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ABSTRACT
Thesis of Master of Science
SECOND AND THIRD ORDER RATIONAL DIFFERENCE EQUATIONS
Inci OKUMUS
Biilent Ecevit University
Graduate School of Natural and Applied Sciences

Department of Mathematics

Thesis Advisor: Assoc. Prof. Yiiksel SOYKAN
July 2014, 89 Pages

In this thesis, we are primarily concerned with the boundedness nature of solutions and the

stability of the equilibrium points of the second and third order rational difference equations.

The organization of this thesis is as follows:

In Chapter 1, we give the necessary preliminary results.

In Chapter 2, we present a collection of techniques for demonstrating boundedness of

solutions of the difference equations.

In Chapter 3, we present some examples of the second and third order rational difference

equations.

In Chapter 4, we focus on the study of stability and boundedness nature of the equilibrium

points of the difference equation
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ABSTRACT (continued)

‘. = a+px +yx,
" Bx,+Cx,,

In Chapter 5, we investigate the study of stability of the equilibrium points of the difference
equation

— a(xn + xn—l) + xnxn—l
A+ Bx x,

n+l

Key Words: Difference equations, boundedness, equilibrium point, stability, local

asymptotic stability, global asymptotic stability.

Science Code: 403.03.01
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OZET
Yiiksek Lisans Tezi

IKINCI VE UCUNCU MERTEBEDEN RASYONEL FARK DENKLEMLERI
Inci OKUMUS
Biilent Ecevit Universitesi
Fen Bilimleri Enstitiisii

Matematik Anabilim Dalx

Tez Damismani: Doc. Dr. Yiiksel SOYKAN
Temmuz 2014, 89 sayfa

Bu tezde ikinci ve uglnci mertebeden rasyonel fark denklemlerinin denge noktalarinin

kararlilig1 ve ¢oztimlerinin sinirliligy ile ilgilenilmistir.
Bu tezin organizasyonu asagidaki gibidir:
Birinci bolimde, konu ile ilgili gerekli 6n bilgiler verilmistir.

Ikinci boliimde, fark denklemlerinin ¢oziimlerinin simirliliklarini gosterme tekniklerinin bir

derlemesi sunulmustur.

Ugiincii boliimde, bazi ikinci ve igiincii mertebeden rasyonel fark denklem ornekleri

verilmigtir.

Dérdunci boliimde,

_a+fx, +rx,

x
n+l
Bx, +Cx, |




OZET (devam ediyor)
fark denkleminin denge noktalarinin kararlilig ve sinirliligr tizerine odaklanilmistir.

Besinci bolimde,

— a(xn + xn—l) + xnxn—l
A+Bx x|

n+l

fark denkleminin denge noktalarinin kararlilig1 incelenmistir.

Anahtar Sozciikler: Fark denklemleri, sinirlilik, denge noktasi, kararlilik, yerel asimptotik

kararlilik, global asimptotik kararlilik.

Bilim Kodu: 403.03.01
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CHAPTER 1

INTRODUCTION AND PRELIMINARIES

In this thesis we extensively use [1-2, 7, 19-22, 24, 26, 29, 34]. For some other basic results
in the area of difference equations and systems, see [3-6, 8-18, 23, 25, 27-28, 30-33].

In this chapter we state some well known results.

1.1 DEFINITIONS OF STABILITY

Let I be some interval of real numbers and let f : I¥7! — [ be a continuously differentiable

function. A difference equation of order (k + 1) is an equation of the form
Tnt1 = f(Tn, Tno1y ooy Tn—k), n=0,1,... (L.1)
A solution of Eq.(1.1) is a sequence {z,}>° , that satisfies Eq.(1.1) for all n > —k.

Lemma 1.1 For every set of initial conditions Ty, T_(x41),..., To € I, the difference

equation (1.1) has a unique solution {x,}>> ..

As a special case of above lemma, for every set of initial conditions xg, z_1 € I, the second

order difference equation

Tps1 = f(xn,zp 1), n=0,1,.. (1.2)

has a unique solution {x, }°° ; and for every set of initial conditions xg, z 1,z o € I, the

third order difference equation
Tpt1 = f(xnaxnflaxan)a n=0,1,.. (13>
has a unique solution {z,}°° .

Definition 1.1 A solution of Fq.(1.1) that is constant for all n > —k is called an
equilibrium solution of lq.(1.1). If

Tn =T, for alln > —k



is an equilibrium solution of Fq.(1.1), then T is called an equilibrium point, or simply

an equilibrium of Lq.(1.1).

7 is also called as a fixed point of f.

So a point T € [ is called an equilibrium point of Fq(1.1) if

E = f (f7f7 "'75) ;
that is,

T, =7 forn> —k

is a solution of Fq.(1.1).

Definition 1.2 (Stability) Let T an equilibrium point of Eq(1.1).

(a) An equilibrium point T of Eq.(1.1) is called locally stable if, for every ¢ > 0; there
exists 6 > 0 such that if {x,}2° , is a solution of FEq.(1.1) with
lv_x — Z| 4+ |21k — T| + ... + |20 — T| < 6,
then
|zn — 7| <&, foralln> —k.

(b) An equilibrium point T of Liq.(1.1) is called locally asymptotically stable if, it is locally
stable, and if in addition there exists v > 0 such that if {z,}>° . is a solution of
Fq.(1.1) with
|v_x — Z| + |21 — T + ... + |20 — T| < 7,
then we have

lim z, = 7.

(¢) An equilibrium point T of Fq.(1.1) is called a global attractor if, for every solution

{zn )00 of Eq.(1.1), we have

lim z, = 7.

n— 00

(d) An equilibrium point T of Eq.(1.1) is called globally asymptotically stable if it is locally

stable, and a global attractor.

(e) An equilibrium point T of Fq.(1.1) is called unstable if it is not locally stable.



1.2 LINEARIZED STABILITY ANALYSIS

Suppose that the function f is continuously differentiable in some open neighborhood of

an equilibrium point Z. Let

of _ . _ :
G = 8u-(x’x’ v I)y, fori=0,1,...0k
(2
denote the partial derivative of f(ug,uy, ..., ux) with respect to u; evaluated at the equi-

librium point T of Fq.(1.1).

Definition 1.3 The equation

Ynt1 = QoYn T @1Yn—1 F oo T GeYr, 0= 0,1, (1.4)
is called the linearized equation of Fq.(1.1) about the equilibrium point T, and the equation
N o — L — g A — g =0 (1.5)
is called the characteristic equation of Fq.(1.4) about T.

Then the equation

Ynt1 = QoYn + G¥n—1, n=0,1,... (1.6)

is the linearized equation associated with Fq.(1.2) about the equilibrium point T and the

equation
A —goA—q =0

is the characteristic equation of Eq.(1.6) about 7.

Also, the equation

Ynt1l = GoYn + AiYn—1+ @Yn—2, N = 07 17 (17>

is the linearized equation associated with Fq.(1.3) about the equilibrium point T and the

equation
>\3—QO)\2—Q1)\—Q2=0

is the characteristic equation of Eq.(1.7) about 7.
The following result, known as the Linearized Stability T heorem, is very useful in de-

termining the local stability character of the equilibrium point Z of Fq.(1.1).



Theorem 1.2 (The Linearized Stability Theorem) ([7], p.5)
Assume that the function f is a continuously differentiable function defined on some open

neighborhood of an equilibrium point T. Then the following statements are true:

(a) When all the roots of Eq.(1.5) have absolute value less than one, then the equilibrium
point T of Lq.(1.1) is locally asymptotically stable.

(b) If at least one root of Kq.(1.5) has absolute value greater than one, then the equilib-

rium point T of FEq.(1.1) is unstable.

The equilibrium point T of Fq.(1.1) is called hyperbolic if no root of Eq.(1.5) has absolute
value equal to one. If there exists a root of Fq.(1.5) with absolute value equal to one,
then the equilibrium % is called non — hyperbolic.

An equilibrium point T of Eq.(1.1) is called a repeller if all roots of Eq.(1.5) have absolute
value greater than one.

As a special case of Theorem 1.2 we have the following corollary.
Corollary 1.1 (a) If both roots of the characteristic equation (quadratic equation)
A —qA—q =0

of Fq.(1.6) lie in the open unit disk |\ < 1, then the equilibrium T of Fq(1.2) is

locally asymptotically stable.

(b) If all roots of the characteristic equation (qubic equation)
>\3—QO)\2—Q1)\—Q2=0

of Fq.(1.7) lie in the open unit disk |A| < 1, then the equilibrium T of Fq(1.3) is

locally asymptotically stable.

The following two theorems state necessary and sufficient conditions for all the roots of

a real polynomial of degree two or three, respectively, to have modulus less than one.

Theorem 1.3 ([7], p.6) Assume that a; and ag are real numbers. Then a necessary

and sufficient condition for all roots of the equation

N t+ad+ag=0



to lie inside the unit disk is
|a1| <l4ag<?2.

Theorem 1.4 ([7], p.6) Assume that as, a1, and ag are real numbers. Then a necessary

and sufficient condition for all roots of the equation

A+ ag\? + ai A+ a9 =0

to lie inside the unit disk is

lag +aol < 1+a1, |ag—3ag| <3 —a1 and ai+ a; — agas < 1.

Theorem 1.5 (Clark Theorem) ([7], p.6) Assume that qo,q1, ..., @ are real numbers
such that

g0l + || + o + || <1

Then all roots of Fq.(1.5) lie inside the unil disk.

Theorem 1.6 ([26], p.9) Consider the difference equation

Tos1 = fo(Tn, Tn1) Tn + f1 (@Tny Tp1) 1, m=0,1,.. (1.8)
with nonnegative mitial conditions and

Jo, J1 € C'[[0,00) X [0,00),[0,1)] .

Assume that the following hypotheses hold:

(a) fo and fi are non-increasing in each of their arguments;

(b) fo(z,z) >0 for all z > 0;

(C) fO(xay) + fl(xay) <1 fOT' all T,y e (07 OO)
Then the zero equilibrium of Eq(1.8) is globally asymptotically stable.

Theorem 1.7 ([26], p.11) Let [a,b] be an interval of real numbers and assume that
f : [aab] X [aab] - [avb]

s a conlinuous function satisfying the following properties:



(a) f(z,y) is non-decreasing in x € [a,b] for each y € [a,b], and f(x,y) is non-increasing

in y € [a,b] for each z € [a,b];
(b) If (m, M) € [a,b] x [a,b] is a solution of the system

fOm,My=m and f(M,m)=M

then m = M.

Then FEq(1.2) has a unique equilibrium T € [a,b] and every solution of Fq(1.2) converges

toT.

Theorem 1.8 ([26], p.12) Let [a,b] be an interval of real numbers and assume that
f:]a,b] x [a,b] — [a,b]

s a conlinuous function satisfying the following properties:

(a) f(z,y) is non-increasing in x € [a,b] for each y € [a,b] and f (x,y) is non-decreacing

iny € [a,b] for each = € [a,b],
(b) The difference equation Fq(1.2) has no solutions of prime period two in [a,b].

Then Fq(1.2) has a unique equilibrium T € [a,b] and every solution of Fq(1.2) converges

toT.

Theorem 1.9 ([26], p.13) Let [a,b] be an interval of real numbers and assume that
f:]a,b] x [a,b] — [a,b]

s a conlinuous function satisfying the following properties:

(a) f(z,y) is non-increasing in each of its arguments;

(b) If (m, M) € [a,b] x [a,b] is a solution of the system

f(mym)=M and f(M,M)=m,

then m = M.



Then FEq(1.2) has a unique equilibrium T € [a,b] and every solution of Fq(1.2) converges

to .

In the next theorem we make use of the following notation associated with a function
f (21, z2) which is monotonic in both arguments.

For each pair of numbers (m, M) and for each i € {1,2}, define

M, if f is increasing in z;

m, if f is decreasing in z;

and

Theorem 1.10 ([1], p.3)Assume that f € C ([0,00)2,[0,oo)> and f(z1,22) is either
strictly increasing i z1 and zy, or strictly decreasing in z1 and zy, or strictly increasing

in z1 and strictly decreasing in zy. Furthermore, assume that for every
m € (0,00) and M > m,

either

[f (My (m, M), My (m, M)) — M][f (my (m, M) ,mq (m, M)) —m] >0
or

f(My (m, M), My (m,M)) =M and f(my (m, M) ,my(m,M)) =m.

Then every solution of Lq.(1.2) which is bounded from above and from below by positive

constants converges to a finite limit.

