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d�fference equat�ons and the global attract�v�ty of the equ�l�br�um po�nts of certa�n rat�onal 

d�fference equat�ons. 

 

Th�s thes�s cons�sts of f�ve chapters.  
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Bu tezde bazı rasyonel fark denklemler�n�n çözümler�n�n as�mptot�k davranışları ve bel�rl� 

rasyonel fark denklemler�n�n denge noktalarının global çek�c�l�ğ� araştırılmıştır. 

 

Bu tez beş bölümden oluşmaktadır. 

 

B�r�nc� bölümde, tezde gerekl� olan bazı temel tanımlar ve teoremler ver�lm�şt�r. 

 

İk�nc� bölümde, bazı �k�nc� mertebeden rasyonel fark denklemler�n�n yerel as�mptot�k 

kararlılığı �le �lg�l� bazı örnekler göster�lm�şt�r. 

 

Üçüncü bölümde, bazı üçüncü mertebeden rasyonel fark denklemler�n�n as�mptot�k 

davranışları �le �lg�l� bazı örnekler sunulmuştur. 

 

Dördüncü bölümde, bel�rl� rasyonel fark denklemler�n�n per�yod�kl�l�ğ�, kararlılığı ve global 

çek�c�l�ğ� çalışılmıştır. 
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CHAPTER 1

INTRODUCTION AND PRELIMINARIES

In this thesis we considerably use [1,2,7,13,14,18, 22, 24, 27, 32]. For some other basic

results in the area of di¤erence equations and systems, see [3-6, 8-20, 21, 23, 25-26, 28-31].

We present some well known de�nitions, results and theorems in this chapter.

1.1 DEFINITIONS OF STABILITY

Let I be some interval of real numbers and let f : Ik+1 ! I be a continuously di¤erentiable

function. A di¤erence equation of order (k + 1) is an equation of the form

xn+1 = f(xn; xn�1; :::; xn�k); n = 0; 1; :::. (1.1)

A solution of Eq.(1.1) is a sequence fxng1n=�k that satis�es Eq.(1.1) for all n � �k.

Lemma 1.1 For every set of initial conditions x�k; x�k+1; :::; x0 2 I, the di¤erence

equation (1.1) has a unique solution fxng1n=�k.

As a special case of above lemma, for every set of initial conditions x0; x�1 2 I, the second

order di¤erence equation

xn+1 = f(xn; xn�1); n = 0; 1; ::: (1.2)

has a unique solution fxng1n=�1 and for every set of initial conditions x0; x�1; x�2 2 I, the

third order di¤erence equation

xn+1 = f(xn; xn�1; xn�2); n = 0; 1; ::: (1.3)

has a unique solution fxng1n=�2.

De�nition 1.1 A point x 2 I is called an equilibrium point of Eq.(1.1) If

x = f(x; x; :::; x).
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That is

xn = x for n � 0

is a solution of Eq.(1.1) or equivalently, x is a �xed point of f .

De�nition 1.2 (Stability) (a) The equilibrium point x of Eq.(1.1) is locally stable if

for every " > 0; there exists � > 0 such that for all x�k; x�k+1; :::; x�1; x0 2 I with

jx�k � xj+ jx�k+1 � xj+ :::+ jx0 � xj < �;

we have

jxn � xj < "; for all n � �k.

(b) The equilibrium point x of Eq.(1.1) is locally asymptotically stable if x is locally stable

solution of Eq.(1.1)and there exists 
 > 0, such that for all x�k; x�k+1; :::; x�1; x0 2 I

with

jx�k � xj+ jx�k+1 � xj+ :::+ jx0 � xj < 
;

we have

lim
n!1

xn = x.

(c) The equilibrium point x of Eq.(1.1) is global attractor if for all x�k; x�k+1; :::; x�1; x0 2

I we have

lim
n!1

xn = x.

(d) The equilibrium point x of Eq.(1.1) is globally asymptotically stable if x is locally

stable, and x is also a global attractor of Eq.(1.1).

(e) The equilibrium point x of Eq.(1.1) is unstable if x is not locally stable.
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1.2 LINEARIZED STABILITY ANALYSIS

Suppose that the function f is continuously di¤erentiable in some open neighborhood of

an equilibrium point x: Let

qi =
@f

@ui
(x; x; :::; x); for i = 0; 1; :::; k

denote the partial derivative of f(u0; u1; :::; uk) with respect to ui evaluated at the equi-

librium point x of Eq.(1.1).

De�nition 1.3 The equation

yn+1 = q0yn + q1yn�1 + :::+ qkyn�k =

kX
i=0

@f

@ui
(x; x; :::; x)yn�i; n = 0; 1; ::: (1.4)

is called the linearized equation of Eq.(1.1) about the equilibrium point x and the equation

�k+1 � q0�k � :::� qk�1�� qk = 0 (1.5)

is called the characteristic equation of Eq.(1.4) about x.

Then the equation

yn+1 = q0yn + q1yn�1; n = 0; 1; ::: (1.6)

is the linearized equation associated with Eq.(1.2) about the equilibrium point x and the

equation

�2 � q0�� q1 = 0

is the characteristic equation of Eq.(1.6) about x.

Also, the equation

yn+1 = q0yn + q1yn�1 + q2yn�2; n = 0; 1; ::: (1.7)

is the linearized equation associated with Eq.(1.3) about the equilibrium point x and the

equation

�3 � q0�2 � q1�� q2 = 0

is the characteristic equation of Eq.(1.7) about x.

The following result, known as the Linearized Stability Theorem, is very useful in de-

termining the local stability character of the equilibrium point x of Eq.(1.1).
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Theorem 1.2 (The Linearized Stability Theorem) ([7], p.5)

Assume that the function f is a continuously di¤erentiable function de�ned on some open

neighborhood of an equilibrium point x: Then the following statements are true:

(a) When all the roots of Eq.(1.5) have absolute value less than one, then the equilibrium

point x of Eq.(1.1) is locally asymptotically stable.

(b) If at least one root of Eq.(1.5) has absolute value greater than one, then the equilib-

rium point x of Eq.(1.1) is unstable.

The equilibrium point x of Eq.(1.1) is called hyperbolic if no root of Eq.(1.5) has absolute

value equal to one. If there exists a root of Eq.(1.5) with absolute value equal to one,

then the equilibrium x is called non� hyperbolic.

An equilibrium point x of Eq.(1.1) is called a repeller if all roots of Eq.(1.5) have absolute

value greater than one.

As a special case of Theorem 1.2 we have the following corollary.

Corollary 1.1 (a) If both roots of the characteristic equation (quadratic equation)

�2 � q0�� q1 = 0

of Eq.(1.6) lie in the open unit disk j�j < 1, then the equilibrium x of Eq.(1.2) is

locally asymptotically stable.

(b) If all roots of the characteristic equation (qubic equation)

�3 � q0�2 � q1�� q2 = 0

of Eq.(1.7) lie in the open unit disk j�j < 1, then the equilibrium x of Eq.(1.3) is

locally asymptotically stable.

The following two theorems state necessary and su¢ cient conditions for all the roots of

a real polynomial of degree two or three, respectively, to have modulus less than one.

Theorem 1.3 ([7], p.6) Assume that a1 and a0 are real numbers. Then a necessary

and su¢ cient condition for all roots of the equation

�2 + a1�+ a0 = 0
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to lie inside the unit disk is

ja1j < 1 + a0 < 2.

Theorem 1.4 ([7], p.6) Assume that a2, a1 and a0 are real numbers. Then a necessary

and su¢ cient condition for all roots of the equation

�3 + a2�
2 + a1�+ a0 = 0

to lie inside the unit disk is

ja2 + a0j < 1 + a1; ja2 � 3a0j < 3� a1 and a20 + a1 � a0a2 < 1.

Theorem 1.5 (Clark Theorem) ([7], p.6) Assume that q0; q1; :::; qk are real numbers

such that

kX
i=1

jqij = jq0j+ jq1j+ :::+ jqkj < 1:

Then all roots of Eq.(1.5) lie inside the unit disk.

Using The Linearized Stability Theorem and Clark Theorem we have the following result.

Theorem 1.6 ([13],p.863) Assume that qi 2 R; i = 1; 2; ::: and k 2 f0; 1; 2; :::g : Then

kX
i=1

jqij < 1

is a su¢ cient condition for the asymptotic stability of the di¤erence equation,

xn+k + p1xn+k�1 + :::+ pkxn = 0; n = 0; 1; � � � .

Theorem 1.7 ([24], p.9) Consider the di¤erence equation

xn+1 = f0 (xn; xn�1)xn + f1 (xn; xn�1)xn�1; n = 0; 1; ::: (1.8)

with nonnegative initial conditions and

f0; f1 2 C [[0;1)� [0;1) ; [0; 1)] .

Assume that the following hypothesis hold:

(a) f0 and f1 are non-increasing in each of their arguments;
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(b) f0(x; x) > 0 for all x � 0;

(c) f0(x; y) + f1(x; y) < 1 for all x; y 2 (0;1).

Then the zero equilibrium of Eq.(1.8) is globally asymptotically stable.

Theorem 1.8 ([24], p.11) Let [a; b] be an interval of real numbers and assume that

f : [a; b]� [a; b] �! [a; b]

is a continuous function satisfying the following properties:

(a) f(x; y) is non-decreasing in x 2 [a; b] for each y 2 [a; b], and f(x; y) is non-increasing

in y 2 [a; b] for each x 2 [a; b];

(b) If (m;M) 2 [a; b]� [a; b] is a solution of the system

f (m;M) = m and f(M;m) =M;

then m =M .

Then Eq.(1.2) has a unique equilibrium x 2 [a; b] and every solution of Eq.(1.2) converges

to x.

Theorem 1.9 ([24], p.12) Let [a; b] be an interval of real numbers and assume that

f : [a; b]� [a; b] �! [a; b]

is a continuous function satisfying the following properties:

(a) f(x; y) is non-increasing in x 2 [a; b] for each y 2 [a; b] and f (x; y) is non-decreacing

in y 2 [a; b] for each x 2 [a; b],

(b) The di¤erence equation Eq.(1.2) has no solutions of prime period two in [a; b].

Then Eq.(1.2) has a unique equilibrium x 2 [a; b] and every solution of Eq.(1.2) converges

to x.
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Theorem 1.10 ([24], p.13) Let [a; b] be an interval of real numbers and assume that

f : [a; b]� [a; b] �! [a; b]

is a continuous function satisfying the following properties:

(a) f(x; y) is non-increasing in each of its arguments;

(b) If (m;M) 2 [a; b]� [a; b] is a solution of the system

f (m;m) =M and f (M;M) = m;

then m =M .

Then Eq.(1.2) has a unique equilibrium x 2 [a; b] and every solution of Eq.(1.2) converges

to x.

In the next theorem we make use of the following notation associated with a function

f (z1; z2) which is monotonic in both arguments.

For each pair of numbers (m;M) and for each i 2 f1; 2g, de�ne

Mi (m;M) =

8<: M; if f is increasing in zi

m; if f is decreasing in zi

and

mi (m;M) =Mi (M;m) .

Theorem 1.11 ([1], p.3)Assume that f 2 C
�
[0;1)2 ; [0;1)

�
and f (z1; z2) is either

strictly increasing in z1 and z2, or strictly decreasing in z1 and z2, or strictly increasing

in z1 and strictly decreasing in z2. Furthermore, assume that for every

m 2 (0;1) and M > m,

either

[f (M1 (m;M) ;M2 (m;M))�M ] [f (m1 (m;M) ;m2 (m;M))�m] > 0

or

f (M1 (m;M) ;M2 (m;M)) =M and f (m1 (m;M) ;m2 (m;M)) = m.

