0.00520 | 4 25455      |
| 10       | Carbon  | 15.05090 | 0.99520 | 4.25455      |
| 10       | Carbon  | 4.50501  | 0.99520 | 4.25455      |
| 11       | Carbon  | 8.76794  | 0.99520 | 6.71575      |
| 12       | Carbon  | 10.89710 | 0.55162 | 3.02264      |
| 13       | Carbon  | 15.16000 | 0.55162 | 5.48384      |
| 14       | Carbon  | 6.63414  | 0.55162 | 5.48384      |
| 15       | Carbon  | 10.89710 | 0.55162 | 7.94504      |
| 16       | Carbon  | 8.96338  | 4.45262 | 0.63940      |
| 17       | Carbon  | 13 22630 | 4 45262 | 3 10060      |
| 18       | Carbon  | 4 70046  | 4 45262 | 3 10060      |
| 10       | Carbon  | 9.06239  | 4 45262 | 5 56190      |
| 19       | Carbon  | 11.07710 | 4.45202 | 1.96092      |
| 20       | Carbon  | 11.0//10 | 4.16348 | 1.80083      |
| 21       | Carbon  | 15.34000 | 4.16348 | 4.32203      |
| 22       | Carbon  | 6.81414  | 4.16348 | 4.32203      |
| 23       | Carbon  | 11.07710 | 4.16348 | 6.78323      |
| 24       | Carbon  | 6.83582  | 4.46986 | 1.87867      |
| 25       | Carbon  | 11.09870 | 4.46986 | 4.33987      |
| 26       | Carbon  | 2.57290  | 4,46986 | 4.33987      |
| 27       | Carbon  | 6.83582  | 4 46986 | 6 80107      |
| 28       | Carbon  | 8 03785  | 1 55325 | 3.07366      |
| 20       | Carbon  | 12 20080 | 4.5525  | 5.52496      |
| 29       | Carbon  | 13.20080 | 4.55325 | 5.53480      |
| 30       | Carbon  | 4.67493  | 4.55325 | 5.53486      |
| 31       | Carbon  | 8.93785  | 4.55325 | 7.99606      |
| 32       | Carbon  | 11.58580 | 0.59605 | 1.83371      |
| 33       | Carbon  | 15.84870 | 0.59605 | 4.29491      |
| 34       | Carbon  | 7.32288  | 0.59605 | 4.29491      |
| 35       | Carbon  | 11.58580 | 0.59605 | 6.75611      |
| 36       | Carbon  | 13 70480 | 0 52444 | 3.07946      |
| 37       | Carbon  | 17 96780 | 0.52444 | 5 54066      |
| 29       | Carbon  | 0.44101  | 0.52444 | 5.54066      |
| 20       | Carbon  | 9.44191  | 0.52444 | 9.00196      |
| 39       | Carbon  | 13.70480 | 0.32444 | 8.00180      |
| 40       | Carbon  | 9.48952  | 0.97096 | 3.07517      |
| 41       | Carbon  | 13.75240 | 0.97096 | 5.53637      |
| 42       | Carbon  | 5.22659  | 0.97096 | 5.53637      |
| 43       | Carbon  | 9.48952  | 0.97096 | 7.99757      |
| 44       | Carbon  | 11.55580 | 0.95964 | 4.25565      |
| 45       | Carbon  | 15.81870 | 0.95964 | 6.71685      |
| 46       | Carbon  | 7.29286  | 0.95964 | 6.71685      |
| 47       | Carbon  | 11.55580 | 0.95964 | 9,17805      |
| 48       | Carbon  | 8 25588  | 4 48340 | 1 88626      |
| 40       | Carbon  | 12 51990 | 4 48240 | 1 34746      |
| 49<br>50 | Carbon  | 2 00204  | 4.49240 | 4.24740      |
| 50       | Carbon  | 3.99290  | 4.40340 | 4.34/40      |
| 51       | Carbon  | 8.25588  | 4.48340 | 6.80866      |
| 52       | Carbon  | 10.35090 | 4.17050 | 3.12161      |
| 53       | Carbon  | 14.61380 | 4.17050 | 5.58281      |
| 54       | Carbon  | 6.08794  | 4.17050 | 5.58281      |
| 55       | Carbon  | 10.35090 | 4.17050 | 8.04401      |
| 56       | Carbon  | 6.13459  | 4.53408 | 3.13228      |
| 57       | Carbon  | 10,39750 | 4,53408 | 5,59348      |
| 58       | Carbon  | 1 87167  | 4 53408 | 5 59348      |
| 50       | Carbon  | 6 13/50  | 4 53408 | 8 05/68      |
| 59       | Carbon  | 0.13437  | 4.53400 | 4 20744      |
| 60       | Carbon  | 8.2/0/0  | 4.10140 | 4.30/44      |
| 61       | Carbon  | 12.53970 | 4.16140 | 0./0864      |
| 62       | Carbon  | 4.01383  | 4.16140 | 6.76864      |
| 63       | Carbon  | 8.27676  | 4.16140 | 9.22984      |
| 64       | Rhenium | 10.08720 | 2.49320 | 4.75135      |
| 65       | Oxygen  | 11.95420 | 2.49320 | 4.75135      |
| 66       | Oxygen  | 10.08720 | 2.49320 | 6.61835      |
| 67       | Oxygen  | 10.08720 | 4.36020 | 4.75135      |

**Table 7.35.** Cartesian coordinates of ReOBLG before geometry optimization.

|    | Flomont | 9            | h        | 0        |
|----|---------|--------------|----------|----------|
| 0  | Corbon  | a<br>0.54945 | 0.120816 | 0.050634 |
| 0  | Carbon  | 0.54845      | 0.139816 | 0.059634 |
| 1  | Carbon  | 0.763321     | 0.139816 | 0.310389 |
| 2  | Carbon  | 0.333579     | 0.139816 | 0.310389 |
| 3  | Carbon  | 0.54845      | 0.139816 | 0.561144 |
| 4  | Carbon  | 0.655449     | 0.133557 | 0.185299 |
| 5  | Carbon  | 0.87032      | 0.133557 | 0.436054 |
| 6  | Carbon  | 0.440577     | 0.133557 | 0.436054 |
| 7  | Carbon  | 0.655449     | 0.133557 | 0.686809 |
| 8  | Carbon  | 0.441945     | 0.214876 | 0.182712 |
| 9  | Carbon  | 0.656816     | 0.214876 | 0.433468 |
| 10 | Carbon  | 0.227074     | 0.214876 | 0.433468 |
| 11 | Carbon  | 0.441945     | 0.214876 | 0.684223 |
| 12 | Carbon  | 0.549263     | 0.125611 | 0.307957 |
| 13 | Carbon  | 0.764134     | 0.125611 | 0.558712 |
| 14 | Carbon  | 0.334392     | 0.125611 | 0.558712 |
| 15 | Carbon  | 0.549263     | 0.125611 | 0.809467 |
| 16 | Carbon  | 0.451796     | 0.910632 | 0.065144 |
| 17 | Carbon  | 0.666668     | 0.910632 | 0.315899 |
| 18 | Carbon  | 0.236925     | 0.910632 | 0.315899 |
| 19 | Carbon  | 0.451796     | 0.910632 | 0.566654 |
| 20 | Carbon  | 0.558336     | 0.852448 | 0.189587 |
| 21 | Carbon  | 0.773207     | 0.852448 | 0.440342 |
| 22 | Carbon  | 0.343465     | 0.852448 | 0.440342 |
| 23 | Carbon  | 0.558336     | 0.852448 | 0.691098 |
| 24 | Carbon  | 0.344557     | 0.914103 | 0.191405 |
| 25 | Carbon  | 0.559429     | 0.914103 | 0.44216  |
| 26 | Carbon  | 0.129686     | 0.914103 | 0.44216  |
| 27 | Carbon  | 0.344557     | 0.914103 | 0.692915 |
| 28 | Carbon  | 0.45051      | 0.930883 | 0.313154 |
| 29 | Carbon  | 0.665381     | 0.930883 | 0.563909 |
| 30 | Carbon  | 0.235638     | 0.930883 | 0.563909 |
| 31 | Carbon  | 0.45051      | 0.930883 | 0.814664 |
| 32 | Carbon  | 0.583979     | 0.134552 | 0.186824 |
| 33 | Carbon  | 0.79885      | 0.134552 | 0.437579 |
| 34 | Carbon  | 0.369107     | 0.134552 | 0.437579 |
| 35 | Carbon  | 0.583979     | 0.134552 | 0.688334 |
| 36 | Carbon  | 0.690788     | 0.120143 | 0.313745 |
| 37 | Carbon  | 0.905659     | 0.120143 | 0.5645   |
| 38 | Carbon  | 0.475917     | 0.120143 | 0.5645   |
| 39 | Carbon  | 0.690788     | 0.120143 | 0.815256 |
| 40 | Carbon  | 0.478316     | 0.209999 | 0.313308 |
| 41 | Carbon  | 0.693187     | 0.209999 | 0.564063 |
| 42 | Carbon  | 0.263445     | 0.209999 | 0.564063 |
| 43 | Carbon  | 0.478316     | 0.209999 | 0.814819 |
| 44 | Carbon  | 0.582465     | 0.20772  | 0.43358  |
| 45 | Carbon  | 0.797337     | 0.20772  | 0.684335 |
| 46 | Carbon  | 0.367594     | 0.20772  | 0.684335 |
| 47 | Carbon  | 0.582465     | 0.20772  | 0.93509  |
| 48 | Carbon  | 0.416135     | 0.916827 | 0.192179 |
| 49 | Carbon  | 0.631006     | 0.916827 | 0.442934 |
| 50 | Carbon  | 0.201264     | 0.916827 | 0.442934 |
| 51 | Carbon  | 0.416135     | 0.916827 | 0.693689 |
| 52 | Carbon  | 0.521732     | 0.853861 | 0.31804  |
| 53 | Carbon  | 0.736603     | 0.853861 | 0.568795 |
| 54 | Carbon  | 0.30686      | 0.853861 | 0.568795 |
| 55 | Carbon  | 0.521732     | 0.853861 | 0.81955  |
| 56 | Carbon  | 0.309212     | 0.927027 | 0.319127 |
| 57 | Carbon  | 0.524083     | 0.927027 | 0.569883 |
| 58 | Carbon  | 0.094341     | 0.927027 | 0.569883 |
| 59 | Carbon  | 0 309212     | 0.927027 | 0.820638 |
| 60 | Carbon  | 0.417187     | 0.852029 | 0.438856 |
| 61 | Carbon  | 0.632050     | 0.852029 | 0.689611 |
| 62 | Carbon  | 0.202316     | 0.852029 | 0.689611 |
| 63 | Carbon  | 0.417187     | 0.852029 | 0.940366 |
| 64 | Rhenium | 0.430513     | 0.51502  | 0.575182 |
| 65 | Oxygan  | 0.450515     | 0.488522 | 0.268114 |
| 66 | Oxygen  | 0.465008     | 0.457085 | 0.523487 |
| 67 | Oxygen  | 0.445211     | 0.632451 | 0.503004 |

 Table
 7.36.
 Fractional coordinates of ReOBLG before geometry optimization.
|    |         |          |          | ( )      |
|----|---------|----------|----------|----------|
|    | Element | X(A)     | y(A)     | Z(A)     |
| 0  | Carbon  | 0.30774  | 9.91726  | 1.42642  |
| 1  | Carbon  | 22.38527 | 14.71210 | 1.34912  |
| 2  | Carbon  | 2.89131  | 5.68680  | 1.43423  |
| 3  | Carbon  | 4.76561  | 10.44500 | 0.69628  |
| 4  | Carbon  | 1 13464  | 12 48780 | 1 25974  |
| 5  | Carbon  | 4 11040  | 16 72190 | 1 75912  |
| 5  | Carbon  | 4.11940  | 0.72180  | 1.73813  |
| 0  | Carbon  | 5.51915  | 8.23180  | 0.93735  |
| 1  | Carbon  | 6.01491  | 12.59420 | 0.95695  |
| 8  | Carbon  | 0.90045  | 8.78312  | 1.33465  |
| 9  | Carbon  | 3.55380  | 12.65090 | 0.77878  |
| 10 | Carbon  | 3.19868  | 4.35448  | 1.75959  |
| 11 | Carbon  | 6.06506  | 8.38394  | 1.22998  |
| 12 | Carbon  | 2.38506  | 10.49370 | 0.92909  |
| 13 | Carbon  | 4,78537  | 14.73010 | 1.18433  |
| 14 | Carbon  | 5 00036  | 6 17587  | 1 42808  |
| 15 | Carbon  | 7 20794  | 10 57410 | 1 25845  |
| 16 | Carbon  | 0.47036  | 0.07708  | 5 58441  |
| 17 | Carbon  | 2 80165  | 12 06000 | 5.00591  |
| 17 | Carbon  | 2.89103  | 13.00900 | 5.90381  |
| 18 | Carbon  | 2.40772  | 4.24979  | 5.57688  |
| 19 | Carbon  | 4.88244  | 8.43874  | 6.32325  |
| 20 | Carbon  | 1.05607  | 10.15800 | 5.91233  |
| 21 | Carbon  | 3.10246  | 14.39990 | 5.50110  |
| 22 | Carbon  | 3.69618  | 6.30719  | 5.89129  |
| 23 | Carbon  | 6.15743  | 10.55660 | 6.17511  |
| 24 | Carbon  | 1.29415  | 6.51488  | 5.57721  |
| 25 | Carbon  | 3.62613  | 10.59020 | 6.40106  |
| 26 | Carbon  | 4 11300  | 2 12524  | 5 40662  |
| 20 | Carbon  | 6 12749  | 6 34921  | 5.66243  |
| 27 | Carbon  | 2 49297  | 8 40045  | 6 22121  |
| 20 | Carbon  | 5.02110  | 12 72220 | 5.00422  |
| 29 | Carbon  | 5.02119  | 12.73220 | 5.99455  |
| 30 | Carbon  | 4.86727  | 4.18/46  | 5.41580  |
| 31 | Carbon  | 7.35635  | 8.40954  | 5.82916  |
| 32 | Carbon  | 1.08902  | 11.12500 | 1.20260  |
| 33 | Carbon  | 3.45905  | 15.46280 | 1.43396  |
| 34 | Carbon  | 3.63171  | 6.83634  | 1.18104  |
| 35 | Carbon  | 5.96340  | 11.15110 | 0.85188  |
| 36 | Carbon  | 2.28842  | 13.30210 | 1.09792  |
| 37 | Carbon  | 5.38937  | 17.16430 | 1.77988  |
| 38 | Carbon  | 4 78344  | 9.00158  | 0.92517  |
| 39 | Carbon  | 7 36876  | 12 82250 | 1 42681  |
| 40 | Carbon  | 2 30227  | 0.00330  | 1.02589  |
| 40 | Carbon  | 4 82222  | 12 24750 | 0.01655  |
| 41 | Carbon  | 4.83222  | 13.34750 | 0.91055  |
| 42 | Carbon  | 4.44879  | 4.86375  | 1.68318  |
| 43 | Carbon  | 7.34247  | 9.14/16  | 1.48406  |
| 44 | Carbon  | 3.55409  | 11.22740 | 0.62923  |
| 45 | Carbon  | 5.60234  | 15.81040 | 1.43742  |
| 46 | Carbon  | 6.02373  | 7.00702  | 1.42844  |
| 47 | Carbon  | 8.02225  | 11.74150 | 1.51566  |
| 48 | Carbon  | 1.21732  | 7.84000  | 5.82697  |
| 49 | Carbon  | 3.69845  | 11.99680 | 6.24821  |
| 50 | Carbon  | 3.51473  | 3.46096  | 5.47758  |
| 51 | Carbon  | 6.04561  | 7,75918  | 5.99418  |
| 52 | Carbon  | 2,42430  | 9 85110  | 6 32865  |
| 53 | Carbon  | 4 37534  | 13 07010 | 5 58/87  |
| 54 | Carbon  | 4.04852  | 5 59714  | 5.56407  |
| 55 | Carbon  | 4.74032  | 0.74627  | 5 00009  |
| 55 | Carbon  | 7.26330  | 9.74037  | 5.99008  |
| 50 | Carbon  | 2.39456  | 5.66272  | 5.00444  |
| 57 | Carbon  | 4.88279  | 9.85651  | 6.39732  |
| 58 | Carbon  | 5.36708  | 1.63607  | 5.31910  |
| 59 | Carbon  | 7.53200  | 6.17493  | 5.33011  |
| 60 | Carbon  | 3.67682  | 7.67286  | 6.27169  |
| 61 | Carbon  | 6.08016  | 11.95780 | 6.00003  |
| 62 | Carbon  | 5.61693  | 3.02923  | 5.33699  |
| 63 | Carbon  | 8.18614  | 7.25514  | 5.49377  |
| 64 | Rhenium | 3,70378  | 9,97745  | 2.74605  |
| 65 | Oxygen  | 8 35788  | 8 58240  | 1 01033  |
| 66 | Oxygon  | 3 70109  | 8 59509  | 3 75764  |
| 67 | Oxygen  | 2 96970  | 0.30370  | 2 52 402 |
| 0/ | Oxygen  | 3.808/9  | 11.50260 | 3.33493  |

 Table 7.37. Cartesian coordinates of ReOBLG after geometry optimization.