We now present two genereal global asymptotic stability results that apply to several

special cases of the (k + 1)™-order rational difference equation

k
o+ Z BiTn i
i—0

Tyl = , n=20,1,... (1.9)

k

i=0

with A > 0, the remaining parameters non-negative, with

k k
> B, and Y B;€(0,00),
=0 i=0



and with arbitrary non-negative initial conditions such that the denominator is always
positive.
The characteristic equation of the linearized equation of Eq.(1.9) about an equilibrium

point T is

k
Ak+14— p j{: DN =0, (1.10)
Z i=0

Zero is an equilibrium point Eq.(1.9) if and only if
a=0and A > 0. (1.11)

As we will see later, when (1.11) holds, the zero equilibrium of Eq.(1.9) is globally as-
ymptotically stable when

A>D 8 (1.12)

Eq.(1.9) has a positive equilibrium point if and only if

either
a>0 (1.13)
or
k
a=0and A <) B, (1.14)
=0

When (1.13) holds, the equation has the unique equilibrium point

— A — A)? +4aB
Ezﬁ +\/(5B ) +do ) (1.15)

where for simplicity we use the notation,

k k
B=> B, and B=) B,
i=0 =0



When (1.14) holds, Eq.(1.9) has the unique positive equilibrium point
8 —A

T =—".

B

Note that
1 <& 1
A+BEZ|B@_5¢| < m-(Bf—ﬁ)- (1.16)
i—0

Therefore, by Theorem 1.5 and 1.16, the equilibrium of Eq.(1.9) is locally asymptotically
stable when (1.12) holds.

Theorem 1.11 ([7], pp.150-151) Assume that

k
B=> B <A
i—=0
Then the following statements are true:
(a) If
a=0,
the zero equilibrium of Fq.(1.9) is globally asymptotically stable.
(b) If
a >0,
the positive equilibrium of Fq.(1.9) is globally asymptotically stable.
In the very special case when
k
A:Zﬁi>0 and o« >0,
i—=0

the global character of solutions of Fq.(1.9) is completely described by the following result
in [33]. In this case it is preferable to write the difference equation in the form
k
a + Z /BTxn*ir
r=1

Xy = — , n=1,2 ... (L.17)
A+ ZBjxn*jt
t=1

Also, by making a change of variables, if necessary, we may and do assume that the

greatest common divisor of all "delays" in the numerator and denominator is 1, that is,

ng{ila"'aikajl ..... jm} =1.



Theorem 1.12 ([7], p.152) Assume that

A, B1y s By Biy ooy B € (0,00)  and A= Xk:ﬁl
i—=0

Then when the "delays” in the numerator

11, ..., 1% are all even

and the "delays" in the denominator

Ty -y Jm are all odd,

every solution of Fq.(1.17) converges to a period-two solution. In every other case of

delays, every solution of Liq.(1.1) has a finite limit.

Theorem 1.13 ([7], p.152) Assume that
k
a=0 and ﬁ:Zﬁi:A
=0
and that one of the following three conditons is satisfied:
(a) 5,B; >0 for somei € {0,....,k}.
(b) By > 0.
(¢) Bo and Fq.(1.9) has no period-two solutions.

Then the zero equilibrium of Eq.(1.9) is globally asymptotically stable.

Theorem 1.14 ([29], p.155) Let 1 € {1,2,...}. Suppose that on some interval I C R
Fq.(1.1) has the linearization

m
Tn+l = E GiTn—i,

i=1-1
m
where the non-negative functions g; : It — R are such that > g; = 1 is satisfied.
i=1-1

Suppose that there exists A > 0 such that
glleAy TLZO,l,...,
Then if x;1,.. v €1,

lim z, =L el

n— 00

10



1.3 SOLVING QUADRATIC EQUATIONS AND INEQUALITIES

In this section we use the following web page: [19].

1.3.1 QUADRATIC EQUATIONS

A quadratic equation is one which can be written in the form
ar® +br4+c=0 a#0

where a, b and ¢ are given numbers and z is the unknown whose value(s) must be found.
When it is difficult to factorise a quadratic equation, it may be possible to solve it using
a formula which is used to calculate the roots. The formula is obtained by completing
the square in the general quadratic az? + bx 4 c. We proceed by removing the coefficient

of a:

) , b ¢ b\ ¢ B
ar*+br+c=az*+—-2arx+-p,=a |lz+—| +——— ;.
a a 2a a 4a?

Thus the solution of ax? + bz + ¢ = 0 is the same as the solution to

40 2+C ®
T+ — —— — =0.
2a a 4da?

So, solving:

b 2 c, b
x2a a 4a?

which leads to

Simplifying this expression further we obtain the important result:

If az? + bz + ¢ = 0, a # 0, then the two solutions (roots) are

—b— b2 —4ac d —b+ Vb?2 — 4ac

T = and x =
2a 2a

To apply the formula to a specific quadratic equation it is necessary to identify care-
fully the values of a,b and ¢, paying particular attention to the signs of these numbers.
Substitution of these values into the formula then gives thee desired solutions.

Note that if the quantity > — 4ac (called the discriminant) is a positive number we

can take its square root and the formula will produce two values known as distinct real

11



roots. If b2 — 4ac = 0 there will be one value only known as a repeated root or double

root. The value of this root is x = —%. Finally, if b2 — 4ac is negative we say the

equation possesses complex roots.
When finding roots of the quadratic equation ax? + bz 4 ¢ = 0 first calculate the discrim-

mnant
b? — 4ac.

If 2 — 4ac > 0, the quadratic has two real distinct roots.
If 2 — 4ac = 0, the quadratic has two real and equal roots.

If 2 — 4ac < 0, the quadratic has no real roots: there are two complex roots.

1.3.2 QUADRATIC INEQUALITIES

A quadratic inequality is just like a quadratic equation, except instead of an equal sign
there’s an inequality!

A quadratic inequality is one that can be written in one of the following standard forms:
ar® +bxr+c<0

or

ar? +br +¢<0

or

ar® +bxr+c>0

or

ax® 4+ bx +¢> 0.

In other words, a quadratic inequality is in standard form when the inequality is set to
0. Just like in a quadratic equation, the degree of the polynomial expression is two.

To solve a quadratic inequality we must determine which part of the graph of a quadratic
function lies above or below the -axis. An inequality can therefore be solved graphically
using a graph or algebraically using a table of signs to determine where the function is

positive and negative.
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Many inequalities lead to finding the sign of a quadratic expression. Consider the

quadratic function
f(z) =az® + bz +c.

We know that

(1) If v* — 4ac = 0 (double root case), then we have

b\ 2
a:r2+b:1:+c:a<:1:—|——> .
2a

In this case, the function f (z) = az? + bx + ¢ has the sign of the coefficient a.

(2) If v* — 4ac > 0 (two distinct real roots case). In this case, we have

ar® +br+c=a(z — 1) (x — 29)

where 1 and x5 are two roott with z; < 9. Since (z — 1) (x — z5) is always positive
when x < 27 and = > x9, and always negative when 1 < < x9, we get
ax? + bx + c has same sign as the coefficient @ when = < z; and z > xy;

ax? + bx + ¢ has opposite sign as the coefficient @ when z; < z < 5.

(8) If v* — 4ac < 0 (complex roots case), then az? + bx + ¢ has a constant sign same as

the coeflicient a.

Example 1.1 Solve the inequality
22—z —2<0.

Solution. First let us find the root of the quadratic equation 22 — 2 — 2 = 0. The

quadratic formula gives

C1x/1-4(1)(-2) 1+3
N 2 2

Zz

2

which yields x = —1 or x = 2. Therefore, the expression x* — x — 2 is negative or equal

toOwhen -1 <z<2. m
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1.4 DESCARTES’ RULE OF SIGNS

In this section we use the following web pages: [20], [21] and [22].

In mathematics, Descartes’ rule of signs, first described by René Descartes in his work La
(Géométrie, is a technique for determining the number of positive or negative real roots
of a polynomial. The rule gives an upper bound number of positive or negative roots of
a polynomial. In other words, it is a method of determining the maximum number of
positive and negative real roots of a polynomial. However, it is not a complete criterion,
and so, does not provide the exact number of positive or negative roots.

Descartes’ Rule of Signs will not tell us where the polynomial’s zeroes are (we’ll need to
use the Rational Roots Test and synthetic division, or draw a graph, to actually find the

roots), but the Rule will tell us how many roots we can expect.

e For positive roots, start with the sign of the coefficient of the lowest (or highest)
power. Count the number of sign changes n as you proceed from the lowest to the
highest power (ignoring powers which do not appear). Then n is the maximum

number of positive roots. Furthermore, the number of allowable roots is n,n —

2,n—4, ...

For example, consider the polynomial
f(z) = 2"+ 32°% — 62° — 182" + 92° + 272% — 4z — 12. (1.18)

Since there are three sign changes, there are a maximum of three possible positive roots.

e For negative roots, starting with a polynomial f(x), write a new polynomial f(—zx)
with the signs of all odd powers reversed, while leaving the signs of the even powers
unchanged. Then proceed as before to count the number of sign changes n. Then

n 1s the maximum number of negative roots.

For example, consider again the polynomial (1.18) and compute the new polynomial
f(=2) = —2" + 32°% + 62° — 182" — 92° + 272 + 42 — 12.
Since there are four sign changes, so there are a maximum of four negative roots.

14



In fact
f(z)=(z+1)*(xz—1)*(z - 2)(z+2)(z+3)

and

fcx)=—(@ -1’ @+1)" (= -2)(z+2)(z—3).

So the zeros of f are —3,—2,—1 (twice),1 (twice),2. Thus f has exactly two positive
roots and three negative roots.

For example, to find the number of negative roots of
f(z)=az® +bz® +cx+d

we equivalently ask how many positive roots there are for —z in
fl=z)=a(-2)’ +b(—2)’ +ec(—2)+d=—ar® +ba® —cx+d=g(x).

Using Descartes’ rule of signs on g (z) gives the number of positive roots x; of g, and

since

it gives the number of positive roots (—z;) of f, which is the same as the number of

negative roots xz; of f.
Example 1.2

The polynomial
f(z) =2 + 2% — 21z — 45

has one sign change between the second and third terms (the sequence of pairs of suc-
cessive signs is ++, +—, ——). Therefore it has exactly one positive root. Note that the
leading sign needs to be considered although in this particular example it does not affect
the answer. To find the number of negative roots, change the signs of the coefficients
of the terms with odd exponents, i.e., apply Descartes’ rule of signs to the polynomial

f (—x), to obtain a second polynomial
f(—=x) = =2 + 2% 4 21z — 45.

15



This polynomial has two sign changes (the sequence of pairs of successive signs is —+,
++, +—), meaning that this second polynomial has two or zero positive roots, thus the
original polynomial has two or zero negative roots.

In fact, the factorization of the first polynomial is
fz) = (z+3)*(z - 3)

so the roots are —3 (twice) and 5.

The factorization of the second polynomial is
f(=z) =~ (2= 3)"(z +5)

So here, the roots are 3 (twice) and —5, the negation of the roots of the original polyno-

mial.

Example 1.3

Using Descartes’ Rule of Signs, determine the number of real solutions to
4" +32° +2° + 22t — P 9P 2+ 1=0.

We look first at the polynomial f () (this is the "positive" case):

f(z) =44z + 325 +2° + 22 — 2 + 922 + 2 + 1.

There are two sign changes, so there are two or, counting down in pairs, zero positive

solutions. Now We look at the polynomial f (—z) (this is the "negative" case):

f(=2) = A(=2)"+3(=2)° + (=) + 2(=2)" — (=2)" + 9(~2)" + (-2) + 1

= 4" 4325 — P+t + 2+ 9% — s+ 1.

There are five sign changes, so there are five or, counting down in pairs, there or one
negative solutions.

There are two or zero positive solutions and five, there or one negative solutions.
Example 1.4

Use Descartes’ Rule of Signs to find the number of real roots of
fx)=2"+2"+42° + 322 + 2+ 1.

16



We look first at f(x):
f(z)=4+2"+ 2" +42° + 322 + 2+ 1.
There are no sign changes, so there are no positive roots. Now We look at f (—x):

J(=z) = (—2)° 4+ (—2)" +4(=2)* + 3(—2)* + (—2) + 1

= — 2 +at 423 +32%2 — 2+ 1.

There are five sign changes, so there are as many as five negative roots.

Consequently, there are no positive roots and there are five, three or one negative roots.
Example 1.5

Use Descartes’ Rule of Signs to determine the possible number of solutions to the equation
20t — 2® + 42 — b +3 =0.

We look first at f(x):

[ (z) = +2z* — 2° + 42® — 5z + 3.

There are four sign changes, so there are 4,2 or 0 positive roots. Now I look at f (—z):

f(=z) = 2(=z)' = (—2)* + 4(—2)® = 5(—z) +3

= 422  + 22 + 422 + 52+ 3.

There are no sign changes, so there are no negative roots.

As a result, there are four, two or zero positive roots and no negative roots.

