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ABSTRACT
Thesis of Master of Science
ON THE SOLUTIONS OF SOME RATIONAL DIFFERENCE EQUATI ONS
Mira¢ GUNEYSU
Biilent Ecevit University
Graduate School of Natural andApplied Sciences

Department of Mathematics

Thesis Advisor: Asst. Prof. Melih GOCEN
June 2015, 73 Pages

In this thesis, we investigate the asymptotic behaviors of the solutions of sone rational
difference equations and the global attractivity of the equilibrium points of certain rational
difference equations.

This thesis consists of five chapters.

In Chapter 1, wegive some basic definitions andtheorems needed in this thesis.

In Chapter 2, wexhibit some examples ofie local asymptotic stability of the some second

orderrational difference equations.

In Chapter 3, we present some examptgarding the asymptotic behavior of some third

order rational difference equations.
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ABSTRACT (continued)

In Chapter 4,we study the periodicity, stability and global attractivity oOf certain rational

difference equations.

In Chapter 5we investigate the local and global stability of the rational difference equation

a+Pxn+yxXn—1

X = .
n+1 CxXp—1+Dxp—2

Key Words: Difference equations,

global attractor.

Science Code: 403.03.01

equilibrium  point,

v

local

asymptotic

stability,



OZET
Yiiksek Lisans Tezi
BAZI RASYONEL FARK DENKLEMLER iNIN COZUMLER i UZERINE
Mira¢ GUNEYSU
Biilent Ecevit Universitesi
Fen Bilimleri Enstitiisii

Matematik Anabilim Dal

Tez Dansmani: Yrd. Doc. Dr. Melih GOCEN
Haziran 2015, 73 sayfa

Bu tezdebazi rasyonel fark denklemlerinin ¢éziimlerinin asimptotik davranislart ve belirli

rasyonel fark denklemlerinin denge noktalarinin global ¢ekiciligi arastirilmistir.

Bu tez be bolimden olgmaktadir.

Birinci boliimde, tezdegerekli olan bazi temel tanimlar ve teoremierilmistir.

Ikinci boliimde, bazi ikinci mertebeden rasyonel fark denklemlerinin yerel asimptotik

kararlilig1 ile ilgili baz1 d6rnekler gosterilmistir.

Uclincti bolimde, bazi uUglincinertebeden rasyonel fark denklemlerinin asimptotik

davranglari ile ilgili bazi érnekler sunulngtur.

Dorduncl bolumdebelirli rasyonel fark denklemlerinin periyodikliligi, kararhligi ve global

cekiciligi calisiimistir.



OZET (devam ediyor)

Besinci bélimde,

a+Pxn+yxXn—1
CxXp—1+Dxp—2

Xn+1 =

rasyonelfark denkleminin yerel ve global kararlgn argtiriimistir.

Anahtar S6zcukler: Fark denklemleri, denge noktas yerel asimptotik kararlilik, global

cekicilik.

Bilim Kodu: 403.03.01
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CHAPTER 1

INTRODUCTION AND PRELIMINARIES

In this thesis we considerably use [1,2,7,13,14,18, 22, 24, 27, 32]. For some other basic
results in the area of difference equations and systems, see [3-6, 8-20, 21, 23, 25-26, 28-31].

We present some well known definitions, results and theorems in this chapter.

1.1 DEFINITIONS OF STABILITY

Let I be some interval of real numbers and let f : I**! — I be a continuously differentiable

function. A difference equation of order (k + 1) is an equation of the form
Tl = [(Tn, Tty s Tng), n=01,... (1.1)
A solution of Eq.(1.1) is a sequence {x,}°° , that satisfies Eq.(1.1) for all n > —k.

Lemma 1.1 For every set of wnitial conditions x_y,x_ky1,..., g € I, the difference

equation (1.1) has a unique solution {x,}5> .

As a special case of above lemma, for every set of initial conditions xq, z_1 € I, the second

order difference equation

Tpi1 = f(Tp, Tno1), n=0,1,.. (1.2)

has a unique solution {z, }>° _; and for every set of initial conditions x¢,z_1,2_2 € I, the

third order difference equation

Tot1 = [(Tn, Tpn1,Tn_2), n=0,1,.. (1.3)
has a unique solution {z,}>2 ..

Definition 1.1 A point T € [ is called an equilibrium point of FEq.(1.1) If

z=f(z,T,..,T).



That s
Tp =T forn >0

is a solution of Eq.(1.1) or equivalently, T is a fized point of f.

Definition 1.2 (Stability) (a) The equilibrium point T of Fq.(1.1) is locally stable if

for every e > 0; there exists 6 > 0 such that for all x_j,x_gi1,...,x_1,29 € I with
|k —Z| 4+ g1 — T + ... + |20 — T| <6,
we have

|z, —Z| <e, foralln>—k.

(b) The equilibrium point T of Eq.(1.1) is locally asymptotically stable if T is locally stable
solution of Eq.(1.1)and there existsy > 0, such that for allx_p, x_j41,...,x_1,19 € [

with
|T_p — T+ |2 k1 — T + .. + |20 — T| < 7,
we have

lim z, =7.

n—oo

(c) The equilibrium point T of Eq.(1.1) is global attractor if for allx_j, x_gi1,...,2_1,%0 €

I we have

lim z, =7=.

n—o0

(d) The equilibrium point T of Eq.(1.1) is globally asymptotically stable if T is locally
stable, and T is also a global attractor of Eq.(1.1).

(e) The equilibrium point T of Eq.(1.1) is unstable if T is not locally stable.



1.2 LINEARIZED STABILITY ANALYSIS

Suppose that the function f is continuously differentiable in some open neighborhood of
an equilibrium point =. Let

91
qz—aui

(z,Z,...,z), fori=0,1,....k

denote the partial derivative of f(ug,u1, ..., ux) with respect to u; evaluated at the equi-

librium point T of Eq.(1.1).

Definition 1.3 The equation
k

Ynt1l = QYn + QYn—1 + - + GYn—t = Z
=0

of
8UZ’

(T, %y ooy T)Yp—i, n=0,1,.. (1.4)
is called the linearized equation of Eq.(1.1) about the equilibrium point T and the equation
N g N — L — g A — g =0 (1.5)
is called the characteristic equation of Eq.(1.4) about .

Then the equation

Ynt1 = QoYn + (1Yn—1, n=0,1,... (1.6)

is the linearized equation associated with Eq.(1.2) about the equilibrium point T and the

equation
A —gA—q =0

is the characteristic equation of Eq.(1.6) about Z.

Also, the equation

Ynt+1 = QYn + Q1Yn-1 + @Yn—2, N = Oa 17 (17)

is the linearized equation associated with Eq.(1.3) about the equilibrium point Z and the

equation
A — X =g A — g2 =0

is the characteristic equation of Eq.(1.7) about Z.
The following result, known as the Linearized Stability Theorem, is very useful in de-

termining the local stability character of the equilibrium point T of Eq.(1.1).



Theorem 1.2 (The Linearized Stability Theorem) (/7], p.5)
Assume that the function f is a continuously differentiable function defined on some open

netghborhood of an equilibrium point T. Then the following statements are true:

(a) When all the roots of Eq.(1.5) have absolute value less than one, then the equilibrium
point T of Eq.(1.1) is locally asymptotically stable.

(b) If at least one root of Eq.(1.5) has absolute value greater than one, then the equilib-
rium point T of Eq.(1.1) is unstable.

The equilibrium point T of Eq.(1.1) is called hyperbolic if no root of Eq.(1.5) has absolute
value equal to one. If there exists a root of Eq.(1.5) with absolute value equal to one,
then the equilibrium 7 is called non — hyperbolic.

An equilibrium point 7 of Eq.(1.1) is called a repeller if all roots of Eq.(1.5) have absolute
value greater than one.

As a special case of Theorem 1.2 we have the following corollary.
Corollary 1.1 (a) If both roots of the characteristic equation (quadratic equation)
A — oA —q =0

of Eq.(1.6) lie in the open unit disk |\| < 1, then the equilibrium T of Eq.(1.2) is

locally asymptotically stable.

(b) If all roots of the characteristic equation (qubic equation)
N = oA = @A — g2 =0

of Eq.(1.7) lie in the open unit disk |\| < 1, then the equilibrium T of Eq.(1.3) is

locally asymptotically stable.

The following two theorems state necessary and sufficient conditions for all the roots of

a real polynomial of degree two or three, respectively, to have modulus less than one.

Theorem 1.3 ([7], p.6) Assume that a; and ag are real numbers. Then a necessary

and sufficient condition for all roots of the equation

N+ ad+ag=0



to lie inside the unit disk s
|CL1| <1-+ag <2

Theorem 1.4 ([7], p.6) Assume that as, a; and ag are real numbers. Then a necessary

and sufficient condition for all roots of the equation

N4 a N +ad+a=0

to lie inside the unit disk is

lag + ap| < 1+ a1, |az—3agl <3—a; and ag+a1—a0a2<1.

Theorem 1.5 (Clark Theorem) ([7], p.6) Assume that qo, q1, ..., @& are real numbers
such that

k
Z il = |qo] + 1| + - + |ax] < 1.

i=1
Then all roots of Eq.(1.5) lie inside the unit disk.

Using The Linearized Stability Theorem and Clark Theorem we have the following result.

Theorem 1.6 ([13/,p.863) Assume that ¢; € R, i=1,2,... and k € {0,1,2,...} . Then
k

Z il <1

i=1

s a sufficient condition for the asymptotic stability of the difference equation,

Tnt+k T+ P1Tntk—1 + oo + DkTp = O,?’L = 07 ]-7 Tt

Theorem 1.7 ([24], p.9) Consider the difference equation

Tpy1 = fO (:Enamn—l)xn_’_fl (xn7xn—1)l'n—1a n=0,1,.. (18)

with nonnegative initial conditions and

an fl eC [[07 OO) X [0700) ) [Oa 1)} :

Assume that the following hypothesis hold:

(a) fo and f1 are non-increasing in each of their arguments;



(b) fo(xz,x) >0 for all z > 0;

(C) fO(xay) + fl(xay) <1 fOT all xr,y € (0700)

Then the zero equilibrium of Eq.(1.8) is globally asymptotically stable.

Theorem 1.8 ([24], p.11) Let [a,b] be an interval of real numbers and assume that
f : [a, b] X [a7b] - [a7b]

s a continuous function satisfying the following properties:

(a) f(z,y) is non-decreasing in x € [a,b] for eachy € [a,b], and f(x,y) is non-increasing

iny € [a,b] for each x € [a,b];
(b) If (m, M) € [a,b] X [a,b] is a solution of the system

f(m,M)=m and f(M,m)= M,

then m = M.

