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ABSTRACT

LIFTING PROBLEM FOR HOMOGENEOUS IDEALS
MSC THESIS
OYA AYDOGAN
BOLU ABANT IZZET BAYSAL UNIVERSITY GRADUATE SCHOOL OF
NATURAL AND APPLIED SCIENCES
DEPARTMENT OF MATHEMATICS
(SUPERVISOR: ASSOC. PROF. DR. EROL YILMAZ)

BOLU, AUGUST 2019

The lifting problem for homogeneous ideals is studied. A new method for finding
liftings of a homogeneous ideal is developed. This method was compared with the
current methods. The results are demonstrated with examples.

KEYWORDS: Lifting problem, Syzygy modules, Grobner bases, H-bases.



OZET

HOMOJEN IDEALLER iCIN KALDIRAC PROBLEMI
YUKSEK LiSANS TEZi
OYA AYDOGAN
BOLU ABANT iZZET BAYSAL UNIVERSITESI
FEN BILIMLERI ENSTITUSU
MATEMATIK ANABILiM DALI
(TEZ DANISMANI: DOC. DR. EROL YILMAZ)

BOLU, AGUSTOS - 2019

Homojen idealler icin kaldirma problemi incelenmistir. Homojen bir
idealin kaldirilmasi ic¢in yeni bir yontem gelistirilmistir. Bu yontem mevcut
yontemlerle karsilastirildi. Sonuglar 6rneklerle gosterilmistir.

ANAHTAR KELIMELER: Kaldirag problemi, Syzygy modiiller, Grobner
tabanlar1, H-tabanlari
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1. INTRODUCTION

In this thesis we consider the lifting problem for homogeneous ideals
proposed first in (Roitman, 1988). Later, Robert (1989) studied the lifting problem
over an algebraically closed field. Carra Ferro and Robbiano (1990) gave a
connection between tge lifting problem and H-bases. Then using this connection and
super G-bases (super Grobner bases) they were able to found the liftings of
monomial ideals. Migliore and Nagel (2000) also studied the liftings of monomial
ideals on more geometric point of view. Luo and Yilmaz (2001) gave a relation
between syzygy modules and H-bases. Using this relation, they found some liftings
of some homogeneous ideals. More recently, Bertone et al (2016) use Grobner bases

to obtain a method for finding liftings.

We will concentrate to the last two papers in this thesis. In Chapter 2, we give
some basic concepts about Grobner bases and the syzygy modules. In Chapter 3, we
formally define the lifting problem and investigate the method suggested by Bertone
et al (2016) for the solution of the lifting problem. It seems their method contains
many unnecessary computations and finds relatively less liftings. In Chapter 4, we
study linear algebraic characterization of homogeneous ideals. Then using the idea of
Luo and Yilmaz (2001) with this characterization we are able to develope a new
method for finding of liftings of homogeneous ideals. Our method looks more
efficient that method of Bertone et al (2016). It involves less computation and finds
more liftimgs than the other method. The results are demostrated by examples. We

use symbolic computation software Mathematica for calculations.



2. GROBNER BASES AND SYZYGY MODULES

In this chapter, some basic concepts about Grobner basis theory and the

syzygy modules which are required to solve the lifting problem are given.

2.1. Monomial Ordering

Definition 2.1.1.

A product of the form x;"x;2 .....x,;,™ is called a monomial in xy, .....,x,
where a;, ....., a, are positive integers. The total degree of the monomial is the sum

of a; + ay + . +a,. We simplify the notation for monomials by writing x* where
x = (xg, ., xp)and a = (aq, .....,ay) and we let |a| be indicate the total degree

of x%.

Then a finite K-linear combination of monomials is called a polynomial in
X1, -----, X, Where K is a field. The set of such polynomials form a commutative ring
which is called the ring of polynomials over K and denoted by K[x4, ..., x,]. In order
to define a division algorithm on K[x,...,x,], we need to define an order on

monomials and this order must satisfy some properties.

Definition 2.1.1.

A monomial order is a total order relation > on the set of monomials that is
satisfy the following properties
(i) If x® < xB, then x¥x% < x¥xP for every monomial x?.

(i1) Every non-empty set of monomials has smallest element under >.

The most known monomial order is the lexicographic order.



Definition 2.1.2 (Lexicographic Order)

Let py = x71x57% ... x;" and p, = x’f%cfz .. x5 be two monomials. We say

P1 >iex D2 if the left most entry non-zero a; — B; is positive j = 1,2, ..., n.

If a monomial order < is called degree compatible if |a| > |B]| implies

x® < xB. Next we will define the two most used degree compatible monomial order.

Definition 2.1.3 (Degree Reverse Lexicographic Order)

Let p; = x71x32 . x5 and p, = x5 5% . xB" be two monomials. We say

that P1 >degrevlex P2
@ If |al> |B] or
(ii) If |a| = |B] then the last entry non-zero a; — B; is negative for

j=12,..,n

Definition 2.1.4 (Degree Lexicographic Order)

Let py = 271452 .. x%" and p, = x5'x52 .. xB" be two monomials. We say

P1 >deglex P2
1) If |a] > |B]|or
2) If |a| =|B|and p1 >iex P2-

Definition 2.1.5.

Let h = Y, myx® be a nonzero polynomial in K[x, .....,x,] and let > be a

monomial order.
i)The multidegree of h is

multideg(h) = max{a € Z%, : m, # 0}

3



the maximum is taken with respect to >.
i) The leading coefficient of h is
LC(h)= Mmuitigegn)

1ii) The leading monomial of h is
LM(h):xmultideg(h)

iv) The leading term of h is

LT (h)= LC(R)LM(R)

Example 2.1.6.

i) Let h = 11x%y?z3 + 13x5y® — 9xy? + 3y2z with respect to lex order,

then we have
multideg(h) = (6,2,3)
LC(h) = 11
LM (h) = x%y?z3
LT(h) = 11x%y?22z3

ii) Let h = 11x%y2z3 + 13x5y® — 9xy? + 3y?z and with respect to degree
lexicographic order, then we have

multideg(h) = (6,2,3)
LC(h) =11
LM (h) = x%y?z3

LT(h) = 11x%y?22z3



i) Let h = 11x%y2z3 + 13x5y® — 9xy? + 3y2z and with respect to degree

reverse lexicographic order, then we have
h=13x5y® + 11x%y?z3 — 9xy? + 3y?z
multideg(h) = (5,6,0)
LC(h) = 13
LM (h) = x5y®

LT(h) = 13x°y®

2.2 Division Algorithm

Theorem 2.2.1. (Cox et al (2007), Theorem 2.3.3.)

