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ABSTRACT
M. Sc. Thesis
PERIODICITY OF NON-LINEAR DIFFERENCE EQUATIONS
Ozge BAYRAK
Bulent Ecevit University
Graduate School of Natural and Applied Sciences

Department of Mathematics

Thesis Advisor: Assoc. Prof. Yiksel SOYKAN
June 2015, 95 pages

In this thesis, we are primarily concerned with the periodicity of non-linear difference
equations which are rational, max-type, special-type and the system of rational difference
equations.

The organization of this thesis is as follows:

In Chapter 1, we give the necessary preliminary definitions and some examples of linear and

non-linear difference equations.

In Chapter 2, we present some examples of the periodicity of some rational difference

equations.

In Chapter 3, we exhibit some examples of the periodicity of some max-type non-linear

difference equations.



ABSTRACT (continued)

In Chapter 4, we present some examples of the periodicity of some special-type difference

equations.

In Chapter 5, we investigate the study of some special max-type difference equations with

eventually periodic solutions.

In Chapter 6, we present some examples of the periodicity of the system of rational difference

equations.

Key Words: Difference equations, periodicity, periodic solutions, eventually periodic

solutions.

Science Code: 403.03.01



OZET
Yuksek Lisans Tezi
LINEER OLMAYAN FARK DENKLEMLERININ PERiYODIKLIiGi
Ozge BAYRAK
Bulent Ecevit Universitesi
Fen Bilimleri Enstitsi

Matematik Anabilim Dah

Tez Danmismani: Dog. Dr. Yiiksel SOYKAN
Haziran 2015, 95 sayfa

Bu tezde rasyonel, maksimum tipli, 6zel tipli lineer olmayan fark denklemleri ve rasyonel

fark denklem sistemlerinin periyodikligi ile ilgilenilmistir.

Bu tezin organizasyonu asagidaki gibidir:

Birinci boliimde, gerekli tanimlar, lineer ve lineer olmayan fark denklemleri ile ilgili bazi

ornekler verilmistir.

Ikinci bolimde, bazi rasyonel fark denklemlerinin periyodikligi ile ilgili &rnekler

sunulmustur.

Ucgiincii boliimde, bazi maksimum tipli lineer olmayan fark denklemlerinin periyodikligi ile

ilgili 6rnekler verilmistir.



OZET (devam ediyor)

Dordiincii boliimde, bazi 6zel tipli fark denklemlerinin periyodikligi ile ilgili Srnekler

sunulmustur.

Besinci boliimde, eninde sonunda periyodik ¢ozlimleri olan bazi maksimum tipli fark

denklemleri incelenmistir.

Altinc1 boliimde, bazi rasyonel fark denklem sistemlerinin periyodikligi ile ilgili drnekler

sunulmustur.

Anahtar Sozcukler: Fark denklemleri, periyodiklik, periyodik ¢ozlimler, eninde sonunda

periyodik ¢oztumler

Bilim Kodu: 403.03.01

Vi



ACKNOWLEDGMENTS
First, 1 would like to express my sincere gratitude to my supervisor, Assoc. Professor Yiiksel
Soykan, for his invaluable guidance, encouragement and patience at each steps of this thesis,

and also thank him for the motivation and moral support he has given throught the research.

I also want to thank Inci Okumus, Giilzade Karac1 and Yal¢in Girgin for their suggestions and

frienship.

| offer thanks to my family for their love and support.

Last but not least, | would like to thank my husband Murat Bayrak, for his endless love,

support and patience.

Vil



viii



CONTENTS

Page
YN g o = L@ AV /AN TR i
A B S T R A T et ettt e et et et et e et et et et et et ii
(@ )74 =3 IESUT OSSPSR \%;
ACKN O LED GIMENT S ..ot e et e e et e e e e e e e e e e e eeanns vii
(000 ]\ I =1\ B TR IX
CHAPTER 1 INTRODUCTION AND PRELIMINARIES ... 1
1.1 INTRODUCTION .ttt et et e e e e e e e e e e e e e e eeeeneaees 1
1.2 DEFINITIONS OF PERIODICITY oottt e e e e e e e e eannaaees 1
1.3 LINEAR AND NON-LINEAR DIFFERENCE EQUATIONS...............cccc 3
LA EXAMPLLES ... oottt ettt 3
CHAPTER 2 ON THE PERIODICITY OF SOLUTIONS OF SOME RATIONAL

DIFFERENCE EQUATIONS. ..ottt ae e e eaaaaaaaes o e 5
2.1 FIRST ORDER NON-LINEAR RATIONAL DIFFERENCE EQUATIONS ................. 6

2.1.1 THE CASE

1

xn+1 -_ x_ ........................................................................................................................ 6
2.2 SECOND ORDER NON-LINEAR RATIONAL DIFFERENCE EQUATIONS. ............ 6

2.2.1 THE CASE

1

xn+1 = Mg 6



CONTENTS (continued)

&gg
2.2.2 THE CASE
Xp41 = Kl—l ..................................................................................................................... 7
2.2.3 THE CASE
Xpi1 = Zf’; .................................................................................................................... 8
2.2.4 THE CASE
Xpp1 = % ..................................................................................................................... 9
2.3 THIRD ORDER NON-LINEAR RATIONAL DIFFERENCE EQUATIONS.............. 11
2.3.1 THE CASE
Xpiq = % .......................................................................................................... 11
2.4 FOURTH ORDER NON-LINEAR RATIONAL DIFFERENCE EQUATIONS........... 14
2.4.1 THE CASE
Xpyq = xi’i‘—;;: ............................................................................................................ 14

CHAPTER 3 MAX-TYPE DIFFERENCE EQUATIONS WiTH PERIODIC SOLUTIONS.17

3.1 SECOND ORDER MAX-TYPE DIFFERENCE EQUATIONS ........ccocciiiiiiiiiiiiiien, 17
3.1.1 THE CASE

__ max{xn,1}
T 18

3.1.2 THE CASE

3.1.5 THE CASE

max{xz,l}
xn+1 == 3 B e 41

XnXn-1




CONTENTS (continued)

Page
CHAPTER 4 SOME SPECIAL TYPE DIFFERENCE EQUATIONS WITH PERIODIC
SOLUTIONS .o eeeeeeee e eeeees e eeese e se e eee e eeeseee e seeese e 51
4.1 LYNESS" EQUATION ... ovveeooeeeeeeeeeeoeeseeeeeeeeesseeeeeeseeseeesseeseeseeseseseeesseeeseeseeseeeees 51
4.1.1 FRIZE PATTERNS. ..o oovoooeeeeeeeeeoeeseeeeeeeseeseeeeeees e e eeeeeseeseeseseeeeeseeesseneen 52
4.2 TODD’S EQUATION ... ooveeoe e eeeeeoeeeseeeeeees e essesseeseeessses e seseesee e seeseeeneeee 53
4.3 THE GINGERBREADMAN EQUATION ......oooovveeeoesseeeeeeoeeeseeeeeeeeesseeesees s 54
4.4 THE GENERALIZED LOZI EQUATION .....oomoooveeeoeeseeeeeeoeeeeeeeeeee e eeseeseeseeeees 57
4.5 INVESTIGATION OF THE SECOND-ORDER DIFFERENCE
EQUATION  x,,, = % ........................................................................... 58
4.5.1 PERIOD-2 SOLUTIONS OF  x,,, = % ......................................... 60
4.5.2 THE CASE C0 ..vvvooeeoeeeeoeeeeeeeeeoeeseeeeeeeoee e essees e eeeeeseeseeeeseeeeeeeeeseeneen 61
.53 THE CASE €30 ..vvvoorroeeeeeeeeeeeeooeeesseeeeeeeeeeeseeees s eeseeseseees e eeeeeee e eeeees 62
4.5.4 EQUATIONS WITH A UNIQUE PRIME PERIOD-TWO SOLUTION................ 63
4.6 THE RICCATI DIFFERENCE EQUATION w.....oooirovveeeoeeseeeeeeeeeeeseeeeseeeeesseeseeeeeen 64
CHAPTER 5 SOME SPECIAL MAX-TYPE DIFFERENCE EQUATIONS WITH
EVENTUALLY PERIODIC SOLUTIONS ....oooooeeveeoeeseeeeeeeeeeeseeeeeeeeeeseeseeeeeene 67
5.1 THE EQUATION x,,,, = max {ix:_l} ................................................................... 67

5.2 THE EQUATION iy = max {22, A0 Acd i T2

Xn' Xp_g' Xn-k
5.2.1 THE NEGATIVE COEFFICIENTS CASE ... 72
5.2.2 THE SAME POSITIVE COEFFICIENTS CASE ... 74

CHAPTER 6 EXAMPLES ON THE PERIODICITY OF SOLUTIONS OF THE SYSTEM

OF RATIONAL DIFFERENCE EQUATIONS........ooiiiiiiiiiieiiic e 75
BIBLIOGRAPHY . ...ttt 89
LG TP OPPPPUPRPPIS 95

Xi



xii



CURRICULUM VITAE

PERSONAL INFORMATION

Name, surname: Ozge BAYRAK

Nationality: Turkish (T.C.)

Date of Birth: 22.05.1984

Date of Place: Zonguldak

E-mail: ozgearslan.9900.0a@gmail.com

Address: Fatih Sitesi Cicek Evler C-4 Blok D:3
Kozlu/ ZONGULDAK

Tel: (0 532) 4353359

EDUCATION
Degree Institution Year of Graduation
MSc Bulent Ecevit University, Mathematics 2013-2015
BS Bulent Ecevit University, Mathematics 2003-2008
High School Mehmet Celikel Anadolu Lisesi, Zonguldak 1998-2002

FOREIGN LANGUAGE
English

FIELD OF STUDY
Major Field: Functional Analysis, Difference Equations

95




CHAPTER 1

PRELIMINARIES

1.1 INTRODUCTION

In this thesis we extensively use [1-28]. In this chapter we present some definitions and

supple some examples of linear and non-linear difference equations.

1.2 DEFINITIONS OF PERIODICITY

A difference equation of order (k + 1) is an equation of the form
Tl = [(Tn, Tno1y ooy Tnk), n=0,1,... (1.1)

where f is a continious function which maps some set J**! into .J. The set J is usually
an interval of real numbers, or a union of intervals, but it may even be a discrete set such
as the set of integers Z = {..., —1,0,1,...}.

A solution of Eq. (1.1) is a sequence {z, }2°_ _, which satisfies Eq. (1.1) for all n > 0. If

we prescribe a set of (k + 1) initial conditions

T gy T gyl ey To € J

then
1 = f(zo,x_1,....,x_y)
Ty = f('rbea“'?mkarl)

and so the solution {z,}°_ . of Eq. (1.1) exists for all n > —Fk and is uniquely
determined by the initial conditions.
A solution {x,}>°_ , of Eq. (1.1) is called periodic with period p (or a period p solution)

if there exists an integer p > 1 such that

Tpip =T, foralln>—k (1.2)



We say that the solution is periodic with prime period p if p is the smallest positive

integer for which Eq. (1.2) holds. In this case, a p-tuple

(:En-f—la LTn425 +-05 xn-&-p)

of any p consecutive values of the solution is called a p-cycle of Eq. (1.1).
A solution {z,}*°_ , of Eq. (1.1) is called eventually periodic with period p if there

exists an integer N > —k such that {x,}°_  is periodic with period p; that is,
Tptp =T, foralln > N.

