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ABSTRACT

QCD SUM RULES FOR THE MASS, RESIDUE AND SELF-ENEGRY OF
NUCLEON IN COLD NUCLEAR MATTER

M.S. THESIS
MEHMET ARAT,

BOLU ABANT İZZET BAYSAL UNIVERSITY GRADUATE SCHOOL OF
NATURAL AND APPLIED SCIENCES

DEPARTMENT OF PHYSICS
(SUPERVISOR : ASSOC. PROF. DR. NURAY ER)

BOLU, JULY 2019

In this thesis, the mass, residue and self-energies of the nucleon in cold nuclear medium
are calculated in the framework of the QCD sum rules method by using the interpolating
current of the nucleon, including the Ioffe value of the mixing parameter β. Firstly, the
reliable regions of the auxiliary parameters required for the calculations are determined in
accordance with the philosophy of this method. Then, we present these physical quanti-
ties showing stability with respect to these auxiliary parameters in their obtained working
regions.

In the limit of ρ→ 0, we obtain our vacuum results. It is then calculated that the mass
and residue of the nucleon showed negative shifts due to the cold nuclear matter. These
shifts are obtained using the mean values of the auxiliary parameters and at the saturation
nuclear matter density. The negative shifts on the mass is %31 and on the residue is %11. In
addition, in the density interval ρ = [0− 1.5]ρsat, the modified mass and residue of nucleon
show almost linear decrease due to the increasing medium density. Another important result
is obtained that our results for the vector and scalar self-energies of nucleon being a good
agreement with the literature.

It is important to investigate the physical properties of the hadrons in the cold and
dense nuclear medium, as opposed to vacuum, to evaluate the results of heavy ion collision
experiments, and to better understand the internal structures of dense objects such as neutron
stars. Our results may shed light on the planned medium experiments in the near future and
may also be helpful in theoretical and phenomenological studies related to the behavior of
other hadrons in the dense medium.

KEYWORDS: QCD sum rules, non-perturbative approaches, cold nuclear matter
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ÖZET

SOĞUK NÜKLEER MADDE ORTAMINDA NÜKLEONUN KÜTLE, REZİDÜ VE
ÖZ-ENERJİLERİ İÇİN KRD TOPLAM KURALLARI

YÜKSEK LİSANS TEZİ
MEHMET ARAT,

BOLU ABANT İZZET BAYSAL UNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ
FİZİK ANABİLİM DALI

(TEZ DANIŞMANI : DOÇ. DR. NURAY ER)

BOLU, TEMMUZ 2019

Bu tezde, nükleonun ara kesim akımı keyfi karıştırma parametresinin Ioffe değerini de
kapsayacak şekilde kullanılmasıyla, nükleonun nükleer madde ortamında kütle, rezidü ve
öz-enerjileri KRD toplam kuralları çerçevesinde hesaplanmıştır. Öncelikle hesaplar için ge-
rekli olan yardımcı parameterelerin yöntemin uygulanabilme felsefesine uygun olarak güve-
nilir bölgeleri tayin edilmiştir. Daha sonra nükleonun fiziksel büyüklükleri için hesaplanan
sonuçlarının güvenilir bölgeleri için bu parametrelerden bağımsızlığı gösterilmiştir.

Yoğunluğa bağlı nümerik sonuçlarda ρ → 0 limiti alınarak vakum sonuçları elde edil-
miştir. Daha sonra nükleonun kütle ve rezidü değerlerinin soğuk nükleer maddeye göre ne-
gatif kaymalar gösterdiği hesaplanmıştır. Bu kayma miktarları yardımcı parametrelerin gü-
venilir bölgelerindeki ortalama değerleri ve nükleer maddenin doymuş yoğunluğunda kütle
için yaklaşık %31 ve rezidü içinse %11 olarak elde edilmiştir. Ayrıca ortam yoğunluğunun
ρ = [0 − 1.5]ρsat değiştiği aralıkta nükleonun kütlesinin ve rezidüsünün değişiminin de
yaklaşık olarak artan ortam yoğunluğuna bağlı olarak lineer bir azalma gösterdiği de bu-
lunmuştur. Bir diğer önemli sonuç ise nükelonun vektör ve skaler öz-enerjileri için elde
edilmiştir mevcut sonuçlarla uyum içinde olduğu görülmüştür.

Hadronların fiziksel özelliklerinin vakumdan farklı olarak soğuk madde ortamındaki
değişimlerinin incelenmesi, ağır iyon çarpıştırma deneylerinin sonuçlarının değerlendiril-
mesi, ayrıca nötron yıldızları gibi yoğun cisimlerin iç yapılarının daha iyi anlaşılması açı-
sından önemlidir. Bu çalışma sonucunda elde ettiğimiz nükleonun fiziksel özellikleri üze-
rinde ortam yoğunluğunun etki sonuçları, yakın zamanda yapılması planlanan yoğun madde
ortamındaki hadronlarla ilgili deneylere de ışık tutabileceği düşünülmektedir. Ayrıca bu so-
nuçlar farklı hadronların ortamdaki davranışları ile ilgili teorik ya da fenemolojik çalışmalar
açısından da önemlidir.

ANAHTAR KELİMELER: KRD toplam kuralları, pertürbatif olmayan yaklaşımlar, soğuk
madde ortamı
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1. INTRODUCTION

Particle physics investigates the body of physical objects making up matter and ra-

diation, and examines their interaction with each other. In the 19th century, John Dalton

concluded that each chemical element consisted of a single, unique particle type and they

were the elementary particles of nature and named after atoms the Greek word "atomos",

which meant "indivisible". At the end of the 19th century, Dalton’s idea was collapsed by

the discovery of the electron in 1897 by J. J. Thomson, and this discovery is considered

the beginning of particle physics. Today, we know following interactions in nature: Strong,

electromagnetic, weak and gravitational force. But at the beginning of the twentieth cen-

tury, scientists only knew about electromagnetism and gravity, and unfortunately this was

not enough to explain the structure of the atom. After the discovery of proton (p) and neu-

tron (n), physicists thought that physical matter made of electrons, protons, and neutrons.

With the development in particle accelerators in the 1950s and the studies of cosmic rays,

it became feasible to investigate inelastic scattering experiments with hundreds of MeV en-

ergy protons. Later, Murray Gell-Mann and George Zweig Gell-Mann (1964); Zweig (1964)

independently predicted that p and n were composed of substructures called quarks and this

prediction is then called as "the Quark Model" of subatomic particles. There are now over

400 particles, which are in the form of different combinations of several fundamental par-

ticles. The classification of these subatomic particles and investigation of their interactions

provided by a theory called Standard Model (SM) and which provides successful results so

far. It also can successfully explain fundamental forces other than gravitational force known

in nature. This lack of SM’s gravitational force is considered among the major problems of

SM and this has led scientists to seek theories beyond this model.

Hadron consisting of quarks and gluons is the general name of the baryon and meson

families. Quantum chromodynamics (QCD) named as theory of the strong interactions is

a framework in which strong interactions of quarks and gluons are described. To improve

knowledge about the strong interactions of standard hadrons, it is necessary to investigate

the non-perturbative region of QCD well. The QCD sum rule method is an important tool of

obtaining qualitative and quantitive ideas of hadronic physics from QCD inputs Cohen et al.

(1995). The method was developed by Shifman, Vainshtein and Zakharov in the late 1970’s

to investigate the properties of mesons Shifman et al. (1979b,a) and later it was applied to
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baryons by Ioffe Ioffe (1981).