Then every solution of Eq.(1.2) which is bounded from above and from below by positive

constants converges to a �nite limit.
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We now present two genereal global asymptotic stability results that apply to several

special cases of the (k + 1)st-order rational di¤erence equation

xn+1 =

�+
kP
i=0

�ixn�i

A+
kP
i=0

Bixn�i

, n = 0; 1; ::: (1.9)

with A > 0, the remaining parameters non-negative, with

kX
i=0

�i and
kX
i=0

Bi 2 (0;1) ,

and with arbitrary non-negative initial conditions such that the denominator is always

positive.

The characteristic equation of the linearized equation of Eq.(1.9) about an equilibrium

point x is

�k+1 +
1

A+ x:
kP
i=0

Bi

kX
i=0

(Bix� �i)�k�i = 0. (1.10)

Zero is an equilibrium point Eq.(1.9) if and only if

� = 0 and A > 0. (1.11)

As we will see later, when (1.11) holds, the zero equilibrium of Eq.(1.9) is globally as-

ymptotically stable when

A >
kX
i=0

�i (1.12)

and unstable when

A <
kX
i=0

�i.

Eq.(1.9) has a positive equilibrium point if and only if either

� > 0 (1.13)

or

� = 0 and A <
kX
i=0

�i. (1.14)

8



When (1.13) holds, the equation has the unique equilibrium point

x =
� � A+

q
(� � A)2 + 4�B
2B

, (1.15)

where for simplicity we use the notation,

� =
kX
i=0

�i and B =

kX
i=0

Bi.

When (1.14) holds, Eq.(1.9) has the unique positive equilibrium point

x =
� � A
B

.

Note that

1

A+Bx

kX
i=0

jBix� �ij �
1

A+Bx
(Bx� �) . (1.16)

Therefore, by Theorem 1.5 and 1.16, the equilibrium of Eq.(1.9) is locally asymptotically

stable when (1.12) holds.

Theorem 1.12 ([7], pp.150-151) Assume that

� =
kX
i=0

�i < A.

Then the following statements are true:

(a) If

� = 0,

the zero equilibrium of Eq.(1.9) is globally asymptotically stable.

(b) If

� > 0,

the positive equilibrium of Eq.(1.9) is globally asymptotically stable.

9



In a special case when

A =
kX
i=0

�i > 0 and � > 0,

the global character of solutions of Eq.(1.9) is completely described by the following result

in [31]. In this case it is preferable to write the di¤erence equation in the form

xn =

�+
kP
r=1

�rxn�ir

A+
mP
t=1

Bjxn�jt

, n = 1; 2; :::. (1.17)

Also, by making a change of variables, if necessary, we may and do assume that the

greatest common divisor of all "delays" in the numerator and denominator is 1, that is,

gcd fi1; :::; ik; j1;:::;jmg = 1.

Theorem 1.13 ([7], p.152) Assume that

� = 0 and � =
kX
i=0

�i = A

and that one of the following three conditons is satis�ed:

(a) �iBi > 0 for some i 2 f0; :::; kg.

(b) �0 > 0.

(c) B0 and Eq.(1.9) has no period-two solutions.

Then the zero equilibrium of Eq.(1.9) is globally asymptotically stable.

Theorem 1.14 ([27], p.155) Let l 2 f1; 2; :::g. Suppose that on some interval I � R

Eq.(1.1) has the linearization

xn+l =

mX
i=1�l

gixn�i,

where the non-negative functions gi : Ik+l ! R are such that
mP

i=1�l
gi = 1 is satis�ed.

Suppose that there exists A > 0 such that

g1�l � A, n = 0; 1; :::.

Then if xl�1; :::x�k 2 I,

lim
n!1

xn = L 2 I.

10



Theorem 1.15 ([24], p.205) Let [a; b] be an interval of real numbers and assume that

f : [a; b]� [a; b]� [a; b] �! [a; b]

is a continuous function satisfying the following properties:

(a) f(x; y; z) is non-decreasing in x for each y and z 2 [a; b]and is non-increasing in y

and z for each x 2 [a; b] of its arguments;

(b) If (m;M) 2 [a; b]� [a; b] is a solution of the system

M = f (M;m;m) and m = f (m;M;M) ;

then m =M .

Then Eq.(1.2) has a unique equilibrium x 2 [a; b] and every solution of Eq.(1.2) converges

to x.

Theorem 1.16 ([24], p.202) Let [a; b] be an interval of real numbers and assume that

f : [a; b]� [a; b]� [a; b] �! [a; b]

is a continuous function satisfying the following properties:

(a) f(x; y; z) is non-decreasing in x and y 2 [a; b] for each z 2 [a; b] , and is non-

increasing in z 2 [a; b] for each x and y 2 [a; b]

(b) If (m;M) 2 [a; b]� [a; b] is a solution of the system

m = f (m;m;M) and M = f (M;M;m) ;

then m =M .

Then Eq.(1.2) has a unique equilibrium x 2 [a; b] and every solution of Eq.(1.2) converges

to x.

Theorem 1.17 ([7], p.331) Let fxng be any solution of equation

xn+1 =
�+ xn�m

A+Mxn�m + Lxn�1
; n = 0; 1; :::.

Then the following statements are true:
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(i) When

0 � A < 1 and
(L�M)(1� A)2

4M2
� � < A

M
+
L

M2
;

the solution fxng eventually enters the interval
�
�M�A
L
; 1
M

�
and the function f (xn�m; xn�1)

is eventually increasing in xn�m and strictly decreasing in xn�1:Furthermore, the solution

fxng converges to the equilibrium.

(ii) When

0 � A < 1 and � >
A

M
+
L

M2
;

the solution fxng eventually enters the interval
�
1
M
; �M�A

L

�
and the function f (xn�m; xn�1)

is eventually strictly decreasing in xn�m and xn�1. Furthermore, the solution fxng con-

verges to the equilibrium.

(iii) When

0 � A < 1 and � =
A

M
+
L

M2
;

the solution fxng converges to the equilibrium.

Theorem 1.18 ([7], p.331) Assume that the following conditions hold:

(i) f 2 C [(0;1)� (0;1) ; (0;1)] :

(ii) f(x; y) is decreasing in x and strictly decreasing in y.

(iii) xf(x; x) is strictly increasing in x.

(iv) The equation

xn+1 = xnf(xn; xn�1); n = 0; 1; ::: (1.18)

has a unique positive equilibrium x.

Then x is a global attractor of all positive solutions of Eq.(1.18).

Theorem 1.19 ([24], p.202) Let [�; �] be an interval of real numbers and assume that

g : [�; �]3 ! [�; �] ;

is a continuous function satisfying the following properties:

12



(a) g(x; y; z) is non-decreasing in x and z in [�; �] for each y 2 [�; �], and is non-

increasing in y 2 [�; �] for each x and z in [�; �] ;

(b) If (m;M) 2 [�; �]� [�; �] is a solution of the system

M = g(M;m;M) and m = g(m;M;m),

then

m =M:

Then

xn+1 = g(xn; xn�1; xn�2): (1.19)

has a unique equilibrium x 2 [�; �] and every solution of Eq.(1.19) converges to x.

Theorem 1.20 ([24], p.202) Let [a; b] be an inerval of real numbers and assume that

g : [a; b]3 ! [a; b]

is a continuous function satisfying the following properties :

(a) g(x; y; z) is non-increasing in all three variables x; y; z 2 [a; b] :

(b) If (m;M) 2 [a; b]� [a; b] is a solution of the system

M = g(m;m;m) and m = g(M;M;M)

then

m =M:

Then Eq.(1.19) has a unique equilibrium x 2 [a; b] and every solution of Eq.(1.19) con-

verges to x.

13
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CHAPTER 2

EXAMPLES OF THE SECOND ORDER DIFFERENCE EQUATIONS

In this chapter we investigate the local asymptotic stability of some second order di¤erence

equations.

Example 2.1 ([7], pp.335-336) Consider the second order di¤erence equation

xn+1 =
�+ 
xn�1

A+Bxn + Cxn�1
, n = 0; 1; � � � . (2.1)

(a) The normalized form of Eq.(2.1) is

xn+1 =
�+ xn�1

A+Bxn + xn�1
, n = 0; 1; � � � . (2.2)

(b) Equilibrium point of Eq.(2.2) is

x =
1� A+

p
(1� A)2 + 4�(1 +B)
2(1 +B)

:

(c) The linearized equation of Eq.(2.2) about the equilibrium point x is

zn+1 +
Bx

A+ (1 +B)x
zn +

x� 1
A+ (1 +B)x

zn�1 = 0 (2.3)

and the corresponding charasteristic equation of Eq.(2.3) is

�2 +
Bx

A+ (1 +B)x
�+

x� 1
A+ (1 +B)x

= 0.

(d) The equilibrium point x of Eq.(2.2) is locally asymptotically stable when

x >
1� A
2

;

which is equivalent to

A � 1;

15



or

0 � A < 1 and B � 1;

or

0 � A < 1; B > 1; and � >
(B � 1)(1� A)2

4
;

and unstable when

0 � A < 1; B > 1; and � <
(B � 1)(1� A)2

4
:

Solution.

(a) Using the change of variables

xn =



C
yn,

Eq.(2.1) can be written in the normalized form

xn+1 =
�+ xn�1

A+Bxn + xn�1
, n = 0; 1; � � � .

with positive parameter � and B and with arbitrary non-negative initial conditions x�1,

x0 such that the denominator is always positive. Throughout this example we allow the

parameter A to be nonnegative.

(b) The equilibrium point of Eq.(2.2) is the non-negative solution of the equation

x =
�+ x

A+Bx+ x

or equivalently

x2(B + 1) + x(A� 1)� � = 0. (2.4)

Then the only equilibrium point Eq.(2.2) is

x =
1� A+

p
(1� A)2 + 4�(1 +B)
2(1 +B)

:
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(c) Now, let I be some interval of real numbers and let f : I � I ! I be a continuously

di¤erentiable function such that f is de�ned by

f(xn; xn�1) =
�+ xn�1

A+Bxn + xn�1
.

Hence, we have from (2.4)

q0 =
@f

@xn
(x; x) =

�
�(�+ xn�1)B

(A+Bxn + xn�1)
2

�
(x; x) =

�Bx
A+ x(1 +B)

and from (2.4)

q1 =
@f

@xn�1
(x; x) =

�
1: (A+Bxn + xn�1)� (�+ xn�1):1

(A+Bxn + xn�1)
2

�
(x; x) =

1� x
A+ (1 +B)x

:

If x denotes an equilibrium point of Eq.(2.2), then the linearized equation associated

with Eq.(2.2) about the equilibrium point x is

zn+1 = q0zn + q1zn�1

or

zn+1 +
Bx

A+ (1 +B)x
zn +

x� 1
A+ (1 +B)x

zn�1 = 0.

The characteristic equation of the linearized equation of Eq.(2.2) about the equi-

librium x is

�2 +
Bx

A+ (1 +B)x
�+

x� 1
A+ (1 +B)x

= 0:

(d) From (c) and Theorem 1.3 it follows that the equilibrium x of Eq.(2.2) is locally

asymptotically stable when

x >
1� A
2

;

which is equivalent to

A � 1;

or

0 � A < 1 and B � 1;
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or

0 � A < 1; B > 1; and � >
(B � 1)(1� A)2

4

and unstable when

0 � A < 1; B > 1; and � <
(B � 1)(1� A)2

4
:

Example 2.2 ([7], pp.223-224) Consider the second order di¤erence equation

xn+1 =
�+ �xn
A+ Cxn�1

, n = 0; 1; � � � . (2.5)

(a) The normalized form of Eq.(2.5) is

xn+1 =
�+ xn
A+ xn�1

, n = 0; 1; � � � . (2.6)

(b) Equilibrium point of Eq.(2.6) is

x =
1� A+

p
(1� A)2 + 4�
2

.

