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ABSTRACT

ESTIMATION OF THE REGION OF ATTRACTION FOR NONLINEAR
AUTONOMOUS SYSTEMS

PH.D. THESIS
SERPİL YAŞAR,

BOLU ABANT İZZET BAYSAL UNIVERSITY GRADUATE SCHOOL OF
NATURAL AND APPLIED SCIENCES
DEPARTMENT OF MATHEMATICS

(SUPERVISOR : ASSOC. PROF. DR. ÖMÜR UMUT)

BOLU, JANUARY 2020

We study on the determination of the estimations for the regions of attraction of the
nonlinear autonomous systems with polynomial vector fields. The aim is to obtain estima-
tions for the regions of attraction of specific examples of nonlinear autonomous systems by
using different methods . The study begins with a review of the Lyapunov stability theory
and LaSalle’s extension principle of that theory. We introduce dynamical properties of the
specific examples of nonlinear systems under consideration. We present the conditions for
the characterization of the boundary of region of attraction, and state and prove theorems on
the unboundedness of the regions of attraction of the examples. The estimations for the re-
gions of attraction are determined as subsets of those regions by applying Lyapunov methods
while the estimations for regions of attraction and also for their boundaries are computed by
using non-Lyapunov methods. When implementing these method,s we either modify some
of the given algorithms in the literature or state new algorithms instead of using them.

KEYWORDS: Region of attraction, nonlinear autonomous system, polynomial vector field,
Lyapunov method, non-Lyapunov method, Lyapunov stability theory, LaSalle’s extension
principle .
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ÖZET

DOĞRUSAL OLMAYAN OTONOM SİSTEMLER İÇİN ÇEKİM BÖLGESİ
KESTİRİMİ

DOKTORA TEZİ
SERPİL YAŞAR,

BOLU ABANT İZZET BAYSAL UNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ
MATEMATİK ANABİLİM DALI

(TEZ DANIŞMANI : DOÇ. DR. ÖMÜR UMUT)

BOLU, OCAK 2020

Polinom vektör alanlı, lineer olmayan otonom sistemlerin çekim bölgeleri için kes-
tirimlerin belirlenmesi üzerine çalıştık. Amaç, farklı yöntemler kullanarak, lineer olmayan
otonom sistemlerin spesifik örneklerinin çekim bölgelerinin kestirimlerinin elde edilmesidir.
Çalışma, Lyapunov kararlılık teorisi ve o teorinin LaSalle genişletme prensipiyle başladı. İn-
celenen lineer olmayan sistemlerin dinamik özellikleri tanıtıldı. Çekim bölgesinin sınırının
karakterize edilmesi için koşullar verildi ve çalışılan örneklerin çekim bölgelerinin sınırsız
olması üzerine teoremler ifade edilip, ispatlandı. Lyapunov yöntemleri uygulanarak çekim
bölgelerinin kestirimleri, o bölgelerin alt kümeleri olarak belirlenirken, çekim bölgeleri ve
de onların sınırlarının kestirimleri, Lyapunov olmayan yöntemleri kullanarak hesaplandı. Bu
yöntemleri uygulamaya koyarken, literatürde verilmiş olan algoritmaların bir kısmında ya
değişiklikler yaptık ya da onların yerine yeni algoritmalar verdik.

ANAHTAR KELİMELER: Çekim bölgesi, lineer olmayan otonom sistem, polinom vektör
alanı, Lyapunov yöntem, Lyapunov olmayan yöntem, Lyapunov kararlılık teorisi, LaSalle
genişletme prensibi .
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1. INTRODUCTION

The determination of the region of attraction (or stability region, or domain of at-

traction) for nonlinear systems is an important problem from theoretical and practical views.

The first results concerning the exact determination of the region of attraction, (ROA) are

probably the results of Barbashin (1951), Krasovskii and Barbashin (1954) and of Zubov

(1961). Since the computation of the exact stability region might be difficult or even im-

possible, the estimation of ROA becomes important in the study of the nonlinear systems

analysis. Numerous approaches have been proposed for the estimation of the stability re-

gion in the literature. The methods, providing a guaranteed subset of the ROA can be di-

vided in two main classes, i.e., Lyapunov methods, (LaSalle (1967), (Davison and Cowan

(1969)) Davidson and Kurak (1971), Rodden (1964), Vannelli and Vidyasagar (1985), Kirin

et al. (1981), Margolis and Vogt (1963)), and non-Lyapunov methods (Genesio et al. (1985),

Sanchez et al. (2009), Chiang et al. (1988), Chiang and Thorp (1989), Noldus and Loccufier

(1995)). The methods in both classes are mainly based on Lyapunov stability theory and

LaSalle’s extension principle of that theory.

Lyapunov methods compute a Lyapunov function, (LF) as a local stability certifi-

cate. The sublevel sets of this LF, in which the function decreases along the own trajectories

of the system, provide invariant subsets of the ROA. The Zubov method, (Zubov (1962),

Kirin et al. (1981), Margolis and Vogt (1963)), Groebner bases technique, (Forsman and

Glad (1990), Forsman (1991)), Lie series method, (Kormanik and Li (1972)), rational solu-

tion, (Vannelli and Vidyasagar (1985), Hachicho and Tibken (2007)), the Sum of Squares

programming, (Wloszek (2003), Parrilo (2003)) and other numerical techniques (Kaslik

et al. (2005), Rezaiee-Pajand and Moghaddasie (2012), Giesl (2008), Chesi et al. (2005),

Johansen (2000)) are the examples for the Lyapunov methods. The estimated ROA near

a stable equilibrium point are calculated from Lyapunov methods are usually conservative

subsets of the true ROA. This is the main disadvantage of these methods. On the other hand,

non-Lyapunov methods are based on a topological characterizations of the system and use

the backward integration algorithms. The actual boundaries of ROA can also be estimated

by the non-Lyapunov methods.

The common feature of the non-Lyapunov methods is the integration of the system

1



backward in time. In this process, integration starts from a given set of initial conditions ly-

ing in a surface enclosing an equilibrium point. The computed trajectories converge towards

the boundary of the ROA of the system as time decreases. So, such methods generally yield

better estimations than Lyapunov methods. Backward integration, (Sanchez et al. (2009)),

trajectory reversing method, (Genesio et al. (1985)), and its modifications, (Chiang et al.

(1988), Chiang and Thorp (1989), Loccufier and Noldus (1995, 2000)) are the most popular

non-Lyapunov methods in the literature.

In this thesis, Lyapunov and non-Lyapunov methods, are applied to determine es-

timations for the ROA of the specific examples of the nonlinear autonomous dynamical

systems such as, Genesio system, Lorenz system, Rossler system, Belousov-Zhabotinskii

reaction, and another nonlinear system, (Tibken and Hachicho (2000)). As the examples of

the Lyapunov methods, the Zubov method, Groebner bases technique and sum of squares

programming method, are used to compute the estimations for the ROA. From the class

of non-Lyapunov methods, backward integration method, trajectory reversing method and

eigenfunction estimation method are applied for the same purpose.

Chap.2 represents theoretical backgrounds on the Lyapunov stability theory and the

LaSalle’s extension principle of the Lyapunov stability theory. Dynamical properties and the

theorems on the unboundedness of ROAs of the worked systems together with the character-

ization of the boundary of the ROA are stated in Chap.3. The Lyapunov and non-Lyapunov

methods and their applications are studied in Chap.4 and 5, respectively. Results and dis-

cussions are given in Chap.6, and conclusions are drawn together with recommendations in

Chap.7.

All computations throughout the thesis are performed by using symbolic mathemat-

ics packages, Mathematica and Matlab.
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2. PRELIMINARIES

This chapter provides the necessary theoretical background for the development of

our study. Various methods, proposed in the literature for the estimation of ROA belong

to LF approach and mainly based on La Salle’s extension of Lyapunov stability theory.

So, we present Lyapunov indirect and direct methods, and LaSalle’s extension principle of

Lyapunov stability theory.

Throughout the thesis, we consider the autonomous systems:

ẋ(t) = f(x(t)) (2.1)

where t ∈ R+, x ∈ Rn, and f : Rn → Rn. We suppose that f is smooth enough so that

system (2.1) has a unique solution Φ(t;x0) of (2.1) for all t ≥ t0, where x0 = Φ(t0;x0) ∈ Rn

and t0 ∈ R+. Without loss of generality, it is assumed that t0 = 0. We also assume that

x = 0 is an isolated equilibrium point of (2.1), that is, there is a neighborhood of x = 0

containing no equilibrium points of (2.1) other than x = 0 itself, so that f(0) = 0.

To characterize the stability of an equilibrium point of nonlinear differential equa-

tions, two well-known methods are due to Lyapunov: Lyapunov indirect method and Lya-

punov direct method are mainly used, (Zubov (1964)).

2.1 Lyapunov indirect method (First method)

By the Lyapunov indirect method, we can infer the stability behavior of an equilib-

rium point of system (2.1) from the study of the stability behavior of a linear system, under

certain conditions. In that method, we examine each equilibrium point, seperately, if there is

more than one. An equilibrium point, if it is not at the origin, can be translated to the origin

by an appropriate coordinate transformation.

To draw a conclusion about the stability behaviour of the equilibrium point x = 0,

in addition to the above assumptions, we assume that f is continuously differentiable with

respect to its arguments. So, we can write a Taylor series of f(x) about the point x = 0 and

separate the linear and nonlinear terms

ẋ = Jx+ g1(x). (2.2)

3



Here J =
(
∂f(x)
∂x

)
x=0

is the Jacobian evaluated at x = 0, and that g1(x) consists of higher

order terms in the component of x which satisfies two conditions:

g1(0) = 0

∀ε ≥ 0,∃η ≥ 0 : |x| ≤ η =⇒ |g1(x)| ≤ ε|x|.

We call the equation

ẋ = Jx (2.3)

the linearized system of nonlinear system (2.1). The indirect method gives stability condi-

tions for x = 0 in (2.1) using stability results in (2.3).

Theorem 2.1.1. (Poincaré-Lyapunov’s Theorem, Poincaré (1881)). The equilibrium x = 0

of (2.3) is asymptotically stable, if all the eigenvalues of the Jacobian matrix J have negative

real parts, and it is unstable, if at least one eigenvalue of the Jacobian matrix J has a positive

real part.

Using the Lyapunov indirect method, we can conclude that whether the equilibrium

x = 0 of (2.1) is asymptotically stable, but we can not give any conclusion on the extent of

asymptotic stability using this method. In order to assess the extend of asymptotic stability

we need Lyapunov’s direct method.

2.2 Lyapunov Direct Method (Second Method)

In order to find out the stability properties of an equilibrium point of system (2.1)

without solving it, an effectice method is the Lyapunov direct method. It also gives infor-

mation on the extent of stability. Lyapunov direct method is based on the energy idea in

a physical system. The stability of an equilibrium point is settled from the rate of change

of the stored energy of the physical system, along the motions of the system. On the other

hand, to find an expression for energy for a complex system may be difficult. As it was

proved by Lyapunov, if we can find a function V (x) having the similar properties of energy,

then the stability of an equilibrium point of system (2.1) can be determined using the sign

definiteness of the time derivative of V (x).

V̇ (x) =
n∑
i=1

∂V (x)

∂xi
· fi(x) = ∇V T · f(x) (2.4)
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The function V : Rn → R is a Lyapunov function (LF) if it is assumed to be continuously

differentiable with respect to all of its arguments.

Definition 2.2.1. When x = 0 is asymptotically stable the region of attraction of the origin

is defined as ROA(0) = {x0| limt→∞ Φ(t;x0) = 0}, where Φ(t;x0) is a solution of Eq. (2.1)

that starts at initial state x0.

Assume that D ⊂ Rn is an arbitrary domain and the equilibrium x0 of system (2.1)

lies in the interior of D. Then we state three important theorems of the second method of

Lyapunov.

Theorem 2.2.2. For all x ∈ D, if there exists a continuously differentiable function V (x)

such that V (0) = 0, V (x) > 0 and its time derivative, V̇ (x) ≤ 0 on D, then the equilibrium

x = 0 of system (2.1) is called stable.

Theorem 2.2.3. For all x ∈ D, if we can find a continuously differentiable function V (x)

such that V (0) = 0, V (x) > 0 and its time derivative, V̇ (x) < 0 on D \ {0}, then the

equilibrium x = 0 of the system (2.1) is said to be asymptotically stable.

Theorem 2.2.4. For all x ∈ Rn, if there exists a positive definite and radially unbounded

function V (x) such that V̇ (x) is negative definite, then the equilibrium x = 0 of (2.1) is

globally asymptotically stable.

Let D be the domain given by Theorem 2.3 and also let Ω be a domain defined by

Ω = {x ∈ Rn|V (x) ≤ c, c ≥ 0}. (2.5)

Now we can show that if it is wholly contained in D, then the domain Ω will be included in

the actual ROA of x = 0, ROA(0), and it can be used as an estimate of ROA(0). If we can

find the maximum value of c > 0 such that Ω ⊂ D, then Ω will be the largest estimate of

ROA(0), obtained by that particular V (x).

The basic and most important characteristic of the Lyapunov’s direct method is that

for a particular solution of a given nonlinear system defined by (2.1) definite stability proper-

ties can be proved by only finding a suitable LF. On the other hand, once a LF is known then

it settles the local problem of stability, and also allows us to determine certain regions of the

system under consideration (Krasovskii (1963)). An LF may determine a region which is

the exact ROA. But, using Lyapunov’s direct method only a part of the exact ROA can be

estimated. In general, this method does not afford any information about the real size of the

ROA.
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2.3 LaSalle’s Invariance Principle

LaSalle’s invariance principle was developed by LaSalle (1960). In fact, it was first,

introduced by Barbashin and Krasovskii in a special case in (Barbashin and Krasovskii

(1952)), and later by Krasovskii in the general case in (Krasovskii (1959)). LaSalle’s in-

variance principle attempts to relax the constraints imposed on the candidate LF for the

conditions of asymptotic stability, (Khalil (2002)).

The principle basically says that if we have a LF defined in a neighbourhood of the

origin, with a negative semi-definite time derivative along the trajectories of system (2.1),

and additionally, if we can establish that any trajectory can not stay identically at points

where V (x) = 0, except at the origin, then the origin is asymptotically stable.

