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ABSTRACT

MONOTONE AND OPEN WHITNEY MAPS DEFINED ON HYPERSPACES
M.S. THESIS

GAMZE BAKANAKOĞLU,
BOLU ABANT İZZET BAYSAL UNIVERSITY GRADUATE SCHOOL OF

NATURAL AND APPLIED SCIENCES
DEPARTMENT OF MATHEMATICS

(SUPERVISOR : ASSOC. PROF. DR. İSMAIL UĞUR TIRYAKI)

BOLU, AUGUST 2019

Let X be a nonempty continuum. It is known that there exists a map, which is called
Whitney map, satisfying some special properties. Whitney map for 2X need not be mono-
tone and open. However, Whitney maps for defined on C(X) i.e the closed subset of 2X ,
have these properties. One of the aims of this dissertation is to investigate whether Whitney
maps defined 2X are monotone and open. In addition, if the Whitney map is denoted by ω,
the structure of Whitney level denoted by ω−1(t) (in some articles it is called Whitney con-
tunia too) is investigated whenever X is Peano continuum. Because, locally connectedness
of Whitney level for an arbitrary t ∈ [0, ω(X)] is not known yet.

This dissertation is organized as follows, we give, first, a comprehensive introduction
part to explain a motivation of this dissertation after that general definitions and theorem(s)
used in this thesis are given, and then the notion of a hyperspace is mentioned briefly. The
existence and extension of a Whitney map is the crucial parts of this dissertation. Since our
study depends on its existence, we work on it and its point inverses whenever X is, espe-
cially, a locally connected continuum. Chapter six and seven are related to these properties.
In the last chapter, we give some observations which is not in literature and we mention
what we are working on and we also pose some questions for interested reader.

KEYWORDS: Hyperspace, Whitney Maps, Hausdorff Metric, Monotone and Open maps,
Whitney Level,Peano Continuum .
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ÖZET

HİPER UZAYLAR ÜZERİNDE TANIMLI MONOTON VE AÇIK WHITNEY
DÖNÜŞÜMLER

YÜKSEK LİSANS TEZİ
GAMZE BAKANAKOĞLU,

BOLU ABANT İZZET BAYSAL UNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ
MATEMATİK ANABİLİM DALI

(TEZ DANIŞMANI : DOÇ. DR. İSMAİL UĞUR TİRYAKİ)

BOLU, AĞUSTOS 2019

X boştan farklı bir continuum ( tıkız , bağlantılı metrik uzay ) olmak üzere, 2X üzerinde
tanımlı Whitney adı verilen belirli özellikleri sağlayan bir dönüşümün varlığı bilinmektedir,
bu dönüşümün açık ya da monoton olma özelliklerine sahip olması gerekmemesine rağ-
men 2X’in kapalı altkümesi olan C(X) üzerinde tanımlı her Whitney dönüşümün monoton
ve açık olduğu bilinmektedir. Eğer X continuum üzerine lokal bağlantılılığı eklersek ki,
literatürde buna Peano continuum denir, 2X üzerindeki her Whitney dönüşümün açık ve
monoton özelliğine sahip olduğunun incelenmesi bu tezin amacının bir tanesidir ve diğeri
eğer Whitney dönüşümü ω ile gösterirsek X’in Peano contiuum olması durumunda w−1(t)
ile gösterilen Whitney seviye (bazı makalelerde buna Whitney continua da denir ) yapısı da
ayrıca incelenecektir. Çünkü bildiğimiz kadarı ile [0, ω(X)] aralığında aldığımız her t için
bu Whitney seviye yapısının lokal bağlantılı olup olmadığı henüz bilinmemektedir.

Bu tez şu şekilde düzenlenmiştir. Biz öncelikle tezin motivasyonunu açıklamak için
ayrintılı bir giriş bölümününü verdik ardından bu tezde kullandığımız tanımları ve teorem-
ler verildi ve sonra kısaca Hyperspace kavramından bahsettik. Whitney dönüşümlerin varlığı
ve genişletilebilirliği önemli bir bölümdür. Çünkü bizim çalışmamız onun varlığına bağlıdır.
Biz özellikle X’in lokal bağlantılı olması durumunda onun ve onun noktasal tersinin özel-
likleri üzerinde çalışacağız. Söylediğimiz gibi Whitney dönüşümler bölümünün arkasından
onun özellikleri ve onun noktasal tersinin özelliklerinin olduğu iki bölüm gelmektedir. Son
olarak, sonuç bölümünde, literatürde olmayan bir gözlemimizi vereceğiz ve ne üzerinde
çalışıyor olduğumuzdan bahsedeceğiz ve üstelik ilgilenen okuyucular için açık problem bı-
rakacağız.

ANAHTAR KELİMELER: Hiper Uzaylar, Whitney Dönüşümler, Husdorff uzaklık, Mo-
noton ve Açık Dönüşümler, Whitney Seviye, Peano Continuum.
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1. INTRODUCTION

Let (X,T ) be a T1 topological space and define the following set

CL(X) = {A ⊂ X|A is nonempty and closed in X}

we will put a topology on CL(X), that is called Hyperspace of a topological space X or

hypertopology, such that the function i : (X,T ) → (CL(X), τ) defined as i(x) = {x}
is a homomorphism onto its image. The two famous hyperspaces, Vietoris topology and

the Hausdorff metric topology denoted by τHd
, have been introduced and investigated by

Leopold Vietoris(1891-2002) and Hausdorff in 1914. It goes without saying that in case

of X is compact space with metric d, then the topology produced by the Hausdorff metric

coincide with the Vietoris topology.

As we can see above, the fundamental motivation of hyperspace is to obtain infor-

mation on the structure of a topological space X by studying properties of the hyperspace

CL(X). By the way, I just wanted to notice that CL(X) and 2X are the same when X is

compact. But especially geometric model of hyperspaces is not only quite complicated but

also unknown in many cases, so the hyperspace theory created one of its own way to tackle

this difficulty by means of Whitney map, defined by J.L. Kelly in 1942.

