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ABSTRACT 

SOLVING INVERSE KINEMATICS PROBLEM BY GRÖBNER BASES  

MSC THESIS 

ÖZLEM ALTUNBEZEL  

BOLU ABANT İZZET BAYSAL UNIVERSITY GRADUATE SCHOOL OF 

NATURAL AND APPLIED SCIENCES 

DEPARTMENT OF MATHEMATICS 

(SUPERVISOR: ASSOC. PROF. DR. EROL YILMAZ  ) 

 

BOLU, MAY 2019 

 

The inverse kinematics problem is one of the most important problems in 

robotics because the solutions provide control over the position and orientation of 

the robot hand. It is shown that Gröbner Basis Theory is an alternative method for 

solving the inverse kinematics problem. The aim of the thesis is to compare two 

different methods for specialization issue of parameters in the solution set of the 

problem. While the first method finds specializations by extra colon ideal 

computations, the second method computes a comprehensive Gröbner system of 

the problem. The advantages and disadvantages of both methods are explained 

with examples.   

 

 

 

KEYWORDS: Gröbner Basis, Inverse Kinematics Problem, Comprehensive 

Gröbner System.   
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ÖZET 

TERS KINEMATIK ROBOTIK PROBLEMİNİN GRÖBNER 

TABANLARIYLA ÇÖZÜLMESİ   

YÜKSEK LİSANS TEZİ 

ÖZLEM ALTUNBEZEL  

BOLU ABANT İZZET BAYSAL ÜNİVERSİTESİ  

FEN BİLİMLERİ ENSTİTÜSÜ 

MATEMATİK ANABİLİM DALI 

(TEZ DANIŞMANI: DOÇ. DR. EROL YILMAZ )  

           

BOLU, MAYIS – 2019 

 

 

 

Ters kinematik problemi robotikteki en önemli problemlerden biridir 

çünkü çözümler robot elinin pozisyonu ve yönü üzerinde kontrol sağlar. Gröbner 

Taban Teorisinin ters kinematik problemini çözmek için alternatif bir yöntem 

olduğu gösterilmiştir. Tezin amacı, problemin çözüm setinde parametrelere değer 

verilmesi sorunu için iki farklı yöntemi karşılaştırmaktır. İlk yöntem, ekstra kolon 

ideal hesaplamaları ile parametrelere verilmesi gereken değerleri bulurken, ikinci 

yöntem problemin kapsamlı bir Gröbner sistemini hesaplar. Her iki yöntemin 

avantajları ve dezavantajları örneklerle açıklanmaktadır. 

 

 

 

 

ANAHTAR KELİMELER: Gröbner Tabanları, Ters Kinematik Problemi, 

Kapsamlı Gröbner Sistemi 
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1. INTRODUCTION 

Gröbner basis theory was introduced in (Buchberger, 1965). The theory 

allows calculations in multivariate polynomial systems. Gröbner basis can also be 

considered as a generalization of Gaussian elimination of the linear systems to the 

polynomial systems. Hence they can be used anywhere where some polynomial 

system of equations appear. The basic theory can be found in Cox et al (2007) along 

with a lot of applications.  

 

One of the area that Gröbner bases can be used is the robotics. Because the 

kinematics of robots with prismatic and revolute joints can be described by 

multivariate polynomial equations. There are two basic kinematics for robots. While 

forward kinematics decides the position and orientation of the robot arm for given 

lengths of prismatic joints and angles of revolute joints, the inverse kinematics 

determines possible lengths and angles from a predetermined goal position of the 

robot arm. Solving the inverse kinematic problem can be a difficult task. The set of 

possible configurations can be described as the set of solutions of a multivariable 

polynomial system. This is where the Gröbner basis theory comes into play. An 

excellent exposition of the subject can be found in (Cox et al, 2007, Chapter 6). 

 

Kendricks (2007) compare two methods for solving the inverse kinematic 

robotics problem. The classical method, uses the Denavit Hartenberg Matrix, and 

Gröbner basis method. As a result, he found that Gröbner Basis Theory is more 

advantageous, and furthermore, more beneficial to the field of mathematics and 

robotics engineering. Recently, Gröbner basis theory has been used frequently in the 

analysis of the movements of various robots, for example see (Abłamowicz, 2010; 

Naderi et al, 2016; Kumar et al, 2017; Husty et al 2019).   

 

In this thesis, we consider a shortcoming of Gröbner basis theory for solving 

the inverse kinematic robotics problem. The trouble is the original Gröbner basis for 

the problem may not be a Gröbner basis under certain configurations of the robot. 

There are two solutions to this problem. The first way is to find all possible 

specializations of system of polynomial equation of the given robot that cause the 
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problem. Another way is to find a comprenhensive Gröbner system of problem. The 

comprehensive Gröbner system is a set of specializations and Gröbner basis under 

this specializations.  The detailed information about comprehensive Gröbner system 

can be found in (Kapur et al, 2013). 