The following lemma describes when a solution of Eq. (1.1) converges to a periodic

solution of Eq. (1.1).

Lemma 1.1 Let {x,}>°_ _, be a solution of Eq. (1.1), and let p > 1 be a positive integer.

Suppose there exist real numbers ly, ly, ..., l,_1 € J such that
lim zp,4; =1; forall 7=0,1,..,p—1.

Finally, let {y,}°_ _,. be the period-p sequence of real numbers in J such that for every

integer j with 0 < j < p—1, we have
Ypntj =1l forall n=0,1,...

Then the following statements are true:
(a) {yn}oc_ _ is a period-p solution of Eq. (1.1).
(b) limy, 00 Tpntj = y; for every j > —k.

Proof. It suffices to show that {y,}>°_ _, is a solution of Eq. (1.1). Note that for j > 0,
we have

Yj+1 = lim Tpn+j+1 = lim f(xpn+j7xpn+jfla ~'-7xpn+jfk)
n—0o0 n—o00

= WY1, Yjk)-



1.3 LINEAR AND NON-LINEAR DIFFERENCE EQUATIONS

The normal form of a k.order nonhomogeneous linear difference equation is given by

Tk + D1, Tosk-1+ o + Dk T = Gn, (1.3)

where p; and g, are real-valued functions defined for n > ng and py, # 0 for all n > ny.
If g,, is identically zero, then Eq. (1.3) is said to be a homogeneous equation. Eq. (1.3)

may be written in the form

Tpik = —P1, Tnik-1 — - — DknTn + Gn- (1.4)

By letting n = 0 in Eq. (1.4), we obtain zj, in terms of xy_1, %2, ..., To. Explicitly, we

have

Tk = —P1Tk—1 — P2uTk—2 — -+ — PkoTo + Jo-

Once xj, is computed, we can go to the next step and evaluate xy,q by letting n = 1 in

Eq. (1.4). This yields

Tk41 = —P1, Tk — P2, Tk—1 — --- — Pk1T1 + G1-

By repeating the above process, it is possible to evaluate all z,, for n > k.

If a difference equation is not linear then we say that it is non-linear.

1.4 EXAMPLES

Example 1.1 We give some examples of linear difference equations:

Tpt1 — (sinn)z, = €"
2n
n+ 1xn—|—2 + 3l’n+1 -4z, = n;
+— g+t 3n+5
T T L, Tn = n ;
2 T on 13
Tnaa + e"+6$n+2 + 6x, = O.

Example 1.2 We give some examples of non-linear rational type difference equations:

T o Tn41 — Tn .
2 = T
3xn—‘rl
(n+1)xpo — (30 — D)apyr
e )
3xn+2 + Tni1
(= 2) s+ 22040
Tnta = .

Tn



Example 1.3 We give some examples of non-linear min-max type difference equations:

max {Zp, 1}

xn+1 - T 3
n—1
max {z,, 1}
n n—1
min {z2,1}
Tpyy = ——
TnTpn—1
min {z2,1}
n n—1

Example 1.4 We give some examples of non-linear systems of rational type difference

equations:
_ Tn—1 + Yn o Yn—1 + Tn X
Tpy1 = sy Yn+1 —
YnTn—1 — 1 TnYn—1 — 1
T o Yn—2 y o Tp—2 P o Tp—2 + Yn—2 .
n+1 — y Yn+1 — y ~#n+1 — y
-1 + Yn—2Tn—-1Yn —1 + Tn—2Yn—1Tn -1 + Tn—2Yn—1Tn
o Tn—1 o Yn—1 o 1 .
Tpyi = —— > Ynr1 = —— A+l T
YnTpn—1 — 1 TnYn—1 — 1 YnZn—1 — 1
_ Tn-1 o Yn—1 _ 1
Tpyr = ——— " Ynri1 = /a1l — -
YnTp—-1 — 1 TnlYn—1 — 1 YnZn—1 — 1



CHAPTER 2

ON THE PERIODICITY OF SOLUTIONS OF SOME RATIONAL
DIFFERENC EQUATIONS

In this chapter, we investigate peridiocities of the following non-linear difference equations
(see ([7], pp. 23-25)). Those present a wealth of examples of some rational-types
difference equations with the property that every solution of each equation is periodic

with the same period.

Tpi1 = ﬁ, n=20,1,.. (2.1)
Tpil = :c,,L:cln,ﬁ n=20,1,.. (2.2)
Tpyl = ﬁ, n=0,1,.. (2.3)
Tpt1 = Z—f?, n=0,1,.. (2.4)
Tpt1 =52, n=0,1,.. (2.5)
Tl = %, n=0,1,.. (2.6)
Tpp1 = %, n=01,.. (2.7)

When one tries to investigate the periodicity of solutions of a difference equation, a key
question of fundamental importance is the following. What is it that makes every solution
of a difference equation periodic with the same period? Is there an easily verifiable
necessary and sufficient condition that can be used to test for this property?

Note: The answer is that every solution of each of the above equations is periodic with
the different period. However, there is some difference equation which is not periodic or
eventually periodic (see Chapter 5). Also generally, there is no easy way to test whether

a difference equation is periodic or not (see Remark 2.1).



2.1 FIRST ORDER NON-LINEAR RATIONAL DIFFERENCE EQUATIONS

2.1.1 THE CASE

1
Tnyl = — (28)

‘T"'fb
Example 2.1 FEvery solution of the equation
1
Tpy1=—, n=0,1,2, ... (2.9)
Tn
18 periodic with pertod 2.
Solution. If the initial condition of Eq. (2.9) is a non-zero real number denoted by

Ty — Qv

then we have

1 1
r = — =,
Zo «
1 1
1‘2 = _:T:a7
I P
1 1
r3 = — =,
i) [0
Ty = Q,
1
Ty = —,
(e}

So the solution of Eq. (2.9) is the period-2 sequence

1 1 1 1 1 1
oy —, &, —, 0, —, &y, —, &, —, Oy —
« « « « « «

PIREER

2.2 SECOND ORDER NON-LINEAR RATIONAL DIFFERENCE EQUA-
TIONS

2.2.1 THE CASE

1
Tpa1 = (2.10)
LnLp—1
Example 2.2 FEvery solution of the equation
1
Tpi1 = , n=0,1,2,.. (2.11)
TnTpn—1

18 periodic with period 3.



Solution. Suppose that the initial conditions are non-zero real numbers denoted by

r_1=caand xy = f.

Then we obtain

1 1
€T = = —
! Tor_1 af
1 1
LL’2 = —_— = = O[7
T1Zo a—lﬁﬁ
1 1
xr3 = = 1 — 57
Tol1 aa_ﬁ
1 1
€T e - = -
! I3T2 af’
1 1
1‘5 = —_— = = (X
TyT3 a—lﬂﬁ 7
1 1
e = —— = —7 = B,
T5L4 Oéa—ﬁ

Therefore the solution of Eq. (2.11) is the period-3 sequence

1 1 1 1

a, 3, a_ﬁ’a’ﬁ’ a_ﬁ’a’ﬁ’ @,a,ﬁ, PR =

2.2.2 THE CASE

Example 2.3 FEvery solution of the equation

Tpg1 = , n=20,1,2 ..
n—1

18 periodic with period 4.

Solution. Let the initial conditions are non-zero real numbers denoted by

r_1=caand xy = f.

(2.12)

(2.13)



Hence we obtain

1 1
r = — =,
r_1 (0%
1 1
€T = —:—’
2 Lo o}
1 1
€T = —_— = = = (X
3 T é )
1 1
Ty = —=71=0
i) B
1 1
Ty = — = —,
T3 «
1 1
€T = —:—’
¢ T4 o}
1 1
€T = —_— = = = (X
7 s é )
1 1
g = —=71=0,
T B

Then the solution of Eq. (2.13) is the period-4 sequence

RIr

7%7a7/87 7%

L+

05767

2.2.3 THE CASE

1+zx,

n—1

Tnt1 =

Example 2.4 FEvery solution of the equation

1+z,

Tyt = , n=0,1,2,..

n—1

18 periodic with period 5.

... H

(2.14)

(2.15)

Solution. Assume that the initial conditions are non-zero real numbers denoted by

r_1 =« and ry = f.

Then we obtain

1+29 1+p
xlz = s
r_1 a




Cl4x 14+HE 1404

e

xXr - )
T 3 af

l+z, 1+23% 4841+a+8 a
€T = = =
° T b af 1+3

a4+ +B8) 1 (148 (1+a) 1
5 1+ &} 1+ 5
x:1+x3:1+1+70‘:1+a+ﬁza
4 To 1+aﬁ+ﬁ 1totf '
1+x4 1+Oé

x5: = 1+a :/87

T3 T
1‘6: =

Tq «

145

x7:1+I6:1+T:1+Oz+57

s &} af

1+ 27 1+% af+1+a+8 «
€T = = =
s T b af 1+5

al+p)+(1+8) 1 1+ +a) 1
B 147 I54 1+p
l4azs 1+5 1+a+4

Tog = = = = X
9 . 1+aﬁ+ﬁ 1+atf ’

1+I‘9 1+«
xlO = - = 1—1—_04 :/87

8 3

Consequently the solution of Eq. (2.15) is the period-5 sequence

0.3 1+8 1+a+8 1+« 0. 148 1+a+p6 1+« .
) ) Oé ) Oé/B ) /6 ) Y ) C( )] a/@ ) /6

2.2.4 THE CASE

Tn
= 2.16
Tn+1 . ( )
Example 2.5 FEvery solution of the equation
Tn
Tyl = , n=20,1,2 .. (2.17)
n—1

18 periodic with period 6.



Solution. If the initial conditions are non-zero real numbers denoted by

r_1 =« and xg = f3,

then we get

Lo
r=—=-,
Tr_1 «
o5 1
Ty =—="5=—,
T [«
1
T i) o 1
3:—:—:—’
T g B
xT % «
3 B
1,’4:—:T:—’
T2 P B
T o3
4 B
1‘5:—:T:O{7
I3 B
Iy 0%
z=—"=35=5,
Ty E
_%_5
Ty =—=—,
Iy a
_a 5 1
rg = — =— = —,
re [«
1
-
L9 =—="73 =7
X7 a 6
X 1 «
9 B
e
Tg p B
x [e]

10 B
Tin=—~=7=G,
Hits) B

T11 o
LL’12 = —252/87
Z10 3

So the solution of Eq. (2.17) is the period-6 sequence

L™
L™

L+

7a7/87

1
05767 57 )

Y

o la
= 515

| =

10



2.3 THIRD ORDER NON-LINEAR RATIONAL DIFFERENCE EQUA-
TIONS

2.3.1 THE CASE

1 n ne
Lo = LTt T (2.18)

Tp—2

Example 2.6 FEvery solution of the equation

1 +xn +xn71

Tn—2

Tt = n=0,1,2,.. (2.19)

18 periodic with period 8.
Solution. Suppose that the initial conditions are non-zero real numbers denoted by
T o=a,x_1=[and g = 7.