Proposition 2.3.1. (LaSalle’s Principle, (LaSalle (1960))) Let V : Rn → R be continuously

differentiable function and consider that

Σd = {x ∈ Rn|V (x) ≤ d}

is bounded and that V̇ (x) ≤ 0 for all x ∈ Σd. Define T ⊂ Σd by T = {x ∈ Σd|V̇ (x) = 0}
and let K be the largest invariant set in T . Then whenever x0 ∈ Σd, Φ(t, x0) approaches K

as t→∞.

Theorem 2.3.2. (LaSalle’s invariance principle for asymptotic stability, LaSalle (1960)) Let

V : Rn → R be a locally positive-definite function on the compact set

Σd = {x ∈ Rn|V (x) ≤ d}.

Then we have V̇ (x) = 0. Define T = {x ∈ Σd|V̇ (x) = 0}. The trajectory tends to the

largest invariant set inside T , as t→∞. In particular, if T contains no invariant sets other

than x = 0, then 0 is asymptotically stable.

Theorem 2.3.3. (LaSalle’s invariance principle for global asymptotic stability, LaSalle

(1960)) Let V : Rn → R be a globally positive-definite function and V̇ (x) ≤ 0 for all

x ∈ Rn. In addition, let the set T = {x ∈ Σd|V̇ (x) = 0} contain no nontrivial trajectories.

Then the equilibrium point x = 0 is globally asymptotically stable.

6



3. ON THE WORKED SYSTEMS AND THEIR ROAs

In this section, we introduce some dynamical properties of the systems under con-

sideration. We present some useful facts on the characterization of the boundary of ROA

and prove that the ROAs of the worked systems are unbounded.

3.1 Worked Systems

3.1.1 The Genesio System

The Genesio system that is proposed by Genesio and Tesi (1992) possesses many

features of chaotic systems. It includes a quadratic nonlinear term and consists of three

positive parameters. The dynamical equations of the system is given by

ẋ = y

ẏ = z (3.1)

ż = −ax− by − cz + x2.

Genesio system has two equilibria, (0, 0, 0) and (a, 0, 0) for every values of the pa-

rameters. By linearization, we can easily show that the origin, (0, 0, 0) is a stable focus

when bc > a and is a saddle focus when bc < a while the point (a, 0, 0) is a saddle focus for

all values of the parameters.

E.g., system (3.1) becomes

ẋ = y

ẏ = z (3.2)

ż = −x− 3y − z + x2

when a = 1, b = 3, c = 1. We can easily see that origin is a stable focus and the point

(1, 0, 0) is a type-1 saddle, by using linearization analysis. Since the Jacobian matrix at the

origin

J =


0 1 0

0 0 1

−1 −3 −1
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has three eigenvalues with negative real parts, namely

λ1 = −0.3611, λ2 = −0.3194 + 1.6332i, λ3 = −0.3194− 1.6332i

We can conclude that the origin (0, 0, 0) is a stable focus which is asymptotically stable by

Theorem 2.1.

Similarly, the Jacobian matrix

J =


0 1 0

0 0 1

1 −3 −1


has eigenvalues λ1 = 0.2956, λ2 = −0.6478 + 1.7214i, λ3 = −0.6478 − 1.7214i. Since

one eigenvalue has a positive real part and the remaining two have negative real parts, we

can conclude that the point (1, 0, 0) is an unstable focus (or saddle focus) which is of type-1

saddle.

3.1.2 The Lorenz System

The Lorenz system, first studied by Edward N. Lorenz around 1963, was derived

from a simplified model of convection in the earth’s atmosphere. It also arises naturally in

models of lasers and dynamos. The system is defined by 3 coupled nonlinear differential

equations

ẋ = σ(y − x)

ẏ = rx− y − xz (3.3)

ż = xy − bz,

where the parameters σ, r and b are positive numbers. (0, 0, 0) is an equilibrium point for all

values of the parameters. It is the only equilibrium point when 0 < r < 1.

E.g., system (3.3) becomes

ẋ = 10(y − x)

ẏ =
1

2
x− y − xz (3.4)

ż = xy − 8

3
z,

when σ = 10, r = 1/2, b = 8/3. Linearization analysis says that the origin (0, 0, 0) is a

8



stable node which is globally stable. Since we find the Jacobian matrix at that point as

J =


−10 10 0

1/2 −1 1

0 0 −8/3


with three eigenvalues having negative real parts, namely λ1 = −10.5249, λ2 = −0.4751,

λ3 = −2.6667, by linearizing the system about the origin, we can conclude that the origin is

a stable node. There is also a pair of equilibrium points (±
√
b(r − 1),±

√
b(r − 1), r− 1),

for r > 1. These coalesce with the origin as r → 1+ in a pitchfork bifurcation. As r

increases Lorenz system displays a wide range of chaotic behaviors.

3.1.3 The Rössler System

The Rossler system which exhibits chaotic dynamics with the fractal properties of

the attractor, is originally studied by Otto Rossler. The system is described by the system of

equations

ẋ = −y − z

ẏ = x+ ay (3.5)

ż = b+ z(x− c)

It has two equilibrium pointsE1 = ( c−
√
c2−4ab
2

, −c+
√
c2−4ab

2a
, c−
√
c2−4ab
2a

) andE2 = ( c+
√
c2−4ab
2

,

−c−
√
c2−4ab

2a
, c+
√
c2−4ab
2a

) if c2 > 4ab, only one equilibrium point ( c
2
, −c

2a
, c

2a
) if c2 = 4ab and

no equilibrium point if c2 < 4ab.

The system

ẋ = −y − z

ẏ = x+ y (3.6)

ż = 2.22 + z(x− 3)

has two equilibrium points for a = 1, b = 2.22 and c = 3: E1 = (1.32679,−1.32679,

1.32679), and E2 = (1.67321, −1.67321, 1.67321). Using linearization analysis, we com-

pute the Jacobian matrix at the point E1 as

J =


0 −1 −1

1 1 0

1.32679 0 −1.67321


9



with eigenvalues λ1 = −0.047351 + 0.772374i, λ2 = −0.047351 − 0.77237i and λ3 =

−0.578503. Since all eigenvalues have negative real parts, we can conclude that the equi-

librium point E1 = (1.32679,−1.32679, 1.32679) is a stable focus which is asymptotically

stable. Similarly, the Jacobian matrix at the point E2 is

J =


0 −1 −1

1 1 0

1.67321 0 −1.32679


with eigenvalues λ1 = −0.280591+1.18288i, λ2 = −0.280591−1.18288i, λ3 = 0.234387.

Since it has two eigenvalues with negative real parts and one eigenvalue with positive real

part the equilibrium point E2 = (1.67321,−1.67321, 1.67321) is of type-1 saddle.

3.1.4 The Belousov-Zhabotinsky Reaction

A Belousov-Zhabotinsky reaction (or BZ reaction) is one of a class of reactions that

serve as a classical example of non-equilibrium thermodynamics, resulting in the estab-

lishment of a nonlinear chemical oscillator. The phenomenon is first, observed by Boris

Belousov in 1951 and then, Anatol Zhabotinsky confirmed his results in 1961.

The simplest realistic model of the chemical dynamics of the oscillatory Belousov-

Zhabotinsky reaction which was created by Richard Field and Richard M. Noyes, is called

the oreganator. In the following, we consider an oregonator model of BZ reaction

εẋ = qy − xy + x(1− x)

δẏ = −qy − xy + fz (3.7)

ż = x− z

Its equilibrium points are (0, 0, 0), and (1
2
(1 − f − q ±

√
1− 2f + f 2 + 2q + 6fq + q2),

1
4q

(q+3fq±
√

1− 2f + f 2 + 2q + 6fq + q2), (1−f−q±
√

1− 2f + f 2 + 2q + 6fq + q2)).

E.g., system (3.7) becomes

10−2ẋ = 10−4y − xy + x(1− x)

10−5ẏ = −10−4y − xy +
1

2
z (3.8)

ż = x− z.

when q = 10−4, f = 1/2, ε = 10−2, δ = 10−5. The equilibrium points are E1 = (0, 0, 0),

E2 = (−0.00029988, 0.75015,−0.00029988) andE3 = (0.5002, 0.4999, 0.5002). Lineariz-
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ing the system about the point E1, we compute the Jacobian matrix at that point as

J =


100 0.001 0

0 −10 50000

1 0 −1


with eigenvalues λ1 = 100.045, λ2 = −9.46007, λ3 = −1.5849. Since it has three eigen-

values with one positive and two negative real parts, the origin is of type-1 saddle which is

unstable. We now linearize the system about the point E2 and compute the Jacobian matrix

at that point as

J =


25.045 0.039988 0

−75015 19.988 50000

1 0 −1


with eigenvalues λ1 = 22.2325 + 54.5911i, λ2 = 22.2325 − 54.5911i, λ3 = −0.431979.

Since it has eigenvalues having two positive and one negative real parts the point E2 is a

type-2 saddle which is unstable. We finally linearize the system about the point E3 and

compute the Jacobian matrix at that point as

J =


−50.03 −50.01 0

−49990 −50030 50000

1 0 −1


with eigenvalues λ1 = −50080, λ2 = −0.529452 + 7.05051i, λ3 = −0.529452− 7.05051i.

Since all the eigenvalues have negative real part, E3 is a stable spiral.

Figure 3.1: BZ reaction phase plot
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3.1.5 A nonlinear system from (Hachicho and Tibken (2007))

The system of equations are

ẋ = −x+ yz2

ẏ = −y + xy (3.9)

ż = −z.

(0, 0, 0) is the only equilibrium point of this system. Using linearization analysis, we com-

pute the Jacobian matrix at the origin as

J =


−1 0 0

0 −1 0

0 0 −1

 .

Its eigenvalues are λ1 = λ2 = λ3 = −1 and the corresponding eigenvectors are v1 =

(1, 0, 0)T , v2 = (0, 1, 0)T and v3 = (0, 0, 1)T . Since all eigenvalues are negative and the

corresponding eigenvectors span the stable eigenspace of the linearized system, which is

R3, we can conclude that the origin is asymptotically stable node.

In the rest of this chapter, we consider the ROA and its boundary.

3.2 Characterization of the ROA

First we state a well-known theorem:

Theorem 3.2.1. (Yerugin (1951a,b); Hahn (1967)) The boundary of the ROA is formed by

whole trajectories.

Next we consider the characterization of the boundary of the ROA and see that hy-

perbolic equilibrium points play an important role in this characterization.

An equilibrium point x̂ of system (2.1) is said to be hyperbolic if, in local coordi-

nates, any of eigenvalues of the Jacobian matrix J at x̂ has no zero real part. For a hyperbolic

equilibrium point x̂, the tangent space of the state space of system can be decomposed as

a direct sum of the stable and unstable eigenspaces. Consequently, one of the important

features of a hyperbolic equilibrium point x̂ is that its stable and unstable manifolds inter-

sect transversely at x̂. Transversal intersection is important because it remains same under

perturbation of the vector field.

12



Under the following assumptions concerning the vector field:

(i) all the equilibrium points on the boundary of ROA are hyperbolic,

(ii) the stable and unstable manifolds of equilibrium points on the boundary satisfy the

transversality condition, and

(iii) every trajectory on the boundary approaches one of the equilibrium points as t→∞.

Theorem 4.3 in Chiang et al. (1988) states a necessary condition for the existence of certain

types of equilibrium points on the boundary of ROA which is bounded. The contrapositive

of this theorem is the following.

Corollary 3.2.2. (Chiang et al. (1988)) (Sufficient conditions for ROA to be unbounded).

For the nonlinear autonomous system (2.1), if the assumptions (i) to (iii) are satisfied and if

the boundary contains no source, then the ROA is unbounded.

Using Corollary 3.1, we can state the following theorem.

Theorem 3.2.3. Systems (3.2), (3.4), (3.6), (3.8) and (3.9) have unbounded ROAs.

Proof. We first note that any of these systems has a source.

We start with the proof of our assertion for systems (3.2) and (3.6). Since each of

systems, (3.2) and (3.6) has an asymptotically stable focus and an unstable focus, a type-1

saddle point, and these points are of hyperbolic type, and moreover there exists a Lyapunov

function for the asymptotically stable equilibrium point of the systems we can conclude that

systems (3.2) and (3.6) have an unbounded ROA, by Corollary 3.2.2.

We now prove the assertion for system (3.8). This system has an asymptotically

stable node and an unstable node, a type-1 saddle, and an unstable focus, a type-2 saddle.

These equilibrium points are all hyperbolic type. The transversal intersection of the stable

and unstable manifolds of the saddle points is a generic property of the autonomous systems

with hyperbolic equilibria we can assume such an intersection. Furthermore, there exists a

Lyapunov function for the asymptotically stable focus. Thus, we can conclude that system

(3.8) has an unbounded ROA by Corollary 3.2.2.

Finally, we prove the statement for systems (3.4) and (3.9). Each system has only

one equilibrium point which is an asymptotically stable node and there exists a polynomial
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Lyapunov function for each stable node which is radially unbounded. So, the ROA of the

each system is R3. Hence, they have unbounded ROA.

We note that to prove the assertion we use the fact that a Lyapunov function is an energy

function with decreasing properties, and if such a function exists then each trajectory of the

system converges to one of the equilibrium point.

14



4. LYAPUNOV METHODS

Lyapunov methods are based on Lyapunov’s stability theory and its various exten-

sions. They can give sufficient conditions to confirm stability of dynamical systems using

the LFs, and approach the problem of estimation of ROA by characterizing the trajectories

that lie on the boundary of ROA.

Almost all Lyapunov methods used for estimating ROA are based on the search for

a LF, V (x) and a positive scalar c such that time derivative of V (x), V̇ (x) is negative over

sub-level set {x|V (x) ≤ c}, Hahn (1967). Given such a function V and a positive scalar c,

it can be proven that the connected component of that set containing the equilibrium point

is an inner approximation to the ROA.