Then Eq.(1.2) has a unique equilibrium T € [a,b] and every solution of Eq.(1.2) converges

to T.
Theorem 1.9 ([24], p.12) Let [a,b] be an interval of real numbers and assume that
f la,b] x [a,b] — [a, ]

18 a continuous function satisfying the following properties:

(a) f(x,y) is non-increasing in x € [a,b] for eachy € [a,b] and f (z,y) is non-decreacing

iny € [a,b] for each x € [a,b],

(b) The difference equation Eq.(1.2) has no solutions of prime period two in |a, b|.

Then Eq.(1.2) has a unique equilibrium T € [a, b] and every solution of Eq.(1.2) converges

to .



Theorem 1.10 ([24], p.13) Let [a,b] be an interval of real numbers and assume that
f : [a, b] X [a7b] - [avb]
s a continuous function satisfying the following properties:

(a) f(z,y) is non-increasing in each of its arguments;

(b) If (m, M) € [a,b] x [a,b] is a solution of the system

f(m,m)=M and f(M,M)=m,

then m = M.
Then Eq.(1.2) has a unique equilibrium T € [a,b] and every solution of Eq.(1.2) converges
to .

In the next theorem we make use of the following notation associated with a function
f (21, 2z2) which is monotonic in both arguments.

For each pair of numbers (m, M) and for each i € {1,2}, define

M, if f is increasing in z;
M; (m, M) = o o
m, if f is decreasing in z;

and

Theorem 1.11 (/1], p.3)Assume that f € C ([(), 00)2,[0, oo)) and f(z1,22) is either
strictly increasing in z; and zy, or strictly decreasing in zy and zo, or strictly increasing

i z1 and strictly decreasing in zo. Furthermore, assume that for every
m € (0,00) and M > m,

either

[f (My (m, M), My (m, M)) = M][f (my (m, M) ,ma (m, M)) —m] >0
or

£ (My (m, M), My (m, M)) = M and f (my (m, M) ,ms (m, M)) = m.

Then every solution of Eq.(1.2) which is bounded from above and from below by positive

constants converges to a finite limit.



We now present two genereal global asymptotic stability results that apply to several

special cases of the (k + 1)*-order rational difference equation

k
a+ Z Bimnfi
Tpyq = = ., n=0,1,.. (1.9)
i=0

with A > 0, the remaining parameters non-negative, with

k k
Zﬁi and Z B; € (0,00),
i=0 i=0

and with arbitrary non-negative initial conditions such that the denominator is always
positive.
The characteristic equation of the linearized equation of Eq.(1.9) about an equilibrium

point T is

k
AR + - Z DA = (1.10)
Z =0

Zero is an equilibrium point Eq.(1.9) if and only if
a=0and A>0. (1.11)

As we will see later, when (1.11) holds, the zero equilibrium of Eq.(1.9) is globally as-
ymptotically stable when

A= B, (1.12)

Eq.(1.9) has a positive equilibrium point if and only if either

a>0 (1.13)
or
k
a=0and A < ZBZ" (1.14)
=0



When (1.13) holds, the equation has the unique equilibrium point

5—A+\/([5—A)2+4a3

T = 1.15
- - , (1.15)
where for simplicity we use the notation,
k k
B=> B, and B=)» B
i=0 i=0
When (1.14) holds, Eq.(1.9) has the unique positive equilibrium point
__B-A
T=—"-.
B
Note that
: iw— B < —— (Bz - ) (1.16)
A+ BT & Wl ' '

Therefore, by Theorem 1.5 and 1.16, the equilibrium of Eq.(1.9) is locally asymptotically
stable when (1.12) holds.

Theorem 1.12 ([7], pp.150-151) Assume that

k
b= Zﬁz <A
i=0
Then the following statements are true:
(a) If
a =0,
the zero equilibrium of Eq.(1.9) is globally asymptotically stable.
(b) If
a >0,

the positive equilibrium of Eq.(1.9) is globally asymptotically stable.



In a special case when

k
A:ZBi>O and «a >0,

i=0
the global character of solutions of Eq.(1.9) is completely described by the following result
in [31]. In this case it is preferable to write the difference equation in the form
k
Q-+ Z Brxn—ir
I = . n=12, ... (1.17)
A+ Bjz,_j,
t=1

Also, by making a change of variables, if necessary, we may and do assume that the

greatest common divisor of all "delays" in the numerator and denominator is 1, that is,
ng{il,...,ik,jl 77777 ]m} = 1.

Theorem 1.13 ([7], p.152) Assume that

k
a=0 and B:Zﬂi:A
=0

and that one of the following three conditons is satisfied:

(a) B,B; >0 for some i €{0,...,k}.

(b) By > 0.

(c) By and Eq.(1.9) has no period-two solutions.

Then the zero equilibrium of Eq.(1.9) is globally asymptotically stable.

Theorem 1.14 ([27], p.155) Let | € {1,2,...}. Suppose that on some interval I C R
Eq.(1.1) has the linearization

m
Tp4l = E 9iTn—i,

i=1-1

m
where the non-negative functions g; : I**' — R are such that > g; = 1 is satisfied.
i=1-1
Suppose that there exists A > 0 such that

G =>A n=0,1,...
Then if x;_1,..x_y €1,

lim z, =L e I.

n—oo

10



Theorem 1.15 ([24], p.205) Let [a,b] be an interval of real numbers and assume that
I [CL, b] X [a7b] X [a>b] - [a'vb}
s a continuous function satisfying the following properties:

(a) f(z,y,2) is non-decreasing in x for each y and z € [a,bland is non-increasing in y

and z for each z € [a,b] of its arguments;

(b) If (m, M) € [a,b] x [a,b] is a solution of the system

M= f(M,m,m) and m= f(m,M,M),

then m = M.

Then Eq.(1.2) has a unique equilibrium T € [a,b] and every solution of Eq.(1.2) converges

to .

Theorem 1.16 ([24], p.202) Let [a,b] be an interval of real numbers and assume that
f:la,b] X [a,b] x [a,b] — [a, b]

s a continuous function satisfying the following properties:

(a) f(z,y,z) is non-decreasing in x and y € l|a,b| for each z € [a,b] , and is non-

increasing in z € |a,b] for each x and y € |a,b]

(b) If (m, M) € [a,b] X [a,b] is a solution of the system

m=f(m,m,M) and M= f(M,M,m),

then m = M.

Then Eq.(1.2) has a unique equilibrium T € [a,b] and every solution of Eq.(1.2) converges
to .
Theorem 1.17 ([7], p.331) Let {x,} be any solution of equation

O+ Tpom
A+ Mz, + L,

Tptl = n=20,1,...

Then the following statements are true:

11



(i) When

(L — M)(1 — A)? AL
0§A<1 and SE §a<M+W’

aM—-A 1
L M

the solution {z, } eventually enters the interval [ } and the function f (z,,_m, Tn_1)
is eventually increasing in x,_,, and strictly decreasing in x,,_;.Furthermore, the solution
{z,,} converges to the equilibrium.
(ii) When
A L
0<A<1 d > — 4+ —,
< an « i + JVE

aM—A

the solution {z,,} eventually enters the interval |57, -

} and the function f (z,—m, Tn_1)
is eventually strictly decreasing in z,,_,, and x,_;. Furthermore, the solution {z,} con-
verges to the equilibrium.

(iii) When

A L
<A<1 d = — 4+ —
0< A< and « M+M2’

the solution {x,} converges to the equilibrium.
Theorem 1.18 ([7], p.331) Assume that the following conditions hold:

) feC(0,00) x (0,00),(0,00)].
ii) f(z,y) is decreasing in x and strictly decreasing in y.
iii) zf(x,z) is strictly increasing in x.

iv) The equation
Tp41 = xnf(xna xnfl)a n=01,.. (118)

has a unique positive equilibrium 7.

Then 7 is a global attractor of all positive solutions of Eq.(1.18).

Theorem 1.19 (/24], p.202) Let [a, 5] be an interval of real numbers and assume that
g: [0 B> = [a, 8],
s a continuous function satisfying the following properties:

12



(a)  g(x,y,2) is non-decreasing in = and z in [«, 3] for each y € [o, 3], and is non-
increasing in y € [a, §] for each z and z in [«, §] ;

(b) If (m, M) € [a, 5] X [a, 5] is a solution of the system

M =g(M,m,M) and m = g(m,M,m),

then

m = M.

Then

Tpr1 = 9(Tp, Tp_1, Tp_2). (1.19)
has a unique equilibrium T € [a, §] and every solution of Eq.(1.19) converges to T.
Theorem 1.20 ([24], p.202) Let [a,b] be an inerval of real numbers and assume that
g+ [a,0]" = [a, 0]

1 a continuous function satisfying the following properties :

(a) g(z,y,z) is non-increasing in all three variables x,y, z € [a, ]

(b) If (m, M) € |a,b] X [a,b] is a solution of the system

M = g(m,m,m) and m = g(M,M, M)

Then Eq.(1.19) has a unique equilibrium Z € [a,b] and every solution of Eq.(1.19) con-

verges to 7.

13
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CHAPTER 2

EXAMPLES OF THE SECOND ORDER DIFFERENCE EQUATIONS

In this chapter we investigate the local asymptotic stability of some second order difference

equations.

Example 2.1 ([7], pp.335-336) Consider the second order difference equation

o+ VTn—1
A+ Bz, +Cxp_q’

Tpp1 = n=0,1,---. (2.1)

(a) The normalized form of Eq.(2.1) is

QO+ Tp_q
A+ Bz, + 2,1

Tpy1 = n=0,1,---. (2.2)

(b) Equilibrium point of Eq.(2.2) is

1-A++/(1—-A2+4a(l + B)
2(1+ B)

T =

(c) The linearized equation of Eq.(2.2) about the equilibrium point T is

BT - 71
A+(1+Bzx" A+(1+B)

Zn+1 +

1 =0 (2.3)

and the corresponding charasteristic equation of Eq.(2.3) is

Bx T—1

2
A pum—
A +A+(1+B)f +A+(1+B)§

0.

(d) The equilibrium point T of Eq.(2.2) is locally asymptotically stable when

_>1—A
T 7

which is equivalent to

A>1

Y
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or

0<A<1 and B<1,

or
0<A<1, B>1, and a>(B_1)i1_A)2,
and unstable when

0<A<1, B>1, and a<(B_1)il_A)2.

Solution.

(a) Using the change of variables

7
Tn = FYn,

C

Eq.(2.1) can be written in the normalized form

O+ Ty
A+ Bx, + xn1’

Tp+1 = n:O717""

with positive parameter v and B and with arbitrary non-negative initial conditions z_1,
2o such that the denominator is always positive. Throughout this example we allow the

parameter A to be nonnegative.