By a Whitney map we mean a real-valued continuous function ω defined on a hyper-

space H of X that satisfies the following two conditions: ω({x}) = 0 for every x ∈ X

and if A $ B then ω(A) < ω(B). The subject of openness, monotonicity and confluence

of Whitney maps has been investigated by M.M. Awartani, W.J. Charatonik, S.B.Nadler Jr.,

and A. Illanes, see (Charatonik, 1984; Awartani, 1993; Charatonik and Samuelewicz, 2002;

Illanes, 1993). In here, we should note that J.J.Charatonik observed in (Charatonik, 1964)

that monotone surjective maps and open surjective maps between continua are confluent.

One can ask whether the Whitney map ω is also monotone, answer of this question has been

given by Janusz R. Prajs affirmatively by showing more general result that is each confluent

Whitney map is monotone. By the way, in (Charatonik, 1988) W.J. Charatonik gave short

form of Prajs’s proof.

It has been proved by Eberthart and Nadler in (Eberhart and Nadler, 1971) that Whitney

maps defined on C(X) when X is continuum are monotone and open. Whitney maps, how-
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ever, for 2X need not have either of these two nice properties. For example Nadler showed

in (Eberhart and Nadler, 1971) that there is a Whitney map for 2X that is not open (and not

monotone) when X is a closed interval. In 1992, we encountered necessary and sufficient

condition, given by Illanes, on a Whitney map for 2X for being open (or monotone). In ad-

dition to that in case of being either locally connected (Illanes, 1986) or arc-smooth (Illanes,

1990) of X , then we can talk about then existence of an open (and monotone) Whitney map

for 2X that has been showed by Illanes.

Basic knowledge about Whitney level, denoted by ω−1(t), has been given in (Nadler,

1978). We also investigate the structure of Whitney level whenever X is a locally connected

continuum (Peano continuum) by using (Goodykoobtz and Nadler, 1982). In this paper,

they look for conditions under which positive Whitney level, defined on Peano continua,

is a Hilbert cube. By a Hilbert cube, we mean that a space which is a homomorphic to

I∞ =
∏∞

i=1[0, 1]i.

2



2. AIM AND SCOPE OF THE STUDY

2.1 Fundamental Definitions

As indicated in abstract and introduction, one of the main goal of this dissertation

is to investigate the structure of point inverse of the Whitney map defined on C(X) and

2X , but we focus on especially for 2X . To be more specific, we wonder the structure of a

point inverse of the Whitney map defined on 2X when X is a Peano continuum. We give

some definitions and theorems used in this thesis and we follow (Illanes and Nadler, 1999;

Willard, 1970; Macias, 2018). But note that we will omit some well known definitions such

as topological space, metric space, partially ordered set, and so on.

Definition 2.1.1. Let (X, d) be a metric space. The metricHd given by the following formula

Hd(A,B) = inf{ε > 0 : A ⊂ Bε(B) and B ⊂ Bε(A)}

where Bε(A) = {x ∈ X : there is point a ∈ A such that d(a, x) < ε} is called the Haus-

dorff metric on 2X

Definition 2.1.2. A function f : (X, d) → (Y, p) between two metric spaces is said to be a

map if it is a continuous function.

Definition 2.1.3. A map f : X → Y between contunia is said to be

1. open if it maps open sets to open sets.

2. monotone if f−1(t) is connected for each t ∈ Y or equivalently if f−1(B) is connected

for each subcontinuum B of f(X).

3. confluent if for each subcontinuum Q of Y , each component of the inverse image

f−1(Q) is mapped by f onto Q.

Definition 2.1.4. A continuumX is said to be unicoherent provided thatA∩B is connected

whenever A and B are subcontinua of X such that A ∪B = X .

Definition 2.1.5. LetX and Y be topological spaces. The maps f : X → Y and g : X → Y

are called a homotopic if there is a continuous function F : X × [0, 1] → Y such that

F (x, 0) = f(x) for all x ∈ X and F (x, 1) = g(x) for all x ∈ X . In this case F is called a

homotopy between f and g.

3



Unicoherent Not Unicoherent

Figure 2.1: Unicoherent

Definition 2.1.6. If a continuum is the union of two proper subcontinua, then it is called

decomposable, and a continuum that is not decomposable is said to be indecomposable. A

continuum is said to be hereditarily indecomposable if all of its subcontinua are indecom-

posable.

Figure 2.2: Buckethandle Continuum (Indecomposable continuum)

Definition 2.1.7. A chain means a finite collection of open sets U = {U1, . . . , Un} such that

Ui ∩ Uj 6= ∅ iff |i− j| ≤ 1. A member of U is called a link of U.

Observe that the links do not need to be connected

U1 U2 U3

Figure 2.3: Links of chain
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Definition 2.1.8. A continuum X is said to be chainable if for each ε > 0, there is a chain

in X , covering X such that each link has diameter less than ε. See the following pictures.

[ ]

0 1

Figure 2.4: Unit interval

x

sin(1/x)

Figure 2.5: Topologist sine curve

The notion of circle-like is very similar to the notion of chainable except a little differ-

ence, see (Illanes and Nadler, 1999)[p. 259] and for the example see the picture 2.6

Figure 2.6: Warsaw Circle

Definition 2.1.9. A metric space X said to be contractible provided that the identity map,

1X , of X is homotopic to a constant map g.

5



Definition 2.1.10. A space X is path connected iff for any two points x and y in X there

exists a map f : [0, 1]→ X such that f(0) = x, f(1) = y.

Theorem 2.1.11. If X is a contractible metric space, then X is path connected.

Definition 2.1.12. A retraction is a continuous function, r, from space Y into Y such that

r is identity on its range. A subset Z of Y is said to be retract of Y provided that there is a

retraction of Y onto Z. A compactum K is called an absolute retract (written AR) provided

that whenever K is embedded in a metric space, Y , the embedded copy of K is a retract of

Y .

Definition 2.1.13. A topological property P such as connectedness or being continuum is

called Whitney property with the purpose that if X has property P , then ω−1(t) for each

Whitney map ω on C(X) and for each t whenever 0 ≤ t < ω(X) have that property P .