Then as a first term we have

. 1—|—I0+l’_1 .

1+6+7y

T_9o (6]

T

the second term is

Cldatw 1+ 4y Tta4B+y+ay
L1 s af 7

the third term is

Z2

I 1—|—x2—|—a:1:1+1+a+§;7+a7+1+§ﬂ:a6+1—|—a+/3+7—|—a7+/3+52+ﬁ7
’ o Y afy

14+ a4+ By +a+p) 1+ (0 +a+B)+y(1+a+p)

B afy B afy

(4 a+p)1+8+7)

B afy ’

the fourth term is

1+a+8)(1+8+ 1
—_ 1+$3+x2_1+( ai)ﬁ(yﬁw_{_ +a+§;—7+a7
"o v JENCE

afy+(L+a+B)(1+B8+7)+y+ay+By+72+ar?
Py(L+5+7)
A+a+p)(1+8+7)+oy(1+8+1)+7(1+8+7)
Py(1+5+7)
A+p+y)I+a+B+y+ay) 1+a+B+v+ay
By (1+5+7) B By ’

11



the fifth term is

. 1+ 24 + 23 _ 14+ 1—|—a+g—7|—'y+om + (1+a+§)’§’1+5+7)
To 1+a+§;v+a'y
afy+a+a?+pa+yat+a’y+(1+a+6)1+58+7)
YAl+a+B8+v+ay)
afy+a+a’+Batyata’y+(1+a+8)(1+8+7)
YyAl+a+B+v+ay)
QI+a+B)(a+tay+1+8+7) 1+a+p

T(l+a+B+vy+ay) gl

)

the sixth term is
14 25 + 24 B 1+ 1+?;+B + 1+a+gj’y+a’y
X3 a (+a+B)(1+8+7)
aBy
a(By+B+af++1+a+B+7+ay)
(I+a+8)(1+8+7)

a((@+a+p)d+5+7))

QtatB)A+B8+y)

Tg =

and the seventh term is

14 wgtas 1+G+M Yyt ay+lta+
1= 4 ~ T Ltatfiytay 1tatBiytay =0

By B

and the eighth term is

1+t 1+08+a
Irg = Ts - 1+?;+B _77

and the nineth term is

_1—|—x8+x7 1+5+’Y
Z6 Q ’

T9

and the tenth term is

I+x9+a8 1—1—%1—#7_ l+a+B+v+ay
7 5 afb ’

and the eleventh term is

T10 =

o o Ltmotay THESGES AR aftltatfiytay+ 54648
g v oy
1+ +al+B+y0+a+h)  (1+B)I+a+B) +y(l+a+p)
B afy N afy
I+ a+p) 1+ 8+7)
B afy ’

12



and the twelfth

(I+a+B)(14-54+7) 1+a+B+y+ay
. IT+211+210 L+ aBy + of
12 = To - 1+§+7

afy+ (1 +a+8)(1+8+7) +7+ay+By+92+ar?
By(1+8+7)
(I+a+p)1+B+7)+ay(1+B+7)+v(1+5+7)
By(1+B8+7)
1+8+y)(1+a+B+y+ay) 1+a+B+y+ay
By(1+53+7) B By ’

and the thirteenth term is

1+a+f+y+ (+a+B8)(A+8+7)
1—|—I12+I11_1+ a,Bq/A/ =+ afy

T3 = T o 1tatB+ytay
10 B

afytata’+Batyata’y+(1+a+B)(1+5+9)
Y14+ a+B+v+ay)
afy+a+a®+Batya+a®y+(1+a+p)(14+8+7)
Y1+a+B+v+ay)
Ql+a+B)(a+tay+1+8+7) 1+a+p
Yyl+a+p+v+ay) B v ’

and the fourteenth term is

Ita+B | l+oatfBy+
1+I‘13+£L‘12 1+ ?; + = 577 -

T = =
1 71 (1+a+§)ﬁ(’1+ﬂ+w)

a(fy+B+af++1+a+B+7+ay)
(I+a+8)(1+5+7)
a(l+a+p)A+5+7))
I+a+pB)(1+5+7)

Y

and the fifteenth term is

14
1+x14+713 1+04++T+B _ytay+l+a+f

1+a+B+y+ay 1+o+B+y+ay ﬁ’
By B

T15 =
T12

and the sixteenth term is

. 1+Z’15+ZC14_1+6+C¥_

Tie = = =7
T13 1+fvy+5 ’

Then the solution of Eq. (2.19) is the period-8 sequence

1+B+y 1+tat+f+ytay (l+a+f)(A+6+7) I+tat+f+yt+aoy 1+a+p

05767'77 ) b
o af afy By Y
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2.4 FOURTH ORDER NON-LINEAR RATIONAL DIFFERENCE EQUA-
TIONS

2.4.1 THE CASE

Lo = _InTn-2 (2.20)
Tpn—1Tn—3
Example 2.7 FEvery solution of the equation
Ty
Ty = —222 0 1 =0,1,2, ... (2.21)
Tpn—1Tn—3

18 periodic with period 10.

Solution. If the initial conditions are non-zero real numbers denoted by

r3=a,r o=0,r_1=77 and g =9

then we have

Lol 2 (56
:I;‘l = -
T_1T_3 Yo
98
Iy — 1T 1 o 'y_a’y 1
9 = = -
ToT_o 08
1
o ToXo N E(S B 1
VT e, 8. B’
1T—1 po
148
o T3T1 _ Brya 1
Ty = — 15 -
T2Zo p v
11
e — T2 _ ya 1
5 — - 58 — o
T3X1 %7—5 )
11
b TsT3 _ 55 _ 1o
6 — - 11 — ;
T4 ;E 5/6
Jol
_ Tela _ 5~ _
7= — 11 %
T5L3 5B
1
. Iy . Oé6 -
€Ty = T yal 57
TeTa 55y
Jo
. T8 . 555 .
T9g = =T =7
Ty Ctg

14



Tol7 e’

aj’lo g o Yo g 5’
Tgle 38
_ T10Tg o
T11 = - T
Tol7 yo
B

T11%9 7_(17 . 1

T10T8 (56 Oé’
1
o 12210 B 5(5 . 1
13 = =% "
T11T9 el B
198
_ T13T11 Bra 1
T4 = - 1 )
12210 =0 v
i1
- _ T2 ya 1
15 = = ==
138 ’
13T 108§
13211 o
11
R T15T13 53 Y«
16 = =711~ o
T147712 Yo op
T16T -
164414 0B v
T = — I %
L1513 5B
1
Ty Oy
T8 = T yal T 69
L1614 38
oie]

_ T18T16 656 o
Tig=—"—"—"—"—"—=—""71=7
L17215 Qg

_ TigT17 | Yo -5
T20 = ——— = 734 )

= — =
T18T16 5%

Therefore the solution of Eq. (2.21) is the period-10 sequence

« 0, —,—, =, —,= « ) - =,—, = .

7/6777 70[’7’0[7/87'775’/857 76777 70[’7’0{’5’7’57557
What is that makes every solution of a difference equation periodic with the same period?
Is there an easily verifiable test that we can apply to determine whether or not is ture?
The following Lemma gives a partial answer to this questions. In fact, it is interesting to

note that Eq. (2.1) and Eq. (2.2) follow a pattern (see (a) of the following Lemma) and
also. Note that Eq. (2.17) and Eq. (2.21) also follows a pattern (see (b) of the following

Lemma).
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Lemma 2.1 (a) For every k € {0,1, ...}, every solution of the difference equation

1

)
Tnlp—1.--Tp—k

n=0,1,.. (2.22)

Tpt1 =

is periodic with period (k+2).

(b) Given a non-negative integer k > 0, every solution of the equation

Tnlpn—2.--Tn—-2k

n=0,1,. (2.23)

Tn4+1 = )
Tp—1Tn—3---LTn—(2k+1)

is periodic with period (4k + 6).

Proof.

(a) If the initial conditions of Eq. (2.22) are the non-zero real numbers x_x, 41, ..., Zo,

then the solution of Eq. (2.22) is the period-(k + 2) sequence

1

Tk T—k+15 -5 L0 S
0L —1---T—k

(b) If the initial conditions of Eq. (2.23) are the non-zero real numbers x_o;_1, z_2, ..., Zo,

then the solution of Eq. (2.23) is the period-(4k + 6) sequence

ToX—-9...T 9 1 1 1 T_10-3...L_9k—1

T 2k—1, L2k, -+, L0 y e

7 J J PR 9
LT1T-3...T—-2k—1 T—2k—1 T2k To Tol—-2..--T-2k

Remark 2.1 In view of the periodicities Eq. (2.15), and Eq. (2.19), we may be misled
into believing that, Eq. (2.15), and Eq. (2.19) also follows a pattern and, in particular,
that every solution of the non-linear difference equation

1+ T+ Tpo1+ Tpo

Tn—3

Tyt = n=0,1,.. (2.24)

is periodic with period 11. Unfortunately,3 Eq. (2.15), and Eq. (2.19) do not follow
any obvious pattern. If {z,} > 5 is the solution of Eq. (2.24) with initial conditions

T_g=T_o=2_1 =29 =1, we see that the first 12 terms of {x,} - 5 are

23 101 313 29,498
1,1,1,1,4,7,13,25, —, ——, — =~
Y Y ) ) 77’ 37 57 2 Y 14 Y 91 Y 31,850

and so {x,} -4 is not periodic with period 11.

16



CHAPTER 3

MAX-TYPE NON-LINEAR DIFFERENCE EQUATIONS WITH
PERIODIC SOLUTIONS

In this chapter, we investigate peridiocities of some non-linear difference equations (see
([7], pp. 27-28)). Those present a wealth of examples of some max-types difference
equations with the property that every solution of each equation is periodic with the same

period.

3.1 SECOND ORDER MAX-TYPE DIFFERENCE EQUATIONS

In this section, we consider peridiocities of the following second order max-type difference

equations (see ([7], pp. 27-28)).

Tpr1 = % ,n=0,1,.. (3.1)
Tpy1 = %ﬁ’j} ,n=0,1,.. (3.2)
Tpy1 = % ,n=0,1,.. (3.3)
xnﬂ:%iil} ,n=0,1,... (3.4)
po = 2 g (3.5)

The answer is that every positive solution of each of the above difference equation is

periodic with the same period.

Every solution of Eq. (3.1) is periodic with period 5.

Every solution of Eq. (3.2) is periodic with period 7.

Every solution of Eq. (3.3) is periodic with period 8.

Every solution of Eq. (3.4) is periodic with period 9.

17



e Every solution of Eq. (3.5) is periodic with period 12.

We now investigate in detail the periodicity of all above max-type difference equations.