Let > be a monomial order on the set of monomials of K[xy, ....., x;,] and
h = (hy, .... hy) be an ordered s-tuple of polynomials in K[xy, .....,x,]. Then every
h e K[x4, ....., x,] can be written as

h = m1h1 + mzhz + .-l +msh5 + r,

where m; r € K[xy, .....,x,] and either r = 0 or ris a k- linear combination of a
monomials, none of which is divisible by any LT (h;) .... LT (h). The polynomial r is

called remainder. Furthermore, multideg(h) = multideg(m;h;) if m;h; # 0.

The polynomials m;, r € K[x, ..., x,,] can be found as follows. Let r = 0 for
the begging. If LT (h) = xYLT (h;) for some 1 < i < s and some monomial x?, then
define new h as

h:=h —x"h,.
Otherwise h := h — LT (h) and r := r + LT (h). Repeat this until h = 0.

Let us illustrate this algorithm with an example.



Example 2.2.2.

Let h=x%y +xy+y?—1, hy =x?>—1and h, = xy + 1. We will apply
the division algorithm with respect to lexicographic order.

Hence LT (h) = x%y, LT(h,) = x? and LT (h,) = xy. Since % =y we
1

redefine h as

h:=h—yh =xy+y*+y—1

Now LT (h) = xy is not divisible by LT (h,), but divisible by LT (h,) so we

continue with % =1, weredefinehash:=h—1.h, = y?+y— 2.
2

Now LT (h) = y? is divisible neither LT (h,) nor LT (h,). Therefore we move

y? to the remainder and continue by h :== h —y? =y — 2.

Since both y and —2 are not divisible by LT (h,) and LT (h,), the remainder
isy?+y—2. Hence

h=y.hi+h, +y>+y—2.

This division algorithm is an imperfect generalization of its one-variable
counterpart. Because if we change order of divisors for the the algorithm, then the
remainder may differ. Since we can not fix this problem, we need a special
generating set for the ideal < g4, g5, ..., g5 > that makes the remainder unique. This
generating set is called Grobner Basis. We will define Grobner basis and explain its

properties in this section.



2.3. Grobner Basis

Definition 2.3.1.

Let I € K[x4, ..., x,] be anideal. Fix a monomial ordering >. Define the set

LT(I) = {LT(f): f € I}.

If I =(f,...f.), then clearly (LT(f),..,LT(f,)) S (LT(I)) . However,

(LT (1)) can a strictly larger ideal. This bring us to the definition of Grébner basis.

Definition 2.3.2.

Letl € K[x4, ..., x,] bean ideal. Fix a monomial ordering >. A finite subset

G = {91, ..., 9:} of an ideal I is said to be a Grobner Basis if

(LT(Gy), e . LT(ge)) = (LT(D)).

The most significant property of the Grobner basis is the following.

Theorem 2.3.3. (Adams and Loustaunau (1994), Theorem 1.6.7)

Let G = {g1,92, -, gn} be a Grobner basis for an ideal I € K|[x, ..., xp,]. If

f € K[x4, ..., x,], then the remainder of f upon division by G is unique.

Before giving a criterion for the Grobner basis, we need the following

definition.

Definition 2.3.4.

Let h,g € K[x4, ..., x,] be nonzero polynomials.
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(i) If multideg(h) = a and multideg(g) =, then let y = (¥, V2 - » Vo)

where y; = max{«;, B;} for all i x is called the least common multiple of
LM (h) and LM (g), written x¥ = LCM (LM (h), LM (g))

(if) The S-polynomial of h and g is combination,

¥ XV
" irg)?

Sth,g) =

Theorem 2.3.5. (Adams and Loustaunau (1994), Theorem 1.6.7.)

Suppose G = {g1,92, .-, gs} IS a generating set for an ideal I. Then G is a
Grébner basis of 1 if and only if for all 1 < i < j < s the remainder of S(g;,g;)

upon division by g is zero.

This theorem is known Buchberger’s criterion. Buchberger is the inventor of
Grobner basis. He also give an algorithm for finding Grobner basis of an ideal from
any generating set of this ideal. This algorithm can be described as follows: Starting
from a set of polynomails G = {f;, ..., f;}. Compute the remainders of S-polynomials
S(fi, f;) upon division by G for 1 < i <j < s. If the remainder r # 0, then enlarge G
by r. Otherwise do nothing and pass to next S-polynomial. Continue this process

until computing all S-polynomials. At the end, the result is a Grobner basis.

Definition 2.3.6.

Q) A Grobner basis G of an ideal is called minimal if for each f €
G, LM(f) # LM(g) for all g € G\{f}.
(i) A minimal Grdbner basis G is called reduced if for each f € G, no

term of f is divisible by LM (g) forall g € G\{f}.



Example 2.3.7.

We will find a Grobner basis for (x?y —y + x,xy? — x) € Q[x, y] with

respect to the graded lex order with x > y.
Letfi =x?y—y+x, f =xy? —x.
Compute S-polynomial
S(fvf) =yfi—xf=x*+xy—y>#0
Remainder is not zero, so we have to add f; = x? + xy — y? generating set.
Shufd=1lfi—yfs=—xy*+x+y’—-y=-1f+y’ -y #0
Remainder is not zero, so we have to add f, = y3 — y generating set.
S(faf3) =xf =Y fs=yf+Yfa + f3+0
Sfufd)=y*h—x*fu=x*y+xy* =y’ =yfs+ 0
S(fofa) =yfa—xfo =0
S(fafd) =y fa—x*fa=x*y+xy* =y’ =LA+G*+ D —(* + 1)fs + 0
So Grébner basis of (x%?y —y + x,xy? — x) isa
G={f1fo.faf )=y —y+xxy* —xx* +xy—y°,y° -y}
Also,

fi=x*y—y+x=—-1L+yfs+1.f,+0
Hence, the reduced Grébner basis of (x?y —y + x, xy? — x) is



G={xy* —x,x* +xy—y%y* -y}

2.4. Syzygy Modules

Definition 2.4.1.

Let R =K[xq,.....,x,], and let [f; - f;] € RS. The set of all s-tuples
[a1 -+ as] € RS such thata,f; + -+ asf; = 0is an R -submodule of R® called

the syzygy module of [f; -+ fs] and denoted by Syz(fi, .... f5).

The syzygy modules are finitely generated R — submodules, and set of
generators for them can be computed. We briefly explain the process of finding a

generating set for a syzygy module. For details see (Adams and Loustaunau,1994).