Complex roots:

Any n'" degree polynomial has exactly n roots. So if f (z) is a polynomial which does
not have a root at 0 (which can be determined by inspection) then the minimum number

of complex roots is equal to

where p denotes the maximum number of positive roots, ¢ denotes the maximum number
of negative roots (both of which can be found using Descartes’ rule of signs), and n

denotes the degree of the equation. A simple example is the polynomial
f (Z‘) = $3 - 17

17



which has one sign change, so the maximum number of positive real roots is 1. From
f (—Z‘) = _x3 - 17

we can tell that the polynomial has no negative real roots. So the minimum number of

complex roots is
3—(1+0)=2.

Since complex roots of a polynomial with real coefficients must occur in conjugate pairs,

note that z3 — 1 has exactly 2 complex roots and 1 real (and positive) root.

18



CHAPTER 2

ON THE BOUNDEDNESS OF DIFFERENCE EQUATIONS

In this chapter we investigate the global character of the solutions of the rational difference
equation of the second order.
We give a few methods to find the boundedness of the solutions of rational difference

equations.

2.1 CONTRADICTION METHODS

2.1.1 The Case

a+ Tpoq
i = n=01,.. 2.1
s (14 Bz,)T, 1 " (2.1

We take this example from [2], see page [201-202].
Theorem 2.1 FEvery solution of Fq.(2.1) is bounded.

Proof. Suppose for the sake of contradiction that there exists a solution of FEq.(2.1)

which is unbounded. There exists a sequence of indices {n;} such that

Tp,41 — 00 and Tp,41 > x5 for j < n; + 1. (2.2)
Once
Tn;—1 — 0,
because
z o+ Tps—1
i+l =
! (1 + ani)xnifl

From this and from

o+ Ln;—3
(1+ Bxy, 2)Tp, 3

Tp;—1 =

19



and

atxn. 3
o 2
+ (1+ngni72)gjni73

Ln,+1 = a+x
7;—3
(1 + Bl'nl) (1+ngnr2)5’3nr3

a+$ni7 3

o R e S A—
+ (1+ngni72)gjni73

= 1+ Bz, 9%,
(5 Barn )+, ) P02l
OTp,—3 + BTy, _9%n, 3+ o+ Tp,_3

(1 + Bmm)(@ + xni*3)

Ly 1
— i3 (14 B, o) +

(1 + Bzy,)(a+ xn,-3) 1+ Bz,

we have

Tn,—2 — 00 and Zn,, Tn,—3 — 1.

But then, (2.3) implies that, eventually,
Tpirl < Tpy—2

which contradicts (2.2) and completes the proof. m

2.1.2 The Case

a ﬁxnxnfl + Tn
Tpyl = , n=0,1,...
Tn—1

The main result for Fq.(2.4) is the following. See ([2], pp.215-216).

Theorem 2.2 (a) Assume that
B>1.

Then every solution of Eq.(2.4) increases to oo.

(b) Assume that

B <1

Then every solution of Fq.(2.4) converges to the positive equilibrium.

Proof.

20
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(a) Obviously

Ln+1 > 5$n Z Ln

from which the result follows.

(b) The change of variables

1
Ty = —
Yn

transforms Fq.(2.4)

Yn
B+ Yn + 0YnYn-1’

Yni1 = n=20,1,... (2.5)

Clearly,
Yp < 1, for n > 1.

We also claim that every positive solution of Eq.(2.5) is bounded from below by a positive
constant. To see this, suppose for the sake of contradiction that there exists a sequence

of indices {n;} such that

Yn,+1 — 0 and yp, 41 < yj, for j <n; + 1.
From Eq.(2.5) we have

Yns> Yn;—1 — 0.

Then eventually

Yn,
B+ Yn, + OYnyYni1

ynﬁ»l = > ynl

and this contradiction proves our assertion.

Define

I =liminfy, and S = limsup y,.

=00 n—oco

Obviously,

S I
S<—2  andl>— "
=B rStast T B T+ asT
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from which it folows that
B+S+aSI<1<B+T+aST
and so

S=1.

This completes the proof. m

2.1.3 The Case

Tpt1 =P+ x;%, n=20,1,... (2.6)

n

We consider the difference equation Fq.(2.6) with the parameter [ positive and with
arbitrary positive initial conditions z_ o,z 1, zo. See ([7], pp.46-48).

Theorem 2.3 Fvery solution of Fq.(2.6) is bounded.

Proof. First of all, we make the following useful general observations about the solutions

of Eq.(2.6):
[ ]
Tpi1 > 0 for n > 0. (2.7)
[ ]
1
Tni1 < B+ B:L‘n,Q, for n > 1. (2.8)
[ ]
1 Tn—5 1
Tnp1 < B+ =(6+ ) <B+1+4+ —z,5, for n > 4. (2.9)
5 Tn—3 5
[ ]
Tp41 — OO0 = Ty, 9 — OO. (2.10)
[ ]
Tp41 — B = Tp, — 00. (2.11)
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Now suppose for the sake of contradiction that Fq.(2.6) has an unbounded solution {z, }.

Then there exists a sequence of indices {n;} such that

Tp,41 — OO (2.12)
and for every i,

Tn41 > Zj, for all j < n; + 1. (2.13)
From (2.12) and (2.10) it follows that

T, 9 — 00, T, 5 — 00, and z,, g — 00. (2.14)

Now we claim that the subsequence {z,, 4} is bounded. Otherwise, there would exist a

subsequence of {n;}, which we still denote by {n;}, such that

T4 — 00, Tp,_7 — 00, and T, _10 — 00. (2.15)
Note that, for every i,

Tni—7

Z
Lpy— 4_5_‘_
xnl5

So, as a result of (2.14) and (2.15), we have eventually

Lpy—7 > Ln,—5 and Ln;—10 > Ly, —8 (216)
and

Lp;—7 Ln;—10

—— — o0 and —— — o0.

Tn;—5 Ln;—8

Hence, from (2.16) and (2.9), we note that eventually

1
Tpr1 < 5 +1+ —5Tn,—7
3
1 fL‘nl 10
—(B+ )

n;—8

= B+1+

— B+1+ (l‘nﬁlo)‘

s
11
55
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Because of (2.15), it follows that the right-hand side of the above inequality is eventually
less than x,,_10, which contradicts (2.13) and proves our claim that {x,,_4} is bounded.

From this and (2.14) we see

A
xm*lzﬁ_l_L_)ﬁ'

n;—2

Furthermore,

lim inf z,,,_3 > f.

Otherwise, a subsequence of {z,, 3} would converge to 5 and therefore from (2.11),
{Zp,—4} would be unbounded, which is not true.
Thus, eventually,

T,

Tps—1

and hence, for ¢ sufficiently large,

L. L.
n12<5+ n;—2

< Tpy—9,

which contradicts (2.13). This completes the proof. m
2.2 INVARIANT INTERVAL METHODS

2.2.1 The Case

Ty = — 2L =01, (2.17)

)
1 + Tn Ty

We consider the difference equation (2.17).
We take this example from [1], see page [15-17]

Lemma 2.4 FEvery positive solution of Fq.(2.17) is bounded.
Proof. When

v<1

?

we have

T _ Y¥n—1 z
n+1 — >~ dn—1
1 + TnTn1
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and thus the solutions of Eq.(2.17) are bounded. Now suppose that
v>1

and assume that {z,} ~ | be a positive solution of Eq.(2.17). Choose a positive number

m such that

-1
T_1, Tg € (m,L> .
m

Define

_ Y

f (z,y) is decreasing in z. In fact,

2

7, = O—wy _ =
T4yt (Lay)

and thus f is decreasing due to v > 1.

f (z,y) is increasing in y. In fact,

v Atay) -y
(1+ay)” (1+zy)’

Jy =

and so [ is increasing because of v > 1.

Therefore, by using the increasing character of f we find that

ym Yy Ve -1
m = ] 1‘1 —= ] —=
1—|—'77m 14+ z9x 4 1—|—m'77 m
and hence by induction
-1
Tn € (m, L) , for all n > —1.
m
Consequently, {z,} ~ | is bounded.
2.2.2 The Case
1
Tyl = Py +——, n=0,1,.... (2.18)
Tn—1

We consider the difference equation (2.18). See ([1], p.22).
Theorem 2.5 Fq.(2.18) has bounded solutions, if and only if

8 <1 (2.19)
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Proof. We sce

Tpy1 > B,

from which it follows that Fq.(2.18) has unbounded solutions for
B=>1

On the other hand when (2.19) holds, we claim that every positive solution of Eq.(2.18) is
bounded. In fact, if {z,} ~ | is a positive solution of Eq.(2.18) and if we choose positive

numbers m and M such that
T 1, To € [m, M] and mM =

then

S S 1 1 1
C(1-pHM N N

and inductively,

Zn € [m, M], for all n > —1

which proves our claim. m

2.3 MIN-MAX METHODS

2.3.1 The case

a+ BryTn1 + Tna
A + Tn Ty

Tyl = n=01,... (2.20)
We consider the difference equation (2.20). See ([2], pp.217-218).
For Eq.(2.20) it can be seen that, for n > 1, every positive solution is bounded from

below and from above by positive constants. In fact,

o+ Br,r, S min{a, 5}
A+ zpxn 1 — max{A4 1}

Tn41 Z

which shows that every solution of Fq.(2.20) is bounded from below, for n > 1, by the

positive number

_ min{a, 8}
max{A,1}
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So,

o+ B, Tn_1 + Tpo o 1 o 1
Tny1 < B . - = +0+—<——=+08+—=
TrnTn_1 TrnTn_1 T, m m

and thus every solution of Eq.(2.20) is also bounded from above, for n > 2, by the positive

number

1

m.

«
M=—+5+

2.3.2 The Case

o+ 5$n + YLn—1 + 5$n72
w1 = ,n=0,1,... 2.21
ot anfl + D$n72 " ( )

We consider the difference equation (2.21). See ([7], pp.41-42).

Theorem 2.6 Assume that v, 5 € [0,00) and v, §, C, D € (0,00). Then every positive

solution of Fq.(2.21) is bounded from above and from below by positive numbers.

Proof. We see that

NTp 1+ 0Ty o S min{~, 0}
~ Czy 14 Dz, s — max{C, D}

Tn41

and then {z,} is bounded from below by the positive number

B min{~, 0}
"~ max{C,D}’

Moreover, for n > 1,

@+ BTpg1 +YTn + 0Tn_1

Tn+2

Cx, + Dx,_
B o YTy + 0Ty 1 I} o+ Bxy + YTn-1+ 0%y o
- Czo+Dxnq Czpn+Dzyq1  Cxn+ Dz, Cxpq+ Dzys
< o YTy + 0Ty 1 I} o+ Bxy + YTn-1+ 0%y o
- (C+Dm Cz,+ Dz, 1 Czxy+ Dz, 4 Cp1+ Dxyy
_ o N YTy, + 0Ty 1 N B N
(C+Dym  Czp+ Dxypy  (Cxp+ Dxy 1 )(Czp1 + Dxys)
B VYTp—1+ 0Zp_o 529%
Czp+ Dzy 1 Czpy 4+ Dxy g (Cxpy+ Dz 1) (Cxpy + Dxyys)
< o max{~,0} N Ba I6; max{~,0} N 52

(C+D)m  min{C,D} " (C+DPm? T (€ + Dymmin{C, D} T CDhm

and therefore the solution is also bounded from above. m

27



2.3.3 The Case

o+ ﬁxnxnfl + Tn—1
anxnfl + Tn1

,n=0,1,... (2.22)

Ln+1 =

We consider the difference equation Eq.(2.22). See ([2], p.219).

Eq.(2.22) is bounded from below and from above by positive constants. In fact for n > 1,

BTpTrn-1 + Tna B, +1 min{/5, 1}
Ln+1 Z = Z .
Brnzn 1+ x,1  Br,+1 max{B,1}

Hence, for n > 1, every positive solution is bounded from below by

_ min{3,1}

~ max{B,1}’
So for n > 2,
Q@ B, +1
xn
+ Bxp,t, 1+ xn1 Bzx,+1
ot max{f,1}

Bm?+m  min{B,1}

which establishes our claim.

2.3.4 The Case

o+ TpTp1
B L Y T T 2.93
T A 229
We consider the difference equation Eq.(2.23). See ([1], p.26).

Every solution of Eq.(2.23) is bounded from above and from below by positive constants.

In fact for all n > 0,

min{a, 1} - o+ TpTp1  max{a,l}
4 43 L, = " .
max{A, 1} T At 2z, min{A, 1}

The following case is an example both min-max method and invariant interval methods.