In order to be able to analyze the results obtained from heavy ion collision experiments

such as CERN and BNL with the help of developing accelerator technologies and to better

understand the internal structure of neutron stars, it is necessary to understand the modi-

fied properties of baryons and mesons in dense medium. Collaborations such as FAIR and

CBM will also investigate the in-medium properties of these particles in future experimental

programs. However, in near future the PANDA Collaboration is planning to focus on the

medium effects on the physical properties of charmed hadrons.

In The perspective of theoretical studies, there are plenty of studies investigating modi-

fied properties of hadrons in dense medium Hayashigaki (2000); Drukarev and Levin (1990);

Adami and Brown (1991); Furnstahl et al. (1992); Jin et al. (1993, 1994); Drukarev et al.

(2004); Cohen et al. (1991); Hogaasen (1991); Cohen et al. (1992); Drukarev (2003); Co-

hen et al. (1995); Wang and Huang (2011); Wang (2012, 2011); Jin and Leinweber (1995);

Hatsuda and Lee (1992); Asakawa and Ko (1993); Klingl et al. (1997); Leupold and Mosel

(1998); Hilger et al. (2009); Yasui and Sudoh (2013); Thomas et al. (2007); Mallik and

Sarkar (2009); Ryskin et al. (2015); Hatsuda et al. (1991). In the studies, Cohen, generally

using the Ioffe current in which the mixing parameter having value β = −1, the in-medium

properties of nucleons were investigated. But, in our study, we focus on the physical prop-

erties of nucleon like mass, residue and self energy propagating in dense medium using the

whole interval of the auxiliary parameter −∞ < β <∞.

The outline of of this thesis: in chapter 2 we present the SM, QCD and nucleon in

more detail. Chapter 3 is reserved for the brief discussion of the QCDSR formalism both

in vacuum and in medium applications. Chapter 4 contains our numerical analyzes for the

physical properties of nucleons in cold nuclear medium. Finally, chapter 4 is devoted for the

concluding remark of our study.

2



2. STANDARD MODEL AND NUCLEONS

2.1 Standard Model

The high energy physics or particle physics studies the elementary particles and their inter-

actions between them. Elementary particles are constituents of the matter in the universe.

Many of the elementary particles do not exist under normal conditions. In particle accel-

erators, elementary particles are created and detected by the collisions of high energetic

particles. The Standard Model (SM) of the particle physics is a quantum field theory and in

which all known elementary particles in the universe are classified.

In physics, there are four fundamental interactions which do not reducible to more basic

forms: the gravitational, the electromagnetic, the strong and the weak interaction. The con-

cept of field is used to describe mathematically their interactions. Three of these interactions

except the gravitational interaction are used in the standard model. But the main purpose

of the theoretical physics is to describe all fundamental interactions in a simple and unified

theory.

The classification of the elementary particles and these fundamental interactions in SM are

presented in Figure 1. Fermions are building blocks of the physical matter, have with half-

integer spin. Quarks and leptons are two subgroups of fermions. Quarks carry color charge,

have spin-1/2 and participate in strong interactions. Leptons are colorless, have spin 1/2

spin and interact via electroweak interactions. Quarks and leptons are collected in three

different generations: (u) and (d) quarks with e and νe are in the first generation, (c) and

(s) quarks with µ and νµ are in second generation and (t) and (b) quarks with τ and ντ are

in third generation. Bosons are the force carrier of the interactions, have integer spin and

obey the Bose-Einstein statistics. Gluons which have eight types and force carrier of strong

interaction, photons interacting via electromagnetic interaction and the W , Z bosons as a

force carrier of weak interactions are spin-1 Gauge bosons and Higgs boson has spin-0.

The standard model has been proved with a great accuracy in the predictions of the inter-

actions of quarks and leptons. But the present standard model has some weaknesses. For

example, why there are only three generations of quarks and leptons can not be explained,

for the masses of these particles and the strength of the various interactions it has no predic-
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tions, despite the gluons are massless the model can not explain why the strong interaction

has a limited range. The quarks and gluons are not observed as free particles

2.2 Quantum Chromodynamics (QCD)

QCD is the theory of the strong force colored quarks and gluons. The color is a property

which is analog of electric charge. The QCD is a non-abelian gauge theory, with symmetry

group SU(3). The Lagrangian of QCD is given by

L = −1

4
Ga
µνG

aµν +
∑
q

ψ̄q(iD/−mq)ψq (2.1)

whereGa
µν is the gluon field-strength tensor, ψq are the quark field spinors with q = u, d, c, s, t, b

quark flavor, mq is the quark mass and D/ is the covariant derivative.

The characteristic properties of QCD:

• Asymptotic Freedom: It was discovered by David Gross and Frank Wilczek (work-

ing together) Gross and Wilczek (1973) in 1973 and all three are rewarded Nobel

Prize in Physics in 2004. They found that strong force among quarks and gluons gets

asymptotically weaker as the energy scale or the momentum transfer increases (in the

ranges 100 GeV − TeV ) and the corresponding distances decreases. As a result of

effect, the quarks move almost as a free particles. Due to the asymptotic freedom, at

high energies or short distances, perturbation theories are applicable.

• Color Confinement: Colored quarks can not be isolated which means that the strong

force between them does not decreases as the distance increases. The effective strong

coupling constant becomes larger and hence perturbation theory does not work. As

a result, non-perturbative approaches are used in large distances to describe the non-

perturbative effects.

2.3 Nucleons

Hadron is the general name of baryon and meson. The quarks and gluons are not observed

as free particles. Hadrons are color neutral (i.e. color-singlet) which means that they exit

as combinations of quarks, anti-quarks and gluons. The baryons are heavier particles and

consist of odd numbers of quarks, generally three quarks and the mesons are made of even
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number of quarks, mostly one quark and one anti-quark pair. In the baryon family, a proton

and a neutron has a common name called as nucleon. They are fermion, i.e. half-integer spin

particles, and composite particles which made of up (u) and down (d) quarks together by the

strong interaction. Quark content of the proton is uud and the neutron is udd. The neutron

is about 0.13% heavier than the proton which is the lightest baryon. In nature, although a

free proton is a stable particle, a free neutron is unstable and decay into a proton via β−

radioactive decay in a half life of ten minutes. Understanding the properties of nucleons is

important in this respect that particle physics and nuclear physics overlap at the boundary

where nucleons exist.
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3. QCDSR FORMALISM

QCDSR approach is an useful way to getting valuable information about the properties

of hadrons like mass and residue from QCD parameters. It was formulated and applied to

describe mesonic properties (Shifman et al., 1979b). Then, Ioffe showed how this method

could be used to investigate baryons Ioffe (1981). In the application of the QCDSR method,

hadrons are depicted by their interpolating currents. To derive QCDSR for the properties

of the hadrons, as a starting point the correlation function is mentioned as a function of

these interpolating currents. The main concept in this approach is "duality", that construct a

connection between a characterization in terms of physical or hadronic degrees of freedom

and QCD or operator product expansion (OPE) side based on the quark and gluon degrees

of freedom. There are three main parts in QCD sum rules calculations:

• The correlation function is calculated in terms of QCD degrees of freedom via OPE. In

this side, the short and long distance quark and qluon interactions are dissociated. The

QCD perturbation theory is applied for the calculation of the short term effects and

the long distance interactions or non-perturbative effects are parameterized in terms

of the vacuum or in-medium quark, gluon and mixed condensates.