If G ={g,, ., 9,} is a Grobner basis with respect to some monomial order. It

Is easy to compute a generating set for Syz(g4, ... gs)-

Let S(g;, g;) be the S-polynomial of g; and g;

xYij
r(gn i

xVij

LT(g;

S5(9i,95) = R

where x¥i/ is the least common multiple of LM(g;) and LM(g;). Since G is a

Grobner basis, the remainder of S(g;, g;) on division by G is zero. Hence

S919j) = Xp=1hijy 9o
for some h;j,, € R by division algorithm. The s-tuple

in j in j

Sij = —LT(gi) .e; — Wg,) e]- - (hijlﬂ ey hijs) € SyZ(gl, gs)
In fact, the set {s;;,1 < i,j < s} generates Syz(g, ..., gs)-

If {f1,....fs} does not form a Grobner basis. A reduced Grdbner basis
{91, ... 9¢} for (fi,...f;) should be computed. Let F =[f;,...f;] and G =

[gy ---9,] Since the elements of F and G generates the same ideal, there are a t x s

10



matrix S and a t x s matrix T with entries in R, such that F=gSand G=F T. Then
the matrix S can be obtained by the Division Algorithm and the matrix T is obtained
by keeping track of the reductions in Buchberger’s algorithm. A generating set

{sij,1=<1ij <t} for Syz(gy,..,g.) can be computed. Then the set of s-tuples

{Tsij, 1 <1,j < t} together with columns of the matrix I — TS generates the syzygy

module Syz(fi, ... f5).

Example 2.4.2.

Consider F = [f; f, fa]where fy =x+yz,f, =vy*>+z ,fs3=xz—y. We
will find a generating set for Syz(fi, f>, f3)-

Firstly, we compute a reduced Grobner basis G with respect to lexicographic
order withx >y > z for < f3, f5, f3 >. Applying Buchberger’s algorithm we found
G =19, 9,93 9,] is the reduced Grébner basis where

g1=x+yz,9, =y*+ 2,95 =yz> +7y,9, = z> + z . Furthermore,

1 0 z —yz
(91 92 95 g1 =1/ f f5]|0 1 0 z*+1
0 0 -1 y
and

1 0 =z
_ 01 o0
[fi 2 f3]1 =191 92 93 94 0 0 -1
0 0 O

We need to reduce all S(g;,g;) ‘s for1 <i<j <4 in order to compute

generators for Syz(g1, g2, s, g+). Since S(g1,9,) = v2g1 —xg, = —xz +y3z =
—291 +y202, 512 = (¥* + z,—x — y2,0,0)". Similarly S(g4, g3) = yz°g1 — xg3 =
—xy + y?z3 = —yg, + yzg; implies s;3 = (yz2 + y,0,—x — yz,0)T. Continuing
same way one can get other syzygies, s;4 = (23 +2,0,—2z%, —x)T , s553 =

(0,z2+1,—y, =17, s34 = (0,23 +2,0,—y? — 2)T and s3, = (0,0, z, —y)T.

11



Then

1 0 z —yz| y2 + 7
01 0 z%2+1|sz= —x —yz|,
0 0 -1 y 0
10 z —yz| —XZ + ]
01 0 =z*41fsi3=| 0 |
0 0 -1 y | X +YZ |
1 0 =z —yz Xyz + z
0 1 0 z%2+1|syy=|-xz%2—x|
0 0 -1 y —xy + z*
1 0 z —yz 0
0 1 0 Z2 +1 Sp3 = [O]:
00 -1 vy 0
1 0 z -yz y3z + yz?
0 1 0 Zz2+1|8y=|-y?2z?—1y?
0 0 -1 y —y3 —yz
and
1 0 z -yz y?z + z*
0 1 0 z2+4+1|s3=]|-yz%2—-y|
0 0 -1 y —yz —Z
Note that

Pz +yz? —y*z® —y?, -y’ —yn) =y 0’z + 2%, —y —yz*, —y® - 2)",

(z + xyz, —x — xz%,—xy + z)T = —y(—xz +v,0,x + yz)T —
z(?z+z%, -y —vyz:,—y? —2)T + (z+ D) (y* + z,—x — yz,0)T.

Hence

Syz(fi, fo f3) =(* +2,—x—y2,0),(—xz+y,0,x + y2)T, (y?z +
2%, —y —yz%,—y? = 2)7).

12



3. GROBNER BASIS APPROACH TO THE LIFTING
PROBLEM

In this chapter we investigate a method for the solution of the lifting problem
of homogeneous ideals using the Grobner bases. This method suggested by (Bertone
et al, 2016).

Let K be a field and let J < K[x4,...,x,—1] be an ideal generated by
homogeneous polynomials f;, ..., fs. This kind of ideals are called homogeneous
ideals. It is well known that if a polynomial f is in a homogeneous ideal if and only
if each homogeneous component of £ is in this ideal (see Cox et al, 2007, Section
8.3).

Definition 3.1.

Let / be a homogeneous ideal in K[xq,...,x,—1]. A homogeneous ideal
I € K[xq, ..., Xn—1,%y] is called a lifting of J with respect to x,, if x,, is not a zero
divisor in K[x1, ..., Xp—1, Xp]/I and J = (f (x4, ..., Xp—1,0): f € I).

Definition 3.2.

For a given monomial order < on K[x, ..., x,—1], @ corresponding degree
reverse monomial order <,, on K[xy, ..., x,_q1, X,,| is defined as follows for the same
degree monomials x* and x#, x* <, xf if a,, > B, or a, =, and x%/x,% <

xB [x,%n.

For every degree reverse monomial order, we have that if the leading term of
a homogeneous polynomial f is divisible by x,,” then the polynomial f is divisible

by x,,".

The next theorem given by Bertone et al (2016) is reformulation of (Carra
Ferro and Robbiano, 1990, Theorem 2.5.) in terms of Grobner bases. Notice that in

13



the next chapter we will use the original version of this theorem and obtain a more

effective method to find the liftings of a homogeneous ideal.

Theorem 3.3. (Bertone et al (2016), Theorem 3.2.)

Let J S K[xq,...,xn_1] and I € K[x4, ..., x,_1, X, ] be homogeneous ideals.
Then I is a lifting of ] if and only if the reduced Grobner basis of I with respect
to <, iIS{fy, + Gu}a Where {f, }, is the reduced Grobner basis of ] with respect to <

and g, € (x,).

A monomial ordering < is called sequential if for every monomial x“ there
exists only finitely many monomials xf with x* < x#. Clearly every degree
compatible monomial ordering is sequential. Ferro (1988) explain a method for
finding all ideals that have reduced Grobner basis with respect to a given sequential
monomial ordering with the same associated monomial ideal. Given the
homogeneous ideal ] € K[xj, ..., X,—1] and its reduced Grobner basis G = {f, }, with
respect to a sequential monomial order <, let '(J) be denoted the set monomials
not belonging to (LM (f,)),. Define

Ja = z Cayxyxnyn ’ g = {fa + ga}a

where the summation runs over {x¥ € N(J):deg(x¥x,") = deg(f,) }. Then let

C = {Cay}a'y.

Definition 3.5.