6



3. THE NOTION OF HYPERSPACE

3.1 Definition of Hyperspace and its structure

This section is devoted mainly to the structure of a Hyperspace, we present the Vietoris

topology and define it by giving its base and subbase.

The basic motivation of hyperspaces is to obtain new spaces from old ones by using the

underlying topology. For a given topological space X , The hyperspace of X can be defined

as the set of its nonempty closed sets, i.e.

2X = {K ⊂ X|K is closed and nonempty }.

there are other Hyperspaces can be given but we will use that Hyperspace to construct a

special map, so as called Whitney map, on it to attain our main problem.

It is well known that X is always a closed subspace of X , so it is a point in 2X ,

sometimes it is called the fat point or top point of that hyperspace. If X is T1, then every

point is closed, so the singleton set {x} ⊂ X , with x ∈ X , is a point of 2X and hence

F1(X) = {{x}|x ∈ X} ⊂ 2X ,

is the canonical copy of X in 2X . It is the image of the inclusion map

i : X → 2X

x 7→ {x}.

One can endow hyperspaces with a number of topologies. If X is compactum, the

most common topology for hyperspaces is the one induced by Hausdorff metric (distance)

which is given in Definition 2.1.1. We know that in this case, i.e. If X is a compactum,

the topology induced by Hausdorff distance and the Vietoris topology coincide. By the way,

we note that C(X) denotes the connected subsets of 2X . In an other saying that it is all

subcontinuum of X .

As in the Figure 3.1, the top element of hyperspace is X , while F1(X) = {{x} : x ∈
X} is the bottom element of it. By Cn(X), we denote the set of elements of 2X which has at

most n components, whilst the set of elements of 2X which has at most n points is denoted

by Fn(X). These are the other hyperspaces of X .

7



X

F1(X)

C(X)

2X

C
n
(X

)

Figure 3.1: Hyperspaces

Let look closer to the structure of the Vietoris topology.

For open subsets U1, U2, . . . , Un of X , the symbol 〈U1, U2, . . . , Un〉 denotes the basic

open subset of 2X in the Vietoris topology defined by 〈U1, U2, . . . , Un〉 = {A ∈ 2X : A ⊆
U1 ∪ U2 ∪ . . . ∪ Un and A ∩ Ui 6= ∅ for i ∈ {1, 2, . . . , n}}.

U1 U2 U3 Un−1 Un

A

B

Figure 3.2: Base for Vietoris Topology

Its subbasic open subsets are the sets of the form 〈U〉 and 〈X,U〉 whenever U is an

open sets i.e S = {〈U〉 : U is an open set } ∪ {〈X,U〉 : U is an open set } is a subbase for a

Vietoris topology.

A different description for the Vietoris topology is as follows;

8



Let X be a topological space and for each nonempty subset U of X , define:

U+ = {A ∈ 2X : A ⊆ U} and U− = {A ∈ 2X : A ∩ U 6= ∅}

Sets in U− hit U , whereas sets in U+ miss the complement U c of U .

The Vietoris topology is the topology generated by U+ and U−, and a basic open set

of the Vietoris topology is of the form:

〈U1, U2, . . . , Un〉 =

(⋃
i≤n

Ui

)+

∩

(⋂
i≤n

U−i

)

where U1, U2, . . . , Un are nonempty open subsets of X . The set-theoretic relationship be-

tween the above sets and the subbasic open subsets of the Vietoris topology can be given as

follows:

U+ = 〈U〉 and U− = 〈X,U〉.

We refer the reader to (Dogan, 2017)[Page 3-4, Example 3.1.3-3.14 ] for some exam-

ples of the Vietoris topology.

It is a well known fact that C(X) is a metric continuum which is a closed subset of 2X .

We shall give some of the previous known results on C(X) as follows (Curtis, 1974).

1. C(X)× I∞ ≈ I∞ iff X is a Peano space, and C(X) ≈ I∞ iff X is a non-degenerate

Peano space containing no free arc. By a free arc, we mean that it is an arc α such

that X = α ∪ Y , where α ∩ Y ⊂ α and Y is closed,

2. C(X) is continuous image of the Cantor fan (Figure 3.4). By Cantor fan, we mean

cone over Cantor set, more technically, it is quotient space (X × I)/G where G =

{{(x, t)}|x ∈ C and t ∈ [0, 1)}∪{X×{1}} (Figure 3.3), denoted by FC orCone(C)

whereC is a Cantor set. Indeed, every compactum is a continuous image of the Cantor

Fan.

3. Since Cantor Fan is an arcwise connected continuum and arcwise connectedness is

preserved by continuous functions. It follows that C(X) is arcwise connected. This

fact by means of order arc can also be proved, see (Illanes and Nadler, 1999)[p.113,

14.9 Theorem].

4. C(X) is Peanian1 if and only if X is Peanian,
1 A continuous image of a linear interval = a compact, connected, and locally connected continuum.

9



5. C(X) is contractible,

6. C(X) is an absolute retract(briefly AR).

All the results given above are true for 2X excluding the second part of (1). In this case,

there is no need to contain a free arc.

Figure 3.3: Cantor Set

Figure 3.4: Cantor Fan

We want to point out here that if X is a continuum (without being locally connectednes)

then there is a retraction r : 2X → C(X), it was shown by Nadler (Nadler, 1974). In 1939,

Wojdyslawski (Wojdyslawski, 1939) proved that C(X) is an AR iffX is a locally connected

continuum. Hence when X is a locally connected, C(X) is a retract of 2X , we just want

to notice the importance of being locally connected for a continuum X , we will generally

use this property in the following sections. Please see the following picture to figure out the

geometric model of some hyperspaces.