• In the physical side, the correlation function is obtained in hadronic language by in-

serting a complete set of hadronic state with the same quantum numbers as the inter-

polating current.

• These two descriptions of the approach are matched via dispersion relation and the

sum rules for physical quantities is obtained. The sum rules calculated by this way let

us to calculate the physical quantities of interest.

3.1 Two-point correlation function

To obtain the vacuum sum rules for the mass and residue of the hadrons, the two-point CF

is used as a starting point in the following way:

Π(p2) = i

∫
d4xeip·x〈0|T[J(x)J̄(0)]|0〉, (3.1)
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where p is the four momentum of the hadron, |0〉 is the physical non-perturbative vacuum

state. T is the time ordering operator. J(x) is the interpolating current The interpolating

current of each particle can create the particle of interest from the vacuum with the same

quantum numbers as the interpolating field. The interpolating currents for mesons are:

J(x) = q̄i(x)Γqj(x), (3.2)

and for baryons are

J(x) = εijk

[
qai (x)Γ1q

b
j(x)Γ2q

c
k(x)

]
, (3.3)

where i, j, k represent quark flavors. εijk is Levi-Civita tensor. a, b, c are colors. Γ =

1, γ5, γµ, γ5γµ, σµν are the Dirac matrices. As an example, the interpolating current for the

vector meson is,

JVµ (x) = q̄1(x)γµq2(x), (3.4)

and for the spin-3/2 light (decuplet) baryons is

Jµ = A

{[
qaT1 Cγµq

b
2

]
qc3 +

[
qaT2 Cγµq

b
3

]
qc1 +

[
qaT3 Cγµq

b
1

]
qc2

}
, (3.5)

where A is constant, C is charge operator. T is used for the transposition.

3.2 Phenomenological and QCD sides of the correlation function

In the phenomenological or hadronic side, the correlation function in Eq. (3.1) is cal-

culated in terms of hadronic parameters. The complete set of hadronic state with the same

quantum numbers as the interpolating currents is inserted into the correlation function,

1 = |0〉〈0|+
∑
h

∫
d4ph
(2π)4

2πδ(p2h −m2
h)|h(ph, s)〉〈h(ph, s)|+ higher states, (3.6)

where |h(ph, s)〉 is the hadronic state with momentum ph and spin s and mh is the hadron

mass. After the summation over all hadronic states |h(ph, s)〉, the phenomenological repre-

sentation of the correlation function is

2ImΠ(p2) =
∑
h

∫
〈0|J(0)|h(ph, s)〉〈h(ph, s)|J̄(0)|0〉dτh(2π)4δ(p− ph)

= 2πf 2
hδ(p

2 −m2
h) + 2πρh(p2), (3.7)

where ρh(p2) comes from the higher states and contributions and fh is the leptonic decay

constant for mesons and residue for baryons of the ground state hadron and dτh is the vol-

ume element of the integration. The imaginary part of the correlation function is called

7



as the spectral density, ρh(s) = ImΠ(s)/π. Therefore, the phenomenological side of the

correlation function is

Π(p2) = − f 2
h

p2 −m2
h

+

∫ ∞
sh0

ds
ρh(s)

s− p2
+ subtraction terms, (3.8)

where sh0 is the continuum threshold.

The statement of the OPE for small values of x is that in the correlation function at

different points of space time, the time order product of two currents are expanded:

T[J(x)J̄(0)] =
∑
i

Ci(x
2)Oi, i = 0, 1, 2, ..., (3.9)

where Ci(x2) are Wilson coefficients calculated in QCD perturbative theory and Oi are the

local operators ordered in dimension. The unit operator for i = 0 is the lowest-dimension

operator which contains the perturbative contribution. Since the QCD vacuum is colorless,

there is no colorless operator for the dimensions i = 2, 3. The operators are in higher

dimensions in terms of quark field ψ, gluon field Ga
µν and their mixture are

O3 = ψ̄ψ,

O4 = Ga
µνG

µνa,

O5 = ψ̄σµν
λa

2
Gµνaψ,

Oψ
6 = (ψ̄Γrψ)(ψ̄Γsψ),

OG
6 = fabcG

a
µνG

bν
σ G

cσµ,

..., (3.10)

where λa are the linearly independent, traceless and Hermitian Gell-Mann color matrices,

σµν = 1
2
i[γµ, γν ] are the complex, Hermitian and unitary Pauli matrices in terms of Gamma

matrices. The Γr,s represents the different combinations of Lorentz and color matrices. In

terms of OPE, the correlation function has the form

Π(p2) =
∑
i

Ci(x
2)〈Oi〉, (3.11)

where 〈Oi〉 = 〈0|Oi|0〉 are the vacuum expectation values of QCD operators or the con-

densates which parametrize the non-perturbative effects. In Eq. (3.10), 〈O3〉 is the quark

condensate, 〈O4〉 is the gluon condensate, 〈O5〉 is the mixed condensate and 〈Oψ,G
6 〉 is the

four-quark and three-gluon condensate. The spectral density of the OPE side is ρOPE(p2) =

1
π

ImΠOPE(p2) and the correlation function of it can be written as

Π(p2) =

∫ ∞
0

ds
ρOPE(s)

s− p2
+ subtraction terms. (3.12)
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3.3 Borel Transformation and QCD sum rules

Borel transformation is a standard mathematical method used to improve the radius of

convergence of any function f(Q2). It is defined by the following formula

BM2 [f(Q2)] = lim

Q2, n→∞
Q2/n = M2

(Q2)n+1

n!

(
−d
dQ2

)n

f(Q2), (3.13)

and well known formulas which are used in some QCD sum rules applications

BM2 [(Q2)k] = 0 for k > 0,

BM2

[
1

(Q2)k

]
=

1

(k − 1)!

(
1

M2

)k−1

,

BM2

[
1

s+Q2

]
= exp−s/M

2

,

BM2 [(Q2)k log(Q2/Λ2)] = k!(−M2)k+1. (3.14)

In the QCD sum rules method applications, after equating the hadronic and QCD side

of the correlation function to suppress the contributions the higher states and continuum, the

Borel transformation is applied to both sides of the equality. After Borel transformation the

equated sides of the correlation function can be written as:

f 2
he
−m2

h/M
2

+

∫ ∞
sh0

dsρh(s)e−s/M
2

=

∫ s0

0

dsρOPE(s)e−s/M
2

+

∫ ∞
s0

dsρOPE(s)e−s/M
2

, (3.15)

where s0 is the continuum threshold. According to the local quark hadron quality assump-

tion in the parametrization of the contribution of higher states and continuum, The second

terms on both sides of the Eq. (3.15) are taken equal to each other and ultimately cancel

each other. Thus the desired sum rules have been obtained for the physical quantities

f 2
he
−m2

h/M
2

=

∫ ∞
s0

dsρOPE(s)e−s/M
2

, (3.16)

where the Borel mass M2. s0 parameters are not arbitrary parameters, the physical observ-

ables show minimum dependency on them. The details how these parameters are fixed will

be discussed in the next section.
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4. QCD SUM RULES FOR THE MASS, RESIDUE AND SELF-