 

We begin by introducing the basics of Gröbner basis theory in Chapter 2. The 

inverse kinematic robotics problem is explained in details with an example in 

Chapter 3. The main goal of the Chapter 4 is to determine which specializations does 

not preserve the Gröbner basis. A method for finding such specializations is 

described.  The outlines of this method is given in by Cox et al (2007) without any 

proof. We fully explain the method with proofs of necessary theorems.  Chapter 5 is 

devoted to comprehensive Gröbner bases. We try to explain how comprehensive 

Gröbner basis can be used for solving specialization problem. A brief conclusion 

follows comparing two methods given in Chapter 4 and Chapter 5.  
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2. GRÖBNER BASIS THEORY 

In this chapter, the basic concepts of Gröbner basis theory which are needed 

for solving the inverse kinematic problems are given.  

2.1 Monomial Ordering  

Let   be a field. The division algorithm in  , - is a well-known process. In 

order to generalize this division algorithm into multivariable polynomial ring 

 ,          -  we have to define an ordering on monomials. 

Definition 2.1.1.  

 A monomial ordering is a total order relation   on the set of monomials 

  
    

     
   in  ,       - such that  

1)   is compatible with multiplication. 

2)   is a well-ordering. That means every non-empty set of monomials 

has smallest element under  . 

Definition 2.1.2 (Lexicographic Order)  

Let      
    

     
   and      

    
     

   be two monomials. We say 

that           if the first non-zero       is positive            

Definition 2.1.3 (Graded (Degree) Reverse Lexicographic Order) 

Let      
    

     
   and      

    
     

   be two monomials. We say 

that               

1) If                          or  
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2) If                       then the last non-zero 

      is negative for             

Definition 2.1.4 (Graded (Degree) Lexicographic Order) 

Let      
    

     
   and      

    
     

   be two monomials. We say 

that               

1) If                         or 

2)  If                        and             

Definition 2.1.5.    

Let   ∑       be a non-zero polynomial and let   be a monomial order 

 The multidegree of   is  

Multidegree ( )     *       + 

 The leading coefficient of   is 

  ( )              ( ) 

  The leading monomial of   is 

  ( )              ( ) 

 The leading term of   is 

  ( )    ( )   ( ) 

Example 2.1.6.  

 Let  (     )                        with respect to lex order, 

we would have,  

 (     )                        , 

   ( )       , 

   ( )    , 

   ( )           
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            ( )  (     )  

 

and with respect to grlex order, we would have,  

 (     )                        , 

   ( )         

   ( )    , 

   ( )           

            ( )  (     ) 

 

And finally, with respect to grevlex order, we would have,  

 (     )                       , 

 

   ( )      , 

   ( )     

   ( )         

            ( )  (     ). 

2.2 Division Algorithm 

Fix a monomial order   on   ,       -  and let   (          )  be an 

ordered  -tuple of polynomials. Then every     ,       -  can be written as 

                     where       ,       -  and either     or no 

term of    is divisible by   (  )   (  )     (  )   

Furthermore            ( )             (    ) . The polynomials   , 

   ,       -  can be found by using the following algorithm. 

Input              

Output              

                               

    

 While  

      Do 
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 divisionoccured   false 

 While          divisionoccured   false 

  If    (  ) divides   ( ) then  

       
  ( )

  (  )
 

     
  ( )

  (  )
     

 divisionoccured   true 

 Else  

       

 If divisionoccured   false then  

      ( ) 

      ( )  

Example 2.2.1. 

Let                         and          By using 

lexicographic order we will apply division algorithm. Hence   ( )          

  (  )     and   (  )      Since  
  ( )

  (  )
   we redefine   as                            

 

                 . 

 

Now   ( )     is not divisible by   (  ), but divisible by   (  ) so we 

continue with 
  ( )

  (  )
    we redefine   as                

 

Now   ( )    is divisible neither   (  ) nor   (  ). Therefore, we move 

  to the remainder and continue by           

 

Then   ( ) is divisible by   (  ) so we continue with 
  ( )

  (  )
 and              

 

            

Since   is not divisible by   (  ) and   (  ), the remainder is       Hence  
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  (   )            

 

Even if we use same monomial order the remainder depends on order of 

division. In other words remainder is not unique. In our example if we divide   first 

by    remainder is 0. 

 

We have to find a special generating set for the ideal              so that 

the remainder with respect to this set is unique. This generating set is called Gröbner 

Basis which is defined in the next section. 

2.3 Gröbner Basis 

Definition 2.3.1.  

Let    ,       -  be an ideal. Fix a monomial ordering in *          + 

is called Gröbner basis for   if  

 

   (  )     (  )        ( )       

 

Now, we give two important properties of Gröbner basis. 

Proposition 2.3.2. (Adams W W and Loustaunau P (1994)) 

If  *          +  is a Gröbner basis for an ideal    ,       - , then 

             

Theorem 2.3.3. (Adams W W and Loustaunau P (1994)) 

Let   *          +  be a Gröbner basis for an ideal    ,       -   If 

   ,       -  then the remainder of   upon division by   is unique. 
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The next step is to give a criterion for a Gröbner basis. First, we have to 

define a special polynomial which is called as               

Definition 2.3.4 ( -polynomial).   

Let        ,       -.  