2.3.5 The Case

k
o+ Z ﬁz‘xnfi
Tpy1 = =2 ., n=0,1,.. (2.24)

i=0

Consider the difference equation Eq.(2.24). See ([7], pp.34-37).
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Theorem 2.7 Consider the (k + 1) -order rational difference equation (2.24) with non-

negative parameters
&, AaﬁOa "757@7B07 7B7€

and with arbitrary non-negative initial conditions r_y, ..., xo such that the denominator is
always positive. Suppose that for every i € {0,1,....;k} for which the parameter 3, in the
numerator is positive, the corresponding parameter B; in the denominator is also positive.

Then every solution of Fq.(2.24) is bounded.

Proof. We denote by I and [y the following subsets of {0,1,...,k}:
I'={ie{0,1,....k}:3,>0and B; >0}

and

Ip={i€{0,1,...,k}:5,=0and B; > 0}.

Hence

Ul C {01, k)

and Eq.(2.24) is equivalent to

- _ o+ Z@‘e[ 51‘1}%@‘
LT A > icr Bitni + 3 ich, Bz, i

n=0,1,.. (2.25)

with 5,, B; € (0,00) for every ¢ € [ and with B; > 0 for every i € . Of course, I or Iy,
or both, may be empty sets.

First of all, we show that when
A>0o0r a=0,

every solution of FEq.(2.24) is bounded. In fact, when A > 0

" < max;er (o, 3;)(1 + Zie[ Tn—i) _ maxX;er (e, B;)
= minieI(A, BZ)(l + ZiEI Z‘n,i) minieI(A, BZ)

and thus every solution of Eq.(2.24) is bounded.
In the above inequality by max;e (v, 3;), we mean « if I = () and the maximum of « and

max;es [3; otherwise. Similarly for the minimum. Moreover, if I = ), we define

Ty = 0.
D iy T
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Next suppose that o = 0. Hence the set I must be nonempty and

Zie[ 5i$n7i
Zz‘el Bixn-

and every solution is bounded.

(maxiel 5¢) Zz‘e[ Lp—i  MaXjer B

(minz‘el Bi) Z@‘e[ Tn—i B minge; B;

$n+1 S S

In the remaining part of the proof we suppose that
A=0and a > 0.

Now the proof depends on whether I or [y is empty.
Case 1: Iy = . So, because A =10, I # () and

. _a+ Zie[ Bi%n—i S minger 5,
n+1 —
ZZ-E[ Bz, max;c; B;

, for n > 0.

Hence if we set

I = minge 7 53; :
maXi;cr Bl
note that for n > k,

. < o maX;er 3;
n+1 > .
LZZ‘EI Bl Mmingecr Bl

and every solution of Fq.(2.24) is bounded from below and from above. Indeed in this
case the equation is permanent.

Case 2: [ = (). Then Iy # 0. In this case the FEq.(2.24) reduces to

«

Tl = e =0,1,... (2.26)
Zie[o Bixnfi

with

> B;i>0

i€lp

We will show that every solution of FEq.(2.26) is bounded. To this end, let {z,} be a
solution of Eq.(2.26) and suppose, without loss of generality, that the solution is positive
for all n > —k. Let L,U be chosen in such a way that

T gy ey g € (L, U)
and

LU = —«——.
Zz‘elg B;
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Hence

L a < a < a U

= V—_— xl —= = .
U Zz‘EIO B; Zz‘EIO Bz L Zz‘elo B;

Then,

al € (L, U)

and by induction
zn, € (L,U) for n > —k.

Case 3: Both I and [y are nonempty sets. In this case, as in case 2, we will suppose,
without loss of generality, that a solution {z,} is positive and show that there exist an
interval (L, U) that contains the entire solution.

To see how the interval is found note that
T € (L, U)

if and only if

o+ D e B
Doicr Bir i+ Bir

if and only if

L <

> (LBi—B)z_i+ (LY Biw_j—a) <0

L<&<Uforalli€]

B;
and
g < ZBZZ',Z < Z
i€ly
But
LY Bi<> B ;<UY» B
icly icly i€l
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and hence it suffices to choose . and U such that

Ty -ey To € (L7 U)v

L < min(=, —=——),
el " Bi B Zjelo B
and
«
LU= ————.
Zje[o Bj

With the above choice of (L, U), it is now easy to prove that
z1 € (L, U)

and then by induction

zn, € (L,U) for n > —k.

This completes the proof. m

2.4 INVARIANT PRODUCT METHODS

2.4.1 The Case

. a+ Bz,
ntl = A
anfl

n=0,1,.. (2.27)

We consider Eq.(2.27). See ([26], pp.70-71).
This equation is called Lyness’ Equation. By the change of variables, Eq.(2.27) reduces

to the equation

S st e T 2.98
Yn+ ) y Ly

Yn—1

where

aC
B
The special case of Fq.(2.28) where

p:

p=1
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was discovered by Lyness in 1942 while he was working on a problem in Number Theory.

In this special case, the equation becomes

T+,
Yp1 = ?+'i ,n=01,.. (2.29)

every solution of which is periodic with period five. Actually the solution of Eq.(2.29)

with initial conditions y_; and g is the five-cycle:

I+yw 1+y1+yw 14y
Y—-1, Yo, ) ) yeece
Y- Y—-1Yo Yo

Fiq.(2.28) possesses the invariant

» 71)(1 + yi) = constant (2.30)

from which it follows that every solution of Eq.(2.28) is bounded from above and from
below by positive constants.

In fact for n > 0

1 1 P+ Yn 1 Yn—1
P+ Yo+ Yny)(1+ —)(1+ = P+yn+ I+ —)(1+
( +1)( yn)( yn+1) ( n—1 )( yn)( p + yn)
P+ Yn 1 1
= + I+ —)P+ Yo+ Yna
(p + Yn ynfl)( yn)( )
1
= P+ Y1+ u) T+ —)1+—)
Yn—1 UYn,
The proof follows by induction.
2.4.2 The Case
o
Tpt1 =, n=0,1.... 2.31
+ (1 + xn)xnfl ( )

We consider the difference equation FEq.(2.31). See ([1], p.8).

This equation has some similarities with Lyness’s Equation,

a+ x,

n=0,1,.. (2.32)

Ln+1 =
Ln—1

which is gifted with the invariant (see (2.30)):

1
)(1 +—) = constant, Yn > 0.

n— n 1
(4 Tp1 4 zn)( +xn71 o

In fact, as for FEq.(2.32), Eq.(2.31) possesses an invariant, namely,

1
+ —) = constant,¥n > 0. (2.33)
Tn—1 Tn

Zn-1 + Ty + Tno1Zn + o
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By using (2.33) we see that every positive solution of Eq.(2.31) is bounded from above
and from below by positive constants.

In fact for n > 0

+ + + af ! + ! ) + - + “
Ty + Tp L Ty al— = Zn In
H H Ln Tn41 (1 + xn)xnfl (1 + xn)xnfl
1 1+xz,)x,
—|-Oé(— + #)
Tn Q
N a(l+z,) N o N N
= T+ ——F —F+Tp1 + Ty
(1+x)zn 1y ! !
1 1
= Tp1t+ZTpnt+Tp 1Ty + Oé( + _)
Tp-1 L,
The proof follows by induction.
2.5 INITIAL CONDITIONS METHODS
2.5.1 The Case
YTn—1
1 =—-——"n=0,1,.... 2.34
Lnt1 1+ 2,2, n ( )

We consider the difference equation (2.34). See ([1], pp.15-16).
When one of the initial conditions of a solution of Eq.(2.34) is zero, Eq.(2.34) reduces to

the linear equation

Ln+1 = YLp—1

with one initial condition equal to zero. If the other initial condition of a solution is ¢,

then the solution of the equation is

e 07 ¢7 07 ’ngv 07 72¢7

Therefore the solution converges to zero when

the solution is the period-two sequence

e 07 ¢7 07 ¢7 07 ¢7

34



and when
v > 1and ¢ > 0,

the solution is unbounded.

2.5.2 The Case

(1 + 5$n) Lp—1

=0,1,.... 2.

Ln+1 =

We consider the difference equation (2.35). See ([2], pp.202-204).
When one of the initial conditions of a solution of Eq.(2.35) is zero, Eq.(2.35) reduces to

the linear equation

1
Tnt1 = anfl

with one initial condition equal to zero. If the other initial condition of a solution is ¢,

then the solution of the equation is

1

1
.y 0, 9,0, —0¢, 0, ﬁgb,

So the solution converges to zero when

A>1.

the solution is the (not necessarily prime) period-two sequence:

o 0,0, 0, 6, ...

and when
A< 1and ¢ >0,

the solution is unbounded.
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CHAPTER 3
EXAMPLES

In this chapter we investigate the local asymptotic stability and global asymptotic sta-

bility of some difference equations.

3.1 EXAMPLES OF THE SECOND ORDER DIFFERENCE EQUATIONS

Example 3.1 ([7], pp.189-190) Consider the second order difference equation

. a+ Bz,
"
Tp—1

n=0,1,... (3.1)

(a) The normalized form of Eq.(3.1) is

Tyl = Oé_l_x”, n=20,1,.. (3.2)

n—1

(b) Equilibrium point of Eq.(3.2) is

1+ V1 +4a
5 )

T =

(¢) The linearized equation of Fq.(3.2) about the equilibrium point T is

2
2] — ——————py + 21 =0 3.3
LR T ! (3:3)

and the corresponding charasteristic equation of Eq.(3.3) is

2
N = AN4+1=0.
14+ +v1+4a

(d) The equilibrium point T of Fq.(3.2) is non-hyperbolic for every a > 0.
Solution.
(a) Using the change of variables

s

Tn = FlYn,

C
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Fq.(3.1) can be written in the normalized form

a+ x,
Tpgl = , n=0,1,..
Ln—1

with positive parameter o and with arbitrary non-negative initial conditions x_1, xg such

that the denominator is always positive.

(b) The equilibrium point of Fq.(3.2) is the non-negative solution of the equation
o+

z

T =

or equivalently
72 —T—a=0. (3.4)

Then the only equilibrium point FEq.(3.2) is

1+ V1 +4a
5 )

T =

(¢) Now, let I be some interval of real numbers and let f: [ x [ — [ be a continuously
differentiable function such that f is defined by

a+ x,
f(l‘n, xnfl) = .

Ln—1

Hence, we have

af

q‘):axn@’f):[ : }(T,f)z ___

14+ /1+4a

SN

and from (3.4)
of (7.7) = {0— (oz—l—:r:n).l] (7.7) = —a+7T

B 8$n,1 (xnfl)2 EQ

If T denotes an equilibrium point of Eq.(3.2), then the linearized equation associated

G =-1.

with Fq.(3.2) about the equilibrium point T is
Zn41 = qoZn + q12n—1

or

Zn + Zp—1 = 0.

2
e
/T F da

The characteristic equation of the linearized equation of Eq.(3.2) about the equi-
librium 7 is

2
)\ — T )}
14+ +v1+4a

33



(d) From (c), the characteristic roots are

14+iyv/1+ 40 +2V1 + 4a 4 1—iv14 4o +2v1+ 4a
— an = .
1+ 1+ 4a ? 1+ 1+ 4o

For every a > 0, it holds

A

[Maf =[x =1
and so T 1s a non-hyperbolic equilibrium point.

Example 3.2 ([7], p.168) Consider the difference equation

Ban

—_ =0,1,.... .
B oo "m0k (3.5)

Ln+1 =

(a) The normalized form of Eq.(3.5) is

Tn

—_— =0,1,.... 3.6
an—l—xn,f " T ( )

Ln+1 =

(b) Equilibrium point of Eq.(3.6) is

_ 1
T =—".

B+1

(¢) The linearized equation of Fq.(3.6) about the equilibrium point T is

1

—B—I—lzn_l_

0 (3.7)

Zn41 — B—HZan =

and the corresponding charasteristic equation of Liq.(3.7) is

1 1

2

_ A _0
Brit T B

(d) The equilibrium point T of Fq.(3.6) is locally asymptotically stable when

B> 0.

Solution.

(a) Using the change of variables
B

Tn = FlYn,

C
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Fq.(3.5) can be written in the normalized form

Tn

_— =0,1,...
B:L‘n—l-flfnq’ n ]

Ln+1 =

with positive parameter B and with arbitrary positive initial conditions z_1, xg.

(b) The equilibrium point of Fq.(3.6) is the non-negative solution of the equation

T
Bz +7%

T =

So, (3.6) has the unique equilibrium point

_ 1
T=——".
B+1
(¢) Now, let I be some interval of real numbers and let f: [ x [ — [ be a continuously
differentiable function such that f is defined by

L

f(xru xnfl) = m

Thus, we observe that

B ﬁ(_ 7) = 1.(Bxy, + Tp 1) — Tn.B (7.7) = T 1
O = Gz, T (Bzn + 2n_1)? = Bz T2 Bl
S B e B D M
N e T T Ban van 2| T Bryz? BAL

If T denotes an equilibrium point of Fq.(3.6), then the linearized equation associated with

Eq.(3.6) about the equilibrium point 7 is

Znt1 = GoZn + 1201

or

1 1
Zn+4l — B_l_lzn‘l'B_l_lanl—

0.