(c) The linearized equation of Eq.(2.6) about the equilibrium point x is

zn+1 �
1

A+ x
zn +

x

A+ x
zn�1 = 0 (2.7)

and the corresponding charasteristic equation of Eq.(2.7) is

�2 � 1

A+ x
�+

x

A+ x
= 0.

(d) The equilibrium point x of Eq.(2.6) is locally asymptotically stable for all positive

values of the parameters.

Solution.

(a) Using the change of variables

xn =
�

C
yn,

18



Eq.(2.5) can be written in the normalized form

xn+1 =
�+ xn
A+ xn�1

; n = 0; 1; � � � .

with positive parameter �;A and with arbitrary non-negative initial conditions x�1, x0

such that the denominator is always positive.

(b) The equilibrium point of Eq.(2.6) is the non-negative solution of the equation

x =
�+ x

A+ x

or equivalently

x2 � (1� A)x� � = 0. (2.8)

Then the only equilibrium point Eq.(2.6) is

x =
1� A+

p
(1� A)2 + 4�
2

:

(c) Now, let I be some interval of real numbers and let f : I � I ! I be a continuously

di¤erentiable function such that f is de�ned by

f(xn; xn�1) =
�+ xn
A+ xn�1

.

Hence, we have

q0 =
@f

@xn
(x; x) =

�
1

A+ xn�1

�
(x; x) =

1

A+ x
=

2

1 + A+
p
(1� A)2 + 4�

and from (2.8)

q1 =
@f

@xn�1
(x; x) =

�
0� (�+ xn):1
(A+ xn�1)2

�
(x; x) =

�x
A+ x

:

If x denotes an equilibrium point of Eq.(2.6), then the linearized equation associated

with Eq.(2.6) about the equilibrium point x is

zn+1 = q0zn + q1zn�1

or

zn+1 �
1

A+ x
zn +

x

A+ x
zn�1 = 0.

The characteristic equation of the linearized equation of Eq.(2.6) about the equi-

librium x is

�2 � 1

A+ x
�+

x

A+ x
= 0.
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(d) From (c) and Theorem 1.3 it follows that the equilibrium x of Eq.(2.5) is locally

asymptotically stable for all values of the parameters.

Example 2.3 ([7], p.231) Consider the di¤erence equation

xn+1 =
�+ 
xn�1
Bxn + Cxn�1

, n = 0; 1; � � � . (2.9)

(a) The normalized form of Eq.(2.9) is

xn+1 =
�+ xn�1
Bxn + xn�1

, n = 0; 1; � � � . (2.10)

(b) Equilibrium point of Eq.(2.10) is

x =
1 +

p
1 + 4�(B + 1)

2(B + 1)
.

(c) The linearized equation of Eq.(2.10) about the equilibrium point x is

zn+1 +
B

1 +B
zn +

x� 1
(B + 1)x

zn�1 = 0 (2.11)

and the corresponding charasteristic equation of Eq.(2.11) is

�2 +
B

1 +B
�+

x� 1
(B + 1)x

= 0.

(d) The equilibrium point x of Eq.(2.10) is locally asymptotically stable when

� >
B � 1
4

and unstable when

� <
B � 1
4

:

Solution.

(a) Using the change of variables

xn =



C
yn;

Eq.(2.9) can be written in the normalized form

xn+1 =
�+ xn�1
Bxn + xn�1

, n = 0; 1; � � � .

with positive parameter �;B and with arbitrary positive initial conditions x�1, x0.
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(b) The equilibrium point of Eq.(2.10) is the non-negative solution of the equation

x =
�+ x

Bx+ x
.

So, (2.10) has the only equilibrium point

x =
1 +

p
1 + 4�(B + 1)

2(B + 1)
.

(c) Now, let I be some interval of real numbers and let f : I � I ! I be a continuously

di¤erentiable function such that f is de�ned by

f(xn; xn�1) =
�+ xn�1
Bxn + xn�1

.

Thus, we observe that

q0 =
@f

@xn
(x; x) =

�
0:(Bxn + xn�1)� (�+ xn�1):B

(Bxn + xn�1)2

�
(x; x) =

�Bx
Bx+ x

=
�B
1 +B

q1 =
@f

@xn�1
(x; x) =

�
1:(Bxn + xn�1)� (�+ xn�1):1

(Bxn + xn�1)2

�
(x; x) =

1� x
Bx+ x

=
1� x

(B + 1)x
.

If x denotes an equilibrium point of Eq.(2.10), then the linearized equation associated

with Eq.(2.10) about the equilibrium point x is

zn+1 = q0zn + q1zn�1

or

zn+1 +
B

1 +B
zn +

x� 1
(B + 1)x

zn�1 = 0.

The characteristic equation of the linearized equation of Eq.(2.10) about the equilibrium

x is

�2 +
B

1 +B
�+

x� 1
(B + 1)x

= 0.

(d) From (c) and Theorem 1.3 x is locally asymptotically stable,when

� >
B � 1
4

and unstable when

� <
B � 1
4

:
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Example 2.4 ([7], pp.251-252) Consider the second order di¤erence equation

xn+1 =
�xn + 
xn�1
Bxn + Cxn�1

, n = 0; 1; � � � . (2.12)

(a) The normalized form of Eq.(2.12) is

xn+1 =
�xn + xn�1
Bxn + xn�1

, n = 0; 1; � � � . (2.13)

(b) Equilibrium point of Eq.(2.13) is

x =
� + 1

B + 1
:

(c) The linearized equation of Eq.(2.13) about the equilibrium point x is

zn+1 �
� �B

(� + 1)(B + 1)
zn +

� �B
(� + 1)(B + 1)

zn�1 = 0 (2.14)

and the corresponding charasteristic equation of Eq.(2.14) is

�2 � � �B
(� + 1)(B + 1)

�+
� �B

(� + 1)(B + 1)
= 0.

(d) The equilibrium point x of Eq.(2.13) is locally asymptotically stable when

� > B

or

� < B and B < 3� + �B + 1

and unstable when

� < B and B > 3� + �B + 1:

Solution.

(a) By the change of variables

xn =



C
yn,
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Eq.(2.12) can be written in the normalized form

xn+1 =
�xn + xn�1
Bxn + xn�1

, n = 0; 1; � � � .

with positive parameters �;B and with arbitrary positive initial conditions x�1, x0. We

also assume that � 6= B because otherwise the equation eventually becomes trivial.

(b) The equilibrium point of Eq.(2.13) is the non-negative solution of the equation.

x =
�x+ x

Bx+ x

So, by solving the equation

x2(B + 1)� x(� + 1) = 0,

(2.13) has the only equilibrium point

x =
� + 1

B + 1
:

(c) Now, let I be some interval of real numbers and let f : I � I ! I be a continuously

di¤erentiable function such that f is de�ned by

f(xn; xn�1) =
�xn + xn�1
Bxn + xn�1

.

Hence, we have

q0 =
@f

@xn
(x; x) =

�
�: (Bxn + xn�1)� (�xn + xn�1):B

(Bxn + xn�1)2

�
(x; x) =

� �B
(� + 1)(B + 1)

q1 =
@f

@xn�1
(x; x) =

�
1: (Bxn + xn�1)� (�xn + xn�1):1

(Bxn + xn�1)2

�
(x; x) =

�(� �B)
(� + 1)(B + 1)

.

If x denotes an equilibrium point of Eq.(2.13), then the linearized equation associ-

ated with Eq.(2.13) about the equilibrium point x is

zn+1 = q0zn + q1zn�1

or

zn+1 �
� �B

(� + 1)(B + 1)
zn +

(� �B)
(� + 1)(B + 1)

zn�1 = 0.

The characteristic equation of the linearized equation of Eq.(2.13) about the equi-

librium x is

�2 � � �B
(� + 1)(B + 1)

�+
(� �B)

(� + 1)(B + 1)
= 0. (2.15)
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(d) From (c) and Theorem 1.3 it follows that the equilibrium x of Eq.(2.13) is locally

asymptotically stable when

� > B

or

� < B and B < 3� + �B + 1

and unstable when

� < B and B > 3� + �B + 1:

We give another example.

Example 2.5 ([7], pp.422-423) Consider the di¤erence equation

xn+1 =
�+ �xn + 
xn�1
A+Bxn + Cxn�1

; n = 0; 1; � � � . (2.16)

(a) The normalized form of Eq.(2.16) is

xn+1 =
�+ �xn + xn�1
A+Bxn + xn�1

; n = 0; 1; � � � . (2.17)

(b) Equilibrium point of Eq.(2.17) is

x =
(� + 1� A) +

p
(A� � � 1)2 + 4�(B + 1)
2(B + 1)

:

(c) The linearized equation of Eq.(2.17) about the equilibrium point x is

zn+1 +
Bx� �

A+ (B + 1)x
zn +

x� 1
A+ (B + 1)x

zn�1 = 0 (2.18)

and the corresponding charasteristic equation of Eq.(2.18) is

�2 +
Bx� �

A+ (B + 1)x
�+

x� 1
A+ (B + 1)x

= 0 .

(d) The equilibrium point x of Eq.(2.17) is locally asymptotically stable when

(1� A� �) [(1� A)(B � 1)� �(3 +B)]
4

< �
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and

�(A� � � 1)2
4(B + 1)

< �

and

(A+ 1) [B(2 + �) + (A+ 1)]

B2
< �:

Solution.

(a) By the change of variables

xn =



C
yn,

Eq.(2.16) can be written in the normalized form

xn+1 =
�+ �xn + xn�1
A+Bxn + xn�1

, n = 0; 1; � � � .

with positive parameters �;A; �;B and with arbitrary positive initial conditions x�1, x0.

(b) The equilibrium point of Eq.(2.17) is the non-negative solution of the equation.

x =
�+ �x+ x

A+Bx+ x

So, by solving the equation

x2(B + 1)� x(� + 1� A)� � = 0.

So (2.17) has the only equilibrium point

x =
(� + 1� A) +

p
(A� � � 1)2 + 4�(B + 1)
2(B + 1)

:

(c) Now, let I be some interval of real numbers and let f : I � I ! I be a continuously

di¤erentiable function such that f is de�ned by

f(xn; xn�1) =
�+ �xn + xn�1
A+Bxn + xn�1

.

Hence, we have

q0 =
@f

@xn
(x; x) =

�
�: (A+Bxn + xn�1)� (�+ �xn + xn�1):B

(A+Bxn + xn�1)2

�
(x; x) =

� �Bx
A+ (B + 1)x
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q1 =
@f

@xn�1
(x; x) =

�
1: (A+Bxn + xn�1)� (�+ �xn + xn�1):1

(A+Bxn + xn�1)2

�
(x; x) =

1� x
A+ (B + 1) + x

:

If x denotes an equilibrium point of Eq.(2.17) then the linearized equation associated

with Eq.(2.17) about the equilibrium point x is

zn+1 = q0zn + q1zn�1

or

zn+1 +
Bx� �

A+ (B + 1)
zn +

x� 1
A+ (B + 1)x

zn�1 = 0.