 If             ( )     and            ( )   , then                   

  (       ,  ) where       *     +  We call    the least 

common multiple of   ( ) and   ( ) written 

 

      (  ( )   ( ))  

 

 The  -polynomial of         is  

 

 (   )  
  

  ( )
  

  

  ( )
  

Theorem 2.3.5 (Buchberger’s Criterion). (Adams W W and Loustaunau 

P (1994),Theorem 1.6.7)   

Suppose   *          +  is a generating set for an ideal    Then   is a 

Gröbner basis of I if and only if for all           the remainder of   (     ) 

upon division by   is zero.  

2.4 Buchberger Algorithm  

Buchberger’s criterion suggests the following algorithm for finding a Gröbner 

basis of an ideal from a given generating set of this ideal. 
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Theorem 2.4.1 (Buchberger’s Algorithm).  

Let   *          +   ,       - and   be the ideal generated by    

Compute an               (     ) for     and divide it by  . If remainder is 

not zero, then enlarge   by the remainder. Repeat this process until all of the 

remainders of the               zero. The result is a Gröbner basis for  . 

 

Using the ascending chain condition of ideals in  ,       -, one can show 

that this algorithm terminates after finitely many steps.  

 Definition 2.4.2.  

A Gröbner basis   of an ideal is called minimal if for each   

 

      ( )    ( )             * +  

 

A minimal Gröbner basis   is called reduced if for each    , no term of   

is divisible by   ( ) for all     * +  

 

A minimal Gröbner basis can be obtained from a Gröbner basis by simply 

keeping only one of the polynomials with same leading monomial and dropping 

other from the bases. 

 

A reduced Gröbner basis can be obtained from a minimal Gröbner basis by 

dividing each polynomial in the basis by other polynomials of the basis and replacing 

original polynomial by the remainder.  

Example 2.4.3. 

We find a Gröbner basis for               ,     - with respect to 

deglex with        
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Let          and           ,     -   

 

Compute                

 

 (     )                       

 (     )                          

 

Remainder is zero so  (     ) do not produce a new element.  

 

 (     )                    

 (     )                      (       )      

 

Remainder is zero so  (     ) do not produce a new element. 

 

 (     )                                  

 

Remainder is zero so  (     ) do not produce a new element. 

 

 (     )                             

 

Remainder is zero so  (     ) do not produce a new element. 

 

Hence,   *            +  *                        +  is a 

Gröbner basis. 

2.5 Applications of Gröbner Basis 

 Definition 2.5.1.  

  Let   be a field , and let         be polynomials in  ,       -  Then we 

set  
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 (       )  *(       )       (       )                 +  

 

We call  (       ) as the affine variety defined by            

 

In other words the variety of a set of polynomials is in fact the solution set of 

the corresponding system of polynomial equations. A Gröbner basis for an ideal of a 

system of polynomial equations lex order simplifies system considerably. 

Example 2.5.2.   

Let solve the system of polynomial equations; 

 

         

         

         

Consider the ideal; 

 

                               

 

We compute the Gröbner basis   for   with respect to the lexicographic ordering 

     . We get; 

 

  *                                           + 

 

Notice that the last polynomial    involves only variable z, so we start from   : 

 

                (   ) (       )    

 

this equation gives z values : 
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      √  

 

      √  

 

By replacing each z values in equations, we get all possible solutions of the system 

as below: 

                    

 

                    

 

                    

 

     √          √           √  

 

     √          √           √  

 Definition 2.5.3.   

Given              ,       -  the     elimination ideal    is the 

ideal of  ,         - defined by  

 

       ,         -  

Theorem 2.5.4. (The Elimination Theorem) (Cox D, Little J, O'Shea D 

(2007), Theorem 3.1.2)  

Let    ,       -  be an ideal and let   be a Gröbner basis of   with 

respect to lex order where             Then, for every        the set 

      ,         - is a  Gröbner basis of the     elimination ideal     
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Theorem 2.5.5. (Cox D, Little J, O'Shea D (2007), Theorem4. 3.11.)  

Let     be ideals in  ,       -  Then  

 

    (   (   ) )   ,       -  

 

The above two theorems give to the following  method for computing 

intersections of ideals:  If   〈       〉  and   〈       〉  are two ideals in 

 ,     -, then consider the ideal  

 

〈          (   )     (   )  〉 

 

and compute the Gröbner basis relative to lex order where     . Then polynomials 

not involving the variable   form basis for the intersection.  

Definition 2.5.6.   

If     be ideals in  ,       -  then     is the set 

 

*    ,       -                 + 

 

and is called the ideal quotient (or colon ideal ) of         

Proposition 2.5.7. (Cox D, Little J, O’Shea D (2007), Proposition 4.4.10) 

Let                 be ideals in  ,       - for        Then 

 

  (∑  

 

   

)  ⋂(    )
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 Theorem 2.5.8. (Cox D, Little J, O'Shea D (2007), Theorem 4.4.11)   

Let   be an ideal and   an element of   ,       -. If *       + is a basis 

of the ideal   〈 〉  then *   ⁄       ⁄ + is a basis of   〈 〉  

 

Hence a method for computing ideal quotient can be given as follows: Given 

  〈       〉  and   〈       〉  are two ideals in  ,     - , first for each    

compute a generating set for   〈  〉 and then compute a basis for the intersection of 

these generating sets as explained above.   
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3.  ROBOTICS 

3.1 Geometric Description of Robots  

We restrict ourselves the robots constructed by rigid segments which are 

connected by joints in series. One end of our robot will be fixed and the other end 

will have a hand. In general, this hand has a mechanism for grasping objects or for 

performing some task. Hence, the main goal for a robotic problem is to obtain the 

position and orientation of the hand. 