Such techniques have been successfully implemented for estimating the ROAs of

various nonlinear systems, but they have several disadvantages by limiting their applica-

bility in practice, (Chesi (2011)): First of all, the approach depend upon the existence of

suitable LFs. Since Lyapunov theory has a non-constructive nature, computation of such

LFs for nonlinear systems are extremely difficult. In other words, the related theorem only

ensures the existence of a ROA, but it does not provide a systematic way for finding an

initial feasible LF. It is possible to construct a quadratic LF easily by solving the Lyapunov

equation of the linearized system, but this function only captures the local behaviour of the

nonlinear systems around the equilibrium point. Then, the most of the existing methods

are limited to polynomial systems (Hachicho and Tibken (2007), Chesi et al. (2005)). In

the case of the non-polynomial systems, the equations of motion are first, approximated by

using the Taylor’s expansion and then, ROA is computed based on the approximated polyno-

mial equations. Finally, the Lyapunov methods generally yield conservative estimations of

ROA, since the techniques often relax the optimization problem to maximize the sub-level

set of the LF, and the available methods are usually computationally time consuming.

In this chapter, we shall use the methods of Zubov, Groebner bases and SOS pro-

gramming for estimating the ROAs of the specific examples of nonlinear autonomous sys-

tems.
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4.1 The Zubov’s Method

There are a very few methods for computing the entire ROA, in the literature. Their

applications are impractical since these methods have serious computational problems. Zubov’s

method is the well-known of them. It provides necessary and sufficient conditions to charac-

terize areas which are thought as a ROA around an asymptotically stable equilibrium point.

The following theorem due to Zubov which states that for a given asymptotically

stable equilibrium point, it is always possible to find a LF, defined on the ROA that satisfies

the partial differential equation, (PDE) (4.1), (Zubov (1961, 1962), Hahn (1967)).

Theorem 4.1.1. The origin of system (2.1) is asymptotically stable on a set D ⊆ Rn if, and

only if there exist functions V, ϕ : Rn → R≥0 satisfying

(i) V is continuous, and positive definite in D, 0 ≤ V < 1, and lim|x|→∂D V (x) = 1,

(ii) ϕ is continuous and positive definite; and

(iii) the partial differential equation

V̇ = [∇V (x)]Tf(x) = −ϕ(x)(1− V (x))
√

1 + fT (x)f(x) (4.1)

is satisfied.

Assuming that system (2.1) does not have a finite escape time, we can write equation

(4.1) as

[∇V (x)]Tf(x) = −φ(x)(1− V (x)). (4.2)

First we take a positive definite function ϕ(x) which is continuous. Then, solving (4.2) for

V (x) with the boundary condition V (0) = 0, we find the true ROA, defined by 0 ≤ V (x) <

1. We note that it is enough to take ϕ(x) as quadratic form, not identically zero, along a

trajectory in that region.

Theorem 4.1.2. (Zubov (1962)) As the solution of the PDE (4.2), the function V (x) is a LF

that establishes the asymptotic stability of the equilibrium x = 0 of system (2.1).

By making the substitution

W (x) = − ln(1− V (x)), (4.3)

where 0 ≤ V (x) < 1, we obtain another PDE

[∇W (x)]Tf(x) = −ϕ(x, y, z). (4.4)
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We note that similar statements and equations as for V can also be given for W .

Theorem 4.1.3. (Zubov (1962)) If x ∈ D, where D is the ROA of system (2.1), then 0 ≤
V (x) < 1.

Theorem 4.1.4. (Zubov (1962)) If ξ is a point lying on the boundary of domain D then

limx→ξ V (x) = 1 from the interior of D.

Theorem 4.1.5. (Zubov (1962)) If exists, the curve V (x) = 1, is an integral curve of system

(2.1).

Theorem 4.1.6. (Zubov (1962)) For a fixed x, the solution to system (2.1) is uniquely deter-

mined in interior of D.

Theorem 4.1.7. (Zubov (1962)) The boundary of domain D is a family of curves V (x) =

1,∀x.

Theorem 4.1.8. (Zubov (1962)) In order for the equilibruim of system (2.1) to be asymptot-

ically stable globally, it is necessary and sufficient that V (x) < 1, ∀x.

4.1.9 The Zubov’s Recursive Procedure

In general, we can not find an analytic solution of the Zubov’s PDE. However, we

can use a recursive procedure to construct the solution, (Margolis and Vogt (1963)) for some

classes of systems. We start the procedure by assuming the right hand side of system (2.1)

possesses continuous partial derivatives of all orders. Then we can write the Taylor series of

f(x) about x = 0 which yields

ẋ = Jx+ h(x), (4.5)

where

J =

(
∂f(x)

∂x

)∣∣∣
x=0

(4.6)

is the Jacobian matrix of the linearized equations and the nonlinear part h(x) has a power

series representation

h(x) = h1(x) + h2(x) + · · · , (4.7)

where all terms hm(x) are homogeneous functions of degree m ≥ 2, that is,

hm(x) = Σ∑
njcn1,...,nαx

n1
1 x

n2
2 · · · xnnαnα , (4.8)
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where n1 + n2 + . . . + nnα = m. Choosing ϕ(x) as a quadratic function, we can write the

solution of Zubov’s PDE

∂V

∂x
[Jx+ h(x)] = −ϕ(x)(1− V (x)) (4.9)

using the boundary condition V (0) = 0, as an infinite power series

V (x) = V2(x) + V3(x) + · · · . (4.10)

Here, we assume that the functions Vm(x) are homogeneous functions of degree m

Vm(x) = Σ∑
njbn1,...,nαx

n1
1 x

n2
2 · · ·xnnαnα (4.11)

We can calculate the coefficients of each Vm(x) by replacing (4.7) and (4.10) in equation

(4.9) to obtain(∑
n=2

∂Vn
∂x

)
= (Jx+

∑
n=2

hn(x) + · · · ) = −ϕ(x)

(
1−

∑
n=2

V

)
. (4.12)

In order to determine V (x) as maximal LF, we first choose ϕ(x) as a quadratic

function, then we expand both sides of (4.12) and equate the same degree terms to get the

recursive relations:

∂V2

∂x
Jx = −ϕ(x) (4.13)

∂V3

∂x
Jx =

∂V2

∂x
h2(x) (4.14)

∂V4

∂x
Jx = ϕ(x)V2(x)h3(x)− ∂V3

∂x
h2(x) (4.15)

...
∂Vm
∂x

Jx = ϕ(x)Vm−2(x)hm−1(x)−
m−1∑
j=2

∂V2j

∂x
hm+1−j(x) (4.16)

Substituting V2(x) (from equation (4.11) withm = 2) in equation (4.13), and equating coef-

ficients of the corresponding terms with the left and right sides we get a system of equations

for V2(x). After determining V2(x) and using the equation (4.14) we can determine the co-

efficients of V3(x). We repeat this process until every element of the power series of V (x) is

calculated. By this way, we reduce the problem of determination of the coefficients of Vm to

the problem of finding the solution of m+ 1 linear equations which can be solved, easily. If

we can write the power series that represents a function V (x) in closed form, then the exact

ROA is defined by 0 ≤ V (x) ≤ 1. This is another way for representing the ROA, but it is

obtained taking several terms from the series of LF, V (x).
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4.1.10 The Optimization Procedure

The optimization process (Walter and Thomas (1997)) can be explained as follows:

For an equilibrium at the origin, we choose a LF V (x) which is positive definite and its time

derivative, V̇ (x) is negative definite in some deleted neighborhood of the origin. Next, we

solve the problem:

min
x
V (x) subject to V̇ (x) ≤ 0. (4.17)

The region V (x) < Ṽ will be the largest estimate for the ROA, based on the specified LF

V (x) provided that the problem (4.17) has a nonzero solution x̃, and the region defined by

V (x) < Ṽ = V (x̃) is bounded, with the assumption that V̇ (x) ≤ 0 there. We also impose

that V̇ (x) is not zero at each point x except the point zero.

By using the first-order necessary optimality conditions, we can compute the solu-

tions of the problem (4.17). With the assumption ∂V (x̃)
∂x
6= 0, we can reduce the conditions

to

V̇ (x̃) = 0 (4.18)
∂V (x̃)

∂x
= µ

∂V̇ (x̃)

∂x
, (4.19)

where µ > 0. The solutions of (4.18) and (4.19) imply the tangency of the surfaces V (x) =

Ṽ and V̇ (x̃) = 0 at x̃.

4.1.11 The problems arise in the applications of the Zubov’s recursive proce-

dure

(1) The implementation of the power series approximation of the Zubov’s PDE is usually

restricted to the lower order systems due to computational difficulties and due to the

fact that the computed power series is not uniformly convergent. For second-order

systems, Margolis and Vogt (1963) developed a solution procedure. Unfortunately,

this procedure can not immediately be generalized to higher-order systems. To obtain

the solution of the recursive equations for VN , we need all the previously calculated

values, namely V2, V3, . . . , VN−1. The total number of coefficients to be stored will

increase rapidly as N increases. For instance, in a third-order system for N = 20, the

total number of terms in the final evaluation of the function V is 1770.

(2) Zubov’s method has a nonmonotonic nature.
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(3) There is no systematic way for selection of positive definite function ϕ(x) and num-

ber of terms N of the series to be taken to optimize the stability boundary estimate.

Different choices of ϕ(x) (also N ) yield different order estimations.

(4) Another problem arises in the determination of a constant c in the optimization prob-

lem so that V − c gives the boundary of ROA. To determine c, we solve the minimiza-

tion problem

min
c,x

c subject to V − c = 0, V̇ = 0, c > 0

4.1.12 Applications

In this section, we apply the Zubov’s recursion scheme (4.13)–(4.16) for estimating

ROA of systems of Genesio (3.2), Lorenz (3.4), Rössler (3.6), and BZ reaction (3.8) and

system (3.9). In order to implement the recursive scheme, we choose the positive definite

function ϕ(x, y, z) = λ(x2 + y2 + z2), where λ is a positive real scalar in each application.

From our trials we have observed that for some systems, the estimations can be computed

for a wide range of the values of λ. However, for some systems this can be achieved for a

small range of the values of λ.

In each application, we compute finite number of terms of the following power series

V (x) =
∞∑
i=2

Vi(x) = V2(x) + V3(x) + · · ·+ VN(x) + · · · , (4.20)

where, for each N , VN(x) is defined as

VN(x, y, z) =
N∑
i=2

i∑
j=0

i−j∑
k=0

ai−j−k,j,kx
i−j−kyjzk. (4.21)

Example 1. The Zubov’s PDE for the Genesio system (3.1) is

∂V

∂x
(y) +

∂V

∂y
(z) +

∂V

∂z
(−ax− by − cz + x2) = ϕ(x, y, z)(1− V (x, y, z)). (4.22)

Applying the recursion scheme (4.13)–(4.16) to (4.22) for the values of parameters a =

1, b = 3, c = 1, and taking N = 6 in (4.20) we compute estimations of the ROA for

system (3.2). For many different λ values, cumbersome calculations were carried out until

the degree of V has reached at most 20 by trial and error. We illustrate two of them in Figure

4.1. For λ = 10 we arrive at the sublevel set V6 = 0.7737 in Figure 4.1 (a), (c), and for

λ = 1 we get V6 = 0.6085 in Figure 4.1 (b), (d). The blue colored surfaces represent V6 = c

while the red colored regions for V̇6 = 0.
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(a) λ = 10 (b) λ = 1

(c) λ = 10 (d) λ = 1

Figure 4.1: Genesio system ROA estimation

Example 2. The Zubov’s PDE for the Lorenz system (3.3) is

∂V

∂x
(σ(y − z)) +

∂V

∂y
(rx− y − xz) +

∂V

∂z
(xy − bz) = ϕ(x, y, z)(1− V (x, y, z)). (4.23)

For the values of parameters σ = 10, r = 1
2
, b = 8

3
and for N = 6, and λ = 10, applying

the recursion scheme (4.13)–(4.16) to (4.23) we obtain estimations to ROA of the origin of

Lorenz system (3.4). In Figure 4.2 sublevels of (a) a second degree, (b) a third degree and

(c) a sixth degree V functions, V = 11.1576, V = 0.5178 and V = 0.3107, respectively,

are plotted.

(a) λ = 10, Vdeg = 2 (b) λ = 10, Vdeg = 3 (c) λ = 10, Vdeg = 6

Figure 4.2: Lorenz system ROA estimation

From graphs we can conclude that the best estimation are obtained by using the second

degree LF.
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Example 3. The Zubov’s PDE for the Rössler system (3.5) is

∂V

∂x
(−y − z) +

∂V

∂y
(x+ ay) +

∂V

∂z
(b+ xz − cz) = ϕ(x, y, z)(1− V (x, y, z)). (4.24)

For the values a = 1, b = 2.22, c = 3 and for N = 2, 3, and λ = 5, applications of

scheme (4.13)–(4.16) yield estimations for ROA of the asymptotically stable equilibrium

point E1 of Rossler system (3.6). Two and three dimensional estimations V2(x) = 0.1545

and V3(x) = 0.2697, are plotted in Figure 4.3 (a), (b) in 2D, (c), (d) in 3D, respectively.

In this example, the LF with degree three yields a better estimation than the LF with degree

two.

(a) V = 0.1545 (b) V = 0.2697

(c) V = 0.1545 (d) V = 0.2697

Figure 4.3: Rössler system ROA estimation

Example 4. The Zubov’s PDE for the BZ reaction (3.7) is

∂V

∂x
(
q

ε
y−1

ε
xy+

1

ε
x−1

ε
x2)+

∂V

∂y
(−q
δ
y−1

δ
xy+

1

δ
z)+

∂V

∂z
(x−z) = ϕ(x, y, z)(1−V (x, y, z)).

(4.25)

For the values of the parameters q = 10−4, f = 1/2, ε = 10−2, δ = 10−5 and for N =

2, 4 and 6 and, λ = 10 with scheme (4.13)–(4.16) we obtain estimations to ROA of the

asymptotically stable equilibrium point E3 of BZ reaction (3.8). Figure 4.4 (a)-(c) display

3-dimensional views of the estimations for λ = 10, V2(x) = 2.6036×10−4, V4(x) = 0.0056
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and V6(x) = 5.4314, respectively (blue), and the surfaces V̇ = 0 (light brown). From

figures, we can observe that, as degree of V increases from 2 to 6 we get better estimations.