The characteristic equation of the linearized equation of Eq.(2.17) about the equi-

librium x is

�2 +
Bx� �

A+ (B + 1)x
�+

x� 1
A+ (B + 1)x

= 0. (2.19)

(d) From (c) and Theorem 1.3 it follows that the equilibrium x of Eq.(2.17) is locally

asymptotically stable when

(1� A� �) [(1� A)(B � 1)� �(3 +B)]
4

< �

and

�(A� � � 1)2
4(B + 1)

< �

and

(A+ 1) [B(2 + �) + (A+ 1)]

B2
< �:

Example 2.6 ([7], pp.284-285) Consider the di¤erence equation

xn+1 =
�xn

A+Bxn + Cxn�1
; n = 0; 1; � � � . (2.20)

(a) The normalized form of Eq.2.20) is

xn+1 =
�xn

1 +Bxn + 1xn�1
; n = 0; 1; � � � . (2.21)
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(b) Equilibrium point of Eq.(2.21) is

x =
� � 1
B + 1

:

(c) The linearized equation of Eq.(2.21) about the equilibrium point x is

zn+1 �
� +B

� (B + 1)
zn +

� � 1
� (B + 1)

zn�1 = 0 (2.22)

and the corresponding charasteristic equation of Eq.(2.22) is

�2 � � +B

� (B + 1)
�+

� � 1
� (B + 1)

= 0.

(d) The equilibrium point x of Eq.(2.21) is locally asymptotically stable when

� > 1

and unstable when

� < 1:

Solution.

(a) By the change of variables

xn =
A

C
yn,

Eq.(2.20) can be written in the normalized form

xn+1 =
�xn

1 +Bxn + xn�1
; n = 0; 1; � � � .

with positive parameters �;B and with arbitrary nonnegative initial conditions x�1, x0.

(b) The equilibrium point of Eq.(2.21) is the non-negative solution of the equation

x =
�x

1 +Bx+ x

or equivalently the only equilibrium point Eq.(2.21) is

x =
� � 1
B + 1

:
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(c) From this, we have

q0 =
@f

@xn
(x; x) =

�
�:(1 +Bxn + xn�1)� �xn:B

(1 +Bxn + xn�1)2

�
(x; x) =

� +B

�(B + 1)

q1 =
@f

@xn�1
(x; x) =

�
0:(1 +Bxn + xn�1)� �xn:1

(1 +Bxn + xn�1)2

�
(x; x) =

1� �
�(B + 1)

.

If x denotes an equilibrium point of Eq.(2.21) then the linearized equation associated

with Eq.(2.21) about the equilibrium point x is

zn+1 = q0zn + q1zn�1

or

zn+1 �
� +B

�(B + 1)
zn +

� � 1
�(B + 1)

zn�1 = 0.

The characteristic equation of the linearized equation of Eq.(2.21) about the equi-

librium x is

�2 � � +B

�(B + 1)
�+

� � 1
�(B + 1)

= 0:

(d) From (c) and Theorem 1.3 it follows that the positive equilibrium x of Eq.(2.21) is

locally asymptotically stable when

� > 1

and unstable when

� < 1:
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CHAPTER 3

EXAMPLES OF THE THIRD ORDER DIFFERENCE EQUATIONS

In this chapter we investigate the local asymptotic stability of some third order di¤erence

equations.

Example 3.1 ([7], pp.186-187) Consider the third order di¤erence equation

xn+1 =
�xn�2

Cxn�1 +Dxn�2
� � � . (3.1)

(a) The normalized form of Eq.(3.1) is

xn+1 =
xn�2

Cxn�1 + xn�2
, n = 0; 1; � � � . (3.2)

(b) Equilibrium point of Eq.(3.2) is

x =
1

C + 1
.

(c) The linearized equation of Eq.(3.2) about the equilibrium point x is

zn+1 +
C

C + 1
zn�1 �

C

C + 1
zn�2 = 0 (3.3)

and the corresponding charasteristic equation of Eq.(3.3) is

�3 +
C

C + 1
�� C

C + 1
= 0:

(d) The equilibrium point x of Eq.(3.2) is locally asymptotically stable when

C <
1 +

p
5

2

and unstable when

C >
1 +

p
5

2
:
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(e) The equilibrium point x of Eq.(3.2) is nonhyperbolic when

C =
1 +

p
5

2
:

Solution.

(a) By the change of variables

xn =
�

D
yn,

Eq.(3.1) can be written in the normalized form

xn+1 =
xn�2

Cxn�1 + xn�2
, n = 0; 1; � � � .

with positive parameter C and with arbitrary nonnegative initial conditions x�2,x�1,x0

such that denominator is always positive.

(b) The equilibrium point of Eq.(3.2) is the non-negative solution of the equation

x =
x

Cx+ x

or

x2(C + 1)� x = 0. (3.4)

The only equilibrium point of Eq.(3.2) is

x =
1

C + 1
.

(c) Now, let I be some interval of real numbers and let f : I�I�I ! I be a continuously

di¤erentiable function such that f is de�ned by

f(xn; xn�1; xn�2) =
xn�2

Cxn�1 + xn�2
.

So, from (3.4), we obtain

q0 =
@f

@xn
(x; x) = 0

q1 =
@f

@xn�1
(x; x) =

�
0: (Cxn�1 + xn�2)� (xn�2):C

(Cxn�1 + xn�2)2

�
(x; x) =

�C
(C + 1)
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q2 =
@f

@xn�2
(x; x) =

�
1: (Cxn�1 + xn�2)� (xn�2):1

(Cxn�1 + xn�2)2

�
(x; x) =

C

(C + 1)
:

If x denotes an equilibrium point of Eq.(3.2), then the linearized equation associated

with Eq.(3.2) about the equilibrium point x is

zn+1 = q0zn + q1zn�1 + q2zn�2

or

zn+1 +
C

C + 1
zn�1 �

C

C + 1
zn�2 = 0.

The characteristic equation of the linearized equation of Eq.(3.2) about the equi-

librium x is

�3 +
C

C + 1
�� C

C + 1
= 0.

(d) From (c) and Theorem 1.4 it follows that the equilibrium x of Eq.(3.2) is locally

asymptotically stable when

C <
1 +

p
5

2

and unstable when

C >
1 +

p
5

2

(e) When

C =
1 +

p
5

2
,

x is a non-hyperbolic equilibrium. In fact, the eigenvalues of the corresponding

characteristic equation are

�1 =
�1 +

p
5

2
; �2 =

1�
p
5� i

p
10 + 2

p
5

4
; �3 =

1�
p
5 + i

p
10 + 2

p
5

4
:

Example 3.2 ([7], p.199-200) Consider the third order di¤erence equation

xn+1 =
�xn + �xn�2

Bxn
, n = 0; 1; � � � . (3.5)

(a) The normalized form of Eq.(3.5) is

xn+1 = � +
xn�2
xn

; n = 0; 1; � � � . (3.6)
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(b) Equilibrium point of Eq.(3.6) is

x = � + 1.

(c) The linearized equation of Eq.(3.6) about the equilibrium point x is

zn+1 +
1

� + 1
zn �

1

� + 1
zn�2 = 0 (3.7)

and the corresponding charasteristic equation of Eq.(3.7) is

�3 +
1

� + 1
�2 � 1

� + 1
= 0.

(d) The equilibrium point x of Eq.(3.6) is locally asymptotically stable when

� > �1 +
p
2

and unstable when

B < �1 +
p
2:

Solution.

(a) Using the change of variables

xn =
�

B
yn,

Eq.(3.5) can be written in the normalized form

xn+1 = � +
xn�2
xn

; n = 0; 1; � � � .

with positive parameter � and with arbitrary non-negative initial conditions x�2, x�1, x0

such that the denominator is always positive.

(b) The equilibrium point of Eq.(3.6) is the non-negative solution of the equation

x = � +
x

x

or equivalently the only equilibrium point Eq.(3.6) is

x = � + 1.
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(c) Now, let I be some interval of real numbers and let f : I3 ! I be a continuously

di¤erentiable function such that f is de�ned by

f(xn; xn�1; xn�2) = � +
xn�2
xn

.

Therefore, we observe that

q0 =
@f

@xn
(x; x; x) =

�
0� xn�2:1
xn2

�
(x; x; x) =

�1
� + 1

q1 =
@f

@xn�1
(x; x; x) = 0

q2 =
@f

@xn�2
(x; x; x) =

�
1:xn � (�xn + xn�2):0

x2n

�
(x; x; x) =

1

� + 1
.

If x denotes an equilibrium point of Eq.(3.6), then the linearized equation associated

with Eq.(3.6) about the equilibrium point x is

zn+1 = q0zn + q1zn�1 + q2zn�2

or

zn+1 +
1

� + 1
zn �

1

� + 1
zn�2 = 0.

The characteristic equation of the linearized equation of Eq.(3.6) about the equi-

librium x is

�3 +
1

� + 1
�2 � 1

� + 1
= 0.

(d) From (c) and Theorem 1.4 it follows that the positive equilibrium x of Eq.(3.6) is

locally asymptotically stable when

� > �1 +
p
2

and unstable when

B < �1 +
p
2:

Example 3.3 ([7], p.209-210) Consider the di¤erence equation

xn+1 =

xn�1 + �xn�2

Bxn
, n = 0; 1; � � � . (3.8)
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(a) The normalized form of Eq.(3.8) is

xn+1 =

xn�1 + xn�2

xn
, n = 0; 1; � � � . (3.9)

(b) Equilibrium point of Eq.(3.9) is

x = 
 + 1.

(c) The linearized equation of Eq.(3.9) about the equilibrium point x is

zn+1 + zn �




 + 1
zn�1 �

1


 + 1
= 0 (3.10)

and the corresponding charasteristic equation of Eq.(3.10) is

�3 + �2 � 



 + 1
�� 1


 + 1
= 0.

(d) The equilibrium point x of Eq.(3.9) is locally asymptotically stable when
p
3� 1
2

< 
 < 1

and unstable when


 <

p
3� 1
2

.

Solution.

(a) Using the change of variables

xn =
�

B
yn;

Eq.(3.8) can be written in the normalized form

xn+1 =

xn�1 + xn�2

xn
, n = 0; 1; � � � .

with positive parameters 
 and with arbitrary positive initial conditions x�2, x�1, x0.

(b) The equilibrium point of Eq.(3.9) is the non-negative solution of the equation

x =

x+ x

x

or equivalently

x2 � (
 + 1)x = 0. (3.11)
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Therefore, the only equilibrium point of Eq.(3.9) is

x = 
 + 1.

(c) Now, let I be some interval of real numbers and let f : I�I�I ! I be a continuously

di¤erentiable function such that f is de�ned by

f(xn; xn�1; xn�2) = xn+1 =

xn�1 + xn�2

xn
.

From this and (3.11) we have

q0 =
@f

@xn
(x; x; x) =

�
0:xn � (
xn�1 + xn�2):1

xn2

�
(x; x; x) =

�(
x+ x)
x2

=
�(
 + 1)

x

=
�(
 + 1)

 + 1

= �1

q1 =
@f

@xn�1
(x; x; x) =

�

:xn � (
xn�1 + xn�2):0

xn2

�
(x; x; x) =


x

x2
=





 + 1

q2 =
@f

@xn�2
(x; x; x) =

�
1:xn � (
xn�1 + xn�2):0

xn2

�
(x; x; x) =

x

x2
=

1


 + 1
.

If x denotes an equilibrium point of Eq.(3.9), then the linearized equation associated

with Eq.(3.9) about the equilibrium point x is

zn+1 = q0zn + q1zn�1 + q2zn�2

or

zn+1 + zn �




 + 1
zn�1 �

1


 + 1
zn�2 = 0 .

The characteristic equation of the linearized equation of Eq.(3.9) about the equi-

librium x is

�3 + �2 � 



 + 1
�� 1


 + 1
= 0.