The characteristic equation of the linearized equation of Eq.(3.6) about the equilibrium
T 1s

1 1

N — A =
RS

0.
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(d) From (c¢) and Theorem 1.3, T is locally asymptotically stable, as long as B > 0. m

Example 3.3 ([7], pp.246-247) Consider the second order difference equation

5$n + TLn—1
PPt Y T 3.8
ot A + anfl ( )
(a) The normalized form of Eq.(3.8) is

ﬁxn + Tn—1

=0,1,.... .
A—I—anil 2 n 07 ) (3 9)

Ln+1 =

(b) T =0 is always an equilibrium points of Fq.(3.9) and when
A<p+1
holds, Iiq.(3.9) has also the unique positive equilibrium point

T=0+1-A

(¢) The linearized equation of Fq.(3.9) about the equilibrium point T = 0 is
1
Zn4l — %zn 1= 0 (3.10)

and the corresponding charasteristic equation of Lq.(3.10) is

2 By _1_
N—Ea- S =0

(d) The linearized equation of Fq.(3.9) about the equilibrium point T =5+ 1— A is

B g—A

] — ———2p + ——2 1 =0 3.11
Zn41 [3+1Z+[3—|—1Z1 ( )

and the corresponding charasteristic equation of lq.(3.11) is

B B=A
B+17 " B+1

A\? A+ 0.

(€) The zero equilibrium of Fq.(3.9) is globally asymptotically stable when
A>p+1
and unstable when
A<p+1.
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(f) The equilibrium point T = 4+ 1 — A of Fq.(3.9) is locally asymptotically stable for

all positive values of the parameters, as long as A < 5+ 1.
Solution.

(a) By the change of variables

Tn = lynv

C

Fiq.(3.8) can be written in the normalized form

5$n + Ln—1

=0,1,...
A—I—:Ifnq’ n y b

Tpt1 =
with positive parameters 5, A and with arbitrary positive initial conditions x_, .

(b) The equilibrium points of Fq.(3.9) are the non-negative solution of the equation

BT+ T
A+T

T =
or equivalently
T(T-pf—-14+A)=0.
Thus,

z=0

is always an equilibrium point of Fq.(3.9) and when A < 8+ 1, Fq.(3.9) has also

the unique positive equilibrium point

T=0+1-A

(¢) Now, let I be some interval of real numbers and let f: [ x [ — [ be a continuously

differentiable function such that f is defined by

_ ﬁxn + Ln—1
f(xnaxnfl) = Atz 1

Hence, we have

—afﬁf)
©= B, " A+ T
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LA+ 2, 1) — (Bzp+ 24 1)1 (7.7) = A— Bz

(A+z,4)? (A+7)>

So, for T = 0, the linearized equation associated with Fq.(3.9) about the equilibrium

of

8$n,1

(fv E) =

d1

point T is
Znt1 = Go%n T 41701

or

1
Zn+4l — Zzn - Zznfl = 0.
The characteristic equation of the linearized equation of Eq.(3.9) about the equi-
librium 7 = 0 is
J6; 1
N —ZA— = =0 3.12
A (3.12)
(d) From (c), for T =+ 1 — A, the linearized equation associated with Eq.(3.9) about
the equilibrium point 7 is

B g—A

n 5 4N 5 | 4 “n— :0
Zn+1 5+1z —|—5+1z 1

and the characteristic equation of the linearized equation of FEq.(3.9) about the

equilibriitmz=5+1— A is

p
2
A_5+1 B+1

= 0. (3.13)

(e) From (3.12) and by Theorem 1.3, Theorem 1.11 and Theorem 1.13, it follows that
the zero equilibrium of Fq.(3.9) is globally asymptotically stable when

A>p+1
and unstable when

A< p+ 1

(f) From (3.13) and Theorem 1.3, it follows that the positive equilibrium 7 of Eq.(3.9)
is locally asymptotically stable for all positive values of the parameters, as long as

A<fB+1.m

43



Example 3.4 ([1], pp.22-23) Consider the second order difference equation

Tnt1 = 5$n +

=0,1,.... 3.14
$n,17 " » ( )
(a) FEquilibrium point of Fq.(3.14) is
_ 1
T = ,
1-75
(b) The linearized equation of Fq.(3.14) about the equilibrium point T is
Zni1— B+ (1 —5) 2, 1=0 (3.15)

and the corresponding charasteristic equation of lq.(3.15) is

N —BA+1-3=0.

(¢) FEq.(3.14) has bounded solutions if and only if B < 1.

(d) The equilibrium point T of Fq.(3.14) is locally asymptotically stable for all values of
the parameter (3.

(e€) The equilibrium point T of Fq.(3.14) is globally asymptotically stable when
B <1

(f) The equilibrium point T of Fq.(3.14) is not globally asymptotically stable when

B>1.

Solution.

(a) The equilibrium point of Fq.(3.14) is the non-negative solution of the equation

T = 37 +

SN

(1-p)zF-1=0.

(3.16)
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B <1, (3.17)

Eq.(3.14) has the unique positive equilibrium point

1
1_5

T =

(b) Now, let I be some interval of real numbers and let f: I X I — [ be a continuously

differentiable function such that f is defined by

f(l‘n, xnfl) = B, +

n—1

So, from (3.16), we obtain

of

do = 8$n(x’f) = 5
and
0 1
0= @ T) =~ =~ (- ).

If T denotes an equilibrium point of Fq.(3.14), then the linearized equation associ-

ated with Eq.(3.14) about the equilibrium point T is
Zn41 = GoZn t q1%n—1

or

Znt1 — Ban+ (1= B) 21 = 0.

The characteristic equation of the linearized equation of Fq.(3.14) about the equi-

librium 7 1s

M —BA+1-5=0. (3.18)

(c) It was shown subsection (2.5).

(d) From (3.18) and by Theorem 1.3 the required results follows.
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(e) To complete the proof it remains to show that when (3.17) holds, every solution of
Eq.(3.14) converges to the equilibrium Z. This follows now by applying Theorem
1.10. Indeed for every m € (0,00) and M > m,

() fo) - (222 (0300

M m M

and the hypotheses of Theorem 1.10 are satisfied. The proof is complete.

(f) From (e), the required results follows. m

Example 3.5 ([2], pp.202-203) Consider the second order difference equation

(1 +5$n) Lp—1
il = ., n=0,1,.. 3.19
Lnt1 At ooz o n ( )

(a) T =0 is always an equilibrium points of Fq.(3.19) and when
B <4(A-1), (3.20)
zero is the only equilibrium of the Lq.(3.19). When
A< (3.21)
and also when

A>1 and B*=4(A-1), (3.22)

Fq.(3.19) has the unique positive equilibrium point

T =

B4 \/82—4(A-1)
: |

Moreover, when
A>1 and B*>4(A-1), (3.23)

Fq.(3.19) has two positive equilibrium points, namely,

T

BB (A1)
B 2



(b) The linearized equation of Fq.(3.19) about the equilibrium point T = 0 is

1
Zn41 — Zznil =0 (324)

and the corresponding charasteristic equation of lq.(3.24) is

AN - =0.

L
A

(¢) The linearized equation of Fq.(3.19) about a positive equilibrium point Y, which takes

place T or Ty or Xy, is

Zn+1 +

y i@ - zilﬁ) A 0 (3.25)

A+pp’ " T+py '

and the corresponding charasteristic equation of lq.(3.25) is

Y@ —Ap) A

( - —0
(1+py)* " 1+57

A2

(d) The equilibrium point T =0 of Fq.(3.19) is locally asymptotically stable when

A>1.

the zero equilibrium is non-hyberbolic and when
A<l

the zero equilibrium is a repeller.

(e) The positive equilibrium point T = BJF—”BQ;lM of 11q.(3.19) is locally asymptotically
stable when (3.21) holds, and non-hyperbolic when (3.22) holds. Also, when (3.23)
holds, the positive equilibrium point Ty of Lq.(3.19) is unstable and the positive
equilibrium point Ty of Fq.(3.19) is locally asymptotically stable.

Solution.

47



(a) The equilibrium points of Fq.(3.19) are the non-negative solution of the equation

(1+p7)T
A+ 72

T =
or equivalently
(T -pr+A-1)=0.

Thus, we have

z=0
or
- P+ A—-1=0. (3.26)

Hence, zero is always an equilibrium point of Eq.(3.19) and when (3.20) holds, zero
is the only equilibrium of the Fq.(3.19).

In addition to the zero equilibrium, from (3.26), when (3.21) and (3.22) holds, Fq.(3.19)

has the unique positive equilibrium point

B4+4/82—4(A-1)
: |

T =

Also, when (3.23) holds, Eq.(3.19) has two positive equilibrium points:

T

B\ -4
2

(b) Now, let I be some interval of real numbers and let f: I X I — [ be a continuously

differentiable function such that f is defined by

(1 + 5$n) Tp—1
A + TnTn_1 ‘

f(l‘n, xnfl) =

Then, we have

o 8f — =\ 5$n71- (A + xnxnfl) — (1 + 5$n) Tp—1-Tn—1 —
G = 8—%(1;’1;) - (A € xnxnfl)Q (Z‘,Z‘)

_ T(AB—T7)

(A7)
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and

o of (4 Bw) (At zazn 1) — (14 Bon) Tn 120 | _ _
Q1 - 81‘”,1 (xax) - (A ‘I’ Z‘nl‘n,l)Q (m,[lf)

A1+ p7)

 (A+Eh)r

From this, for T = 0, the linearized equation associated with FEq.(3.19) about the

equilibrium point 7 is
4l = q1%n-1

or

1
“n4l1 T 7An—1 — 0.

A

The characteristic equation of the linearized equation of Fq.(3.19) about the equi-

librium T = 0 1s

N — = =0. (3.27)

1
A
(¢) From (b) and (3.26), the linearized equation of Eq.(3.19) about a positive equilibrium
point T is
y(y— Ap) A _
9 “n —Zn—1 —
Gror " 145

and the corresponding charasteristic equation of Fq.(3.25) is

2, =48, A

1 + 0

SR o
(d) From (3.27) and by Theorem 1.3, the required results follows.
(e) From (3.28) and by Theorem 1.3 the required results follows. m
Example 3.6 ([2], p.219) Consider the second order difference equation
P e e S T (3.29)

anxnfl + Tn1

(a) Fq.(3.29) has a unique equilibrium T, and T is the unique positive solution of the

cubic equation
B +(1-8)7 -7 —a=0.
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(b) The linearized equation of Fq.(3.29) about the equilibrium point T is

aB—(—B)ZT N ot
7 (BT +1) TP (B 1)

Zn+1 + Zn—1 — 0 (330)

and the corresponding charasteristic equation of Lq.(3.30) is

A2+@B_(5_B2)$A — O_é
T(BT+1) z° (BT + 1)

(c) Fvery positive solution of Fq.(3.29) is bounded.

(d) The equilibrium point T of Fq.(3.29) is locally asymptotically stable for all values of

the parameters o, 8 and B.
Solution.

(a) The equilibrium point of Fq.(3.29) is the non-negative solution of the equation

a+ BT +7T

YT T pe iz

or equivalently
B+ (1 -7 -7 —a=0. (3.31)

It follows that, Fq.(3.29) has a unique equilibrium 7, and T is the unique positive

root of the cubic equation (3.31).

(b) Now, let I be some interval of real numbers and let f: I X I — [ be a continuously

differentiable function such that f is defined by

a+ BryTp_1+ Tna
anxnfl + Tn1

f(xna xnfl) =

From (3.31), we have

of _ _
G = O (Z‘,Z‘)
_ Bxn 1. (Brptn 1+ Tn1) — (@4 Brpzp1+ Tp1) . Bxy (7.7)
(Bxpy 1+ Tno1)? ’
—aB+ (8- B)x
7 (BT +1)°

30



and

o

. (5$n + 1) . (anxnfl + xnfl) - (Oé + 5$n$n71 + xnfl) . (51% + 1) _

= (T, T)
(anxnfl + $n71)2

—o
72 (BT + 1)
If T denotes an equilibrium point of Fq.(3.29), then the linearized equation associ-

ated with Eq.(3.29) about the equilibrium point T is

Zni1 = Qoin + Q1201

or
aB—-(—B)x o

_ (_5 2) Zn + 5 —

T (BT + 1) z° (BT + 1)
The characteristic equation of the linearized equation of FEq.(3.29) about the equi-

Znt1 + Zn—1 = 0.

librium 7 1s
aB—(—B)ZT ot
2 4 A+
5(354_1)2 72 (BT + 1)

—0. (3.32)
(¢) It was shown subsection (2.22).