 

Many actual robots are constructed using  

 Planar revolute joints, and  

 Prismatic joints. 

 

A planar revolute joint permits a rotation of one segment relative to another. 

We will assume that both of the segments in question lie in one plane and all motions 

of the joint will leave the two segments in that plane. 

 

 

 Figure 3.1. Revolute Joint 
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A prismatic joint permits one segment of a robot to move by sliding or 

translation along an axis. The following sketch shows a schematic view of a 

prismatic joint between two segments of a robot lying in a plane. Such a joint permits 

translational motion along a line in the plane. 

 

 

Figure 3.2. Prismatic Joint 

Example 3.1.1.  

Consider the following planar robot        with three revolute joints and 

one prismatic joint. All motions of the robot take place in the plane of the paper. 

 

 

Figure 3.3. Planar Robot “Arm” with Three Revolute Joints and One 

Prismatic Joint 
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Suppose that a robot has joint             The cartesian product 

 

             

 

is called joint  space of the robot. 

 

We can represent patch position of the hand by the point (     ) in    and 

the orientation of the hand by a unit vector  ⃗  in   . 

 

 

Figure 3.4. Hand Configuration 
 

Let      be the set of all possible points where the hand of the robot can 

be placed and let   be the set of the all possible unit vectors of orientation of the 

hand of the robot. The cartesian product       is called the configuration space 

of the hand of the robot. 

 

Hence we can define the following function  

 

        

 

In terms of this function there are two types of problem in robotics. First one 

is forward kinematic problem. In this problem we have explicit description of in 

terms of joint settings. In other words, coordinates on   are given. We try to find 

coordinates in    The second problem is inverse kinematic problem. In this problem 

we know the position and the orientation of the hand and try to find positions of 
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joints. More precisely, given      we must find    ( )     In real world, we 

generally need solutions of inverse kinematic problem.  

3.2 The Inverse Kinematic Problem   

We try to explain this problem with an example. Consider the following robot 

in    

 
Figure 3.5. Three Arms and Three Degrees Robot Manipulator 

 

There are three segments which are always located in the same vertical plane 

of     As usual the first segment is anchored. Hence we replace origin of the 

coordinate system at the end of the first segment. For simplicity, we do not care 

about the orientation of the hand. We only consider the position of the hand. The 

angle    rotates with respect to the axis perpendicular to the ground and determines a 

vertical plane where the rest of the robot is going to move. Furthermore,     

(respectively,   ) is the counter clockwise angle between the first two segments 

(respectively, the last two segments). 

 

Suppose that  (     ) is the position of the hand. It is easy to verify that 

      (  )(     (  )       (  ))  

     (  ) (     (  )       (  ))  

       (  )       (  )  
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First of all, we need to find an equivalent system of polynomial equations. 

Let          and          for          Hence the above system of equation 

becomes: 

     (         )  

(I)     (         )  

            . 

 

We also need to add  

  
    

     

(II)   
    

         

  
    

    

to the system. 

 

To solve this system, we compute the reduced Gröbner basis of the ideal  

 

      (         )      (         )               
    

    

  
    

      
    

      (           ),           - 

 

using lexicographic order with respect to                  .  

 

The solution with Buchberger’s Algorithm is as follows: 

   

Let us order the terms of the   ’s ; 

 

                   

                    

                

     
    

    

     
    

    

     
    

    

 

Let   *                 +  Now we can apply Buchberger’s algorithm to F. 

 (     )                     
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Both term of           are not divisible by F.  Hence we let             and  

    *  + 

Clearly  (     ) has zero remainder upon division by F . Let us continue  

 

 (     )                     
             

      

 

Applying division algorithm  

       
             

                  
 

 
             

     

 
     

 

Let                 (     )   and     *  +. 

 

Then  (     ),  (     )  (     )  (     )  (     )  (     )  (     )   and  

 (     ) produce zero remainders upon division by F. 

 

 (     )                    
      

  

 

Let    (     )  
     and     *  + 

 

 (     )                            

 

Applying division algorithm, 

     

 
     

 

 
   

 

Remainder is zero so  (     ) do not produce a new element. 

 

           (     )  (     )              

                
          

             

                                         

 

The last equality follows from the division algorithm.  

 

 (     )                  
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Applying division algorithm, 

 

     

   
   (

 

  
 

    

  
)    

  
 

  
   (

  

 
 

    

   
)    

     ( 
        )

   

 
            

    
 

  
 

      

  
 

 

Let                   ( 
        )   (            

    
 ) and  

 

    *   + 

 

 (     )                 
        

 

Applying division algorithm, 

      
         

   

 
   

 

 
     

 

Remainder is zero, so  (     ) do not produce a new element. 