(d) From (c) and Theorem 1.4 it follows that the positive equilibrium x of Eq.(3.9) is

locally asymptotically stable when
p
3� 1
2

< 
 < 1

and unstable when


 <

p
3� 1
2

.
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Example 3.4 ([7], pp.210-211) Consider the di¤erence equation

xn+1 =

xn�1 + �xn�2

Cxn�1
, n = 0; 1; � � � . (3.12)

(a) The normalized form of Eq.(3.12) is

xn+1 = 
 +
xn�2
xn�1

, n = 0; 1; � � � . (3.13)

(b) Equilibrium point of Eq.(3.13) is

x = 
 + 1.

(c) The linearized equation of Eq.(3.13) about the equilibrium point x is

zn+1 +
1


 + 1
zn�1 �

1


 + 1
zn�2 = 0 (3.14)

and the corresponding charasteristic equation of Eq.(3.14) is

�3 +
1


 + 1
�� 1


 + 1
= 0.

(d) The equilibrium point x of Eq.(3.13) is locally asymptotically stable when


 >
�1 +

p
5

2

and unstable when


 <
�1 +

p
5

2
:

Solution.

(a) By the change of variables

xn =
�

C
yn,

Eq.(3.12) can be written in the normalized form

xn+1 = 
 +
xn�2
xn�1

, n = 0; 1; � � � .

with positive parameters 
 and with arbitrary positive initial conditions x�2, x�1,

x0.
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(b) The equilibrium point of Eq.(3.13) is the non-negative solution of the equation

x = 
 +
x

x

or equivalently the only equilibrium point Eq.(3.13) is

x = 
 + 1.

(c) Now, let I be some interval of real numbers and let f : I�I�I ! I be a continuously

di¤erentiable function such that f is de�ned by

f(xn; xn�1; xn�2) = 
 +
xn�2
xn�1

.

From this, we have

q0 =
@f

@xn
(x; x; x) = 0

q1 =
@f

@xn�1
(x; x; x) =

�

:xn�1 � (
:xn�1 + xn�2):1

(xn�1)2

�
(x; x; x) =


x� (
x+ x)
(x)2

=
�1
x
=

�1

 + 1

q2 =
@f

@xn�2
(x; x; x) =

�
1:xn�1 � (
:xn�1 + xn�2):0

(xn�1)2

�
(x; x; x) =

1

x
=

1


 + 1
.

If x denotes an equilibrium point of Eq.(3.13), then the linearized equation associ-

ated with Eq.(3.13) about the equilibrium point x is

zn+1 = q0zn + q1zn�1 + q2zn�2

or

zn+1 +
1


 + 1
zn�1 �

1


 + 1
zn�2 = 0.

The characteristic equation of the linearized equation of Eq.(3.13) about the equi-

librium x is

�3 +
1


 + 1
�� 1


 + 1
= 0.
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(d) From (c) and Theorem 1.4 it follows that the positive equilibrium x of Eq.(3.13) is

locally asymptotically stable when


 >
�1 +

p
5

2

and unstable when


 <
�1 +

p
5

2
.

Example 3.5 ([7], pp.225-226) Consider the di¤erence equation

xn+1 =
�+ �xn
A+Dxn�2

, n = 0; 1; � � � . (3.15)

(a) The normalized form of Eq.(3.15) is

xn+1 =
�+ xn
A+ xn�2

; n = 0; 1; � � � . (3.16)

(b) Equilibrium point of Eq.(3.16) is

x =
1� A+

p
(1� A)2 + 4�
2

:

(c) The linearized equation of Eq.(3.16) about the equilibrium point x is

zn+1 �
1

A+ x
zn +

x

A+ x
zn�2 = 0 (3.17)

and the corresponding charasteristic equation of Eq.(3.17) is

�3 � 1

A+ x
�2 +

x

A+ x
= 0:

(d) The equilibrium point x of Eq.(ceydaa) is locally asymptotically stable when either

A � 1

2

or

1

3
< A <

1

2
and � <

A2(�A2 + 3A� 1)
(2A� 1)2

and unstable when

1

3
< A <

1

2
and � >

A2(�A2 + 3A� 1)
(2A� 1)2

or

0 < A <
1

3
:
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Solution.

(a) By the change of variables

xn =
�

D
yn,

Eq.(3.15) can be written in the normalized form

xn+1 =
�+ xn
A+ xn�2

, n = 0; 1; � � � .

with positive parameters �;A and with arbitrary positive initial conditions x�2,

x�1, x0.

(b) The equilibrium point of Eq.(3.16) is the non-negative solution of the equation

x =
�+ x

A+ x

or equivalently the only equilibrium point Eq.(3.16) is

x =
1� A+

p
(1� A)2 + 4�
2

:

(c) Now, let I be some interval of real numbers and let f : I�I�I ! I be a continuously

di¤erentiable function such that f is de�ned by

f(xn; xn�1; xn�2) =
�+ xn
A+ xn�2

.

From this, we have

q0 =
@f

@xn
(x; x; x) =

�
1:(A+ xn�2)� (�+ xn):0

(A+ xn�2)2

�
(x; x; x) =

1

A+ x

q1 =
@f

@xn�1
(x; x; x) = 0

q2 =
@f

@xn�2
(x; x; x) =

�
0:(A+ xn�2)� (�+ xn):1

(A+ xn�2)2

�
(x; x; x) =

�(�+ x)
(A+ x)2

=
�x
A+ x

.

If x denotes an equilibrium point of Eq.(3.16), then the linearized equation associ-

ated with Eq.(3.16) about the equilibrium point x is

zn+1 = q0zn + q1zn�1 + q2zn�2

or

zn+1 �
1

A+ x
zn +

x

A+ x
zn�2 = 0.
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The characteristic equation of the linearized equation of Eq.(3.16) about the equi-

librium x is

�3 � 1

A+ x
�2 +

x

A+ x
= 0:

(d) From (c) and Theorem 1.4 it follows that the positive equilibrium x of Eq.(3.16) is

locally asymptotically stable when either

A � 1

2

or

1

3
< A <

1

2
and � <

A2(�A2 + 3A� 1)
(2A� 1)2

and unstable when

1

3
< A <

1

2
and � >

A2(�A2 + 3A� 1)
(2A� 1)2

or

0 < A <
1

3
:
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CHAPTER 4

BEHAVIOR OF THE SOLUTIONS OF SOME RATIONAL DIFFERENCE

EQUATIONS

In this chapter we investigate the periodicity, local stability and global attractivity of the

following three rational di¤erence equation which was studied in [13], [14] and [18].

4.1 Equation xn+1 = axn +
bxn�1 + cxn�2
dxn�1 + exn�2

, n = 0; 1; � � � :

In this section we concerned with the recursive sequence

xn+1 = axn +
bxn�1 + cxn�2
dxn�1 + exn�2

; n = 0; 1; � � � (4.1)

where the parameters a; b; c; d and e are positive real numbers and the initial conditions

x�2; x�1 and x0 are positive real numbers.

4.1.1 Local Stability of the Equilibrium Point of Equation (4.1)

Here, we deal with the local stability character of the equilibrium point of Eq.(4.1).

Eq.(4.1) has equilibrium point and is given by

x = ax+
b+ c

d+ e
:

If a < 1, then the only positive equilibrium point of Eq.(4.1) is given by

x =
b+ c

(1� a)(d+ e) :

Let f : (0;1)3 ! (0;1) be a continuous function de�ned by

f(u; v; w) = au+
bv + cw

dv + ew
:

Therefore it follows that

@f(u; v; w)

@u
= a;
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@f(u; v; w)

@v
=
(be� dc)w
(dv + ew)2

;

@f(u; v; w)

@w
=
(dc� be)u
(dv + ew)2

:

Then we see that

@f(x; x; x)

@u
= a = �a2;

@f(x; x; x)

@v
=
(be� dc)
(d+ e)2x

=
(be� dc)(1� a)
(d+ e)(b+ c)

= �a1;

@f(x; x; x)

@w
=
(dc� be)
(d+ e)2x

=
(dc� be)(1� a)
(d+ e)(b+ c)

= �a0:

Then the linearized equation of Eq.(4.1) about x is

yn+1 + a2yn + a1yn�1 + a0yn�2 = 0; (4.2)

whose characteristic equation is

�3 + a2�
2 + a1�+ a0 = 0: (4.3)

Theorem 4.1 Assume that

2 j(be� dc)j < (d+ e)(b+ c):

Then the equilibrium point of Eq.(4.1) is locally asymptotically stable.

Proof: It follows by Theorem 1.6 that, Eq.(4.2) is asymptotically stable if all roots of

Eq.(4.3) lie in the open disc j�j < 1 that is if

ja2j+ ja1j+ ja0j < 1;

jaj+
����(be� dc)(1� a)(d+ e)(b+ c)

����+ ����(dc� be)(1� a)(d+ e)(b+ c)

���� < 1;
and so

2

����(be� dc)(1� a)(d+ e)(b+ c)

���� < (1� a); a < 1;

or

2 jbe� dcj < (d+ e)(b+ c):

The proof is complete.

42



4.1.2 Boundedness of Solutions of Equation (4.1)

Here we study the boundedness of the solutions of Eq.(4.1).

Theorem 4.2 Every solution of Eq.(4.1) is bounded if a < 1.

Proof: Let fxng1n=�2 be a solution of Eq.(4.1). It follows from Eq.(4.1) that

xn+1 = axn +
bxn�1 + cxn�2
dxn�1 + exn�2

= axn +
bxn�1

dxn�1 + exn�2
+

cxn�2
dxn�1 + exn�2

:

Then

xn+1 � axn +
bxn�1
dxn�1

+
cxn�2
exn�2

= axn +
b

d
+
c

e
for all n � 1:

By using a comparsion, we can write the right hand side as follows

yn+1 = ayn +
b

d
+
c

e
;

then

yn = a
ny0 + cons tan t;

and this equation is locally asmptotically stable because a < 1 and converges to the

equilibrium point y =
be+ cd

de(1� a) .

Therefore

lim sup
n!1

xn �
be+ cd

de(1� a) :

Hence the solutions is bounded.

Theorem 4.3 Every solution of Eq.(4.1) is bounded if a > 1 .

Proof: Let fxng1n=�2 be a solution of Eq.(4.1). Then from Eq.(4.1) we see that

xn+1 = axn +
bxn�1 + cxn�2
dxn�1 + exn�2

> axn for all n � 1:

We see that the right hand side can be written as follows

yn+1 = ayn ) yn = a
ny0;

and this equation is unstable because a > 1 and lim
n!1

yn = 1: Then by using the ratio

test fxng1n=�2 is unbounded from above.
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4.1.3 Existence of Periodic Solutions

In this subsection we study the existence of periodic solutions of Eq.(4.1).The following

theorem states the necessary and su¢ cient conditions that this equation has periodic

solutions of prime period two.

Theorem 4.4 Eq.(4.1) has positive prime period two solutions if and only if

(b� c)(d� e)(1 + a) + 4(bae+ cd) > 0; d > e; b > c: (4.4)

Proof: First suppose that there exists a prime period two solution

:::; p; q; p; q; :::;

of Eq.(4.1). We will prove that (4.4) holds.