(d) From (3.32) and by Theorem 1.3, the required results. m

Example 3.7 ([1], pp.22-23 and [29], p.156) Consider the second order difference
equation

«

’
1+ LTpLn—1

n=01,... (3.33)

Tnt1 =

(a) Fq.(3.33) has a unique equilibrium T, and T is the unique positive root of the cubic

equation:

P+T—a=0.

(b) The linearized equation of Fq.(3.33) about the equilibrium point T is

a— a—

Zn + Zn-1 =10 (3.34)

Zn+1 +

and the corresponding charasteristic equation of 1q.(3.34) is

ol



(¢) The equilibrium point T of Eq.(3.33) is locally asymptotically stable for all values of

the parameter .
(d) FEvery solution of Fq.(3.33) is bounded.

(e€) The unique positive equilibrium of Eq.(3.33) is globally asymptotically stable for all

values of the parameler a.
Solution.

(a) The equilibrium point of Fq.(3.33) is the non-negative solution of the equation

_ o«

TR

or

T 4+T—a=0. (3.35)

From this, Eq.(3.33) has a unique equilibrium Z, and 7 is the unique positive root

of the cubic equation (3.35).

(b) Let I be some interval of real numbers and let f : [ x I — [ be a continuously
differentiable function such that f is defined by

«

f(l‘n, xnfl) =

1 + TpTn1 ‘
Then, from (3.35), we have

_Of
go = 8xn($7$) - [(1 +$n$n71)2

@D =i~

0—a.x, 1 ] —aT T— o

and

_ 9
— 813”71 (Z‘,Z‘) - [(1 +$n$n71)2

(Z,T) = =

0— a.x, ] —aT T— o
q
! 1+)? o

If T denotes an equilibrium point of Fq.(3.33), then the linearized equation associ-
ated with Eq.(3.33) about the equilibrium point T is

Zni1 = Qoin + Q1201
or

oa—T oa—T
Zni1 + ——2p + ——2,1 = 0.
o o
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The characteristic equation of the linearized equation of FEq.(3.33) about the equi-

librium 7 1s

A2+ S0 ~0. (3.36)

(¢) From (3.36) and by Theorem 1.3, the required results.

(d) Note that

«

<, foralln>1.

$n+1 )

- < - =
1+a2— 1+ 2,201

So, every solution of Fq.(3.33) is bounded.

(e) Every solution of Eq.(3.33) satisfies

[T a? <z, <a, n=1,2,.. (3.37)
a

Every solution of Fq.(3.33) satisfies « = x,,,1 (1 + 2,2, _1) and so by using it in the
first iterate of Eq.(3.33) we obtain

Ln+1 (1 + xnxnfl)
1 + LnTnt1

Lnt2 =

which means that a solution of Fq.(3.33) satisfies the following equation on the

interval I = [0, 00)

B 1 TnTni1l B B
Tppg=7———Tpi1+ 7 Tpn1=¢ 1Tnt1 + G1Tn1, n=0,1,..
1+ TpnTnt1 1+ TnLn+t1
where
g = TnLnt1 g1 = 1
1 — bl -1 — .
1 + TnLn41 1 + TnLnt1

Clearly g 1 + g1 = 1. By using the estimate (3.37) we obtain

1 1
= >
1+ zpzpyn — 14 a2

g-1 > 0,

and so all conditions of Theorem 1.14 are satisfied on the interval I = [0, 00), which
implies that the unique positive equilibrium 7 is global attractor and because it is

locally asymptotically stable, it is also globally asymptotically stable. m

53



Example 3.8 ([2], p.214 and [29], p.157-158) Consider the second order difference

equation

P L e G T (3.38)

Tnln—1

(a) Fq.(3.38) has a unique equilibrium T, and T is the unique positive solution of the

cubic equation

BT —T—a=0.

(b) The linearized equation of Fq.(3.38) about the equilibrium point T is

T-—p
Zn+1 + —Zn
x

+ =201 =0 (3.39)

and the corresponding charasteristic equation of lq.(3.39) is

>\2+@)\+%:0,
X X

(¢) The equilibrium point T of Eq.(3.38) is locally asymptotically stable for all values of

the parameters o and (3.
(d) FEvery solution of Fq.(3.38) is bounded.

(€) The unique positive equilibrium of Eq.(3.38) is globally asymptotically stable for all

values of the parameler a.
Solution.

(a) The equilibrium point of Fq.(3.38) is the non-negative solution of the equation

a+prt4+7T
EQ

T =
or equivalently
7P —T—a=0. (3.40)

Hence, the equilibrium point T of FEq.(3.38) is the unique positive solution of the
cubic equation (3.40).
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(b) Now, let I be some interval of real numbers and let f: I X I — [ be a continuously

differentiable function such that f is defined by

o+ 5$n$n71 + Tn—1

Tnln—1

f(l‘n, xnfl) =
From (3.40), we have

af

Ban-1.TnZn-1 — (@4 BrnZpn1+ Tp-1) Tp-1| _ _
= (Z,7)
(xnxnfl)2
_ —(a+®) _(3-7)
73 T
and
of _ _
ql - 81‘”71 ($7 x)
_ (Bxp+ 1) xpzn 1 — (@ + BTnTn1 + Tpn1) .2p (7.7)
(xnxnfl)2
_ @
= =

If T denotes an equilibrium point of Fq.(3.38), then the linearized equation associ-

ated with Eq.(3.38) about the equilibrium point T is

Zni1 = Qoin + Q1201

or

T—p3 Q@
—2, + —3n-1= 0.

Zn+1 +

The characteristic equation of the linearized equation of FEq.(3.38) about the equi-
librium 7 is

>\2+—$:5>\+_%:0. (3.41)
T i

(¢) From (3.41) and by Theorem 1.3, the required results follows.

(d) Every solution of Fq.(3.38) is bounded from above and below by positive constants.

Indeed for n > 0,

T _ o+ ﬁxnxnfl + Tn—1 > 5$n$n71 o
n+1 — —
TnTn—1 TnTn—1
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and

ol 1

Tn41 S

(e) Every solution of Eq.(3.38) satisfies

1
%+3’ n=1,2, ... (3.42)

Every solution of Eq.(3.38) o = 1T Tny1 — BTnTn-1 — Tn—1 and so by replacing

f<z <B4+

it in Eq.(3.38), after one iteration, we obtain

Tpn—-1TnTnt1 — 5$n$n71 — Tn-—1 + 5$n+1$n

TpnLnt1

Lnt2 =

which means that a solution of Eq.(3.38) satisfies the following embedded third

order difference equation on the interval I = (0,00) for n = 0,1, ...

By 1 TnTny1 — PTn — 1 B
Tnyo = Tnt1+ Tn+ Tpn-1 =9 1%n41+ GoTn + §1Tn—1,
TnLn+1 TnLn+1 TpnLn+1
(3.43)
where
Bz, B 1 _ TpTpy1 — P, — 1
g-1= y go = y g1 = .
xn$n+1 xn$n+1 $n$n+1

Note that g1 4+ go + g1 = 1. By using the estimate (3.42) we obtain

3
Tn
g-1= p > f = 53 >0
LnLntl 54‘@4‘3 a+ 87+

Furthermore, gg > 0 and g; > 0 if and only if z,x,,1 — Bz, — 1 > 0, which imme-
diately follows from Fq.(3.38). Thus, all conditions of Theorem 1.14 are satisfied
on the interval I = (0, 00) for Eq.(3.43), which implies that every solution of that
equation converges to a finite limit. This implies that the unique positive equi-
librium 7 of Eq.(3.38) is global attractor and because it is locally asymptotically
stable, it is also globally asymptotically stable. m

3.2 EXAMPLES OF THE THIRD ORDER DIFFERENCE EQUATIONS

Example 3.9 ([7], p.184) Consider the third order difference equation

OLp_o
] = ————— =0,1,.... 44
Tt Bz, + Dz, 5’ n=01, (3.44)
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(a) The normalized form of Eq.(3.44) is

Ln—2
il ==, =0,1,.... 3.45
Ln41 Bz, + 7, o n ( )

(b) FEquilibrium point of Eq.(3.45) is

_ 1
T=—".

B+1

(¢) The linearized equation of Fq.(3.45) about the equilibrium point T is

B B
Zn+1 —I— B—Hzn — B—Hzn,Q = 0 (346)

and the corresponding charasteristic equation of Lq.(3.46) is

B B 0
B+1 B+1

PSS
(d) The equilibrium point T of Fq.(3.45) is locally asymptotically stable when

B<14++2

and unstable when

B>1+V2
and non-hyperbolic when

B=14++2.

Solution.

(a) Using the change of variables
)

Tn = =Yn,

D

Fiq.(3.44) can be written in the normalized form

Ln—2
T = o, n=0,1,.
Tn + Tp—2

with positive parameter B and with arbitrary non-negative initial conditions =z 4, z_1,

Zg such that the denominator is always positive.

o7



(b) The equilibrium point of FEq.(3.45) is the non-negative solution of the equation

Zz

Bz+7

T =

or equivalently the only equilibrium point Eq.(3.45) is

_ 1
T=——".
B+1
(c) Now, let I be some interval of real numbers and let f : I> — I be a continuously
differentiable function such that f is defined by

Tp—2

Ly Tn—1y Ly— = =
f( ny4n—1y+4n 2) Bl'n—l-l'n,Q

Therefore, we observe that

I am) = |l G- =D
P = O, T (Bxyp + 52)? T B4
G1 = 81‘8{1 (Tafaf) =0
_of 7 7.7) = 1.(Bxy, + 2y 9) — Ty 9.1 (7.7.7) = B
© = OTp_9 THEE) = (Bz, + x, 2)? HHI =g +1

If T denotes an equilibrium point of Fq.(3.45), then the linearized equation associ-

ated with Eq.(3.45) about the equilibrium point T is

Znt1l = Qo%n + Q1Zn—1 + G27n—2

or

T Y =0
Zn+1 B—I—lzn B+1Zn72— .

The characteristic equation of the linearized equation of Fq.(3.45) about the equi-
librium 7 is

B B 0
B+1 B+1

P

(d) From (c) and Theorem 1.4 it follows that the positive equilibrium 7 of Eq.(3.45) is

locally asymptotically stable when

B<1+V?2
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and unstable when
B>1++2.
When

B=1+V?2,

T i1s a non-hyperbolic equilibrium. In fact, the eigenvalues of the corresponding

characteristic equation are

2 2 2 2 2
Mo Y2 VR V2 V2 Ve

Note that Ay and A3 are eighth roots of unity. m

Example 3.10 ([7], p.227) Consider the difference equation

a+ Bz,
Bz, + Dz, 5’

(a) The normalized form of Eq.(3.47) is

Tpy1 = n=01,...

o+ z,

—_— =0,1,...
l‘n‘l‘Dl‘an’ n y b

Ln+1 =

(b) FEquilibrium point of Eq.(3.48) is

1+ +/1+4a(D+1)
2(D+1)

T =

(¢) The linearized equation of Fq.(3.48) about the equilibrium point T is

-1 D .
Zn Zn—9 =
Z(1+ D) 1+D "7

Zn+1 +

and the corresponding charasteristic equation of Eq.(3.49) is

T—1 D
A3 A2 =0
+fa+D) +1+D

(d) The equilibrium point T of Fq.(3.48) is locally asymptotically stable when

0<D<1+V2

or
D(D*—2D —1)
(3D + 1)

D>1—|—\/§anda<

and unstable when
D (D2 —2D—1)

D>1—|—\/§ando¢< 5
(3D +1)
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Solution.