3.1.1 THE CASE

max {x,, 1
Tnpr = % (3.6)

Example 3.1 Fuvery positive solution of Eq.(3.6) is periodic with period 5. We illustrate
the result in the following table.

Case 1 Case 2 Case 3 Case 4
ry=a<l raya=az>1 ry=a<l raya=az=>1
ro=p0<1 ro=p0<1 ro=02>1 ro=02>1
55125 55125 £C1=§ l‘l—g

=% z3 = 7y =1 w, = max {1, 21
xg—% [E3—% [E3—% [E3—%

Ty= Ty= Ty= Ty=

r5s=p r5s=p r5s=p 5 =0

x6:$ x6—é x6—§ x6—§

T =% zr =1 p=1 vy = max {4, 21
[Egzé [Egz% [Egzé x8:%

Tg =« Tg =« Tg =« Tg =

T10 = 3 T =3 T10 = [ T10 = [

Solution.

Case 1:

For

r1=a<l1

ro=p3<1

we get the first term is

max {zg,1} max{f,1} 1
€r1T = = = —
! T4 Q o’

18



the second term is

max {z;,1} max{L 1}
To — = =

1
Zo B B af’

the third term is

1
max {zg, 1} max{@’l} a1
l’s = = 1 = T = -,
1 a a B
the fourth term is
1
max {3, 1} max{g’l} %
l’4 o o 1 g T g C\f,
w2 af af
and the fifth term is
max { Ty, 1 max {«, 1 1
3 3 B
and the sixth term is
max{z5,1} max{5,1} 1
T = = — —
6 T4 a o’
and the seventh term is
max {2¢,1} max{i,1} 1 1
1‘7 g g = = = —
Ts5 B g apf

and the eighth term is

and the nineth term is

1
max {zg, 1} _max{g,l} %

1‘9 = 1 = 1 = O[’
Ty a_,B 8
and the tenth term is
max {zg,1} max{ae,1} 1
Tio = = 1 =71 = 67
T8 B B

19



Case 2:

For
r_1=a>1
g =<1

we get the first term is

max {zg,1} max{3,1}
I = = =

T_q o

the second term is

T2

Zo 5
the third term is

I3 =

1
max {22, 1} B max {E? 1}
T o i

the fourth term is

max {x3, 1} max{%,l}
LL’4 = = 1
B

T2
and the fifth term is

max {z4,1} max{a,1}

Ty =
T3 E

and the sixth term is

max{zs,1} max{f3,1}
Tg = = —
6 T4 (6]

and the seventh term is

T —

s B
and the eighth term is

1
max {z7, 1} max{g,l}

Te

and the nineth term is

max {xg, 1} max{%,l}
B

_ max{z;,1} max{1,1}

max {ze, 1} max{é,l} B

1

Oé7

1

37

1
8_2
Lh
o3
i
B

(6%
E_ﬁa
B

1

e

«

1

B?

1
8_2
s P
o3
i
B

20



and the tenth term is

max {xg,1} max{a, 1}
1710 g o - o
xTs 3
Case 3:
For

r1=a<l1

To=p2>1
we obtain the first term is

max {zg,1} max{s,1} f
TrT1 = = = —
! T4 a o’

the second term is

max {z;,1} max{Z,1} £
1‘2 == == = —
Zo B &4
the third term is
max {22, 1} max{é,l} é
1‘3 g g ,3 —= E
1 P P
the fourth term is
max < 1,1
max {3, 1} 3 1
T2 a a
and the fifth term is
max {z4,1} max{a,1} 1
Te = g = —
SR T

and the sixth term is

max {r5,1} max{f,1} f
T = = = —
6 T4 Q o’

and the seventh term is

max {rg,1} max{Z 1}
T = = =

el
s p E
and the eighth term is

_ max{zs,1} max{1,1}
— - — . —

«

xg

L [®|R 1=

wle| ©

Q|+

| =

)

B,
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and the nineth term is

1
wax (o, 1) _ e {31]
T P

and the tenth term is

Q| —
I
L

max {zg, 1} max{a,1} 1
T8 [ B
Case 4:
For
r_1=a>1
g =0 2>1
the first term is
max {zg,1} max{f,1} S
Tr1 = e —
! T4 Q o’
the second term is
1Y max{Z 1 1
$2:maX{x17 } — {Oc } :maX{—,—
Zo B B«
the third term is
max { £ 1
max {xs, 1} 3 1 «
x3 - = == =—,
n ITITh
the fourth term is
max {a 1 M {5:1}
l’4 = = 1 = T = a’
L2 B B
and the fifth term is
max { Ty, 1 max {«, 1 «
L3 B B

and the sixth term is

Tg —
Ty «

and the seventh term is

max {xg, 1} max{g,l}
Ty = =

Ts B

_ max {5, 1} _ max {f3,1} _ é

)
(0%

= max{

15
Ba

22

5}’
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and the eighth term is

1
~ max{zr,1} max{g,l} 1«
S
and the nineth term is
max {zg, 1} max{%, 1} 5
1‘9 = = 1 = T = O{7
L7 B B
and the tenth term is
max { g, 1 max {q, 1 «
Ls B B
3.1.2 THE CASE
max {x,, 1
Tpp1 = max {1} (3.7)

Tndn-1

Example 3.2 Fuvery positive solution of Eq.(3.7) is periodic with period 7. We illustrate
the result in the following table.

Case 1 Case 2 Case 3 Case 4
r1=a<l1 rTi=a>1 r1=a<l1 ri=a>1
ro=p5<1 ro=p5<1 To=p02>1 ro=02=>1
— 1 — 1 -1 -1
l‘l—aﬁ l‘l—aﬁ Ty = Ty =5
@z% xgzmax{a,%} @z% :132:%
x3 = af x3 = af x3 = af r3 = max {«a, f}
_ 1 _ 1 _ 1 _ B
Ty= 3 Ty= 3 m-max{ﬁ,a} Ty=Z
1 1 1 1
T5 = — T5 = = T5 = = Ty = =
5 af 5 B 5 af 5 B
Tg — QX Tg — QX Tg — QX Tg —
T =3 T =3 ;=3 rr =3
— 1 — 1 1 1
T8 = 43 T8 = 43 Tg = rg =
33'9:% xgzmax{a,%} 33'9:% :139—%
T = af T = af T = af xlo—max{a,ﬁ}
1 1 _ 1 _B
Tl =4 Tl =4 $11—maX{5>;} T11 = o
_ 1 1 1 1
T12 = 33 T12 = 3 112 = 33 T2 = 3
T3 = & T3 = & x13 = T3 =«
T4 =f Ty =f Ty =f T4 =3
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In fact, the solution of Eq.(3.7) is:

Case 1:

For;
r_1=a<l1
g =<1

we obtain that

max {zg,1} max{f3,1} 1
:1;‘1 == == = —,
ToT_1 Lo af
1
max {z1, 1} max{@,l} a—lg 1
To = = ===,
L1120 aiﬁﬁ i B
1
max a1} mx{3 1} 4
Tl Bag s
max {z3,1} max{ap, 1} 1
Ty = s = —,
! T3To aﬁ% o
max {01} _max {11} 1 1
aj’5 = = 1 = = = —,
T43 a()éﬁ 6 Oéﬁ
1
max a1} mx{d51}
1,’6 e e 11 1 — a7
T5T4 a_ﬁa aTﬁ
max {zg, 1} max{a,1} 1
aj’7 = = 1 = T = 6’
Ty aa_ﬁ B
max {z7,1} max{5,1} 1
1‘8 = = = —,
T7Te pa af
1
max {zg, 1} max{@,l} a—lg 1
Ig — = —_— ==,
T8l aiﬁﬁ i B
1
max a1} _ max{F 1} 4
T10 = = 11 T =af,
Tolg Bap e
max {z10,1} max{af,1} 1
€T = = = —
1 T10T9 aﬁ% Oé7
max {ay, 1} _max{i1} 1 1
T2 = = == =—
L1110 éaﬁ fab
1
max (i1} _ W {an 1}
13 = = 11 =1 =%
T12711 2B o 223



max {r13,1} max{a,1} 1
L1312 Oéa—ﬁ 3
Case 2:
For;
r_1=a>1
g =<1

we obtain that

~ max {x, 1} _ max {8,1} 1

= ToT_1 Ba B aff’
max { =, 1
max {x, 1} aB’ { 1}
Tg = = T =max<{a,— ¢,
T1Zo a_/gﬁ 5
1
1 max{max{a,—},l}
xs:max{l“z, } _ 1 61 — af,
Tok
21 max {a, 3} o]
max {3, 1} max {af, 1} 1
1‘4 = = = —,
L3l2 a3 max {oz, %} a
max {xy, 1} max{é, 1} 1
T = = = -,
° T4y éaﬁ B
1
maxfas, 1) W {1}
S
544 Ba Ba
max {ze, 1} max{a,1} «
1,‘7 g g 1 g —1 o /67
Tels OéE OéE
max {z7,1} max{f3,1} 1
I'S = = = —,
T7T6 Ba af

1
_ max {zs,1} _max{@,l} _ 1
Ty = ; = max | @ (s

xrexr B a—ﬁﬁ

T10 = Tol - 1 1 = aﬁv
98 max {a, 5} o8
max {219, 1} max {af, 1} 1
T11 = = =
L1079 a3 max {a, %} «
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max {z1;,1} max{Z 1} 1
€T = = = —,
. L11210 éOéﬁ 5
1
max {op, 1) mc{d1} 4
T13 = = 11 =11 =%
L1211 Ba Ba
max {r13,1} max{a,1} «
T = - 1 =1 = /6a
1312 OéE OéB
Case 3:
For
r1=a<1
g =0 2>1
we get that
max {zg,1} max{8,1} [ 1
LL’I = = = — = s
ToT_1 Lo af  «
max {z;,1} max{i 1} 1 1
xQ — = 1 — F — -,
1% = £ p
max {xo, 1} max{%,l} 1
T3 = — = i1 T =ab,
271 Fa -
oy — max {z3, 1} _ max {ozlﬁ, 1} R {57 l} ’
T3To aﬁg o
max {z4,1} max{max{8,1} 1} 1
Ty = = = —,
b T4X3 max {5, i} af af
max { -, 1
max {zs, 1} aB’
1‘6 = = 1 i = a)
T5Tq o5 max {6, =
max {zg, 1} max{a,1} 1
xr = = T =1 =0
Ty aa_,B B
max {z7,1} max{8,1} [ 1
Irg — = = — = —,
T7Tg Lo aff  «
max {zg,1} max{i,1} L1 1
139 — = 1 = E = —,
xr8T7 P o 6
max {9, 1} max{%,l} 1
LL’IO = ’ = 11 = T = a/67
ToTs Ba op