We see from Eq.(4.1) that

p = aq +
bp+ cq

dp+ eq

and

q = ap+
bq + cp

dq + ep
:

Then

dp2 + epq = adpq + aeq2 + bp+ cq; (4.5)

and

dq2 + epq = adpq + aep2 + bq + cp: (4.6)

Substracting (4.5) from (4.6) gives

d(p2 � q2) = �ae(p2 � q2) + (b� c)(p� q):

Since p 6= q; it follows that

p+ q =
(b� c)
(d+ ae)

: (4.7)

Again, adding (4.5) and (4.6) yields

d(p2 + q2) + 2epq = 2adpq + ae(p2 + q2) + (b+ c)(p+ q);
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(d� ae)(p2 + q2) + 2(e� ad)pq = (b+ c)(p+ q): (4.8)

It follows by (4.7), (4.8) and the relation

p2 + q2 = (p+ q)2 � 2pq for all p; q 2 R;

that

2(e� d)(1 + a)pq = 2(bae+ cd)(b� c)
(d+ ae)2

:

Thus

pq =
(bae+ cd)(b� c)

(d+ ae)2(e� d)(1 + a) : (4.9)

Now it is clear from Eq.(4.7) and Eq.(4.9) that p and q are the two distinct roots of the

quadratic equation

t2 �
�
(b� c)
(d+ ae)

�
t+

�
(bae+ cd)(b� c)

(d+ ae)2(e� d)(1 + a)

�
= 0

(d+ ae)t2 � (b� c)t+
�

(bae+ cd)(b� c)
(d+ ae)(e� d)(1 + a)

�
= 0 (4.10)

and so

[b� c]2 � 4(bae+ cd)(b� c)
(e� d)(1 + a) > 0;

or

[b� c]2 + 4(bae+ cd)(b� c)
(d� e)(1 + a) > 0:

(b� c)(d� e)(1 + a) + 4(bae+ cd) > 0:

Therefore inequalities (4.4) holds.

Secondly suppose that inequalities (4.4) are true. We will show that Eq.(4.1) has a prime

period two solution.

Assume that

p =
b� c+ �
2(d+ ae)

;

and so

q =
b� c� �
2(d+ ae)

;
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where

� =

s
[b� c]2 � 4(bae+ cd)(b� c)

(e� d)(1 + a) :

We see from inequalities (4.4) that

(b� c)(d� e)(1 + a) + 4(bae+ cd) > 0; b > c; d > e;

which is equivalent to

(b� c)2 > 4(bae+ cd)(b� c)
(e� d)(1 + a) :

Therefore p and q are distinct real numbers.

Set

x2 = q; x�1 = p and x0 = q:

We wish to show that

x1 = x�1 = p and x2 = x0 = q:

It follows from Eq.(4.1) that

x1 = aq +
bp+ cq

dp+ eq
= a

�
b� c� �
2(d+ ae)

�
+

b

�
b� c+ �
2(d+ ae)

�
+ c

�
b� c� �
2(d+ ae)

�
d

�
b� c+ �
2(d+ ae)

�
+ e

�
b� c� �
2(d+ ae)

� :

Dividing the denominator and numerator by 2(d+ ae) gives

x1 =
ab� ac� a�
2(d+ ae)

+
b(b� c+ �) + c(b� c� �)
d(b� c+ �) + e(b� c� �)

=
ab� ac� a�
2(d+ ae)

+
(b� c) [(b+ c) + �]

(d+ e)(b� c) + (d� e)� :
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Multiplying the denominator and numerator of the right side by (d+ e)(b� c)� (d� e)�

gives

x1 =
ab� ac� a�
2(d+ ae)

+
(b� c) [(b+ c) + �] [(d+ e)(b� c)� (d� e)�]

[(d+ e)(b� c) + (d� e)�] [(d+ e)(b� c)� (d� e)�]

=
ab� ac� a�
2(d+ ae)

+
(b� c)

�
(d+ e)(b2 � c2) + �

�
(d+ e)(b� c)� (d� e)(b+ c)� (d� e)�2

�	
(d+ e)2(b� c)2 � (d� e)2�2

=
ab� ac� a�
2(d+ ae)

+

(b� c)
�
(d+ e)(b2 � c2) + 2�(eb� cd)� (d� e)

�
[b� c]2 � 4(bae+ cd)(b� c)

(e� d)(1 + a)

��
(d+ e)2(b� c)2 � (d� e)2

�
[b� c]2 � 4(bae+ cd)(b� c)

(e� d)(1 + a)

�
=

ab� ac� a�
2(d+ ae)

+

(b� c)
�
(d+ e)(b2 � c2) + 2�(eb� cd)� (d� e) (b� c)2 � 4(bae+ cd)(b� c)

(1 + a)

�
(d+ e)2(b� c)2 � (d� e)2

�
[b� c]2 � 4(bae+ cd)(b� c)

(e� d)(1 + a)

�

=
ab� ac� a�
2(d+ ae)

+

(b� c)
�
2(b� c)

�
dc+ eb� 2(bae+ cd)

(1 + a)

�
+ 2�(eb� cd)

�
4(b� c)

�
ed(b� c) + (e� d)(bae+ cd)

(1 + a)

� :

Multiplying the denominator and numerator of the right side by (1 + a) we obtain

x1 =
ab� ac� a�
2(d+ ae)

+
(b� c) [(dc+ eb)(1 + a)� 2(bae+ cd)] + �(1 + a)(eb� cd)

2 [ed(b� c)(1 + a) + (e� d)(bae+ cd)]

=
ab� ac� a�
2(d+ ae)

+
(b� c)(eb� dc)(1� a) + �(1 + a)(eb� cd)
2 [ed(b� c)(1 + a) + (e� d)(bae+ cd)]

=
ab� ac� a�
2(d+ ae)

+
(eb� dc) f(b� c)(1� a) + �(1 + a)g

2(eb� cd)(d+ ae)

=
ab� ac� a�
2(d+ ae)

+
(b� c)(1� a) + �(1 + a)

2(d+ ae)

=
ab� ac� a� + (b� c)(1� a) + �(1 + a)

2(d+ ae)
=
b� c+ �
2(d+ ae)

= p:

Similarly as before one can show that

x2 = q:

Then it follows by induction that

x2n = q and x2n+1 = p for all n � �1:
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Then Eq.(4.1) has prime period two solution

:::; p; q; p; q; :::;

where p and q are the distinct roots of the quadratic equation (4.10) and the proof is

complete.

4.1.4 Global Attractivity of the Equilibrium Point of Equation (4.1)

In this subsection we investigate the global asymptotic stability of Eq.(4.1).

Theorem 4.5 The equilibrium point x is a global attractor of Eq.(4.1) if one of the

following statements holds:

(1) be � dc and c � b; (4.11)

(2) be � dc and c � b: (4.12)

Proof. Let � and � be real numbers and assume that g : [�; �]3 ! [�; �] is a function

de�ned by

g(u; v; w) = au+
bv + cw

dv + ew
:

Then

@g(u; v; w)

@u
= a;

@g(u; v; w)

@v
=
(be� dc)w
(dv + ew)2

;

@g(u; v; w)

@w
=
(dc� be)u
(dv + ew)2

:

We consider two cases:

Case 1. Assume that (4.11) is true, then we can easily see that the function g(u; v; w) is

increasing in u; v and decreasing in w.

Suppose that (m;M) is a solution of the system M = g(M;M;m) and m = g(m;m;M).

Then from Eq.(4.1), we see that

M = aM +
bM + cm

dM + em
; m = am+

bm+ cM

dm+ eM
;
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or

M(1� a) = bM + cm

dM + em
; m(1� a) = bm+ cM

dm+ eM
:

then

d(1� a)M2 + e(1� a)Mm = bM + cm; d(1� a)m2 + e(1� a)Mm = bm+ cM:

Substraction this two equations we obtain

(M �m) fd(1� a)(M +m) + (c� b)g = 0;

under the conditions c � b; a < 1, we see that

M = m:

It follows by Theorem 1.16 that x is a global attractor of Eq.(4.1) and then the proof is

complete.

Case 2. Assume that (4.12) is true, let � and � be real numbers and assume that

g : [�; �]3 ! [�; �] is a function de�ned by g(u; v; w) = au+
bv + cw

dv + ew
; then we can easily

see that function g(u; v; w) is increasing in u;w and decreasing in v.

Suppose that (m;M) is a solution of the system M = g(M;m;M) and m = g(m;M;m).

Then from Eq.(4.1), we see that

M = aM +
bm+ cM

dm+ eM
; m = am+

bM + cm

dM + em
;

or

M(1� a) = bm+ cM

dm+ eM
; m(1� a) = bM + cm

dM + em
:

then

d(1� a)Mm+ e(1� a)M2 = bm+ cM; d(1� a)mM + e(1� a)m2 = bM + cm:

Substracting we obtain

(M �m) fe(1� a)(M +m) + (b� c)g = 0;

under the conditions b � c; a < 1 we see that

M = m:

It follows by Theorem 1.19 that x is a global attractor of Eq.(4.1) and then the proof is

complete.
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4.2 Equation xn+1 =
dxn�lxn�k
cxn�s � b

+ a; n = 0; 1; � � � :

In this section we deal with some properties of the solutions of the recursive sequence

xn+1 =
dxn�lxn�k
cxn�s � b

+ a; n = 0; 1; � � � (4.13)

where the initial conditions x�r; x�r+1; x�r+2; :::; x0 are arbitrary positive real numbers

with xi 6=
b

c
for i = �r;�r + 1; :::0; a > b=c; r = max fl; k; sg is nonnegative integer and

a; b; c; d are positive constants.

4.2.1 Periodic Solutions

In this subsection we study the existence of periodic solutions of Eq.(4.13). The following

theorem states the necessary and su¢ cient conditions that this equation has periodic

solutions.

Theorem 4.6 Eq.(4.13) has positive prime period two solutions if and only if one of the

following conditions is satis�ed:

(i) If l; k; s are even and (b� ac)2 > 4d(b2�abc�abd)
(c+d)

; b > a(c+ d):

(ii) If l; k; s are odd and (ac+ b)2 > 4ab(c� d); c > d:

(iii) If l; k� even, s�odd and (ac+ b)2 > 4(abc2+abd2�a2c2d�b2d)
(c�d) ; ab(c2+ d2) > d(a2c2� b2);

c 6= d:

(iv) If l�even, k; s�odd and (ac+ b)2 > 4abc2

(c+d);
; c > d:

(v) If k�even, l; s�odd and (ac+ b)2 > 4abc2

(c+d)
:

(vi) If s�even, l; k�odd and (ac� b)2 > 4d(a2c2�abc�abd)
(c+d)

; ac2 > b(c+ d):

Proof. We will prove the theorem when Case (i) is true. The proof of other cases is

similiar.

First suppose that there exists a prime period two solution

:::; p; q; p; q; :::
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of Eq.(4.13). We will prove that condition (i) holds.

When l; k; s�even, we see from Eq.(4.13) that

p =
dq2

cq � b + a

and

q =
dp2

cp� b + a:

Then

cpq � bp = dq2 + acq � ab; (4.14)

and

cpq � bq = dp2 + acp� ab: (4.15)

Substracting (4.14) from (4.15) gives

b(q � b) = d(q2 � p2) + ac(q � p):

Since p 6= q; it follows that

p+ q =
(b� ac)
d

: (4.16)

Also, since p and q are positive, (b� ac) should be positive.

Again, adding (4.14) and (4.15) yields

2cpq � b(p+ q) = d(p2 + q2) + ac(p+ q)� 2ab: (4.17)

It follows by (4.16), (4.17) and the relation

p2 + q2 = (p+ q)2 � 2pq for all p; q 2 R;

that

pq =
b2 � abc� abd
d(c+ d)

: (4.18)

It is clear now from Eq.(4.16) and Eq.(4.18) that p and q are the two positive distinct

roots of the quadratic equation

dt2 � (b� ac)t+ b
2 � abc� abd
(c+ d)

= 0 (4.19)
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and so

(b� ac)2 > 4d(b2 � abc� abd)
(c+ d)

:

So inequality (i) holds.