10



Figure 3.5: Geometric model of C(X)
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Figure 3.6: Geometric model of C(X) and F2(X)

12



4. WHITNEY MAPS

4.1 Existence of Whitney Maps

In 1978 , Nadler recognized that the property of admitting a Whitney map is playing

crucial role in studying, especially, the arc structure of hyperspaces (Nadler, 1978). The

Whitney maps are so important for us as well to tell something about our aim, we will

investigate the structure of Whitney level to be able to do this the only tool we have Whitney

maps. That’s why we need to be ensure that they exist. There is a two approaches to

existence of it. The first one is taken from Nadler’s excellent book, “Hyperspaces of sets”

that we do not write it here to not stay away from our focus and the second one Ward’s

approach by means of PoSP we give this approaches more detail but not much because

it is different than Nadler’s book. So three distinct construction of Whitney maps on 2X

were given by Nadler in the book (Nadler, 1978, pp. 25-27). Actually, we do not need the

connectedness property of X , so from this point we will take X as a compactum (compact

metric space). A reader who wishes to accept the existence of a Whitney map for any

hyperspace of X can easily skip to the next section or the interested reader can take a look

(Illanes and Nadler, 1999, p. 107, 13.4 Theorem).

In 1980, Ward used a different technique by means of a partially order space (briefly

PoSP) to show the existence of whitney maps on 2X (Ward, 1980). He thought that if

the hyperspace is taken into consideration as a spacial type of PoSP (without doubt that

it is much larger than the hyperspaces of compactum), then some problems concerning in

hyperspaces would be more tractable.

By a partially ordered space X , we mean that it is a topological space endowed with a

partially order “≤” for which its graph is a closed subset ofX×X . Obviously it’s known that

if X is a regular Hausdorff space then 2X is a PoSP with respect to inclusion (Kuratowski,

1966, p. 167 Theorem 1). In order to show the existence of Whitney map on 2X , we shall

give the definition of a Whitney map on a PoSP.

A Whitney map for a PoSPX is a map, ω : X → [0, 1], satisfying following conditions:

(i) if x ∈Min (X) then ω(x) = 0,

13



(ii) if x ∈Max (X) then ω(x) = 1,

(iii) if x < y in X then ω(x) < ω(y).

where Min (X) (Max (X)) is the set of minimal (maximal) element of X . By a minimal

element m of X we mean whenever x ∈ X and x ≤ m (m ≤ x) it follows that x = m.

obviously, in the settings of hyperspaces a Whitney map is considered as an ordinary

Whitney map defined on 2Y for a continuum Y .

The following fundamental theorem was given by Ward in (Ward, 1980, p. 373).

Theorem 4.1.1. If X is a compact metric PoSP such that Min (X) and Max (X) are

disjoint closed sets, then X admits a Whitney map.

In this theorem, the condition on Min (X) and Max (X) is essential, for example let

X = [0, 1] and define the partial order on X by x ≤ y iff x = y or y = 1. Then X is a

compact metric PoSP, Min X = [0, 1) and Max (X) = {1}. Whence, if ω : X → [0, 1]

satisfies (i) and (ii), then ω is not continuous.

We can easily deduce the following corollary.

Corollary 4.1.2. If X is a non-degenerate compactum, then 2X admits a Whitney map.

Proof. We know from (Nadler, 1978, p. 7) that 2X is a compact metric space and we have

noted that 2X is a PoSP, it follows that Min X = {{x} : x ∈ (X)} and Max (X) = {X}
are disjoint closed subsets of 2X and hence it admits a Whitney map.

4.2 Extension of Whitney Maps

We ensure from previous section that the Whitney map exists on 2X when X is a con-

tinuum (actually compactum). So we can deal with the extension of it and there are two

questions coming out asked by Nadler (Nadler, 1978, 14.71.5) and Bruce Hughes. The first

question is that can a Whitney map defined on C(X) be extended to 2X? And the other

one, let take X as a subcontinuum of continuum Y can a Whitney map defined on C(X)

(resp.,2X) be extended to C(Y ) (resp., 2Y )? Again Ward in (Ward, 1981) gave an answer

for both affirmatively. Before giving Ward’s approach. Let’s recall that the theorem given in

Illanes and Nadler (1999)[16.10 Theorem p. 132], i.e; if X is a nonempty and compact met-

ric space then any Whitney map defined on any closed subset of 2X can be extended to 2X .
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In very recently, Ivan Lončar gives some generalizations of this theorem using generalized

Whitney maps. We refer the reader to the article (Lončar, 2017) for details.

In the sequel we will give Ward’s approach to these two questions omitting proof of

theorems in (Ward, 1981). Firstly, we start by defining the following two sets. L(x) = {p ∈
P : p ≤ x} and M(x) = {p ∈ P : x ≤ p} where P is a PoSP and x ∈ P and then using

these two sets we will give the followings;

L(A) =
⋃
{L(x) : x ∈ A},M(A) =

⋃
{M(x) : x ∈ A}.

where A ⊂ P .

Before mentioning one of the fundamental theorem in (Ward, 1981), we just wanted to

bear in mind the definition of an order-preserving function. LetA andB be partially ordered

sets, for a function f : A→ B, if f(x) ≤ f(y) in B holds, whenever x ≤ y in A, then f is

called order-preserving. Ward proved that if A be closed subset of compact PoSP then the

continuous function which is order preserving defined on A has a continuous extension.

Since C(X) is a closed subset of 2X (O’Neill, 2009, p. 8), we can obtain answer for

the first question directly from Ward’s result. For the answer of the second question, We

will refer to the main theorem of a Ward given in (Ward, 1981, p. 467).

So by using Ward’s theorem, we are ready to give the answer of the second question

asked by Bruce Hughes as a corollary.

Corollary 4.2.1. Let X be a subcontinuum of continuum Y , then each Whitney map defined

on C(X) (resp. 2X) can be extended to C(Y ) (resp. 2Y ).

Proof. It can easily be seen from the proof of corollary 3.4 in (Ward, 1981, p. 468).
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5. PROPERTIES OF WHITNEY MAPS FOR 2X

5.1 Open and monotone Whitney map for 2X and C(X)

In this section, we draw our attention to Whitney maps for 2X whenever X is a contin-

uum. It’s a well know the fact that Whitney maps for C(X) are always monotone and open

(Eberhart and Nadler, 1971, p. 1032). However Whitney maps defined on 2X need not to be

monotone (or open) even if X is an arc (Nadler, 1978)[p. 466 14.61].