The ideal hy S K[C] is generated by the coefficients of the monomials in a

complete reduction with respect to G of S(f;, + g, fp + gp) for every a and g.

Bertone et al (2016) shows that the ideal b, is independent of the reduction

process of S — polynomials by the division algorithm.

14



Definition 3.6.

Define the family of ideals

S ={L:LT<() = (LM (fo)) o}

Theorem 3.7. (Carre Ferro (1988), Lemma 4.)

There exists a bijection between S and the affine scheme V (§,). That means
I =(gq) € S if and only if the parameters C,,, are replaced by constants c,,, € K

that satisfy the conditions in §,.

Bertone et al (2016) use this idea together with Theorem 3.3 to obtain the
family of all liftings of a homogeneous ideal. They start with a homogeneous ideal
J € K[xq, ..., Xp_1] and then they find its reduced Grébner basis G = {f,}, with
respect to a monomial order <. After that using corresponding degree reverse

monomial order <,, on K[x, ..., X,_1, X, ] they found the family of ideals

S={I SKI[xy, .., Xn_1,%n]: LT< (1) = (LM (f3))}

which corresponding the family of some liftings of J.

Bertone et al (2016) also shows that the scheme is independent of the selected
monomial order. If the ideal h; < K[D] is another ideal in Definition 3.5 obtained
by using a different monomial order and parameters, they explicitly construct an
isomorphism between K[C]/b, and K[D]/b;.

Let us illustrate this method with an example.

15



Example 3.8

Take the |dea| ] = (fl = xlz,fz = xle,f3 = x24 + x1X33) c Q[xl, xz,x3].
The given generating set is already a Grdbner basis for J with respect to degree

reverse lexicographic order. We set
G={i+ g1+ 3g2fs+ 93} € Qxq1, %2, x3, x4] Where
g1 = C1x1x4 + Coxpxy + C3x3x4 + Cyxy?,
g2 = Csx1x4 + CoXpx4 + Cox3x, + Cgx,? and

_ 3 2 2 2 3 2. 2
93 = CoXp°x4 + CroX3"x3x4 + C11X1X3°Xy + C12X2X3°Xs + Ci3X3° X4 + C14X2°Xy
+ Cysx1X3%4% + CrgXyx3X4% + C17X32%x4% + CigX1x43 + CroXpx,3

+ Coox3x43 + Cox,*.

We will obtain the equations that the parameters must satisfy if G is the
reduced Grobner basis with respect to degree reverse lexicographic order. Hence, we

apply the division algorithm to the S-polynomial

S(fitgufz+92) = x2(fi +91) —x1(fa + g2) = —Csxfxy +

C1x1X3X5 — CeX1XpXg + Cox2xy — CyX1X3Xs + C3Xpx3%, — CgX1X3 + CaXxp X7 .
Applying the division algorithm

S(fi+ 91, f2 + 92) = —Csxo(fy + 91) + (C1 — Co)x4(f2 + 92) + Cox5xy —
Cyx1x3%4 + C3X3%3%, + (CsCq — Cg)x1x% + (C4 + C,C5 — C1Cq + CE)xpx7 +
(C3C5 — C1C7 4 CsCr)xzxs 4 (C4Cs5 — C1Cg + C4Co)x;

4 2 _ 3.3
S(At+gufzt93) =x"(it+91) —x°(fs+93) =—xix3—
2.3 4 5 2.2 4 3.2
Coxix5x4 + Cix1x5%4 + Cox3x4 — CioxiX5%X3X4 + C3X5X3%4 — C11X7X5X4 —
2 2 2.3 2..2.2 4.2 3 2 2 2
Ciax7x2x3%x4 — Ci3x7x3x4 — CraX7X5x5 + Caxo x5 — CisX7X3x5 — Ci6X1XoX3Xs —

2.2.2 3.3 2 3 2 3 2.4
Ci7x7x35x5 — Cigxyxy — Ciox7XaXy — CooxiXx3xy — Cr1 X1 Xy,

Applying the division algorithm
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S(fi+ 91 f3 + g3) = (=215 — Cox3xy — CroX3X3%4 — CryX1X3%, —
Cio%2%5%4 + (Cy — C13)x3%4 — CiaX5 x5 — CisX1X3%5 — CieXox3xz + (C1Cy —
C17)x5x5 — C1gX1X5 — CroXpx5 + (C1Crs — Co0)X3x3 + (C1Crg — Co)xE) (f1 +
91) + (C1x3%4 + (—=C,Cs + C1Co)x5 x5 + €y CroXpx3x5 + C1Cipx3x5 + (C,CE —
C1C5Co + C1C14)X2x3 + (—=C1CsCro + €1 Cr6)x3%3 + (=C1CE + CCECy —

C1CsCra + C1C10)Xx3) (f2 + g2) + (Coxx4 + C3x3%4 + (C4 — C1Ce)XF) (f3 + g3) —
C1Cx3x3x2 + (—C? + C1Cq + C1C13)x1x5x% — C1Cox5x3x5 — C,C3x5x2 +
(C1CsCs — C1Ce)x3x3 + (C1CsCy — C1C7Co)x5x3x5 + (—CFCyq + C1CeCyq —
C1CsCip + C1C17)x1%5x5 + (=C1C7Crg — C1C3C11)x2%5%3 + (—=C1Cq — C1C5C14 —
C1C;C5 + C1CsC13)x3x3 + (—C1C2C4 + C1CsCq + C1C5CsCq — C1C5Co)x2xT +
(C,C2C1p — CECy5 + C1C6Cy5 — C1C5Crg + C1Cop) X1 x3x4 + (—=C1CEC; +
C1C5C7Co + C1C5CsCro — C1CgCr0 — C1C7Crs — C1CoC15)Xpx3x5 + (C1C5C7Cr —
C1C4C11 — C1CgC1p — C1C5C15 — C1C;Cy6 + C1C6Cr7)x5x5 + (C1C5 — C1CEC, +
C1CEC14 — Cf Cig + €1 C6Crg — C1C5C10 + C1Coy)x1x3 + (C1CEC6 — € CECq —
C1CEC6Co + C1C5CaCo + C1C5C6Cra — C1C5C14 — C1C5C15)Xpx3 + (C1C5C, —
C1CEC7Cy + €1 C5CyC10 + C1C5C7C14 — C1C4C15 — C1CgCr6 — C1C3C15 — C1C7Cro +
C1C6C20)x3x3 + (C1C3 Cg — C1CEC5Co + C1CsCgCr4 — C1C4C15 — C1CsC10 +
C1C6Ca1)X5