ENERGY OF NUCLEON IN COLD NUCLEAR MATTER

4.1 Finite density correlation function

In this study, we calculate the behavior of the nucleons in cold nuclear medium, unlike

in vacuum. To do this, we will investigate how the mass and the residue are affected by the

medium and calculate the scalar and vector self-energies. These physical quantities can be

extracted from the analysis of the in-medium two point correlation function,

Π(p2) = i

∫
d4xeip·x〈ψ0|T[J(x)J̄(0)]|ψ0〉, (4.1)

where p is the four momentum of the nucleon, |ψ0〉 is the ground state of the nucleon defined

by the rest frame nucleon density ρ and by the four velocity uµ of the medium. A colorless

interpolating current J(x) is made up of quark fields with the same quantum numbers of a

nucleon. The interpolating currents in QCDSR method has an analogy in the role of wave

functions in the QM. For the proton with the quark content uud, the interpolating current is,

J(x) = 2εabc

{[
uT,a(x)Cdb(x)

]
γ5u

c(x) +
[
uT,a(x)Cγ5d

b(x)
]
βuc(x)

}
, (4.2)

and for the neutron with ddu is

J(x) = 2εabc

{[
dT,a(x)Cub(x)

]
γ5d

c(x) +
[
dT,a(x)Cγ5u

b(x)
]
βdc(x)

}
. (4.3)

In these equations a, b, c are color indices of the quark field, T denotes a transpose in Dirac

space. The interpolating current with β = −1 known as to Ioffe current (Ioffe (1981);

Drukarev et al. (2015); Thomas et al. (2007); Leinweber (1995); Stein et al. (1995)).

In Dirac space, the correlation function Π(q2) is a 4 × 4 square matrix, so it can be

expanded using Dirac matrices as follow Cohen et al. (1995),

Π(p2) = ΠS + Πpp/+ Πuu/+ Π1γ
5 + Π2p/γ

5 + Π2p/γ
5 + Π3u/γ

5 + Π4(pµuν − pνuµ)

+ Π5εµνκλp
κuλσµν , (4.4)

where the coefficients of each structure, i. e. ΠS,p,u,1,...,5, are scalar functions of the invariants

p2 and p · u. The Lorentz covariance, parity and time reversal in the rest frame of nuclear
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matter imply that Πi’s for i=1, 2, 3, 4, 5 vanish. As a result, the correlation function has

three different structures as a function of the scalars p2 and p · u in the following form,

Π(p2) = ΠS + Πpp/+ Πuu/. (4.5)

In the vacuum or zero density limit, the coefficients Πu → 0 and ΠS and Πp are only

function of p2.

4.2 Physical Ansatz

In the physical or hadronic side, the correlation function is saturated by a complete set

of nucleon states with the same quantum numbers as the interpolating current and perform-

ing in Eq. (4.1) integral over x , we get the required expression for the physical side of the

correlation function as

ΠPhys(p2) = −〈ψ0|J(x)|n(p∗, s)〉〈n(p∗, s)|J̄(0)|ψ0〉
p∗2 −m∗2n

+ ..., (4.6)

where |n(p∗, s)〉 is the nucleon ground state, p∗ and m∗n are the nucleon in-medium mod-

ified momentum and mass, respectively and the dots stand for contributions of the higher

resonances and continuum states. We define the coupling of the interpolating field to the

physical quasi-nucleon state as the in-medium residue, λ∗n, given by the equality

〈ψ0|J(x)|n(p∗, s)〉 = λ∗nu(p∗, s), (4.7)

where u(p∗, s) is the positive energy Dirac spinor with s stands for the spin. After inserting

the parametrization in Eq. (4.7) into the Eq. (4.6), we get

ΠPhys(p2) =
λ∗2n (p/∗ +m∗n)

p∗2 −m∗2n
+ ... =

λ∗2n (p/∗ +m∗n)

(p/∗ +m∗n)(p/∗ −m∗n)
+ ... =

λ∗2n
(p/∗ −m∗n)

+ ..., (4.8)

where p/∗ = p∗µγµ. The in medium modified momentum and mass are parametrized in terms

of the in-medium self energies, respectively

p∗µ = pµ − Σ̃µ
υ , (4.9)

m∗n = mn + Σs, (4.10)

where Σ̃µ
υ is the vector self-energy and Σs is the scalar self-energy. The vector self-energy

can be written as

Σ̃µ
υ = Συu

µ + Σ′υp
µ (4.11)

' Συu
µ. (4.12)
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Because of the small value of Σ′υ, the second term in Eq. (4.11) can be ignorable Cohen

et al. (1991, 1995). Therefore, Eq. (4.8) can be written as

ΠPhys(p2) =
λ∗2n

(pµ − Συuµ)γµ − (m∗n − Σs)
+ ..., (4.13)

The physical side of the correlation function, Eq. (4.6), can be written in terms of the

structures p/, u/ and S as follows

ΠPhys(p2) = ΠPhys
p (p2, p0)p/+ ΠPhys

u (p2, p0)u/+ ΠPhys
S (p2, p0)I + ..., (4.14)

where p0 = p · u. I refers to unit matrix. The coefficients of the each structures are,

ΠPhys
p (p2, p0) = − λ∗2n

p2 − κ2
,

ΠPhys
u (p2, p0) = +

λ∗2n Συ

p2 − κ2
,

ΠPhys
S (p2, p0) = − λ∗2n m

∗
n

p2 − κ2
, (4.15)

here κ =
√
m∗2n − Σ2

υ + 2p0Συ. As a result, for the physical side of the correlation function,

we obtain

B̂ΠPhys
p (p2, p0) = −λ∗2n e−κ

2/M2

,

B̂ΠPhys
u (p2, p0) = +λ∗2n Συe

−κ2/M2

,

B̂ΠPhys
S (p2, p0) = −λ∗2n m∗ne−κ

2/M2

. (4.16)

where M2 is the Borel mass.

4.3 QCD Ansatz

The QCD side of the sum rules ΠQCD(p2) can be obtained in deep Euclidean space

p2 → −∞. After inserting the explicit form of the interpolating current J(x) in the corre-

lation function of Eq. (4.1) and by contracting out all pairs via Wick’s theorem, we have an
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expression for the sum rules ΠQCD(p2),

ΠQCD(p2) = − 4iεabcεa′b′c′

∫
d4xeipx

〈
ψ0

∣∣∣∣∣
{(

γ5S
cb′

u (x)S̃ba
′

d (x)Sac
′

u (x)γ5

− γ5S
cc′

u (x)γ5Tr

[
Sab

′

u (x)S̃ba
′

d (x)

])
+ β

(
γ5S

cb′

u (x)γ5S̃
ba′

d (x)Sac
′

u (x)

+ Scb
′

u (x)S̃ba
′

d (x)γ5S
ac′

u (x)γ5 − γ5Scc
′

u (x)Tr

[
Sab

′

u (x)γ5S̃
ba′

d (x)

]

− Scc
′

u (x)γ5Tr

[
Sab

′

u (x)S̃ba
′

d (x)γ5

])
+ β2

(
Scb

′

u (x)γ5S̃
ba′

d (x)γ5S
ac′

u (x)

− Scc
′

u (x)Tr

[
Sba

′

d (x)γ5S̃
ab′

u (x)γ5

])}∣∣∣∣∣ψ0

〉
, (4.17)

where Siju(d)(x) are the light-quark propagators, S̃iju(d)(x) = CSijT
u(d)(x)C, γ5 is the gamma or

Dirac matrix. It is best to work in the coordinate space and then to transform into momen-

tum space. In the coordinate-space in the presence of the background fields, they have the

following forms in the fixed-point gauge Reinders et al. (1985)

Sabq (x) ≡ 〈ψ0|T [qa(x)q̄b(0)]|ψ0〉ρ

=
i

2π2
δab

1

(x2)2
x/− mq

4π2
δab

1

x2
+ χaq(x)χ̄bq(0)

− igs
32π2

FA
µν(0)tab,A

1

x2
[
x/σµν + σµνx/

]
+ ..., (4.18)

where a, b are Lorentz indices and i, j are Dirac indices and ρ is the medium density. The

first two terms in Eq. (4.18) are obtained in the expansion of the free quark propagator to

first order in the quark mass. They are named as the perturbative part of the propagator.