(b) The equilibrium point of Eq.(2.2) is the non-negative solution of the equation

a+7T

YT At DBr+z

or equivalently
ZB+1)+z(A-1)—a=0. (2.4)

Then the only equilibrium point Eq.(2.2) is

1-A++/(1—A2+4a(l+ B)
2(1+ B)

T =

16



(c) Now, let I be some interval of real numbers and let f : [ x [ — I be a continuously

differentiable function such that f is defined by

_ o+ Ty
f(xmxn—l) - A_’_an +xn_1-

Hence, we have from (2.4)

= ﬁ(a: T) = { —(atan1)B (T,T) = _—Bf
©= 9w (A+ Bay +2q1)) ) A+z(l1+B)
and from (2.4)

_of (7.7) = {1.(A+an+a:n_1)—(Oz+mn_1).1 (7.7) = 1-7
TR (A+ By + 201) T Ar 1+ BE

If Z denotes an equilibrium point of Eq.(2.2), then the linearized equation associated

with Eq.(2.2) about the equilibrium point 7 is

Znt1 = qoZn + Q12n—1

or

BT LoE-l
Zn
A+(1+Bz " A+ (1+B)

—Zn—1 — 0.
T

The characteristic equation of the linearized equation of Eq.(2.2) about the equi-
librium 7 is

Bx T—1

2 —
A +A+(1+B)EA+A+(1+B)E_

0.

(d) From (c) and Theorem 1.3 it follows that the equilibrium Z of Eq.(2.2) is locally
asymptotically stable when

_ 1-A
T R
2 )

which is equivalent to
A>1,

or

0<A<1 and B<I1,

17



or

B A2
0<A<1,B>1, and a>(B 1)511 A)
and unstable when

o A2
0<A<1,B>1, and a<(B 1)5; A).

Example 2.2 ([7], pp.223-224) Consider the second order difference equation

a+ fx,
] = ————— =0,1,---. 2.5
Ln+1 A+ Cry n (2.5)

(a) The normalized form of Eq.(2.5) is

o+ T,

Tnt1 =
A + Ty ’

n=01,---. (2.6)

(b) Equilibrium point of Eq.(2.6) is

1—A+/(1-A)2+4«a
5 :

T =

(c) The linearized equation of Eq.(2.6) about the equilibrium point T is

1 T
Zn+1 — mzn + A—_%Zn,1 =0 (27)

and the corresponding charasteristic equation of Eq.(2.7) is

(d) The equilibrium point T of Eq.(2.6) is locally asymptotically stable for all positive

values of the parameters.

Solution.

(a) Using the change of variables

T :ﬁy
n CTL)

18



Eq.(2.5) can be written in the normalized form

a+x,

A‘i‘l'nfl’ n y 4y

Tnt1 =

with positive parameter o, A and with arbitrary non-negative initial conditions x_1, xg

such that the denominator is always positive.

(b) The equilibrium point of Eq.(2.6) is the non-negative solution of the equation
a+T
A+7

T =
or equivalently
72— (1-A)7T—a=0. (2.8)

Then the only equilibrium point Eq.(2.6) is

1-A+/(1-A4)?2+ 4«
5 .

T =

(c) Now, let I be some interval of real numbers and let f : [ x [ — I be a continuously
differentiable function such that f is defined by

o+ T,
f($m$n—1) = rxn_l

Hence, we have

=g m) = || @

1 2
TAYT 14 A+ JO-A2+4a
and from (2.8)
of . [0—(a+z,)l] __  —-T

(SC,.’L')— |: (A+33n_1)2 :|(£E,SC)— A—i—f

If 7 denotes an equilibrium point of Eq.(2.6), then the linearized equation associated

q1 = Oz, 1

with Eq.(2.6) about the equilibrium point 7 is

Zn+1 = qozn + q12n—1

or

1 _
Zp4l — ———%2n +

i
—2,1 = 0.
A+T Atrz !

The characteristic equation of the linearized equation of Eq.(2.6) about the equi-
librium 7 is
1 z

S 0,
A+=x +A+f

/\2
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(d) From (c) and Theorem 1.3 it follows that the equilibrium Z of Eq.(2.5) is locally

asymptotically stable for all values of the parameters.

Example 2.3 ([7], p.231) Consider the difference equation

T :M n=0.1.---
n+1 BIn+C$n_17 5 .

(a) The normalized form of Eq.(2.9) is

O+ Ty

_— :0717...'
an+xn—1 "

Tp41 =

(b) Equilibrium point of Eq.(2.10) is

1+ +/1+4a(B+1)
2(B+1) '

T =

(c) The linearized equation of Eq.(2.10) about the equilibrium point T is

B T—1

T, pen T, 4\—~n— =0
B T Brz !

Zn+1 +

and the corresponding charasteristic equation of Eq.(2.11) is

B 71
v — 0.

A2 A —
TN B

(d) The equilibrium point T of Eq.(2.10) is locally asymptotically stable when

B-1
4

o >

and unstable when

<B—1
« .
4

Solution.

(a) Using the change of variables

7
Tn = FYn,

C

Eq.(2.9) can be written in the normalized form

O+ Tpoq

_ :071,...
Bl’n+xn—1 "

Tp41 =

(2.9)

(2.10)

(2.11)

with positive parameter «, B and with arbitrary positive initial conditions z_1, xo.
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(b) The equilibrium point of Eq.(2.10) is the non-negative solution of the equation

a+T

T = .
Br 4+ =7

So, (2.10) has the only equilibrium point

1++/14+4a(B+1)

T 2(B +1)

(c) Now, let I be some interval of real numbers and let f : I x [ — I be a continuously

differentiable function such that f is defined by

a+ Tp_1

f(xnaxn—l) = m

Thus, we observe that

_ -Bz  -B
 Bt+T 14 B

0.(Bzy + xp-1) — (@ +2,-1).B
(B, + T-1)?

0=y = | @

q1 =

@)= |

1.(Bxp + 1) — (a+ xn_l).l] (7.7) 1-7 1-7

0Tp_1 (Bxy, + Tp—1)? " Brt+z (B+ 1)z

If T denotes an equilibrium point of Eq.(2.10), then the linearized equation associated

with Eq.(2.10) about the equilibrium point 7 is

Znt1 = qoZn + Q12n—1

or

B 7-1
Zn —Zp—1 =
1+B™" " (B+1nz "

Zn+1 ‘|‘ 0

The characteristic equation of the linearized equation of Eq.(2.10) about the equilibrium
T is
B T-—1

= 0.

A2 A —
TN B

(d) From (c) and Theorem 1.3 T is locally asymptotically stable,when

B-1

>
‘-

and unstable when

<B—1
« .
4
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Example 2.4 ([7], pp.251-252) Consider the second order difference equation

/an Ylp—1
] = ——————— — 0’17.... 2.12
Tntl Bz, + Cx,_1 " ( )

(a) The normalized form of Eq.(2.12) is

L, Tp—1
. _é____ﬂ =0,1, . 2.13
Tl Bl‘n + Tpn—1 " ( )

(b) Equilibrium point of Eq.(2.13) is

p+1

YT B

(c) The linearized equation of Eq.(2.13) about the equilibrium point T is

_ B-B . B-B
T BB T BB+

=0 (2.14)

and the corresponding charasteristic equation of Eq.(2.14) is

2 p—B B —B B
N GrnEeey) T GrnBLD

(d) The equilibrium point T of Eq.(2.13) is locally asymptotically stable when

6>DB

or

B<Band B<36+B+1

and unstable when

B<Band B>368+ B +1.

Solution.

(a) By the change of variables

7
Tn = FYn,

C
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Eq.(2.12) can be written in the normalized form

T _ 6$n+$nfl n=0.1
1= = =
n+ an+xn_l7 )

with positive parameters 3, B and with arbitrary positive initial conditions x_1, xq. We

also assume that [ # B because otherwise the equation eventually becomes trivial.

(b) The equilibrium point of Eq.(2.13) is the non-negative solution of the equation.
BT +T
Bx+7x

T =
So, by solving the equation
T(B+1)—-z(3+1) =0,

(2.13) has the only equilibrium point
g+1
5 .

T=1"—

+

—_

(c) Now, let I be some interval of real numbers and let f : [ x [ — I be a continuously

differentiable function such that f is defined by

B'Tn +xn71
f(%ufn—l) = m
Hence, we have
i (7.7) = [ﬁ. (Bxy + xp1) — (Bp —i—:t:n_l).B] (7.7) = B — B
©= 9z, B = (Bxp + Ty 1)? Y (B+1)(B+)
o of . [L(Bxp+an1) = (Brn +2n-1).1 . —(B—-DB)
i [ (Bin + 20 1)? } B =GB

If T denotes an equilibrium point of Eq.(2.13), then the linearized equation associ-

ated with Eq.(2.13) about the equilibrium point 7 is

Zn1 = qoZn + Q12n—1

or

.. __B=-B _ (B-B)
T BB+ )T BB+

The characteristic equation of the linearized equation of Eq.(2.13) about the equi-

=0.

librium 7 is

2 B —B B-B)
N BEyma)) T GenBrn (2.15)
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(d) From (c) and Theorem 1.3 it follows that the equilibrium T of Eq.(2.13) is locally

asymptotically stable when
6>DB

or

b < Band B<33+pB+1
and unstable when

g < Band B>30+ B+ 1.

We give another example.

Example 2.5 ([7], pp.422-423) Consider the difference equation

. o+ an + Yln—1
A+ Bz, +Cx,y’

Tn+1 nzoala"'

(a) The normalized form of Eq.(2.16) is

o« +5$n + X1
A+ Bx, + 21

Tn+1 nzovlv"'

(b) Equilibrium point of Eq.(2.17) is

B+1—-A)+/(A-=B-12+4a(B+1)

T= 2(B+1)

(c) The linearized equation of Eq.(2.17) about the equilibrium point 7 is

Bz — 3 - 7—1
A+(B+1)z™" A+(B+1)

Zp1 T Eznfl =0

and the corresponding charasteristic equation of Eq.(2.18) is

Bi— 8 71

2 —
A+A+&H&ﬁ +A+w+nf_

0.

(d) The equilibrium point T of Eq.(2.17) is locally asymptotically stable when

1-A-p[1-A)B-1) -3+ B)]
4

<«

24
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and

(A-p-1p
B+ ¢
and

(A+1)[B(2+08)+ (A+1)] —u
BQ

Solution.

(a) By the change of variables

0
Tn = FYn,

C

Eq.(2.16) can be written in the normalized form

a+ B, + x,_q
A+ Bx, +2p_1

Tnt1 = n=01,---

with positive parameters «, A, 8, B and with arbitrary positive initial conditions x_1, xg.

(b) The equilibrium point of Eq.(2.17) is the non-negative solution of the equation.

a+BT+T
A+Br+7

T =
So, by solving the equation
Z(B+1)—7(B+1—-A)—a=0.