_ max {z19, 1} _ max {af3, 1} e {ﬁ l}
’a Y

T =
H T10T9 05%
max {x11, 1} max{max{ﬁ,é},l} 1
T2 = = 1 =
11210 max {ﬁ, E} af af
max { ==, 1
max {z2, 1} aB’
T13 = =1 1y = &
12211 @ max {B, a}
max {z13,1} max{a,1} 1
T4 = = 1 =71 = B,
T13T12 ] 3
Case 4:
For
ri1=a2>1
o= 2>1

we have that

max {zo, 1} _ max {3, 1} _ 81

T =

ToT_1 Ba afl o
max {zr;,1} max{il 1} 1 «
To = = == ==,
? L1120 é@ g g
max { Tz, 1 max{%,l}
L3 = {2 }: — = max {«a, 8},
o1 Ea
max {z3,1} max{max{«,S},1} S
Ty = = -
! T3T2 max {a, 5} § o’
max {z4, 1} max{g, 1} 1
Ty = = =—
° T4T3 Emax{a,8} B
max< <, 1
max {xs, 1} B 1
B - - 15 I
544 Ba o
max {xg, 1 max {a, 1 «
T7 = 20,1} = {1 ) —a B,
Ty OZE 3
max {zr7,1} max{f,1} f 1
I'S = = = — = -,
T7xg Lo af  «
max {zg,1} max{i 1} 1 «
To = == = = = —’
’ xryxr éﬁ § &



max {xg, 1 max | 3, 1}
T = {20, 1} = = = max {«, 0},
L9 Ba
max {0, 1} max{max{«a,p},1} f
:U].]. = = p = —7
T10T9 max {«a, 5} § a
max {x11,1}  max{Z 1} 1
€T = = = -,
. 11210 gmax {a, 8}y B
1
max {12, 1} max{g,l} 1
T12211 Fa Py
max {713,1} max{a,1} «
1,‘14 = = 1 = E = /67
T13T12 g B
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3.1.3 THE CASE

max {x,, 1} (3.8)

Inxn— 1

Example 3.3 FEvery positive solution of Eq.(3.8) is periodic with period 8. We illustrate
the result in the following table.

Case 1 Case 2 Case 3 Case 4
T =a<l T =a>1 r1=a<l T =a>1
Ty = _1 Ty = _1 Ty = _1 Ty = _1
1 _ 1 1 A
L1 = 752 L1 = 752 T1 = 35 L1 = 35
T = af8 T = afs To = T9 = o2f3
_ 1 — 1 _ B 1
r3 == xg—max{ﬁ,a} r3 ="~ T3 ==
1 1« 1 1
Ty = = T4 = Max | —23, = Ty = = Ty = =
4 B 4 {043’5} 4 B 4 B
2
x5 = aff x5 = f3 x5 = af x5 = af
- _1 - 1 - 1 1
xG_QQB x6_a6 xG_QZB xG_aﬂ
T7 =« T7 = Q T7 = Q T7 = Q
g =3 g = [ g = f3 g = f3
- _1_ - _1_ — 1 1
L9 = 52 L9 = 52 L9 = 43 L9 = 43
_ _ _ )
T10 = af3 T = af3 T = & T = a“f3
-1 — 1 8 -1
Tl =g T11 = max {5» a} T11 = Tl = 3
1 1« 1 1
T19 = 5 T19 = Max < —:3, = T1g = 5 T19 = 5
127~ 3 12 {aﬂmﬁ} 127~ 3 127~ 3
2
713 = af T3 =3 713 = af T13 = aff
1 1 1 1
T4 = 23 T4 = 43 T14 = 323 T14 = 43
Ti5 = & Ti5 = & T15 = & T15 =«
T16 = f3 T16 = f3 T16 = f3 T16 =
Solution.
Case 1:
For;

29



we have that

max {a:o, 1} max{3,1} 1

T, =

T3T_1 B af”
1 1
max {x,1} max{aﬁz,l} P2
To = 27 = 1 ﬁ R 0557
140 04254 O‘263
max {2, 1} max {046, 1} 1
3= i 232 T a
241 (0% 6 0452 Q
max {r3,1} max{f 1} 1 1
x4 p— = = — = —7
w37 »af 5B
1
max (a1} _ {31} 3
s m o — 11— L~
43 B2 a aB?
max {z5,1} max{af,1} 1
LL’6 = = = s
131y a252% a2
1
max {zg, 1} max{m’l} aTlﬁ
— — T = 1 = O[,
l‘gl'g) a4—62a5 Py
max {z7,1} max{a,1} 1
Irg = 2 = 5 1 =71 = 67
T3 o?2g 3
max {xg, 1} max{3,1} 1
Tg = 929
R B ~of
1 1
max {xg, 1} max{a[#, 1} P
T10 = 2 - 1 =1 = af3,
max {719,1} max {aﬁ, 1} 1
xll = = = )
T30 T9 a2 QBQ o
max {zy;, 1} _ max{7, 1} 5 1
T19 = = == =,
3,210 =zaf Ep
1
wax g, 1) _ P {31} 3
13 = 11 = = af,
L12211 BFa 2Bz
max {x13,1} max{af, 1} 1
133212 04252% a?f’
1
max {x14, 1} max{aTﬁ,l} aTlg
Ty = 5 = 1 = = Q,
L147L13 a462&6 PEr]



max {r15,1} max{a,1} 1
Case 2:
For;
rT_1=a>1
g =<1
we get that
max {xo,1} max {3, 1} 1
Tr1 = = = ,
' THT 1 B*a af?
1 1
max {z1, 1} max{afﬂ, 1} el
T2 = 2 - L3 = =ap,
T1To a254 a2p3
max {s, 1 max {af,1 max{af, 1
T3 = iQa }: 2{2617 }: {67 }:ma,x
571 o?f T o)
max {23,1}  max{max{8,1} 1} 1 «
Ty = 2 = 112 =maxq —z, 7 ¢
T3L2 max {ﬁ,a} af af®
1
max {74, 1} max{max{a—ﬂg,%},l}
- B 2 =5
473 max{a#ﬁg,,%} max{ﬁ,é
max {x5, 1} max {3, 1} 1
Te =2 = 2 YL
54 max{%ﬁy,,%} max{aiﬁg,%}
max < ==, 1
max {xg, 1} af’ 1
65 232 a
max {z7,1} max{a,1} «
max {zs,1} max{3,1} 1
To = """ 2~ = 2 =
87 o af
1 1
max {9, 1} ma’X{a52’ 1} e
L10 = 2 = 1 =1 = af,
Loy 042—64/8 0263
max {x19,1} max{af,1} max{af, 1}
11 = = = = max
T30 T9 &262%52 o
max {z11,1} max{max{3,1} 1} { 1
1‘12 = o f— ax —_—
31710 max {6, 5}2 af af®’
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1 «
max {712,1} max {max{?, 5} , 1}

(e}
xr13 = 2 5
12711 max{a%g,%} max{ﬁ,é
max {3, 1} max {3, 1}
13712 max{a—;s,%} max{o%ﬁr,,
max{ L. 1
max {x4, 1} af’ 1
TR - L af? -9
14713 perelel =
max {z15,1} max{a,1} «
16 = x2x T 2L :Ezﬁ’
15414 of 3
Case 3:
For
ri1=a<l
ro=02>1
we get that
max {xg,1} max{f, 1} B 1
1= 2 = 2 - 2 — o
ToT -1 Ba af af
1
max {1, 1} max{ﬁal} e
10 o2 o23
max {z2,1} max{a,1} 1 f
T3 = 2 = 21 = -
€T o B 3 «
max {r3,1} max{Z 1} £ 1
Ty4 = el = a’ = & _— _
2 BZ 52 )
T3 e £ F
max < 1 1
max {xy, 1} 3 1
= x2x - 1B - af,
473 B? a «
max {z5,1} max{af, 1} 1
Tg — = = ,
T34 a2y a?f
1
max {xg, 1} max{m,l} aTlg
T T T L = &
6 5 a4[32a a36
max {z7,1} max{a,1} 1
8= 2 =——21 -1/
:L'7x6 (0 Ozzﬁ 3
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max {rs,1} max {3, 1} B 1
{47 B (6] Oéﬁ Oéﬁ
1
max frg, 1) {1} L
T19 — 5 = 1 = = Q,
Ty agh 7
max {z19,1} max{a,1} 1 f
1‘11 = D) = 2 1 = E = -,
max {z17,1} max{Z1} 2
x12 = = = — = -,
%1210 g—za %2 p
max { . 1
max {22, 1} B3 1
T13 = 2 = 18 =71 = aﬁa
L1211 7 o B
max {z13,1} max{af,1} 1
223712 OPBZ% a2’
1
max {x14, 1} maX{aTﬁ,l} aTlg
15 = 2 = 1 =1 T 9
T14T13 044—52@6 PTG
max {r15,1} max{a,1} 1
T15T14 (0% QTB B
Case 4:
For
r_1=a>1
zg=p2>1
we have that
max {zg,1} max{f3,1} 6] 1
:1;‘1 = xQx = 3 = ) = —,
ol—1 5 « Oéﬁ Ckﬁ
max < ==, 1
max {z1, 1} aB’ 1 9
T2 = 2 = 1 =T =ap,
T1To a2526 223
max {7s,1}  max{a?8,1} o?3 1
Ta = = = = —,
° 31, 04452,1_15 adf o«
max {z3,1} max{i,1} 1
1‘4 = = = —
232, a2 8’
max { 1,1
max {z4, 1} 3 1 9
Ts = 7 o =—Q11 — T -,
443 52(1 Oé52



max {5, 1} _ max{a52, 1} _ af® 1

Ts = - )
xixy azﬁ‘% a2 af
max { -, 1
_ max{ze, 1} of ) 1
Tr=""2a- = V2R T-%
6 5 a252a a
max {z7,1} max{a,1} «
Ty = 2 - 21 a B,
T3 o’z 3
~ max{wg,1} max{3,1} 5 1
L9 = 220 = 2 == T
{47 B « aﬂ @6
1
max {9, 1} ma,x{a—ﬁ,l} 1 9
T10 = 2 = 1 ::_L_::a Ba
mng a2525 2B
max {z19,1} max{a?B,1} 2?8 1
1‘11 = = = = —,
22,9 a452ai5 adf «
max {z1, 1} max{%, 1} 1
T2 = = = 7
%1210 =a?f B
1
_ max{wyp, 1} max{g,l} o
T3 =2 =—Q=31 - IT -
12411 B2a aﬁz
I max {213,1} max{a52,1} B o 1
14 = = = = —
223719 04254% a2B®  af’
1
max {714, 1} max{a—ﬁ, 1} 1
14 13 QZBQ(X o
max {z5,1} max{a,1} «
3.1.4 THE CASE