According to the background-field method, Grassmann background quark fields χaq(x) and

χ̄bq(0) and a classical background gluon field FA
µν in Eq. (4.18) are used to parametrize non-

perturbative quark and gluon condensates, respectively Reinders et al. (1985); Hubschmid

and Mallik (1982); Novikov et al. (1984); Shifman (1980). The gluonic contribution to light

quark propagator comes from a single gluon interaction keeping only the leading term in the

short-distance expansion of the gluon field. Contributions coming from derivatives of the

gluon field tensor as well as additional gluon insertion are ignored. After inserting the light

quark propagators seen in Eq. (4.18) into Eq. (4.17), we obtain the prodects of Grassmann

background quark fields and classical background gluon fields. They correspond to ground-
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state matrix elements of the ersatz quark and gluon operators:

two-quark : χqaα(x)χ̄qbβ(0) = 〈qaα(x)q̄bβ(0)〉ρ,

two-gluon : FA
κλF

B
µν = 〈GA

κλG
B
µν〉ρ,

mixed quark-gluon : χqaαχ̄
q
bβF

A
µν = 〈qaαq̄bβGA

µν〉ρ,

four-quark : χqaαχ̄
q
bβχ

q
cγχ̄

q
dδ = 〈qaαq̄bβqcγ q̄dδ〉ρ, (4.19)

where the fields are evaluated at the point x = 0 unless otherwise stated Cohen et al. (1995).

In the right hand side of Eqs. (4.19), the matrix elements are named as condensates. To

make progress, these condensates are needed to be defined in nuclear medium.

Since nuclear matter is colorless and the ground state is assumed to be parity and time

reversal invariant, the Dirac and color structure of the matrix element 〈qaα(x)q̄bβ(0)〉ρ can

be projected out as

〈qaα(x)q̄bβ(0)〉ρ = −δab
12

[
〈q̄(0)q(x)〉ρδαβ + 〈q̄(0)γλq(x)〉ργλαβ

]
, (4.20)

and using the Taylor series expansion of the quark field q(x) at short distances, we have

〈qaα(x)q̄bβ(0)〉ρ = −δab
12

[(
〈q̄q〉ρ + xµ〈q̄Dµq〉ρ +

1

2
xµxν〈q̄DµDνq〉ρ + ...

)
δαβ

+

(
〈q̄γλq〉ρ + xµ〈q̄γλDµq〉ρ +

1

2
xµxν〈q̄γλDµDνq〉ρ + ...

)
γλαβ

]
,

(4.21)

where all fields and their derivatives in the above condensates are evaluated at x = 0 point

Cohen et al. (1995). To proceed, we need to evaluate the condensates seen in Eq. (4.21).

In the vacuum, these condensates can only be denominated using the metric tensor gµν and

the anti-symmetric metric tensor εκλµν . On the other hand, in-medium condensates can

also be expressed in terms of the four velocity of the medium, uµ which causes to exit new

condensates and new Lorentz structures. The various in-medium condensates appearing in

14



Eq. (4.21) can be expressed as:

〈q̄γµq〉ρ = 〈q̄ 6uq〉ρuµ,

〈q̄Dµq〉ρ = 〈q̄u ·Dq〉ρuµ = −imq〈q̄ 6uq〉ρuµ,

〈q̄γµDνq〉ρ =
4

3
〈q̄ 6uu ·Dq〉ρ(uµuν −

1

4
gµν) +

i

3
mq〈q̄q〉ρ(uµuν − gµν),

〈q̄DµDνq〉ρ =
4

3
〈q̄u ·Du ·Dq〉ρ(uµuν −

1

4
gµν)−

1

6
〈gsq̄σ ·Gq〉ρ(uµuν − gµν),

〈q̄γλDµDνq〉ρ = 2〈q̄ 6uu ·Du ·Dq〉ρ

[
uλuµuν −

1

6
(uλgµν + uµgλν + uνgλµ)

]
−1

6
〈gsq̄ 6uσ ·Gq〉ρ(uλuµuν − uλgµν), (4.22)

where the equations of motion have been used and because of their small contributions,

O(m2
q) terms have been ignored. In his way, the expansion of the condensate 〈qaα(x)q̄bβ(0)〉ρ

up to dimension five contains quark condensates and quark-gluon condensates.

Not only 〈qaα(x)q̄bβ(0)〉ρ is the source of the quark-gluon condensates, another one

comes from the contributions of the form χqaαχ̄
q
bβF

A
µν in the light quark propagator. The

corresponding quark-gluon matrix element can be decomposed as:

〈gsqaαq̄bβGA
µν〉ρ = − tAab

96

{
〈gsq̄σ ·Gq〉ρ

[
σµν + i(uµγν − uνγµ) 6u

]
αβ

+ 〈gsq̄ 6uσ ·Gq〉ρ

[
σµν 6u+ i(uµγν − uνγµ)

]
αβ

− 4

(
〈q̄u ·Du ·Dq〉ρ + imq〈q̄ 6uu ·Dq〉ρ

)

×

[
σµν + 2i(uµγν − uνγµ) 6u

]
αβ

}
,

(4.23)

where tAab are Gell-Mann matrices and Dµ = 1
2
(γµ 6 D+ 6 Dγµ). The matrix element in

Eq. (4.23) is calculated by projecting out color, Dirac and Lorentz structure by taking suit-

able traces.

In the light quark propagator (Eq. (4.18)), the dimension-four gluon condensates comes

from factors of FA
κλF

B
µν in which the matrix element 〈GA

κλG
B
µν〉ρ can also be written as

〈GA
κλG

B
µν〉ρ =

δAB

96

[
〈G2〉ρ(gκµgλν − gκνgλµ) +O(〈E2 + B2〉ρ)

]
, (4.24)

where E and B are the color-electric and color magnetic fields, respectively. The contri-

butions coming from O(〈E2 + B2〉ρ are neglected because of small contributions in further
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calculations. For six-dimension, the four-quark condensate is not well-known is nuclear

medium. Therefore, it is factorized into two dimension-three condensates. It is considered

for the same quarks as follow,

〈ūaαubβūcγudδ〉ρ ' 〈ūaαubβ〉ρ〈ūcγudδ〉ρ − 〈ūaαudδ〉ρ〈ūcγubβ〉ρ, (4.25)

and for the different quarks as well Cohen et al. (1995)

〈ūaαubβd̄cγddδ〉ρ ' 〈ūaαubβ〉ρ〈d̄cγddδ〉ρ. (4.26)

The necessary density dependent QCDSR of nucleon can be obtained by equating the

same structures in both ΠPhys(p2) and ΠQCD(p2). After inserting in-medium light quark

propagator and using condensates presented for different dimensions above into Eq. (4.17),

the function ΠQCD(p2) can be decomposed over the Lorentz structures:

ΠQCD(p2) = ΠQCD
p 6p+ ΠQCD

u 6u+ ΠQCD
S I, (4.27)

where the invariant amplitude ΠQCD
n with n = p, u, S corresponding to each structure in

Eq. (4.27) can be represented as the dispersion integral,

ΠQCD
n =

∫ ∞
0

ρQCDn (s)

s− p2
ds, (4.28)

where ρQCDn (s) = 1
π

Im
[
ΠQCD
n

]
is the two-point spectral density. Now, our main aim is to

calculate these spectral densities. Eq. (4.17) is in coordinate space, the following Schwinger

parametrization is applied to transform the calculations into the momentum space,

1

[A2]n
=

1

Γ[n]

∫ ∞
0

tn−1e−tA
2

dt. (4.29)

At this step, to take x integral, we need to go to Euclidean space by using the replace-

ment ip·x→ −ipE ·xE and variable changing xE → yE− i
2t
pE and then Gaussian integration

can be easily performed over pE leading to a Dirac Delta. After making use of the replace-

ment p2E → −p2, we come back to Minkowski space to take derivative xµ → i ∂
∂pµ

. The

resultant Dirac Delta function is used to perform second four-integral. Borel transformation

on the variable p2 is applied to physical side of the correlation function and we subtract the

contributions of the higher resonances and continuum states by carrying out the assumption

of the quark hadron duality. The invariant amplitudes of each structures obtained after these

calculations as follows:
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B̂ΠQCD
p (s∗0,M

2) = − 1

256π4

∫ s∗0

0

dse−s/M
2

s2
[
5 + β(2 + 5β)

]
+

1

72π2

∫ s0

0

dse−s/M
2

{
p0

[
15〈q†q〉ρ + 3β(2

+ 5β)〈q†q〉ρ
]
− 8
[
5 + β(2 + 5β)

]
mq〈q̄q〉ρ

+ +9(−1 + β)
[
3(1 + β)md + 2mu + 4βmu

]
〈q̄q〉ρ

+ 5
[
5 + β(2 + 5β)

]
〈q†iD0q〉ρ

}

− 〈g2sG2〉ρ
1024π4

∫ s0

0

dse−s/M
2

(6 + β + 5β2)

+
1

192M2π2

{
(−1 + β)

[
−
(

40(1 + β)md

+ (26 + 43β)mu

)
M2 + 8

(
3(1 + β)md

+ 2mu + 4βmu

)
p20

]}
〈q̄gsσGq〉ρ

+
p0

576M2π2

{
− 3
(

1 + 3β(2 + β)
)
M2

+ 8
(

5 + β(2 + 5β)
)
p20

}
〈q†gsσGq〉ρ

− 1

48M2π2

{
(−1 + β)

[
(1 + 5β)muM

2

− 32(1 + 2β)mup
2
0 − 4(1 + β)md

× (M2 + 12p20)

]}
〈q̄iD0iD0q〉ρ

− p0
12M2π2

{[
5 + β(2 + 5β)

]
(M2 − 2p20)

}
〈q†iD0iD0q〉ρ

− 1

144π2

{[
3(β − 1)mq

(
4(1 + β)md

− (1 + 5β)mu

)
+ 16

(
5 + β(2 + 5β)

)
p20

]}
〈q†iD0q〉ρ

+
1

36π2

{[
5 + β(2 + 5β)

]
mqp

2
0

}
〈q̄q〉ρ

− p0
4π2

{
(β − 1)mq

[
3(1 + β)md + (2 + 4β)mu

]}
〈q†q〉ρ.

(4.30)
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B̂ΠQCD
u (s∗0,M

2) = +
1

72π2

∫ s∗0

0

dse−s/M
2

{
− 3
(

5 + β(2 + 5β)
)
〈q†gsσGq〉ρ

− 9(−1 + β)mq

[
3(1 + β)md + 2mu(1 + 2β)

]
〈q†q〉ρ

+ 3s〈q†q〉ρ

}
+

1

128π2

∫ s0

0

dse−s/M
2

5(1 + β2)

× 〈q†gsσGq〉ρ +
1

24π2

[
5 + β(2 + 5β)

]
p20〈q†gsσGq〉ρ

+
1

2π2

[
5 + β(2 + 5β)

]
p20〈q†iD0iD0q〉ρ

+
p0

72π2

∫ s∗0

0

dse−s/M
2

[
5
(

5 + β(2 + 5β)
)
mq〈q̄q〉ρ

+ 2
(

5 + β(2 + 5β)
)

(−10〈q†iD0q〉ρ

+
1

96π2

{
(β − 1)

[
8(1 + β)md + 3(3 + 7β)mu

]}
〈q̄gsσGq〉ρ

+
1

12π2

{
(β − 1)

[
8(1 + β)md + 3(3 + 7β)mu

]}
〈q̄iD0iD0q〉ρ

+
1

12π2

{
(β − 1)mq

[
4(1 + β)md − (1 + 5β)mu

]}
〈q†iD0q〉ρ,

(4.31)

18



B̂ΠQCD
S (s∗0,M

2) = − 1

64π4

∫ s∗0

0

dse−s/M
2

s2

[
(β − 1)2md + 6(β2 − 1)mu

]

− 1

32π2
(β − 1)

∫ s∗0

0

dse−s/M
2

{(
(5 + 7β)〈q̄gsσGq〉ρ

)
+ 4mq

[
(β − 1)md + 6(β + 1)mu

]
〈q̄q〉ρ − 2(5 + 7β)s〈q̄q〉ρ

}

+
〈g2sG2〉ρ
512π4

(β − 1)

∫ s0

0

dse−s/M
2

[
βmd − 6(1 + β)mu

]

+
1

128π4
(β − 1)β

∫ s∗0

0

dse−s/M
2〈q̄gsσGq〉ρ

+
1

192π2
(β − 1)(20 + 29β)p20〈q̄gsσGq〉ρ

− 1

24π2

[
20 + (9− 29β)β

]
p20〈q̄iD0iD0q〉ρ

+
1

12π2
(β − 1)mq

[
(β − 1)md + 6(β + 1)mu

]
p20〈q̄q〉ρ

− p0
32π2

(β − 1)

∫ s∗0

0

dse−s/M
2

{
4

[
mq(5 + 7β) +md(1− β)

− 6(1 + β)mu

]
〈q†q〉ρ

}

+
1

192M2π2
(β − 1)

{
3 + (8 + 7β)muM

2 + 48(1 + β)mup
2
0

+ 4md

[
M2(1− 4β) + 2(β − 1)p20

]}
〈q†gsσGq〉ρ

+
1

4M2π2
(β − 1)

[
(β − 1)md + 6(β + 1)mu

]
(M2 + 2p20)〈q†iD0iD0q〉ρ

− 1

24π2
(β − 1)

[
βmq − 8md(1− β) + 48(1 + β)mu

]
〈q†iD0q〉ρ.