So (2.17) has the only equilibrium point

B+1—-A) +/(A-B—-1)2+4a(B+1)
2(B+1) '

(c) Now, let I be some interval of real numbers and let f : [ x [ — I be a continuously

differentiable function such that f is defined by

o + /B'rn + Tp—1
A+ Bz, + 1

f(.l’n, C(‘171—1) -

Hence, we have
_of (7.7) = B.(A+ Bz, +x,1) — (a+ By, +x41).B (7.7)
Oz, (A+ Bx, + 2, 1)? ’

qo0
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of (7.7) = 1.(A+ Bz, +xy1) — (0 + By + 2p-1).1 (7.7) = 1—-7
Or, 1.~ (A+ Bz, + 2,1)? A+ (B +T

If T denotes an equilibrium point of Eq.(2.17) then the linearized equation associated

q1 =

with Eq.(2.17) about the equilibrium point 7 is
Zn+1 = QoZn T q12n—-1

or

Bz —§ 71

0.

The characteristic equation of the linearized equation of Eq.(2.17) about the equi-
librium 7 is
BT —f3 T—1

2 —
A +A+(B+1)EA+A+(B+1)E_

0. (2.19)

(d) From (c) and Theorem 1.3 it follows that the equilibrium Z of Eq.(2.17) is locally
asymptotically stable when

1-A-p)A-AB-1) - 5B+ B)]

1 <«
and
—(A- B 1)
WB+1)  °
and

(A+1)[B(2+08)+ (A+1)] —u
BZ

Example 2.6 ([7], pp.284-285) Consider the difference equation

By,
A+ Bx, + Cx,_4

Tpy1 = ,n=0,1---. (2.20)

(a) The normalized form of Eq.2.20) is

B By,
14 Bz, + 1z, 1’

Tt n=0,1,---. (2.21)
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(b) Equilibrium point of Eq.(2.21) is

_ B-1
T=—.

B+1

(c) The linearized equation of Eq.(2.21) about the equilibrium point 7 is

B8+ B g—1 B

and the corresponding charasteristic equation of Eq.(2.22) is

,  [B+0B B-1
ANy I YT s Sl

(d) The equilibrium point Z of Eq.(2.21) is locally asymptotically stable when

g>1
and unstable when

g < 1.

Solution.

(a) By the change of variables

A

Tn = FYn,

C

Eq.(2.20) can be written in the normalized form

- By
14+ Bx,+x,1

Tn+1 n:O717”'

with positive parameters 5, B and with arbitrary nonnegative initial conditions x_1, x,.

(b) The equilibrium point of Eq.(2.21) is the non-negative solution of the equation

bx
1+Bz+7

T =

or equivalently the only equilibrium point Eq.(2.21) is

__B-1
T=—=".

B+1

27



(c) From this, we have

8_f<_ 7) = {5(1 + Bx, + Xy 1) — BwnB} (7.7) = B+ B
)= (1+ Ban + 2n1)? S =BT

_of (_f)_{O.(l—i—an—i-xn_l)—ﬁa:n.l} (7.7) = 1-p3
S Oz, (1+ By + 2,-1)? " B(BA+1)

If T denotes an equilibrium point of Eq.(2.21) then the linearized equation associated

q1

with Eq.(2.21) about the equilibrium point T is

Znt1 = QoZn + q12n-1

or

B+ B g—1

The characteristic equation of the linearized equation of Eq.(2.21) about the equi-
librium 7 is

BB, A1
BB+ BB

A2 — =0.

(d) From (c) and Theorem 1.3 it follows that the positive equilibrium Z of Eq.(2.21) is

locally asymptotically stable when
g>1
and unstable when

g < 1.
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CHAPTER 3

EXAMPLES OF THE THIRD ORDER DIFFERENCE EQUATIONS

In this chapter we investigate the local asymptotic stability of some third order difference

equations.

Example 3.1 ([7], pp.186-187) Consider the third order difference equation

5xn—2
= .. 3.1
ot anfl + Dxnf2 ( )
(a) The normalized form of Eq.(3.1) is
Tp—2
n == :0,1,...' 3.2
o+t Cmn—l + Ty o " ( )
(b) Equilibrium point of Eq.(3.2) is
_ 1
T=—".
C+1
(c) The linearized equation of Eq.(3.2) about the equilibrium point T is
C C
. 2y — ——2p_ 5 =10 3.3
Zn+1 t Cr 1Z 1 O+ 1Z 2 ( )

and the corresponding charasteristic equation of Eq.(3.3) is

C C
N — _
C+1 C+1 0

A+

(d) The equilibrium point T of Eq.(3.2) is locally asymptotically stable when

1++5

2

C <

and unstable when

1 5
C > +2\/_.
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(e) The equilibrium point T of Eq.(3.2) is nonhyperbolic when

1
C = +2¢3.

Solution.

(a) By the change of variables
J

Tn = =Yn,

D

Eq.(3.1) can be written in the normalized form

Tn—2

- - :0’1’...'
an—l+xn—27 "

Tpt+1 =

with positive parameter C' and with arbitrary nonnegative initial conditions z_o,x_1,7¢

such that denominator is always positive.

(b) The equilibrium point of Eq.(3.2) is the non-negative solution of the equation

_ T

YTtz

or

Z2(C+1)—7=0. (3.4)

The only equilibrium point of Eq.(3.2) is

1

T=—

C+1

(c) Now, let I be some interval of real numbers and let f : I x I xI — I be a continuously

differentiable function such that f is defined by

Tn—2
TnyTn-1Tpn9) = —F—""TT—.
f( nytn—1y4n 2) an_l +$n_2

So, from (3.4), we obtain

do = aai(E?f) =0
" of (7.7) = 0.(Cxp1 +xp2) — (T,5-2).C (7.7) = —C

= 91y, (Cxpy + xp—2)?
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of (7.7) = 1. (Cxpq + xpy2) — (Tp2).1 (7.7) = C
’ (Cxpy + xp_2)? ’ (C+1)

If 7 denotes an equilibrium point of Eq.(3.2), then the linearized equation associated

g2 = EI

with Eq.(3.2) about the equilibrium point 7 is
Zntl = qoZn t+ q12n—1 T q22n—2

or

C C

-~ . 1 cn—1 " 5 1 cn— = 0.
Cr1 T or1

Zn+1 +

The characteristic equation of the linearized equation of Eq.(3.2) about the equi-
librium 7 is
C C
AP A— =0
MG G

(d) From (c) and Theorem 1.4 it follows that the equilibrium 7 of Eq.(3.2) is locally

asymptotically stable when

1++5

C<2

and unstable when

1
. +5

2
(e) When
1 )
o +2\/_ |

T is a non-hyperbolic equilibrium. In fact, the eigenvalues of the corresponding
characteristic equation are

 —1+V5 \ 1-V5—iV10+2V5
—T; 2 = 4 >

\ \ 1-VE+iV10+2V5
1 3= 1 :
Example 3.2 ([7], p.199-200) Consider the third order difference equation

o+ O,
a;ml:ﬁx;—j{ n=01,---. (3.5)

(a) The normalized form of Eq.(3.5) is

T2 =01, (3.6)

Tn

Tnt1 = B—i_
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(b) Equilibrium point of Eq.(3.6) is

T=p+1.

(c) The linearized equation of Eq.(3.6) about the equilibrium point 7 is

1 1
n —2y — 522 =0 3.7
Z+1+ﬁ+12’ 5+1Z 2 (3.7)

and the corresponding charasteristic equation of Eq.(3.7) is

1, 1

A+ - =
B+1 g+1

0.

(d) The equilibrium point T of Eq.(3.6) is locally asymptotically stable when
B>—-1+V2
and unstable when

B < —1+V2.

Solution.

(a) Using the change of variables
)

Tn = 5 Yn,

B

Eq.(3.5) can be written in the normalized form

T
$n+1:6+ 27 n:0717""

n

with positive parameter § and with arbitrary non-negative initial conditions x_o, x_1, xg

such that the denominator is always positive.

(b) The equilibrium point of Eq.(3.6) is the non-negative solution of the equation

SRS

T=0+
or equivalently the only equilibrium point Eq.(3.6) is
T=p+1
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(c) Now, let I be some interval of real numbers and let f : I3 — I be a continuously

differentiable function such that f is defined by

Tn—2
- .

f(xna Tp—1, xn72) - ﬂ +

n

Therefore, we observe that

R G e
QO_amn xr,r,r)= l'nQ €T,r,T) = +1

_Of

of o [la,—(Bratx,0)0] _ _ _ 1
q2 = axn72(x>$am) - |: x% (x,x,m) — 5+1

If Z denotes an equilibrium point of Eq.(3.6), then the linearized equation associated

with Eq.(3.6) about the equilibrium point 7 is
Zn41 = qoZn T Q1Zn—1 t q22n—2

or

1 1

— 2, — ———Zp_o = 0.
B+1 B+17"?

Zn+1 +

The characteristic equation of the linearized equation of Eq.(3.6) about the equi-
librium 7 is

1, 1

A+ — =
B+1 B+1

0.

(d) From (c) and Theorem 1.4 it follows that the positive equilibrium T of Eq.(3.6) is

locally asymptotically stable when
B>—-1++2
and unstable when

B < —1+V2.

Example 3.3 ([7], p.209-210) Consider the difference equation

N
Tpp1 = = %; T2 01, (3.8)
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(a) The normalized form of Eq.(3.8) is

mwr:ﬂiiiﬁﬁ,n:QLu_ (3.9)
Ty

(b) Equilibrium point of Eq.(3.9) is
rT=v+1

(c) The linearized equation of Eq.(3.9) about the equilibrium point T is

fy 1
Zpo1t 2 — ———2p 11— ——— =0 3.10
+1 O R (3.10)

and the corresponding charasteristic equation of Eq.(8.10) is

Maazo oo by
7+1 v+1

(d) The equilibrium point T of Eq.(3.9) is locally asymptotically stable when

V3-—1
2

<y<l1

and unstable when

V3-—1
T<—5

Solution.

(a) Using the change of variables
J

Ty = _yn7

B

Eq.(3.8) can be written in the normalized form

o YTn—1 +xn72 o
Tpp1 = ——, n=0,1,---
Tn

with positive parameters v and with arbitrary positive initial conditions x_o, x_1, xg.