(a) Using the change of variables
B

Tn = S ln,

B

Fiq.(3.47) can be written in the normalized form

o+ x,

—_— =0,1,...
Z‘n—I—DZ‘n,Q’ n y

Tpt1 =
with positive parameters o, [) and with arbitrary positive initial conditions x_5, x_1, zg.
(b) The equilibrium point of Fq.(3.48) is the non-negative solution of the equation

o+
T+ Dz

T =

or equivalently

(D+1)7* T —a=0. (3.50)

Therefore, the only equilibrium point of Fq.(3.48) is

1+ +/1+4a(D+1)
2(D+1)

T =

(c) Now, let I be some interval of real numbers and let f : I> — I be a continuously

differentiable function such that f is defined by

a+ x,

Ly Tn—1y Ly— i ———
f( ny4n—1y+4n 2) l‘n‘l‘Dl‘an

From this and (3.50) we have

4o

_Of . |1(zn+ Dzpog) — (@ +xp).1 Dz — « 1-7
= B, T = [ (%0 + Dys)” } ( -

_of .77 = 0—(a+z)D (EET)_—DQ—DE_ ~-D
0Ty T (w4 Day)? P21+ D)2 14D

If T denotes an equilibrium point of Fq.(3.48), then the linearized equation associ-

42

ated with Eq.(3.48) about the equilibrium point T is
Zn41 = GoZn + Q1Zn—1 + @22n—2
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or

z—1 D

n n— =0
Z0+D) " T1EDp

Zn+1 +

The characteristic equation of the linearized equation of FEq.(3.48) about the equi-
librium 7 is

23 =0
+EG+D) 1D

(d) From (c) and Theorem 1.4 it follows that the positive equilibrium 7 of Eq.(3.48) is

locally asymptotically stable when
0<D<1+V2

or

D(D? — 2D — 1)

D>1 2 and o >
+ /2 and a 3D+ 1)

and unstable when

D(D*—2D —1)
D>1 2 and a < .
+ V2 and a BD+1) ]

Example 3.11 ([7], pp.234-235) Consider the difference equation

o+ 0%, 9

n — e e— — y 1, N ]‘
Tnt = O n=0 (3.51)
(a) The normalized form of Eq.(3.51) is

Q+ Ty

—_— =0,1,.... .52
A+$n,17 n 07 ) (35)

Ln+1 =

(b) Equilibrium point of Eq.(3.52) is

1-A4+4/(1-A)?2+ 4
5 ,

T =

(¢) The linearized equation of Fq.(3.52) about the equilibrium point T is

=0 (3.53)

T
Zpy1 + A——I—Eznfl - A—_l_fznﬂ

and the corresponding charasteristic equation of lq.(3.53) is
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(d) The equilibrium point T of Fq.(3.52) is locally asymptotically stable when
A>1

or

(A—1)(A+1)
AQ

A<l and o>

and unstable when

(A—12(A+1)

A<l and o< e .

(€) The equilibrium point T of Fq.(3.52) is globally asymptotically stable when

A>1.

Solution.

(a) By the change of variables
)

Tpn = FYn,

C

Fq.(3.51) can be written in the normalized form
n=01,..

with positive parameters a, A and with arbitrary positive initial conditions z_s,

-1, To.

(b) The equilibrium point of Fq.(3.52) is the non-negative solution of the equation
o+

YT Az

or equivalently the only equilibrium point Eq.(3.52) is

1-A+/OI-A2+4a
5 .

T =

(c) Now, let I be some interval of real numbers and let f : I® — I be a continuously

differentiable function such that f is defined by

o+ Tpog

f(l‘n,xn—l,ﬂffnﬂ) = m
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From this, we have

of — _ _
qo = 8$n($’x’x) =0
_of (7.7,7) = 0—(a+mp9).1 (7.7.7) = —a+T T
I R N O S F I I 07 W PRy

- Y grm= || @ = —
q2_8$n72 Z‘,Z‘,Z‘ = A—|_$n71 Z‘,Z‘,Z‘ _A—l_f

If T denotes an equilibrium point of Fq.(3.52), then the linearized equation associ-

ated with Eq.(3.52) about the equilibrium point T is

Zn+l = Qo%n + qQ1%n-1 + ¢22n—2

or

x 1

n ———Zp1— =% = 0.
R T W

The characteristic equation of the linearized equation of FEq.(3.52) about the equi-

librium 7 1s

(d) From (c) and Theorem 1.4 it follows that the positive equilibrium 7 of Eq.(3.52) is

locally asymptotically stable when
A>1

or

(A—12(A+1)

A<1and o> T

and unstable when

(A—1)(A+1)

A<1land a < T .

(e) By Theorems 1.11 and 1.12 it follows that when
A>1

?

the equilibrium point T of Eq.(3.52) is globally asymptotically stable. m
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CHAPTER 4

DIFFERENCE EQUATION:

o+ 5$n + YTn1
n = s :0,1,...
Frtl Bz, + Cz, "

In this chapter, we investigate the global character of the solutions of the rational differ-

ence equation of the second order

a 5$n + VL1
Bz, + Cx,_q

Tpy1 = =0,1,.. (4.1)

where the parameters o, 3,7,B and (' are non-negative real numbers, and the initial
conditions z_;, g are arbitrary non-negative real numbers such that the denominator of

Eq.(4.1) is never zero.

4.1 LINEARIZED STABILITY ANALYSIS

Lemma 4.1 (a) FEq.(4.1) can be written in the normalized form

o+ Ty + VLn—1
Ty + anfl

Ln+1 =

n=01,.. (4.2)

with positive parameters o, v, C and with arbitrary positive wnitial conditions z_;,

Zo.

(b) FEquilibrium point of Eq.(4.2) is

1+y+/(1+7)?2+4a(1+C)
2(1+4C) '

T =

(¢) The linearized equation of Fq.(4.2) about its positive equilibrium T is

N z—1 n Oz —~
Zn — Zn — Zp—
T za+o0)" T+ 0) ™!

=0.

Proof.
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(a) The Eq.(4.1) which by the change of variables

B
Tn = FYn

B
reduces to the difference equation

a—+ T, + VYLn-1

n = , = 0,1,...
Tnl T+ Cxpy g "
where
aB ~ C
= — = — C = —.
Q /62 ) ’7 /67 B

(b) The equilibrium points of Fq.(4.2) are the non-negative solutions of the equation

a+T+ YT
T+ Cx

T =
or equivalently

(1+C2 - (1+7)7T—a=0. (4.3)

Hence, the solutions of Fq.(4.3) are

1+y+/(1+7)?2+4a(1+C)

7= 2(1+C) (4.4)
and
__ I1+7— /(1 +7)2+4a(1+C)

2(1+C)

So, the positive equilibrium point of Fq.(4.2) is unique and is given by (4.4).

(¢) Now, let I be some interval of real numbers and let
f:IxI—1

be a continuously differentiable function such that f is defined by

o+ T, + VL1
Lp + anfl ‘

f(l‘n, xnfl) =
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From Eq.(4.3), we obtain that

o of o Wz +Czp) — (@ +Tn+ 770 1)1 _ _
74+(T—a—-T—-—7T —a+(C—-—v)T 1-7

72(1 + ()2 B+ 0)? 314+ 0)
and
~of o |v(@+Crp) —(atxn +yw,9).C
g1 = 813”71 (Z‘,Z‘) - [ ($n+0$n71)2 (Z‘,Z‘)

VZ+7CZ—aC - CT—~1CT —aC+(y-C)T ~v-C%T

72(1+ C)? 2 4+0)2  m(14+0)

If T denotes an equilibrium point of Fq.(4.2), then the linearized equation associated with

Eq.(4.2) about the equilibrium point 7 is
Zn41 = qoZn + q12n—1

or

zT—1 n Oz —~
Z,
Z(1+C)™  zZ(1+CO)

Znt1 T Zp—1=0. m (45)

Lemma 4.2 FEvery solution {x,} of Eq.(4.1) is bounded.

Proof. Here for n > 0,

a+ BTn +YTp By +¥Tn 1 > min{ 3,7} (2, + 2, 1) min{3, v}

Bz, + Czy, Bz, + Cz, 1~ max{B,C}Hx, +x,1) max{B,C}

Ln+1 =

Set

_ min{f,7}
"~ max{B,C}

Then for n > 2,

T _ o 5$n + YLn—1 < &4 max{ﬁa 7}
" By, 4+ Cxy oy By +Cip oy~ (B+1)L ' min{B,C}

and consequently, every solution is bounded. m

Lemma 4.3 The positive equilibrium T of Fq.(4.2) is locally asymptotically stable when

(v=1)?=Cly+3)(y-1) —u
4C?

(4.6)
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Proof. The characteristic equation of the linearized equation of Fq.(4.2) about the
equilibrium 7 is
zT—1 Oz —~

A\ 4 A+

sato) Taaro) Y

IFrom Theorem 1.3 we observe that

71 CF —

Z(1+C) EG+C)<2

Then, we have

T-—1 (2C+ 1)T —

4.
1+ 0)| 5 140 (47)
and
CT —~
— < 1. 4.
11 0) (4.8)
So, from (4.7) we obtain
7—(20+1)E< z-—1 <(20—|—1)§—’y
zZ(1+C) z(1+C) z(1+C)
so that
1+~ _ y—1 _
— d —— .
21+ ) ST Ty T
In case % < 7, from Eq.(4.4) we have
—(y+1)°
— 4.
HC+ D) (4.9)

Because of the fact that «, v, and C are positive, (4.9) is always true for all positive
values of the parameters.
In case '72;1 < T, from Eq.(4.4) we get

-1 _ 14+ VI +7)?2+4a(1 4 C)
2C 2(1 + C)

= (Y -1D14+C) <Cl+7+ /(1 +7)+4a(l +C))
= 7—20-1<C/(1+7)?2+4a(l1+C)

= (=20 -1 = (C+CY)* <4aC*(1+C)

= (y—=C—=1+Cy)(y-3C—-1-Cy) <4aC?*(1+C)
= (v=1((vy—1) = C(y+3)) <4aC?

= (Y=1)?=C(y+3)(y - 1) < 4aC?

L =)' -Ch+3)(r - 1)

12 < a.
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Finally, from (4.8) we obtain

CT—v<zT(14+C)

therefore, we have

Ay <T (4.10)

In case —y < 7, (4.10) is always true for all values of v due to the fact that v is positive.
|

We can have some result of the above lemma using a different theorem, namely, Clark

Theorem 1.5.

Lemma 4.4 The positive equilibirium T of Fq.(4.2) is locally asymtotically stable when

either
(v—1?—-Cly+3)(y—-1)

ez < o
or

(C+3)2-2(C+1)v+C -1
4

< a.
Proof. From Theorem 1.5 it follows all roots of Eq.(4.2) lie in an open disc |A| < 1, if
90| + laa] < 1.

This implies that

z—1 CZ —~ <1
Z(1+C) zZ(1+C) '
Hence
T -1+ |CT—~] <z(1+C) (4.11)

and so we have four cases for (4.11).
Case 1: T>1and 7 > Z.

Then
T—-14CT—v<74+C7
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and so
-1 <.
From hypothesis on v, (4.12) is always true.

Case 2: T>1andf<%.

Hence
T—-14+7-Cz<724+C7
and thus 2 < 7. From Eq.(4.4) we obtain that

(v=1)?=Cly+3)(y-1)
4C?

Case 3: E<1andf<%.

Thus

< a.

1-T4+~v—CT<T+CT

and so we get
1+ _
2(17+70) <%
From Eq.(4.4) we obtain that
—(r+1)°
4(C'+1)
This inequality is always true since «, v, and (' are positive.

Case 4: E<1andf>%.

Therefore
1-Z4+CT—~y<Z+CT

and hence, we have

1—~v _
— < Z.
5 T

From FEq.(4.4), we observe that
-y _ 147+ VI +9)2+4a(1+C)

2 2(1+C)

L=1+C)<1+v+ /1 +7)2+4a(1+C)

C—Cy—2v</(1+7)244a(1+C)

(C—Cy—29)? — (1 +7)? < 4a(l +C)

¢l

(C+3)y* = 2(C+ 1)y +C — 1< da.
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Consequently, when

(C+3)2-2(C+1)v+C -1
4

< o

the positive equilibirium T of Eq.(4.2) is locally asymtotically stable. m

4.2 INVARIANT INTERVALS

Here we present some results about invariant intervals for Fiq.(4.2). We consider the cases

y=C,v>C,and v < C.
Lemma 4.5 Fq.(4.2) possesses the following invariant intervals:

(a) [a,b] when v = C and a and b are positive numbers such that

a+(1+7v)a<(1+C)ab<a+(1+7)b (4.13)
(b)
2 _
{%, VC—QC] when v > C and 707270 < o
2 _
{VC—OZC” %] when v > C and 707270 > o
(c)
o
[1, 7} when v < C<~vy+a;
C =~
o
[ ,1} when C'° > v+ a.
C—x
Proof.

(a) It is easy to see that when v = C the function

_a+z+y

is decreasing in both arguments. Hence

< a+ (1+7)b

. oz—l—(l—l—’y)a<b
- (140

:f(b,b)gf(x,y)gf(a,a): (1—|—C)a >0
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Co

(b) Clearly, the function f(z,y) is decreasing in both arguments when z < > and it

is decreasing in 2 and increasing in y for z > <%,

aJ Lo i
ol 'ny:| we obtain

First assume that v > C and 72530 < «. Then for z,y € [

Y Ca Ca vy Ca+~v(1+7) Ca
— = < < fl=,—=) = < .
The inequalities

C’oz—l—’y(l—l—’y)< Ca and X < Ca

F1+0) T CT -0

are equivalent to the inequality 2 'YC < a.