(4.32)

After matching the invariant amplitudes of different structures form the physical and QCD

sides of the correlation function, we drive the sum rules for the mass, residue and self-

energies of nucleon:

−λ∗2n e−κ
2/M2

= B̂ΠQCD
p (s∗0,M

2),

+λ∗2n Συe
−κ2/M2

= B̂ΠQCD
u (s∗0,M

2),

−λ∗2n m∗ne−κ
2/M2

= B̂ΠQCD
S (s∗0,M

2). (4.33)
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Using the above sum rules , we derive following expressions for κ2, the vector self-

energy Συ, the modified in-medium mass m∗n and residue λ∗n of nucleon, respectively:

κ2(s∗0,M
2, β, ρ) =

∂
∂(−1/M2)

[
B̂ΠQCD

p (s∗0,M
2)
]

B̂ΠQCD
p (s∗0,M

2)
,

Συ(s
∗
0,M

2, β, ρ) = −B̂ΠQCD
u (s∗0,M

2)

B̂ΠQCD
p (s∗0,M

2)
,

m∗n(s∗0,M
2, β, ρ) =

√
κ2 + Σ2

υ − 2p0Συ,

λ∗n(s∗0,M
2, β, ρ) =

√
e−κ2/M2

B̂ΠQCD
p (s∗0,M

2)
. (4.34)

These expressions will be used in numerical calculation with the necessary numerical inputs

in the following section.

4.4 Numerical analysis

In the previous subsection, the sum rules’ expressions obtained for the physical quanti-

ties of nucleon contain the vacuum and in-medium expectation values of different operators

which are used as an input parameters in the numerical calculations. Before taking into

account the in-medium condensates, we need to estimate vacuum condensate. Just spin-0

operators can have non-vanishing vacuum expectation values, due to the Lorentz invariance

of the vacuum state |0〉. Therefore, we have the following the lowest mass dimension, d, of

vacuum condensates:

d = 3 〈ūu〉0, 〈d̄d〉0, 〈s̄s〉0, (4.35)

d = 4
〈αs
π
G2
〉
0
, (4.36)

d = 5 〈ūgsσGu〉0, 〈d̄gsσGd〉0, 〈s̄gsσGs〉0, (4.37)

where σG = σµνG
µν with σµν = i[γµ, γν ]/2 and G2 = GA

µνG
Aµν . The notation used in

above the expressions for vacuum condensate is 〈Ô〉0 = 〈0|Ô|0〉. The numerical values of

vacuum condensates are well known for the quark and mixed condensates. For the general-

ization, the in-medium condensates are expanded in terms of the rest-frame nucleon density

where uµ = (1, 0). Up to first order in this expansion, we have

〈Ô〉ρ = 〈Ô〉0 + 〈Ô〉nρ+ ..., (4.38)

where ... represents the correction terms coming from higher order in nucleon density and

the spin-averaged nucleon matrix element is

〈Ô〉n =

∫
V

d3x
[
〈n|Ô|n〉 − 〈0|Ô|0〉

]
, (4.39)
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where the state vector of a nucleon |n〉 is normalized to unity at rest over a volume V Cohen

et al. (1995). To proceed, we need some numerical values of input parameters, such as:

masses of quark and baryon, saturated nuclear matter density, the quark, gluon and mixed

condensates of vacuum and in-medium. These input parameters are presented in Table 4.1

Table 4.1: Input parameters used in calculations Tanabashi et al. (2018); Jin et al.
(1994, 1993); Cohen et al. (1995, 1992).

Parameter Numeric Values Unit

mu 2.3 MeV

md 4.8 MeV

p0 1 GeV

ρsat (0.11)3 GeV 3

mq 0.5(mu +md) GeV

σN 0.045 GeV

m2
0 0.8 GeV 2 GeV 2

〈q†q〉ρ 3
2
ρ GeV

〈q̄q〉0 (−0.241)3 GeV 3

〈q̄q〉ρ 〈q̄q〉0 + σN
2mq

ρ GeV 3

〈q†gsσGq〉ρ −0.33 GeV 2ρN GeV 5

〈q†iD0q〉ρ 0.18 GeV ρ GeV 4

〈q̄iD0q〉ρ 3
2
mqρ ' 0 GeV 4

〈q̄gsσGq〉0 m2
0〈q̄q〉0 GeV 5

〈q̄gsσGq〉ρ 〈q̄gsσGq〉0 + 3 GeV 2ρ GeV 5

〈q̄iD0iD0q〉ρ 0.3 GeV 2ρ− 1
8
〈q̄gsσGq〉ρ GeV 5

〈q†iD0iD0q〉ρ 0.031 GeV 2ρN − 1
12
〈q†gsσGq〉ρ GeV 5

〈αs
π
G2〉0 (0.33± 0.04)4 GeV 4. GeV 4

〈αs
π
G2〉ρ 〈αs

π
G2〉0 − 0.65 GeV ρ. GeV 4

Additionally, in the sum rules presented in Eqs. (4.33) for the physical quantities of nu-

cleon, we need three auxiliary parameters to be fixed at this step: the in-medium continuum

threshold s∗0, the Borel mass parameter M2 and the mixing parameter β. According to the

standard prescription of QCD sum rules, the physical quantities show weak dependency on

these auxiliary parameters within their working regions.

The continuum threshold s∗0 depends on the energy of the first excited state with the

same quantum numbers, because it is not completely an arbitrary parameter. While the

mass of the nucleon mn is the ground state energy, the energy for the first excited state of

the nucleon is
√
s∗0 −m. We choose the value of continuum threshold in the interval as

1.5 GeV 6 s∗0 6 2 GeV. (4.40)
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Our numerical results show that the physical quantities like mass and residue weakly

depend on the continuum threshold in this interval. To obtain the working region of the

Borel mass parameter M2, the condition used for the upper bound of this parameter that

the pole contribution is larger than the contribution of the higher states and continuum.

Therefore, the following integral describing the contributions of the continuum and pole

should be satisfied,

R =

∫ s∗0
0
ρ(s)e−s/M

2∫∞
0
ρ(s)e−s/M2 , (4.41)

where the restriction for the ratio is R > 1/2. For the lower bound condition on M2 is

that the non-perturbative contribution should be smaller than the perturbative contribution.

Under these requirements, the interval for the Borel mass parameter is:

0.8 GeV2 6M2 6 1.2 GeV2. (4.42)

Figure 4.1: Variation of λn as a function of x.

And also, we need to find the working region of the mixing parameter β in which the

physical quantities should be independent of this parameter. The notation x = cos θ with

β = tan θ is used to explore the whole region −∞ < β < +∞ by varying in the region

−1 6 x 6 +1. In Fig. 4.1 and Fig. 4.2, to obtain the reliable region of the parameter

β, we plot the vacuum residue λn and in-medium residue λ∗n of nucleon with respect to

the parameter x for three different continuum threshold values, s∗0 = 1.50, 1.75, 2.00 GeV2,

and the mean value of Borel mass M2 = 1 GeV2. As seen in this figure, in the following

intervals:

− 1 6 x 6 −0.5 and + 0.5 6 x 6 +1, (4.43)
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Figure 4.2: Variation of λ∗n as a function of x.

the residues λn and λ∗n show particularly stability with respect to x and the variation with

due to the continuum threshold is very weak. Moreover, the current corresponding with

β = −1 or x ' −0.71 named as Ioffe current is included by the above intervals.

Figure 4.3: Variation of perturbative, two-quark condensate (QQ), two-gluon

condensate (GG) and mixed condensate (QG) parts in OPE in terms of M2

at saturation density and the average value of continuum threshold.