(b) The equilibrium point of Eq.(3.9) is the non-negative solution of the equation

YT+ 7T

T

T =
or equivalently

7 —(y+1)T=0. (3.11)
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Therefore, the only equilibrium point of Eq.(3.9) is

T=v+1

(c) Now, let I be some interval of real numbers and let f : I x [ x I — I be a continuously
differentiable function such that f is defined by

o YTn—1 + Tn—2

f(xna Tn-1, xn72) = Tn41 =
Tn

From this and (3.11) we have

of _ _ _ 0.z, — (ytp1+xn2)1] _ _ . —(vZ4+7Z) —(y+1)
qo = T%(w’x’x) = { T,2 (iL’,I,QJ) = 72 - T
_ O+
v+1
e e el G e L e e LA
1 axn,l s Ly an y EQ ’}/—{—1
of (7.7.7) L.z, — (Y1 + Tp_2).0 (7.7.7) T 1

= T,T,T) = T,0,T) = — = ——.
qz al’n_Q s Ly xn2 s Ly .1’2 ’7_{_1

If 7 denotes an equilibrium point of Eq.(3.9), then the linearized equation associated

with Eq.(3.9) about the equilibrium point 7 is
Zntl = qoZn t Q1201 1 G22n—2
or

zZ, 1+Z —LZ 11— ————
n—+ n ”Y‘i‘lni 74_1

The characteristic equation of the linearized equation of Eq.(3.9) about the equi-
librium 7 is

Mgzl 0y

=0.
v+1 v+1

(d) From (c) and Theorem 1.4 it follows that the positive equilibrium T of Eq.(3.9) is

locally asymptotically stable when

V3-1
2

<v<l1

and unstable when

V3-—1
v < 5
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Example 3.4 ([7], pp.210-211) Consider the difference equation

T o Fymnfl + 51'7172
n+l — )
C'rn—l

n=01,---. (3.12)

(a) The normalized form of Eq.(3.12) is

xn+1:fy+xn_2; n=20,1,---. (313)

Tp—1

(b) Equilibrium point of Eq.(3.13) is

rT=~v+1

(c) The linearized equation of Eq.(3.13) about the equilibrium point T is

1 1

Zpel1 +——2p 1 — ——2,2 =0 3.14
e T e (3.14)

and the corresponding charasteristic equation of Eq.(3.14) is
1 1
A— =0
v+ 1 v+1

A3+

(d) The equilibrium point T of FEq.(3.13) is locally asymptotically stable when

—1++5

>
" 2

and unstable when

~1++5

<
" 2

Solution.

(a) By the change of variables
J

Tn = FYn,

C
Eq.(3.12) can be written in the normalized form

Ty
xn+1:'y—|— 2, n:(],]_’...

Tn—1

with positive parameters v and with arbitrary positive initial conditions z_o, x_1,

Zo-
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(b) The equilibrium point of Eq.(3.13) is the non-negative solution of the equation

SRS

=75+
or equivalently the only equilibrium point Eq.(3.13) is

T =+ 1.

(c) Now, let I be some interval of real numbers and let f : I x I x I — I be a continuously

differentiable function such that f is defined by

Ty
f(xny Tn-1, xan) =7 + 2 .
Tn—1
From this, we have
0
Go = alui<j7faf) =0
of _ _ _ YTpo1 — (VTpo1 +xp0)l| _ AT — (YT +T)
g1 = 3$n_1 (ZE,I’,ZE) - |: (xn—1)2 (ZE,I7$> - (f)z
-1 -1
T y+1
(9f (_ _ _) 1..’13'”,1 — (’)/.flfnfl + l'n,Q).O (_ _ _) 1 1
= T,T,T) = T,T,T) = —=——.
qz 8l’n_2 s Ly (In_l)Z y N v +1

If T denotes an equilibrium point of Eq.(3.13), then the linearized equation associ-

ated with Eq.(3.13) about the equilibrium point 7 is

Zn+1 = QoZn + Q1%n—1 + Q22p—2

or

1
Zptl + ——2p1 — ———Znp_2 = 0.
Lt

The characteristic equation of the linearized equation of Eq.(3.13) about the equi-
librium 7 is

1 1
2+ A — =

v+1 v+1
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(d) From (c) and Theorem 1.4 it follows that the positive equilibrium Z of Eq.(3.13) is
locally asymptotically stable when

_ Lt V5
7 2
and unstable when
—1++5
V<

Example 3.5 ([7], pp.225-226) Consider the difference equation

a+ Bx,

l = ———— =0,1,---. 3.15
Tn+1 A+ Dz, , n ( )

(a) The normalized form of Eq.(3.15) is

o+ T,

Tnt1 =
A + Tpo ’

n=01,--. (3.16)

(b) Equilibrium point of Eq.(3.16) is

1- A+ /(I - A2 +4a
5 .

T =

(c) The linearized equation of Eq.(3.16) about the equilibrium point 7 is

X

N U U 1
Zna1 A+fzn+A—|—§Zn 5=0 (3.17)

and the corresponding charasteristic equation of Eq.(3.17) is

P A =
A+ +A—l—f

0.

(d) The equilibrium point Z of Eq.(ceydaa) is locally asymptotically stable when either

At

-2
or
1 1 A*(—A?+3A-1)
— < A< = and
3< <2an a < (2A—1)2
and unstable when
1 1 A (—A?2+3A-1)
A<=
3< <2anda> A1)
or

1

0< A<=

< < 3
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Solution.

(a) By the change of variables

x, = é
n Dym

Eq.(3.15) can be written in the normalized form

o+ x,

_ :0’17...
A+xn—2

Tp+1 =

with positive parameters a, A and with arbitrary positive initial conditions z_s,

Tr_1, Xg-

(b) The equilibrium point of Eq.(3.16) is the non-negative solution of the equation
a+7T
A+7T

T =

or equivalently the only equilibrium point Eq.(3.16) is

1 — A+ /(I A2 +4a
> .

T =

(c) Now, let I be some interval of real numbers and let f : I x [ x I — I be a continuously

differentiable function such that f is defined by

o+ Ty
f(xnaxnflaxan) = m

From this, we have

_of __ . [LA+zhg)—(a+2,)0] _ _ 1
do = 8:vn(x’$’x)_ |: (A+$n,2>2 :|( ) 733)_ A+7T
Q1:afi1( ,T,T) =0
b= of (7.7.7) = |:0.(A+$n2)—(06+$n).1:| (7.7.7) = —(a+71) T
2T Orgs (A+ 2,2)? ' (A+7)? A+7T

If  denotes an equilibrium point of Eq.(3.16), then the linearized equation associ-

ated with Eq.(3.16) about the equilibrium point 7 is

Znt1 = qoZn + q12n—1 + @222

or

X

n T4 I —*n— = 0.
T g T g
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The characteristic equation of the linearized equation of Eq.(3.16) about the equi-

librium 7 is

(d) From (c) and Theorem 1.4 it follows that the positive equilibrium Z of Eq.(3.16) is
locally asymptotically stable when either

As L

=2

or

1 1 A*(—A?2+3A-1)
- <A< - and

3< <2an a < (2A—1)2

and unstable when

1 1 A (A2 +3A-1)
<A< =
3< <2anda> A1)
or
1
0< A< —.
=43
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CHAPTER 4

BEHAVIOR OF THE SOLUTIONS OF SOME RATIONAL DIFFERENCE
EQUATIONS

In this chapter we investigate the periodicity, local stability and global attractivity of the

following three rational difference equation which was studied in [13], [14] and [18].

bx,_ 1+ cxp o

4.1 Equation z,,, = az, + n=20,1,---

9
dr, 1+ ex, o

In this section we concerned with the recursive sequence

bx, 1+ cxy_o

Tpi1 = AT, + n=0,1,--- (4.1)

?
dr, 1+ exp_o

where the parameters a, b, ¢, d and e are positive real numbers and the initial conditions

T_9,2_1 and z are positive real numbers.

4.1.1 Local Stability of the Equilibrium Point of Equation (4.1)

Here, we deal with the local stability character of the equilibrium point of Eq.(4.1).
Eq.(4.1) has equilibrium point and is given by

b+c
d+e

T =ax +

If a < 1, then the only positive equilibrium point of Eq.(4.1) is given by

b+ c
(1—a)(d+e)

T =
Let f: (0,00)® — (0,00) be a continuous function defined by

bv + cw
dv + ew’

flu,v,w) = au+

Therefore it follows that

Of (u,v,w)
ou

:a7
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Of (u,v,w) _ (be — de)w
(

v dv + ew)?’
Of (w,v,w)  (dc—be)u
Ow ~ (dv + ew)?”

Then we see that

ofEET _ _
B wa— 2,
of(z,7,7) _ (be — dc) _ _ (be —dc)(1—a) _ .
v d+e2T  (d+e)(b+c) b
of(z,z,7) _ (dc — be) _ (de —be)(1 —a) _
ow (d+e)’T (d+e)(b+c) 0
(

Then the linearized equation of Eq.(4.1) about T is

Ynt1 T Q2Yn + A1Yn—1 + GoYn—2 =0, (4.2)
whose characteristic equation is

A4 as A+ ag ) +ag = 0. (4.3)
Theorem 4.1 Assume that

2|(be — dc)| < (d+e)(b+ c).

Then the equilibrium point of Eq.(4.1) is locally asymptotically stable.

Proof: It follows by Theorem 1.6 that, Eq.(4.2) is asymptotically stable if all roots of
Eq.(4.3) lie in the open disc || < 1 that is if

|az| + |a1] + Jao| < 1,

(be — dc)(1 —a)
(d+e)(b+c)

lal +

and so

d+e)bro |=F

‘(dc— be)(1 — a)

‘ (be — dc)(1 — a)
(d+e)(b+c)

<(l—-a), a<l,
or

2 |be —dc| < (d+¢€)(b+ c).

The proof is complete.
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4.1.2 Boundedness of Solutions of Equation (4.1)

Here we study the boundedness of the solutions of Eq.(4.1).
Theorem 4.2 Every solution of Eq.(4.1) is bounded if a < 1.

Proof: Let {z,} - , be a solution of Eq.(4.1). It follows from Eq.(4.1) that

br,_1 + cx,_o bx,_1 CTp—2
Tpt1 = ATy + = azx, + .
dr, 1+ ex,_o drp—1 + eTp_o  dTyp_1 + €Tp_o
Then
br,_1 = CTp_o c
Tpy1 < ax, + + = aT, + -+ — for all n > 1.
Jr
dT,_1 €Tp_a d e

By using a comparsion, we can write the right hand side as follows
b ¢
Yn+1 = QYp + 3 + -,
e
then

Yn = a"Yyo + constant,

and this equation is locally asmptotically stable because a < 1 and converges to the

Tibri - be + cd
equilibrium point § = ———.
q P Y de(1 —a)
Therefore

be + cd
li y < —
D I S e — a)

Hence the solutions is bounded.
Theorem 4.3 FEvery solution of Eq.(4.1) is bounded if a > 1 .

Proof: Let {x,} - , be a solution of Eq.(4.1). Then from Eq.(4.1) we see that

bx, 1+ cx,_
Tpyl = ATy + —o ! n? ar, forall n>1.
d.’ﬂnfl + ex,_o

We see that the right hand side can be written as follows

Ynt1 = QYn = Yn = A" Yo,

and this equation is unstable because a > 1 and lim y,, = oo. Then by using the ratio

n—oo

test {x,,} -, is unbounded from above.
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4.1.3 Existence of Periodic Solutions

In this subsection we study the existence of periodic solutions of Eq.(4.1).The following
theorem states the necessary and sufficient conditions that this equation has periodic

solutions of prime period two.