(a) V = 2.6036× 10−4 (b) V = 0.0056 (c) V = 5.4314

Figure 4.4: BZ reaction ROA estimation

Example 5. The Zubov’s PDE for system (3.9) is

∂V

∂x
(−x+ yz2) +

∂V

∂y
(−y + xy) +

∂V

∂z
(−z) = ϕ(x, y, z)(1− V (x, y, z)). (4.26)

For N = 6 and N = 10 and λ = 600, scheme (4.13)–(4.16) yields the estimation for ROA

of the origin of system (3.9), V6 = 5.3342 × 108 and V10(x) = 5.7782 × 1013as depicted

in Figure 4.5. From the figures we can conclude that the better estimation is obtained when

degree of V is 10.

(a) (b)

Figure 4.5: HT system ROA estimation

4.2 The Groebner Bases

Groebner bases, (GB) have been used seriously for solving difficult problems in

commutative algebra by mathematicians since the mid of 70’s . Buchberger (1976), Rob-

biano (1989), Beveniste et. al.,(1989) made significant contributions in the improvement
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of the GB algorithm. The algorithms used to construct GB are implemented on computers

(Char et.al.1988).

The solution of a system of nonlinear algebraic equations in several variables arising

in different areas is important. To solve such systems with polynomial type nonlinearities

we can use a general method based on GB. We can find the solutions of these systems by

using the method of GB by triangulating them. In this procedure, the minimal dimension of

the solution becomes apparent which yields an equation in one variable only, if the solution

is zero dimensional.

In the following, we shall give the criteria for the existence of the solution of an

elimination problem:

Let k[x1, x2, . . . , xn] be the polynomial ring, where k is an arbitrary but, fixed field. And, let

I be the ideal generated by a set of polynomials P = {p1, . . . , pm}, that is

I =

〈
m∑
i=1

γipi

〉
where γi ∈ k[x1, x2, . . . , xn].

Definition 4.2.1. (Forsman and Glad (1990)) The manifold the ideal I is the set of solutions

Z(I) = {x ∈ Cn|∀p ∈ I : p(x) = 0}

Thus a system of equations P = 0 has a finite number of solutions iff, Z(P) is zero dimen-

sional.

We eliminate variables one by one in the triangulation process of a system. To

determine in what order, we should eliminate the variables and we use a ranking of the

variables. For example the ranking

x1 ≺ x2 ≺ · · · ≺ xn−1 ≺ xn (4.27)

means that xk is eliminated before xl if k > l.

We have able to compare polynomials for the elimination of the variables. It can

be done, if we have an ordering of the monomials of k[x1, x2, . . . , xn]. This ordering is

achieved, if we say that a high ranking monomial should have a high degree in a high

ranking variable.

A Groebner base is a generating set for an ideal. It has certain properties which are

attracting algorithmically.
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What makes GB so useful?

For a given set P of polynomials, there exists an algorithm which calculates the

Groebner base for the ideal generated by P in a finite number of steps (Buchberger (1976)).

It is implemented on computers.

Theorem 4.2.2. (Forsman and Glad (1990)) Let G be a Groebner basis for the ideal I with

respect to the ranking (4.27). Then the following applies:

1. Z(I) = ∅ ⇐⇒ G = {1}

2. dim(Z(I)) = 0 ⇐⇒ Each variable appears alone in the highest ranking monomial

of a polynomial in G.

3. I ∩ k[x1] = {0} ⇐⇒ G ∩ k[x1] = ∅

Proof. The proof can be found in (Buchberger (1970) and Pauer and Pfeifhofer (1988))

4.2.3 Some Structure Theorems

We say that p ∈ k[x1, x2, . . . , xn] is “regular” with respect to xj if lmp ∈ k[xj] using

a plex term ordering which ranks xj the highest. (Here lm denotes “leading monomial”).

The following states how GB can be used to solve systems of polynomial equations.

Theorem 4.2.4. (Forsman (1991)) Let I be an ideal in k[x1, x2, . . . , xn]. Then dim I = 0 if

and only if there is a p ∈ GB(I) such that p is regular with respect to xi, for all i.

Proof. See (Gianni and Mora (1989)).

This theorem does not say that there are n elements in the Groebner base, e.g., the set

x2
1, x1x2, x

2
2 in a Groebner base of a zero dimensional ideal in k[x1, x2].

In Gianni and Mora (1989), it is also proved that generally the (n− 1)st elements of

the GB are linear in the leading variable. Thus, the generic look of a plex-Groebner base for

a zero dimensional ideal with respect to xn ≺ xn−1 ≺ · · · ≺ x2 ≺ x1 is

{x1 − p1, x2 − p2, . . . , xn − pn} , (4.28)

where pj ∈ k[xn] for all j, and deg pn > deg pj for j = 1, . . . , n− 1.
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Definition 4.2.5. An arbitrary ideal that has a Groebner base of type (4.28) with respect to

the plex term-ordering is said to be in “generic position”.

Thus, an ideal which is zero dimensional is in generic position provided that for two different

zeroes (c1, . . . , cn) and (d1, . . . , dn), we have cn 6= dn.

“To be in generic position” is an important property. Since for a plex-Groebner base

with respect to a term ordering, if the zero dimensional ideal is in generic property then the

GB technique can be applied effectively.

Whenever the ideal is not zero dimensional other techniques like Boege, Gebouer

and Kredel algorithm, (Böge et al. (1986)) or Robinovich trick, (Rabinowitsch (1929)) can

be used to find the solution of the problem.

Even if the great advantage of computation of GB for an ideal generated by a finite

number of polynomials is by using an algorithm in a finite number of steps with help of the

computers, the main drawback of the method comes from the fact that their computational

complexity is in general, very high. In this case, other techniques such as Boege, Gebouer

and Kredel algotirhm, (Böge et al. (1986)), characteristic sets Chen (1988) or resultants,

Hodge and Pedoe (1953) can be used.

4.2.6 Groebner Bases in Lyapunov Theory

GB have important applications in the Lyapunov stability theory. Here, we use GB

technique for estimating ROA of nonlinear autonomous systems.

Definition 4.2.7. (Forsman (1991)) A polynomial p ∈ k[x1, x2, . . . , xn] is positive if p(0) =

0 and ∀x ∈ Rn \ 0 : p(x) > 0. p is non-negative if p(0) = 0 and ∀x ∈ Rn : p(x) ≥ 0. We

say that p is locally positive if p(0) = 0 and there is a neighborhood H of the origin such

that ∀x ∈ H0 : p(x) > 0, p is locally non-negative if p(0) = 0 and there is a neighborhood

H of the origin such that ∀x ∈ H0 : p(x) ≥ 0.

We define negative etc. analogously.

We consider a nonlinear autonomous dynamical system defined by (2.1) and assume

that x = 0 is an asymptotically stable equilibrium point of this system. We also suppose that

the components of the vector field f are polynomials in x: fj ∈ k[x1, x2, . . . , xn],∀j. Since

f is polynomial, the solution of (2.1) is uniquely determined by an initial value x0 ∈ Rn
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(Coddington and Levinson, 1985). We write ϕ(t, x0) for the solution starting at x0; so ϕ is

a function R× Rn → Rn.

Definition 4.2.8. (Forsman (1991)) Given a V ∈ k[x1, x2, . . . , xn] the regions Π, Π̄ and Gc

are defined by Π = {x ∈ Rn|V̇ = ∇V · f < 0} ∪ {0} Π̄ = {x ∈ Rn|V̇ = ∇V · f ≤ 0}
Gc = {x ∈ Rn|V (x) ≤ c} where V̇ = ∇V · f =

∑
f · ∂V

∂xi
is the time derivative of V along

a trajectory of system (2.1). This means that the boundary ∂Gc is a level surface of V for

each c.

From definition (4.2.8), we can easily see that

a ≤ b =⇒ Ga ⊆ Gb (4.29)

for a, b ∈ R.

Definition 4.2.9. (Forsman (1991)) A function V ∈ k[x1, x2, . . . , xn] is a polynomial LF for

system (2.1) if V̇ is non-positive.

Definition 4.2.10. (Forsman (1991)) A function V ∈ k[x1, x2, . . . , xn] is a local LF for

system (2.1) if V̇ is a locally non-positive and ∃c ∈ R : Gc ⊆ Π̄.

If V is a local LF for (2.1) and c is such that Gc ⊆ Π̄, then x0 ∈ Gc =⇒ ϕ(t, x0) ∈
Gc,∀t ≥ 0. In other words the set Gc is invariant if V is a local LF. In particular, if V is a

LF for (2.1) then Gc is invariant for all c. Gc is not necessarily connected; make a partition

Gc =
⋃
i

Gi
c (4.30)

Since ϕ is continuous in t we have the following result.

Theorem 4.2.11. (Forsman (1991)) If V is a local LF for (2.1) and Gi
c ⊆ Π̄. Then x0 ∈

Gi
c =⇒ ∀t ≥ 0 : Φ(t, x0) ∈ Gi

c.

For a polynomial function V the partition (4.30) consists of a finite number of com-

ponents. The number of its connected components of Gc depends on the value of c.

The most important application of Lyapunov theory is stability theory. In order to

establish stability using LFs we need one more concept.

Definition 4.2.12. (Forsman (1991)) A function p : Rn → R is radially unbounded if

p(x)→∞ as ‖x‖ → ∞.
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Thus, Gc is bounded for all c if and only if V is radially unbounded.

Theorem 4.2.13. (Forsman (1991)) If V is positive, radially unbounded, local LF for (2.1)

and G0
c ⊂ Π, then x0 ∈ G0

c =⇒ limt→∞ Φ(t, x0) = 0, where 0 ∈ G0
c . Thus the origin of

system (2.1) a is locally asymptotically stable equilibrium.

4.2.14 Determining Critical Levels

Having defined local LF and explained their connection to stability theory above, the

following important problem immediately arises: How can we find a constant c in order to

get Gc as large as possible, while Gc is still inside of Π ?

If Gc ⊂ Π, then we can guarantee stability in Gc according to Theorem 4.12, e.g., in

(Chiang and Thorp (1989)) to solve such problem, an effective method is given.

Here, we shall introduce an algorithm for solving this problem using GB, in the case

of polynomial nonlinearities.

To study the problem, we introduce the set D ⊆ R:

D = {c ∈ R|Gc ⊆ Π}. (4.31)

This set is obviously the projection of Z(〈V − c,∇V · f〉) on the c-axis (Z(I)) is the set

of real zeros of the ideal I in Rn, thus it is semi-algebraic. It is a simple consequence of

property (4.29) that D is connected, i.e.,consists of a single interval. In view of the property

(4.29) we may reformulate the problem as: which is the smallest c > 0 such that

∂Gc ∩ ∂Π 6= ∅

If we view the problem as one of optimization we can formulate it as follows: we

wish to minimize V subject to ∇V · f = 0. This observation is also made in e.g., Shields

and Storey (1975).

Summing up we get n new equations while introducing one new variable, the La-

grange multiplier λ. So, we get a system of n+ 2 equations in n+ 2 variables:

V − c = 0, ∇V · f = 0, ∇(∇V · f)− λ∇V = 0,

i.e., we should study the ideal
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〈V − c,∇V · f, ∂V
∂x1

− λ∂(∇V · f)

∂x1

, . . . ,
∂V

∂xn
− λ∂(∇V · f)

∂xn
〉

in k[x1, x2, . . . , xn, λ, c]. As mentioned, we presuppose that we do not have ∇V 6= 0 =

∇(V · f) at the relevant point. It is thus sufficient that the hypersurface V − c is not singular

for the critical c.

A plex GB for the ideal I with respect to a term-ordering of the type

{x1, x2, . . . , xn, λ} > c

gives us the contraction I ∩ k[c]. If I ∩ k[c] 6= {0}, we thus obtain a polynomial p in c only,

derived from the original equations.

4.2.15 Applications

Example 6. By applying the Groebner bases method to Genesio system (3.2) by using the

local LF

V (x) = 2.25x2 + 3.5xy + xz + 4y2 + 1.5yz + 1.25z2

and the corresponding ideal

I = 〈2.25x2 + 3.5xy + xz + 4y2 + 1.5yz + 1.25z2 − c,

−x2 + x3 + 1.5x2y − y2 + 2.5x2z − z2,

4.5x+ 3.5y + z − λ(−2x+ 3x2 + 3xy + 5xz),

3.5x+ 8y + 1.5z − λ(1.5x2 − 2y),

x+ 1.5y + 2.5z − λ(2.5x2 − 2z)〉

we get the polynomial

793317013596830016c− 5682312568021093098192c2

+47329651641171395439204120c3 − 110983612861994453740875015c4

−399171735948270788641820484c5 + 1702126605685418820966856097c6

+3109871323094605686554556733c7 − 6652142099216134970869529000c8

+2116908741814705275879250000c9

which has three real solutions c = 0, c = 0.943864, and , c = 2.40866. Choice of the

positive minimum value of c yields a level surface of V , that is V = 0.943864 as depicted

in Figure 4.6.
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Figure 4.6: Genesio system ROA estimation

Example 7. Using the function

V (x) = 0.05682x2 + 0.2727xy + 1.8636y2 + 0.1875z2

as a LF for the origin of Lorenz system (3.4) and the corresponding ideal

I = 〈0.05682x2 + 0.2727xy + 1.8636y2 + 0.1875z2 − c,

−1.00005x2 + 0.0003xy − 1.0002y2 − 0.2727x2z − 3.3522xyz − z2,

0.11364x+ 0.2727y − λ(−2.0001x+ 0.0003y − 0.5454xz − 3.3522yz),

0.2727x+ 3.7272y − λ(0.0003x− 2.0004y − 3.3522xz),

0.375z − λ(−0.2727x2 − 3.3522xy − 2z)〉

we get the level surface, V = 1.11574, which is illustrated in Figure 4.7.

Figure 4.7: Lorenz system ROA estimation
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Example 8. The local LF for Rössler system (3.6)

V = 114.934x2 + 151.451xy − 114.901xz + 75.226y2 − 54.293yz + 34.635z2

and the corresponding ideal is

I = 〈114.934x2 + 151.451xy − 114.901xz + 75.226y2 − 54.293yz + 34.635z2 − c,

−0.99965x2 − 0.00095xy − 0.99899y2 − 0.00121xz − 114.901x2z + 0.000047yz

−54.293xyz − 1.001564z2 + 69.27xz2, 229.868x+ 151.451y − 114.901z

−λ(−1.999294x− 0.000952y − 0.0012108z − 229.802xz − 54.293yz + 69.27z2),

151.451x+ 150.452y − 54.293z − λ(−0.000952x− 1.99799y + 0.0000476z

−54.293xz),−114.901x− 54.293y + 69.27z − λ(−0.0012108x− 114.901x2

+0.0000476y − 54.293xy − 2.003128z + 138.54xz)〉

Application of the Groebner bases method results the level surface V = 0.0309072. As it

can be seen in Figure 4.8, it is very tiny region.