Illanes showed in the following theorem that ifX is a continuum there exists a Whitney

map on 2X which is not open and monotone.

Theorem 5.1.1. (Illanes and Nadler, 1999)[24.2. Theorem p.208] Let X be a continuum.

Then there exists a Whitney map for 2X which is neither open nor monotone.

Proof. Let d denote a metric on X , choose two fix points p and q in X such that p 6= q. For

ε = d(p,q)
3

define two disjoint sets A = clX(B(ε, p)) and B = clX(B(ε, q)). Now we will

define a set; H = {{a, b} ∈ 2X : a ∈ A and b ∈ B} and a function on H as;

ν (a, b) =
1

2
+ d(a, p) + d(b, q).

Since the function from A × B to H given by (a, b) 7→ {a, b} is a homeomorphism, H is

compact and ν is continuous. Hence ν is a Whitney map for H.

There is no doubt that ν (a, b) =
1

2
iff {a, b} = {p, q}. We, however, know from the

previous section that we have extension of the Whitney map ν on 2X , namely; we have

Whitney map µ : 2X 7−→ R that extends ν.

Let U be the ε-ball with center {p, q}. If C ∈ U \ {p, q}, then it follows C ⊂ A ∪ B
moreover C ∩ A 6= ∅ and C ∩ B 6= ∅. So C contains an element {a, b} of H \ {p, q}, and

hence µ(C) ≥ µ({a, b}) > 1
2
.

Then we deduce that 1
2
∈ µ(U) ∈ [1

2
, µ(X)] and U ∩ µ−1(1

2
) = {p, q} ,i.e. {p, q} is an

isolated point of µ−1(1
2
), so µ(U) is not open [0, µ(X)]. Therefore, µ is neither monotone

nor open.

Also the following examples shows that fact.
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Example 5.1.2. Let α be the polygonal arc (with the usual metric ) in the plane given by

α = {(x, y) ∈ R+×R+ : max{|x|, |y|} = 1 such that if x = 1 then y ≤ 0 or y ≥ 1/2} and

a Whitney map on 2α as done in formulas (1) and (2) of (Whitney, 1932)[p.275] is neither

monotone and open.

Example 5.1.3. (Charatonik, 1984) Let S be the unit circle in R2 and define functions

f, g : [1,∞)→ R2 as follows

f(t) =

(
1 +

1

t

)
exp(it) and g(t) =

(
1− 1

t

)
exp(−it)

then define

X = S ∪ f([1,∞)) ∪ g([1,∞)).

W.J. Charatonik showed that there are no confluent Whitney maps for 2X . Therefore there

are neither open nor monotone Whitney maps for 2X .

-1.0 -0.5 0.5 1.0

-1.0

-0.5

0.5

1.0

1.5

f

g

S

Figure 5.1: The Space X

We sure that a Whitney map for 2X is not always monotone and open. But, of course,

it may be true in some cases, for example, when X is the convex arc [0, 1].

Although one can construct confluent maps which are not monotone, however both

concepts coincide for Whitney maps defined on 2X as it is shown in the following theorem

by W.J. Charatonik.

17



Theorem 5.1.4. Let X be a continuum. For a Whitney map ω : 2X → [0, ω(X)], the

following conditions are equivalent:

(i) ω is monotone,

(ii) ω is confluent,

(iii) ω−1[0, t] is connected for each t ∈ [0, ω(X)].

Corollary 5.1.5. (Illanes and Nadler, 1999)[p. 209] Let X be a continuum. Then every

open Whitney map for 2X is monotone

With respect to open Whitney maps for 2X , we have the following equivalences.

Theorem 5.1.6. Let X be a continuum. Let ω : 2X → J = [0, ω(X)] be a Whitney map.

Then the following statements are equivalent

(i) ω is open,

(ii) the function t→ ω−1(t) from J into 22
X

is continuous,

(iii) if t ∈ J and {tn}∞n=1 is a sequence in [0, t) such that tn → t, then ω−1(tn) → ω−1(t)

in (22
X

),

(iv) the local minima of ω occur only on F1(X), and

(v) ω|F (X) : F (X)→ J is open.

We have talked about existence of a monotone and open Whitney map for C(X) and

especially for 2X when X is a continuum and if it exists for 2X , we gave equivalent condi-

tion. However, existence of a monotone and open Whitney map for 2X is shown by Illanes

see Illanes (1986). Before giving this fundamental result, we are planning to give some

necessary background information briefly.

A metric ρ for X is said to be convex if for a given x, y ∈ X , there exists z ∈ X such

that ρ(x, z) = ρ(x, y)/2 = ρ(z, y). It is well know that the existence of a convex metric, ρ,

for X , implies the existence of an isometry σ : [0, ρ(x, y)] → X such that σ(0) = x and

σ(ρ(x, y)) = y.

X is said to admit a convex metric ρ if the original topology on X coincide with the

induced topology by convex metric ρ for X . We know the following fact from K. Menger
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that admitting a convex metric, ρ, for a space X means X is a Peano continuum, namely;

locally connected continuum. The converse is also true, it was shown by R.H. Bing and E.E.

Moise independently.

Now we ready to construct a Whitney map as follows:

Construction. (Illanes, 1986)[p. 516] Let ρ be a (convex)metric on X . For A ∈ 2X and

define ωn(A) = {ε > 0 : ∃ x1, . . . , xn ∈ X such that A ⊂
n⋃
i=1

Bε(xi)} for a given positive

integer n. It is clear that ωn : 2X → [0,∞) is continuous. Moreover, it satisfies ωn({x}) = 0

for x ∈ X and ωn(A) ≤ diam(X). So now, we can construct Whitney map is as follows;

ω(A) =
∑

wn(A)/2
n.

Now we ready to mention about the existence of an open and monotone Whitney map

in case of the metric, d, defined on X is convex. But we sketch the proof skipping details

we refer to (Illanes, 1986)[p. 517] for the reader who interested in the details of the proof.