Theorem 4.4 Eq.(/4.1) has positive prime period two solutions if and only if
(b—c)(d—e)(1+a)+4(bae +cd) >0, d>e, b>c. (4.4)
Proof: First suppose that there exists a prime period two solution

"’7p7 Q7p7q7 M

of Eq.(4.1). We will prove that (4.4) holds.
We see from Eq.(4.1) that

bp + cq

= Q +
P 4 dp + eq

bg + cp
dg+ep

q=ap+
Then
dp?® + epq = adpq + aeq® + bp + cq, (4.5)
and

dq® + epq = adpq + aep® + bq + cp. (4.6)
Substracting (4.5) from (4.6) gives

d(p* — ¢*) = —ae(p® — ¢*) + (b= ¢)(p — q)-

Since p # ¢, it follows that

p+q= ((b_c)

= (4.7)

Again, adding (4.5) and (4.6) yields
d(p® + ) + 2epq = 2adpq + ae(p® + ¢*) + (b + ¢)(p + q),
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(d —ae)(p® + ¢°) + 2(e — ad)pg = (b+ ¢)(p + q). (4.8)
It follows by (4.7), (4.8) and the relation
PP+¢ = p+4q)°—2pg for all p,q € R,

that

2(bae + cd) (b — ¢)
(d + ae)? '

2(e = d)(1 + a)pg =

Thus

(bae + cd)(b — c)
d+ae)(e—d)(1+a)

Pe= 7 (4.9)

Now it is clear from Eq.(4.7) and Eq.(4.9) that p and ¢ are the two distinct roots of the

quadratic equation
*(reg)  (aape 2 g tm) =

M+a@ﬂ—w—cﬁ+(wfi£;?gaia»:d) (4.10)

and so

PCh 4(bae + cd)(b — ¢)
b—d (e —d)(1+a) >0,
b—d+ 4(bae + cd)(b — ¢) >0

(d—e)(1+a)

(b—c)(d—e)(1+a)+ 4(bae + cd) > 0.

Therefore inequalities (4.4) holds.

Secondly suppose that inequalities (4.4) are true. We will show that Eq.(4.1) has a prime

period two solution.

Assume that

b—c+(
p_2(d+ae)’
and so

_b—c—¢
7 2(d+ ae)
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B o 4(bae + cd)(b—c)
C‘\/[b_c] T T e—d(+a)

We see from inequalities (4.4) that
(b—c)(d—e)(1+a)+4(bae +cd) > 0,b > c,d > e,

which is equivalent to

4(bae + cd)(b — ¢)
(e —d)(1+a)

(b—c)*>

Therefore p and ¢ are distinct real numbers.

Set

Ty =¢q,x_1 =pand rg = q.

We wish to show that

r1=x_1=p and Ty =1x0=4q.

It follows from Eq.(4.1) that

1 = a

b(b—c—l—()+ (b—c—g‘)
bp+cq (b—c—C>+ 2(d+ae)) " \2(d+ae)
d

Q+dp+eq_a 2(d + ae) (b—c—l—C)+ (b—c—()'
2(d + ae) ‘ 2(d + ae)

Dividing the denominator and numerator by 2(d + ae) gives

ab—ac—al bb—c+ () +clb—c—C)
2(d + ae) db—c+{)+elb—c—()
ab — ac — aC (b—c)[(b+c)+ (]

2(d + ae) (d+e)b—c)+(d—e)

T
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Multiplying the denominator and numerator of the right side by (d+¢e)(b—¢) — (d — €)
gives
ab — ac — ag (b—c)[(b+c)+(J(d+e)(b—c) —(d—e)]
2(d + ae) [(d+e)b—c)+ (d—e)][(d+e)(b—c)— (d—e)]
ab — ac — aC
2(d + ae)
b—c){(d+e)® =) +([(d+e)b—c)— (d—e)(b+c)— (d—e)(*]}
(d+e)2(b—c)? — (d—e)2¢?

r, =

+

ab — ac — al

2(d + ae)
_ ¢ o) (b2 — 2 b — cd) — (d— e _62_4(bae—|—cd)(b—c)
0=+ - e - -0 (b o - ECTRETY )}

+

(d+ (b — o) — (d - e)? <[b _p — Hbae + cd)(b - C)>

(e —d)(1+a)
ab — ac — a(
2(d + ae)

(b—c) {(d+ e)(b* — ) +2¢(eb—cd) — (d—e) (b—¢)* —

4(bae + cd)(b — ¢) }

* (1+a)
(d+e)*(b—c)* = (d - e)? ([b —d - 4(?§e_+d>cf? (f;f))
2(bae + cd)

(b—c) {Q(b—c) {dc—l—eb— ira } +2¢(eb— cd)}

d)(bae + cd)]
(14 a)

Multiplying the denominator and numerator of the right side by (1 4+ a) we obtain
ab—ac—a¢ (b—c)[(dc+eb)(1+ a)— 2(bae + cd)] + ((1 + a)(eb — cd)

ab — ac — al
2(d + ae)

4(b— ¢) {ed(b A G

ry =

2(d + ae) 2led(b—c)(1+a) + (e — d)(bae + cd)]
_ ab—ac—ag (b—c)(eb—dc)(1 —a)+¢(1+a)(eb— cd)

2(d + ae) 2led(b—c)(1+a)+ (e — d)(bae + cd)]
_ ab—ac—ag (eb—de){(b—c)1—a)+{(1+a)}

2(d + ae) 2(eb — cd)(d + ae)
_ ab—ac—ag (b—c)(1—a)+{(1+a)

2(d + ae) 2(d + ae)
ab—ac—a(+(b—c)(l1—a)+((1+a) b—c+(
B 2(d + ae) ~2(d+ae)

Similarly as before one can show that

T =q.

Then it follows by induction that

Top = q and o, =p forall n>-1.
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Then Eq.(4.1) has prime period two solution

""p7 Q7p7Q’ M

where p and ¢ are the distinct roots of the quadratic equation (4.10) and the proof is

complete.

4.1.4 Global Attractivity of the Equilibrium Point of Equation (4.1)

In this subsection we investigate the global asymptotic stability of Eq.(4.1).

Theorem 4.5 The equilibrium point T is a global attractor of Eq.(4.1) if one of the

following statements holds:
(1) be >dec and c¢>b, (4.11)

(2) be <dc and c<b. (4.12)

Proof. Let a and 8 be real numbers and assume that ¢ : [, 5]3 — [a, 8] is a function

defined by

Then
Og(u, v, w) _
ou -
dg(u,v,w)  (be —dc)w
v ~ (dv + ew)?’
dg(u,v,w)  (dc—be)u
ow  (dv+ew)?

We consider two cases:

Case 1. Assume that (4.11) is true, then we can easily see that the function g(u,v,w) is
increasing in u, v and decreasing in w.

Suppose that (m, M) is a solution of the system M = g(M, M, m) and m = g(m,m, M).
Then from Eq.(4.1), we see that

u MerM—l—cm Jrbm—l—cM
=a — m=am+ ——
dM +em’ dm + eM’



or

bM + ecm bm + cM
a —_— —

MO =a) = G em’

then

d(1 —a)M? +e(1 —a)Mm = bM + cm, d(1 —a)m? + e(1 —a)Mm = bm + cM.
Substraction this two equations we obtain

(M —m){d(l —a)(M +m)+ (c—b)} =0,

under the conditions ¢ > b, a < 1, we see that

M =m.

It follows by Theorem 1.16 that T is a global attractor of Eq.(4.1) and then the proof is
complete.

Case 2. Assume that (4.12) is true, let o and § be real numbers and assume that
bv + cw

dv + ew

see that function g(u,v,w) is increasing in u, w and decreasing in v.

g : o, 8> — |, B] is a function defined by g(u, v, w) = au + , then we can easily

Suppose that (m, M) is a solution of the system M = g(M,m, M) and m = g(m, M, m).
Then from Eq.(4.1), we see that

M- M+bm—|—cM B +bM—|—cm
T T e T T AM T em
or
bm +cM bM + cm
Ml—a)=—""" ml—aq)=—
(=)= rar ™ 9= arem
then

d(1 —a)Mm +e(l —a)M?* = bm + cM, d(1 — a)mM + e(1 — a)m* = bM + cm.
Substracting we obtain

(M —m){e(l—a)(M+m)+(b—c)} =0,

under the conditions b > ¢,a < 1 we see that

M =m.

It follows by Theorem 1.19 that T is a global attractor of Eq.(4.1) and then the proof is

complete.
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AT 12—
4.2 Equation z,,; = otk a, n=0,1,---.
CTp_s— b

In this section we deal with some properties of the solutions of the recursive sequence

dmn—lxn—k

Tpy1 = +a, n=0,1,--- (4.13)

CTp_s— b

where the initial conditions x_,,x_,.1,%_,19,..., 9 are arbitrary positive real numbers
: b . . o
with x; # - for i = —r,—r 4+ 1,...0, a > b/c, r = max {l, k, s} is nonnegative integer and
c

a, b, c,d are positive constants.

4.2.1 Periodic Solutions

In this subsection we study the existence of periodic solutions of Eq.(4.13). The following
theorem states the necessary and sufficient conditions that this equation has periodic

solutions.

Theorem 4.6 Fq.(4.13) has positive prime period two solutions if and only if one of the
following conditions is satisfied:

4d(b%—abc—abd)

(i) If I, k, s are even and (b — ac)? > ord

,b>a(c+d).
(ii) If I, k, s are odd and (ac + b)* > 4ab(c — d), ¢ > d.

(iii) If I, k— even, s—odd and (ac+b)? > dabtabd—a?ctd-d) o2 4 2y > g(a2c® — 1?),

(c=d)
c #d.

(iv) If I—even, k, s—odd and (ac+b)? > #4 c > d.

(v) If k—even, I, s—odd and (ac + b)* > —?ffi;-

(vi) If s—even, [, k—odd and (ac — b)? > W, ac® > b(c+d).

Proof. We will prove the theorem when Case (i) is true. The proof of other cases is
similiar.
First suppose that there exists a prime period two solution

D4 D5 g5

20



of Eq.(4.13). We will prove that condition (i) holds.
When [, k, s—even, we see from Eq.(4.13) that

dq?
cqg—0b

p= +a

dp?

cp—b

q= + a.

Then

cpq — bp = dq® + acq — ab,

and

cpq — bq = dp® + acp — ab.
Substracting (4.14) from (4.15) gives

b(g —b) = d(¢*> — p*) + ac(q — p).