Figure 4.8: Rossler system ROA estimation

Example 9. For BZ reaction (3.8) the local LF is

V = 9.6058x2 − 0.0194032xy + 0.000109638y2 − 18.8119xz + 0.0190232yz + 480.579z2

and resulting Lyapunov surface, V = 0.0000984541, is depicted in Figure 4.9.

Example 10. For system (3.9) the LF

V = 0.5x2 + 0.5y2 + 0.5z2.

Its computed level set, V = 2.61595 is illustrated in Figure 4.10.
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Figure 4.9: BZ reaction ROA estimation

Figure 4.10: HT system ROA estimation

4.3 Sum of Squares Programming Method

The sum of squares, (SOS) programming method is applicable to nonlinear au-

tonomous dynamical systems with polynomial vector fields. It depends upon the connec-

tions between sum of squares polynomials and positive semidefinite matrices. That con-

nection was first, made by Parrilo, (Parrilo (2000)). Then, the researches on computational

tools for estimating ROAs have been led.

The estimations of the ROA of the asymptotically stable equilibrium point can be

computed using SOS programming technique. The basic problem in such a problem is to

find a suitable LF which requires to test nonlinear functions for positive definiteness on a

certain region of state space. The advantage of the SOS programming method is to solve

the problem for polynomial functions with a restriction. In point of fact, the polynomial is

checked whether a sum of square representation exists which is naturally positive semidefi-

nite. Moreover, the LFs of degree larger than 2 can be constructed systematically using SOS

programming method. Such LFs may give better estimates for the ROA when compared to
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quadratic LFs.

4.3.1 Sum of squares polynomials

Let the set of all polynomials in n variables with real coefficients be denoted by Rn

and as a subset of Rn we let Rn,α be the set of all polynomials in n variables that have

maximum degree α.

Definition 4.3.2. For x ∈ Rn, a polynomial p(x) is referred to as a SOS polynomial if there

are polynomials si ∈ Rn, i = 1, . . . ,m, such that p(x) can be written as

p(x) =
m∑
i=1

s2
i (x)

We denote the set of SOS polynomials by

Σn :=

{
p ∈ Rn |p(x) =

m∑
i=1

s2
i (x), for si ∈ Rn, i = 1, . . . ,m

}
Obviously, if p ∈ Σn then p(x) ≥ 0, for all x ∈ Rn. But, the converse of this is not true, that

is, there are globally nonnegative polynomials which are not SOS polynomials (see Parrilo

(2003)).

We also let Σn,α be the set of all SOS polynomials in n variables that have maximum degree

α.

An analogous identification of the set of SOS polynomials is as follows:

Proposition 4.3.3. (Parrilo (2000)) A polynomial p of degree 2α is SOS if and only if there

is a positive semidefinite matrix G and a vector of monomials vαn containing monomials in

x of degree ≤ α such that

p(x) = (vαn)TGvαn

where vαn = [1, x1 . . . , xn, . . . , x
α
n]T Here, the matrix G is called the Gram matrix.

We note that if the matrixG is positive semidefinite then p has a SOS decomposition,

and hence, is nonnegative. We can find a set of affine relations in the elements of G by

expanding (vαn)TGvαn and equating its coefficients to the corresponding monomials of p(x).

That matrix G is not unique. It forms an algebraic set of a linear subspace of the space

of symmetric matrices. If the intersection of this affine subspace with the convex cone of

positive semidefinite matrix is not equal to empty set then p is SOS. The problem of finding

such intersection is a semidefinite program (SDP).

33



Definition 4.3.4 (Semidefinite Programming). A semidefinite program has the form: Min-

imize a linear function of k variables x = (x1, . . . , xk) subject to a matrix inequality con-

straint.


minimize γTx

subject to H(x) � 0

where H(x) := H0 + x1H1 + . . .+ xkHk.

The matrix inequality H(x) � 0 means that the symmetric matrix H(x) is positive semidef-

inite that is, xTHx, ∀xRm, H ∈ Rm×m. The symmetric matrices H0, H1, . . . , Hk ∈ Rm×m

and the vector γ ∈ Rk are given data. The vector x ∈ Rk is the decision variable and the

constraint, H0 + x1H1 + . . .+ xkHk � 0 is called a linear matrix inequality (LMI).

Because of the existing of the available effective algorithms and softwares it will be

very beneficial to formulate problems using LMI. The problem of calculation of a matrix

G certificates p(x) is a SOS polynomial, and it can be recast as a SDP. This problem was

observed first time by Parrilo, (Parrilo (2000)).

Theorem 4.3.5 (Parrilo (2003), Theorem 3.3). Given p ∈ Rn,2α, find the relevant affine

subspace Gp = {G0 +
∑

i θiGi|θi ∈ R}. p ∈
∑

n,2α if and only if the following LMI is

feasible

∃θi

subject to G0 +
∑

θiGi � 0

Parrilo also realized and introduced the following

Theorem 4.3.6 (Parrilo (2003), §3.2). For a given finite set, of polynomials {pi}si=0 ∈ Rn,

if there exist {σi}si=0 ∈ R such that

p0 +
s∑
i=1

σipi ∈ Σn

Then, it is called as an LMI feasibility problem.

Semidefinite programming is a generalization of linear programming, and a useful

tool in polynomial optimization. It allows one to compute approximate solutions in poly-

nomial time. Even if, semidefinite programs are much more general than linear programs,

they are not much harder to solve. They has been implemented by using MATLAB. There
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is a collection of software tools for solving SDP problems: DSDP, SDPLR, CSDP, SDPT3,

SDPA-M, SeDuMi, LMILAB and PENSDP.

Employing Positivstellensatz and the sum of squares decomposition, the S-procedure

can be improved to get less conservative conditions.

4.3.7 The Positivstellensatz

Given sets of polynomials {f1, . . . , fm}, {g1, . . . , gk} and {h1, . . . , ht} we define:

The multiplicative monomid (M) generated by fi’s is the set of the collection of

polynomials of the form
∏m

i=1 f
τi
i , where each τi is a nonnegative integer.

The cone, (P) generated by gi’s is

P =

{
s0 +

k∑
i=1

siti|si ∈ Σn, ti ∈M

}
where M is the multiplicative monoid generated by gi’s. The cone is the smallest set of

polynomials that includes all SOS polynomials which is closed under addition and multipli-

cation.

The ideal, (I) generated by hi’s is

I =

{
t∑

k=1

hkpk|pk ∈ Rn

}
Theorem 4.3.8 (Positivstellensatz). (Bochnak et al. (1998)) Let R be a real closed field. Let

(fi)i=1,...,m, (gj)j=1,...,k and (hl)l=1,...,t be given finite sets of polynomials in Rn. Then the

following properties are equivalent:

(i) The set

{x ∈ Rn|fi(x) ≥ 0, i = 1, . . . ,m, gj(x) 6= 0, j = 1, . . . , k, hl(x) = 0, l = 1, . . . , t}

is empty.

(ii) There exist f ∈M, g ∈ P and h ∈ I such that f + g2 + h = 0.

Positivstellansatz, (P-satz) yields a characterization of the stability of polynomial

equations and inequalities over the reals. The P-satz provides an alternative system of poly-

nomial inequalities such that the first system has no solution if and only if the second system
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has a solution. This means that if a system of polynomial inequalities cannot be satisfied, it

is possible to demonstrate, or certify, its infeasibility.

Replacing the nonnegativity constraints of semidefinite program by SOS conditions

we have the following SOS optimization problem:

Definition 4.3.9. (Sum of Squares Programming, (Prajna et al. (2002))) A SOS program

is an optimization problem with a linear cost. On the decision variables SOS constraints

minimize

minimize e1w1 + . . .+ enwn

subject to bm,0(x) + bm,1(x)w1 + . . .+ bm,n(x)wn ∈ Σn, m = 1, . . . , Ks

In this definition, the polynomials bm,i are given data, andwi ∈ Rn, i = 1, . . . , n are decision

variables of the optimization problem.

Proposition 4.3.3 is a link for converting an SOS program into a semidefinite-programming

problem. E.g., we can write the constraint bm,0(x) + bm,1(x)w1 + . . .+ bm,n(x)wn ∈ Σn in

the above definition equivalently as:

bm,0(x) + bm,1(x)w1 + . . .+ bm,n(x)wn = vTdGvd (4.32)

G � 0 (4.33)

Here G is a new matrix of decision variables. It is needed to introduce when an SOS con-

straint is converted to an LMI constraint. The linear equality constraints on the decision

variables wi, i = 1, . . . , n and G is obtained by equating the coefficients of vTdGvd and

bm,0(x) + bm,1(x)w1 + . . . + bm,n(x)wn. Hence, it can be possible to write equation (4.32)

as a set of linear equality constraints on the decision variables. So, we can replace all SOS

constraints in SOS program in Definition 4.3.9 with linear equality constraints and LMI con-

straints, in this manner. As a result, the SOS program can be written in the SDP dual form.

Equivalently, given an SOS polynomial f ∈ Rn,2α; the identity f(x) = vd(x)TGvd(x) for

all x that provides linear equations that coefficients of the matrix G must satisfy. Hence, by

writing

vd(x)vd(x)T =
∑
α∈Nn

Tαx
α

for appropriate rvd × rvd real symmetric matrices (Tα), we can check whether the polyno-

mial x → f(x) = Σαfαx
α is SOS. By this way, our problem is reduced to semidefinite

optimization problem:
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Find G ∈ Rrvd×rvd such that:

G = GT , G � 0, 〈G,Tα〉 = fα, ∀α ∈ Nn

This conversion can be performed using available packages, such as SOSTOOLS

Prajna et al. (2002), Yalmip Lofberg (2004), and SOSOPT Seiler (2013). These are freely

available MATLAB toolboxes. They provide the specification of the polynomial constraints

using a symbolic toolbox and then convertion of the SOS optimization into an SDP. The

final problem can be solved with SeDuMi (Sturm (1999, 2001)) or another freely available

SDP solver.

4.3.10 Estimating ROA

Consider a nonlinear autonomous dynamical system described by (2.1) and assume

that the point x = 0 is an asymptotically stable equilibrium of this system. The method for

estimating of ROA of the equilibrium x = 0 which is restricted to ellipsoidal approximations

is explained as follows:

We define the shape function p(x) = xTEx and level set Ψ = {x ∈ Rn|p(x) ≤ δ}
for a given n × n matrix E = ET > 0. Here, the shape of the ellipsoid, Ψδ is defined by

p(x) and its size is determined by δ. Problem dependent choice of p reflects dimensional

scaling information, and the importance of certain directions in the state space. For given

shape function p, we intend to compute the largest ellipsoid Ψδ contained in the ROA. The

size of that ellipsoid is determined by solving the optimization problem:

δ∗ = max δ (4.34)

subject to: Ψδ ⊂ ROA (0)

But, the problem of determination of the best ellipsoidal approximation for ROA has not

been solved completely, yet. Hence, for our problem we compute lower and upper bounds

for δ∗ satisfying δlb ≤ δ∗ ≤ δub. Whenever, the largest ellipsoid level set, defined by

Equation (4.34), is approximately determined when we compute the lower and upper bounds

close enough.

The upper bounds are computed by a search for initial conditions leading to divergent

trajectories. But, since we want to determine estimations for the ROA we mainly concern

with the convergent trajectories. Hence, depending on our purpose it is enough to compute
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lower bounds.

To compute the lower bounds of δ∗ we need the following lemma.

Lemma 4.3.11. If we can find a number µ and a polynomial V : Rn → R such that

V (0) = 0 and V (x) > 0,∀x 6= 0 (4.35)

Dµ = {x ∈ Rn|V (x) ≤ µ} is bounded (4.36)

Dµ ⊂ {x ∈ Rn|∇V (x) · f(x) < 0} ∪ {0} (4.37)

then solution of (2.1) exists, and satisfies, Φ(t, x) ∈ Dµ, for all x ∈ Dµ, for all t ≥ 0, and

Dµ ⊂ ROA(0).

A function V , satisfying the hypotheses of Lemma 4.3.11 is called a LF. It pro-

vides an estimation to the ROA. By linearizing system (2.1) about the asymptotically stable

equilibrium x = 0 we can compute a LF: Let J := ∂f
∂x
‖x=0 be the Jacobian matrix of the lin-

earized system of (2.1) at x = 0. Then, by solving the Lyapunov equation JTP +PJ = −I
for P , we can find P > 0 and hence we can construct Vlin(x) := xTPx as a quadratic LF.

This function satisfies the conditions of Lemma 4.3.11 for sufficiently small µ > 0 and can

be used to compute a lower bound on δ∗ by solving two maximization problems:

µ∗ := maxµ (4.38)

subject to: Dµ ⊂ {x ∈ Rn|∇Vlin(x)f(x) < 0}

δlb := max δ (4.39)

subject to: Ψδ ⊂ Dµ∗

The largest level set of Vlin,Dµ∗ , satisfying the Lemma 4.3.11 can be determined

from the first maximization (4.38), and the largest ellipsoid Ψδlb contained within Dµ∗ can

be computed from the second maximization.

The set containment constraints can be replaced with a sufficient condition involving

nonnegative functions as given in (Tan (2006)). That sufficient condition is provided by the

following Lemma, which is a generalization of the S-procedure.

Lemma 4.3.12. (Tan (2006)) Define two sets C := {x ∈ Rn|fC(x) ≥ 0} and E := {x ∈
Rn|fE(x) ≥ 0}. If there exists a function s(x) ≥ 0∀x such that fE(x) − fC(x)s(x) ≥ 0∀x
then C ⊆ E.

Here, the function s is called a multiplier. A simplification of the most general Positivstellen-

satz conditions is stated as the condition in Lemma 4.3.12. It needs much less computation
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than the most general Positivstellensatz conditions.