Theorem 5.1.7. If d is a convex metric for X , then the Whitney map,ω, constructed above

is monotone and open.

Proof. We start the proof by showing ω(F ) is an interior point of ω(U) where F a finite

nondegenerate subset and U is an open subset of 2X such that F ∈ U .

To prove ω is monotone. we will show that ω−1([0, t]) is connected for every t ∈ R+

to be able to do this we first show ω−1([0, t)) is connected for any positive t ∈ R+. Let

ξ = {F ∈ 2X : ω(F ) < t and F is finite } be a dense subset of ω−1([0, t)), so one can show

that ξ is connected because it is easily shown that F1(X) ⊂ ε and F1(X) is connected and

it follows that w−1([0, t]) is connected for any t ∈ R+. After that, we only need to prove

that w−1[t,∞) is connected. Take t ∈ R+ and A ∈ ω−1([t,∞)) the set {A ∪ {x} ∈ 2X :

x ∈ X} is a connected subset of ω−1([t,∞)) and so ω−1([t,∞)) is connected. Since 2X is

unicoherent (see Definition 2.1.4), w−1(t) = w−1([0, t])
⋂
w−1([t,∞)) is connected.

One can easily deduce the following corollary.

Corollary 5.1.8. (Illanes, 1986)[p. 517] If X is a Peano continuum, then there exists a

monotone and open Whitney map for 2X .

We will dedicate the following section to the point inverses of Whitney maps, and we

will see that admissible Whitney map is a backbone of the next section, so now we will
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mention about the notion of arc-smoothness because the arc-smoothness is not only a suffi-

cient condition to have admissible Whitney maps for C(X) and 2X but also give existence

of monotone and open Whitney map for 2X and if there exists a admissible Whitney map,

then we have several results on the point inverse of this Whitney map. For the concept of

the arc-smoothness, or special type of contractibility, we refer to (Goodykoontz, 1983). In

(Illanes, 1990)[Theorem 1.3], Illanes has showed that if X is an arc-smooth continuum,

then there exists a Whitney map ω : 2X → R+, defined as in the same article page 1071,

such that ω−1(t) and (ω |C(X))
−1(t) are arc-smooth continua for every t ∈ (0, ω(X)) and

ω and ω |C(X) are admissible, so arc-smoothness is a Whitney property. We refer to (Il-

lanes, 1990) and (Goodykoontz, 1983) for interested readers. Also Jack T. Goodykoontz in

(Goodykoontz, 1974) showed that being arc-smooth of X implies being arc-smooth each of

hyperspacess we interested in, namely 2X or C(X). He also determined some other con-

ditions to say that 2X or C(X) is arc-smooth. For example, the most interesting one for

us that if X is locally connected then C(X) is arc-smooth at each of its points, and 2X is

arc-smooth when X is hereditarily indecomposable.

As we mentioned the importance of being arc-smooth of X just above, we will see in

Theorem 6.1.9 at the following section that being arc-smooth of X implies the existence

an open and monotone Whitney map defined on 2X . Why is the importance of existence of

monotone and open Whitney map? Just because if it is monotone, then we know at least

that all the Whitney levels are connected. So these are continua as well. What about the

openness of it? It is directly related homeomorphism that can be construct between the

levels and X . So if know the structure of the levels we can say the same things for X .
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6. WHITNEY LEVELS IN PEANO CONTINUA

6.1 On Some Properties of Whitney levels

In this section we will give some results on Whitney levels in hyperspace when X

is a Peano continuum by using Whitney map defined in Section 3. In addition to that we

investigate the structure of Whitney level of admissible Whitney maps.

t

0

ω(X)X

F1(X)

C(X)

ω−1(t)

2X

C
n
(X

)

ω−1

Figure 6.1: Whitney level

If ω is a Whitney map for H and 0 ≤ t < ω(X) then ω−1(t) is called a Whitney level;

if t ∈ (0, ω(X)), then it is called a positive Whitney level. Whitney levels are covering X

and converging to ω−1(0) as t approaches to zero. By using definition of Whitney map we

have w−1(0) = F1(X) and hence w−1(0) is homeomorphic to X . Thus, Whitney levels

approximate X as t approaches to zero. Working on the structure of positive Whitney levels

and figure out the properties preserved under the convergence to the zero level of it will be

interesting. You will see some geometric model of Whitney level in the following picture
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Figure 6.2: Geometric model of Whitney level

Investigation of the structure of Whitney level will be under the condition of existence

of admissible Whitney maps. Before doing this we will look at what we have achieved

with the existence of the admissible Whitney map. But first, let us give the definition of
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admissible Whitney maps.

Definition 6.1.1. (Goodykoobtz and Nadler, 1982)[p. 674 Definition 2.1] Let H denote

either one of the hyperspaces 2X or C(X). A whitney map ω for H is called an admissible

Whitney map for H provided that there is a (continuous) homotopy h : H × [0, 1] → H

satisfying the following two conditions:

(i) for all A ∈H , h(A, 1) = A and h(A, 0) ∈ F1(X);

(ii) if ω(h(A, t)) > 0 for some A ∈ H and t ∈ [0, 1], then w(h(A, s)) < w(h(A, t))

whenever 0 ≤ s < t.

A homotopy h : H × [0, 1] → H satisfying (i) and (ii) is called an ω- admissible

deformation for H . For brief information about homotopy we refer to (Willard, 1970)[pp.

222-226]. We know from (Goodykoobtz and Nadler, 1982)[Proposition 2.2] that the exis-

tence of an admissible Whitney map is a topological invariant and also under the condition

of the existence of an admissible Whitney map for 2X or C(X), X is arcwise connected.

For the details we refer to (Goodykoobtz and Nadler, 1982)[Theorem 2.3].

Theorem 6.1.2. (Goodykoobtz and Nadler, 1982, (2.4) Theorem) Let ω be an admissible

Whitney map for H = 2X or C(X). Then, X is contractible if and only is H is con-

tractible.