Since p # q, it follows that

(b—ac)'

+qg=
pPTq d

Also, since p and ¢ are positive, (b — ac) should be positive.

Again, adding (4.14) and (4.15) yields

2cpq — b(p + q) = d(p* + ¢*) + ac(p + q) — 2ab.
It follows by (4.16), (4.17) and the relation

pP+¢*=p+q*—2pg forall pqcR,

that

b? — abc — abd
d(c+d)

pg =

(4.14)

(4.15)

(4.16)

(4.17)

(4.18)

It is clear now from Eq.(4.16) and Eq.(4.18) that p and ¢ are the two positive distinct

roots of the quadratic equation

b? — abc — abd B

dt® — (b — ac)t =0
(b —ac)t + ctd)
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and so

4d(b* — abc — abd)
(c+d)

(b—ac)® >

So inequality (i) holds.
Secondly suppose that (i) is true. We will show that Eq.(4.13) has a prime period two
solution.

Assume that

(b—ac) - \/ (b — acyz — 2T~ abe = abd)

(c+d)
P= 2d
and
o, 4d(b* — abc — abd)
(b—ac)—\/(b—ac) c+d)
q = .

2d
We see from (i) that
4d(b* — abc — abd)

b—ac)® >
( ) (c+d)
Therefore p and ¢ are distinct real numbers.
Set
Ty =D Tory1 =4, ..., and T_1=4g,Zo =DP-

We wish to show that
r1=2_1=¢q and Ty = xTg=D.
It follows from Eq.(4.13) that

dr_jx_ dp?
e k+azi—|—a
cp—b

sl
cr_s—b
2

- 4d(b* — abc — abd)
(b—ac)—\/(b—ac) crd)
d 2d

(c+d)
c —b
2d

(b—ac) — \/(b —ac)? — 4d(b” — abc — abd)
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or,

2 4d(b2 — abc — abd)
2 _ _ A4b%d _ 2 _
[21) 2abc &) 2b\/ (b ac) (C ) ‘

2 [bC—QCQ — 9bd — C\/(b—ac) _ 4d(b2 (_cc—lfii)— abd)]

I =

Multiplying the denominator and numerator by

4d(b? — abc — abd
bc—a02—2bd+c\/(b—ac)2— ( (ciii) ¢ )]

(c+d)

we get

4d(b* — abe — abd
[4b3d2 — dab?ed? + 4b2d2\/(b _ qeyr— M —abe—a )‘

(c+d)
e 82
or,
4d(b* — abc — abd)
b b— ac)? —
[ ac + \/( ac) 1 d) ]
I = =4q.

2d

Similarly as before one can easily show that

Ty =D.

Then it follows by induction that

Top =p and @9, =q foralln > —r.

Thus Eq.(4.13) has the positive prime period two solution

""p7 Q7p7Q7

where p and ¢ are the distinct roots of the quadratic Eq.(4.19) and then the proof is

complete.

4.2.2 Local Stability of Equation (4.13)

In this subsection we study the local stability character of the equilibrium point of

Eq.(4.13) in the case ¢ = d.
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The equilibrium points of Eq.(4.13) are given by the relation
dz?

cT — b

T = + a.

If ¢ = d, then the only equilibrium point of Eq.(4.13) is given by

ab
T = )
ac+b

Let g : (0,00)*> — (0,00) be a function defined by

cuv

g(u,v,w) = p— +a.
Therefore
dg(u,v,w) v
ou w0
dg(u,v,w)  cu
v w0
og(u,v,w) Auv
dw  (cw — b)Y
Then we see that
09(Z,=,T) —ac
_— = — = —(
ou b 0
09(Z,T,T) —ac
_— fry — = —C
v b b
09(T,7,7) —a%c?
T ow B ®

Then the linearized equation of Eq.(4.13) about T is
Yn+1 + CoYn—1 + C1Yn—k T C2Yn—s = 0.
Theorem 4.7 Assume that

V2b > (ac+b).

Then the positive equilibrium point of Eq.(4.13) is locally asymptotically stable.

Proof. It is follows by Theorem (1.6) that, Eq.(4.20) is asymptotically stable if

|co| + |ex] + [eo] < 1,

—ac —ac —a?c? <1 2ac n a’c? <1
or — + ——
b b b2 ’ b b2 ’
and so

a?c? 4 2abc + b* < 20 = V/2b > (ac +b).

The proof is complete.

o4
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4.2.3 Global Attractivity of the Equilibrium Point of Equation (4.13)

In this subsection we investigate the global attractivity of the equilibrium point of Eq.(4.13).

Theorem 4.8 . If b = ac, ¢ = d, then the equilibrium point T of Eq.(4.13) is global

attractor.

Proof. Let p, g be real numbers and assume that g : [p, q]3 — [p, q] is a function defined

by
(u,v,w) = e
g » Y - cw — b .
Therefore
dg(u,v,w) v
ou cw—"b’
dg(u,v,w)  cu
v Ccw—b’
dg(u,v,w) — Fuw
ow  (cw—b)?’

Case i. If cw —b > 0, then we can easily see that the function g(u, v, w) increasing in u, v
and decreasing in w.

Suppose that (m, M) is a solution of the system
m = g(m,m,M) and M = g(M,M,m).

Then from Eq.(4.13), we see that

cm? cM?
M =
cM—b+a’ cm—b+a’

cMm —bm = em? + acM — ab, ¢Mm — bM = cM? + acm — ab,

then
b(M —m) = c(m®> — M?) + ac(M —m), b= ac.

Thus M = m.
It follows by the Theorem (1.16) that T is a global attractor of Eq.(4.13).
Case ii. If cw — b < 0, then we can easily see that the function g(u,v,w) decreasing in

U, v, W.
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Suppose that (m, M) is a solution of the system
M = g(m,m,m) and m = g(M,M,M).

Then from Eq.(4.13), we see that

cm? cM?
+a m =

M=
cm —b ’ cM —b

+a

cMm — bM = em? + acm — ab, c¢Mm — bm = ¢M? + acM — ab,

then
b(m — M) = c¢(m® — M?) + ac(m — M), b= ac.

Thus M = m.
It follows by the Theorem 1.20 that T is a global attractor of Eq.(4.13) and then the proof

is complete.

ATy —1Tn—k

4.3 Equation z,.; = n=01,---.

bTp—p — CTpy

In this section we investigate the global attractivity of the equilibrium point, and the

asymptotic behavior of the solutions of the following difference equation

QT p—1Tn—k

Tpp1 = n=01,--- (4.21)

bTp—p — CTpyg

where the initial conditions _,,z_,1,2_,19,...,x9 are arbitrary positive real numbers,

r = max {[, k, p, ¢} is nonnegative integer and a, b, ¢ are positive constants.

4.3.1 Local Stability of Equation (4.21)

In this subsection we investigate the local stability character of the solutions of Eq.(4.21).
Eq.(4.21) has a uniqe positive equilibrium point and is given by

aT?

T =

bx — ¢
If a # b — ¢, b # ¢, then the unique equilibrium point is T = 0.
Let f:(0,00)* — (0,00) be a function defined by

auv

(4.22)

f<u7/U7w7S) - bw—cs’
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Therefore, it follows that

av au
fu(u,v,w,s) - M7 fv(uavawas)_M7
—bauv cauv

fuw(u,v,w,s) = m7 fs(U,U7w7S)—m>

we see that

f(E@ETT) = (bfc), f,(7.7,7,7) = (bfc),
—__ . —ab ____,_  ac

fw(x,x,x,x) - (b—0)27 fs(:c,x,x,x) - (b—0)27

The linearized eqation of Eq.(4.21) about 7 is

a ab ac

a
-7 —_ =0. 4.23
Vn+1 + (b o C) Yn—-1 + (b . C) Vn—k (b . C)QVn—p + (b . C)nyn—q ( )

Theorem 4.9 Assume that
a(3¢ —n) < (b—¢)?,

where ¢ = max{b,c},n = min {b, ¢} . Then the equilibrium point of Eq.(4.21) is locally
asymptotically stable.
Proof: It follows by Theorem 1.6 that Eq.(4.23) is asymptotically stable if

‘(bic) +‘(bic) +'(bibc)2 +’(bicc)2 <1,
ool <
and so

2a b —c| +a(b+c) < (b—c)

The proof is complete.

4.3.2 Global Attractivity of the Equlibrium Point of Equation (4.21)

In this subsection we investigate the global attractivty of the equilibrium point of Eq.(4.21).

We give the following two theorems which is a minor modification of Theorem 1.16.

o7



Theorem 4.10 Let [a,b] be an interval of real numbers and that
f1a, b = o, b,
is a continuous function satisfying the following properties:

(i) f(x1,za, ..., Tk 1) is non-increasing in one component (for example z;) for each z,.(r #

t) in [a,b] and non-decreasing in the remaining components for each z; in [a, b] .

(ii) if (m, M) € [a,b] X [a,b] is a solution of the system
M= fM,M,....M,m,M,....M,M) and m = f(m,m,...m,M,m,....m,m)
implies m = M.
Then Equation
Tpr1 = f(Tp, Tp_1, ooy Tpg),m=0,1,... (4.24)

has a unique equilibrium T € [a, b] and every solution of Eq.(4.24) converges to Z.

Proof: Set

mo = a and My = b,

and for each 1 = 1,2, ... set

m; = f(mzeb M1y ey M1, M1, my oy my mi—l)a
and

M = f(Mi_y, My, ..., My, iy, My, ..., M1, M _1).
Now observe that for each i > 0,
a=mog<mig<..<m; <M <..M <My=b,

and

m; < x, < M; for p> (k+1)i+ 1.

Set

m = lim m; and M = lim M,.

1—00 i—00
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Then

M > lim supx; > lim inf x; > m.

1—00 1—00

and by the continuity of f,

M= fM,M,....M,m,M,....M,M) and m = f(m,m,...m,M,m,....m,m).
In view of (ii),

m=M =17,

from which the result follows.

Theorem 4.11

Let [a, b] be an interval of real numbers and assume that
[ ot = o],

is a continuous function satisfying the following properties:
(1) f(z1,2a,...,2x11) is non-increasing in one component (for example ;) for each z,(r #
t) in [a,b] and non-increasing in the remaining components for each x; in [a, b].

(ii) if (m, M) € [a,b] X [a, b] is a solution of the system
M= f(m,m,...m,M,m,...m;m)and m = f(M,M,....,M,m, M, ..., M, M)

implies m = M.
Then Eq.(4.24) has a unique equilibrium Z € [a, b] and every solution of Eq.(4.24) con-
verges to T

Proof: As the proof of Theorem 4.10 and will be omitted.
Theorem 4.12

The equilibrium point T of Equation 4.21 is global attractor if ¢ # a.
Proof: Let p,q are a real numbers and assume that f : [p, q]4 — [p, q] be a function
defined by Eq.(4.22), then we can easly see that the function f(u,v,w,s) increasing in s

and decreasing in w.