Applying this Lemma to Ψδ ⊂ Dµ∗ in optimization (4.39) gives the optimization:

δlb := max
δ,s(x)

δ (4.40)

subject to: s(x) ≥ 0∀x

−(δ − p(x))s(x) + (µ∗ − Vlin(x)) ≥ 0∀x

The function s(x) is a decision variable of the optimization in equation (4.40), that is, its

coefficients are decision variables and computed as a part of the optimization. A sufficient

condition for the set containment condition in Optimization (4.39) arises from the two non-

negativity conditions in Optimization (4.40). These constraints involving the non-negativity

of polynomial functions can be obtained by restricting s(x) to be a polynomial. Restriction

of a polynomial to be SOS is a sufficient condition for the polynomial to be nonnegative.

With the replacement of the non-negativity conditions in Optimization (4.40) with SOS con-

straints yields an SOS optimization problem:

δlb := max δ (4.41)

subject to: s(x) ∈ Σn

−(δ − p(x))s(x) + (µ∗ − Vlin(x)) ∈ Σn

In order to solve such SOS optimization problems there is an available software.

We use δlb,lin to denote the lower bound obtained from optimization (4.41) using the

quadratic LF obtained from the linearized system.

It is possible to compute better lower bounds δlb by optimizing the choice of the LF.

This results a bilinear optimization problem in the LF and a multiplier function. The set

containment condition in equation (4.38) gives us the following SOS constraint:

− (µ− V )s2 − (∇V · f + l2) ∈ Σn (4.42)

where s2 is also a SOS multiplier function and l2(x) = −ε2xTx where ε2 is a small positive

constant on the order of 10−6. When we vary V and s2 together in the term V s2 then this

constraint yields a bilinear problem involving the unknown coefficients of V and s2. As a

result, the set containment multipliers is not a convex problem. Therefore, heuristic solution

methods are needed. There are various methods for computation of better LFs, including

V-s iterations (Wloszek (2003); Wloszek et al. (2003); Tan and Packard (2004); Wloszek

et al. (2005)), bilinear optimization (Tan (2006)), and the use of simulation data (Topcu

et al. (2007, 2008)).
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In our applications we use the V-s iteration. The details of that iteration are:

We start the iteration by initializing the LF with the linearized LF, Vlin. We use the functions

l1(x) = −ε2xTx andl2(x) = −ε2xTx where ε1 and ε2 are small positive constants on the

order of 10−6 when implementing the iteration. The steps of the V-s iteration algorithm are

explained as:

1. µ Step: Hold V fixed and solve for s2 and µ∗

µ∗ := max
µ,s2∈Σn

µ s.t. − (µ− V )s2 − (∇V · f + l2) ∈ Σn

2. δ Step: Hold V, µ∗ fixed and solve for s1 and δlb

δlb := max
δ,s1(x)

δ s.t. − (δ − p)s1 + (µ∗ − V ) ∈ Σn

3. V Step: Hold s1, s2, δ, µ
∗ fixed and solve for V satisfying:

−(µ∗ − V )s2 − (∇V · f + l2) ∈ Σn

−(δ − p)s1 + (µ∗ − V ) ∈ Σn

V − l1 ∈ Σn, V (0) = 0

4. Repeat as long as the lower bound δlb continues to increase.

The basic idea of the iteration is to avoid the bilinearity in V s2 by holding either s2 or

V fixed. When we achieve this in each step, the problem becomes a linear SOS optimization

and can be solved using an available software. The LFs can be computed as a polynomial

with degree greater than two in this iteration. We can improve the lower bound by increasing

the degree of the LF even if this causes the complexity in the computation. Obviously, this

results increase in the computational time grows rapidly. For this iteration we can use the

simulation data to find a good initial candidate LF, V (Tan et al. (2008)).

In the V-step, a feasible solution to the LMI feasibility problem can be computed by

using an interior-point solver is used. The LF, V used in the µ and δ steps will be feasible for

the constraints in the V step. Therefore, the same LF that was used in the µ and δ steps can

be calculated in this step. Also computation of a different V is also possible which causes

the increase in the values of both µ and δ at the next iteration.
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4.3.13 Applications

In this section, we present some illustrative examples to find the largest level surface

of a LF for enlarging the guaranteed ROA.

Example 11. We consider the Genesio system (3.2). In order to initialize the algorithm we,

first solve the Lyapunov equation and form the initial quadratic LF, V (x) = xTPx and the

shape function, p(x) = xTPx. This initial LF certifies the locally asymptotic stability of

system (3.2). Then we apply the V-s algorithm together with trace minimization. Trace

minimization serves the optimal parameters for LF. V-s algorithm is bilinear in decision

variables, so it implies bisection. On the other hand, trace minimization does not depend on

bisection. Hence, we apply both V-s algorithm and trace minimization taking advantage of

practicality, and get

V (x) = 2.25x2 + 3.5xy + xz + 4y2 + 1.5yz + 1.25z2

p(x) = 2.25x2 + 3.5xy + xz + 4y2 + 1.5yz + 1.25z2

β = 1.8931

V (x) = 1.375398x2 + 1.070970xy + 0.807866xz + 0.458202y2 + 0.400794yz

+0.242336z2

γ = 1.3716

s1(x) = 0.7245400932904933

s2(x) = 0.085491x4 − 0.009749x3y + 0.003377x3z + 0.075020x2y2

−0.007758x2yz + 0.059941x2z2 + 0.006970xy3 + 0.007981xy2z

+0.00926xyz2 + 0.023307xz3 + 0.027119y4 + 0.027989y3z

+0.028141y2z2 + 0.015755yz3 + 0.009105z4 − 0.071682x3

−0.051889x2y − 0.068776x2z + 0.011240xy2 + 0.042580xyz

+0.032297xz2 − 0.001596y3 − 0.006505y2z − 0.005399yz2

−0.001281z3 + 0.285952x2 + 0.010873xy + 0.064859xz

+0.032129y2 + 0.031028yz + 0.02040z2

Now we refer the V function as a new shape function

p(x) = 1.375398x2 + 1.070970xy + 0.807866xz + 0.458202y2

+0.400794yz + 0.242336z2
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Then we search for higher degree LF, V to enrich and enlarge the estimation, as long as our

optimization problem is feasible, the provable ROA. By choosing the new shape function p,

we initialize the V-s iteration algorithm and at each iteration, we replace the quadratic part

of the computed LF, V as a new shape function p for the next step. Setting the number of

V-s iterations and trace minimization iterations as 10 and 40, respectively, we get the results

of V-s iteration algorithm supressed at iteration 1 yielding β = 1.000214, γ = 1.000214 and

trace minimization iterations ended at iteration 37 (at 38th iteration V −s1 step is infeasible)

to produce β = 1.0023, γ = 1.0016. In this example we set the bisection tolerance to

τ = 10−3, the degree of V to 8 and positive definite l1 and l2 functions in V and γ step

in algorithm, respectively, as l1 = 10−6(x2 + y2 + z2) and l2 = 10−6(x2 + y2 + z2). In

Figure 4.11, resulting ROA is plotted (a) together with p(x) = 1.0023 (purple, enclosed by

V (x) = 0.0016 (green)) and V̇ (x) = 0 (red) in 3D (b) as a 2D projection of (a) with x = 0

(c) as 2D contours of polynomials p and V .

(a) (b) (c)

Figure 4.11: Genesio system ROA estimation

Example 12. For system (3.4), the first initializing step of the V-s iteration ends with β =

1.115417, γ = 1.115417, then trace minimization ends with β = 2.0412 and γ = 1.1154.

Using sixth degree LF and setting the stopping criteria of bisection to τ = 10−2 we arrive at

the estimation parameters β = 5.0933 and γ = 5.2666 since because the maximum γ step

returns infeasible at sixth iteration. However, the resulting estimations are quite close and

satisfactory, can be seen in Figure 4.12.

(a) (b) (c)

Figure 4.12: Lorenz system ROA estimation
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Example 13. Consider system (3.6). We employed a quartic LF to estimate the ROA of this

system. Resulting LF is as follows

V (x) = 10.288266x4 + 36.541077x3y + 9.120070x3z + 78.229269x2y2

+76.664737x2yz + 18.031402x2z2 + 48.068389xy3 + 98.796792xy2z

+53.763837xyz2 + 9.601077xz3 + 44.724080y4 + 95.235858y3z

+82.880441y2z2 + 34.418163yz3 + 6.093231z4 + 85.739017x3

+304.071846x2y + 28.902033x2z + 255.406788xy2 + 140.792645xyz

+38.878563xz2 + 146.858683y3 + 210.374463y2z −−30.293369yz2

−46.221122z3 + 288.032890x2 + 387.821183xy − 325.334015xz

+183.600348y2 − 178.601235yz + 111.196313z2.

This problem was concluded in 3 iterations. Figure 4.13 shows in (a) ROA estimation of

system (3.6) in 3D (b) x = 0 projection (c) contour of polynomials p(x) = 1.0464 (blue)

and V (x) = 0.9995 (red).

(a) (b) (c)

Figure 4.13: Rossler system ROA estimation

Example 14. For the system of the BZ reaction defined in (3.8), a quadratic estimation,

V (x) = 36910.517x2−74.557xy−72285.239xz+0.421y2 +73.097yz +1846636.293z2 =

0.3171, is shown in Figure 4.14.

(a) (b) (c)

Figure 4.14: BZ reaction ROA estimation

Example 15. Using a quartic LF for system (3.9), the resulting ROA is illustrated in Fig-

ure 4.15, which is consistent with estimation obtained in the Zubov method, as in the all
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considered systems. Resulting LF is as follows.

V (x) = 0.016218x4 + 0.000370x3y + 9.9880× 10−12x3z + 0.033717x2y2

+4.3571× 10−11x2yz + 0.046113x2z2 + 0.001371xy3 − 4.1070× 10−11xy2z

+0.004175xyz2 − 2.444150× 10−11xz3 + 0.017299y4 + 3.475946× 10−11y3z

+0.049876y2z2 + 1.3313× 10−11yz3 + 0.035367z4 + 0.019058x3

+0.019286x2y + 4.9330× 10−11x2z + 0.023902xy2 − 6.4902× 10−11xyz

+0.031783xz2 + 0.020622y3 − 1.0806× 10−12y2z + 0.033182yz2

+1.3530× 10−11x33 + 0.007656x2 + 0.014995xy − 5.5610× 10−12xz

+0.008426y2 − 3.1292× 10−11yz + 0.000666z2

(a) (b) (c)

Figure 4.15: HT system ROA estimation
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5. NON-LYAPUNOV METHODS

The non-Lyapunov methods are constructed on the elements of the Lyapunov stabil-

ity theory, but they do not explicitly employ LFs. Such methods focus on the topological

properties of ROA.

Early contributions to the non-Lyapunov methods were oriented to second order

systems. They are based on a geometrical interpretation of system equations in the light of

the theory of flows, (Infante and Clark (1964), Jocic (1982)), and on the tracking function

approach, (Hewit and Storey (1967)), and on the prediction of the existence of limit cycles,

(Wang et al. (2013)). A numerical method for second order systems was developed for

determining a segment of the ROA boundary from boundary point, (Davison and Cowan

(1969)). An approach given in Loparo and Blankenship (1978) permits the system solution’s

expression in terms of Volterra series and provides an iterative procedure for enlargement of

the initial ROA estimate according to a fixed approximation error.

Then, in order to reduce conservativeness in the estimations of the ROA, backward

integration method was proposed in (Genesio and Vicino (1984)). This method synthe-

sizes the estimated boundary of ROA using a number of system trajectories calculated by

backward integration, and is known as the trajectory reversing method (Genesio and Vicino

(1984), Genesio et al. (1985), Stacey and Stonier (1998)). In Genesio et al. (1985), the tra-

jectory reversing method is shown to be efficient in the enlargement procedure of the ROA

of an asymptotically stable equilibrium point from an initial estimate of ROA.

Some modifications of the trajectory reversing method have been presented for a

fairly large class of nonlinear time invariant systems, (Noldus and Loccufier (1995),Loc-

cufier and Noldus (1995), Chiang et al. (1988)). E.g., in Chiang et al. (1988), it is shown

that the entire ROA can be found by using the proposed method when it is feasible. This

method is based on a complete characterization of the stability boundary using the stable

manifolds. For low-dimensional nonlinear systems the stable manifolds may be determined

by numerical methods. However, for high dimensional systems, the current computational

methods are not adequate for the derivation of the stable manifolds.

The non-Lyapunov methods mainly rely on solution of differential equation from
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finitely many points chosen from the boundary of the ROA. So, these methods work well for

lower dimensional systems. For higher dimensional systems, the ROA can exhibit complex

boundary shape and it is hard to capture the shape by just solving differential equations from

finitely many points on the boundary.

In this chapter, we apply a procedure due to Stacey and Stonier (1998), trajectory

reversing method in Genesio and Vicino (1984) and Genesio et al. (1985) and the method

of eigenvectors in Lee and Han (1998, 2000) to Genesio system, Rossler system, Lorenz

system, BZ reaction and a specific example of nonlinear autonomous systems.

5.1 Stacey and Stonier Method

Several methods which estimate the ROA are based on the backward evolution of

the dynamical system. They are primarily iterative computational algorithms starting with

a finite number of points close to the equilibrium and then, propagating them backwards in

time. Such an approach is useful for two dimensional systems, however it is less satisfactory

for higher dimensional systems. Because tracking only a finite number of points may not be

sufficient to describe the behaviour of the system, accurately.

Stacey and Stonier, (Stacey and Stonier (1998)) proposed a procedure which back

propagates an initial surface surrounding the asymptotically stable equilibrium point to pro-

duce an analytic estimate for the boundary of the ROA. The algorithm is started by defining

the initial surface x0(r, s) parametrically and then, back propagated an arbitrary point on

that surface to produce a new surface xn(r, s) defined parametrically by using a numerical

method and a symbolic mathematics package, such as Mathematica or Matlab.

We note that this method can be applied to two-and three-dimensional systems.

5.1.1 Analytic Backpropagation Algorithm

The algorithm is started with a closed surface enclosing the asymptotically stable

equilibrium point and contained within the ROA. The initial surface is defined parametri-

cally. Typically, it is started with a sphere, or with an ellipsoid about the origin. Then,

the entire surface is propagated backwards in time by applying a numerical scheme to an

arbitrary parameter dependent point. This is accomplished by first writing Eq.(2.1) back-

ward in time and then integrating it numerically forward in time. In the first iteration, all
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of the points on the initial surface is simultaneously propagated to a new surface. We note

that the functional form of each computed surface changes as the surface is pushed out and

deformed by the flow of the vector field.