max {22, 1}
Ty = ———2—
TnTn—1

Example 3.4 Fuvery positive solution of Eq.(3.8) is periodic with period 9

the result in the following table.
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Case 1 Case 2 Case 3 Case 4
r1=a<l1 rT1=a>1 r1=a<l1 r1=a>1
Ty — 1 Ty — 1 .TOZﬁZl Ty — 21
‘Tl:a_lﬁ ‘Tl:a_lﬁ .leg .leg
xQ:a%@? T2 =@ JUQZé acgzmax{%,é}
x3:% x5 = a?f3 .T3:% x3:max{6,%2}
T4 = af T4 = af Ty = af mzm&x{%g,%ﬂ)}
x5:é x5:é x5:a62 xg,:max{%z,a}
mgzaTlﬁ 1'6:% x6 = 3 JZ’GZHI&X{%,%}
.T7:a—15 .T7:% .T7:a—15 .T7:%
Irg — (v Irg — v Trg — (v Trg — (v
Tg =3 Tg =3 Tg =3 Tg =3
5510:(1—15 5510:(1—15 $10=§ $10=§
T = o T =0 T =g wllzmaX{%,é}
$12:% T13 = 02 $12:% x12:max{ﬁ,%}
_ _ _ _ B ab
T3 = aff T3 = aff T3 = aff T13 = max{;, 7}
T14 = é T14 = é T4 = aff? T14 = max{%,a}
T15 = 735 T15 = 5 715 = f wlszmaX{%,%}
5516:&—15 «TIGZ% iﬂwzﬁ 3516:%
I =« I =« Ti7r = I =«
118 = 3 T18 = 3 T1g = T8 = 3
Solution.
Case 1:
For;
r1=a<l1
g = _1

we have that

max{ed 1) _max{g%1} 1

I
Tol -1

Lo

af’
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T =

I3 =

Ty =

Iy =

Tg —

T7 —

rg =

Tg =

Z10

T11

T12

x13

L14

T15

T16

X7

2 max{ 212,1} 1 1
max {z{, 1} a2 :alg _ L
T1%o a—ﬁﬁ o af
max{ - 1} L
max {z3,1} o250 f a215 _ L
- 1 1
MG 52 aB 23 B
2 1} 1
max {22, 1} _ maxl{ f% _ 612 _ s,
T3l B aB® ap?
292
max {z2,1} max{a?8’ 1} 1
= - ,
T4X3 aﬁg «
1 L
max {z2,1} maX{az>1} _ o _ 1 ,
T5T4 Lo B a?g
1 1} 1
max {ng 1} _ max{a462’ = 0441B2 = L7
= T 1 1
TeTs 23 a o33 af
max{ L 1} L
max {z2,1} 25 f azlg .,
- 11
Trle aﬁaTﬁ 332
max {z3,1} max{a? 1} _ % _ 5,
= - T
87 aa_ﬁ 3
2
max {z§,1}  max {B%1} _ i’
Loy Ba af
2 max{ 212,1} L 1
max {27y, 1} a2p _ alg S
= - i
T10T9 a—[gﬁ o af
2 max{ L 1} o
max {z{;,1} a2 _ alg _L
= T 1
L1110 B2 aff 23 5
1 1
ax —,1} L
o {x%% 1} = - l{fz - 512 = 0667
1221 Gai? o
292
max {z75,1} max {a?3%, 1} 1
= - ,
13%12 0455 o
1 1
mox 1) _max {1} A 1
- Zap g a?p
T14713 P
1 1 1
mox (o1} _ P a1
- 1 1 -«
T15T14 2B 33 p
max{ L 1} L
max {I%67 1} — aleQ, == O6216 = Oév
- 1T 1
L16L15 2B a28 332



_ max{z},;,1} max{a?1} 1
rig = — 1 -1 — 67
T17T16 ac3 3
Case 2:
For
rT1=a>1
Tg=p<1
we get that
max {z3,1}  max {5 1} 1
xr1 = = = —,
' Lol -1 pa af
1
max {z3,1} max{a2ﬂ2’1} 1
1,‘2 = = = — = a7
T1Zo 0%55 é
~ max{z3,1} max{a®1} o> ,
€T3 = = 1 =9 =« B,
Tol1 aa_ﬁ E
2 412 4 02
max {73,1} max{a’f* 1} o'
Ta = = = =
4 3T a?fBa a3
max {z3,1} max{a?#* 1} 23
Te = = =
° T4T3 afBa?f a3
max {22,1} max{5,1} 1
Te = = 1 =
T5L4 QOé@ B
2 max{l2 1} 1
~ max{rg, 1} ik AR
L7 = = 11 -1 g
Tels Ba P 5]
05_2 1 a?
_ max{a7, 1}  WE Ny
8= T7x N al Ta =%
746 55 52
max {z2,1} max{a? 1} o?
Tg = = = == =0
xr8x7 CYB 5
max {z2,1}  max {8 1} 1
Ti0 = = =
T9xg Ba af
1
A max {z3,,1} max{a262,1} 1 N
11 — - — 71 — %
L1029 a—lgﬁ é
~ max{z},1} max{a® 1} o*
X192 = = 1 =73 =« s,
T11%10 5B B
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max {ofy 1} _ max{a$* 1} a'f?

T3 = = - = af,
T12T11 a?fa a3
max {e2,, 1} _max {0?6%,1} a2 1
T13%12 afa?f o33 o’
max {22,,1} max{%,1} 1
X5 = = 1 =
T14713 5045 B
L 1
Cmax(ed ) mx{dl} A
16 = - i1 -1 T 5
T15T14 Ba o8 B
a_2 1 a?
_ max {zs, 1} _ max _ B
T = - al —a %
T16L15 33 32
max {z?,,1} max{a? 1} ao?
py = SEULA BV %y
17216 3 5
Case 3:
For
r1=a<l1
Tg=p2>1
we get that
max {z3,1} max{p* 1} 3> 3
€T = g = — = —,
! ToT_1 Lo af  «
2 max { 2 1 B>
max {z7, 1} a? 5001
To = = 5 = ? =
T1Zg Eﬁ £ «o
max {23, 1} max{z 1} 5 1
xr3 = = 13 - e = 7
T2T1 aa el
2 max{i 1}
_ max{z3, 1} g 1
T4 = = 11 =1 =ap,
T3tz Ba aB
o _max{ad 1} max{o?S 1) o2t
> 43 aﬁ% o ’
2 24 204
max {z2,1} max{a?g" 1} o?p 8
1‘6 == = = =
T5T4 af’af a?f3? ’
max {z2,1} max{p* 1} 1
LL’7 = = = = —,
Ty Baf? af®  af



pe 1
L7Xe C%Bﬁ é ,
max {z2,1} max{a? 1} 1
Tg = = i =1=0
xr8x7 &a_,é’ B
max {73,,1} max{s%1} > 3
10> ’
Tio = = PV
T10T9 Ba af  «
B 2
_max{xloal}_max{ 2’1} %_ 1
v L1029 B éﬁ 2
- «
max {o,,1} _max {51} = 1
=T B 15 T 5 B’
11710 = 2z
max § =, 1
max {z7,, 1} 2k 1
T13 = = 11 =1 =ab,
L12211 Ba B
max {72;,1} max{a’* 1} a?f? 9
T14 = - 1 - = af’,
T13%12 afs a
max (ot 1} _ max{o?f 1} a2g
T15 = = - -
14713 af’af 23’
max {z%,1} max{p* 1} B 1
Ti6 = = = ~ aB’
T15T14 Baf? af’  ap
max {x34, 1} max{ 252 1} 1
Tir = = 1 TIT%
16215 a—gﬁ a
max {z?,,1} max{a? 1} 1
Tig = = 1 =1=5
T17%16 as3 B

Case 4:
When

r1=a>1
=021
we have that

max {z3,1} _ max {51} _ 5_2 B

T =

ToT_1 Ba af o
B 2
max {22, 1} max{ﬁ,l} max{g,l} a 1
XTog = = 3 = 32 =max g =5~ ()
L1Z o0 o pa



€3

Ty

X5

T —

T7r —

Trg —

Tg =

T10

T11 =

T12 =

T3 =

T4 =

T15

T16

2
max a3 1) _ max{max{gr b} 1}
L2X1 max{%,i}g max{ aﬁ
2 ot 2 ot
max{xg,l} max{max{ﬁ,g—},l} _max{ﬁ %
T3T2 max{ﬁ, }m X{%,é} %
B «a B° af
max ag,1) _ wex{max{f g} 1} max{5
o ma{ G g pmac{s, 5} max{$.5
max {22,1} rlqax{rrla){{ﬂ—2 a2} } ma {%,&2
L5l max{f82 a}m {%»%} max{g—s,%
13
max{a 1) mex{mec{g &)1} 1 o
- - -
L6Ts max{%,%}max{%,a} B
CE2 1 a2
max{x%,l} max B—, max 5—,
— = :Oé,
L7Te Qmax{%,%} max{%,
max {z3, 1} _ max {a? 1} _ a_2 _ 3
TT7 ag 72 ’
2
max {1} max {81} p
ToXg Ba o a’
62 62
max {x3,, 1} max{ﬁ,l} max{?,l} a 1
o 7 = = max < —5, —
T10T9 gﬁ %2 2«

max {z2,,1} _

11210

max {x3,,1} _

g
"
—
=
o
"
—
=
. »o
ngﬁ-
——
—
——

T12T11

max {x2,, 1} _

X13%12

max {22, 1} _

T14713

max {z35, 1} _

L15T14

Q|



2 2
max {z3,,1} max{g_’l} max{%,l}
Z16%15 %max{%,%} max{%,é}
max {z};,1} max{a? 1} o
@ 2 /6a
T17%16 g3 G
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3.1.5 THE CASE

Tpt1 =

max {22, 1}

T3 Tn 1

(3.10)

Example 3.5 Fuvery positive solution of Eq.(3.10) is periodic with period 12. We illus-

trate the result in the following table.

Case 1 Case 2 Case 3 Case 4
r1=a<l1 rT1=a>1 r1=a<1 T =a>1
Ty — 1 Ty — 1 Ty — 1 Ty — 1

- 1 - 1 1 - L

L1 = 753 L1 = 753 T1= 35 T1= 35

_ 2 _ 2 _ _ 3p2
Ty = af Ty = af To = To = a’f
_ 1 _ 1 _ B _ 1
L3 = 253 L3 = 253 T3 = 2 T3 = 323
_ _ _« A3
T4 = af T4 = af Ty=73 Ty =a’f
_1 _ 1 _ B _1
.I'5—a .I'5—a .I'5—a .I'5—a
1 a? 1 1

Tg = = T = = Tg = = Tg = =
6 B 6 '8 6 B 6 B

7 = af z, =58 7 =af 7 = af?
7 7= 7 7

— _1 _ o _ _1 _ 1

1‘.8 - 04362 1‘.8 - 62 :I:S - ‘)‘362 :I:S - OéﬁQ

— A2 _ 2 223
Tg = a“f3 g = 3 g = a3 g = a3
1 1 1 1

T10 = 533 T10 = 43 T10 = 533 T10 = 43

I11 — Q& I11 — I11 — & I11 —

T12 = T12 = T12 = T2 =03

_ 1 — 1 1 — L

13 = 753 L13 = 753 113 = 53 113 = 53

_ 2 _ 2 _ _ 372
T4 = af T4 = af Ty = & T = °f
_ 1 1 _ B 1
L15 = 253 L15 = 253 L15 = 2 T15 = 323
_ _ _ — A3
116 = af3 116 = af3 Tie = 3 116 = a3
_1 _1 _ 2 1
Tir =4 Tir =4 Tir =7, Tir = 4
1 a? 1 1
Tig = 5 T8 = & T8 = 5 T8 =3
18 B 18 B 18 B 18 B
_ _B _ _ 3
T19 = af Ti9 = T19 = af T19 = af
_ 1 _ « 1 _ 1
20 = 352 20 = 32 120 = 352 20 = 52
) _ _ 2 _ 213
To1 = a“f3 To1 = f3 To1 = a“f3 To1 = a“f3
- 1 — L - 1 - 1

122 = 333 122 = 55 122 = 333 122 = 55

To3 — (X To3 — (X To3 — (X To3 — (X

Tog = f3 Toyg = Toy = f3 Toyg =




Solution.