29



Case 1. If bw — c¢s > 0, then we can easily that the function f(u,v,w,s) increasing in
u, v, s and decreasing in w.

Suppose that (m, M) is a solution of the system

M = f(m,m,M,m) and M = f(M, M, m,M).

Then from Eq.(4.21), we see that

L VA L
bM — cm bm — cM

bM =cm+am, bm=cM + al,

m

then

(M —m)(b+c+d)=0
Thus

M =m.

It follows by Theorem 4.10 that 7 is a global attractor of Eq.(4.21) and then the proof is
complete.

Case 2. If bw — ¢s < 0, then we can easily that the function f(u,v,w,s) decreasing in
u, v, w and increasing in s.

Suppose that (m, M) is a solution of the system
M = f(m,m,m, M) and M = f(M, M, M, m).

Then from Eq.(4.21), we see that
am? alM?
M = - = —
bm—cM T bM —em’
bmM — cM? = am?,  bmM — em? = aM?,

then

(M? —m?®)(c—a)=0, a#c

Thus,

M =m.

It follows by Theorem 4.11 that T is a global attractor of Eq.(4.21) and then the proof is

complete.
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CHAPTER 5

DIFFERENCE EQUATION:

o+ an + VYTn—-1
anfl + Dxnf2 ’

Tnt1 = n=01--

In this chapter, we investigate the global character of the solutions of the rational differ-

ence equation of the third order

o+ ﬁxn + VYTn—-1
Cfxn—l + D-rn—2 ’

Tpi1 = =0,1,- - (5.1)

where the parameters «, 3,7, D and C' are non-negative real numbers and the initial
conditions x_q, z_1 x( are arbitrary non-negative real numbers such that the denominator

of Eq.(5.1) is never zero.

5.1 LINEARIZED STABILITY ANALYSIS

Lemma 5.1 (a) Eq.(5.1) can be written in the normalized form

a+ B, + Th_q
Tyl = ,n=0,1,--- 5.2
i Tp_1+ DIn_Q ( )

with positive parameters o, B, D and with arbitrary positive initial conditions v_g, x_1,

Zo-

(b) Equilibrium point of Eq.(5.2) is

(B+1)++/(B+1)2+4a(l + D)
2(1+ D)

T =

(c) The linearized equation of Eq.(5.2) about its positive equilibrium T is

3 , 71
Znt1 — — 2 Zn—
1+ D)z (1+ D)z

and the corresponding characteristic equation of Eq.(5.3) is

)\3_ )\ )\ :O
1+D)  (1+Dz  (1+D)
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Proof.

(a) The Eq.(5.1) which by the change of variables

7
Tn = FYn,

C

reduces to the difference equation

a+ B, + T,_q

n = ) :0717"'
ot Tn—1 +D:Un72 "
where

C D
o= a—, b= é, D= —.

o gl C

(b) The equilibrium points of Eq.(5.2) are the non-negative solutions of the equation

a+BT+7T

T =
T+ Dx

or equivalently

(1+D)7* - (14+8)T—a=0. (5.4)

Hence, the solutions of Eq.(5.4) are

1+ 84 /(1+8)?+4a(l+ D)

7= 2(1+ D) (5:5)
and
f:1A¢%—¢u+ﬁP+4M1+D)

2(1+ D)

So, the positive equilibrium point of Eq.(5.2) is unique and is given by (5.5).

(c) Now, let I be some interval of real numbers and let
foIxIxI—1

be a continuously differentiable function such that f is defined by

a+ B, + 1,1
Tp-1+ Dajn—Z .

f(xna Tn—1, xn—2) -
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From Eq.(5.4), we obtain that

o 8f —_ =\ ﬁ'(xnfl + Dxn72) - (Oé +an +xn71)-0 — — —
do = a_l'n(m’x’x) - |: ($n71 —|—D$n,2)2 :| (ZL‘,I‘,ZL‘)
p.(x+Dz) p[r(1+D) 6]

?(1+ D)2 7*(1+D)? z(1+ D)

]" n— Dn— - n n— .]_
- (E,E,E):{ (Xp—1+ Dxy2) — (a+ Bry + 25 1)

(Tn-1 + Dxp_o)?
T+ Dr—-7.(x+Dx) (T+DIT)(1-7) 1-7

TQ(1 + D)? - 52(1 + D)2 - z(1+ D)a
and
O [0+ Days) = (@t +wa) D)
© = O0Tp_o (77,7) = [ (Zp_1 + Dxy_s)? ] (Z,7,7T)
 —(a+pT+7).D -T(T+DT).D D
B (z+Dz)? (z+D7)?  (1+D)

If 7 denotes an equilibrium point of Eq.(5.2), then the linearized equation associated with

Eq.(5.2) about the equilibrium point 7 is
Zn+1 = qoZn + Q12n—14G22n—2

or

Zn—2 — 0. (56)

—2n—1 +

D
BT 0 DE " T U+ D)E )

Lemma 5.2 The positive equilibirium T of Eq.(5.2) is locally asymptotically stable when

(L+5)°(D~1)
4

<aandf < 1.
Proof. From Theorem 1.5 it follows all roots of Eq.(5.2) lie in an open disc |A| < 1, if
90| + |q1] + lgz| < 1.

This implies that

N ORIl D M
(1+ D)z (1+ D)z 1+ D ’
Hence
B 11— 7| Dz
1 :
+D7  0+1DF  G+D)F (5:7)

f+Dz+|1-% < (1+D)x
1-7% < 2+ Dz—p - DT

-7 < -8 (5.8)
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and so we have two cases for (5.7).

Case 1:
Then
1-T<72-0 = # <
1+5<<5+1y+¢w+4y+4m1+0)
2 2(1+ D)
2
R (+87(D-1) __
4
Case 2:
Hence

—T+p<1—-T = p<1.
So the positive equilibrium T of Eq.(5.2) is locally asymptotically stable.

Lemma 5.3 The positive equilibrium T of Eq.(5.2) is locally asymptotically stable when
[(D+3)8—(D-1)|(B-1) —(1+p)?

d —
4 < o an 4(1+D)<Oé

and
(B+1)*(7TD +3) (D-1)8—(D+3)](B-1)
13D 1172 < a and 1 < «.

Proof.  The characteristic equation of the linearized equation of Eq.(5.2) about the

equilibrium 7 is
N\ A =0.
1+Djz T@+rDE (11D
From Theorem 1.4 using
—p T—1 D
1+Dyz" (1+Dz " (1+D)

we observe that

a9 =

lazg +aol <1+a; = ‘(1+%)5+( D) <1+—(1”T+Dl)f
N ‘—5+DE T+DT+7T—1
1+ D)z (1+ D)z
= #<Eamd2<l%_fl)<f
. 1—5<(ﬁ+1)+\/(/3+1)2+4a(1+p)
2 2(1+ D)
and

1+8  (B+1)+V(B+1)?+4a(1+D)

2(D+1) 2(1+ D) )
L (49D DIE-D _, g 281?) .
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and

-5 3D z—1
jaz = 3a0| <3 —a1 = ‘(1+D)f_(1+D)‘<3_(1+D)T
—3—3D%| 3z+3DT—-T+1
= ‘ 1+ D)z (1+ D)z
-1 q= -1 _
= T<:Uan 6D—|—2<$
N —B—1_(B+1)+(B+1)’+4a(1+ D)
6D + 2 2(1+ D)
B=1 _(B+1)+/(B+1)?+4a(l+D)
= agnd 5 < 2(1+ D)
B+ 1)%(7D + 3 D-1)—-(D+3))E-1
and also
D \*° z-1 D —B
ai+ay —agas <1 = <1+—D> —Z(1+D)T_(1+D> ((1+D)E)<1
D T—1
- (1+D)2+(1+D)f+(1+D)2T<1
N %1—1+5<f
-1 (8+1) ++/(B+1)?+4a(l + D)
= o l+p< 2(1+ D)
N (DB-1)-1DB-1)+5 _
1+D

So the positive equilibirium T of Eq.(5.2) is locally asymptotically stable.

5.2 GLOBAL ATTRACTIVITY OF THE EQUILIBRIUM POINT OF EQUA-
TION (5.2)

Lemma 5.4 The equilibrium point T is a global attractor of Eq.(5.2) if one of the fol-

lowing statements holds:

(1) Dw < a+ Pu and 5 # 1. (5.9)

2
(2) Dw > a+ pu and D > 1, (B+1) 4(D i) < a. (5.10)

Proof. Let o and (8 be real numbers and assume that g : [«, 6]3 — [a, B] is a function

defined by

a+ pPu+v

u, v, W) =
g(u, ) v+ Dw
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Then

g (u,v,w) 16
ou " v+ Duw’
dg (u,v,w)  Dw—a— fu
v  (v+ Dw)®
dg (u,v,w)  —(a+ pu+wv)D
ow  (v+Dw)*

We consider two cases:

Case 1 If Dw < a+ [Su then we can easily see that the function g (u,v,w) is increasing
in v and decreasing in v, w.

Suppose that (m, M) is a solution of the system M = g(M,m, m) and m = g(m, M, M)
then from Eq.(5.2) we see that

a+ M +m _a+pm+M

m-+Dm "’ M+ DM

Since
Mm+ DMm — M —m —a =0,

Mm+ DMm —pm—M —a =0

we have
(m — M)(5—1)=0.
When 3 # 1, we have
M=m

which the result follows.

It follows by Theorem 1.15 that T is global attractor of Eq.(5.1) and then the proof is
complete.

Case 2 If Dw > a+ fu, then we can easily see that the function g (u, v, w) is increasing
in u,v and decreasing in w.

Suppose that (m, M) is a solution of the system M = g(M, M, m) and m = g(m,m, M).
Then from (5.2), we see that

a+ M+ M a+ fm+m
= m — ————————,
M+ Dm m+ DM
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Since
M? 4+ DMm — M(B+1) —a =0,

m*+ DMm —m(B+1)—a=0

we have
(m —M)((m+M)—(8+1))=0

with simple calculations. Now if m + M # [ + 1, then M = m. On the other hand if
m+ M = [+ 1, then m and M satisfy the equation

m*+ Dm(B+1—m)=a+Bm+m

and so

m*(1—D)+(B+1)(D—-1)m—a=0. (5.11)
The discriminant of the Eq.(5.11)

A = [B+1)(D-1)P+4(1-D)a
= (D-1)[(B+1)*(D—1) - 4a]

is negative when

D>1land (+1)*(D—1) < 4o
then we have

M=m

which the result follows.
It follows by Theorem 1.16 that T is global attractor of Eq.(5.2) and then the proof is

complete.
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