|             | Flement | 9             | h        | C        |
|-------------|---------|---------------|----------|----------|
| 0           | Corbon  | a<br>0.025512 | 0.527505 | 0.202807 |
| 0           | Carbon  | 0.035513      | 0.527505 | 0.202897 |
| 1           | Carbon  | 0.275256      | 0.782547 | 0.1919   |
| 2           | Carbon  | 0.333653      | 0.308484 | 0.204007 |
| 3           | Carbon  | 0.549944      | 0.555578 | 0.099039 |
| 4           | Carbon  | 0.130935      | 0.664236 | 0.179188 |
| 5           | Carbon  | 0.475372      | 0.889444 | 0.250079 |
| 6           | Carbon  | 0.406105      | 0.437854 | 0.13333  |
| 7           | Carbon  | 0.694112      | 0.669893 | 0.136118 |
| 8           | Carbon  | 0.10391       | 0.467179 | 0 189843 |
| 9           | Carbon  | 0.410104      | 0.67291  | 0.110775 |
| 10          | Carbon  | 0.260122      | 0.221617 | 0.250287 |
| 11          | Carbon  | 0.509125      | 0.445046 | 0.174055 |
| 11          | Carbon  | 0.699899      | 0.445946 | 0.174955 |
| 12          | Carbon  | 0.275232      | 0.558165 | 0.132155 |
| 13          | Carbon  | 0.552224      | 0.783503 | 0.168461 |
| 14          | Carbon  | 0.577034      | 0.328498 | 0.203133 |
| 15          | Carbon  | 0.831786      | 0.562444 | 0.179004 |
| 16          | Carbon  | 0.054278      | 0.482815 | 0.794335 |
| 17          | Carbon  | 0.333692      | 0.695146 | 0.840051 |
| 18          | Carbon  | 0.284771      | 0.226049 | 0.793264 |
| 19          | Carbon  | 0.563427      | 0.448862 | 0.899429 |
| 20          | Carbon  | 0 121869      | 0 54031  | 0.840978 |
| 21          | Carbon  | 0.358019      | 0 76594  | 0.782486 |
| 21          | Carbon  | 0.426534      | 0.335483 | 0.837086 |
| 22          | Carbon  | 0.710559      | 0.24652  | 0.837980 |
| 25          | Carbon  | 0.710338      | 0.54055  | 0.878337 |
| 24          | Carbon  | 0.149343      | 0.565301 | 0.793311 |
| 25          | Carbon  | 0.41845       | 0.113043 | 0.910497 |
| 26          | Carbon  | 0.474634      | 0.337718 | 0.769046 |
| 27          | Carbon  | 0.707104      | 0.446825 | 0.805432 |
| 28          | Carbon  | 0.28652       | 0.677235 | 0.899152 |
| 29          | Carbon  | 0.579519      | 0.222733 | 0.852643 |
| 30          | Carbon  | 0.561676      | 0.447308 | 0.770352 |
| 31          | Carbon  | 0.848911      | 0.591746 | 0.829148 |
| 32          | Carbon  | 0.125671      | 0.822473 | 0.17106  |
| 33          | Carbon  | 0 399169      | 0.363629 | 0.203969 |
| 34          | Carbon  | 0.419094      | 0.363132 | 0.167003 |
| 25          | Carbon  | 0.419094      | 0.505152 | 0.107995 |
| 33          | Carbon  | 0.088108      | 0.393132 | 0.1211/3 |
| 30          | Carbon  | 0.26408       | 0.012077 | 0.15617  |
| 37          | Carbon  | 0.621925      | 0.912977 | 0.253173 |
| 38          | Carbon  | 0.552002      | 0.478799 | 0.131597 |
| 39          | Carbon  | 0.850344      | 0.682036 | 0.202952 |
| 40          | Carbon  | 0.265679      | 0.478895 | 0.145924 |
| 41          | Carbon  | 0.557631      | 0.70996  | 0.130371 |
| 42          | Carbon  | 0.513384      | 0.258705 | 0.239417 |
| 43          | Carbon  | 0.84731       | 0.486543 | 0.211095 |
| 44          | Carbon  | 0.410136      | 0.59719  | 0.089503 |
| 45          | Carbon  | 0.646501      | 0.840964 | 0.204461 |
| 46          | Carbon  | 0.695129      | 0 372707 | 0.203183 |
| 47          | Carbon  | 0.925756      | 0.624537 | 0.21559  |
| 48          | Carbon  | 0.140477      | 0.417014 | 0.828838 |
| 40          | Carbon  | 0.1+04//      | 0.639116 | 0.828030 |
| -+ <i>?</i> | Carbon  | 0.405505      | 0.184001 | 0.770120 |
| 50          | Carbon  | 0.405595      | 0.184091 | 0.052522 |
| 51          | Carbon  | 0.697654      | 0.412/15 | 0.852622 |
| 52          | Carbon  | 0.2/9761      | 0.523986 | 0.900197 |
| 53          | Carbon  | 0.504907      | 0.743078 | 0.7944   |
| 54          | Carbon  | 0.571052      | 0.297183 | 0.804651 |
| 55          | Carbon  | 0.84072       | 0.518415 | 0.852038 |
| 56          | Carbon  | 0.276329      | 0.301203 | 0.805719 |
| 57          | Carbon  | 0.563466      | 0.524273 | 0.909965 |
| 58          | Carbon  | 0.619353      | 0.087023 | 0.756597 |
| 59          | Carbon  | 0.869182      | 0.328448 | 0.758163 |
| 60          | Carbon  | 0 424299      | 0.408124 | 0.892094 |
| 61          | Carbon  | 0.701642      | 0.636043 | 0.853453 |
| 62          | Carbon  | 0.649195      | 0.161127 | 0.750142 |
| 62          | Carbon  | 0.044669      | 0.10112/ | 0.791442 |
| 03          | Carbon  | 0.944668      | 0.383905 | 0.200402 |
| 64          | Khenium | 0.42/411      | 0.530/06 | 0.390602 |
| 65          | Oxygen  | 0.964487      | 0.456503 | 0.273008 |
| 66          | Oxygen  | 0.427099      | 0.456693 | 0.534493 |
| 67          | Oxygen  | 0.446453      | 0.611832 | 0.502815 |

 Table 7.38. Fractional coordinates of ReOBLG after geometry optimization.

## Table 7.39. Z-matrix of ReOBLG.

|          | Element | d (Å)   | θ (°)   | <b>(</b> °) |
|----------|---------|---------|---------|-------------|
| 0        | Carbon  |         |         |             |
| 1        | Carbon  | 5.22617 |         |             |
| 2        | Carbon  | 9.03991 | 26.6351 |             |
| 3        | Carbon  | 5.16705 | 25.7847 | 162.825     |
| 4        | Carbon  | 4.20411 | 96.6055 | -7.2685     |
| 5        | Carbon  | 5.20421 | 84.9983 | 164.501     |
| 6        | Carbon  | 8.55071 | 30.9909 | -6.70171    |
| 7        | Carbon  | 5.02591 | 26.2261 | 167.722     |
| 8        | Carbon  | 6.38943 | 23.7967 | -3.1442     |
| 9        | Carbon  | 4.72326 | 19.0801 | -160.802    |
| 10       | Carbon  | 8.36176 | 31.7721 | 7.34747     |
| 11       | Carbon  | 4.97324 | 32.7682 | -178.869    |
| 12       | Carbon  | 4.25252 | 84.8787 | -1.69263    |
| 13       | Carbon  | 4.8587  | 90.0769 | 170.467     |
| 14       | Carbon  | 8.56041 | 31.3088 | -4.04184    |
| 15       | Carbon  | 4.92411 | 28.0807 | 170.376     |
| 16       | Carbon  | 8.14556 | 56.4074 | 37.7212     |
| 17       | Carbon  | 4.67986 | 56.7529 | 171.044     |
| 18       | Carbon  | 8.83548 | 28.5022 | -45.7575    |
| 19       | Carbon  | 4.89237 | 2/.8/1  | -169.485    |
| 20       | Carbon  | 4.21495 | 83.4/18 | 7.51/8/     |
| 21       | Carbon  | 4.72705 | 88.9409 | -100.055    |
| 22       | Carbon  | 8.12385 | 29.9013 | 8.83884     |
| 23       | Carbon  | 4.91892 | 34.7908 | -104.908    |
| 24       | Carbon  | 0.33172 | 20.2403 | 2.99500     |
| 25       | Carbon  | 4.70712 | 20.8048 | 101.02      |
| 20       | Carbon  | 6.55711 | 28 2967 | -14.1655    |
| 28       | Carbon  | 4.08075 | 04 3088 | 0 567724    |
| 20       | Carbon  | 5.03160 | 88 4208 | 173 070     |
| 30       | Carbon  | 8 56579 | 30.2866 | 5 35159     |
| 31       | Carbon  | 4 91857 | 29 4125 | -162.866    |
| 32       | Carbon  | 8 24974 | 84 4291 | -33 1469    |
| 33       | Carbon  | 4 94838 | 84 1722 | -179 259    |
| 34       | Carbon  | 8.63184 | 29.7922 | 32.7241     |
| 35       | Carbon  | 4.91549 | 30.0282 | 166.902     |
| 36       | Carbon  | 4.26534 | 91.7257 | -6.63504    |
| 37       | Carbon  | 4.99968 | 82.1287 | 167.662     |
| 38       | Carbon  | 8.22963 | 34.3082 | -5.36733    |
| 39       | Carbon  | 4.64057 | 29.667  | 176.899     |
| 40       | Carbon  | 6.35733 | 19.0134 | 5.78437     |
| 41       | Carbon  | 5.02829 | 23.2767 | -159.77     |
| 42       | Carbon  | 8.52693 | 27.855  | 3.43047     |
| 43       | Carbon  | 5.17307 | 31.5218 | 177.073     |
| 44       | Carbon  | 4.40566 | 85.2638 | -5.14755    |
| 45       | Carbon  | 5.08454 | 92.7716 | 166.911     |
| 46       | Carbon  | 8.81345 | 28.2085 | -5.53226    |
| 47       | Carbon  | 5.13975 | 25.6411 | 162.591     |
| 48       | Carbon  | 8.95077 | 46.4522 | 44.7962     |
| 49       | Carbon  | 4.85926 | 44.0028 | 167.953     |
| 50       | Carbon  | 8.57252 | 29.4817 | -50.1333    |
| 51       | Carbon  | 5.01467 | 29.1275 | -178.09     |
| 52       | Carbon  | 4.19546 | 89.998  | 4.60851     |
| 53       | Carbon  | 4.618   | 93.8549 | -164.435    |
| 54       | Carbon  | 8.40284 | 30.4133 | 9.84392     |
| 55<br>56 | Carbon  | 4.78237 | 33.31// | -154.332    |
| 30<br>57 | Carbon  | 0.3/983 | 20.7988 | 9.22/94     |
| 59       | Carbon  | 4.93113 | 20.1510 | 100.528     |
| 50       | Carbon  | 5.02975 | 20 7045 | -14.4045    |
| 59       | Carbon  | 3.028/3 | 29.7003 | 102./01     |
| 61       | Carbon  | 4.241/9 | 03.0083 | -2.091/3    |
| 62       | Carbon  | 8.96514 | 27 3207 | 3 06667     |
| 63       | Carbon  | 4 9/81  | 21.5207 | -168 710    |
| 64       | Rhenium | 5 02051 | 20.3093 | -100./19    |
| 65       | Oxygen  | 4 92851 | 39 8035 | -111 177    |
| 66       | Oxygen  | 5.00652 | 19 9728 | 31.068      |
| 67       | Oxygen  | 2 92995 | 85 386  | -31 1768    |
| 07       | 0.7501  |         | 05.500  | 51.1700     |

|    | Flement | v(Å)     | v(Å)     | <b>7</b> (Å) |
|----|---------|----------|----------|--------------|
| 0  | Carbon  | 10,52500 | 0.81040  | 10.27210     |
| 1  | Carbon  | 15.27820 | 9.81040  | 10.27210     |
| 1  | Carbon  | 15.27820 | 10.15730 | 12.42040     |
| 2  | Carbon  | 5.25378  | 10.75880 | 13.02980     |
| 3  | Carbon  | 11.03500 | 9.48103  | 14.77260     |
| 4  | Carbon  | 13.03590 | 10.07640 | 11.21230     |
| 5  | Carbon  | 17.38100 | 10.18010 | 14.08840     |
| 6  | Carbon  | 8.89250  | 9.15238  | 13.50530     |
| 7  | Carbon  | 13.19220 | 0.82114  | 16.11420     |
| 8  | Carbon  | 9.46454  | 9.47773  | 10.88950     |
| 9  | Carbon  | 13.21180 | 9.88728  | 13.64400     |
| 10 | Carbon  | 4.83297  | 10.24510 | 14.13940     |
| 11 | Carbon  | 8 92244  | 9 59217  | 15 99350     |
| 12 | Carbon  | 11 11990 | 9.46859  | 12 42260     |
| 13 | Carbon  | 15 35070 | 9 98719  | 14 83520     |
| 14 | Carbon  | 6 22822  | 0.65026  | 15 70720     |
| 14 | Carbon  | 10.00100 | 0.05006  | 17 21200     |
| 15 | Carbon  | 10.99100 | 9.93900  | 17.31200     |
| 16 | Carbon  | 9.38/13  | 14.39250 | 10.44010     |
| 17 | Carbon  | 13.63670 | 13.78860 | 13.20520     |
| 18 | Carbon  | 4.60571  | 14.46090 | 12.54650     |
| 19 | Carbon  | 8.89188  | 14.28180 | 14.98710     |
| 20 | Carbon  | 10.52210 | 14.20910 | 10.97020     |
| 21 | Carbon  | 15.01000 | 13.69160 | 13.53410     |
| 22 | Carbon  | 6.69145  | 14.42310 | 13.77030     |
| 23 | Carbon  | 10.96000 | 14.11640 | 16.31450     |
| 24 | Carbon  | 6.81976  | 14.55890 | 11.30280     |
| 25 | Carbon  | 11.06060 | 13 96300 | 13 74830     |
| 26 | Carbon  | 2 52953  | 14 05410 | 14 19440     |
| 20 | Carbon  | 6 68724  | 14 35600 | 16 23630     |
| 27 | Carbon  | 0.08724  | 14.20190 | 12,58620     |
| 20 | Carbon  | 8.79070  | 14.10500 | 12.38020     |
| 29 | Carbon  | 13.18270 | 14.12580 | 15.27980     |
| 30 | Carbon  | 4.55222  | 14.38020 | 14.93400     |
| 31 | Carbon  | 8.80010  | 14.46380 | 17.60980     |
| 32 | Carbon  | 11.71520 | 9.81186  | 11.12550     |
| 33 | Carbon  | 16.05820 | 10.08890 | 13.48200     |
| 34 | Carbon  | 6.66459  | 10.95780 | 12.67150     |
| 35 | Carbon  | 11.69310 | 10.07320 | 15.93680     |
| 36 | Carbon  | 13.86940 | 10.07400 | 12.34940     |
| 37 | Carbon  | 17.86080 | 10.16430 | 15.35540     |
| 38 | Carbon  | 9 66767  | 9 30175  | 14 75370     |
| 39 | Carbon  | 13 29900 | 9 72899  | 17 51920     |
| 40 | Carbon  | 9 66871  | 9 29235  | 12 33100     |
| 40 | Carbon  | 12 05110 | 0.00056  | 14.02140     |
| 41 | Carbon  | 13.93110 | 9.90030  | 14.92140     |
| 42 | Carbon  | 4.90850  | 9.64210  | 15.36310     |
| 43 | Carbon  | 9.58075  | 10.08450 | 17.17540     |
| 44 | Carbon  | 11.82870 | 9.55601  | 13.60930     |
| 45 | Carbon  | 16.48660 | 10.07330 | 15.61430     |
| 46 | Carbon  | 7.56709  | 9.56314  | 15.69660     |
| 47 | Carbon  | 12.15460 | 9.73528  | 18.12140     |
| 48 | Carbon  | 8.19083  | 14.47440 | 11.30160     |
| 49 | Carbon  | 12.50450 | 14.12510 | 13.87760     |
| 50 | Carbon  | 3.82215  | 14.38460 | 13.59940     |
| 51 | Carbon  | 8.15121  | 13.86650 | 16.19670     |
| 52 | Carbon  | 10.26390 | 13.95450 | 12.43380     |
| 53 | Carbon  | 14 18880 | 13 78600 | 14 76000     |
| 54 | Carbon  | 5 95100  | 14 38500 | 15 01440     |
| 55 | Carbon  | 10 10020 | 12 04560 | 17 51450     |
| 56 | Carbon  | 6.02562  | 14.50680 | 12.46170     |
| 50 | Carbon  | 0.02303  | 14.30080 | 12.40170     |
| 57 | Carbon  | 10.26680 | 14.21160 | 15.00/10     |
| 58 | Carbon  | 2.0/492  | 13.78660 | 15.44610     |
| 59 | Carbon  | 6.55113  | 14.90210 | 17.50780     |
| 60 | Carbon  | 8.11323  | 14.37240 | 13.78970     |
| 61 | Carbon  | 12.37410 | 14.14290 | 16.32420     |
| 62 | Carbon  | 3.44039  | 14.03740 | 15.69820     |
| 63 | Carbon  | 7.67533  | 14.90520 | 18.20910     |
| 64 | Osmium  | 6.89986  | 9.30222  | 13.80100     |
| 65 | Osmium  | 10.15810 | 12.07340 | 16.90140     |
| 66 | Oxvgen  | 7 31703  | 11.69600 | 11 98410     |
| 67 | Oxygen  | 10 61740 | 12 71910 | 13.06570     |
| 68 | Oxygen  | 11 61490 | 11 54230 | 15 78490     |
| 69 | Oxygen  | 8 30700  | 12 47070 | 16 42370     |
| 0) | Oxygen  | 0.50700  | 12.7/0/0 | 10.72370     |

 Table 7.40. Cartesian coordinates of OsOBLG after geometry optimization.