_ .3 2.3 3

S(fz+92f3+93) =x°(f2 +92) —x1(f3 + g3) = x1x5 + Csx1x5%4 —

Cox1%3%4 + Cox3xq — CioX1X5X3%y + CoX3x3%, — C1x7X5%4 — C Xy —
9X1X3 Xy 6X2X4 10X1X2 X3X4 7X2X3X4 11X1 X3 X4 12X1X2X3 Xy
3 2.2 3.2 2 2 2 2.2

Ci3x1x3%4 — CiaX1x5x5 + Cexaxy — Cisxix3xs — Ci6X1X2X3X5 — Cy7XX3X5 —

CrgX7x3 — CroX1X%3 — CopXyX3X3 — CoX1X5.
Applying the division algorithm

S(f2 + 92 f3 + 93) = Cexa(fr + g1) + ((Cs — Co)x3 x4 — CroXpX3X4 —
Ci2%5%4 + (=CZ + C5Co — C1a)%2%5 + (C5Cro — Ci6)x3x5 + (C3 — C2Co +
C5Cra = C10)x3) (fo + g2) + (=x3 — Ci1x5x4 — Cisx3x5 — Cigx3) (f3 + g3) +
Cyx3x3%x, + (C; — Cg — C13)x1x5x4 + Coxpx5x4 + C3xix, + (—CsCq + Cg)x3x7 +
(=CsCy + C7Co)x5x3x5 + (C1C1q — C6Cyq + C5Cip — Ci7)x1x3%5 + (C,Cyo +
C2C11)%%5x5 + (C4 + C3C1 + C7C1p — CoCi3)x3xF + (C5Cs — C5Cq — C5C6Co +
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CsCo)x3x3 + (=CZC1p + C1C15 — CoCys + CsCi6 — Cop)X1X3x3 + (C2C7 —

C5C7Co — C5CeCro + CgCro + C7C14 + CoC15)%X3%3 + (—C5C7Cro + CoCry +
CgCiz + C3Cy5 + C;Cr6 — CsCr7)x5x3 + (—=C5 + C3Co — C5Cy4 + C1Crg — CCrg +
CsCio — C21)x1x5 + (—=CECg + C5Cq + CZC6Co — C5C5Co — CsCsCry + CoCy +
C2C18)x2x5 + (=C3Cy + C5C7Co — C5CyC10 — C5CrCry + C4Crs + CCr6 + C3C18 +
C7C19 — C6Ca0)x3xi + (—C3Cq + CZCgCo — C5C5C14 + C4Crg + CgC1g — CsCa1)X3.

The coefficient of variables in the remainders generates the ideal h,. After

elimination of variables,

Bo = (Cy,C3,C4 — C;C + C¢,C;,Cg — C5Cq, Cy3 — €y + C6, €17 — C1Cy5 +
CoC11 — C5C12, Cog + C2C1o — C1Cy5 + C6Cy5 — C5Cig, Coy + C& — C3Co + C2Cy4 —
C1Cyg + CsCig — C5Cho).

Hence the members of family of the liftings of J are given by
fi + 91 = 2% + Crx1204 + (C,Co — CE)x47,
fo+ g2 = X125 + Csx124 + CoXo Xy + CsCoxy”
and

fa+ g3 = x% + x1%33 + Cox23x, + Ciox2%x3%4 + Ci1X1Xx32%, +
Ci2%2X3% %4 + (€1 — Co) X33 x4 + Craxax,” + CrsX1X3%4° + CreXaX3x,” +
(C1C11 — CCry + C5C12)x3° x4 + Cigxy x> + Croxpx4® + (=CZC10 + €1 Cy5 —
C6Cis + CsC16)x3%,> + (=C5 + C5Cy — CEC1y + C1Crg — C6Crg + CsC19)x4*

where C;, Cs, Cg, Cy, C19,C11,C12, C14, C1s, C16, C15, C19 are free parameters.

In the next example we will show that this method is not appropriate to the

nature of the lifting problem.
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Example 3.9.

Let us consider the same ideal | = (f; = x12, f, = x1%5, f3 = %% + x;x33) ©
Q[x1, x5, x3]. The Grobner basis of J with respect to degree lexicographic order is

H = {fl = xlz,fz = xle,f3 = x24 + x1X33,f;1_ == x;} In faCt,

S(far f3) = x3°f, — x2f3 = —x3.

It is well known that the number of polynomials in each minimal generating
set of a homogeneous ideal is fixed. This number is three for our case. Hence H is

not a minimal generating set for / and f, is redundant. Now we define the set
H={fi+9uvf2+ 923+ 3z fa+ ga} E Q[xy, X2, x3, x4] Where

gl = D1X1x4 + D2x2x4 + D3X3x4, + D4_x2,
gz = D5X1X4 + D6xZX4 + D7X3X4 + Dgxf,

_ 3 2 2 2 3 2.2
93 = D12X5%4 + D13x5x3x4 + Doxyx3x4 + Dysxax3%, + D1gX3%X4 + Digxyxs +

2 2 2.2 3 3 3 4
D1oX1X3%5 + DieXaXx3x5 + D1gx3xs + Dy1X1x3 + Dy7X3%5 + DagXx3xy + Dy1Xy,

_ 4 3 2.2 3 4
g4 = Dasxyxy + DygXx5x3%4 + Dygx5x35x4 + D31 X2x3%, + D3sx3xy +
Dayx3 x5 + Dygx5x3x5 + Dopx1x5x% + Dayxpx3x% + Dagx3xi + Dygx5x3 +

3 3 2,3 4 4 4 5
D23X1X3x4 + D33XZX3X4 + D37.X3 X3 + D24X1X4 + D34X2X4 + D38X3X4 + D39X4.

We will show that f, + g, is also redundant in family of liftings of J. Since f,
is the monic form of the remainder of S(f5, f3) upon division by {f;, f>, f5}, a step of
the division of S(f, + g,, f3 + g3) by H will be

S(f2 + g2, Dsxs) — c(fo + ga)

where ¢ € Q. Therefore a constant multiple of g, will go to the remainder. Hence
the parameter D;’s in g, can be obtained as polynomial functions of other

parameters. In this particular example,

S(fo + 9o, f3 + g3) = (—Dgx5x4 — Digx3xz — D11x3)(fo + g2) + Dsxo(fs + g3) —
(fa + 94) + (=Ds — D1y + Dy5)x3x4 + (—=Dy3 + Dog)x3x3%4 + (—Dys5 +
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Dyg) x5x3%4 + (Dg — D1g + D31)x2%3%x4 + (D7 + D35)x3%x4 + (—DsDyp — Dyy +
Dy7)x3x5 + (=DsDy3 — Dyg + Dyo)x3x3%5 + Dypx;x5x5 + (DgDg — DsDy5 —
Dig + D33)x,%5%F + (Dg + D;Dg — DsD1g + D36)x3x5 + (—DsDys — Dy7 +
D30)x5x3 + Dyzx1x3%3 + (DgD1g — DsDyg — Dag + D33)x2x3%3 + (DgDo +
D;Dyg — DsDyg + D37)x5x3 + Dayx1 x4 + (DgD1y — DsDyy — Doy + D3g)xx5 +
(DgD1g + D7Dy — DsDag + D3g)x3xi + (DgDyy — DsDyy + D3g)x;.