The algorithm is:

1. Define an initial surface

For three-dimensional problems with the equilibrium point at the origin we use the pa-

rameterised sphere x(r, s) = ρcosrsins, y(r, s) = ρsinrsins, z(r, s) = ρcoss where

ρ is the radius of the initial surface and r and s are the parameters taking all values

between 0 and 2π, and 0 and π, respectively.

2. Choose a numerical integration method

Any numerical method can be used for backward propagation of the initial surface.

The time step ∆t is a parameter of the algorithm. In order to get better results it

can be varied. As an output of this procedure a new parametrically defined surface is

obtained.

3. Discard the small terms

During the numerical calculations, the number of terms may exceed the capacity of

the computer. To overcome this problem, the terms are removed after each iteration if

they are too small.

4. Check the resulting surface whether lies within the ROA.

The resulting surface from either Steps 2 or 3 above could possibly be outside the

ROA of the system. In step 2 a time step, ∆t may be chosen too large which causes

the bounding surface out past the boundary of the ROA. In practice, this will only be a

problem when we are iterating close to the boundary. By using an adaptive time step

we can solve this problem. In step 3 discarding terms may also cause distortion of the

bounding surface so that part of it lies outside the boundary of the ROA. However, if

the resulting computed surface is within the ROA distortion of the bounding surface

during the execution of the process is not of itself a problem.

To check that the iterated surface whether pass outside the boundary of the ROA,

we check that the flow of the system given by Eq.(2.1) which is directed into the surface at

all points on the new surface. This is done by observing tangent vectors to the flow on the
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final surface of dotted with the outward normal vectors to the surface. If this dot product is

negative at all points on the surface we conclude that the vector field is flowing in.

5.1.2 Applications

In each application of the procedure we start with a sphere with parametric equations

x(r, s) = ρcosrsins, y(r, s) = ρsinrsins, z(r, s) = ρcoss around the origin. We choose

the values of the radius of the initial surface small enough so that such spheres lie entirely

within the ROA.

For backward propagation of the initial surface, due to its simplicity we prefer Euler

method

xn+1(r, s) = xn(r, s) + f(xn(r, s))∆t

where xn(r, s) is the parametric representation of the surface after n iterations and ∆t is the

time step chosen for the Euler method.

All numerical solutions are performed using mathematics package Mathematica.

Example 16. Consider the nonlinear continuous autonomous system (3.2). The origin of

the system is asymptotically stable. To implement the method, we consider an initial sphere

around the origin and within the ROA. Choosing a radius of sphere 0.05 the parametric

equations of the sphere are x(r, s) = 0.05cosrsins, y(r, s) = 0.05sinrsins, z(r, s) =

0.05coss. Taking the time step as 0.05 evaluation of the surface is computed backward in

time up to t = 6. After the time is evolved backwards to t = 2 the initial sphere was

deformed to the surface:

x(r, s) = 0.0717882coss+ 0.113881cosrsins+ 0.0550463sinrsins

y(r, s) = −0.0178131coss− 0.0762707cosrsins− 0.108484sinrsins

z(r, s) = −0.0902093coss+ 0.0197746cosrsins− 0.00637934cosrcosssins

−0.016974sinrsins− 0.00248268cos2rsin2s− 0.00113375cosrsinrsin2s

which is plotted in Figure 5.1 (a).

At time t = 4.5 and t = 6 numerically computed surfaces are as follows, depicted in Figure

5.1 (b) and (c), respectively.
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(a) t = 2 (b) t = 4.5 (c) t = 6

Figure 5.1: Genesio system ROA estimation

At t = 4.5

x(r, s) = 0.0510104coss+ 0.216905cosrsins− 0.0390205cosrcosssins

−0.0777762sinrsins− 0.0164809cosssinrsins

−0.0572024cos2rsin2s− 0.0571138cosrsinrsin2s

−0.00815452sin2rsin2s

y(r, s) = −0.133044coss− 0.0534377cosrsins+ 0.0096834cosrcosssins

+0.0503179sinrsins+ 0.0103648cosssinrsins

+0.052676cos2rsin2s− 0.00183373cos2rcosssin2s

+0.0341007cosrsinrsin2s+ 0.0129145sin2rsin2s

−0.00178263cos3rsin3s− 0.0025615cos2rsinrsin3s

z(r, s) = 0.183491coss+ 0.139859cosrsins+ 0.0406474cosrcosssins

+0.346394sinrsins+ 0.0237372cosssinrsins

+0.00223591cos2rsin2s+ 0.0145663cos2rcosssin2s

+0.0616832cosrsinrsin2s+ 0.00524654sin2rsin2s

+0.0143642cos3rsin3s+ 0.0152301cos2rsinrsin3s

At t = 6

x(r, s) = 0.274046coss− 0.0052311cos2s+ 0.49758cosrsins

−0.055534cosrcosssins+ 0.260873sinrsins

+0.00519544cosssinrsins− 0.126323cos2rsin2s

+0.0364016cos2rcosssin2s− 0.00780427cosrsinrsin2s

+0.00650491cosrcosssinrsin2s− 0.00914971sin2rsin2s

+0.0369067cos3rsin3s+ 0.0276393cos2rsinrsin3s
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y(r, s) = −0.0181884coss+ 0.0253515cos2s− 0.29171cosrsins

+0.08227cosrcosssins− 0.00831128cosrcos2ssins

−0.356121sinrsins− 0.0211264cosssinrsins

+0.0634158cos2rsin2s− 0.0629016cos2rcosssin2s

−0.0618782cosrsinrsin2s− 0.0231205cosrcosssinrsin2s

−0.0120256sin2rsin2s− 0.0639169cos3rsin3s

+0.00781934cos3rcosssin3s− 0.0418466cos2rsinrsin3s

+0.00132169cos2rcosssinrsin3s− 0.002658cosrsin2rsin3s

+0.00639074cos4rsin4s+ 0.00998688cos3rsinrsin4s

z(r, s) = −0.335206coss− 0.059356cos2s+ 0.0225752cosrsins

−0.23166cosrcosssins+ 0.0243293cosrcos2ssins

−0.21411sinrsins− 0.0644939cosssinrsins

−0.107703cos2rsin2s+ 0.0668914cos2rcosssin2s

−0.00683016cos2rcos2ssin2s− 0.121078cosrsinrsin2s

+0.0352447cosrcosssinrsin2s− 0.00476749sin2rsin2s

+0.0683014cos3rsin3s− 0.0323654cos3rcosssin3s

+0.0335966cos2rsinrsin3s− 0.0156848cos2rcosssinrsin3s

+0.0157036cosrsin2rsin3s− 0.0274548cos4rsin4s

+0.00122992cos4rcosssin4s− 0.0288154cos3rsinrsin4s

−0.00356144cos2rsin2rsin4s

Example 17. Consider the dynamical system defined in (3.4). For this example taking ∆t =

0.025, radius of sphere as ρ = 0.001 and computing backwards up to t = 0.5, 0.625, and

t = 0.75 the results obtained are as in Figure 5.2 (a), (b) and (c), respectively.

(a) t = 0.5 (b) t = 0.625 (c) t = 0.75

Figure 5.2: Lorenz system ROA estimation
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Example 18. The Rossler system (3.6) is examined using the values ∆t = 0.01, ρ = 0.001.

The progression of the initial estimate over t = 1, t = 1.5 and t = 2 are depicted in Figure

5.3.

(a) t = 1 (b) t = 1.5 (c) t = 2

Figure 5.3: Rossler system ROA estimation

Example 19. For the system defined in (3.8), ∆t = 0.0025 and ρ = 10−5 were chosen and

resulting estimates including initial estimates are illustrated in Figure 5.4.

(a) t = 0 (b) t = 0.0025 (c) t = 0.005

Figure 5.4: BZ reaction ROA estimation

Example 20. Finally, we consider system (3.9). Allowing the time step ∆t = 0.01 and initial

sphere x(r, s) = 0.01cosrsins, y(r, s) = 0.01sinrsins, z(r, s) = 0.01coss, the evaluation

of the surface is computed backward in time for a total of 5 units. In Figure 5.5 (a), (b), and

(c) the resultant surfaces are displayed for t = 3, t = 4 and t = 5, respectively.

(a) t = 3 (b) t = 4 (c) t = 5

Figure 5.5: HT system ROA estimation
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5.2 Trajectory Reversing Method

The trajectory reversing method which is based on the LaSalle extension principle

of the Lyapunov stability theory. It provides an iterative procedure for obtaining the global

attracting region for multidimensional systems without conditions on the topological nature

of the asymptotically stable point under study. The method performs a numerical backward

integration of Eq. (2.1) to obtain an estimation to ROA. This is accomplished by forward

integration of the related system

ẋ = −f(x) (5.1)

System (5.1) is characterized by the same trajectories in state space of Eq. (2.1), only the

arrows on the trajectories are reversed. The origin now becomes an unstable equilibrium

point of Eq. (5.1).

The general formulation of the trajectory reversing method as described in Genesio

and Vicino (1984) and Genesio et al. (1985) and involves the enlargment of an initial arbi-

trary small estimate of ROA. Sufficient conditions for such an enlargement are given by the

following theorem:

Theorem 5.2.1. If the origin is asymptotically stable equilibrium of system (2.1) with con-

tinuous f , in other words, if there exists a positive definite Lyapunov function V : Rn → R

such that

(i) Ω0 = {x|V (x) < M is simply connected with boundary γ0}

(ii) V̇ (x) < 0,∀x ∈ {x|V (x) < M}, x 6= 0

then the ROA may be approximated by means of a convergent sequence of simply connected

domains generated by the backward integration technique, starting from the initial estimate

Ω0.

Proof. (Genesio et al. (1985))

Since f(x) is continuous for any x ∈ γ0, the backward mapping∫ t1

t0

(−f(x)) dt : x(t0)→ x(t1), t1 > t0

is a homeomorphism. It ensures that transformation of γ0 onto γ1 is one-to-one and also the

domain Ω1, which is bounded by γ1 is simply connected (Guillemin and Pollack (1974)).
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Furthermore, it is guaranteed that no point of γ0 be taken by the backward mapping into the

domain V (x) ≤M , from hypothesis (i). As a consequence, we obtain that

Ω1 ⊃ Ω0

The definition of ROA and the way in which γ1 has been obtained to ensure that γ1

bounds a domain entirely contained in the true ROA. Now, letting t1 increase to t2, t3, . . . , ti, . . .

we obtain simply connected nested surfaces. From the uniqueness of the solutions of (2.1),

these surfaces are such that

Ωi+1 ⊃ Ωi

They define domains entirely lying in the exact ROA. Ωi approximates the ROA boundary, in

the sense that along every direction from the origin, every point of the ROA boundary is the

limit of the successions made of points on the boundaries of Ωi. If the ROA is unbounded,

there is a succession of points on the boundaries of Ωi tending to infinity. So, we have the

result.

The Theorem 5.2.1 implies that the ROA of an asymptotically stable equilibrium

point must necessarily be simply connected. Infact, this result confirms a theorem,Wilson

(1967), Bhatia and Szego (1970), which states that the ROA of system (2.1) is homeomor-

phic to Rn.

Using the trajectory reversing method, the ROA (or its boundary) is approximated

by a sequence of estimates consisting of certain surfaces around the asymptotically stable

equilibrium point. Starting from an initial estimate Ω0 inside the true stability region, we

perform a backward integration by choosing points randomly on the surface γ0 and obtain

a new estimate Ω1. If γ0 denote boundary surface of Ω0, the backward integration maps

the points of γ0 along the trajectories of the system into a new surface γ1 which bounds the

new estimate Ω1. By repeating this process we obtain a set of new estimates {Ωk} with

boundaries {γk} which forms a strictly monotonically increasing sequence. As it is proved

in Guttalu and Flashner (1988) the sequence {γk} converges to the boundary surface of the

true ROA.

The algorithm involves the following steps:

(1) We compute Jacobian matrix at the asymptotically stable equilibrium point assuming

the origin is such a point.
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(2) We compute the positive definite matrix P by solving the Lyapunov equation

JTP + PJ = −I (5.2)

(3) We form the LF V (x) = xTPx for the linearized system about the equilibrium point.

(4) We solve the optimization problem

c = minV (x) subject to V̇ (x) = 0 (5.3)

(5) We form an ellipsoid V (x) = c enclosing the equilibruim, which is an initial estima-

tion for ROA.

(6) We pick up points randomly on that surface close to the equilibruim point.

(7) We perform the forward numerical integration of the backward system (5.1) using

those random points as initial points and obtain a new estimation for the ROA.

(8) We repeat the last step to find the better estimation of the ROA.

5.2.2 Applications

Example 21. The origin is an asymptotically stable point of the Genesio system (3.2). We

apply the above algorithm and find the LF for the linearized system

V = xTPx = 2.25x2 + 3.5xy + xz + 4y2 + 1.5yz + 1.25z2

where P is a positive definite matrix computed from the Lyapunov equation (5.2). Solution

of the optimization problem (5.3) yields c = 0.9439. Hence, the initial estimation is obtained

as V (x) = 0.9439. Then forward and backward integration of the Genesio system with

randomly chosen 200 initial points yields the estimation at t = 2 as shown in Figure 5.6.
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(a) 3D view

(b) 2D projection, z = 0 (c) 2D projection, y = 0

(d) 2D projection, x = 0

Figure 5.6: Genesio system ROA estimation

Example 22. The origin is a globally asymptotically stable point of the Lorenz system (3.4).

Applying the above algorithm we find that

V = 0.056818x2 + 0.272727xy + 1.863636y2 + 0.1875z2

The solution of the optimization problem (5.3) yields c = 1.1158. Then choosing 30 random
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initial points on the ellipsoid, V (x) = 1.1158, backward integration of the Lorenz system

yields the estimation at t = 0.6 as shown in Figure 5.7.