| 0         Carbon         0.53807         0.48877         0.63803           1         Carbon         0.75815         0.44745         0.43813           2         Carbon         0.25815         0.44745         0.43813           3         Carbon         0.557068         0.419346         0.315723           4         Carbon         0.657068         0.419346         0.315723           5         Carbon         0.448223         0.38092         0.71179           7         Carbon         0.64829         0.38092         0.71179           9         Carbon         0.64839         0.31172         0.56255           8         Carbon         0.64893         0.31175         0.34174         0.31952           10         Carbon         0.24933         0.399195         0.35366           12         Carbon         0.73737         0.41863         0.04174           13         Carbon         0.53397         0.41463         0.04174           14         Carbon         0.57335         0.57387         0.46169           17         Carbon         0.35271         0.41463         0.04474           16         Carbon         0.57335 <t< th=""><th></th><th>Floment</th><th>9</th><th>h</th><th>0</th></t<>                                          |    | Floment | 9             | h        | 0         |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|---------|---------------|----------|-----------|
| Carbon         0.72092         0.4227/4         0.43813           2         Carbon         0.25415         0.44715         0.45483           3         Carbon         0.556214         0.33437         0.15723           4         Carbon         0.876982         0.423662         0.43485           6         Carbon         0.48223         0.80892         0.471479           7         Carbon         0.464949         0.408724         0.55256           8         Carbon         0.464937         0.311476         0.471479           7         Carbon         0.464937         0.39105         0.471479           8         Carbon         0.464933         0.39105         0.471479           11         Carbon         0.55336         0.394052         0.43536           12         Carbon         0.53537         0.41465         0.53536           13         Carbon         0.47315         0.59897         0.41465         0.54313           14         Carbon         0.43732         0.53837         0.46102         0.54314           14         Carbon         0.23130         0.59897         0.44465         0.45437           15         Carbon <td>0</td> <td>Carbon</td> <td>a<br/>0.520507</td> <td>0.408277</td> <td>0.258605</td>             | 0  | Carbon  | a<br>0.520507 | 0.408277 | 0.258605  |
| 1         Carbon         0.1/002         0.1/22/14         0.0.3313           2         Carbon         0.657068         0.419346         0.035723           4         Carbon         0.657068         0.419346         0.29185           6         Carbon         0.664949         0.439246         0.49185           7         Carbon         0.644949         0.481721         0.562556           8         Carbon         0.477057         0.394141         0.360559           9         Carbon         0.665937         0.411476         0.47632           10         Carbon         0.49733         0.394023         0.35346           11         Carbon         0.50493         0.344021         0.454374           14         Carbon         0.53597         0.41465         0.064374           15         Carbon         0.235346         0.57387         0.461002           14         Carbon         0.43735         0.57387         0.461002           15         Carbon         0.43735         0.57387         0.461002           16         Carbon         0.43735         0.57387         0.461002           17         Carbon         0.35424         0.                                                                                                 | 0  | Carbon  | 0.330307      | 0.408277 | 0.338003  |
| 2         Carbon         0.244815         0.41/45         0.43785           3         Carbon         0.657082         0.42365         0.041935           4         Carbon         0.657082         0.42365         0.041935           6         Carbon         0.644849         0.48224         0.555556           7         Carbon         0.644949         0.488724         0.555556           8         Carbon         0.645937         0.411475         0.471479           9         Carbon         0.23404         0.42566         0.493816           11         Carbon         0.23404         0.42566         0.493816           12         Carbon         0.53397         0.41465         0.643797           13         Carbon         0.53397         0.41465         0.64379           14         Carbon         0.53397         0.41465         0.64479           15         Carbon         0.53397         0.41465         0.64979           16         Carbon         0.53382         0.69345         0.33484           17         Carbon         0.53342         0.59345         0.33484           18         Carbon         0.53784         0.560819                                                                                                      | 1  | Carbon  | 0.770092      | 0.422714 | 0.433813  |
| 3         Carbon         0.55024         0.39437         0.39143           4         Carbon         0.876682         0.423662         0.49143           5         Carbon         0.44223         0.308921         0.411479           7         Carbon         0.477057         0.394414         0.308159           9         Carbon         0.467937         0.394414         0.308159           9         Carbon         0.479737         0.414476         0.437632           10         Carbon         0.479733         0.394052         0.43868           11         Carbon         0.560493         0.394052         0.43868           12         Carbon         0.573747         0.416544         0.517907           14         Carbon         0.53997         0.414443         0.604374           15         Carbon         0.53397         0.344463         0.604374           16         Carbon         0.53232         0.59877         0.34469           17         Carbon         0.53232         0.59333         0.32271           20         Carbon         0.53723         0.604213         0.43973           212         Carbon         0.53724         0.                                                                                                 | 2  | Carbon  | 0.264815      | 0.447745 | 0.45488   |
| 4         Carboa         0.657068         0.419346         0.9143           5         Carboa         0.657062         0.23662         0.419133           6         Carboa         0.448233         0.380872         0.371479           7         Carboa         0.669397         0.141476         0.57252           8         Carboa         0.469333         0.339195         0.613168           10         Carboa         0.469333         0.339195         0.613168           12         Carboa         0.47333         0.416612         0.54851           13         Carboa         0.47333         0.416612         0.54851           14         Carboa         0.53997         0.41463         0.64974           15         Carboa         0.637333         0.373837         0.46102           17         Carboa         0.53979         0.41463         0.43807           18         Carboa         0.53974         0.56979         0.423244           20         Carboa         0.352435         0.382976         0.338276           21         Carboa         0.35744         0.569799         0.423244           22         Carboa         0.53744         0.5                                                                                                 | 3  | Carbon  | 0.556214      | 0.39457  | 0.515723  |
| 5         Carbon         0.876082         0.422662         0.471479           6         Carbon         0.471479         0.88092         0.471479           7         Carbon         0.647049         0.480724         0.52556           8         Carbon         0.471677         0.94414         0.380159           9         Carbon         0.546043         0.23566         0.19846           112         Carbon         0.55997         0.414463         0.43166           13         Carbon         0.53997         0.414463         0.643574           14         Carbon         0.533997         0.414463         0.643474           15         Carbon         0.533997         0.414463         0.643574           16         Carbon         0.473135         0.59897         0.344602           17         Carbon         0.53362         0.57337         0.461002           18         Carbon         0.35743         0.56979         0.417444           19         Carbon         0.35743         0.59979         0.417484           22         Carbon         0.35743         0.59979         0.4172484           23         Carbon         0.35743                                                                                                          | 4  | Carbon  | 0.657068      | 0.419346 | 0.39143   |
| 6         Curbon         0.44823         0.380892         0.47179           7         Curbon         0.664949         0.08724         0.552550           9         Curbon         0.471057         0.394414         0.381059           9         Curbon         0.245064         0.426366         0.493616           11         Curbon         0.449733         0.394052         0.3368           12         Curbon         0.564493         0.394052         0.3368           13         Curbon         0.573747         0.416434         0.317907           14         Curbon         0.573753         0.579837         0.46400           16         Curbon         0.537353         0.578837         0.46400           17         Curbon         0.53753         0.578877         0.46400           18         Curbon         0.53062         0.59135         0.32327           20         Curbon         0.53754         0.569799         0.472844           21         Curbon         0.53754         0.569799         0.472844           22         Curbon         0.53754         0.569799         0.472844           23         Curbon         0.537544                                                                                                          | 5  | Carbon  | 0.876082      | 0.423662 | 0.491835  |
| 7         Carbon         0.664949         0.408724         0.52556           8         Carbon         0.665937         0.414476         0.37052           9         Carbon         0.233044         0.422366         0.439366           11         Carbon         0.50493         0.399195         0.558346           12         Carbon         0.50493         0.39052         0.43568           13         Carbon         0.73747         0.416634         0.517907           14         Carbon         0.53997         0.414463         0.644374           15         Carbon         0.637333         0.373877         0.416102           18         Carbon         0.647333         0.373877         0.416102           19         Carbon         0.43748         0.601814         0.43807           21         Carbon         0.33728         0.60223         0.43748           22         Carbon         0.33738         0.60243         0.439931           23         Carbon         0.33748         0.619895         3459931           24         Carbon         0.33748         0.619895         0.439941           25         Carbon         0.1275         0.                                                                                                 | 6  | Carbon  | 0.448223      | 0.380892 | 0.471479  |
| 8         Carbon         0.477057         0.34414         0.34059           9         Carbon         0.24304         0.426366         0.499161           11         Carbon         0.24304         0.426366         0.499161           12         Carbon         0.560493         0.394052         0.3388           13         Carbon         0.573747         0.416343         0.63186           14         Carbon         0.513937         0.414433         0.604374           15         Carbon         0.437355         0.59897         0.344469           17         Carbon         0.437353         0.57837         0.461002           18         Carbon         0.53052         0.59877         0.344469           20         Carbon         0.53052         0.59133         0.35237           21         Carbon         0.35728         0.600243         0.480731           22         Carbon         0.35728         0.600243         0.480731           23         Carbon         0.33728         0.600243         0.480731           24         Carbon         0.33748         0.693895         0.34589           25         Carbon         0.33768         0                                                                                                 | 7  | Carbon  | 0.664949      | 0.408724 | 0.562556  |
| 9         Carbon         0.665937         0.41476         0.47612           10         Carbon         0.649733         0.399195         0.55846           12         Carbon         0.564933         0.399195         0.55846           13         Carbon         0.773747         0.415634         0.517907           14         Carbon         0.733747         0.414633         0.644734           15         Carbon         0.53397         0.41463         0.644734           16         Carbon         0.657353         0.573837         0.36469           17         Carbon         0.637353         0.573837         0.364002           18         Carbon         0.53062         0.59436         0.32207           20         Carbon         0.33728         0.600243         0.480731           21         Carbon         0.53744         0.566799         0.427844           22         Carbon         0.53744         0.56695         394589           23         Carbon         0.53744         0.58195         0.439934           24         Carbon         0.53744         0.58195         0.43934           25         Carbon         0.53764         0.                                                                                                 | 8  | Carbon  | 0.477057      | 0 394414 | 0.380159  |
| 10         Carbon         0.24304         0.443636         0.49365           11         Carbon         0.560493         0.394952         0.43368           12         Carbon         0.773747         0.415534         0.517907           14         Carbon         0.713747         0.415534         0.543851           15         Carbon         0.553997         0.414463         0.664374           16         Carbon         0.473155         0.59897         0.44463           17         Carbon         0.623233         0.573837         0.461002           18         Carbon         0.735574         0.569799         0.472484           22         Carbon         0.53362         0.587838         0.580551           24         Carbon         0.537564         0.581095         0.472844           23         Carbon         0.53764         0.581095         0.479961           24         Carbon         0.53764         0.581095         0.479961           25         Carbon         0.53764         0.581095         0.479961           26         Carbon         0.1275         0.584884         0.459591           27         Carbon         0.443398                                                                                                | 9  | Carbon  | 0.665937      | 0.411476 | 0.47632   |
| 10         Cabon         0.44003         0.45003         0.5300           12         Cabon         0.44003         0.34062         0.5300           14         Carbon         0.77377         0.41563         0.64374           15         Carbon         0.453997         0.41463         0.64374           16         Carbon         0.473155         0.59897         0.36469           17         Carbon         0.63733         0.573837         0.46409           18         Carbon         0.63733         0.573837         0.46409           19         Carbon         0.48192         0.59436         0.32321           20         Carbon         0.75574         0.569799         0.472484           21         Carbon         0.53738         0.660233         0.48007           22         Carbon         0.53744         0.569999         0.472484           23         Carbon         0.557544         0.581055         0.34989           24         Carbon         0.33708         0.597487         0.566819           25         Carbon         0.1275         0.58484         0.495336           26         Carbon         0.590501         0.403377 <td>10</td> <td>Carbon</td> <td>0.343604</td> <td>0.426266</td> <td>0.403616</td>                   | 10 | Carbon  | 0.343604      | 0.426266 | 0.403616  |
| 11         Carbon         0.449/33         0.391453         0.338436           12         Carbon         0.773477         0.415654         0.577907           14         Carbon         0.313956         0.416162         0.54851           15         Carbon         0.573977         0.414643         0.064373           16         Carbon         0.573837         0.46469           17         Carbon         0.623149         0.061814         0.436007           18         Carbon         0.53106         0.59387         0.46469           20         Carbon         0.331062         0.59135         0.32276           21         Carbon         0.35134         0.569299         0.472484           22         Carbon         0.35128         0.569238         0.349276           23         Carbon         0.51345         0.57388         0.59951           24         Carbon         0.51375         0.53488         0.569539           25         Carbon         0.31708         0.597481         0.469536           26         Carbon         0.31708         0.597481         0.456536           27         Carbon         0.54733         0.597481                                                                                                      | 10 | Carbon  | 0.243004      | 0.420300 | 0.493010  |
| 12       Carbon       0.560493       0.34062       0.43508         13       Carbon       0.773747       0.415634       0.517907         14       Carbon       0.319956       0.401612       0.548351         15       Carbon       0.6353997       0.414463       0.6604774         16       Carbon       0.637353       0.573837       0.461002         18       Carbon       0.223149       0.601814       0.438007         19       Carbon       0.530362       0.591335       0.332976         21       Carbon       0.535245       0.58748       0.569591         23       Carbon       0.53748       0.660243       0.440731         24       Carbon       0.537504       0.581095       0.479961         25       Carbon       0.537504       0.581095       0.479961         26       Carbon       0.1275       0.58484       0.49553         27       Carbon       0.43308       0.591497       0.566619         28       Carbon       0.43308       0.4919961       0.433347       0.566619         29       Carbon       0.434368       0.4919961       0.43934       0.551157         29                                                                                                                                                                     | 11 | Carbon  | 0.449/33      | 0.399195 | 0.558346  |
| 13         Carbon         0.773747         0.415634         0.517907           14         Carbon         0.513936         0.401612         0.54851           15         Carbon         0.473155         0.59897         0.344469           17         Carbon         0.673155         0.59897         0.344469           17         Carbon         0.6323149         0.601814         0.4541002           18         Carbon         0.330562         0.591355         0.35276           20         Carbon         0.350574         0.569799         0.472484           21         Carbon         0.35278         0.60243         0.480731           22         Carbon         0.55744         0.569799         0.472844           23         Carbon         0.515704         0.581085         0.437986           24         Carbon         0.31708         0.581085         0.439994           25         Carbon         0.413398         0.595196         0.439994           26         Carbon         0.337088         0.595196         0.439994           27         Carbon         0.64477         0.587869         0.531327           28         Carbon         0.699053 <td>12</td> <td>Carbon</td> <td>0.560493</td> <td>0.394052</td> <td>0.43368</td>           | 12 | Carbon  | 0.560493      | 0.394052 | 0.43368   |
| 14         Carbon         0.13936         0.414463         0.60374           15         Carbon         0.455997         0.414463         0.60474           16         Carbon         0.67353         0.573837         0.40102           18         Carbon         0.222149         0.601814         0.438007           19         Carbon         0.438102         0.59135         0.382976           21         Carbon         0.505674         0.569799         0.472484           22         Carbon         0.537487         0.600243         0.480711           23         Carbon         0.537484         0.605895         0.499961           24         Carbon         0.537484         0.605895         0.499961           25         Carbon         0.1275         0.584884         0.495536           26         Carbon         0.1275         0.584884         0.495536           27         Carbon         0.66447         0.587869         0.331427           28         Carbon         0.66447         0.587869         0.433934           29         Carbon         0.69901         0.408337         0.38484           31         Carbon         0.699051                                                                                                   | 13 | Carbon  | 0.773747      | 0.415634 | 0.517907  |
| 15       Carbon       0.473155       0.59897       0.36469         17       Carbon       0.087333       0.573337       0.461002         18       Carbon       0.232149       0.601814       0.438007         19       Carbon       0.434192       0.591335       0.332231         20       Carbon       0.530362       0.591335       0.332276         21       Carbon       0.75574       0.600243       0.447744         22       Carbon       0.537435       0.63748       0.459751         23       Carbon       0.537504       0.581935       0.43748         24       Carbon       0.537048       0.597487       0.566819         25       Carbon       0.337088       0.397477       0.566819         26       Carbon       0.443398       0.395196       0.439394         29       Carbon       0.6447       0.587869       0.51347         31       Carbon       0.629433       0.598458       0.523457         32       Carbon       0.644739       0.418969       0.61477         33       Carbon       0.649766       0.42097       0.351467         34       Carbon       0.649766                                                                                                                                                                          | 14 | Carbon  | 0.131936      | 0.401612 | 0.548351  |
| 16         Carbon         0.47135         0.59897         0.364469           17         Carbon         0.687353         0.573837         0.40002           18         Carbon         0.232149         0.601814         0.438007           19         Carbon         0.233052         0.59135         0.382976           21         Carbon         0.576574         0.569739         0.472484           22         Carbon         0.552455         0.581955         394539           23         Carbon         0.552455         0.581995         0.490911           26         Carbon         0.557504         0.581995         0.499911           26         Carbon         0.37088         0.695951         0.499911           27         Carbon         0.343748         0.69595         0.499911           28         Carbon         0.343788         0.695196         0.499941           29         Carbon         0.443598         0.959196         0.43994           29         Carbon         0.64477         0.587869         0.531427           31         Carbon         0.43596         0.419356         0.419246           32         Carbon         0.699083                                                                                                | 15 | Carbon  | 0.553997      | 0.414463 | 0.604374  |
| 17         Carbon         0.6232149         0.601814         0.438007           18         Carbon         0.4232149         0.601814         0.438007           19         Carbon         0.53032         0.591335         0.53231           20         Carbon         0.75674         0.569799         0.472444           21         Carbon         0.352435         0.88748         0.569551           23         Carbon         0.555744         0.581095         0.479961           24         Carbon         0.537434         0.605893         394389           25         Carbon         0.557504         0.581095         0.479961           26         Carbon         0.1275         0.584844         0.495556           27         Carbon         0.66447         0.587869         0.533427           28         Carbon         0.294533         0.589488         0.521357           30         Carbon         0.294533         0.589488         0.521357           31         Carbon         0.433966         0.419215         0.55664           32         Carbon         0.899496         0.419215         0.55664           33         Carbon         0.699033                                                                                              | 16 | Carbon  | 0.473155      | 0.59897  | 0.364469  |
| 18         Carbon         0.232149         0.00114         0.438007           19         Carbon         0.448192         0.59135         0.35276           20         Carbon         0.530362         0.59135         0.35276           21         Carbon         0.75674         0.569799         0.472484           22         Carbon         0.33728         0.600243         0.480731           23         Carbon         0.532453         0.678744         0.605895         394589           24         Carbon         0.557504         0.581854         0.499556           25         Carbon         0.57504         0.581845         0.43599           26         Carbon         0.433788         0.595196         0.439344           29         Carbon         0.64477         0.587869         0.533427           31         Carbon         0.43596         0.61937         0.61477           32         Carbon         0.590501         0.448356         0.521357           33         Carbon         0.699083         0.419246         0.431127           34         Carbon         0.699083         0.419246         0.431127           35         Carbon                                                                                                    | 17 | Carbon  | 0.687353      | 0 573837 | 0.461002  |
| 10         Carbon         0.448192         0.59436         0.52221           20         Carbon         0.530362         0.591333         0.382976           21         Carbon         0.35243         0.600243         0.480731           22         Carbon         0.35243         0.600243         0.480731           23         Carbon         0.357554         0.608895         394589           24         Carbon         0.1275         0.584884         0.495556           25         Carbon         0.1275         0.584884         0.495556           26         Carbon         0.443398         0.595196         0.439342           29         Carbon         0.66447         0.587869         0.633477           30         Carbon         0.64477         0.587869         0.64477           32         Carbon         0.590501         0.403337         0.3884           33         Carbon         0.33926         0.459026         0.470665           34         Carbon         0.33926         0.459026         0.470665           35         Carbon         0.389286         0.419215         0.556364           36         Carbon         0.39926         <                                                                                             | 18 | Carbon  | 0.007555      | 0.601814 | 0.438007  |
| 19         C.arbon         0.530362         0.591353         0.352976           21         Carbon         0.756574         0.660799         0.472484           22         Carbon         0.53233         0.58748         0.660233           23         Carbon         0.537234         0.680799         0.472484           24         Carbon         0.537504         0.581095         0.449981           25         Carbon         0.3373068         0.997487         0.566819           26         Carbon         0.3373068         0.997487         0.566819           28         Carbon         0.443398         0.995196         0.433934           29         Carbon         0.66447         0.837869         0.533477           30         Carbon         0.229453         0.598488         0.521357           31         Carbon         0.593501         0.40337         0.3844           32         Carbon         0.59901         0.40337         0.3844           33         Carbon         0.809408         0.419246         0.41277           34         Carbon         0.59935         0.419215         0.556364           35         Carbon         0.487296                                                                                              | 10 | Carbon  | 0.232149      | 0.50426  | 0.52221   |
| 20         Carbon         0.33062         0.93135         0.82976           21         Carbon         0.35274         0.600243         0.480731           22         Carbon         0.53235         0.85974         0.656951           24         Carbon         0.55734         0.605895         394389           25         Carbon         0.1275         0.384884         0.497961           26         Carbon         0.1275         0.384884         0.495536           27         Carbon         0.1275         0.38484         0.495961           28         Carbon         0.443398         0.595196         0.43394           29         Carbon         0.229453         0.598488         0.521357           30         Carbon         0.43256         0.601937         0.61477           31         Carbon         0.390501         0.40837         0.3844           32         Carbon         0.890408         0.419869         0.470665           34         Carbon         0.393956         0.443026         0.431127           35         Carbon         0.593936         0.419246         0.431127           36         Carbon         0.690983         0                                                                                                 | 19 | Carbon  | 0.448192      | 0.59436  | 0.52521   |
| 21         Carbon         0.75674         0.669799         0.472484           22         Carbon         0.53235         0.680731         0.480731           23         Carbon         0.537504         0.58748         0.669855         394589           24         Carbon         0.537504         0.581095         0.479961           26         Carbon         0.1275         0.584844         0.049556           27         Carbon         0.337068         0.997487         0.566819           28         Carbon         0.43338         0.995196         0.434394           29         Carbon         0.29453         0.598488         0.521357           31         Carbon         0.29453         0.598488         0.521357           32         Carbon         0.339050         0.463397         0.3844           33         Carbon         0.399983         0.419246         0.4177           34         Carbon         0.589386         0.419215         0.556364           35         Carbon         0.487296         0.387108         0.515062           36         Carbon         0.497296         0.387108         0.515062           37         Carbon                                                                                                   | 20 | Carbon  | 0.530362      | 0.591335 | 0.382976  |
| 22         Carbon         0.33728         0.600243         0.480731           23         Carbon         0.537435         0.85748         0.656511           24         Carbon         0.53754         0.88198         0.479961           25         Carbon         0.3175         0.58184         0.495961           26         Carbon         0.3175         0.58484         0.49596           27         Carbon         0.34308         0.595196         0.433934           29         Carbon         0.6447         0.587869         0.33427           30         Carbon         0.229453         0.598188         0.521357           31         Carbon         0.43596         0.601937         0.61477           32         Carbon         0.809408         0.419869         0.470665           33         Carbon         0.809408         0.419215         0.55364           34         Carbon         0.899366         0.419215         0.55364           35         Carbon         0.49926         0.337108         0.515062           36         Carbon         0.49726         0.337108         0.515062           37         Carbon         0.49726         0                                                                                                 | 21 | Carbon  | 0.756574      | 0.569799 | 0.472484  |
| 23         Carbon         0.352435         0.58748         0.56955           24         Carbon         0.357504         0.581095         0.479961           26         Carbon         0.1275         0.584884         0.495536           27         Carbon         0.337068         0.597487         0.566819           28         Carbon         0.443398         0.595196         0.439394           29         Carbon         0.66447         0.587869         0.533427           30         Carbon         0.229453         0.598488         0.521357           31         Carbon         0.443566         0.601937         0.61477           32         Carbon         0.3590501         0.403337         0.3844           33         Carbon         0.359266         0.456026         0.442369           34         Carbon         0.599386         0.419215         0.556364           35         Carbon         0.57033         0.414215         0.556364           36         Carbon         0.47065         0.3717108         0.515062           39         Carbon         0.47296         0.3371048         0.515062           39         Carbon         0.47296                                                                                              | 22 | Carbon  | 0.33728       | 0.600243 | 0.480731  |
| 24         Carbon         0.343748         0.605895         39489           25         Carbon         0.1275         0.581095         0.479961           26         Carbon         0.337068         0.597487         0.566819           27         Carbon         0.433398         0.5951966         0.433934           29         Carbon         0.66447         0.587869         0.533427           30         Carbon         0.22453         0.598488         0.52137           31         Carbon         0.433566         0.601937         0.61437           32         Carbon         0.599501         0.443856         0.419236           33         Carbon         0.599366         0.41925         0.35634           34         Carbon         0.389366         0.419215         0.556364           35         Carbon         0.699083         0.419246         0.431127           37         Carbon         0.990267         0.423044         0.530068           38         Carbon         0.47033         0.44889         0.611608           40         Carbon         0.7032         0.41029         0.52016           41         Carbon         0.47798                                                                                                      | 23 | Carbon  | 0.552435      | 0.58748  | 0.569551  |
| 25         Carbon         0.557504         0.581095         0.479961           26         Carbon         0.1275         0.584884         0.495365           27         Carbon         0.433908         0.595196         0.439394           28         Carbon         0.443398         0.595196         0.439394           29         Carbon         0.66447         0.587869         0.533427           30         Carbon         0.29453         0.598458         0.521157           31         Carbon         0.443566         0.601937         0.61477           32         Carbon         0.3590501         0.408337         0.3884           33         Carbon         0.35926         0.445026         0.447369           34         Carbon         0.35926         0.445026         0.447369           35         Carbon         0.699083         0.419215         0.550364           36         Carbon         0.47026         0.33717         0.430433           41         Carbon         0.47032         0.419215         0.53068           42         Carbon         0.481348         0.336717         0.430483           41         Carbon         0.247412                                                                                                 | 24 | Carbon  | 0.343748      | 0.605895 | 394589    |
| 26         Carbon         0.1275         0.584884         0.49536           27         Carbon         0.337068         0.597487         0.566819           28         Carbon         0.43398         0.595196         0.459394           29         Carbon         0.66447         0.587869         0.533427           30         Carbon         0.22453         0.598458         0.521357           31         Carbon         0.443566         0.601937         0.61477           32         Carbon         0.590501         0.408337         0.3884           33         Carbon         0.599386         0.419215         0.56664           34         Carbon         0.499386         0.419246         0.431127           37         Carbon         0.499386         0.419246         0.431127           38         Carbon         0.49706         0.387108         0.515062           39         Carbon         0.49726         0.387108         0.515062           39         Carbon         0.41722         0.412029         0.520916           42         Carbon         0.418148         0.386717         0.430483           41         Carbon         0.482015                                                                                                  | 25 | Carbon  | 0.557504      | 0.581095 | 0.479961  |
| 2-3         Carbon         0.312/3         0.347487         0.56619           28         Carbon         0.443398         0.595196         0.439394           29         Carbon         0.66447         0.587869         0.533427           30         Carbon         0.229453         0.598458         0.521357           31         Carbon         0.433566         0.610137         0.61477           32         Carbon         0.809408         0.419869         0.470665           34         Carbon         0.359526         0.456026         0.42269           35         Carbon         0.599386         0.419215         0.556364           36         Carbon         0.699083         0.419246         0.431127           37         Carbon         0.699083         0.419246         0.431127           38         Carbon         0.47296         0.387108         0.515662           39         Carbon         0.47296         0.387108         0.515662           40         Carbon         0.47296         0.387108         0.51688           41         Carbon         0.247412         0.401273         0.536338           42         Carbon         0.482915                                                                                             | 26 | Carbon  | 0.1275        | 0.584884 | 0.495536  |
| 21         Cathon         0.43398         0.59196         0.43994           29         Cathon         0.66447         0.587869         0.533427           30         Carbon         0.229453         0.598458         0.521357           31         Carbon         0.443566         0.601937         0.61477           32         Carbon         0.590501         0.408337         0.3884           33         Carbon         0.899408         0.419869         0.470665           34         Carbon         0.335926         0.456026         0.442369           35         Carbon         0.593836         0.419215         0.565364           36         Carbon         0.699083         0.419215         0.565364           37         Carbon         0.487296         0.387108         0.515062           38         Carbon         0.441248         0.386617         0.430483           41         Carbon         0.441348         0.386717         0.430483           42         Carbon         0.247412         0.401273         0.556338           43         Carbon         0.247412         0.401273         0.556338           44         Carbon         0.381417 <td>20</td> <td>Carbon</td> <td>0.1275</td> <td>0.507487</td> <td>0.495550</td>            | 20 | Carbon  | 0.1275        | 0.507487 | 0.495550  |
| 28         Carbon         0.443398         0.595196         0.439394           29         Carbon         0.629453         0.598458         0.521357           30         Carbon         0.433566         0.601937         0.61477           32         Carbon         0.809408         0.419869         0.470665           33         Carbon         0.809408         0.419869         0.470665           34         Carbon         0.359526         0.456026         0.442369           35         Carbon         0.599386         0.419215         0.556364           36         Carbon         0.699083         0.419246         0.431127           37         Carbon         0.490267         0.423004         0.535068           38         Carbon         0.472966         0.387108         0.515062           39         Carbon         0.47296         0.387108         0.515062           40         Carbon         0.481348         0.386717         0.430483           41         Carbon         0.424712         0.401273         0.536338           42         Carbon         0.482915         0.419683         0.599606           44         Carbon         0.38999                                                                                        | 27 | Carbon  | 0.557008      | 0.397487 | 0.300819  |
| 29         Carbon         0.66447         0.587869         0.533427           30         Carbon         0.24356         0.601937         0.61477           31         Carbon         0.590501         0.408337         0.3884           33         Carbon         0.590501         0.408337         0.3884           33         Carbon         0.335926         0.45026         0.442369           34         Carbon         0.599386         0.419215         0.556364           36         Carbon         0.699083         0.419216         0.556364           36         Carbon         0.699083         0.419216         0.556684           37         Carbon         0.990267         0.423004         0.536688           38         Carbon         0.487296         0.387108         0.51562           39         Carbon         0.487296         0.387108         0.51562           40         Carbon         0.481348         0.386717         0.430483           41         Carbon         0.477412         0.410273         0.556354           42         Carbon         0.247412         0.410273         0.537638           43         Carbon         0.59621                                                                                                | 28 | Carbon  | 0.443398      | 0.595196 | 0.439394  |
| 30         Carbon         0.229453         0.598458         0.521357           31         Carbon         0.43366         0.601937         0.61477           32         Carbon         0.809408         0.4198367         0.3884           33         Carbon         0.839408         0.4198367         0.3884           34         Carbon         0.359266         0.445026         0.442269           35         Carbon         0.599836         0.419246         0.431127           37         Carbon         0.900267         0.423004         0.536668           38         Carbon         0.67033         0.404889         0.611608           40         Carbon         0.7032         0.412029         0.520916           41         Carbon         0.7032         0.412029         0.520916           42         Carbon         0.247412         0.401273         0.53638           43         Carbon         0.38147         0.39769         0.475108           45         Carbon         0.81817         0.397987         0.54798           45         Carbon         0.612647         0.40515         0.632629           44         Carbon         0.612647                                                                                                    | 29 | Carbon  | 0.66447       | 0.587869 | 0.533427  |
| 31         Carbon         0.443566         0.601937         0.61477           32         Carbon         0.590501         0.408337         0.3884           33         Carbon         0.809408         0.419869         0.470665           34         Carbon         0.335926         0.456026         0.442369           35         Carbon         0.699083         0.419215         0.556364           36         Carbon         0.699083         0.419246         0.431127           37         Carbon         0.47736         0.387108         0.515062           38         Carbon         0.47333         0.404889         0.611608           40         Carbon         0.471412         0.401273         0.53538           41         Carbon         0.423015         0.419683         0.599606           42         Carbon         0.424215         0.41929         0.520916           43         Carbon         0.424215         0.41973         0.53538           44         Carbon         0.438147         0.39769         0.475108           45         Carbon         0.41255         0.602378         0.394547           46         Carbon         0.612647                                                                                                | 30 | Carbon  | 0.229453      | 0.598458 | 0.521357  |