Secondly suppose that (i) is true. We will show that Eq.(4.13) has a prime period two

solution.

Assume that

p =

(b� ac)�

s
(b� ac)2 � 4d(b

2 � abc� abd)
(c+ d)

2d

and

q =

(b� ac)�

s
(b� ac)2 � 4d(b

2 � abc� abd)
(c+ d)

2d
:

We see from (i) that

(b� ac)2 > 4d(b2 � abc� abd)
(c+ d)

:

Therefore p and q are distinct real numbers.

Set

x�r = p; x�r+1 = q; :::; and x�1 = q; x0 = p:

We wish to show that

x1 = x�1 = q and x2 = x0 = p:

It follows from Eq.(4.13) that

x1 =
dx�lx�k
cx�s � b

+ a =
dp2

cp� b + a

=

d

266664
(b� ac)�

s
(b� ac)2 � 4d(b

2 � abc� abd)
(c+ d)

2d

377775
2

c

266664
(b� ac)�

s
(b� ac)2 � 4d(b

2 � abc� abd)
(c+ d)

2d

377775� b
+ a;
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or,

x1 =

"
2b2 � 2abc� 4b2d

(c+d)
� 2b

s
(b� ac)2 � 4d(b

2 � abc� abd)
(c+ d)

#

2

"
bc� ac2 � 2bd� c

s
(b� ac)� 4d(b

2 � abc� abd)
(c+ d)

# :

Multiplying the denominator and numerator by

(c+ d)

"
bc� ac2 � 2bd+ c

s
(b� ac)2 � 4d(b

2 � abc� abd)
(c+ d)

#

we get

x1 =

"
4b3d2 � 4ab2cd2 + 4b2d2

s
(b� ac)2 � 4d(b

2 � abc� abd)
(c+ d)

#
8b2d3

or,

x1 =

"
b� ac+

s
(b� ac)2 � 4d(b

2 � abc� abd)
(c+ d)

#
2d

= q:

Similarly as before one can easily show that

x2 = p:

Then it follows by induction that

x2n = p and x2n+1 = q for all n � �r:

Thus Eq.(4.13) has the positive prime period two solution

:::; p; q; p; q; :::

where p and q are the distinct roots of the quadratic Eq.(4.19) and then the proof is

complete.

4.2.2 Local Stability of Equation (4.13)

In this subsection we study the local stability character of the equilibrium point of

Eq.(4.13) in the case c = d:
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The equilibrium points of Eq.(4.13) are given by the relation

x =
dx2

cx� b + a:

If c = d, then the only equilibrium point of Eq.(4.13) is given by

x =
ab

ac+ b
:

Let g : (0;1)3 ! (0;1) be a function de�ned by

g(u; v; w) =
cuv

cw � b + a:

Therefore

@g(u; v; w)

@u
=

cv

cw � b;

@g(u; v; w)

@v
=

cu

cw � b;

@g(u; v; w)

@w
= � c2uv

(cw � b)2 :

Then we see that

@g(x; x; x)

@u
=

�ac
b
= �c0;

@g(x; x; x)

@v
=

�ac
b
= �c1;

@g(x; x; x)

@w
=

�a2c2
b2

= �c2:

Then the linearized equation of Eq.(4.13) about x is

yn+1 + c0yn�l + c1yn�k + c2yn�s = 0: (4.20)

Theorem 4.7 Assume that

p
2b > (ac+ b):

Then the positive equilibrium point of Eq.(4.13) is locally asymptotically stable.

Proof. It is follows by Theorem (1.6) that, Eq.(4.20) is asymptotically stable if

jc2j+ jc1j+ jc0j < 1;�����acb
����+ �����acb

����+ �����a2c2b2

���� < 1; or
2ac

b
+
a2c2

b2
< 1;

and so

a2c2 + 2abc+ b2 < 2b2 )
p
2b > (ac+ b):

The proof is complete.
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4.2.3 Global Attractivity of the Equilibrium Point of Equation (4.13)

In this subsection we investigate the global attractivity of the equilibrium point of Eq.(4.13).

Theorem 4.8 . If b = ac, c = d, then the equilibrium point x of Eq.(4.13) is global

attractor.

Proof. Let p; q be real numbers and assume that g : [p; q]3 ! [p; q] is a function de�ned

by

g(u; v; w) =
cuv

cw � b + a:

Therefore

@g(u; v; w)

@u
=

cv

cw � b;

@g(u; v; w)

@v
=

cu

cw � b;

@g(u; v; w)

@w
= � c2uv

(cw � b)2 :

Case i. If cw� b > 0, then we can easily see that the function g(u; v; w) increasing in u; v

and decreasing in w.

Suppose that (m;M) is a solution of the system

m = g(m;m;M) and M = g(M;M;m).

Then from Eq.(4.13), we see that

m =
cm2

cM � b + a; M =
cM2

cm� b + a;

cMm� bm = cm2 + acM � ab; cMm� bM = cM2 + acm� ab;

then

b(M �m) = c(m2 �M2) + ac(M �m); b = ac:

Thus M = m.

It follows by the Theorem (1.16) that x is a global attractor of Eq.(4.13).

Case ii. If cw � b < 0, then we can easily see that the function g(u; v; w) decreasing in

u; v; w.
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Suppose that (m;M) is a solution of the system

M = g(m;m;m) and m = g(M;M;M):

Then from Eq.(4.13), we see that

M =
cm2

cm� b + a; m =
cM2

cM � b + a

cMm� bM = cm2 + acm� ab; cMm� bm = cM2 + acM � ab;

then

b(m�M) = c(m2 �M2) + ac(m�M); b = ac:

Thus M = m.

It follows by the Theorem 1.20 that x is a global attractor of Eq.(4.13) and then the proof

is complete.

4.3 Equation xn+1 =
axn�lxn�k

bxn�p � cxn�q
; n = 0; 1; � � � :

In this section we investigate the global attractivity of the equilibrium point, and the

asymptotic behavior of the solutions of the following di¤erence equation

xn+1 =
axn�lxn�k

bxn�p � cxn�q
; n = 0; 1; � � � (4.21)

where the initial conditions x�r; x�r+1; x�r+2; :::; x0 are arbitrary positive real numbers,

r = max fl; k; p; qg is nonnegative integer and a; b; c are positive constants.

4.3.1 Local Stability of Equation (4.21)

In this subsection we investigate the local stability character of the solutions of Eq.(4.21).

Eq.(4.21) has a uniqe positive equilibrium point and is given by

x =
ax2

bx� cx:

If a 6= b� c; b 6= c; then the unique equilibrium point is x = 0.

Let f : (0;1)4 ! (0;1) be a function de�ned by

f(u; v; w; s) =
auv

bw � cs; (4.22)
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Therefore, it follows that

fu(u; v; w; s) =
av

(bw � cs) ; fv(u; v; w; s) =
au

(bw � cs) ;

fw(u; v; w; s) =
�bauv

(bw � cs)2 ; fs(u; v; w; s) =
cauv

(bw � cs)2 ;

we see that

fu(x; x; x; x) =
a

(b� c) ; fv(x; x; x; x) =
a

(b� c) ;

fw(x; x; x; x) =
�ab

(b� c)2 ; fs(x; x; x; x) =
ac

(b� c)2 ;

The linearized eqation of Eq.(4.21) about x is


n+1 +
a

(b� c)
n�1 +
a

(b� c)
n�k �
ab

(b� c)2
n�p +
ac

(b� c)2
n�q = 0: (4.23)

Theorem 4.9 Assume that

a(3� � �) < (b� c)2;

where � = max fb; cg ; � = min fb; cg : Then the equilibrium point of Eq.(4.21) is locally

asymptotically stable.

Proof: It follows by Theorem 1.6 that Eq.(4.23) is asymptotically stable if���� a

(b� c)

����+ ���� a

(b� c)

����+ ���� ab

(b� c)2

����+ ���� ac

(b� c)2

���� < 1;
or���� 2a

(b� c)

����+ ����a(b+ c)(b� c)2

���� < 1;
and so

2a jb� cj+ a(b+ c) < (b� c)2:

The proof is complete.

4.3.2 Global Attractivity of the Equlibrium Point of Equation (4.21)

In this subsection we investigate the global attractivty of the equilibrium point of Eq.(4.21).

We give the following two theorems which is a minor modi�cation of Theorem 1.16.
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Theorem 4.10 Let [a; b] be an interval of real numbers and that

f : [a; b]k+1 ! [a; b] ;

is a continuous function satisfying the following properties:

(i) f(x1; x2; :::; xk+1) is non-increasing in one component (for example xt) for each xr(r 6=

t) in [a; b] and non-decreasing in the remaining components for each xt in [a; b] :

(ii) if (m;M) 2 [a; b]� [a; b] is a solution of the system

M = f(M;M; :::;M;m;M; :::;M;M) and m = f(m;m; :::;m;M;m; :::;m;m)

implies m =M .

Then Equation

xn+1 = f(xn; xn�1; :::; xn�k); n = 0; 1; ::: (4.24)

has a unique equilibrium x 2 [a; b] and every solution of Eq.(4.24) converges to x.

Proof: Set

m0 = a and M0 = b;

and for each i = 1; 2; ::: set

mi = f(mi�1;mi�1; :::;mi�1;Mi�1;mi�1; :::;mi�1;mi�1);

and

Mi = f(Mi�1;Mi�1; :::;Mi�1;mi�1;Mi�1; :::;Mi�1;Mi�1):

Now observe that for each i � 0;

a = m0 � m1 � ::: � mi �Mi � :::M1 �M0 = b;

and

mi � xp �Mi for p � (k + 1)i+ 1:

Set

m = lim
i!1

mi and M = lim
i!1

Mi:
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Then

M � lim
i!1

sup xi � lim
i!1

inf xi � m:

and by the continuity of f ,

M = f(M;M; :::;M;m;M; :::;M;M) and m = f(m;m; :::;m;M;m; :::;m;m):

In view of (ii),

m =M = x;

from which the result follows.

Theorem 4.11

Let [a; b] be an interval of real numbers and assume that

f : [a; b]k+1 ! [a; b] ;

is a continuous function satisfying the following properties:

(i) f(x1; x2; :::; xk+1) is non-increasing in one component (for example xt) for each xr(r 6=

t) in [a; b] and non-increasing in the remaining components for each xt in [a; b] :

(ii) if (m;M) 2 [a; b]� [a; b] is a solution of the system

M = f(m;m; :::;m;M;m; :::;m;m) and m = f(M;M; :::;M;m;M; :::;M;M)

implies m =M .

Then Eq.(4.24) has a unique equilibrium x 2 [a; b] and every solution of Eq.(4.24) con-

verges to x

Proof: As the proof of Theorem 4.10 and will be omitted.

Theorem 4.12

The equilibrium point x of Equation 4.21 is global attractor if c 6= a:

Proof: Let p; q are a real numbers and assume that f : [p; q]4 ! [p; q] be a function

de�ned by Eq.(4.22), then we can easly see that the function f(u; v; w; s) increasing in s

and decreasing in w.
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Case 1. If bw � cs > 0, then we can easily that the function f(u; v; w; s) increasing in

u; v; s and decreasing in w.

Suppose that (m;M) is a solution of the system

M = f(m;m;M;m) and M = f(M;M;m;M):

Then from Eq.(4.21), we see that

m =
am2

bM � cm; M =
aM2

bm� cM ;

bM = cm+ am; bm = cM + aM;

then

(M �m)(b+ c+ d) = 0

Thus

M = m:

It follows by Theorem 4.10 that x is a global attractor of Eq.(4.21) and then the proof is

complete.