Case 1:
For;

r1=a<1

rg=p<1

we have that

o max {z§,1}  max {B? 1} 1
1 - - )
3T, Ao o
2 1 max{% 1} 1
Ty max {r7, 1} GCHMND RVICTERYEH
- - - 7
‘CL.EISZ.O 043159 5 0431B8
4. Wax (23,1}  max{a?p1} 1
5 — —
ri7 043666%63 a2’
. 1
max {23, 1} X { Tk 1} 5
o 3 = 1 — = = af,
L322 a6_59056 o557
g — 0B {23,1} _ max {a?8%,1} 1
TiT3 a353a+ﬁ3 a’
T ST S
rdr, Hap L B
L 1
Cma(ezyy mec{d} A
Ty = 3 = 11 =3 =ab,
Lo ls 5 a o
o — max {72, 1} _ max {a?6%,1} 1
316 a353% a3p?’
1 1
Cmax(eny) me{El @
Ty = 3 - 1 = 7 =« 67
T3T7 ag—ﬁﬁaﬁ Y
i — max {z3, 1} _ max {a*3%,1} _ 1
T o8
1 1
max {2, 1} M { a%f% 1} o5
1‘11 = 3 = 1 D) = 1 = Oé,
L1019 P 5 o 5
~ max{z},1} max{a? 1} 1 5
T12 = 3 = 3 1 1=
ZL‘HZL'l() 8% m B



_ max{zf,,1} max {51} 1
T13 = 3 - 3 37
T12211 Ba ap
1 1
_ max{ajs 1} HHD({Cﬁﬁﬁ’l} — o2 _
L14 = 3 - 1 =7 = ap,
TY3712 eyl S
max {23,,1}  max{a®8* 1} 1
14213 @3563%5 a3’
2 1 lnax{—%? 1} 1
_ max {zi4, 1} LA SR L o}
Tie =7 3 = 1 7 1 b
16215 polele] Y
max {z2,,1} max{a?s* 1} 1
1‘17 = 3 g 3 31 = -,
T17716 a’f” o o
~ max{a?,1} max{5,1} & 1
T = - 1 - B T
17716 sab 5 p
2 max{lgl} 1
~ max {zig, 1} 2k 7
19 = = 11 =3 =af,
L1gl17 Fa o
. _ max{a?y,1} max{a?f’ 1} 1
20 = = =
219 T1s a3y a3’
2 1 Inax{—%q,l} 1
_ max {r3, 1} abp - 25
T21 = 3 - 1 5 =7 = ap,
2019 agﬂﬁa B30
max {z3,,1} max{a’s* 1} 1
T91T20 oz%?’aglﬁ2 a3p’
2 Inax{—%T 1} 1
_ max {z3,, 1} b2 o7
123 = B L 23 TS
22021 a953a o G2
max {73;,1} max{a? 1} 1
Lo = 3 - s —1- b
Case 2:
For;
ri=a>1
g =p/<1
we get that
max {z3,1} max{s* 1} 1
.Il = = =

3T

BSOK 0563’
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)

X3

Tyg

Ts

Tg —

Ty =

Irg —

Tg =

T10

T11

T12

x13

T14 =

T15 =

T16 =

Tir =

1 1 1
2 max{—6 } 1 )
max {z7, 1} _ 1a25 s alﬁ o
10 ag—ﬁgﬁ o3 5
2 g4
max {z2,1} max {a?3%,1} _ 1 N
3 - a356L a2f3
'TQxl QBS
2 max § —i=s, 1} L
max {3, 1} _ a52 _ alﬁ B
T3Ts a(jlﬁg af 7
2 92
max {z3,1} max{a?3% 1} 1
r3T3 a3 o o
1 2
max {22,1} max{X 1} _ % _o
I§I4 %aﬁ ool B
o 1} at
RSERVIL ol B ]
3 - ab 1 E
2 1)
max {z2 1} MaX 52, :i:g’
3 = 53 a2 5_2 52
7o a5 -
o 1} o?
wex (g 1) _ M5} S
3 a asp o2
ISI’? 66 a B
2
max {z2,1}  max {§% 1} _ L’
= 3
s B4 af
1
max {x%()v 1} maX{O‘zﬁQ’ 1} _ o2p =
- 1 -1 ’
x?0x9 043B3/8 332
2 2
max {x2,,1} _ max{oi 1} % _s
3L o
3210 a2 2
2
o (rfy 1} wax (1) 1
T390 B af
1 1
wax (a1} )
- 1 -1 ’
713719 ezl S
2 g4 1
max {2, 1} _ max{o;ﬂl 15 - —,
3,713 B a?3
2 max %,1} L
max {27g, 1} _ otf = alﬁ — af,
w1215 el le] 5
292
max {r{;, 1} max{c;z [i 1} _ l7
23716 ey o
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1
. max {22,,1} max{%,1} 1 «
T17716 wap % s
ot 4
2 max-< 2,1 o
x _ max{zjg, 1} {52’ _F_b
19 = 3 - 6 — 5 —
TigT17 %é g o
B2 1
max {23,,1}  MaX a2 1 a
Toog = L = == = —
- 3 - 3 9 — 52 T 590
Ti9T18 5 £ p
o? } 2
2 max 4 57,1 a
_ max {r3, 1} {54’ _5_4_6
To1 = 3 - a3 B 2
a0t Fa B
2
- max {z3,,1} max{f%1}
22 — 3 - 3 - )
51220 % afs

_1 1
max{xgg,l} B max{aZBQ,l} 25

To3 = 3 1 = 1 = q,
L9221 _a3536 35
_ max{z3;,1} max{a? 1} o
T = 3 B s =2 =B
Case 3:
For

r1=a<1

ro=02>1
we get that
2
_ max{zg, 1} max{g%1} 5 1
1= 3 = 3 =3 =
ToT_1 B af af
1 1
o max {z},1} max{a%%l} _@F _
2 - 1 -1 =%
iz ag—ﬁaﬂ Py
~ max{23,1} max{a®1} 1 f
T3 = 3 B 3L a2 o2
r3x ad 5 &«
a? 2
oy — max {z3,1} ma‘X{Fal} B % o
- 3 - 3 — 33 T )
EE SE
_ max{zj,1} max {a?3%,1} B
T5 = 3 - 323 1 -
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Tg —

XTr

Irg —

Tg =

210

Z11

T12

x13

T14

Z15

Z16

17

x18

T19

Too =

B! 4
max (a1} me{&1} &
3 - 35 - F -
V5T el m
2 max< =, 1
max {zg, 1} 8 1
ZL’SCL’ = 1 /32 - I = OZ/B,
65 iy ap
max {27,1}  max {a?8%,1} 1
T3 04363% ad3?’
1 1
max {1} o {dm ) dx
e = L8 =T =ap,
L7 _agBGOé B30

max {z§,1} max{a4ﬁ2,1} 1

3 3_1 ’
Tars abs T a3f
1 1
max o 1) _moc{mml} g
3 = 1 =31 =%
L10L9 O a?f o 52
max {z3,,1} _ max {a?, 1} 1 5
11710 Of)’ﬁ % ’
2
max {z2,, 1} _ max {1} _ 52 _ 1
T390 Ba af®  ap’
1 1
max {I%?ﬂ 1} _ maX{O‘zﬁQ’ 1} _ 28 o
= 1 =1 =%
713712 a3535 357
max {z3,,1} _ max {a?, 1} 15
73,713 a3a—15 %2 a?’
a? 2
ma (1) m{F 1) & o
3 - 3 — p3 )
2
max {z};,1} max{oﬂﬁ 1} B /3_2
3 = 3 =
L7716 a3 s Oé
2 max { 25 1 g
max {r7,, 1} 2 &1
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CHAPTER 4

SOME SPECIAL-TYPE DIFFERENCE EQUATIONS WITH PERIODIC
SOLUTIONS

In this chapter we use [7] to supply some special-type difference equations with periodic
solutions. Those examples show us enrichment and appreciation of the fascinating world

of difference equations and their richness in periodicities.

4.1 LYNESS’ EQUATION

Lyness’ equation is defined by

Tpy1 = a+xn7 n:O,l,,, (41)

n—1

and was introduced by Lyness in 1942, while he was working on a problem in number
theory.

As we mentioned in Chapter 2, every positive solution of equation

1+,
Tn+1 = Al , n=0,1,,, (42)

n—1

which is a special case of Liyness’ equation is periodic with period 5. Actually if
r_1=a and zo=[

are positive initial conditions, then the solution {z,} - , is the period-5 sequence

148 1+a+8 1+«
a?ﬁ? ) ) 9t
« af 15}

Remark 4.1 It is a fascinating fact that Eqs. (3.1) and (2.5) have great similarities.

(4.3)

The solution of Eq. (3.1) with positive initial conditions
r_1=a and xg= [

15 the pertod-5 sequence

max {1, 5} max{l,«, s} max{l,a}
& p——— e R

Compare this with the period-5 solution in Eq. (4.3).
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4.1.1 FRIZE PATTERNS

An infinite strip with a repeating pattern is called a frieze pattern, or sometimes a border
pattern or an infinite strip pattern. The term "frieze" is from architecture, where a frieze
refers to a decorative carving or pattern that runs horizontally just below a roofline or
ceiling.

Since the patterns repeat, we show only a finite portion, but you should keep in mind
that these pictures should extend infinitely far in both directions. Although most of the
frieze patterns in most book will be horizontal, there’s no reason a frieze pattern cannot
be vertical, or even set at an angle.

Eq. (4.2) arises in frize patterns, see [4] and [3].

The idea of a frieze pattern is most quickly carried by means of an example, such as the

following pattern of order 7 :

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

Another example of a frieze pattern is the following basic one.

3 1 3 1
The property which defines a frieze pattern is that except for possible borders of zeros
and ones, every four adjacent numbers forming a rhombus. In other words, apart from
the borders of zeros and ones, the essential property is that every four adjacent numbers

forming a square

q
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are positive and satisfy the unimodular equation
pr—qs = 1.