| 32         Carbon         0.590501         0.40337         0.3884           33         Carbon         0.0335926         0.419869         0.470665           34         Carbon         0.335926         0.456026         0.442369           35         Carbon         0.599383         0.419246         0.431127           37         Carbon         0.900267         0.423004         0.535068           38         Carbon         0.487296         0.387108         0.515062           39         Carbon         0.67033         0.404889         0.611608           40         Carbon         0.7032         0.41229         0.520916           41         Carbon         0.247412         0.401273         0.536338           43         Carbon         0.83099         0.412216         0.545106           44         Carbon         0.830999         0.419216         0.545108           45         Carbon         0.8318147         0.397987         0.54798           45         Carbon         0.612647         0.40515         0.632629           44         Carbon         0.612647         0.49841         0.47478           50         Carbon         0.6102027                                                                                              | 31 | Carbon  | 0.443566      | 0.601937 | 0.61477   |
| 33         Carbon         0.809408         0.419869         0.470665           34         Carbon         0.335926         0.450026         0.442269           35         Carbon         0.589386         0.419215         0.556364           36         Carbon         0.699083         0.419246         0.431127           37         Carbon         0.900267         0.423004         0.536068           38         Carbon         0.487296         0.387108         0.515062           39         Carbon         0.481348         0.386717         0.430483           40         Carbon         0.481348         0.386717         0.430483           41         Carbon         0.7032         0.412029         0.520916           42         Carbon         0.247412         0.401273         0.53638           43         Carbon         0.89999         0.419216         0.547108           44         Carbon         0.83999         0.419215         0.53622           45         Carbon         0.83099         0.419216         0.547108           45         Carbon         0.612647         0.401515         0.532629           47         Carbon         0.612847 <td>32</td> <td>Carbon</td> <td>0.590501</td> <td>0.408337</td> <td>0.3884</td>            | 32 | Carbon  | 0.590501      | 0.408337 | 0.3884    |
| 34         Carbon         0.0335926         0.45002         0.442369           35         Carbon         0.599083         0.419246         0.431127           36         Carbon         0.699083         0.419246         0.431127           37         Carbon         0.900267         0.423004         0.536068           38         Carbon         0.47226         0.387178         0.515062           39         Carbon         0.481248         0.386717         0.430483           40         Carbon         0.247412         0.410273         0.520916           42         Carbon         0.247412         0.410273         0.536338           43         Carbon         0.482915         0.419683         0.599066           44         Carbon         0.830999         0.419216         0.545106           45         Carbon         0.830999         0.419216         0.545106           46         Carbon         0.610287         0.58778         0.334547           49         Carbon         0.610287         0.58744         0.484476           51         Carbon         0.50217         0.58744         0.434072           52         Carbon         0.50144 <td>33</td> <td>Carbon</td> <td>0.809408</td> <td>0.419869</td> <td>0.470665</td>         | 33 | Carbon  | 0.809408      | 0.419869 | 0.470665  |
| A         Carbon         0.53926         0.419215         0.55334           36         Carbon         0.690083         0.419246         0.431127           37         Carbon         0.900267         0.423004         0.536068           38         Carbon         0.487296         0.387108         0.515062           39         Carbon         0.67033         0.404889         0.611608           40         Carbon         0.481348         0.386717         0.430483           41         Carbon         0.247412         0.401273         0.536338           42         Carbon         0.247412         0.401273         0.536338           43         Carbon         0.43999         0.419216         0.545106           44         Carbon         0.381417         0.39769         0.475108           45         Carbon         0.830999         0.419216         0.543106           46         Carbon         0.438147         0.397987         0.54798           47         Carbon         0.612647         0.40515         0.632629           48         Carbon         0.630287         0.58784         0.484476           50         Carbon         0.502614                                                                                              | 34 | Carbon  | 0.335026      | 0.456026 | 0.442369  |
| 53         Carbon         0.389380         0.419215         0.350364           36         Carbon         0.900267         0.432004         0.536068           38         Carbon         0.487296         0.387108         0.515062           39         Carbon         0.487296         0.387108         0.515062           39         Carbon         0.481348         0.386717         0.430483           40         Carbon         0.247412         0.401273         0.536338           41         Carbon         0.247412         0.401273         0.536338           42         Carbon         0.247412         0.401273         0.536338           43         Carbon         0.482915         0.419683         0.599606           44         Carbon         0.596221         0.39769         0.475108           45         Carbon         0.830999         0.419216         0.545106           46         Carbon         0.612647         0.40515         0.54798           47         Carbon         0.412856         0.602378         0.394547           48         Carbon         0.129654         0.58044         0.47478           51         Carbon         0.130040 </td <td>25</td> <td>Carbon</td> <td>0.5502920</td> <td>0.450020</td> <td>0.55(2)(4</td> | 25 | Carbon  | 0.5502920     | 0.450020 | 0.55(2)(4 |
| 36         Carbon         0.699083         0.419246         0.431127           37         Carbon         0.900267         0.423004         0.536068           38         Carbon         0.67033         0.444889         0.611608           40         Carbon         0.481348         0.386717         0.430483           41         Carbon         0.7032         0.412029         0.520916           42         Carbon         0.247412         0.401273         0.536338           43         Carbon         0.482915         0.419683         0.599666           44         Carbon         0.59621         0.39769         0.475108           45         Carbon         0.381417         0.397987         0.54798           46         Carbon         0.612647         0.40515         0.632629           48         Carbon         0.612647         0.40515         0.632629           48         Carbon         0.612647         0.40515         0.632629           48         Carbon         0.612647         0.40515         0.55438           52         Carbon         0.517349         0.58074         0.434072           53         Carbon         0.517349                                                                                                 | 35 | Carbon  | 0.389386      | 0.419215 | 0.556564  |
| 37         Carbon         0.900267         0.43204         0.536068           38         Carbon         0.487296         0.387108         0.515062           39         Carbon         0.67033         0.404889         0.611608           40         Carbon         0.481348         0.386717         0.430483           41         Carbon         0.247412         0.412029         0.520916           42         Carbon         0.247412         0.401273         0.536338           43         Carbon         0.482915         0.419683         0.599606           44         Carbon         0.596221         0.39769         0.475108           45         Carbon         0.830999         0.419216         0.545106           46         Carbon         0.612647         0.40515         0.632629           48         Carbon         0.412856         0.602378         0.394547           49         Carbon         0.410859         0.57708         0.55638           51         Carbon         0.192654         0.598641         0.47478           52         Carbon         0.30001         0.598655         0.524163           53         Carbon         0.300001                                                                                             | 36 | Carbon  | 0.699083      | 0.419246 | 0.431127  |
| 38         Carbon         0.487296         0.37108         0.515062           39         Carbon         0.67033         0.404889         0.611608           40         Carbon         0.481348         0.386717         0.430483           41         Carbon         0.247412         0.41029         0.520916           42         Carbon         0.247412         0.410233         0.536338           43         Carbon         0.482915         0.419683         0.599606           44         Carbon         0.596221         0.39769         0.475108           45         Carbon         0.830999         0.419216         0.545106           46         Carbon         0.381417         0.397987         0.54798           47         Carbon         0.612647         0.40515         0.632629           48         Carbon         0.630287         0.58784         0.484476           50         Carbon         0.192654         0.598641         0.47478           51         Carbon         0.30001         0.598695         0.5224163           52         Carbon         0.30001         0.598695         0.5224163           54         Carbon         0.300001                                                                                             | 37 | Carbon  | 0.900267      | 0.423004 | 0.536068  |
| 39         Carbon         0.67033         0.404889         0.611608           40         Carbon         0.481348         0.386717         0.430483           41         Carbon         0.247412         0.410273         0.536338           42         Carbon         0.247412         0.410273         0.536338           43         Carbon         0.482915         0.419683         0.599606           44         Carbon         0.59621         0.39769         0.475108           45         Carbon         0.830999         0.419216         0.545106           46         Carbon         0.612647         0.40515         0.632629           48         Carbon         0.612647         0.40515         0.632629           48         Carbon         0.192654         0.598641         0.47478           51         Carbon         0.517349         0.58074         0.434072           53         Carbon         0.509104         0.58037         0.611243           54         Carbon         0.30001         0.598695         0.524163           55         Carbon         0.30372         0.603726         0.435048           55         Carbon         0.30372                                                                                                | 38 | Carbon  | 0.487296      | 0.387108 | 0.515062  |
| 40         Carbon         0.481348         0.386717         0.430483           41         Carbon         0.247412         0.412029         0.520916           42         Carbon         0.247412         0.401273         0.536338           43         Carbon         0.482915         0.419683         0.599606           44         Carbon         0.596221         0.39769         0.475108           45         Carbon         0.830999         0.419216         0.54798           46         Carbon         0.381417         0.397987         0.54798           47         Carbon         0.612647         0.40515         0.632299           48         Carbon         0.612857         0.58784         0.484476           50         Carbon         0.192654         0.598641         0.47478           51         Carbon         0.517349         0.58074         0.434072           53         Carbon         0.30001         0.598695         0.55281           54         Carbon         0.30001         0.58037         0.611444           55         Carbon         0.30372         0.603726         0.435048           57         Carbon         0.303072                                                                                                 | 39 | Carbon  | 0.67033       | 0.404889 | 0.611608  |
| 41         Carbon         0.7032         0.412029         0.520916           42         Carbon         0.247412         0.401273         0.53633           43         Carbon         0.482915         0.419683         0.599606           44         Carbon         0.596221         0.39769         0.475108           45         Carbon         0.830999         0.419216         0.545106           46         Carbon         0.381417         0.397987         0.54798           47         Carbon         0.612647         0.40515         0.632629           48         Carbon         0.412856         0.602378         0.394547           49         Carbon         0.192654         0.598641         0.47478           51         Carbon         0.517349         0.58074         0.434072           52         Carbon         0.517349         0.58074         0.434072           53         Carbon         0.30001         0.598695         0.524163           54         Carbon         0.30001         0.598695         0.524163           55         Carbon         0.509104         0.591442         0.539234           56         Carbon         0.517494                                                                                                | 40 | Carbon  | 0.481348      | 0.386717 | 0.430483  |
| 42         Carbon         0.247412         0.401273         0.536338           43         Carbon         0.482915         0.419683         0.599606           44         Carbon         0.596221         0.39769         0.475108           45         Carbon         0.830999         0.419216         0.545106           46         Carbon         0.381417         0.397987         0.54798           47         Carbon         0.612647         0.40515         0.632629           48         Carbon         0.412856         0.602378         0.394547           49         Carbon         0.122654         0.598641         0.47478           51         Carbon         0.122654         0.598641         0.47478           52         Carbon         0.517349         0.58074         0.434072           53         Carbon         0.50104         0.58037         0.611444           56         Carbon         0.30001         0.598655         0.5224163           57         Carbon         0.50104         0.58037         0.611444           56         Carbon         0.502104         0.58037         0.611444           56         Carbon         0.30372                                                                                                 | 41 | Carbon  | 0.7032        | 0.412029 | 0.520916  |
| 12         Carbon         0.81712         0.7195         0.50500           43         Carbon         0.58215         0.419683         0.59906           44         Carbon         0.83099         0.419216         0.545106           45         Carbon         0.83099         0.419216         0.54708           47         Carbon         0.612647         0.40515         0.632629           48         Carbon         0.412856         0.602378         0.394547           49         Carbon         0.412856         0.602378         0.394547           49         Carbon         0.192654         0.598641         0.47478           51         Carbon         0.517349         0.58074         0.434072           53         Carbon         0.30001         0.598695         0.524163           54         Carbon         0.30372         0.603726         0.435048           55         Carbon         0.30372         0.603726         0.435048           55         Carbon         0.30372         0.603726         0.435048           56         Carbon         0.30372         0.603726         0.435048           57         Carbon         0.330208                                                                                                      | 42 | Carbon  | 0 247412      | 0.401273 | 0 536338  |
| 45         Carbon         0.46215         0.41005         0.57300           44         Carbon         0.53069         0.475108           45         Carbon         0.381417         0.39769         0.54798           47         Carbon         0.612647         0.40515         0.632629           48         Carbon         0.612856         0.602378         0.394547           49         Carbon         0.192654         0.58784         0.484476           50         Carbon         0.192654         0.598641         0.47478           51         Carbon         0.517349         0.58074         0.434072           53         Carbon         0.509104         0.598695         0.524163           54         Carbon         0.30372         0.603726         0.435048           55         Carbon         0.30372         0.603726         0.435048           55         Carbon         0.30372         0.603726         0.435048           56         Carbon         0.30372         0.603726         0.435048           57         Carbon         0.30372         0.603726         0.435048           57         Carbon         0.3030208         0.620178                                                                                                   | 43 | Carbon  | 0.482915      | 0.419683 | 0.599606  |
| 44       Carbon       0.39021       0.39709       0.473108         45       Carbon       0.830999       0.419216       0.545106         46       Carbon       0.612647       0.40515       0.632629         48       Carbon       0.612647       0.40515       0.632629         48       Carbon       0.630287       0.58784       0.484476         50       Carbon       0.192654       0.598641       0.47478         51       Carbon       0.410859       0.57708       0.565438         52       Carbon       0.517349       0.58784       0.484476         54       Carbon       0.730304       0.573728       0.515281         54       Carbon       0.30001       0.598695       0.524163         55       Carbon       0.30072       0.603726       0.435048         56       Carbon       0.3072       0.603726       0.435048         57       Carbon       0.51744       0.52391       58         58       Carbon       0.330208       0.620178       0.611208         60       Carbon       0.330208       0.620178       0.611208         61       Carbon       0.438945       0.5984                                                                                                                                                                       | 44 | Carbon  | 0.506221      | 0.20760  | 0.377000  |
| 43       Carbon       0.83099       0.41216       0.34100         46       Carbon       0.381417       0.397987       0.54798         47       Carbon       0.612647       0.40515       0.63229         48       Carbon       0.630287       0.58784       0.484476         50       Carbon       0.192654       0.598641       0.47478         51       Carbon       0.410859       0.57708       0.565438         52       Carbon       0.517349       0.58074       0.434072         53       Carbon       0.509104       0.573728       0.515281         54       Carbon       0.30001       0.598695       0.524163         55       Carbon       0.3001       0.598695       0.524163         54       Carbon       0.30001       0.598695       0.524163         55       Carbon       0.30372       0.603726       0.435048         57       Carbon       0.517494       0.591442       0.52391         58       Carbon       0.104586       0.573752       0.539234         59       Carbon       0.330208       0.620178       0.611208         60       Carbon       0.48945       0.5                                                                                                                                                                       | 44 | Carbon  | 0.390221      | 0.39709  | 0.475108  |
| 46       Carbon       0.381417       0.397987       0.54798         47       Carbon       0.612647       0.40515       0.632629         48       Carbon       0.412856       0.602378       0.394547         49       Carbon       0.122654       0.598641       0.47478         50       Carbon       0.192654       0.598641       0.434072         51       Carbon       0.517349       0.58074       0.434072         53       Carbon       0.730304       0.573728       0.515281         54       Carbon       0.300001       0.598695       0.524163         55       Carbon       0.30372       0.603726       0.434072         56       Carbon       0.30372       0.63726       0.434072         57       Carbon       0.30372       0.63726       0.435048         57       Carbon       0.30372       0.63726       0.435048         59       Carbon       0.30208       0.620178       0.611208         60       Carbon       0.30208       0.620178       0.611208         61       Carbon       0.62371       0.58858       0.569889         62       Carbon       0.173412       0                                                                                                                                                                       | 45 | Carbon  | 0.830999      | 0.419216 | 0.545106  |
| 47       Carbon       0.612647       0.40515       0.632629         48       Carbon       0.412856       0.602378       0.394547         49       Carbon       0.182654       0.598784       0.484476         50       Carbon       0.192654       0.598641       0.47478         51       Carbon       0.410859       0.57708       0.565438         52       Carbon       0.517349       0.58074       0.434072         53       Carbon       0.300001       0.598695       0.522163         54       Carbon       0.300001       0.598695       0.522163         55       Carbon       0.509104       0.58037       0.611444         56       Carbon       0.30372       0.603726       0.435048         57       Carbon       0.517494       0.591442       0.52391         58       Carbon       0.303208       0.620178       0.611208         60       Carbon       0.408945       0.598132       0.481409         61       Carbon       0.42371       0.58858       0.569889         62       Carbon       0.173412       0.584191       0.548036         63       Carbon       0.386873                                                                                                                                                                         | 46 | Carbon  | 0.381417      | 0.397987 | 0.54798   |
| 48         Carbon         0.412856         0.602378         0.394547           49         Carbon         0.630287         0.58784         0.484476           50         Carbon         0.192654         0.598641         0.47478           51         Carbon         0.410859         0.57708         0.565438           52         Carbon         0.517349         0.58074         0.434072           53         Carbon         0.730304         0.573728         0.515281           54         Carbon         0.300001         0.58037         0.611444           56         Carbon         0.30372         0.603726         0.435048           57         Carbon         0.517494         0.591442         0.52391           58         Carbon         0.104586         0.573752         0.539234           59         Carbon         0.104586         0.573752         0.539234           60         Carbon         0.408945         0.598132         0.481409           61         Carbon         0.62371         0.58858         0.569889           62         Carbon         0.386873         0.620307         0.635691           64         Osmium         0.347785                                                                                              | 47 | Carbon  | 0.612647      | 0.40515  | 0.632629  |
| 49         Carbon         0.630287         0.58784         0.484476           50         Carbon         0.192654         0.598641         0.47478           51         Carbon         0.517349         0.58074         0.434072           53         Carbon         0.730304         0.577328         0.515281           54         Carbon         0.300001         0.598695         0.524163           55         Carbon         0.30372         0.603726         0.435048           56         Carbon         0.30372         0.603726         0.435048           57         Carbon         0.30208         0.573752         0.539234           58         Carbon         0.104586         0.573752         0.539234           59         Carbon         0.30208         0.620178         0.611208           60         Carbon         0.408945         0.598132         0.481409           61         Carbon         0.62371         0.58848         0.569889           62         Carbon         0.173412         0.584191         0.548036           63         Carbon         0.386873         0.620307         0.635691           64         Osmium         0.347785                                                                                              | 48 | Carbon  | 0.412856      | 0.602378 | 0.394547  |
| 50         Carbon         0.192654         0.598641         0.47478           51         Carbon         0.410859         0.57708         0.565438           52         Carbon         0.517349         0.58074         0.434072           53         Carbon         0.730304         0.57728         0.51281           54         Carbon         0.30001         0.598695         0.524163           55         Carbon         0.309104         0.58037         0.611444           56         Carbon         0.30372         0.603726         0.435048           57         Carbon         0.330208         0.52178         0.51291           58         Carbon         0.330208         0.620178         0.611444           59         Carbon         0.330208         0.620178         0.611208           60         Carbon         0.43945         0.598132         0.481409           61         Carbon         0.62371         0.58858         0.569889           62         Carbon         0.173412         0.584191         0.548036           63         Carbon         0.386873         0.620307         0.635691           64         Osmium         0.347785                                                                                                  | 49 | Carbon  | 0.630287      | 0.58784  | 0.484476  |
| 51         Carbon         0.410859         0.57708         0.565438           52         Carbon         0.517349         0.58074         0.434072           53         Carbon         0.730304         0.573728         0.515281           54         Carbon         0.300001         0.598695         0.524163           55         Carbon         0.309104         0.58037         0.611444           56         Carbon         0.30372         0.603726         0.435048           57         Carbon         0.517494         0.591442         0.52391           58         Carbon         0.3030208         0.620178         0.611208           60         Carbon         0.408945         0.598132         0.481409           61         Carbon         0.62371         0.58858         0.569889           62         Carbon         0.173412         0.584191         0.548036           63         Carbon         0.386873         0.620307         0.635691           64         Osmium         0.347785         0.387128         0.481802           65         Osmium         0.512015         0.502455         0.590041           66         Oxygen         0.761554 <td>50</td> <td>Carbon</td> <td>0.192654</td> <td>0.598641</td> <td>0.47478</td>          | 50 | Carbon  | 0.192654      | 0.598641 | 0.47478   |
| 52         Carbon         0.517349         0.58074         0.434072           53         Carbon         0.730304         0.573728         0.515281           54         Carbon         0.300001         0.598695         0.524163           55         Carbon         0.30372         0.603726         0.435048           56         Carbon         0.30372         0.603726         0.435048           57         Carbon         0.517494         0.591442         0.52391           58         Carbon         0.104586         0.573752         0.539234           59         Carbon         0.30208         0.620178         0.611208           60         Carbon         0.408945         0.598132         0.481409           61         Carbon         0.62371         0.58858         0.569889           62         Carbon         0.173412         0.584191         0.548036           63         Carbon         0.33775         0.387128         0.481409           64         Osmium         0.347785         0.387128         0.481802           65         Osmium         0.512015         0.502455         0.590041           66         Oxygen         0.761554                                                                                             | 51 | Carbon  | 0.410859      | 0.57708  | 0.565438  |
| 52         Carbon         0.73034         0.573728         0.515281           54         Carbon         0.30001         0.598695         0.524163           55         Carbon         0.309104         0.58037         0.611444           56         Carbon         0.30372         0.603726         0.435048           57         Carbon         0.517494         0.591442         0.52391           58         Carbon         0.104586         0.573752         0.539234           59         Carbon         0.30208         0.620178         0.611208           60         Carbon         0.408945         0.598132         0.481409           61         Carbon         0.62371         0.584191         0.548036           62         Carbon         0.17412         0.584191         0.548036           63         Carbon         0.386873         0.620307         0.635691           64         Osmium         0.347785         0.387128         0.481802           65         Osmium         0.512015         0.502455         0.590041           66         Oxygen         0.761554         0.570287         0.940366           67         Oxygen         0.761554                                                                                             | 52 | Carbon  | 0.517349      | 0 58074  | 0.434072  |
| 5.5         Carbon         0.30001         0.31372         0.31321           54         Carbon         0.30001         0.598695         0.524163           55         Carbon         0.509104         0.88037         0.611444           56         Carbon         0.30372         0.603726         0.435048           57         Carbon         0.517494         0.591442         0.52391           58         Carbon         0.104586         0.573752         0.539234           59         Carbon         0.30208         0.620178         0.611208           60         Carbon         0.408945         0.598132         0.481409           61         Carbon         0.62371         0.58858         0.569889           62         Carbon         0.173412         0.584191         0.548036           63         Carbon         0.347785         0.387128         0.481802           65         Osmium         0.512015         0.502455         0.590041           66         Oxygen         0.761554         0.570287         0.940366           67         Oxygen         0.761554         0.435213         0.674299           68         Oxygen         0.761554                                                                                              | 53 | Carbon  | 0.730304      | 0 573728 | 0.515281  |
| 54       Carbon       0.50001       0.59803       0.524163         55       Carbon       0.509104       0.58037       0.611444         56       Carbon       0.30372       0.603726       0.435048         57       Carbon       0.517494       0.591442       0.52391         58       Carbon       0.104586       0.573752       0.539234         59       Carbon       0.330208       0.620178       0.611208         60       Carbon       0.408945       0.598132       0.481409         61       Carbon       0.62371       0.58858       0.569889         62       Carbon       0.173412       0.584191       0.548036         63       Carbon       0.386873       0.620307       0.635691         64       Osmium       0.347785       0.387128       0.481802         65       Osmium       0.512015       0.502455       0.590041         66       Oxygen       0.761554       0.570287       0.940366         67       Oxygen       0.490903       0.68246       0.484083         68       Oxygen       0.761554       0.435213       0.674299         69       Oxygen       0.626229                                                                                                                                                                        | 55 | Carbon  | 0.750504      | 0.575728 | 0.515281  |
| 55         Carbon         0.50104         0.8037         0.611444           56         Carbon         0.30372         0.603726         0.435048           57         Carbon         0.517494         0.591442         0.52391           58         Carbon         0.104586         0.573752         0.539234           59         Carbon         0.330208         0.620178         0.611208           60         Carbon         0.408945         0.598132         0.481409           61         Carbon         0.62371         0.58858         0.569889           62         Carbon         0.173412         0.584191         0.548036           63         Carbon         0.386873         0.620307         0.635691           64         Osmium         0.347785         0.387128         0.481802           65         Osmium         0.512015         0.502455         0.590041           66         Oxygen         0.761554         0.570287         0.940366           67         Oxygen         0.490903         0.686246         0.448083           68         Oxygen         0.761554         0.435213         0.674299           69         Oxygen         0.626229 <td>54</td> <td>Carbon</td> <td>0.300001</td> <td>0.598695</td> <td>0.524165</td>          | 54 | Carbon  | 0.300001      | 0.598695 | 0.524165  |
| 56         Carbon         0.30372         0.603726         0.435048           57         Carbon         0.517494         0.591442         0.52391           58         Carbon         0.104586         0.573752         0.539234           59         Carbon         0.330208         0.620178         0.611208           60         Carbon         0.408945         0.598132         0.481409           61         Carbon         0.62371         0.584191         0.548306           62         Carbon         0.173412         0.584191         0.548036           63         Carbon         0.386873         0.620307         0.635691           64         Osmium         0.347785         0.387128         0.481802           65         Osmium         0.512015         0.502455         0.590041           66         Oxygen         0.761554         0.570287         0.940366           67         Oxygen         0.409003         0.686246         0.448083           68         Oxygen         0.761554         0.435213         0.674299           69         Oxygen         0.626229         0.319253         0.444083                                                                                                                                     | 22 | Carbon  | 0.509104      | 0.58037  | 0.611444  |
| 57         Carbon         0.517494         0.591442         0.52391           58         Carbon         0.104586         0.573752         0.539234           59         Carbon         0.30208         0.620178         0.611208           60         Carbon         0.408945         0.598132         0.481409           61         Carbon         0.62371         0.58858         0.569889           62         Carbon         0.173412         0.584191         0.548036           63         Carbon         0.386873         0.620307         0.635691           64         Osmium         0.347785         0.387128         0.481802           65         Osmium         0.512015         0.502455         0.590041           66         Oxygen         0.761554         0.570287         0.940366           67         Oxygen         0.490903         0.686246         0.484083           68         Oxygen         0.761554         0.435213         0.674299           69         Oxygen         0.626229         0.319253         0.484083                                                                                                                                                                                                                     | 56 | Carbon  | 0.30372       | 0.603726 | 0.435048  |
| 58         Carbon         0.104586         0.573752         0.539234           59         Carbon         0.330208         0.620178         0.611208           60         Carbon         0.408945         0.598132         0.481409           61         Carbon         0.62371         0.58858         0.569889           62         Carbon         0.173412         0.584191         0.548036           63         Carbon         0.386873         0.620307         0.635691           64         Osmium         0.347785         0.387128         0.481802           65         Osmium         0.512015         0.502455         0.590041           66         Oxygen         0.761554         0.570287         0.940366           67         Oxygen         0.490903         0.682646         0.48083           68         Oxygen         0.761554         0.435213         0.674299           69         Oxygen         0.626229         0.319253         0.484083                                                                                                                                                                                                                                                                                                   | 57 | Carbon  | 0.517494      | 0.591442 | 0.52391   |
| 59         Carbon         0.330208         0.620178         0.611208           60         Carbon         0.408945         0.598132         0.481409           61         Carbon         0.62371         0.58858         0.59889           62         Carbon         0.173412         0.584191         0.548036           63         Carbon         0.386873         0.620307         0.635691           64         Osmium         0.347785         0.387128         0.481802           65         Osmium         0.512015         0.502455         0.590041           66         Oxygen         0.761554         0.570287         0.940366           67         Oxygen         0.490903         0.68246         0.48083           68         Oxygen         0.761554         0.435213         0.674299           69         Oxygen         0.626229         0.319253         0.484083                                                                                                                                                                                                                                                                                                                                                                                    | 58 | Carbon  | 0.104586      | 0.573752 | 0.539234  |
| 60         Carbon         0.408945         0.598132         0.481409           61         Carbon         0.62371         0.58858         0.569889           62         Carbon         0.173412         0.584191         0.548036           63         Carbon         0.386873         0.620307         0.635691           64         Osmium         0.347785         0.387128         0.481802           65         Osmium         0.512015         0.502455         0.590041           66         Oxygen         0.761554         0.570287         0.940366           67         Oxygen         0.761554         0.435213         0.674299           68         Oxygen         0.761554         0.435213         0.674299           69         Oxygen         0.626229         0.319253         0.484083                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 59 | Carbon  | 0.330208      | 0.620178 | 0.611208  |
| 61         Carbon         0.60371         0.58858         0.569889           62         Carbon         0.173412         0.584191         0.548036           63         Carbon         0.386873         0.62307         0.635691           64         Osmium         0.347785         0.387128         0.481802           65         Osmium         0.512015         0.502455         0.590041           66         Oxygen         0.761554         0.570287         0.940366           67         Oxygen         0.761554         0.435213         0.674299           68         Oxygen         0.62529         0.319253         0.484083                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 60 | Carbon  | 0.408945      | 0.598132 | 0.481409  |
| 61         Carbon         0.173412         0.5635         0.50869           62         Carbon         0.173412         0.584191         0.548036           63         Carbon         0.386873         0.620307         0.635691           64         Osmium         0.347785         0.387128         0.481802           65         Osmium         0.512015         0.502455         0.590041           66         Oxygen         0.761554         0.570287         0.940366           67         Oxygen         0.490903         0.686246         0.484083           68         Oxygen         0.761554         0.435213         0.674299           69         Oxygen         0.626229         0.319253         0.484083                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 61 | Carbon  | 0.62371       | 0.58858  | 0 569889  |
| 62         Carbon         0.173412         0.384191         0.548036           63         Carbon         0.386873         0.620307         0.635691           64         Osmium         0.347785         0.387128         0.481802           65         Osmium         0.512015         0.502455         0.590041           66         Oxygen         0.761554         0.570287         0.940366           67         Oxygen         0.761554         0.435213         0.674299           68         Oxygen         0.761554         0.435213         0.674299           69         Oxygen         0.626229         0.319253         0.484083                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 62 | Carbon  | 0.02371       | 0.50050  | 0.540026  |
| b3         Carbon         0.380873         0.620307         0.635691           64         Osmium         0.347785         0.387128         0.481802           65         Osmium         0.512015         0.502455         0.590041           66         Oxygen         0.761554         0.570287         0.940366           67         Oxygen         0.490903         0.686246         0.484083           68         Oxygen         0.761554         0.435213         0.674299           69         Oxygen         0.626229         0.319253         0.484083                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 62 | Carbon  | 0.1/3412      | 0.304191 | 0.25501   |
| 64         Osmium         0.347/85         0.387128         0.481802           65         Osmium         0.512015         0.502455         0.590041           66         Oxygen         0.761554         0.570287         0.940366           67         Oxygen         0.490903         0.686246         0.484083           68         Oxygen         0.761554         0.435213         0.674299           69         Oxygen         0.626229         0.319253         0.484083                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 63 | Carbon  | 0.386873      | 0.620307 | 0.635691  |
| 65         Osmium         0.512015         0.502455         0.590041           66         Oxygen         0.761554         0.570287         0.940366           67         Oxygen         0.490903         0.686246         0.484083           68         Oxygen         0.761554         0.435213         0.674299           69         Oxygen         0.626229         0.319253         0.484083                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 64 | Osmium  | 0.347785      | 0.387128 | 0.481802  |
| 66         Oxygen         0.761554         0.570287         0.940366           67         Oxygen         0.490903         0.686246         0.484083           68         Oxygen         0.761554         0.435213         0.674299           69         Oxygen         0.626229         0.319253         0.484083                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 65 | Osmium  | 0.512015      | 0.502455 | 0.590041  |
| 67Oxygen0.4909030.6862460.48408368Oxygen0.7615540.4352130.67429969Oxygen0.6262290.3192530.484083                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 66 | Oxygen  | 0.761554      | 0.570287 | 0.940366  |
| 68         Oxygen         0.761554         0.435213         0.674299           69         Oxygen         0.626229         0.319253         0.484083                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 67 | Oxygen  | 0.490903      | 0.686246 | 0.484083  |
| 69 Oxygen 0.626229 0.319253 0.484083                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 68 | Oxygen  | 0.761554      | 0.435213 | 0.674299  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 69 | Oxygen  | 0.626229      | 0.319253 | 0.484083  |