After replacing parameters of g,with appropriate polynomial functions of
other parameters, it is clear that f, + g, can be written as a combination of {f; +

91 f2 + 92, f5 + g3} In this particular example

fa+ ga = (—Dgx3x4 — Digx3xs — D11x3)(fo + g2) + Dsxy(fs + g3).

Therefore f, + g, is redundant. That means after doing huge number of
divisions during the process of finding family of liftings with this method, one can

eliminate f, + g, from the generating set of liftings.

This applies to all polynomials that are subsequently added to the generating
set during the Grobner basis computation. Hence, if the original generating set is not
a Grobner basis with respect to some monomial order, this method causes a lot of

unnecessary computations.
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4. ANEW METHOD FOR FINDING LIFTINGS

4.1 H-Bases

Definition 4.1.1.

Let f € K[xq, ..., Xn_1] IS @ nonzero polynomial. If f = fz + fa_1+ -+ fo
with deg(f;) = i, then H(f) = f; is called leading form of f.

Definition 4.1.2.

Let I € K[xq, ..., X,—1] be an ideal and let H(I) be the ideal generated by
leading forms of elements of I. A generating set {h,, ..., h;} of I is called H-basis or
Macaulay basis of I provided that H(I) = (H(hy), ..., H(hy)).

It is well known that a Grébner basis with respect to a degree compatible

monomial order is also a H-basis.

Definition 4.1.3.

(@) Let f € K[xq, ..., x,_1] IS @ nonzero polynomial such f = f; + fy_1 +
ot fo with deg(f) =i . Then f"=f,+x,fq_1+ +x,%f, is called
homogenization of f with respect to x,,.

(b) Let F € K[x4, ..., X_1, X5,] 1S @ Nnonzero homogeneous polynomial. Then

F, = F(x4, ..., xn—1, 1) is called dehomogenization of F with respect to x,,.

(c) For an ideal /] € K[xy, ..., x,_1], the ideal J* = (f": f €]) is called the
homogenization of .
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(d) For a homogeneous ideal I € K[x4, ..., x,], the ideal I, = (F,:F € I) is

called dehomogenization of 1.

It is clear that if I = (F,, ..., E.) € K[x4, ..., x,,] where F;'s are homogeneous
polynomials, then I, = ((F})4 ..., (E.)q). On the other hand, the corresponding

property is not valid for the homogenization ideals.

Lemma 4.1.4. (Carre Ferro and Robbiano (1990), Lemma 2.3.)

The followings are equivalent:

(@) The set {f1, ..., fs} is an H-basis of an ideal I € K|[x4, ..., Xp_1].
®) 1" = (", . L™,
(c) x, is not zero divisor on K[xy, ..., x, 1/{fi", ., f:").

The next lemma gives a relation between the lifting problem and H-basis.

Lemma 4.1.5. (Carre Ferro and Robbiano (1990), Lemma 2.4.)

Let] € K[xq, ..., x,] be a homogeneous ideal. The following conditions are

equivalent.
(@) x,, is not a zero divisor in K[xq, ..., Xp—1, Xnl/1.
(b) I = (I)".
(©)H(,) = I1(xq, e, Xp—-1,0).

Now, we are ready to give the main result of this section. Recall that Bertone
et al (2016) used the modified version of the following lemma when they finding the

family of liftings via Grobner bases.
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Theorem 4.1.6. (Carre Ferro and Robbiano (1990), Theorem 2.5.)

Let J=<(fy, .. fr) € K[xq,..,xn,—q] where f;'s are homogeneous

polynomials.

(@) Let h; = f; + g; where deg(g;) < deg(f;) fori=1,..,r. If {hy, .., h}
is a H-basis for the ideal U = (hy, ..., h,.), then I = U" is a lifting of J.

(b) If Iis a lifting of J, then there exist polynomials g4, ..., g, Where
deg(g;) < deg(f;) fori =1,..,rsuch that {f; + g4, ..., f + g} is @ H-basis and

I =((fi + gl)h, oo (fr + gr)h>'

This theorem suggests the following. Given a homogeneous | = (fi, ..., f;) S

K[xq, ..., Xn_1], define

Ga = z Cayxy: = {fa + ga}a-
deg(x¥)<deg(fa)

Then find the conditions the parameters C,, must satisfies for 7 to be a H-

basis. We study this in the next section.

4.2 Family of Liftings and Syzygies

The key point here is the following theorem given by (Luo and Yilmaz,
2001).

Theorem 4.2.1. (Luo and Yilmaz, 2001, Theorem 2.4.)

Let I = (hq, .., hs) € K[xq, ..., x,,_1]. Let the columns of the t X [ matrix
S = (si;) be a generating set of Syz(H(h,), ..., H(h,)). We may assume further that
each s;;f; is a homogeneous polynomial of same degree for j =1,...,t. Then

H = {h4, ..., h;} is a H-basis for I if and only if
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t
qi:zsjihjzzaﬁhj' 1<i<l
J

j=1
for some aj; € K[x, ..., x,,_1] such that deg(q;) = max{deg(ajihj),j =1, ...,t}.

Based on Theorem 4.1.6 and Theorem 4.2.1, Luo and Yilmaz (2001) propose
the following method for finding family of lifting of a homogeneous ideal. Given a

homogeneous J = (fy, ..., fr) € K[xq, ..., Xp_1], define

9i = Z Cipyx¥, hi=fi+g:
deg(x¥)<deg(f;)

Furthermore, for each q; in Theorem 4.2.1 define

a; = Z Dijyxy.
deg(xV)<deg(q)—deg(h;)

Then compare the coefficient of monomials of equation given Theorem 4.2.1 to find
relations among the parameters C;,'s and D;;,'s. This is not a convenient method
because there are extra parameters D; jS- Even though in their example they are able
to solve these extra parameters in terms of C;,'s, there is no guarantee that this will

always occur.

4.3. Vector Spaces and Homogeneous Ideals

Let I € K[x,...,x,_1] be an ideal generated by homogeneous polynomials

fi, .-, fs. FOr anonzero integer d,

Va(l) = {f € I: deg(f) = d or f = 0}

can be considered a subspace of the vector space P, of degree d polynomials over K.
Furthermore all monomial multiples of the form x;%---x,_;“-1f; with a; +
-+ a,_, +deg(f;) = d is a spanning set for V;(I). Hence the problem whether a
polynomial £ is in I or not can be solved by linear algebra techniques. A minimal

generating set for a homogeneous ideal can be obtained by dropping redundant
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elements. Number of elements in any minimal generating will be same number of

polynomials.