 

         (      )               

             
                                

                
       

    

 

Applying division algorithm, 

 

  
 (     

       
 )

     
   (

(      )    

  
 

              
     

 

     
)   

 
   

 (                )

 

 
     ( 

                         
      

      
      

 )

 

 
 

    
(                                    

       
        

 

    
        

       
        

      
   

     
 ) 
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Let        
 (      

       
        

 )         ( 
                

         
      

      
      

 )                            

          
       

        
     

        
       

        
      

   
  

   
  

 

One can show that the remaining S-polynomials has zero reaminders upon 

division by F. Hence   *                                  + is a Gröbner basis. 

After applying minimalization process as explained in Sectin 2.4, 

  *                   + 

is a minimal Gröbner basis. Then applying reduction process as explained in Section 

2.4, the following polynomials form a reduced Gröbner basis: 

      
  

  

     
  

                  
 

 
      

(   )               
      (

     

   
 

(     )(  
    

 )

   (        )
)  

(     ) 

   
 (        )

 
  (          )

   
 (        )

 
 

 
 

  
 

 (        )
 

  
 

   
 

 
  
 (   

    
 )

   
 (        )

  

      
(     )

   
     

(        )

      
 

(  
    

 )

      
  

      
  

  
    

(     )

    
    

      
  ( 

    )

      
      

           
    

 

      
   

 

 Notice that from     ,    can be solved as a function of   and  . Then 

replacing this result into     ,    can be obtained as a function of   and    and so 

on. Hence from the above reduced Gröbner basis,                and    can easily 

solved in terms of free variables            and   .  

 

 On the other hand, in practice, we give some certain values to these variables. 

The replacement of variables is called specialization. Next, we will examine how a 
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Gröbner basis change under specialization. In other words, we take a specialization 

of the variables             and write corresponding ideal. Then we compute the 

reduced Gröbner basis of this ideal using same order as above. Finally, we check 

whether this new Gröbner basis is same as Gröbner basis given in (   )  

 

Let       1. The ideal becomes; 

 

<         (         )         (         )                   

  
    

         
    

          
    

    > 

 

If we compute the Gröebner Basis of the ideal, then we get : 

 

*       (     )  
                                     

                 (                              )     

(                    )  
                (          )     

          (     )                           (      

    )            } 

 

If we replace L2 = L3 =1 in (   ) then we obtain same result. (   ) remains Gröbner 

basis under this specialization . Using the Gröbner basis, the set of solutions for this 

specialization is the followings:   

Solution (1) 

   
 

√     
 

 

    
 

√     
 

 

   
             (      ) √ (     )  (        (     )    (     )    (        ))

 √     (        )
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             √ (     )  (        (     )    (     )    (        ))

  (        )
  

 

   
             (      ) √ (     )  (        (     )    (     )    (        )))

 √     (        )
  

 

   
             √ (     )  (        (     )    (     )    (        ))

  (        )
  

Solution (2) 

    
 

√     
 

 

   
 

√     
 

 

   
              (      ) √ (     )  (        (     )    (     )    (        )))

 √     (        )
  

 

   
             √ (     )  (        (     )    (     )    (        ))

  (        )
  

 

   
              (      ) √ (     )  (        (     )    (     )    (        ))

 √     (        )
  

 

   
             √ (     )  (        (     )    (     )    (        ))

  (        )
  

 

Solution (3) 

    
 

√     
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√     
 

 

   
              (      ) √ (     )  (        (     )    (     )    (        )))

 √     (        )
  

 

   
             √ (     )  (        (     )    (     )    (        ))

  (        )
  

 

   
              (      ) √ (     )  (        (     )    (     )    (        ))

 √     (        )
   

 

   
             √ (     )  (        (     )    (     )    (        ))

  (        )
  

 

Solution (4) 

   
 

√     
 

 

    
 

√     
 

 

   
             (      ) √ (     )  (        (     )    (     )    (        ))

 √     (        )
  

 

   
             √ (     )  (        (     )    (     )    (        ))

  (        )
  

 

   
             (      ) √ (     )  (        (     )    (     )    (        )))

 √     (        )
  

 

   
             √ (     )  (        (     )    (     )    (        ))

  (        )
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Let         and    , but there is an algebraic problem since some 

denominators in (   ) vanish at    . So (III) can not be a Gröbner basis for this 

specialization. In such a situation we must substitute     and         into our 

ideal and then recompute the Gröbner basis. Under this specialization the new basis 

is 

 

*               
                     (       )  

  (    

    )                                                 

              +  

 

By using this Gröbner basis, we find the possible solutions. 

Solution (1) 

     

 

      

 

   
       √                       

 (     )
 

 

   
         √   (                    )

        
 

 

   
       √   (     (     )     (     ))

 (     )
 

 

   
         √   (                    )
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Solution (2) 

     

 

      

 

   
       √                       

 (     )
 

 

   
         √   (                    )

        
 

 

   
       √   (     (     )     (     ))

 (     )
 

 

   
         √   (                    )

        
 

Solution (3) 

     

 

     

 

   
        √                       

 (     )
 

 

   
         √   (                    )

        
 

 

    
       √   (     (     )     (     ))

 (     )
 

 

   
         √   (                    )
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Solution (4) 

     

 

     

 

   
        √                       

 (     )
 

 

   
         √   (                    )

        
 

 

    
       √   (     (     )     (     ))

 (     )
 

 

   
         √   (                    )

        
 

 

  As we can see from above example, for a specialization that makes some 

denominators zero the original Gröbner basis is no longer a Gröbner basis. In the 

next chapter we try to find all specializations which causes this phenomenon. 
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4. GRÖBNER BASIS UNDER SPECIALIZATION 

As the example from previous chapter shows that one can expect problems 

when a specialization causes any of the denominators in Gröbner basis to vanish. 