 Table 7.41. Fractional coordinates of OsOBLG after geometry optimization.

|    | Element | d (Å)               | θ (°)   | φ (°)    |
|----|---------|---------------------|---------|----------|
| 0  | Carbon  |                     |         | • • •    |
| 1  | Carbon  | 5.23014             |         |          |
| 2  | Carbon  | 10.0605             | 28.7324 |          |
| 3  | Carbon  | 6.17189             | 21.7559 | 141.5    |
| 4  | Carbon  | 4.12719             | 100.408 | -10.5492 |
| 5  | Carbon  | 5.21176             | 86.0444 | 164.411  |
| 6  | Carbon  | 8.57032             | 30.0393 | 3.4447   |
| 7  | Carbon  | 5.07354             | 27.1049 | -167.102 |
| 8  | Carbon  | 6.42737             | 23.5732 | 9.44956  |
| 9  | Carbon  | 4.66877             | 18.2349 | -1/4.838 |
| 10 | Carbon  | 8.4011              | 40.3621 | -15.2/8/ |
| 11 | Carbon  | 4.53739             | 28.8439 | 10.0041  |
| 12 | Carbon  | 4.19470             | 01 7219 | -10.9941 |
| 13 | Carbon  | 9.17016             | 35 2704 | 3 08177  |
| 15 | Carbon  | 5.03523             | 24 0927 | 176 351  |
| 16 | Carbon  | 8 33377             | 65 6564 | 40 4996  |
| 17 | Carbon  | 5 10583             | 47 9582 | 179 094  |
| 18 | Carbon  | 9.07989             | 28.8535 | -34.3418 |
| 19 | Carbon  | 4.9224              | 89.732  | 180.7652 |
| 20 | Carbon  | 8.52585             | 30.1256 | 3.881    |
| 21 | Carbon  | 5.1945              | 82.4856 | -176.33  |
| 22 | Carbon  | 8.35399             | 31.2319 | 1.46614  |
| 23 | Carbon  | 4.97871             | 32.3637 | -175.925 |
| 24 | Carbon  | 6.51571             | 19.6046 | 5.50514  |
| 25 | Carbon  | 4.9315              | 20.6013 | -170.205 |
| 26 | Carbon  | 8.54318             | 33.4765 | 16.9096  |
| 27 | Carbon  | 4.64193             | 29.4544 | -159.573 |
| 28 | Carbon  | 4.21613             | 93.8123 | 6.90129  |
| 29 | Carbon  | 5.15001             | 88.497  | -174.222 |
| 30 | Carbon  | 8.64115             | 29.2472 | 0.845167 |
| 31 | Carbon  | 5.02108             | 30.0262 | -174.17  |
| 32 | Carbon  | 8.49614             | 82.7869 | -28.3291 |
| 33 | Carbon  | 4.94885             | 84.6662 | 176.052  |
| 34 | Carbon  | 9.46845             | 25.0066 | 13.3294  |
| 35 | Carbon  | 6.06056             | 28.0349 | 152.719  |
| 30 | Carbon  | 4.19589             | 88.203  | -4.81/98 |
| 37 | Carbon  | 4.99732             | 64.2000 | 0.20061  |
| 30 | Carbon  | 6.20034<br>4.568443 | 32 0313 | 9.50001  |
| 40 | Carbon  | 6 34722             | 17 7235 | 1 00486  |
| 41 | Carbon  | 5.04172             | 23 9246 | 177.02   |
| 42 | Carbon  | 9.05705             | 34 2678 | -13 228  |
| 43 | Carbon  | 5.0309              | 24.1936 | 178.761  |
| 44 | Carbon  | 4.24853             | 100.258 | -0.94268 |
| 45 | Carbon  | 5.0974              | 98.0879 | 179.517  |
| 46 | Carbon  | 8.93441             | 23.8786 | 3.00804  |
| 47 | Carbon  | 5.19171             | 28.3907 | 170.937  |
| 48 | Carbon  | 9.20216             | 44.793  | 46.519   |
| 49 | Carbon  | 5.03645             | 38.3994 | -177.581 |
| 50 | Carbon  | 8.6907              | 29.0618 | -44.3824 |
| 51 | Carbon  | 5.07472             | 29.3491 | 176.179  |
| 52 | Carbon  | 4.31633             | 88.2439 | -5.97148 |
| 53 | Carbon  | 4.8259              | 90.4344 | 176.182  |
| 54 | Carbon  | 8.56166             | 30.5658 | -5.69897 |
| 55 | Carbon  | 4.86345             | 32.6952 | 173.768  |
| 56 | Carbon  | 6.51526             | 19.9624 | -0.47696 |
| 5/ | Carbon  | 4.95516             | 20.148/ | 1/4.829  |
| 50 | Carbon  | J.UJ280<br>4.06740  | 20.1956 | 3.1937   |
| 60 | Carbon  | 4.00/49             | 29.1630 | -140.409 |
| 61 | Carbon  | 4.96704             | 82 4680 | -163 891 |
| 62 | Carbon  | 8 95619             | 26.9356 | 14 6379  |
| 63 | Carbon  | 4,99923             | 28.0988 | -152 527 |
| 64 | Osmium  | 2.68477             | 91.6778 | -54.683  |
| 65 | Osmium  | 2.38477             | 91.6778 | -54.683  |
| 66 | Oxygen  | 4.92658             | 89.1342 | -111.177 |
| 67 | Oxygen  | 5.00964             | 39.8935 | 31.068   |
| 68 | Oxygen  | 2.94995             | 85.386  | -31.1768 |
| 69 | Oxygen  | 5.10003             | 18.8945 | -32.2085 |