Next assume that v > C' and 7 'YC > . For z,y € [ =% g} we obtain
V(v = C) 4+ aryC Ca v Ca Ca v
The inequalities

2 J—
Yy C’)—I—oz’yC'> Ca and Y s Ca

C?4+Cy(y-0C) —v-=-C - v-C

follow from the inequality 7 'YC > .

(¢) It is clear that the function f(x,y) is decreasing in both arguments for y < CLJY, and

it i1s increasing in x and decreasing in y for y > o

First, assume that v < (' < v 4+ a. Using the decreasing character of f, we obtain

o « a+1+y o
The inequalities
o a+1+~ o
1< d <
C’—’yan 1+C C—~

are equivalent to the inequality C' < v + a.

Next assume that C' > v + «. Using the increasing character of f in z and the

decreasing character of f in y, we obtain

(1= C)a+7) +a o o

= 1) < < f(1 = 1.
The inequalities
(O =C)etN+a o . a

a+C(C—-~) —C—x C—~
follow from the inequality C' >~ + . &
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4.3 CONVERGENCE OF SOLUTIONS

Here we obtain some convergence results for FEq.(4.2).

Theorem 4.6 (a) Assume that v = C. Then every solution of Eq.(4.2) with initial
conditions in the invariant interval [a,b], where 0 < a < b satisfy (4.13) converges

to the equilibrium x.

(b) Assume that v > C' and o > 725—;0 Then every solution of Fq.(4.2) with initial

conditions in the invariant interval {%, %} converges to the equilibrium x.

(c) Assume that v < C' < v+ «. Then every solution of Eq.(4.2) with initial conditions

in the invariant interval [1, CLJJ converges to the equilibrium .

Proof. The proof is an immediate consequence of Lemma 4.5 and Theorem 1.9. m
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CHAPTER 5

DIFFERENCE EQUATION:

Oé(xn + xnfl) + TnTp-1
n = , = 0, 1,
Tt A+ Br,z. "

In this section we investigate the global character of the solutions of the difference equation

of the second order

Oé(xn + xnfl) + TnTp-1
n — 3 - 0, 1, 5]_
Pt A+ Bxpx, 1 " (5.1

where the parameters «, A and B are non-negative real numbers, and the initial conditions
%_1, To are arbitrary non-negative real numbers such that the denominator of Fq.(5.1) is

never zero.

Lemma 5.1 (a) Fq.(5.1) can be written in the normalized form

Oé(xn + xnfl) + TnTp-1
bl = ,n=0,1,.. 5.2
Pt A+ 2n2n1 " (5:2)

with non-negative parameters a A and with arbitrary non-negative initial conditions

X-1, Zo-
(b) =0

. crep . 4A-1 A
is always an equilibrium point of Fq.(5.2) for all parameters and, when *%= < a < 5

the others positive equilibrium points are

1—v1+8a—4A

T = 5
and
_ 1+ v1+8a—4A
To =
2

and, if a = %, then the other equilibrium point is
_ 1
T =—.

2
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(c) The linearized equation of Eq.(5.2) aboul zero equilibrium is
o o

“n41 — Zzn - Zznfl =0

and the corresponding characteristic equation of Fq.(5.3) is

« «
M- —A——=0.
AT A

(d) The linearized equation of Fq.(5.2) about its positive equilibrium {T;}i—19 1S

a— A _I_oz—A
ZTL i
A+ 72 A+72

7

Znt1 + Zp-1=10

and the corresponding characteristic equation of Fq.(5.4) is

a— A a— A

)\2
+A+f§ +A+@?

= 0.

(e) The linearized equation of Eq.(5.2) about T = 5 equilibrium is

4(ax — A) 4(a — A)

n n-1=20
1A+1 AA+1

Zn+1 +

and the corresponding characteristic equation of Fq.(5.5) is

9 4(04—A))\ 4(ax — A)

vl Ay Y

Proof.

(a) The Eq.(5.1) which by the change of variables

1

Tn = FYn

B

reduces to the difference equation

a(zp + Tn-1) + TnTn
A + Tn%n-1

Tpy1 = ,n=201..
where

a:=aB, A:=AB.
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(b) The equilibrium points of Fq.(5.2) are the non-negative solutions of the equation

a(T+7T)+ 72
A+72

T =
or equivalently

70— T2 + (A —2a)T = 0.
Thus,

@ —-T+A—-2a)=0

and so we have

z=0
or
7 —-ZT+A—2a=0. (5.6)

Hence, zero is always an equilibrium point of Eq.(5.2). In addition to the zero
equilibrium, when

44 -1 A
<a<

3 2

from the solution of Fq.(5.6), Eq.(5.2) has two positive equilibrium points:

1T+ 8a— 44 1+VI+8a—44

r = and T9

2 2

Moreover, when

441
8

«

from the solution of Fq.(5.6), Eq.(5.2) has the unique positive equilibrium point
1

T=-.
2
(¢) Now, let I be some interval of real numbers and let f: [ x [ — [ be a continuously
differentiable function such that f is defined by

Oé(xn + xnfl) + TnTn1
A + TnTn1 ‘

f(l‘n, xnfl) =
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Hence, we establish

af (4 zp 1) (At xpzn 1) — ((Tp + 2p1) + TpTp1).Tn1
Oz, (A4 zpx,1)?
QA+ Azp 1+ QT 1 F TpxE | — QLT — QT | — TpT
(A4 2z, 1)?

2
n—1

aA+ Az, 1 — az? |

T T Atz (5.7)
and
of  (a+xp) (A+ 2wy 1) — (@B + Tn1) + TnTn 1) T
Oxp 1 (A+ 220 1)?
 aA+ Az, +arpz, 1+ 2T, 1 — QT2 — AT Ty — T2 Ty 1
N (A4 z,2, 1)?
oA+ Az, —az) (5.8)

(A+ zpxn 1)?

Therefore, for the equilibrium point Z = 0 we have
_af (7.7) aA o«
O o, " T A2 T A

and

B af (__)_aA_a
T, YT e T

q1

So, the linearized equation associated with Eq.(5.2) about the zero equilibrium is

Zni1 = Qoin + Q1201

or

(8% (8%
Zn41 — Zzn - Zznfl =0

and the characteristic equation of the linearized equation about zero equilibrium of

FEq.(5.2) is

R
N = ZA -2 =0, (5.9)
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(d) From Eq.(5.6), (5.7) and (5.8), for the equilibrium point {Z;};—1 2, it follows that

_of ozA—I—AE—o@Q_A—oz
© = D (A+72)?2 A+

(Z‘,Z‘) =

because we have

QA+ AT —ax? = (A—a)(A+7T%
QA+ AT — aT? = A’ + AT? — 0 A — o’
A+ AT = A2+ AT — aA

a+T=A4+7 -«

O

P -T+A-—20=0

and

B af (__)_ozA—I—AE—OEQ_A—a
N om0 T T AL AT

If {Z;};-12 denotes an equilibrium point of Eq.(5.2), then the linearized equation
associated with Eq.(5.2) about the equilibrium point {Z;};—1 2 is

Zn1 = GoZn + @12p—1 = 0

or

a—A a—A
Zn+1+A+§22n+

So, the characteristic equation of the linearized equation about a positive equilib-
rium {7;};_19 of Eq.(5.2) is

— A a—A
LN —0. 5.10
tarE T A (5.10)

(e) For T = 1 (5.10) also holds so the linearized equation of Eq.(5.2) about T = 3
equilibrium is

4(ax — A) 4(a — A)

n n n— =0
et T et g

and the characteristic equation of the linearized equation about a positive equilib-
rium T = § of Eq.(5.2) is

4(ax — A) 4(ax — A)

1A+ 1 Ary oo

A2+
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Lemma 5.2 The zero equilibrium of Fq.(5.2) is locally asymptotically stable when

<A
@ J—
2

and unstable when
A

a > —
2

and non-hyperbolic when

A
o=—.

2

Proof. From Theorem 1.3, a necessary and sufficient condition for all roots of the FEq.(5.9)

to lie inside the unit disk 1s

‘ Oé‘<1 Oé<2
A A '

Then we have

o A—uw

A5 74

o
d ——<«1
an T
or
A
oz<§and —a < A.

—a < A is always true for all positive values of the parameters due to the fact that «
and A are non-negative.

Consequently, when

@< g,

the zero equilibrium is locally asymptotically stable and when

>A
oY J—
27

the zero equilibrium is unstable.

While
A

o= —,
2

7 is a non-hyperbolic equilibrium. In fact, in this case the two roots of the corresponding

characteristic equation are:

1
Alzland)\QZ—a. |
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Lemma 5.3 The following statements are true:

(a) The equilibrium point Ty of Fq.(5.2) is unstable for all positive values of the parame-

ters satisfying

<o < —. (5.11)

(b) The equilibrium point Ty of Lq.(5.2) is locally asymptotically stable for all positive
values of the parameters satisfying (5.11).

(¢) The equilibrium point T = 5 of Eq.(5.2) is locally asymptotically stable for all positive

4A-1

values of the parameters satisfying o = =5

Proof. From Theorem 1.3, a necessary and sufficient condition for all roots of the
Fiq.(5.10) to lie inside the unit disk is

oA <14 o—A <2
A+72 A+ 72 '

Then we have

a—A T+«

A+72 = A+ 72 (5-12)

and

a— A

A4 72 <!

or equivalently
a—24A <7

This inequality is always true for all positive values of the parameters due to the a < %.So,

from (5.12) we have

T2+ « _ a— A <f§+a
A+ A+72 A4+

so that

A—2a <7 (5.13)
and

—A <7
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—A < 7? is always true for all positive values of the parameters because of the fact that
« and A are non-negative.

Hence, all roots of the Fq.(5.10) are inside the unit disk if and only if for i = 1, 2, Z; holds
(5.13).

(a) Consider 7;. Then we get

2
1—+/1 —4A
A—2a < E§:>A—2oz<< +28Oé )

1—-2y/14+8a—4A+ 14 8a—4A
4

4(A—20) < —2/1+8a—4A+ 2+ 8a — 44
= VI+8ax—4A4<1+8a—4A. (5.14)

= A-2a<

4

(5.14) is always true for % < «. Indeed, since \/m < m & m > 1 so that m is a real
number, a necessary and sufficient condition for the inequality (5.14) to be always

true 1s
A
1<1+8a—4A<:>0<8a—4A<:>5<a.

But this condition contradicts with Z; being the positive. On account of this, 7 is

unstable for all values of the parameters.

(b) Consider Ty. Then we have

2
14+ 1 —4A
A-2a < E§Z>A—204<< + 4—2804 )

14+2y148a—4A+4+1+4+8a—4A
4

= 4(A—20) <2V1+8a—4A+2+8a—44
= — (148w —44) < VI+8a—4A. (5.15)

= A—-2a<

By the assumption on parameters, (5.15) is always true, hence, the required result

follows.

(¢) It can be easily proved as in (a) taking T = % ie., o = 241 m
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Note that when

4A -1
3

a< (5.16)

T = 0 is the only equilibrium point of Eq.(5.2). In this case we can mention the globally

asymptotically stable of the zero equilibrium point. Therefore, we state that

Open Problem: Assume that a < 4148—*1 and A > 0. Then the zero equilibrium point of
Eq.(5.2) is globally asymptotically stable.

If all solutions of Fq.(5.2) is bounded, the proof of the open problem is as follows.

Note that o < 44771 < é. The linearized equation associated with Fq.(5.2) about the zero
equilibrium point is

« «
Zpntl = 7 2n T Zznfl-

A

In the notations of Theorem 1.6, we have fo(zn, 7, 1) = § and fi(2n, 2, 1) = § such

that fo, f1 € C'[[0,00) X [0,00),[0,1)]. Then the following hold:

(a) foand fi are non-increasing in each of their arguments due to the fact that parameters

are non-negative;
(b) fo(z,z) =5 >0 for all z > 0;
(c) folz,y)+ filz,y) =5+ 5 = 27“ < 1, that is, a < g for all z,y € (0, 00).

Hence the hypotheses of Theorem 1.6 hold, so it follows that that Theorem that the zero
equilibrium of FEq.(5.2) is globally asymptotically stable under the assumptions of the

parameters.

Lemma 5.4 Assume that A = 0. Then every solution {x,} of Eq.(5.2) is bounded from

above and from below by positive numbers.

Proof. We see that

. a(zp + Tn-1) + TnTn S Tt _ g
n+l — = =
Tndn-1 Tndn-1

and then every solution {z,} of Eq.(5.2) is bounded from below, for n > 1, by the positive

number 1.
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So,

+ 2 1<2a4+1
Tn-1 Tn

Ln+1 =

and thus every solution {z,} of Eq.(5.2) is also bounded from above by the positive

number m = 2o+ 1. m
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