However, vanishings of denominators are not the only specializations that create the 

problem.  In this chapter, the question that we try to answer is how to determine 

which specializations apart from vanishings of denominators are the bad ones. 

 

The outlines of ideas given in this section suggested by (Cox et al, 2007, 

Chapter 6). However, they did not give any proof. We detailed their suggestions and 

prove the claims. 

Lemma 4.1.   

Let                    (       ),       - such that each    is monic 

polynomial. Furthermore, suppose that *          + is the reduced Gröbner basis 

under a choosen order. Finally, let  (          )  (          )     be a 

specialization of the parameters for which the denominators of neither the      nor 

     vanish at (          )   

 

(i) There exist polynomials      (       ),       -  such that 

   ∑       
 
   , (     )  Furthermore, none of the denominators of     

vanish at (          )  

 

(ii) If there are polynomials      (       ),       -  such that 

   ∑       
 
   , (     )  and none of the denominators of     vanish at 

(          )  then *  (       )   (       )     (       )+  is a Gröbner 

basis for 〈  (       )   (       )     (       )〉   
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Proof.  

(i) Since *          + is a Gröbner basis for   and       clearly there 

are         polynomials       (       ),       - such that                

   ∑       
 
   , (     )  

 

These polynomials occur during the division process of    by 

*       +  Since *          +  is the reduced Gröbner basis,      are monic 

polynomials. Hence the set of denominators of       are equal to the set of 

denominators of   
   and this implies denominators of       do not vanish at  

(          )  

(ii) Since none of the denominators of       vanish at (          )  

  (       )  ∑    
 
   (       )  (       )         So                    

〈  (       )     (       )〉  〈  (       )     (       )〉   

 

Similarly    (       )  ∑    
 
   (       )  (       )        and 

〈  (       )     (       )〉  〈  (       )     (       )〉  Now we 

have to show that   ̅  *(       )     (       )+  is a Gröbner basis for 

 ̅  〈  (       )     (       )〉   ,       -    

  

Consider  (     )  in  (       ),       -  Since   *       +  is a 

Gröbner basis, the division of  (     )  by   produce a zero remainder. By 

construction of  (     ) , none of the  denominators of  (     )  vanish at 

(       )   Since all      are monic polynomials we will not get any denominator 

vanishing at (       )  Hence the division of  (  (       )   (       )) by 

 ̅ produce a zero divisor. By Buchberger’s algorithm,  ̅ is a Gröbner basis.   

 

The following is an easy consequence of the above lemma. 
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            Corollary 4.2.   

Let          ,       -  be all denominators which appear among 

       and    , and let    (        )      Then *       +is a Gröbner 

basis for           under all specializations 

(       )  (       )        

 

The next goal is to find the variety  . The problem is that the polynomial’s 

   
   can not be obtained by division algorithm since *       + is not a Gröbner 

basis. Because of this, we try to find a method to obtain   without computing    
    

Lemma 4.3.   

Multiplying each    and    by appropriate polynomials in  ,       -  we 

obtain  ̃  ,  ̃    ,               -.  

 

Let  ̃  〈  ̃   ̃     ̃〉   ,               -  

 

If    ,       - is polynomial which clears all denominators for the     the 

    and the      , then 

  ( ̃   ̃ )   ,       -  

Proof . 

Clearly  

  ̃   ∑   

 

   

 ̃  ∑ 

 

   

       

 

Since   clears all denominators for the     the     and the      ,  

  ̃   〈 ̃   ̃     ̃ 〉  

 



32 

 

Hence     ̃  ̃    

 

The assertation easily follows since    ,       -.   

 

Now we came the main result of this section.  

Theorem 4.4. 

   [⋂( ̃ 〈 ̃ 〉)   ,       -

 

   

]  

Proof . 

Let           be the product of all denominator of the     the    and the 

   
    Clearly   [⋂ ( ̃  ̃ )

 
   ]   ,       - by the above lemma. 

 

On the other hand if   [⋂ ( ̃ 〈 ̃ 〉)
 
   ]   ,       -  then   

 ,       - and   ̃  ∑   
       ̃   ̃   ,               -  

 

This implies   clear all denominators             That means for each    

there is     ,               -  such that         Therefore            

and so         

 

Hence      [⋂ ( ̃ 〈 ̃ 〉)
 
   ]   ,       -  which implies   

 ( )     ([⋂( ̃ 〈  〉)

 

   

]   ,       -)    

 

Using Gröbner basis theory, the ideal [⋂ ( ̃   )
 
   ]   ,       -  can be 

computed. Hence specializations other than which makes denominators zero are 

obtained unless the ideal is whole polynomial ring. In this case, we say that 
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specializations which makes some of the denominators zero are only specializations 

for which the new Gröbner basis is not same as original Gröbner basis.  