### Appendix A.2

The angular distributions of graphene structures are given in Figures from 7.1 to 7.11.



Figure 7.1. Angular distribution of graphene.



Figure 7.2. Angular distribution of BLG.



Figure 7.3. Angular distribution of WBLG.



Figure 7.4. Angular distribution of ReBLG.



Figure 7.5. Angular distribution of OsBLG.



Figure 7.6. Angular distribution of WNBLG.



Figure 7.7. Angular distribution of ReNBLG.



Figure 7.8. Angular distribution of OsNBLG.



Figure 7.9. Angular distribution of WOBLG.



Figure 7.10. Angular distribution of ReOBLG.



Figure 7.11. Angular distribution of OsOBLG.

# Appendix A.3

The radial distributions of graphene structures are given in Figures from 7.12 to 7.22.



Figure 7.12. Radial distribution of graphene.



Figure 7.13. Radial distribution of BLG.



Figure 7.14. Radial distribution of WBLG.



Figure 7.15. Radial distribution of ReBLG.



Figure 7.16. Radial distribution of OSBLG.



Figure 7.17. Radial distribution of WNBLG.



Figure 7.19. Radial distribution of OsNBLG.



Figure 7.20. Radial distribution of ReOBLG.



Figure 7.21. Radial distribution of WOBLG.



Figure 7.22. Radial distribution of OsOBLG.

## Appendix A.4

Bader charge volumes and distances were calculated by Bader charge analysis to examine electron densities and presented in Tables from 7.42 to 7.52.

| #  | Atom | Charge | Distance |
|----|------|--------|----------|
| 0  | 5    | 1.2842 | 1.0981   |
| 1  | 0    | 1.3118 | 0.1417   |
| 2  | 4    | 1.3524 | 0.1398   |
| 3  | 4    | 1.2247 | 0.1137   |
| 4  | 1    | 1.4105 | 0.1137   |
| 5  | 1    | 1.411  | 0.1137   |
| 6  | 5    | 1.2285 | 0.1137   |
| 7  | 5    | 1.3679 | 0.1398   |
| 8  | 4    | 1.411  | 0.1137   |
| 9  | 5    | 1.2453 | 0.1137   |
| 10 | 5    | 1.411  | 1.1764   |
| 11 | 3    | 1.1975 | 0.1137   |
| 12 | 2    | 1.3524 | 0.1398   |
| 13 | 6    | 1.2842 | 0.1417   |
| 14 | 3    | 1.3679 | 0.1398   |
| 15 | 3    | 1.2746 | 0.1137   |
| 16 | 7    | 1.411  | 0.1137   |
| 17 | 7    | 1.4105 | 1.1764   |
| 18 | 6    | 1.314  | 0.1417   |
| 19 | 7    | 1.2247 | 0.1137   |
| 20 | 6    | 1.3991 | 0.1417   |
| 21 | 7    | 1.3524 | 0.1398   |
| 22 | 7    | 1.4012 | 1.0981   |
| 23 | 6    | 1.3524 | 1.0963   |

**Table 7.43.** Bader charge volumes of MLG with total number of electrons are33 and identified 24 maxima.

| Table 7.44. Bader charge volumes of BLG | with total number of electrons are |
|-----------------------------------------|------------------------------------|
| 64 and identified 45 maxima.            |                                    |

| #  | Atom | Charge | Distance |
|----|------|--------|----------|
| 0  | 14   | 2.3076 | 0.105    |
| 1  | 1    | 2.3098 | 0.1055   |
| 2  | 3    | 2.3175 | 0.1244   |
| 3  | 9    | 2.3814 | 0.1405   |
| 4  | 2    | 2.238  | 0.1377   |
| 5  | 2    | 1.8214 | 0.1443   |
| 6  | 13   | 2.2478 | 0.1389   |
| 7  | 6    | 2.3976 | 0.1425   |
| 8  | 12   | 2.3557 | 0.1215   |
| 9  | 11   | 0.9423 | 0.1023   |
| 10 | 11   | 1.3669 | 0.1792   |
| 11 | 4    | 1.343  | 0.1789   |
| 12 | 4    | 0.6689 | 0.1069   |
| 13 | 7    | 1.3458 | 0.1279   |
| 14 | 4    | 0.1377 | 0.1243   |
| 15 | 4    | 1.9566 | 0.1233   |
| 16 | 11   | 1.8222 | 0.1266   |
| 17 | 8    | 1.3668 | 0.1262   |
| 18 | 14   | 1.6162 | 0.1693   |
| 19 | 1    | 1.6192 | 0.1722   |
| 20 | 8    | 1.2311 | 0.1685   |
| 21 | 7    | 1.2192 | 0.1706   |
| 22 | 13   | 1.8089 | 0.1453   |
| 23 | 3    | 1.6715 | 0.1576   |
| 24 | 12   | 1.64   | 0.1587   |
| 25 | 10   | 1.6875 | 0.1196   |
| 26 | 5    | 1.6533 | 0.1182   |
| 27 | 15   | 1.1373 | 0.131    |
| 28 | 0    | 1.1531 | 0.1308   |
| 29 | 7    | 1.3272 | 0.1304   |
| 30 | 8    | 1.3155 | 0.1361   |
| 31 | 0    | 1.012  | 0.1238   |

| #  | Atom | Charge | Distance |
|----|------|--------|----------|
| 32 | 15   | 1.0456 | 0.1234   |
| 33 | 5    | 1.195  | 0.1457   |
| 34 | 0    | 0.5914 | 0.1409   |
| 35 | 15   | 0.721  | 0.1409   |
| 36 | 10   | 1.1424 | 0.1513   |
| 37 | 5    | 0.9043 | 0.0904   |
| 38 | 10   | 0.2525 | 0.1008   |
| 39 | 10   | 0.9232 | 0.0997   |
| 40 | 5    | 0.2462 | 0.1027   |
| 41 | 15   | 1.1791 | 0.1162   |
| 42 | 9    | 1.603  | 0.152    |
| 43 | 0    | 1.1856 | 0.116    |
| 44 | 6    | 1.5919 | 0.1463   |

**Table 7.45. (continued)**Bader charge volumes of BLG with total number of<br/>electrons are 64 and identified 45 maxima.



| #        | Atom    | Charge           | Distance           |
|----------|---------|------------------|--------------------|
| 0        | 0       | 1.4164           | 57.9301            |
| 1        | 0       | 1.4163           | 12.7385            |
| 2        | 0       | 1.4327           | 12.7993            |
| 3        | 0       | 1.1943           | 13.6879            |
| 4        | 0       | 1.2251           | 57.9152            |
| 5        | 3       | 1.3445           | 57.4521            |
| 6        | 1       | 1.2529           | 13.6697            |
| 7        | 3       | 1.49             | 57.4606            |
| 8        | 1       | 1.2248           | 57.9084            |
| 9        | 1       | 1.3743           | 57.9302            |
| 10       | 1       | 1.4121           | 12.7907            |
| 11       | 1       | 1.4255           | 12.7464            |
| 12       | 9       | 1.4383           | 57.6312            |
| 13       | 1       | 1.3814           | 13.5738            |
| 14       | 9       | 1.3652           | 56.9041            |
| 15       | 9       | 1.1041           | 50.8007            |
| 16       | 9       | 1.39             | 13.8278            |
| 1/       | 9       | 1.3110           | 57.7253            |
| 18       | 9       | 1.551/           | 59.3095            |
| 19       | 9       | 1.1521           | 14.000             |
| 20       | 9       | 1.2649           | 16.3254            |
| 21       | 9       | 1.4092           | 17.8104            |
| 22       | 9       | 1.4138           | 59./166            |
| 23       | 9       | 1.3626           | 61.2186            |
| 24       | 0       | 1.1941           | 58.8221            |
| 25       | 0       | 1.4305           | 57.9596            |
| 26       | 9       | 1.3/02           | 21./481            |
| 27       | 3       | 0.8033           | 27.7068            |
| 28       | 0       | 1.2228           | 12.7236            |
| 29       | 1       | 1.2205           | 12./246            |
| 30       | 3       | 0.8776           | 30.6085            |
| 31       | 0       | 1.3442           | 13.5175            |
| 32       | 1       | 1.3195           | 13.51/             |
| 55       | 9       | 1.3739           | 14.0815            |
| 34       | 3       | 1.0071           | 33.3413            |
| 33       | 3       | 1.3318           | 12.255             |
| 30<br>27 | 3       | 1.3359           | 55.7555            |
| 28       | 5       | 1.5557           | 12.2507            |
| 56<br>20 | 9       | 1.4095           | 13.7437            |
| 40       | 2       | 1.3640           | 12 4056            |
| 40       | 2       | 1.49             | 10.4930            |
| 41       | 3       | 1.2002           | 10.4811            |
| 42       | 5       | 1.4371           | 10.4893            |
| 43       | 9       | 1.2941           | 12 8400            |
| 44       | 9       | 1.3301           | 15.6409            |
| 45       | 2       | 1.520            | 58 7065            |
| 40       | 2       | 1.2326           | 12 6291            |
| 47       | 9       | 1.2220           | 13.6655            |
| 48       | 2       | 1.2247           | 12 7122            |
| 49<br>50 | 2       | 1.2247           | 12.7133            |
| 51       | 2       | 1.3/44           | 12.7304<br>57 0456 |
| 52       | 2       | 1.4122           | 57 0107            |
| 53       | 2       | 1.2217           | 56 9014            |
| 53       | 2       | 1 4442           | 56 0113            |
| 55       | 3       | 1.4992<br>1.4482 | 56 0107            |
| 56       | 0       | 1 4334           | 57 6678            |
| 57       | 3       | 0.0525           | 27 7312            |
| 58       | 2       | 1 4212           | 57 5156            |
| 50       | 3       | 1.4212           | 57.5150            |
| 59       | 2       | 1.3203           | 24 9292            |
| 61       | 3       | 0.0945           | 24.0303            |
| 62       | 3       | 0.0943           | 54.2550<br>22 2481 |
| 63       | 5<br>11 | 1 2208           | 23.3461<br>50 1306 |
| 64       | 0       | 1.2200           | 50 6225            |
| 65       | 2       | 1.3790           | 57 0259            |
| 66       | 2       | 1.4232           | 51.7550<br>50 7755 |
| 00<br>67 | 2       | 1.3002           | 30.7733<br>57 A010 |
| 0/       | 5       | 1.3183           | J1.4818            |
| 08       | 5       | 1.3441           | 55.50U/<br>61.1290 |
| 09<br>70 | У<br>2  | 1.2/80           | 10 4004            |
| /0       | 3       | 1.4481           | 10.4994            |
| /1       | 2       | 1.4383           | 12.80/1            |
| 12       | 5       | 0.9372           | 50.033             |
| 15       | 11      | 1.4200           | 14.1999            |
| /4       | 2       | 1.104            | 13.7089            |
| 15       | 3       | 1.3442           | 12.0421            |

 Table 7.46. Bader charge volumes of ReBLG with total number of electrons are 151 and identified 116 maxima.

| #   | Atom | Charge | Distance |
|-----|------|--------|----------|
| 76  | 11   | 1.1685 | 14.4324  |
| 77  | 10   | 1.294  | 14.4214  |
| 78  | 3    | 1.4813 | 14.0069  |
| 79  | 11   | 1.3531 | 16.1362  |
| 80  | 2    | 1.3655 | 15.4129  |
| 81  | 2    | 1.3899 | 60.8203  |
| 82  | 3    | 1.4698 | 57.5001  |
| 83  | 10   | 1.4335 | 14.2117  |
| 84  | 3    | 1.421  | 13.9984  |
| 85  | 3    | 1.4815 | 57.5254  |
| 86  | 11   | 1.4492 | 14.219   |
| 87  | 11   | 1.2896 | 14.4404  |
| 88  | 2    | 1.3294 | 18.5464  |
| 89  | 2    | 1.3151 | 16.9013  |
| 90  | 10   | 1.2201 | 14.48    |
| 91  | 11   | 1.2166 | 14.4712  |
| 92  | 2    | 1.1521 | 60.3307  |
| 93  | 2    | 1.3779 | 62.0117  |
| 94  | 10   | 1.2227 | 59.1614  |
| 95  | 11   | 1.2168 | 59.1603  |
| 96  | 11   | 1.4058 | 60.864   |
| 97  | 10   | 1.3324 | 62.6924  |
| 98  | 10   | 1.3804 | 64.0462  |
| 99  | 10   | 1.4095 | 60.8579  |
| 100 | 3    | 1.4254 | 60.7719  |
| 101 | 3    | 1.4491 | 60.7887  |
| 102 | 11   | 1.2956 | 62.7088  |
| 103 | 2    | 1.4124 | 68.8028  |
| 104 | 2    | 1.2649 | 63.6568  |
| 105 | 3    | 1.2895 | 61.9984  |
| 106 | 3    | 1.1685 | 61.9913  |
| 107 | 2    | 1.4124 | 20.8926  |
| 108 | 10   | 1.3805 | 16.1765  |
| 109 | 11   | 1.4059 | 16.175   |
| 110 | 2    | 1.3624 | 24.0606  |
| 111 | 10   | 1.2773 | 18.6783  |
| 112 | 11   | 1.2989 | 18.6783  |
| 113 | 10   | 1.3298 | 66.011   |
| 114 | 3    | 1.3532 | 65.3407  |
| 115 | 2    | 1.37   | 74.7404  |