In Fig 4.3, in order to show the convergency of OPE in our calculations, we plot

the variations of perturbative, two-quark condenate (QQ), two-gluon condensate (GG) and

mixed condensate (QG) parts in OPE in terms of M2 at saturation density and the average
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Table 4.2: The average in-medium masses, residues and their vacuum values with the
comparison of other studies.

m∗n (GeV) mn (GeV) λ∗2n (GeV 6) λ2n (GeV 6)

PS 0.743± 0.102 1.056±0.065 0.0010± 0.0004 0.0012± 0.0005

Ioffe (1981) - 0.985 - 0.0012± 0.0006

Nasrallah and Schilcher (2014) - 0.990± 0.050 - -

value of continuum threshold for the structure p/. We see that OPE nicely converges, i.e. the

contribution of perturbative part is larger than the non-perturbative parts contributions and

also contributions of decreases with increasing dimension of condensates. Note that it as is

seen the contribution of mixed condensate is almost zero.

We plot the pole contribution (PC) for the p/ structure as a function of M2 at three

fixed values of the continuum structure s∗0 = [2.0, 2.25, 2.5] GeV2 and at saturation nuclear

matter density and at the parameter x = −0.65 in Fig 4.4. At the lower limit of the Borel

parameter, we obtained PC= 0.57 and at the higher limit of it, this value decreases to PC=

0.31. Another important result of our analyses show that in the obtained working regions of

auxiliary parameters, the series of sum rules have a nice convergency.

Figure 4.4: Pole contribution (PC) with respect to Borel mass parameter for the p/

structure at nuclear matter saturation density.

In the above equations, the mass sum rule is the ratio of two sum rules and thus their

unstable points in nominator and denominator can easily cancel each other.
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In table 4.2, we present our average results of the in-medium and vacuum obtained in

the limit ρ → 0 masses and residue squares of nucleon (PS for used for present study) and

compare them with existing results of Ioffe (1981) and Nasrallah and Schilcher (2014) in the

literature. From this table, it can be concluded that our vacuum results are in good agreement

within the errors with numerical values obtained using Ioffe current in the vacuum sum rules

calculations. It can be also seen that the average values of those physical quantities shifts

considerably due to nuclear medium.

We plot the variations of ratios λ∗n/λn andm∗n/mn as a function of M2 in the Figs. 4.5-

6, respectively to show the weak dependency of the physical quantities under consideration

with respect to the above auxiliary parameters and to see clearly how the in-medium results

deviate from the vacuum values. We observe that the shifts of the physical quantities due

to medium are negative. While the shifts in residue roughly increase with the increasing

value of M2, but the shift in mass changes considerably with respect to the same parameter.

To show the percentage of the shift (λ∗n/λn)
λn

∗ 100 in residue and mass (m∗n/mn)
mn

∗ 100

Figure 4.5: λ∗n/λn as a function of M2.

of nucleon in dense medium, we plot the Figs. 4.7-8, respectively. Our calculations present

that the value of λ∗n decreases when compared with the value of λn by approximately 11%

and the percentage of the shift in the mass of nucleon in cold nuclear matter is nearly 31%.

In our calculations for the saturation density of nuclear medium ρsat = 0.113 is used.

To investigate the density dependency of physical observables, λ∗n and m∗n of nucleon, we

plot the in-medium residue ratio to vacuum residue in Fig. 4.9 and the in-medium mass

ratio to vacuum mass in Fig. 4.10 as a function of (ρsat/ρ) = [1, 1.5] at the input parameters
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Figure 4.6: Same as Fig. 4.5 for m∗n/mn.

Figure 4.7: The percentage of the shift (λ∗n/λn)
λn

∗ 100 in residue of nucleon in dense

medium with respect to M2.

s∗0 = 1 GeV2, M2 = 1 GeV2 and x = −0.65. In Fig. 4.9, it can be seen that the behaviour

of λ∗n/λn has a exactly linear response, but the density effect on in-medium mass is approx-

imately linear as seen in Fig 4.10. At (ρsat/ρ) = 1.5 value of density ratio, these ratios are

0.86 for modified residue and 0.64 for modified mass of nucleon. The last analyze for the

nucleon in dense medium is its vector self-energy and scalar self-energy. Using the obtained

sum rules, in Fig. 4.11, we show the vector self-energy dependency of the nucleon on the

auxiliary parameter Borel mass at mean values of other auxiliary parameters. As seen in

this figure, it shows stability in the reliable region of the parameter M2. Using the results of
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Figure 4.8: Same as Fig. 4.7 for mass of nucleon.

Figure 4.9: λ∗n/λn as a function of ρsat/ρ at s∗0 = 1 GeV2, M2 = 1 GeV2 and

x = −0.65.

our analysis the average values of vector Συ and scalar Σs self-energies of nucleon in cold

nuclear matter presented in Table. 4.3.
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Figure 4.10: Same as Fig. 9 for m∗n/mm.

Figure 4.11: The vector self-energy Συ versus M2 at mean values other auxiliary

parameters.

Table 4.3: The average values of vector and scalar self-energies of nucleon.

Συ (GeV) Σs (GeV)

PS 0.345± 0.058 −0.308±0.049
Plohl et al. (2006a,b) (0.350− 0.400) −(0.400− 0.450)
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5. CONCLUDING REMARKS

In this thesis, we investigated the physical properties of nucleon in cold dense medium

within the framework of QCDSR formalism as a powerful and reliable non-perturbative

theoretical application. In the literature, plenty of theoretical studies are devoted for the

investigation of the vacuum properties of nucleon. In addition, using the Ioffe current for

the medium, it was studied how these physical properties deviated from the vacuum due to

the nuclear matter. Theoretical and phenomenological investigation of those properties and

their comparison with the existing experimental results can give more essential idea about

the nature of nucleon.

Initially, we used the interpolating current with an arbitrary mixing parameter in the

correlation function and inserted the light quark propagator with its density dependent con-

densates. After applying the some tools of the QCD sum rules formalism, we derived in-

medium sum rules for the mass, residue and self-energies of the nucleon. In the ρ → 0

limit, we obtained our vacuum results to compare the other existing vacuum results in the

literature.

In the sum rules of the nucleon, there are three auxiliary parameters: arbitrary mixing

parameter of the propagator β, in-medium continuum threshold s∗0 and Borel mass parameter

M2. First of all, we determined the reliable regions of these parameters in accordance with

the philosophy QCD sum rules. We showed that working region of the β parameter contains

Ioffe current value. After entering the numerical input parameters such as quark, gluon,

mixed condensates of the nuclear medium and quark masses, we obtained the numerical

values of the physical observables for vacuum and medium. Since we know that physical

observables should be independent of the above auxiliary parameters in QCD sum rules

method, we have demonstrated our numerical results showing good stability with respect to

these parameters.

We observed that the in-medium mass and residue have considerable negative shifts

due to cold nuclear matter at the saturation density of nuclear matter and the average values

of the in-medium continuum threshold and Borel mass parameters. The shift in the mass of

nucleon is by an amount of 31% and in the residue it is 11%. Depending on the change in

the density of the medium ρsat/ρ, the ratios in the mass m∗/m and residue λ∗/λ are almost
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linear. At the end of our calculations, we investigated the nucleon vector and scalar self-

energies in dense medium. Our results are consistent with the model independent results in

Plohl et al. (2006a,b).

As a result, we can conclude that the results of vacuum in the literature for the physical

properties of the nucleon are in good agreement with our results. In the previous studies,

using Ioffe current the effects of the medium on the physical observables of the nucleon

were investigated. However, in our study, we extended these studies using whole region

of the β parameter in the current which includes the Ioffe value and also obtained working

region of β for the observables of nucleon. These results may be used as a guide for the near

future experiments.
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