Case 2. If bw � cs < 0, then we can easily that the function f(u; v; w; s) decreasing in

u; v; w and increasing in s.

Suppose that (m;M) is a solution of the system

M = f(m;m;m;M) and M = f(M;M;M;m):

Then from Eq.(4.21), we see that

M =
am2

bm� cM ; m =
aM2

bM � cm;

bmM � cM2 = am2; bmM � cm2 = aM2;

then

(M2 �m2)(c� a) = 0; a 6= c:

Thus,

M = m:

It follows by Theorem 4.11 that x is a global attractor of Eq.(4.21) and then the proof is

complete.
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CHAPTER 5

DIFFERENCE EQUATION:

xn+1 =
�+ �xn + 
xn�1
Cxn�1 +Dxn�2

; n = 0; 1; � � � :

In this chapter, we investigate the global character of the solutions of the rational di¤er-

ence equation of the third order

xn+1 =
�+ �xn + 
xn�1
Cxn�1 +Dxn�2

; n = 0; 1; � � � (5.1)

where the parameters �; �; 
, D and C are non-negative real numbers and the initial

conditions x�2; x�1; x0 are arbitrary non-negative real numbers such that the denominator

of Eq.(5.1) is never zero.

5.1 LINEARIZED STABILITY ANALYSIS

Lemma 5.1 (a) Eq.(5.1) can be written in the normalized form

xn+1 =
�+ �xn + xn�1
xn�1 +Dxn�2

; n = 0; 1; � � � (5.2)

with positive parameters �; �;D and with arbitrary positive initial conditions x�2; x�1;

x0.

(b) Equilibrium point of Eq.(5.2) is

x =
(� + 1) +

p
(� + 1)2 + 4�(1 +D)

2(1 +D)
.

(c) The linearized equation of Eq.(5.2) about its positive equilibrium x is

zn+1 �
�

(1 +D)x
zn +

x� 1
(1 +D)x

zn�1 +
D

(1 +D)
zn�2 = 0. (5.3)

and the corresponding characteristic equation of Eq.(5.3) is

�3 � �

(1 +D)x
�2 +

x� 1
(1 +D)x

�+
D

(1 +D)
= 0.
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Proof.

(a) The Eq.(5.1) which by the change of variables

xn =



C
yn;

reduces to the di¤erence equation

xn+1 =
�+ �xn + xn�1
xn�1 +Dxn�2

; n = 0; 1; � � �

where

� :=
�C


2
; � :=

�



; D :=

D

C
.

(b) The equilibrium points of Eq.(5.2) are the non-negative solutions of the equation

x =
�+ �x+ x

x+Dx

or equivalently

(1 +D)x2 � (1 + �)x� � = 0. (5.4)

Hence, the solutions of Eq.(5.4) are

x =
1 + � +

p
(1 + �)2 + 4�(1 +D)

2(1 +D)
(5.5)

and

x =
1 + � �

p
(1 + �)2 + 4�(1 +D)

2(1 +D)
:

So, the positive equilibrium point of Eq.(5.2) is unique and is given by (5.5).

(c) Now, let I be some interval of real numbers and let

f : I � I � I ! I

be a continuously di¤erentiable function such that f is de�ned by

f(xn; xn�1; xn�2) =
�+ �xn + xn�1
xn�1 +Dxn�2

.
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From Eq.(5.4), we obtain that

q0 =
@f

@xn
(x; x; x) =

�
�:(xn�1 +Dxn�2)� (�+ �xn + xn�1):0

(xn�1 +Dxn�2)2

�
(x; x; x)

=
�:(x+Dx)

x2(1 +D)2
=
�x(1 +D)

x2(1 +D)2
=

�

x(1 +D)
;

q1 =
@f

@xn�1
(x; x; x) =

�
1:(xn�1 +Dxn�2)� (�+ �xn + xn�1):1

(xn�1 +Dxn�2)2

�
(x; x; x)

=
x+Dx� x:(x+Dx)

x2(1 +D)2
=
(x+Dx)(1� x)
x2(1 +D)2

=
1� x

x(1 +D)
;

and

q2 =
@f

@xn�2
(x; x; x) =

�
0:(xn�1 +Dxn�2)� (�+ �xn + xn�1):D

(xn�1 +Dxn�2)2

�
(x; x; x)

=
�(�+ �x+ x):D

(x+Dx)2
=
�x:(x+Dx):D
(x+Dx)2

=
�D

(1 +D)
:

If x denotes an equilibrium point of Eq.(5.2), then the linearized equation associated with

Eq.(5.2) about the equilibrium point x is

zn+1 = q0zn + q1zn�1+q2zn�2

or

zn+1 �
�

(1 +D)x
zn +

x� 1
(1 +D)x

zn�1 +
D

(1 +D)
zn�2 = 0: (5.6)

Lemma 5.2 The positive equilibirium x of Eq.(5.2) is locally asymptotically stable when

(1 + �)2 (D � 1)
4

< � and � < 1:

Proof. From Theorem 1.5 it follows all roots of Eq.(5.2) lie in an open disc j�j < 1, if

jq0j+ jq1j+ jq2j < 1.

This implies that���� �

(1 +D)x

����+ ���� 1� x
(1 +D)x

����+ ���� �D1 +D

���� < 1.
Hence

�

(1 +D)x
+

j1� xj
(1 +D)x

+
Dx

(1 +D)x
< 1 (5.7)

� +Dx+ j1� xj < (1 +D)x

j1� xj < x+Dx� � �Dx

j1� xj < x� � (5.8)
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and so we have two cases for (5.7).

Case 1:

Then

1� x < x� � ) 1 + �

2
< x

) 1 + �

2
<
(� + 1) +

p
(� + 1)2 + 4�(1 +D)

2(1 +D)

) (1 + �)2 (D � 1)
4

< �:

Case 2:

Hence

�x+ � < 1� x ) � < 1:

So the positive equilibrium x of Eq.(5.2) is locally asymptotically stable.

Lemma 5.3 The positive equilibrium x of Eq.(5.2) is locally asymptotically stable when

[(D + 3)� � (D � 1)](� � 1)
4

< � and
�(1 + �)2
4(1 +D)

< �

and

(� + 1)2(7D + 3)

4(3D + 1)2
< � and

[(D � 1)� � (D + 3)](� � 1)
4

< �.

Proof. The characteristic equation of the linearized equation of Eq.(5.2) about the

equilibrium x is

�3 � �

(1 +D)x
�2 +

x� 1
(1 +D)x

�+
D

(1 +D)
= 0.

From Theorem 1.4 using

a2 =
��

(1 +D)x
; a1 =

x� 1
(1 +D)x

; a0 =
D

(1 +D)

we observe that

ja2 + a0j < 1 + a1 )
���� ��
(1 +D)x

+
D

(1 +D)

���� < 1 + x� 1
(1 +D)x

)
������ +Dx(1 +D)x

���� < x+Dx+ x� 1
(1 +D)x

) 1� �
2

< x and
1 + �

2(D + 1)
< x

) 1� �
2

<
(� + 1) +

p
(� + 1)2 + 4�(1 +D)

2(1 +D)

and

1 + �

2(D + 1)
<
(� + 1) +

p
(� + 1)2 + 4�(1 +D)

2(1 +D)

) [(D + 3)� � (D � 1)](� � 1)
4

< � and
�(1 + �)2
4(1 +D)

< �
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and

ja2 � 3a0j < 3� a1 )
���� ��
(1 +D)x

� 3D

(1 +D)

���� < 3� x� 1
(1 +D)x

)
������ � 3Dx(1 +D)x

���� < 3x+ 3Dx� x+ 1
(1 +D)x

) � � 1
2

< x and
�� � 1
6D + 2

< x

) �� � 1
6D + 2

<
(� + 1) +

p
(� + 1)2 + 4�(1 +D)

2(1 +D)

) and
� � 1
2

<
(� + 1) +

p
(� + 1)2 + 4�(1 +D)

2(1 +D)

) (� + 1)2(7D + 3)

4(3D + 1)2
< � and

[(D � 1)� � (D + 3)](� � 1)
4

< �

and also

a20 + a1 � a0a2 < 1 )
�

D

1 +D

�2
+

x� 1
(1 +D)x

�
�

D

1 +D

��
��

(1 +D)x

�
< 1

) D2

(1 +D)2
+

x� 1
(1 +D)x

+
D�

(1 +D)2x
< 1

) �1
D
� 1 + � < x

) �1
D
� 1 + � < (� + 1) +

p
(� + 1)2 + 4�(1 +D)

2(1 +D)

) [D(� � 1)� 1] [D(� � 1) + �]
1 +D

< �:

So the positive equilibirium x of Eq.(5.2) is locally asymptotically stable.

5.2 GLOBALATTRACTIVITYOFTHEEQUILIBRIUMPOINTOF EQUA-

TION (5.2)

Lemma 5.4 The equilibrium point x is a global attractor of Eq.(5.2) if one of the fol-

lowing statements holds:

(1) Dw < �+ �u and � 6= 1: (5.9)

(2) Dw > �+ �u and D > 1;
(� + 1)2 (D � 1)

4
< �: (5.10)

Proof. Let � and � be real numbers and assume that g : [�; �]3 ! [�; �] is a function

de�ned by

g (u; v; w) =
�+ �u+ v

v +Dw
:
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Then

@g (u; v; w)

@u
=

�

v +Dw
;

@g (u; v; w)

@v
=
Dw � �� �u
(v +Dw)2

;

@g (u; v; w)

@w
=
�(�+ �u+ v)D
(v +Dw)2

:

We consider two cases:

Case 1 If Dw < �+�u then we can easily see that the function g (u; v; w) is increasing

in u and decreasing in v; w.

Suppose that (m;M) is a solution of the system M = g(M;m;m) and m = g(m;M;M)

then from Eq.(5.2) we see that

M =
�+ �M +m

m+Dm
; m =

�+ �m+M

M +DM
:

Since

Mm+DMm� �M �m� � = 0;

Mm+DMm� �m�M � � = 0

we have

(m�M)(� � 1) = 0.

When � 6= 1; we have

M = m

which the result follows.

It follows by Theorem 1.15 that x is global attractor of Eq.(5:1) and then the proof is

complete.

Case 2 If Dw > �+�u, then we can easily see that the function g (u; v; w) is increasing

in u; v and decreasing in w.

Suppose that (m;M) is a solution of the system M = g(M;M;m) and m = g(m;m;M):

Then from (5.2), we see that

M =
�+ �M +M

M +Dm
; m =

�+ �m+m

m+DM
:
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Since

M2 +DMm�M(� + 1)� � = 0;

m2 +DMm�m(� + 1)� � = 0

we have

(m�M)((m+M)� (� + 1)) = 0

with simple calculations. Now if m +M 6= � + 1; then M = m: On the other hand if

m+M = � + 1; then m and M satisfy the equation

m2 +Dm (� + 1�m) = �+ �m+m

and so

m2 (1�D) + (� + 1) (D � 1)m� � = 0: (5.11)

The discriminant of the Eq.(5.11)

� = [(� + 1) (D � 1)]2 + 4 (1�D)�

= (D � 1)
�
(� + 1)2 (D � 1)� 4�

�
is negative when

D > 1 and (� + 1)2 (D � 1) < 4�

then we have

M = m

which the result follows.

It follows by Theorem 1.16 that x is global attractor of Eq.(5.2) and then the proof is

complete.
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