We should note here that we do not need to have an admissible Whitney map to show

that H is contractible whenever X is contractible, for the interested readers we refer to

(Kelley, 1942). Now, we ready to give the following result which will be useful to obtain

general result about Peano continuum with admissible Whitney map.

Corollary 6.1.3. (Goodykoobtz and Nadler, 1982)[(2.5) Corollary] If there is an admissible

Whitney map for 2X or C(X) and if X is a Peano continuum, then X is contractible.

Proof. It is well known that If X is a Peano continuum, then H = 2X or C(X) are con-

tractible, and hence by Theorem 6.1.2 we obtain that X is contractible.

Theorem 6.1.4. (Goodykoobtz and Nadler, 1982)[(2.7) Theorem] If ω is an admissible

Whitney map for H = 2X or C(X), then, for any t0 such that 0 < t0 < w(X), ω−1(t0) is

a retract of w−1([t0, ω(X)]).
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At this point let us note the following theorem given by (Nadler, 1978)[Theorem (14.73.32)

p. 503].

Theorem 6.1.5. Let X be a continuum and let ω be a Whitney map for H = C(X) (which

need not to be an admissible). If ω−1(t0) is locally connected for some t0 ∈ [0, ω(X)], then

ω−1([t0, ω(X)]) is locally connected and, hence, an absolute retract.

Proof. If we choose t0 as ω(X), we have ω−1(t0) = {X}, so let assume that t0 ∈ [0, ω(X)).

Then ω−1(t0) is a continuum (if we choose H = 2X , then the Whitney map need not

be monotone) by (Nadler, 1978)[(14.2) p.400] and, by assumption ω−1(t0) is L.C. Hence,

by (Nadler, 1978)[(1.92) p.134], C(ω−1(t0)) is a locally connected continuum. Therefore

ω−1([t0, ω(X)]) is locally connected by (Nadler, 1978)[(14.73.8) p.487] because the prop-

erty of being a local connected continuum is invariant under continuous mappings (Kura-

towski, 1968)[Theorem 5, p. 257]. Hence by (Nadler, 1978)[(0.74.1) p.52], ω−1([t0, ω(X)])

is an absolute retract.

Now, we have the following theorem related to the positive Whitney level’s structure

under the condition of contractibility of H and also we have a more exhaustive version of

half of Theorem 6.1.2.

Theorem 6.1.6. (Goodykoobtz and Nadler, 1982)[(2.8) Theorem] Let ω be an admissible

Whitney map for H = 2X or C(X). If H is contractible, then w−1(t0) is contractible for

each t0 ∈ [0, ω(X)].

In (Curtis and Schori, 1978) Curtis ans Schori showed that 2X is a Hilbert Cube when-

ever X is any Peano continua, they also showed the similar result for C(X) in case of X

contains no free arc. In (Goodykoobtz and Nadler, 1982) Goodykoontz and Nadler obtained

similar result with the Curtis-Schori’s one under the condition of existence of an admissible

Whitney map. That’s why the following theorem is important, because it was used at "Main

Result" section in (Goodykoobtz and Nadler, 1982)[proof of (4.1) Theorem].

Theorem 6.1.7. (Goodykoobtz and Nadler, 1982)[(2.9) Theorem] If there is an admissible

Whitney map ω for 2X or C(X) and if X is Peano continuum, then w−1(t0) is an absolute

retract for each t0 such that 0 < t0 < ω(X).

By using Theorem 6.1.2, Corollary 6.1.3, and Theorem 6.1.6 we have the following

trivial result.
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Corollary 6.1.8. If there is an admissible Whitney map ω for H = 2X or C(X) and if X

is Peano continuum, then w−1(t0) is contractible.

Proof. By using Corollary 6.1.3 we obtain that X is contractible and hence by Theo-

rem 6.1.2 H is contractible, then, by Theorem 6.1.6 w−1(t0) is contractible for any t0

such that 0 < t0 < w(X), so contractibility is a Whitney property in the light of hypothesis

of corollary.

Another important result is given with the following theorem about Whitney levels of

admissible Whitney maps.

Theorem 6.1.9. (Goodykoobtz and Nadler, 1982)[Theorem 2.12] Let X be a continuum. If

ω is an admissible Whitney map for 2X , then ω is open, and ω−1(t) is a continuum for each

t ∈ [0, ω(X)].

Proof. Definition 6.1.1 (b) implies that there is no local minima for ω at any element A ∈
2X − F1(X). Applying Theorem 5.1.6 we deduce that ω is open. The last part of the

theorem follows from Corollary 5.1.5.

We have already used an admissible Whitney map to obtain some properties of Whitney

levels. A useful sufficient condition for the existence of an admissible Whitney map has been

given by Goodykoontz and Nadler. The reader may wish to see (Goodykoobtz and Nadler,

1982)[pp. 677-680].

As we mentioned before, Goodykoontz and Nadler have obtained parallel result of the

Curtis-Schori theorem when the Whitney map is admissible. To obtain to that result, they

have used Toruńczyk’s characterization of the Hilbert cube, this characterization consist a

new notions named Z-set and Z-maps, so will give them firstly.

A closed subset A of a continuum Y with metric d is said to be a Z-set in Y provided

that for each ε > 0 there is a continuous function fε : Y → Y \A for which d(fε(y), y) < ε

for all y ∈ Y (Chapman, 1976)[p.2]. A Z-map is a continuous function f : Y → Y such

that f(Y ) is a Z-set in Y (Toruńczyk, 1980)[p.33]. Now, we ready to give Toruńczyk’s

characterization.

If the identity map defined on Y , where Y is a compact metric absolute retract, is

uniform limit of Z-maps, then Y is a Hilbert cube.
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Now, we will give the following most general result pointing out that the positive Whit-

ney levels are Hilbert cube. We omit the proof of this result because it is technical and

depends on the section 3 in (Goodykoobtz and Nadler, 1982)[p. 680], the interested reader

may look at (Goodykoobtz and Nadler, 1982)[pp. 688-691] for more details.