**Table 7.47. (continued)**Bader charge volumes of ReBLG with total number<br/>of electrons are 151 and identified 116 maxima.

| #  | Atom | Charge | Distance |
|----|------|--------|----------|
| 0  | 0    | 1.268  | 0.1887   |
| 1  | 2    | 1.3279 | 3.1233   |
| 2  | 16   | 1.2644 | 0.3116   |
| 3  | 16   | 1.2462 | 0.3116   |
| 4  | 5    | 1.3279 | 3.1235   |
| 5  | 4    | 1.268  | 0.1887   |
| 6  | 4    | 1.4356 | 0.2049   |
| 7  | 0    | 1.3428 | 0.1466   |
| 8  | 4    | 1.3263 | 1.05     |
| 9  | 8    | 1.3327 | 0.1595   |
| 10 | 8    | 1.3443 | 0.1804   |
| 11 | 5    | 1.3488 | 0.9849   |
| 12 | 1    | 1.3754 | 0.2181   |
| 13 | 1    | 1.2463 | 0.1883   |
| 14 | 10   | 1.3621 | 0.2102   |
| 15 | 16   | 1.1664 | 0.285    |
| 16 | 5    | 1.3633 | 0.1752   |
| 17 | 5    | 1.3363 | 0.2195   |
| 18 | 15   | 1.357  | 0.1587   |
| 19 | 5    | 1.3116 | 1.0808   |
| 20 | 1    | 1.5186 | 0.2288   |
| 21 | 0    | 1.3263 | 1.0499   |
| 22 | 0    | 1.4356 | 0.2048   |
| 23 | 9    | 1.2453 | 0.1559   |
| 24 | 4    | 1.3427 | 0.1466   |
| 25 | 5    | 1.3543 | 0.1451   |
| 26 | 16   | 1.2176 | 0.3724   |
| 27 | 12   | 1.3327 | 0.1595   |
| 28 | 16   | 1.2336 | 0.3725   |
| 29 | 13   | 1.3513 | 0.1594   |
| 30 | 16   | 1.1705 | 0.2852   |
| 31 | 8    | 1.3511 | 0.2093   |
| 32 | 12   | 1.3311 | 0.2093   |
| 33 | 13   | 1.3002 | 0.1794   |
| 35 | 2    | 1 3488 | 0.0840   |
| 36 | 12   | 1 3444 | 0.1803   |
| 37 | 7    | 1 3907 | 0.2151   |
| 38 | 13   | 1 3621 | 0.2102   |
| 39 | 6    | 1.3754 | 0.2182   |
| 40 | 6    | 1.2462 | 0.1883   |
| 41 | 2    | 1.3543 | 0.1452   |
| 42 | 2    | 1.3632 | 0.1752   |
| 43 | 3    | 1.3002 | 0.1849   |
| 44 | 3    | 1.3906 | 0.2151   |
| 45 | 3    | 1.4535 | 0.1427   |
| 46 | 10   | 1.3281 | 0.1795   |
| 47 | 2    | 1.3364 | 0.2194   |
| 48 | 10   | 1.3514 | 0.1594   |
| 49 | 11   | 1.357  | 0.1586   |
| 50 | 2    | 1.3116 | 1.0807   |
| 51 | 6    | 1.5186 | 0.2288   |
| 52 | 7    | 1.4517 | 0.1427   |
| 53 | 14   | 1.2453 | 0.156    |

**Table 7.48.** Bader charge volumes of WBLG with total number of electronsare 80 and identified 54 maxima.

| #  | Atom | Charge | Distance |
|----|------|--------|----------|
| 0  | 0    | 1.3344 | 0.1802   |
| 1  | 2    | 1.3348 | 2.9391   |
| 2  | 16   | 1.2074 | 0.3121   |
| 3  | 16   | 1.2063 | 0.3148   |
| 4  | 5    | 1.3317 | 2.9387   |
| 5  | 4    | 1.3298 | 0.1801   |
| 6  | 4    | 1.4588 | 0.2054   |
| 7  | 0    | 1.2451 | 0.1584   |
| 8  | 4    | 1.2702 | 1.0538   |
| 9  | 8    | 1.4626 | 0.2116   |
| 10 | 8    | 1.4055 | 0.1987   |
| 11 | 5    | 1.1504 | 1.0823   |
| 12 | 1    | 1.2615 | 0.1709   |
| 13 | 1    | 1.3047 | 0.1816   |
| 14 | 10   | 1.3128 | 0.1864   |
| 15 | 16   | 1.1587 | 0.3279   |
| 16 | 5    | 1.4238 | 0.219    |
| 17 | 10   | 1.3176 | 0.1505   |
| 18 | 5    | 1.3185 | 0.1681   |
| 19 | 15   | 1.3569 | 0.1622   |
| 20 | 5    | 1.418  | 0.972    |
| 21 | 1    | 1.4509 | 0.1934   |
| 22 | 9    | 1.3767 | 0.1608   |
| 23 | 0    | 1.4638 | 0.2052   |
| 24 | 0    | 1.2741 | 1.0533   |
| 25 | 4    | 1.2376 | 0.1583   |
| 26 | 5    | 1.2564 | 0.1569   |
| 27 | 16   | 1.2295 | 0.3416   |
| 28 | 12   | 1.461  | 0.2112   |
| 29 | 13   | 1.4478 | 0.2121   |
| 30 | 16   | 1.2395 | 0.3388   |
| 31 | 16   | 1.1668 | 0.3257   |
| 32 | 8    | 1.3227 | 0.2353   |
| 33 | 12   | 1.3262 | 0.2353   |
| 34 | 7    | 1.4471 | 0.2257   |
| 35 | 13   | 1.3174 | 0.1504   |
| 36 | 7    | 1.4388 | 0.213    |
| 37 | 13   | 1.3096 | 0.1861   |
| 38 | 2    | 1.1531 | 1.0819   |
| 39 | 12   | 1.4033 | 0.1983   |
| 40 | 6    | 1.3011 | 0.1815   |
| 41 | 6    | 1.2614 | 0.1708   |
| 42 | 2    | 1.4306 | 0.2188   |
| 43 | 2    | 1.2655 | 0.157    |
| 44 | 3    | 1.4167 | 0.2258   |
| 45 | 3    | 1.4885 | 0.213    |
| 46 | 3    | 1.2764 | 0.1997   |
| 47 | 2    | 1.3172 | 0.1681   |
| 48 | 11   | 1.354  | 0.1623   |
| 49 | 2    | 1.4227 | 0.9721   |
| 50 | 10   | 1.4545 | 0.2125   |
| 51 | 6    | 1.4403 | 0.1936   |
| 52 | 7    | 1.2666 | 0.1996   |
| 53 | 14   | 1.3727 | 0.1606   |

**Table 7.49.** Bader charge volumes of OsBLG with total number of electronsare 72 and identified 54 maxima.

| #  | Atom | Charge | Distance |
|----|------|--------|----------|
| 0  | 14   | 2.3311 | 0.0905   |
| 1  | 9    | 2.3311 | 0.0905   |
| 2  | 2    | 2.3221 | 0.1156   |
| 3  | 15   | 2.4042 | 0.1539   |
| 4  | 15   | 1.7449 | 0.1581   |
| 5  | 16   | 2.2934 | 0.1711   |
| 6  | 0    | 1.7387 | 0.1064   |
| 7  | 10   | 1.0729 | 0.0942   |
| 8  | 10   | 1.1985 | 0.1257   |
| 9  | 3    | 1.4582 | 0.1102   |
| 10 | 0    | 1.3765 | 0.1693   |
| 11 | 11   | 2.3755 | 0.154    |
| 12 | 4    | 1.3805 | 0.1695   |
| 13 | 16   | 2.3173 | 0.1711   |
| 14 | 4    | 1.7502 | 0.1063   |
| 15 | 11   | 1.775  | 0.159    |
| 16 | 7    | 1.4676 | 0.1102   |
| 17 | 13   | 1.2209 | 0.1248   |
| 18 | 13   | 1.0476 | 0.0954   |
| 19 | 5    | 2.333  | 0.1159   |
| 20 | 1    | 1.7183 | 0.0993   |
| 21 | 6    | 1.7305 | 0.0994   |
| 22 | 12   | 1.2981 | 0.076    |
| 23 | 8    | 3.9258 | 0.078    |
| 24 | 1    | 1.7568 | 0.1406   |
| 25 | 6    | 1.7623 | 0.1404   |
| 26 | 9    | 1.6311 | 0.1593   |
| 27 | 14   | 1.6304 | 0.1594   |
| 28 | 6    | 0.1809 | 0.1632   |
| 29 | 1    | 0.1846 | 0.163    |
| 30 | 12   | 2.3288 | 0.0689   |
| 31 | 0    | 0.5839 | 0.168    |
| 32 | 12   | 2.4355 | 0.0746   |
| 33 | 8    | 2.1347 | 0.0781   |
| 34 | 4    | 0.5784 | 0.1681   |
| 35 | 16   | 2.0524 | 0.1726   |
| 36 | 16   | 2.0273 | 0.1726   |
| 37 | 2    | 1.6744 | 0.138    |
| 38 | 5    | 1.6728 | 0.1387   |
| 39 | 16   | 2.6    | 0.1735   |
| 40 | 16   | 2.5819 | 0.1738   |
| 41 | 3    | 0.5682 | 0.1652   |
| 42 | 7    | 0.5684 | 0.1652   |
| 43 | 10   | 1.7974 | 0.1672   |
| 44 | 13   | 1.803  | 0.166    |
| 45 | 3    | 1.6352 | 0.1125   |
| 46 | 7    | 1.6279 | 0.1125   |
| 47 | 7    | 0.3453 | 0.149    |
| 48 | 3    | 0.2265 | 0.149    |

**Table 7.50.** Bader charge volumes of ReNBLG with total number of<br/>electrons are 81 and identified 49 maxima.

| #  | Atom | Charge | Distance |
|----|------|--------|----------|
| 0  | 6    | 2.5745 | 2.6853   |
| 1  | 0    | 2.6242 | 4.4844   |
| 2  | 12   | 3.5114 | 2.0745   |
| 3  | 12   | 4.7545 | 1.4847   |
| 4  | 5    | 1.4374 | 4.7878   |
| 5  | 6    | 1.4629 | 1.7494   |
| 6  | 6    | 1.8542 | 1.7832   |
| 7  | 6    | 2.3618 | 3.405    |
| 8  | 12   | 0.9389 | 2.3107   |
| 9  | 5    | 1.8623 | 2.6867   |
| 10 | 8    | 2.3471 | 0.6601   |
| 11 | 2    | 0.2066 | 1.6899   |
| 12 | 2    | 0.2882 | 1.2114   |
| 13 | 2    | 1.4458 | 2.7998   |
| 14 | 5    | 1.405  | 0.6783   |
| 15 | 5    | 0.3732 | 1.034    |
| 16 | 5    | 0.2153 | 1.0667   |
| 17 | 2    | 2.2882 | 1.3397   |
| 18 | 13   | 2.2712 | 0.9605   |
| 19 | 6    | 1.4606 | 3.192    |
| 20 | 2    | 1.6105 | 1.6092   |
| 21 | 13   | 1.6038 | 0.427    |
| 22 | 10   | 2.3382 | 1.5918   |
| 23 | 13   | 2.3378 | 1.2607   |
| 24 | 5    | 1.445  | 1.3331   |
| 25 | 8    | 1.6223 | 0.4035   |
| 26 | 6    | 1.613  | 2.1677   |
| 27 | 12   | 2.3265 | 1.0243   |
| 28 | 16   | 2.2697 | 1.5669   |
| 29 | 14   | 1.9814 | 0.9832   |
| 30 | 8    | 2.0024 | 1.2022   |
| 31 | 14   | 1.7861 | 0.7412   |
| 32 | 16   | 1.5593 | 1.8869   |
| 33 | 14   | 1.3771 | 0.148    |
| 34 | 6    | 0.6367 | 1.6976   |
| 35 | 16   | 1.6557 | 1.701    |
| 36 | 5    | 0.6087 | 2.8454   |
| 37 | 14   | 2.9045 | 0.7744   |
| 38 | 16   | 2.9976 | 1.6706   |
| 39 | 14   | 0.1543 | 0.3068   |
| 40 | 10   | 0      | 10.9064  |
| 41 | 14   | 0.1557 | 0.1672   |
| 42 | 11   | 0.1441 | 2.5872   |
| 43 | 14   | 2.6067 | 4.7193   |
| 44 | 14   | 1.5786 | 1.012    |
| 45 | 11   | 1.5/3  | 1.2596   |
| 46 | 14   | 0.8998 | 2.0532   |
| 47 | 16   | 0.9119 | 2.5071   |
| 48 | 13   | 2.6162 | 3.8487   |

**Table 7.51.** Bader charge volumes of WNBLG with total number of electronsare 82 and identified 48 maxima.

| #  | Atom   | Charge | Distance |
|----|--------|--------|----------|
| 0  | 14     | 2.3323 | 0.1045   |
| 1  | 9      | 2.3325 | 0.1047   |
| 2  | 2      | 2.3303 | 0.1201   |
| 3  | 16     | 2.6433 | 0.1794   |
| 4  | 15     | 2.4878 | 0.1418   |
| 5  | 0      | 1.6903 | 0.111    |
| 6  | 10     | 1.2282 | 0.0992   |
| 7  | 15     | 1.6163 | 0.1517   |
| 8  | 0      | 1.4976 | 0.1648   |
| 9  | 11     | 2.4833 | 0.1427   |
| 10 | 4      | 1.4939 | 0.1651   |
| 11 | 11     | 1.6215 | 0.1523   |
| 12 | 16     | 2.67   | 0.1795   |
| 13 | 4      | 1.7002 | 0.1111   |
| 14 | 13     | 1.1393 | 0.1552   |
| 15 | 13     | 1.2188 | 0.1008   |
| 16 | 5      | 2.3307 | 0.1206   |
| 17 | 6      | 1.7281 | 0.104    |
| 18 | 1      | 1.7304 | 0.1037   |
| 19 | 12     | 3.5801 | 0.0954   |
| 20 | 8      | 3 5513 | 0.0998   |
| 21 | 1      | 1.7751 | 0.1241   |
| 22 | 9      | 1 5934 | 0.172    |
| 23 | 6      | 1 7715 | 0 1241   |
| 24 | 14     | 1 5999 | 0.1722   |
| 25 | 12     | 2,3963 | 0.0873   |
| 26 | 8      | 2,4234 | 0.0846   |
| 27 | 6      | 0.2102 | 0 1798   |
| 28 | 1      | 0.2106 | 0.18     |
| 29 | 16     | 2 5445 | 0 194    |
| 30 | 4      | 0.5376 | 0 1449   |
| 31 | 0      | 0 5394 | 0.1452   |
| 32 | 16     | 2 4932 | 0 1941   |
| 33 | 5      | 1 6493 | 0.1607   |
| 34 | 2      | 1 6491 | 0.1609   |
| 35 | 10     | 1 7568 | 0.1462   |
| 36 | 10     | 1 1419 | 0.1558   |
| 37 | 16     | 2 4165 | 0.1864   |
| 38 | 16     | 2.4395 | 0.1868   |
| 39 | 13     | 1 7687 | 0.1454   |
| 40 | 3      | 0 5408 | 0 1308   |
| 41 | 7      | 0.540  | 0.1308   |
| 42 | 3      | 1 555  | 0.1238   |
| 43 | 7      | 1.5504 | 0.1238   |
|    | י<br>ר | 0.3315 | 0.1236   |
| 45 | 3      | 0.3313 | 0.1408   |
|    | 7      | 1 4663 | 0.1167   |
| 40 | 3      | 1.4611 | 0.1167   |

**Table 7.52.** Bader charge volumes of OsNBLG with total number of<br/>electrons are 83 and identified 48 maxima.

| Atom   | #  | Х       | у       | Z       | Charge  |
|--------|----|---------|---------|---------|---------|
| C      | 0  | 10.382  | 18.5087 | 9.9357  | 4.168   |
| C      | 1  | 12.4595 | 23.3036 | 9.8584  | 3.9254  |
| С      | 2  | 12.9655 | 14.2783 | 9.9435  | 4.0201  |
| С      | 3  | 14.8398 | 19.0365 | 9.2056  | 4.1438  |
| С      | 4  | 11.2089 | 21.0793 | 9.769   | 4.0106  |
| С      | 5  | 14.1936 | 25.3133 | 10.2674 | 4.0596  |
| С      | 6  | 13.5934 | 16.8233 | 9.4466  | 3.9959  |
| С      | 7  | 16.0891 | 21.1857 | 9.4662  | 3.9222  |
| С      | 8  | 10.9747 | 17.3746 | 9.8439  | 3.9903  |
| С      | 9  | 13.628  | 21.2424 | 9.2881  | 3.9574  |
| С      | 10 | 13.2729 | 12.9459 | 10.2689 | 4.0034  |
| С      | 11 | 16.1393 | 16.9754 | 9.7393  | 3.9997  |
| С      | 12 | 12.4593 | 19.0851 | 9.4384  | 4.1257  |
| С      | 13 | 14.8596 | 23.3216 | 9.6936  | 3.9872  |
| Ċ      | 14 | 15.0746 | 14.7673 | 9.9374  | 4.0446  |
| Ċ      | 15 | 17 2822 | 19 1656 | 9 7677  | 3 8962  |
| č      | 16 | 10 5446 | 17 6685 | 14 0937 | 4 1904  |
| Č      | 17 | 12 9659 | 21 6604 | 14 4151 | 3 9975  |
| C      | 18 | 12.5055 | 12 8/13 | 14.0862 | 3 0025  |
| C      | 10 | 14.0567 | 12.0413 | 14.0002 | 3.9923  |
| C      | 20 | 14.9307 | 19.7405 | 14.0323 | 3.9719  |
| C      | 20 | 11.1303 | 10./493 | 14.4210 | 4.0301  |
| C      | 21 | 13.1/0/ | 22.9914 | 14.0104 | 3.9/39  |
| C      | 22 | 15.7704 | 14.8987 | 14.4006 | 3.9/4/  |
| C      | 23 | 16.2317 | 19.1481 | 14.6844 | 3.9365  |
| C      | 24 | 11.3684 | 15.1063 | 14.0865 | 4.0204  |
| С      | 25 | 13.7004 | 19.1817 | 14.9103 | 3.9399  |
| С      | 26 | 14.1872 | 10.7167 | 13.9159 | 4.0357  |
| С      | 27 | 16.2017 | 14.9407 | 14.1717 | 3.9553  |
| С      | 28 | 12.5571 | 16.9919 | 14.8306 | 3.9165  |
| С      | 29 | 15.0961 | 21.3237 | 14.5036 | 4.0796  |
| С      | 30 | 14.9415 | 12.7789 | 13.9251 | 3.96    |
| С      | 31 | 17.4306 | 17.001  | 14.3384 | 3.8507  |
| С      | 32 | 11.1633 | 19.7165 | 9.7119  | 3.9938  |
| С      | 33 | 13.5333 | 24.0542 | 9.9432  | 4.08    |
| С      | 34 | 13,7059 | 15.4278 | 9.6903  | 4.0058  |
| Ċ      | 35 | 16.0376 | 19.7425 | 9.3612  | 3.9247  |
| C      | 36 | 12 3627 | 21 8936 | 9 6072  | 3 9775  |
| Č      | 37 | 15 4636 | 25 7557 | 10 2892 | 3 983   |
| Č      | 38 | 14 8577 | 17 593  | 9 4344  | 4 0862  |
| C      | 30 | 17 443  | 21 414  | 9.9361  | 4.0002  |
| C      | 40 | 12 3765 | 17 5949 | 0 5352  | 3 0672  |
| C      | 40 | 14 0065 | 21 0280 | 9.5552  | 3.9072  |
| C      | 41 | 14.5005 | 12 4552 | 9.4236  | 3.9293  |
| C      | 42 | 14.325  | 13.4332 | 10.1923 | 4.0321  |
| C      | 43 | 17.4167 | 17.7386 | 9.9933  | 2.2756  |
| C      | 44 | 13.6283 | 19.8188 | 9.1385  | 4.0323  |
| C      | 45 | 15.6766 | 24.4018 | 9.9467  | 3.9984  |
| C      | 46 | 16.098  | 15.5985 | 9.9377  | 3.9531  |
| C      | 47 | 18.0965 | 20.333  | 10.0249 | 4.1328  |
| С      | 48 | 11.2916 | 16.4315 | 14.3362 | 3.9433  |
| С      | 49 | 13.7727 | 20.5883 | 14.7575 | 3.9567  |
| С      | 50 | 13.589  | 12.0524 | 13.9869 | 4.0812  |
| С      | 51 | 16.1198 | 16.3506 | 14.5035 | 3.8949  |
| С      | 52 | 12.4985 | 18.4426 | 14.8379 | 3.9088  |
| С      | 53 | 14.4496 | 22.5616 | 14.0941 | 4.0473  |
| С      | 54 | 15.0228 | 14.1786 | 14.1662 | 3.9333  |
| С      | 55 | 17.3596 | 18.3378 | 14.4994 | 4.1361  |
| С      | 56 | 12.4688 | 14.2542 | 14,1737 | 3,9283  |
| Ċ      | 57 | 14.957  | 18.448  | 14,9066 | 4.0058  |
| ē      | 58 | 15.4413 | 10.2275 | 13.8284 | 3 9745  |
| č      | 50 | 17 6062 | 14 7664 | 13 8394 | 4 0596  |
| Č      | 60 | 13 7511 | 16 26/3 | 14 781  | 3 0836  |
| Č      | 61 | 16 15// | 20 5402 | 14.701  | 3.9030  |
| C      | 62 | 10.1344 | 20.3493 | 14.3093 | 3.9031  |
| C      | 02 | 15.6912 | 11.020/ | 13.8403 | 4.0242  |
| U<br>N | 63 | 18.2604 | 15.8466 | 14.003  | 4.1035  |
| Re     | 64 | 13.778  | 18.5689 | 11.2553 | 13.0503 |
| 0      | 65 | 18.4321 | 17.1739 | 10.4286 | 7.8383  |
| 0      | 66 | 13.7753 | 17.1774 | 12.2669 | 6.7988  |
| 0      | 67 | 13.943  | 20 0941 | 12.0442 | 6 7804  |