 

Let us apply this process to our example. Hence  

 

 ̃  〈                 〉 

 

where  

 

   (     )  
     

           

   (                                         
       

 

        
         

 )     (       
       

        
 )  

 

                                     
       

 

       
     

  

                 
      (            )     

          

   (     )               

                 
      (            )     

          

  

 The computations of the colon ideals and the intersection of ideals explained 

in Chapter 2. Because of this here we only give the results of the computations 

without details.  

  

Therefore  ̃  〈  〉     for       and  ̃  〈  〉   ,             - . Hence 

(⋂ ( ̃ 〈  〉)
 
   )   ,                       -   ,            - which implies 

   (⋂( ̃   )

 

   

  ,                       -)     

 

This means that for this example there is no need to consider other 

specializations except for which makes denominators zero.  
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Let us finish this chapter with an example to show that a specialization which 

does not cause any of the denominators in Gröbner basis to vanish can be still a bad 

one.  

Consider the ideal   〈         〉   ( ),   -  It is easy to show that 

  *   +  is a Gröbner basis with respect to lex order. Notice that there is no 

denominators in either of the bases. On the other hand,  

 

  〈 〉    〈 〉  〈       〉  

 

Since (  〈 〉    〈 〉)   , -     , the specialization     cause the problem. In 

fact, if we put     in the original ideal, it becomes   〈   〉 which clearly have 

a different solution set. 
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5. COMPREHENSIVE GRÖBNER SYSTEM  

The concept of comprehensive Gröbner basis was developed for finding 

solutions of parameterized polynomial systems. For a parametric polynomial ideal, a 

basis is called comprehensive Gröbner basis if for every specialization of its 

parameters, the specialization of the basis is a Gröbner basis of the associated 

specialized polynomial ideal. In many engineering problems such as inverse 

kinematics problem only set of specialization of parameters and corresponding 

Gröbner bases are needed. The basis of the original parametric ideal is unnecessary 

in most cases. This leads us to the concept of comprehensive Gröbner system. The 

difficulty of computing a comprehensive Gröbner basis of a parametric ideal is that 

all the polynomials in this comprehensive Gröbner basis should be belong to the 

ideal, while the polynomials in a comprehensive Gröbner system does not 

necessarily have to be belong to ideal. Hence we only study the comprehensive 

Gröbner systems in this chapter. Kapur et al (2013) gave an efficient method for 

computing comprehensive Gröbner bases and systems. We have just examined in 

details the algorithm for computing comprehensive Gröbner system from this article. 

 

Let   be an algebraically closed field and    ,       - . Consider the 

polynomial ring  ,          - . Here we assume that   ’s and      are distinct 

variables. While working on  ,               -  we use a block monomial 

order   that       for       and      . On the other hand, if we consider 

the monomials on  ,       - , then we restrict the monomial order   to 

*       +  

 

A specialization of   is a homomorphism        In this section, we only 

consider the specializations induced by elements in   . More precisely for any 

  (       )     we define        by    ( )  Notice that we can extend 

   to   ̅    ,       -    ,       - by applying    coefficientwise. 
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Definition 5.1  

Let   be a subset of  ,          - and            be a subset of    such 

that              . A finite set    *(     ) (     )   (     )+  is 

called a comprehensive Gröbner system for     if    ̅(  ) is a Gröbner basis for 

the ideal    ̅( )     ,       -  for any      and      . Each (     ) is 

called a branch of  . 

 

Since we will work on  ,          - where   is not a field but a ring, we 

have to redefine  - polynomial and a reduction step in division algorithm. The 

detailed information about Gröbner bases over a ring can be found in (Adams and 

Loustaunau, 1994, Chapter 4). 

Definition 5.2  

Let p    ,          - . 

(i) The  -polynomial of   and   is defined as 

 (   )  
  ( )  

  ( )
  

  ( )  

  ( )
               (  ( )   ( ))  

(ii) If    ( ) divides   ( ), then the reduction of   with respect to   is 

defined as 

  ( )    ( )
  ( )

  ( )
   

 Example 5.3 

Let             
        

        
      ,     -,     -  Suppose 

that we use a block order   with *     +  *     +  and within block use 

lexicographic order. Hence 

 

   ( )          ( )       ( )    
    ( )        Hence  
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 (   )  
  
     

  

(        
   )  

       

    

(  
        

   ) 

 

 (   )    
   

       
     

 

Furthermore, the reduction of   with respect to   is  

 

     (  
        

   )    
 
    

  

(          
   )       

    
   

   

 

Now, we try to give an algorithm for computing a comprehensive Gröbner 

system, but first we need some results. The following theorem and its corollaries are 

modified versions of the corresponding theorem and corollaries in Kapur et al (2013) 

accordance with our purposes. 

 Theorem 5.4.  (Kapur et al (2013), Theorem 4.1)  

Given a Gröbner basis   for an ideal        ,       - with respect to a 

monomial order    and a specialization         let  

 

   {   |  (  ( ))   }   

 

Then   (  )  * ( )      + is a Gröbner basis for    ( )   in  ,       -  

 

The following corollaries are usefull to define the algorithm for a 

comprehensive Gröbner system. 