Theorem 6.1.10. (Goodykoobtz and Nadler, 1982)[(4.1) Theorem] Let X be a Peano con-

tinuum. If there is an admissible Whitney map ω for 2X , then ω−1(t0) is a Hilbert cube

whenever 0 < t0 < ω(X). If there is an admissible Whitney map ω for C(X) and if X

contains no free arc, then ω−1(t0) is a Hilbert cube whenever 0 < t0 < ω(X).

We interested in structure of point inverses of a Whitney map under some suitable

assumptions. As we mentioned in Section 2, Whitney maps onC(X) are better behaved than

Whitney map on 2X . So from now on, we will give brief information on the structure of point

inverses of a Whitney map for C(X). For example, let me mention about Krasinkiewicz

result, that is, if X is chainable (respectively, proper circle-like), then ω−1(t) is chainable

(respectively, proper circle-like) for all t < 1; and more if X is [0, 1] (respectively, S1), then

ω−1(t) is an arc (respectively, simple closed curve) for all t < 1. In (Nadler, 1975), Nadler

has obtained two important results on point inverses of a Whitney map for C(X). The first

one, arcwise connectivity of X implies arcwise connectivity of ω−1(t) for all t ∈ [0, 1]

(Nadler, 1975)[Theorem 2, p.399], and the second, local connectivity of X implies local

connectivity of ω−1(t) for all t ∈ [0, 1] (Nadler, 1975)[Theorem 3, p.401]. Let us remind

you the letter X in here is a nondegenerate metric continuum. In addition to that we follow

the corollary from (Nadler, 1975)[Corollary 3, p. 403].

Corollary 6.1.11. The following four statements are equivalent for a Whitney map ω defined

on C(X)

1. The continuum X is locally connected,

2. For each t ∈ [0, 1], ω−1(t) is locally connected,

3. For each t ∈ [0, 1], ω−1([0, t]) is locally connected,

4. For each t ∈ [0, 1], ω−1([t, 1]) is locally connected.

Of course, here one question arises, under which condition we can say something for

local connectivity of point inverses of a Whitney map for 2X , whenever X is locally con-

nected? We know from Remark (Nadler, 1975)[p.403] that the Theorem 3 in (Nadler, 1975)

fails for Whitney maps on 2X even when X is an arc in plane.
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Actually, this question is a backbone of this dissertation. We wish to solve this question,

or at least we wish to say some words on it. To the best of our knowledge, this question is

still unsolved. To see that this is so, let follow the conclusion section.
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7. CONCLUSIONS AND RECOMMENDATIONS

7.1 Conclusion

As indicated from the last part of the previous section, we wish to say something for

local connectivity of point inverses of a Whitney map for 2X , whenever X is locally con-

nected. So, actually, Nadler gave the answer negatively when the range of Whitney map ω is

I . However, under the assumption of existence of admissible Whitney map for H = 2X and

taking X as Peano continuum, we have the most fundamental observation about this ques-

tion that is ω−1(t0) is an absolute retract continuum for t0 ∈ (0, ω(X)) by Theorem 6.1.7,

so now by using(Charatonik and Prajs, 2001) it is locally connected. This observation is not

appeared in the literature.

By the way, let us note that the relation of being dendrite of X and existence of ad-

missible Whitney maps for 2X and C(X); that is, there exist admissible Whitney maps for

2X and C(X) when X is any dendrite, we refer to (Goodykoobtz and Nadler, 1982)[(2.16)

Theorem p.679]. By dendrite, we mean a Peano continuum which contains no simple closed

curve. So by Theorem 6.1.9 we have an open and monotone map defined on 2X , this is sup-

porting Illanes’s result see Corollary 5.1.7 and now the question rises that what can we say

about local connectivity of point inverses of Whitney map for 2X in case of X is dendrite?

Another way to show the local connectedness of point inverses of a Whitney map for 2X

whenever X is locally connected would be showing that ω−1(t) for t ∈ [0, ω(X)] is a retract

of 2X without the assumption of the existence of an admissible Whitney map. Because if X

is locally connected, then 2X is locally connected (Nadler, 1978)[(1.92) Theorem, p. 134],

and every retract of a locally connected space is locally connected (Hu, 1965)[Proposition

10.1, p.27]. Again this way is not appeared in literature, we are working on it nowadays.

Actually, we do not know whether it is enough to assume X being locally connected to say

something about the local connectedness of the point inverses of a Whitney map for 2X ,

actually it seems to be not. In addition, what if X is dendroid or arc-smooth , then what can

we say about local connectedness of point inverses of a Whitney map for 2X?
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7.2 Recommendations

One of the most important and widely used properties of hyperspaces is that they be-

have nicely with to respect to inverse limit, the hyperspace of inverse limit is homeomorphic

to inverse limit of the hyperspaces. So the readers specifically interested in this topic may

prefer to look at the structure of hyperspace in terms of inverse limit. We suggest that readers

are referred to (Nadler, 1978)[p. 159] and (Macias, 2018)[p.53 Chapter 2].

As a recent advance, Whitney blocks for C(X) and its topological properties have

been worked by María Elena Aguilera and Alejendro Illanes(Aguilera and Illanes, 2016;

Aguilera, 2017, 2018), interested readers may prefer take a look at this subject.

In addition to that in this section we will pose the following questions. Interested reader

will be work on it.

Let X be dendrite (or smooth dendroid). By smooth dendroid, we mean for some point

p which belongs to an arcwise connected hereditarily unicoherent continuum X . Simplest

example of dendrite is arc. Another simple example is the locally connected fan, Fω see

Figure 7.1. Fω is the dendrite that has only one ramification point with order ω.

Figure 7.1: locally connected Fan Fw

What can we say about the structure of point inverse of Whitney map defined on 2X?

We will pose some other problems with respect to Z-sets which are known if X is a Peano

continuum.

When X is a continuum which hyperspaces have the property that every countable,

closed subset of the hyperspace is a Z-set?

For any continua, is F1(X) a Z-set in C(X) or 2X? If not, for which continua can we

say this?
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