(a) 3D view

(b) 2D projection, z = 0 (c) 2D projection, y = 0

(d) 2D projection, x = 0

Figure 5.7: Lorenz system ROA estimation
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Example 23. E1 is an asymptotically stable point of the Rossler system (3.6). We first,

shift that point to the origin by an appropriate coordinate transformation. Then applying the

algorithm, we compute a LF,

V (x) = 114.9335x2 + 151.4512xy − 114.9014xz + 75.2256y2 − 54.2926yz + 34.6346z2

and an ellipsoid that is used to pick initial points V (x) = 0.0309 yields the estimation at

t = 2.4 as displayed in Figure 5.8 with 3D and 2D views.

(a) 3D view

(b) 2D projection, z = 0 (c) 2D projection, y = 0

(d) 2D projection, x = 0

Figure 5.8: Rossler system ROA estimation

Example 24. The origin is a globally asymptotically stable equilibrium point of system
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(3.9). Solving the Lyapunov equation (5.2) for this system by taking Q = I we get V (x) =

0.5(x2 +y2 +z2) which has local minimum at c ≈ 2.45938. Integrating backwards, at t = 3,

we obtain an estimation of ROA, as shown in Figure 5.9.

(a) 3D view

(b) 2D projection, z = 0 (c) 2D projection, y = 0

(d) 2D projection, x = 0

Figure 5.9: HT system ROA estimation
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5.3 Estimation of ROA using Eigenvectors

The estimations of ROAs can be determined by using the eigenvectors, (Lee and

Han (2000)). As an extension of the trajectory reversing method, this approach aims to

find an accurate boundary of ROA. To achieve this, given system is first linearized at an

unstable equilibrium point. Then the trajectories are depicted starting from a chosen set

of initial points very near the unstable equilibrium point such as a saddle point and on the

surface spanned by the stable right eigenvector of the linearization around that point. Finally,

forward and backward integration methods are used to calculate the trajectories which form

the boundary of ROA approximately with a computer.

5.3.1 Saddle Points and the Boundary of ROA

We consider the nonlinear autonomous system described by (2.1) in 3-dimensional

space, where x ∈ R3 is the state vector, and f : R3 → R3. We assume that f is sufficiently

smooth so that system (2.1) has a unique solution. Linearizing the system at an equilibrium

point, x∗, that is, f(x∗) = 0, we get

ż = Jz (5.4)

where z = x − x∗ and J =
(
∂fi
∂x

)
x=x∗

, i = 1, 2, 3, is a Jacobian matrix, evaluated at

x = x∗.

For a hyperbolic equilibrium point, the Hartman-Grobman theorem in Nayfeh and

Balachandran (1995) says that the equilibrium point x = x∗ of a nonlinear system is asymp-

totically stable (unstable) if the equilibrium point z = 0 of the linearized system is asymp-

totically stable (unstable). In other words, the local nonlinear dynamic characteristics near a

hyperbolic equilibrium x = x∗ are qualitatively similar to the linear dynamic characteristics

near z = 0 since a hyperbolic equilibrium point is isolated and remains same under the

perturbation of the vector field.

We let λni and λpi , (i = 1, 2, 3) be the eigenvalues of the Jacobian matrix J for sys-

tem (5.4) with negative and positive real parts, respectively. We also let vni and vpi , (i =

1, 2, 3) be the corresponding eigenvectors for λni and λpi respectively. The equilibrium point

is called “type 1-saddle” if the eigenvalues of matrix J have one positive and two negative

real parts, and,“type-2” if they have one-negative and two-positive real parts. If the equilib-

rium is of type-1 then the eigenvectors vn1 and vn2 corresponding to the eigenvalues with
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negative real parts span the stable eigenspace. Each trajectory starting from the points on

this plane will stay there and converge to the saddle point, as time goes to infinity. Therefore,

these trajectories form a boundary of ROA. If the equilibrium is of type 2, then the number

of stable eigenvalue is one. So, only one trajectory will converge to the saddle pointi and it

cannot form a boundary of ROA in a 3-dimensional space, however there is also an unstable

subspace due to the saddle point of this type (Genesio et al. (1985)).

5.3.2 Eigenvalues and Eigenvectors of Type-1 Saddle Points and the Boundary

of ROA

We consider system (5.4) and assume that at x = x∗. Then vri and vli are the column

and row vectors, respectively, and satisfy

Jvri = λiv
r
i (5.5)

vliJ = λiv
l
i (5.6)

where i = 1, 2, 3. If λi, i = 1, 2, 3 is the eigenvalue of J , and vri and vli are the right and left

eigenvectors corresponding to the eigenvalue λi, respectively. Let vr = [vr1, . . . , v
r
n] be the

right eigenmatrix of J , and let vl =
[
(vl1)T , . . . , (vln)T

]T be the left eigenmatrix of J . Using

these we can rewrite Eqs. (5.5) and (5.6) as

Jvr = vrD (5.7)

vlJ = Dvl (5.8)

where D is a diagonal matrix if J has different eigenvalues, if not, it is a Jordan matrix.

From (5.7) and (5.8) we get

Jvr = vrD =⇒ (vr)−1J = D(vr)−1 (5.9)

Comparison of (5.7) and (589) with (5.9), gives

vl = (vr)−1 =⇒ vlvr = I =⇒

v
l
iv
r = 1, i = j

vliv
r = 0, i 6= j

(5.10)

Suppose that the eigenspace including the point z = 0 has the normal vector vT .

Then we can show that

vT z = 0 (5.11)
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Since all the states on the eigenspace must satisfy the linearized equation (5.4), by differen-

tiating (5.11), we obtain

d

dt

(
vT z
)

= 0 =⇒ vT
(
dz

dt

)
= 0 =⇒ vTJz = 0 (5.12)

Considering (5.10) and letting Eq.(5.12) be equal to Eq.(5.11), here µ is a constant, it can

be shown that if we want to satisfy both (5.11) and (5.12) at the same time, then

vTJy = µvTy =⇒ vTJ = µvT (5.13)

(5.13) shows that vT which is related to the positive eigenvalue of J must be the left eigen-

vector of J and the plane with vT is in the normal vector of the plane which is spanned by

the two right eigenvectors that are related to the negative values.

5.3.3 The Procedure used for Estimation of the Boundaries of ROA

The algorithm is:

Step 1. We compute all equilibrium points by solving f(x) = 0.

Step 2. We compute the eigenvalues of the linearized nonlinear system, and the corresponding

eigenvectors and also, the associated eigenplanes at each saddle point.

Step 3. We select a set of initial points on a small circle around the saddle in each of the

converging planes, and in the neighborhood of the saddle points.

Step 4. We perform the forward integrations of the backwarded system equations by using all

the initial points defined in the previous step. Then we plot all the reversing trajecto-

ries to estimate the boundary of ROA.

5.3.4 Applications

We apply the above algorithm to Genesio and Rossler systems and BZ reaction since

they have type-1 saddle points.

Example 25. We apply the above algorithm to the Genesio system (3.2). The origin is

an asymptotically stable focus and (1, 0, 0) is a type-1 saddle point for these values. The

eigenvalues of the Jacobian matrix at (1, 0, 0) and corresponding right and left eigenvectors
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are

J =


0 1 0

0 0 1

1 −3 −1


λ1 = 0.2956, λ2 = −0.6478 + 1.7214i, λ3 = −0.6478 − 1.7214i and vr1 = (−0.9556,

−0.2825,−0.0835), vr2 = (−0.1890+0.1657i,−0.1628−0.4327i, 0.8503), vr3 = (−0.1890

−0.1657i,−0.1628+0.4327i, 0.8503) and vl1 = (−0.9002,−0.3448,−0.2661), vl2 = (−0.2

565 − 0.0409i, 0.8393, 0.0957 + 0.4680i), vl3 = (−0.2565 + 0.0409i, 0.8393, 0.0957 −
0.4680i), respectively. The vectors v2

1 and v2
2 span the stable eigenspace of the linearized

system at (1, 0, 0) which is a plane and vl1 spans the unstable eigenspace which is a line.

That line is the normal line and its direction vector is in the direction of the outer normal of

the stable eigenspace. Choosing randomly points in a circle lying in this plane we perform

forward and backward integration of system (3.2). The computed estimation are depicted in

Figure 5.10 for t = 9.

Figure 5.10: Genesio system ROA estimation

Example 26. For system (3.6) we consider the case that asymptotic stable equilibrium point
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shifted to the origin. Then E2 is a type-1 saddle point. The eigenvalues of the Jacobian

matrix at E2 = (0.3464,−0.3464, 0.3464) and corresponding right and left eigenvectors are

J =


0 −1 −1

1 1 0

1.6732 0 −1.3268


−0.2806 + 1.1829i, −0.2806 − 1.1829i, 0.2344 and vr1 = (0.4231 + 0.4784i, 0.0079 −
0.3663i, 0.6767), vr2 = (0.4231−0.4784i, 0.0079+0.3663i, 0.6767), vr3 = (0.5093,−0.6653,

0.5459) and vl1 = (0.7603, 0.3204 − 0.2959i,−0.3190 − 0.3606i), vl2 = (0.7603, 0.3204 +

0.2959i,−0.3190 + 0.3606i), vl3 = (−0.5665,−0.7399, 0.3629), respectively. Solving the

system with initial conditions chosen within a small neighbourhood of the saddle point on

stable plane, desired estimation result is achieved as shown in Figure 5.11.

Figure 5.11: Rossler system ROA estimation
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Example 27. Finally, we consider system (3.8). We first shift the asymptotically stable

point E3 = (0.5002, 0.4999, 0.5002) to the origin and then apply the above algorithm. The

Jacobian matrix at a new saddle point shifted, (−0.5002,−0.4999,−0.5002), and the right

and left eigenvectors of the Jacobian matrix are computed as

J =


100 0.00998801 0

0.00599396 −10.012 50000

1 0 −1

 .

vr1 = (−0.2171,−0.9761,−0.0021), vr2 = (−0.0001, 1, 0.0002), vr3 = (0.0001,−1, 0) and

vl1 = (−0.9990,−0.0001,−0.0449), vl2 = (−0.0098, 0, 1), vl3 = (−0.0091,−0.0002, 1),

respectively. Solution of the system with the initial points chosen in the vicinity of that

point yields the result in Figure 5.12.

Figure 5.12: BZ reaction ROA estimation
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6. CONCLUSION AND RECOMMENDATION

Throughout the thesis we apply Lyapunov and non-Lyapunov techniques for de-

termining the estimations for the ROAs of the specific examples of polynomial nonlinear

autonomous dynamical systems. When we use Lyapunov methods we obtain subsets of the

ROA. But, when we apply non-Lyapunov method, by performing backward evaluation of

the system we get the pictures of the trajectories lying both in the ROA and its boundary, so

are estimations for ROA and its boundary.

As the future study, we intend to implement a method proposed in Chiang et.al.(1988).

That method, when feasible, finds the exact ROA, rather than a subset of it. Even if, the al-

gorithms in this method are rather complicated we plan to implement them. By this way

we expect to determine the real pictures of the ROAs of some nonlinear systems and also to

make some perturbations to the related theory.

Moreover we will study to make some perturbations to the related theory.
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7. RESULTS AND DISCUSSIONS

As the first example of the Lyapunov methods we apply the Zubov method to the

worked systems. In each application, we choose the positive definite function ϕ(x) =

λ(x2 + y2 + z2) where λ is a positive scalar. In theory the choice of that function does

not affect the exact solution of the Zubov PDE. But, in applications different values of λ

result different estimations. In our applications, we have observed that for some values of λ

numerical calculations yield good estimations for the ROA but for some values, the numeri-

cal solutions may not be possible. The most important result obtained from our experiences

is that, some of the worked systems are extremely sensitive to the value of λ. For these sys-

tems estimations of ROA can be computed for a small range of this scalar. But, for others,

the Zubov procedure yields estimations of ROA for wide range of λ. Of course, the degree

of the LF, that is the number of terms taken from the power series of LF affects the estima-

tions. When we increase the degree of LFs up to some value, we get better estimates. But,

when we continue to increase the degree of LF from that value we can not improve the esti-

mations, on the contrary, the resulting estimations are smaller than the previous estimations.

This is, due to the nonmonotonic convergence nature of the Zubov procedure.

Groebner bases method is used as the second example of Lyapunov methods. In

these applications we can find solutions to our problems using only quadratic LFs. For

higher degree LFs Groebner bases method did not yield any solutions. Using this method

we compute most conservative estimations for ROA in three of the Lyapunov methods.

In the applications of the SOS programming technique, the estimations and their

enlargements are obtained by using V-s algorithm together with trace minimization algo-

rithm we obtain enlarged estimations for ROA that are provable regions. This method yields

the best estimations in all three Lyapunov methods. However, these three techniques give

similar estimated regions for the ROA.

In the applications of the non-Lyapunov methods, we study Stacey- Stonier proce-

dure as the first example. Since the idea in this procedure lies in backward propagation of a

parametrically defined initial surface (a closed surface) to a new parametrically defined sur-

face it results conservative estimations. In each example, we choose a sphere with different

radius enclosing the asymptotically stable equilibrium as an initial closed surface. Also, in
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numerical integration of the backwarded systems we use Euler method, the time increments,

∆t are taken with different values. The final estimations are computed as the parametrically

defined surface for each system. In each example, we perform different number of iterations

depending on the properties of ROA. For example, the final estimations for Genesio and

Lorenz systems are obtained after 125 and 200 iterations, respectively. On the other hand

the final estimations for Rossler and system (3.9) are obtained after 30 and 50 iterations,

respectively. The worst result is obtained for BZ reaction. We can perform only two steps

for the final estimation using Euler method. To use another numerical integration method as

Runge- Kutta method may result better estimations.

Trajectory reversing method is the second example of the non- Laypunov methods.

The idea in this method depends on the backward propagation of the randomly chosen points

on an initial surface by integrating numerically in forward time. It results better estimations

than the previous methods. All applications yield estimations of the boundary of ROA also.

As the last example of the non-Lyapunov methods, we use the procedure involving

the calculations of the eigenvectors of the linearization of the system (2.1) around the type-1

saddle. Since for the determination of the stability boundary of the worked system existence

of a type-1 saddle point is necessary we can apply this method to our systems having such

a point. That is, we apply the method to Genesio system, Rossler system and BZ reaction.

In each application, the presence of the type-1 saddle and the part of the stability boundary

can be seen clearly from figures.
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