 Table 7.53. The atomic charge volumes of ReOBLG structure, total number of electron is 289.

| Atom | #   | X       | У       | Z       | Charge   |
|------|-----|---------|---------|---------|----------|
| C    | 0   | 10      | 19.0093 | 10.0978 | 3.9063   |
| С    | 1   | 12.4612 | 23.2722 | 10.0978 | 3.9923   |
| С    | 2   | 12.4612 | 14.7463 | 10.0978 | 4.2186   |
| С    | 3   | 14.9224 | 19.0093 | 10.0978 | 4.1467   |
| С    | 4   | 11.2334 | 21.1321 | 10.0667 | 4.0298   |
| С    | 5   | 13.6946 | 25.395  | 10.0667 | 4.0906   |
| Ċ    | 6   | 13 6946 | 16 8691 | 10.0667 | 3 9018   |
| Č    | 7   | 16 1558 | 21 1321 | 10.0667 | 4 0261   |
| Č    | 8   | 11 208  | 16 8963 | 10.4708 | 4 0265   |
| C    | 0   | 12 6602 | 21 1502 | 10.4708 | 4.0205   |
| C    | 9   | 13.0092 | 21.1392 | 10.4708 | 4 1024   |
| C    | 10  | 13.0092 | 12.0333 | 10.4708 | 4.1034   |
| C    | 11  | 16.1304 | 16.8963 | 10.4708 | 3.78     |
| N    | 12  | 12.4373 | 19.0254 | 10.0272 | 4.0153   |
| С    | 13  | 14.8985 | 23.2883 | 10.0272 | 4.0524   |
| С    | 14  | 14.8985 | 14.7625 | 10.0272 | 3.981    |
| С    | 15  | 17.3597 | 19.0254 | 10.0272 | 3.9351   |
| С    | 16  | 10.0541 | 17.0917 | 13.9282 | 3.9035   |
| Ν    | 17  | 12.5153 | 21.3546 | 13.9282 | 3.9648   |
| C    | 18  | 12 5153 | 12.8288 | 13 9282 | 3 9548   |
| C    | 10  | 14 9765 | 17 0917 | 13.0282 | 3 6556   |
| C    | 19  | 14.9705 | 10 2054 | 13.9282 | 2.0059   |
| C    | 20  | 11.2755 | 19.2054 | 13.639  | 3.9908   |
| С    | 21  | 13.7367 | 23.4683 | 13.639  | 4.1499   |
| С    | 22  | 13.7367 | 14.9425 | 13.639  | 8.5443   |
| С    | 23  | 16.1979 | 19.2054 | 13.639  | 3.9186   |
| С    | 24  | 11.2934 | 14.9642 | 13.9454 | 3.9961   |
| N    | 25  | 13.7546 | 19.2271 | 13.9454 | 3.9622   |
| С    | 26  | 13.7546 | 10.7012 | 13.9454 | 4.2224   |
| C    | 27  | 16.2158 | 14.9642 | 13.9454 | 4.0479   |
| Ĉ    | 28  | 12 4883 | 17.0662 | 14 0288 | 3 9468   |
| Č    | 20  | 14 9495 | 21 3201 | 14.0288 | 3 8711   |
| C    | 20  | 14.0405 | 12 8022 | 14.0200 | 4 01 4 1 |
| C    | 30  | 14.9493 | 12.8033 | 14.0288 | 4.0141   |
| C    | 31  | 17.4107 | 17.0662 | 14.0288 | 4.0885   |
| C    | 32  | 11.2484 | 19.7141 | 10.0716 | 4.0247   |
| С    | 33  | 13.7096 | 23.9771 | 10.0716 | 3.9738   |
| N    | 34  | 13.7096 | 15.4512 | 10.0716 | 4.1871   |
| N    | 35  | 16.1708 | 19.7141 | 10.0716 | 3.8625   |
| С    | 36  | 12.4941 | 21.8332 | 10      | 4.0982   |
| С    | 37  | 14.9553 | 26.0961 | 10      | 4.0108   |
| N    | 38  | 14 9553 | 17 5702 | 10      | 4 0831   |
| C    | 30  | 17 4165 | 21 8332 | 10      | 4 003    |
| c    | 10  | 12 4800 | 17 6179 | 10 4465 | 4.005    |
| C N  | 40  | 12.4699 | 17.0178 | 10.4405 | 4.0740   |
| N    | 41  | 14.9511 | 21.8808 | 10.4465 | 3.6392   |
| N    | 42  | 14.9511 | 13.3549 | 10.4465 | 4.0367   |
| С    | 43  | 17.4123 | 17.6178 | 10.4465 | 3.8804   |
| N    | 44  | 13.6703 | 19.6841 | 10.4352 | 3.5261   |
| С    | 45  | 16.1315 | 23.947  | 10.4352 | 3.923    |
| С    | 46  | 16.1315 | 15.4212 | 10.4352 | 3.908    |
| С    | 47  | 18 5927 | 19 6841 | 10 4352 | 3 8399   |
| č    | 48  | 11 301  | 16 3842 | 13 959  | 4 0511   |
| C    | 40  | 12 7622 | 20 6471 | 12.050  | 1 2456   |
| C    | 49  | 13.7022 | 20.04/1 | 13.939  | 1.3430   |
| C    | 50  | 15./622 | 12.1213 | 13.959  | 3.8693   |
| C    | 51  | 16.2234 | 16.3842 | 13.959  | 3.9726   |
| С    | 52  | 12.5363 | 18.4792 | 13.6461 | 4.0679   |
| С    | 53  | 14.9975 | 22.7421 | 13.6461 | 4.0984   |
| Ν    | 54  | 14.9975 | 14.2163 | 13.6461 | 4.5303   |
| С    | 55  | 17.4587 | 18.4792 | 13.6461 | 3.9384   |
| Ċ    | 56  | 12 547  | 14 2629 | 14 0096 | 4 5764   |
| C C  | 57  | 15 0082 | 18 5258 | 14 0096 | 1.6210   |
| C    | 59  | 15.0082 | 10      | 14.0090 | 2 0020   |
| C    | 50  | 15.0082 | 10      | 14.0090 | 3.9939   |
| C    | 59  | 17.4694 | 14.2029 | 14.0096 | 4.0208   |
| N    | 60  | 13.7221 | 16.4051 | 13.637  | 4.4316   |
| N    | 61  | 16.1833 | 20.668  | 13.637  | 3.7773   |
| С    | 62  | 16.1833 | 12.1422 | 13.637  | 3.9236   |
| С    | 63  | 18.6445 | 16.4051 | 13.637  | 3.8971   |
| W    | 64  | 13.7367 | 14.9425 | 11.6895 | 12.3902  |
| W    | 65  | 13,7367 | 21,2627 | 11.6895 | 17.0041  |
| W    | 66  | 15 5610 | 18 1026 | 11 6905 | 11 2002  |
| w o  | 67  | 13.3012 | 10.1020 | 11.0093 | 11.0993  |
| 0    | 0/  | 13./30/ | 14.9425 | 13.039  | 0        |
| 0    | 68  | 13.7367 | 21.2627 | 13.639  | 9.1271   |
| 0    | 69  | 15.5612 | 18.1026 | 13.639  | 9.1324   |
| 0    | 70  | 14.233  | 19.4425 | 11.6895 | 7.0245   |
| 0    | 71  | 16.8895 | 19.4425 | 11.6895 | 6.6816   |
| 0    | 72  | 15,5612 | 21,7431 | 11.6895 | 6.7523   |
| õ    | 73  | 14 233  | 16 7627 | 11 6895 | 6 9788   |
| 0    | , , | 17.400  | 10.7027 | 11.0075 | 0.9700   |
| 0    | 74  | 16 0005 | 16 7607 | 11 2005 | 67105    |

**Table 7.54.** The atomic charge volumes of WOBLG structure, total numberof electron is 352.

| Atom   | #  | х       | y        | Z       | Charge  |
|--------|----|---------|----------|---------|---------|
| C      | 0  | 10      | 19 0093  | 10.0978 | 3 9063  |
| Č      | 1  | 12 4612 | 22 2722  | 10.0078 | 3 0022  |
| C      | 1  | 12.4012 | 25.2722  | 10.0978 | 5.9925  |
| C      | 2  | 12.4612 | 14.7463  | 10.0978 | 4.2186  |
| С      | 3  | 14.9224 | 19.0093  | 10.0978 | 4.1467  |
| С      | 4  | 11.2334 | 21.1321  | 10.0667 | 4.0298  |
| С      | 5  | 13.6946 | 25.395   | 10.0667 | 4.0906  |
| С      | 6  | 13.6946 | 16.8691  | 10.0667 | 3.9018  |
| C      | 7  | 16 1558 | 21 1321  | 10.0667 | 4 0261  |
| Č      | 8  | 11 208  | 16 8963  | 10.4708 | 4.0265  |
| C      | 0  | 12 6602 | 21 1502  | 10.4708 | 4.0203  |
| Č      | 9  | 13.0092 | 21.1592  | 10.4708 | 0       |
| С      | 10 | 13.6692 | 12.6333  | 10.4708 | 4.1034  |
| С      | 11 | 16.1304 | 16.8963  | 10.4708 | 3.78    |
| N      | 12 | 12.4373 | 19.0254  | 10.0272 | 4.0153  |
| С      | 13 | 14.8985 | 23.2883  | 10.0272 | 4.0524  |
| С      | 14 | 14.8985 | 14.7625  | 10.0272 | 3.981   |
| C      | 15 | 17 3597 | 19 0254  | 10.0272 | 3 9351  |
| Ċ      | 16 | 10.0541 | 17 0917  | 13 9282 | 3 9035  |
| N      | 17 | 12 5152 | 21 2546  | 12 0282 | 3.0648  |
| IN C   | 17 | 12.5155 | 21.3340  | 13.9282 | 3.9048  |
| Č      | 18 | 12.5153 | 12.8288  | 13.9282 | 3.9548  |
| С      | 19 | 14.9765 | 17.0917  | 13.9282 | 3.6556  |
| С      | 20 | 11.2755 | 19.2054  | 13.639  | 3.9968  |
| С      | 21 | 13.7367 | 23.4683  | 13.639  | 4.1499  |
| С      | 22 | 13.7367 | 14.9425  | 13.639  | 8.5443  |
| C      | 23 | 16.1979 | 19.2054  | 13.639  | 3.9186  |
| C      | 24 | 11 2934 | 14 9642  | 13 9454 | 3 9961  |
| N      | 25 | 13 7546 | 10 2271  | 13 0454 | 3 9677  |
|        | 25 | 12 7546 | 10.7012  | 12 0454 | 1 2224  |
| C      | 20 | 15./540 | 10.7012  | 13.9434 | 4.2224  |
| C      | 27 | 16.2158 | 14.9642  | 13.9454 | 4.0479  |
| С      | 28 | 12.4883 | 17.0662  | 14.0288 | 3.9468  |
| С      | 29 | 14.9495 | 21.3291  | 14.0288 | 3.8711  |
| С      | 30 | 14.9495 | 12.8033  | 14.0288 | 4.0141  |
| С      | 31 | 17.4107 | 17.0662  | 14.0288 | 4.0883  |
| C      | 32 | 11 2484 | 197141   | 10.0716 | 4 0247  |
| Č      | 33 | 13 7096 | 23 9771  | 10.0716 | 3 9738  |
| N      | 24 | 13 7006 | 15 4512  | 10.0716 | 4 1971  |
| IN N   | 34 | 15.7090 | 10.71.41 | 10.0716 | 4.18/1  |
| N      | 35 | 16.1708 | 19./141  | 10.0/16 | 3.8625  |
| С      | 36 | 12.4941 | 21.8332  | 10      | 4.0982  |
| С      | 37 | 14.9553 | 26.0961  | 10      | 4.0108  |
| N      | 38 | 14.9553 | 17.5702  | 10      | 4.0831  |
| С      | 39 | 17.4165 | 21.8332  | 10      | 4.003   |
| С      | 40 | 12.4899 | 17.6178  | 10.4465 | 4.0746  |
| N      | 41 | 14 9511 | 21 8808  | 10 4465 | 3 6392  |
| N      | 42 | 14 9511 | 13 3549  | 10.4465 | 4 0367  |
| C      | 12 | 17 4122 | 17 6178  | 10.4465 | 2 8804  |
| L N    | 43 | 12 6702 | 10.6941  | 10.4405 | 2 5261  |
| N      | 44 | 15.0705 | 19.0841  | 10.4352 | 3.3201  |
| C      | 45 | 16.1315 | 23.947   | 10.4352 | 3.923   |
| С      | 46 | 16.1315 | 15.4212  | 10.4352 | 3.908   |
| С      | 47 | 18.5927 | 19.6841  | 10.4352 | 3.8399  |
| С      | 48 | 11.301  | 16.3842  | 13.959  | 4.0511  |
| С      | 49 | 13.7622 | 20.6471  | 13.959  | 1.3456  |
| С      | 50 | 13,7622 | 12,1213  | 13,959  | 3,8693  |
| Č      | 51 | 16,2234 | 16.3842  | 13,959  | 3,9726  |
| c      | 52 | 12 5363 | 18 4792  | 13 6461 | 4 0679  |
| C      | 53 | 14 0075 | 22 7/21  | 13 6/61 | 4 0084  |
| C NT   | 55 | 14.0075 | 14 21 62 | 12 6461 | 4.0204  |
| IN C   | 54 | 14.99/3 | 14.2103  | 13.0401 | 4.3303  |
| C      | 55 | 1/.458/ | 18.4792  | 13.0461 | 3.9384  |
| C      | 56 | 12.547  | 14.2629  | 14.0096 | 4.5764  |
| С      | 57 | 15.0082 | 18.5258  | 14.0096 | 1.6219  |
| С      | 58 | 15.0082 | 10       | 14.0096 | 3.9939  |
| С      | 59 | 17.4694 | 14.2629  | 14.0096 | 4.0208  |
| Ν      | 60 | 13.7221 | 16.4051  | 13.637  | 4.4316  |
| N      | 61 | 16,1833 | 20.668   | 13.637  | 3,7773  |
| Ċ      | 62 | 16 1833 | 12 1422  | 13 637  | 3 9236  |
| C      | 62 | 18 6445 | 16 /051  | 13.627  | 3 8071  |
| U<br>W | 64 | 10.0445 | 10.4031  | 11.057  | 12 2002 |
| w      | 04 | 13./30/ | 14.9423  | 11.0895 | 12.3902 |
| W      | 65 | 13.7367 | 21.2627  | 11.6895 | 17.0041 |
| W      | 66 | 15.5612 | 18.1026  | 11.6895 | 11.8993 |
| О      | 67 | 13.7367 | 14.9425  | 13.639  | 0       |
| 0      | 68 | 13.7367 | 21.2627  | 13.639  | 9.1271  |
| 0      | 69 | 15.5612 | 18.1026  | 13.639  | 9.1324  |
| Ô      | 70 | 14.233  | 19,4425  | 11,6895 | 7.0245  |
| õ      | 71 | 16 8895 | 19 4425  | 11 6895 | 6 6816  |
| ŏ      | 72 | 15 5612 | 21 7/21  | 11 6805 | 6 7573  |
| 0      | 72 | 14 222  | 16 7407  | 11.0075 | 6 0700  |
| 0      | 15 | 14.233  | 10.7027  | 11.0895 | 0.9/88  |
| U      | /4 | 10.8895 | 10./02/  | 11.0895 | 0./185  |
| 0      | 75 | 15.5612 | 14.4621  | 11.6895 | 6.6612  |

**Table 7.55.** The atomic charge volumes of OsOBLG structure, total numberof electron is 312.

#### 8. CURRICULUM VITAE

| Name SURNAME            | : Özlem ÜNLÜ                                                              |
|-------------------------|---------------------------------------------------------------------------|
| Place and Date of Birth | : Düzce 20.10.1985                                                        |
| Universities            |                                                                           |
| Bachelor's Degree       | : Abant İzzet Baysal University                                           |
| MSc Degree              | : Abant İzzet Baysal University                                           |
| e-mail                  | : ozlemilkin@gmail.com                                                    |
| Address                 | : Kılıçarslan Mah. Dr. Akın Çakmakçı Blv.<br>Rönesans Apartmanı 22/5 Bolu |
|                         |                                                                           |

#### List of Publications

- İlkin Özlem, Morkan İzzet (2013). Synthesis, characterization and applications of Antimicrobial textile products by sonochemical Nanomolecular coating. V. ULUSLARARASI AR-GE PROJE PAZARI, Bursa
- Tanyıldızı Seda, Morkan İzzet, Morkan Ayşe, İlkin Özlem (2012). Grup 6
   B Elementlerinin Metal-Karbonil-2-Merkaptopirimidin Totomerlerinin Yoğunluk Fonksiyon Teorisi (DFT) ile Yapısal Analizi. III. FİZİKSEL KİMYA GÜNLERİ, Balıkesir
- İlkin Özlem, Morkan İzzet (2011). Metal Pirimidintiyol Bileşiklerinin Sentezi ve DFT Hesaplamaları. III. Ulusal Anorganik Kimya Kongresi, Çanakkale
- İlkin Özlem, Morkan İzzet (2010). Grup VI-B Elementlerinin Merkaptopirimidin Bileşiklerinin Sentezi, Termal Davranışları,

Spektroskopik Yapısının İncelenmesi. 24. ULUSAL KİMYA KONGRESİ, Zonguldak