Now let us consider a problem that we will often encounter when finding

lifting family of a homogeneous ideal by a new method. Given a polynomial

deg(x¥V)=d

we want to obtain the equations that the parameters Cys must satisfy for the
polynomial f to be in I. This problem can be solved by linear algebraic techniques as
follows. Suppose that B be an ordered set of monomials of degree d. Consider a
matrix M whose columns are the coordinate vectors of the polynomials of the form
X% xpy_ %t fy with @y + -+ a4 + deg(f;) = d relative to B and the last
column is the coordinate vector of f with respect to B. Obtain a row reduced
echelon form matrix M which is equivalent to M. The last entries of the pivot rows of
M gives the coefficients, as a linear combinations of C,'s, of the homogeneous
polynomials hy, ..., hs satisfying f = hyf; + -+ hsfs; where either h;f; =0 or
deg(h;f;) = d. Then consider the rows of M with only the last entry is zero. These
non-zero elements give linear equations that C{,s must satisfy for the polynomial f to

be in I. Let us illustrate this process with an example.

Example 4.3.1.

Consider the homogeneous ideal
I={f1, [ f3) = (x1% + 2223, %% + x3%, %17 + x1%,% + x,%%3) .

We try to answer the following question. Under what conditions on

parameters is the general polynomial of degree 3

g = @63 + ayx?x, + agx1x2 + a;x5 + azx2x; + asx Xyx3 + agxix; + agx x2
+ agx,x3 + ajox3
inI?

25



Clearly {x;f1, x2f1, X3f1, X1 f2, X2 f2, X3 f2, f3} 1S @ spanning set for the vector

space V5 (I). Hence consider the augmented matrix

x1f1 x2f1 x3f1 x1f2 x2f2 x3f3 f3 9

x,3 1 0 0 0 0 0 1 a,
x12x, 0 1 0 0 0 0 0 a,
x1%x3 0 0 1 0 0 0 0 as
X1X52 0 0 0 1 0 0 1 ay
X1X2X3 1 0 0 0 0 0 0 as
X1X3> 0 0 0 1 0 0 0 ag
x,3 0 0 0 0 1 0 0 a,
X% x3 0 1 0 0 0 1 1 ag
X,x32 0 0 1 0 1 0 0 ag
x53 0 0 0 0 0 1 0 ago

After applying a series of elementary row operations, the row reduced

echelon form of this matrix is the following

x1f1 x2f1 x3f1 x1f2 x2f2 x3f3 f3 9

x,3 1 0 0 0 0 0 0 as
x%x, | 0 1 0 0 0 0 0 —a, +ag + ag — aq
x12x3 0 0 0 1 0 0 0 0 —a; + aq
x1x22 | 0 0 0 1 0 0 0 ag
X1x2x3 0 0 0 0 1 0 0 a;
x1x32 | 0 0 0 0 0 1 0 a0

x3 0 0 0 0 0 0 1 a, — ag
x%x3 | 0 0 0 0 0 0 0 a,; —a, — as + ag
x,x3%2 0 0 0 0 0 0 0 a,+a,—ag—ag+ag

x,3 0 0 0 0 0 0 0 as + a; — ao
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Hence g€l if and only if a; —ay—as+ag=0,a,+a,—ag—ag+

aio and as; + a; — aq = 0. Under these conditions

g = (asx; + (—as + ag + ag — a;0)x; + (—a; + ag)x3)fy

+ (agx1 + azx; + ajox3)f2 + (a4 — ag)fs.

4.4. New Method

We start the following version of the division algorithm.
Theorem 4.4.1.

Suppose that {fi, ..., fs} is an H-basis for an ideal I € K[x,...,x,]. Then
for any f € I, there exist polynomials a4, ..., ag such that

f=aifi + -+ asfs
where deg(a;f;) < deg(f) when a; # 0.
Proof.

Since {fy, ..., fs} is an H-basis and f € I, H(f) = byH(f;) + -+ bsH(f;)
where the polynomials b, ..., bs can be found by linear algebraic techniques as

explained in the previous section. Now redefine f as

f=Ff=bifi == bsfs.
Then apply the same process repeatedly until f become zero.

Now we are ready to give a new method for solving the lifting problem.

Given a homogeneous | = (fy, ..., f,) € K[xy, ..., Xx,—4], define

gi = Z Coyx¥, hi=fi+g:.
deg(x¥)<deg(f;)
Theorem 4.1.6 implies that {f; + g1, ..., f» + g,-} is a H-basis if and only if I =
((fy + gD" ..., (f- + g)") is a lifting of J. Hence we have to decide under what
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conditions {f; + g4, ..., f + g} is an H-basis. For this we use Theorem 4.2.1. First
we find a minimal generating set for Syz(fi, ..., ). Using Theorem 4.4.1 for each

syzygy (sy, ..., s,)T in this generating set, find the polynomials a,, ..., a, such that

s191 + -+ 509y = a1(fy + 91) + -+ a(fy + 97)

where deg(a;(f; + g;)) < deg(s;g, + --* + s,-g,) when a; # 0. During the division
process the relations that parameters C;, should satisfy can be obtained as in
Example 4.3.1. Let b, be the ideal generated by collection of these relations. That
means [ is a lifting if and only if the parameters C,, are replaced by constants
Cay € Kthat satisfy the conditions in b,. This is a Grobner basis free method. Even

though the best method for finding a generating set for a syzygy module involves a
Grobner basis computation, there is no need for Grobner basis computation for
{fi+ 9. -, f +9-} Insome instances the generation set of the syzygy module
may be known in advance. No Grdbner basis computation is required in this case.

Let us demostrate this method with an example.

Example 4.4.2.

Let us take the same ideal | = (f; = 12, f, = x1%, f3 = x,* + x;x33) €
Q[x1, x5, x3]. We set

H={i+91f2+ 92+ 93} S Qx1,x2,x3]
where

91 = Fix1 + Fox5 + F3xs + Fy,

gz = stl + F6x2 + F7x3 + F8

and

_ 3 2 2 2 2 3
93 = Foxy® + Fiox1°%5 + F11x17X3 + Fi2X1 %7 + Fi3X1XX3 + FiaX1X3° + Fi5x,
+ Fiex32x3 + Fi7X3x3% + Figx33 + Fiox12 + FooXx1X, + FpyX1%3

+ Fyuxp? 4 Fy3xoX3 + Fpux3? + FosXxy + FaeXxy + Fayxs + Fag.