Corollary  5.5.  (Kapur et al (2013), Corollary 4.4)     

Let   be a Gröbner basis for the ideal       ,       - ,       and 

   *  ( )      +. Furthermore, suppose that          such that  
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   (  )       (    )   and    (  )  is minimal set of monomials. If  

      is specialization such that  

 

(i)  ( )    for      and  

 

(ii)  ( )     where   ∏   ( )    
  

then  (  ) is Gröbner basis for   ( )    

  

If we select       ,       -  then       we get. 

Corollary 5.6. (Kapur et al (2013), Corollary 4.5) Let   be a Gröbner basis for the 

ideal        ,       -  ,       ,       - . Furthermore, suppose that    

    
⁄  such that    (  )       (    )   and   (  )  is minimal set of 

monomials. If        is specialization such that  

(i)  ( )    for      and  

 

(ii)  ( )     where   ∏   ( )    
  

then  (  ) is Gröbner basis for   ( )    That means    in fact a Gröbner basis 

for     on the set   (  )    ( )  

  

Now, we will give an algorithm for computing a comprehensive Gröbner 

system. Kapur et al (2013) gave several algorithms for computing comprehensive 

Gröbner basis and comprehensive Gröbner systems in different settings. The 

following algorithm is extracted from these algorithms, to compute a comprehensive 

Gröbner system accordance with our purposes. 

Algorithm 5.6 

Input:    ,       -,       - 

Output: A comprehensive Gröbner system for     

               

While     



39 

 

   Gröbner Basis of     

       (   ,       -)    

IF   ( )    (  )    THEN  

               ( )    (  )        

END IF 

     Minimal Basis (    )  

     (  (  )) 

               (  )   ( )        

     * + 

        

END WHILE  

 

Let us apply the algorithm to an example. 

Example 5.7   

Let   *                     +   ,     -,   -  We define 

block order *     +  *   +  within each block graded reverse lexicographic order 

is used. 

Step 1 : 

 

                 

  *                                      

                                      + 

   *                                + 

 ( )  (  )                  (  )     

     *                                           + 

   *           + 

     *   +    

             (  )  ( )     

  {                                    }  *          + 

  *                  + 
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Step 2 : 

 

  *                   + 

   *   + 

 ( )  (  )     Now new branch for Gröbner system. 

     *                 + 

   *           +  

     *   +    

             (   )  ( )     

  *             +  *     + 

  *          + 

 

Step 3: 

 

  *      + 

   *     + 

 ( )  (  )     Now new branch 

   *   + 

    

             (     ) 

 

Since    , algorithm determinates. Hence, we obtain a comprehensive 

Gröbner system for 〈 〉 as follows:  

{
  
 

  
 *                                 +

    (              

                   ) 

*           +
 (                      

           )  ( ) 

*           +                                          (   )  ( ) 
*   +                                   (     ) 

 

 

When we apply this algorithm to our inverse kinematics problem, we get  
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  *(     )  
                  

             
    

          

                        
       

       
    

 

   
 (     

       
       

 )       
       

       
     

   
 

   
      (                         

        
 )

   (                 
        

 )            

            
    

                   
              

   
    

 (                 )      
      (         

          
      

 )    (             
      

 )  

 (                  
 )               

            

          (        
    

 )                  
   

            (            
    

 )        
    

      

                                         

                              (           
 )      

                                                 

                                                

                                           

                                               

                    
    

 + 
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The Gröbner basis contains 19 polynomials which is much more than our 

original Gröbner basis of 6 polynomials. There is no polynomial involving only 

parameters. So        Therefore 

   *(     )  
             (     

       
       

 )  
 

 (                         
        

 )    

 (                 
        

 )                

                     
       

       
    

       
 

      
       

     
   

    
                          

            
    

                             

  + 

 Then we found     (     )(        )  
    which is the product of 

denominators of the our original Gröbner basis as we expected. It seems that 

comprehensive Gröbner system is not useful for the problems in which only bad 

specializations are the ones that some denominators in Gröbner basis to vanish.    
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6. CONCLUSION 

We have demonstrated that Gröbner Basis Theory is a good alternative 

method for solving the inverse kinematics problems. We examine two methods for 

specializations of parameters in Gröbner basis of the inverse kinematics problems. In 

the first method some extra colon ideal computations have to be done for finding 

specializations. After finding these specializations a new Gröbner basis computations 

is needed for them. Then, we have to do some colon ideal computations for these 

new Gröbner basis again. The process continues in this way. On the other hand, 

specializations and associated Gröbner bases are automatically founded during the 

computation of the comprehensive Gröbner system. There is no need for extra colon 

ideal computations. However, the calculations in comprehensive Gröbner system are 

made in a ring not in a field. It means that we have to compute Gröbner bases in 

more variables. This may cause problems because the Gröbner basis computation is 

very sensitive to the number of variables. The size of the Gröbner basis may increase 

dramatically when the number of variables increases. Therefore, if the number of 

specializations are relatively less, the first method is recommended. If, on the other 

hand, the number of specializations is excessive, the computation of a comprehensive 

Gröbner system should be preferred.  
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