Using the technique expalined in the introduction chapter,
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Syz(fi, fa, f3) = {(x2, —x1, O)T: 0, x§ + x1x§, —xlxz)T' (xg:f, xg', _x1)T>-

The next step is to write the general polynomial of degree 3,4 and 5 as a
polynomial combinations of f;, f, and f5. We do not look the polynomials of degree
2 which are obvious and the polynomials of degree 6 or higher because the syzygies

in Syz(fi, f>, f3) can produce at most a polynomial of degree 5. So

UL + UpxZxy + UgX X2 + UsXS + UsXZX3 + UsX X X3 + UgX2X3 + UgX X2

2 3 _
+ UgXpx3 + UoX3 = (UgXg + UpXy + UzX3)f1 + (UsXy + UsX3) [
under conditions ug = u; = ug = Ug = Uy = 0;

VX7 + V03 %, + Uax2x2 + Vyx1%5 + VX5 + v3xSxs + vsxZx,x3 + vex x2x5 +
V12X3 X3 + VgX2X5 + VoX X X2 + V13X3X5 + V10X X5 + ViaXoXs + VysXs =
(V1X% + Vyx1X5 + VaX2 + U3X1 X3 + VsXpXs + Vex2)fi + (VX1 X5 + VgXpxs +

Vox32)fo + V11 f3

under conditions vy = V41, V12 = V33 = V34 = V35 = 0 and

WX} + Woxix, + wax3x2 + wox2x3 + wyixxs + wigXs + waxixg + wsx3x,x;

+ Wex2x2x3 + WipX1 X3X3 + WipXax3 + WeXx3x2 + woxZx,x32
+ Wi3X1 X3X5 + WigX3 x5 + WioXTX5 + WiaX1XoX5 + WygxZx3

4 4 5
+ WisX X5 + WaoXp X5 + Wp X3
— 3 2 2 3 2
= (Wyx{ + WoXixy + WeX X5 + WoXs + W3XiXg + WsXqXpX3
+ WgxZx3 + WeX X2 + Woxyx2 + wiox3)fi

3 2 2 3

+ (W11x3 + WipX5x3 + WizXaxs + (Wia — Wig)x3)f2 + (Wi

+ wi7x3)f3
Under COﬂdItIOﬂS W15 = W17, W18 = W19 = WZO = W21 = 0
Now start from the first syzygy.

q: = X291 — X192 — Fsx§ + Fix1%, — FeX1Xp + Fox3 — Fyx1X3 + F3xpx3 — Faxy

+ Fyx,
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Then,

H(q) = (=Fsf1 + (F — Fs)f;) and we also have F, =0,F; =0,F, = 0.

Using the division

q:=q— (—Fs(fi +g1) + (F1 — Fo)(f2 + 92))
= (FsFg — Fg)x; + (Fy — F1Fg + F62)x2 + FuFs — FiFg + FoFg

and we should also have Fg = FsF, and F, = F,F, — F2.
Next consider the second syzygies.
q:= x3° g1 + %% 9, — x195.
Then,

H(q) = (—Foxf — Fiox1xy — Fipx5 — Fi1x1%3 — Fiaxpx3 — Fiax3)f1 + ((Fs

— Fi5)x5 — Fiexox3 — Fi7x3) f2 + Fef3

and we should have F, = F;, — F;g. Updating above relations we also get F, =
F1F18 - F128’F8 = F1F5 - F5F18. Let

q = q — (=Foxf — Fyox1xy — Fipx5 — Fi1x1x3 — FizXox3 — Fiax3)(fy + 91)

+ ((Fs — Fi5)x3 — Fiex2x3 — Fi17x5) (f2 + 92) + Fs(f3 + 93).

H(q) = ((FoFig — Fi9)x1 + (FioF1g — F20)x3 + (Fi1F1g — F21))fi + ((—F2
+ FyF1g + FsFis + FiaFig — Fop)xy + (FsFi + FisFig — F3)x3) [

under the condition F,, = FsF;7 + Fi4F;3g.

Then,

q = q — ((FoF1g — F19)x1 + (F1oF1g — F20)x, + (F11F18 — F21))(f1 + 91)
+ ((—FZ + FyFy + FsFy5 + FiFig — Fop)xy + (FsFie + FisFig

— Fy3)x3)(f2 + g2)-

H(q) = ((—FoF + FigFy9 — Fy5)fi + (F& — FZFy5 — FsFi,Fig — FioFfg + FigFag
+ FsFyy — Fae)f2)
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With F; = —FZF,¢ — FsFy3Fyg — Fi1Ffg + Fi1gFa1 + FsFas.

q = q — (—FoF + FigF19 — F25)(f1 + 91) + (F& — F¢F,5 — FsFi,F1g — FioFfy
+ FigFo0 + FsFy — F36) (f2 + 92))-

Then g =0 under the condition F,g=—F&+ F3F s+ FZF,F 5+
FsFyoFfs + FoFis — FigFig — FsFigFy0 — FEF,5 + FigFa5 + FsFag.

The last syzygy do not produce any new realtion between parameters.

Therefore the ideal of parameters is

Yo = (Fy, F3, Fy, Fg — Fy + Fig, Foy — FsFy7 — F14Fyg, Fy — FiFig + Ffg, Fg — FiFs
+ FsFig, Fo7 — FF16 + FsFi3Fig + Fi1 Fy — FigFoy — FsFps, Fog — Fe
— FSFys — FEFioF1g — FsFioFfy — FoFiy + FigFio + FsFigFy0 + FEFyo
— FigFa5 — FsFy).

Hence I =((fi +9)" (z+9)" (fs+93)") S K[x1,%x2,%3,%4] is a
lifting of J if parameters replaced by the constants in the affine scheme V (b,).

One can show that b, < b, and h, < b,. Hence V(b)) € V(h,) and V(h,)
V(H,). For example, if we take F; = 1, F;, = 0 and the other free variable equal to
zero we obtain a lifting I = (x;2 — x;x4, X1 X5 + X3X4, X2 + x1%33 + x3x,). This
lifting was not obtained in either example of the previous chapter. The reason
beyond this result is the fact that a Grobner basis with respect to a degree compatible

monomial order is always a H-basis but converse is not true.
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5. CONCLUSIONS AND RECOMMENDATIONS

A new method for the solution of the lifting problem for homogeneus ideals
is developed. This method is more suited to the spirit of the problem than the method
using Grobner bases. Because the lifting is more related to the H-bases than Grobner
bases. Hence it finds more lifting than the method using Grobner basis. However, we
are not able to show the liftings we found are all liftings of the given homogeneous

ideal. This will be an interesting problem for the future studies.

Bertone et al (2016) also embeded the zero locus of their liftings into the
Hilbert scheme and found some intererting topological properties of this zero locus.

Similar results can be obtained for the zero locus of our liftings.
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