Moreover, the insist that all the numbers (except the borders of zeros) shall be positive.
The astounding consequence is that every such pattern is periodic. More precisely, it is
symmetrical by a glide: the product of a horizontal translation and a horizontal reflection.
Coxeter, see [4], has shown that every frieze pattern is periodic. For instance, the following

frieze pattern is periodic with period 5:

X X3 X5 ) Ty

X5 T2 Tyg T €3

If 1 = o and x9 = [ are arbitrary positive numbers, then from the definiton of frieze

patterns it follows that

1+ l+a+8 1+«
r3=——, x4y = ————, and x5 =
o af I}
because
1
T1T3 — Ty = 1:>ax3—B:1:>x3:Lﬁ,
«Q
1+ 1+a+
Toly — T3 — 1:>Bx4——6:1:>x4:—6,
af
l+a+p 1+«
Tar1— T3 = 1l=>——a—z25=1=25= .
af B

Therefore, the above pattern is generated by Eq. (4.2).

4.2 TODD’S EQUATION

Eq. (2.6), that is, the equation

1+In+x —1
Tpp = —p——, n=01,.. (4.4)

is called Todd’s Equation. As we saw in Example 2.6, every positive solution of Eq. (4.4)

is periodic with period 8.
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4.3 THE GINGERBREADMAN EQUATION

The gingerbreadman difference equation is linear difference equation
Tpi1 = |Tp| —xn1+1, n=0,1,.. (4.5)

which is piecewise. It was investigated by Devaney, see [5]. The name of this equation is
due to the fact that the orbits of certain points in the plane fill a region that looks like a

"gingerbreadman." As an example, we illustrate the following picture:

If someone uses a computer to plot the orbit of the solution {z,} > , of Eq. (4.5) with

initial conditions

(_1,70) = <—1—10,0)

the computer may predict that after 100.000 iterations, the solution is still not periodic.
See [24]. Although a computer may be fooled due to round-off and truncation errors, one

can show that the orbit of the solution of Eq. (4.5) with initial condition

(1, 70) = <—1—10,o)

is periodic with period 126. An easy way to see this is to make the substitution

1
10

Ip = Yn-

Then Eq. (4.5) is transformed into the difference equation
Ynt1 = |[Yn| — Yn—1+10, n=0,1,.. (4.6)

1
and the initial conditions (z_1,zg) = <—1—0, 0) of the solution {z,} - , of Eq. (4.5) are

transformed into
(y—17 yO) - (_]—7 0) .
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Let {y,}.._, be the solution of Eq. (4.6) with initial conditions (y_1,%0) = (—1,0). Then

the values of y, for —1 < n < 126 are given as follows:

y-1=—1
y1 =11
ys = 21
Y15 = 16
Ya2 =3
Yoo = —1
Yse = 12
Yaz = 21
Yso = 19
Ys7 = 2
Yea = —1
Yy =15
Yrg = 22
Yss =9
Yo2 = —3
Yo9 = 16
Y106 = 23
Yz =7
Y120 = —2
Y125 = —1

Yo =0

Yo = 21 ys = 20
Yo=18  yio=7
Y16 =5  yir=—1
Yoz =—1  yu=38
yso =10 ys1 =21
ysr =21 ysz3 =19
Yaa = 17 Yas = 6
st =4 ysz=—1
Yss = —1  Yso =9
Yes = 11 yes = 22
Y =22 yp3 =17
Yo =13  yso =1
Yss = —3  ysr =4
Yoz =10 yo4 =23
Yoo =23 Y1 = 17
Yo7 =11 Yo = —2
Yia = =2 Y15 =90
Y121 =9 Y12 =21
Y126 = 0.

ne—1

So, the sequence {y,}

126.

Ys =9
yn = —1
Y18 =16
Yos = 19
ys2 = 21
Ys9 = 8
Yae = —1
Yszs =1
Yeo = 20
Yo7 = 21
Yra =5
Ys1 = —2
yss = 17
Yos = 23
Y102 = 4
Y109 =1
Y116 = 17
Y123 = 22

(and therefore also {x,}

ys = —1
Y12 = 4
Y19 = 17
Yos = 21
Y33 = 10
Yao = —1
Ya7 =5
Ysa = 18
Ye1 = 21
Yos = 9
Y75 = —2
ys2 = 11
Ysg = 23
Yos = 10
Y103 = —3
Y110 = 13
Y17 = 22
Y124 = 11

o
n=-—1

Ye = 2
Y13 =15
Yoo = 21
Yo7 =12
Ysa = —1
Ys1 =3
Yag = 16
Yss = 21
Ye2 = 11
Yog = —2

Y =7
Ys3 = 23
Yoo = 16
Yor = —3
Y104 =9
Y111 = 22
y1s = 15

yr =13

Y1a =21
Yo1 = 14
Yog =1

yss = 1

ya2 = 14
Yag = 21
Ys6 = 13
Ye3 = 0

Y70 =3

yrr =19
Ysa = 22
Yo1 = 3

Yos = 3
Y105 = 22
Y112 = 19
Y119 = 3

is periodic with prime period

It is interesting to note that the gingerbreadman difference equation is a special case of

the max difference equation

Lp+l =

max {22, A}

?

TnTn—1

n=0,1,..

Indeed the change of variables, see [16],

AT i A1
T, = e if A=1
AT i 0<A<1
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reduces Eq. (4.7) to the piecewise linear difference equation

Ynt1 = |Un| — Yn-1+9, n=0,1,...

where
-1 if A>1
o= 0 if A=1
1 if A<l1.

To see this, note that if o, 8 € R, then
. 1 1
min {a, 8} = 3 (a+ f— | — ) and max {a, 5} = = (0 + 5+ o — ).

Let {x,}°2_, be a positive solution of Eq. (4.7) and assume that 0 < A < 1. Then

n=—1

Alfynﬂ max {Al*yn,A} _ Amin{1=yn,1} . A%(Q—yn—lynl)

2 =

2—yn—Yn_1 2—yn—Yp—1 2—yn—Yp_1
A 7 A 5 A 5
— Aslymltyn-1)

and thus

Ynt1 = ’yn| — Yn—1 + L

The proof in the other cases can be proved similarly.

Observe that Eq. (4.7) with
A€ (0,1)

reduces to the gingerbreadman difference equation Eq. (4.5).

When
A=1

Eq. (4.7) reduces to Eq. (3.4) which by the above change of variables is transformed into

the piecewise linear difference equation

Ynt1 = |Yn| = Yn—1, n=0,1,... (4.8)
Therefore every solution of Eq. (4.8) is periodic with period 9.
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4.4 THE GENERALIZED LOZI EQUATION

Lozi’s map is the system of difference equations

Tpp1 = l—alv,| +yn
, n=0,1,...

Yn+1 = bz,
introduced by Lozi, see [21], in 1978 as a piecewise linear analogue of the Henon map
Tpy1 = 1— ax% + Yn
, n=0,1,....
Yn+1 = by,
The Henon map was introduced by the theoretical astronomer Henon, see [9], in 1976

to illuminate the strange attractor which was observed by the meteorologist Lorenz, see

[20], in 1963 in the simple-looking non-linear system of differential equations

& o(y— )
&

? = z(28—2)—y
z
A &

which Lorenz used in his research to model weather patterns.

When Lorenz used Euler’s method to integrate numerically in his royal-McBee LGP-
30 computer, the solutions of this system exhibited extremely complicated behavior.
The solutions exhibited sensitive dependence upon initial conditions about which Lorenz
coined the phrase butterfly effect. If a butterfly flaps its wings in Tokyo, Japan, this may
cause it to rain in Kingston, Rhode Island four days later. This is bad news for numerical
methods, and means that we should be suspicious of what we "see in the computer" until
we set up it by a rigorous proof.

The solutions oscillate irregularly, never exactly repeating but always remaining in a
bounded region in the (z,y, z) space, and they settle onto a complicated set resembling
an owl’s mask or a pair of butterfly wings, which we now call a strange attractor, strange
because its boundary is a fractal (with dimension between 2 and 3). All solutions approach
the attractor quite rapidly, and there are no periodic or asymptotically periodic solutions.

The term strange attractor was coined by Ruelle and Takens, see [25], in 1971.
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By eliminating the variable y,,, Lozi’s map reduces to the second-order piecewise linear

difference equation
Tpr1=1—alx,| +bx,1, n=01,.. (4.9)

where a and b are real numbers.
Several of the equations which has been recently investigated, and which exhibit an

interesting periodic character, are of the form

max {2f, A}
Tnt1 = W’ ’I’L:O,l,... (410)
where

k,l,me€Z and A,x_1,z0 € (0,00).

Some special cases of this equation were investigated in [2], [10],[17], and [16] and were
found to have every interesting dynamics.
As we have seen in previous chapters, when A = 1 and m = 1, every solution (4.10) is

periodic with period

3 if k=0 and [=1, (see (2.

4 if k=0 and [=0, (see (

5 if k=1 and [1=0, (see (3.6))
6 if k=0 and [=-1, (see (2.17))
7 if k=1 and [=1, (see (3.7)
8 if k=1 and [=2, (see(3.8)
9 if k=2 and (=1, (see (3.9)
12 if k=2 and [=3, (see (3.10)).

4.5 INVESTIGATION OF THE SECOND-ORDER DIFFERENCE EQUA-

_ aFfratyrn_1
TION xn+1 o A+Bxpn+Cxp_1

Consider the non-linear second-order rational difference equation

_ a + an + VLn—1
A+ Bz, +Cxpy’

=0,1,.. (4.11)

Tn1

where the parameters «, 3,7, A, B, C' are non-negative real numbers with B + C' > 0,

and where the initial conditions z_; and zy are non-negative real numbers such that the

o8



right-hand side of Eq. (4.11) is well defined for all n > 0. When is every solution of Eq.

(4.11) periodic with the same period?

The following four special examples of Eq. (4.11)

1
Tpy1=—, n=0,1,..

Tn’

1
Tpy1 = —, n=0,1,..

Tp—1’

— 1t —
Tpt1 = ﬁ, n=20,1,..

Tn
Tp—1"

Tpg1 = n=0,1,..

are remarkable in the following sense.

Every positive solution of Eq

(4.12)

(4.13)
(4.14)

(4.15)

4.12) is periodic with period 2 (see (2.9)).

- ( (see (
Every positive solution of Eq. (4.13) is periodic with period 4 (see (2.13)
- (see (

Every positive solution of Eq

Every positive solution of Eq. (4.15) is periodic with period 6 (see (2.17)

).
4.14) is periodic with period 5 (see (2.15)).
).
t

The following result characterizes all possible special cases of equations of the form of Eq.

(4.11) with the property that every solution of the equation is periodic with the same

period. See [13].

Theorem 4.1 Assume that p > 2 be a positive integer, and suppose that every positive

solution of Eq. (4.11) is periodic with period p. Then the following statements are true:

(a) Let C >0. Then A=B=~=0.

(b) Let C =0. Then v (a+ 3) =0.

Proof. Consider the solution {xz,} - | of Eq. (4.11) with

x—1 =1 and z( € (0,00).
So clearly
Tp_1=a_1 =1 and z, =29

and therefore by Eq. (4.11)

ey a+ B +vyx, o
TP T A+ B+ Curpy

Hence it follows that

(A+ B)zg+ (Czg — 7) xp2 = a + .

(4.16)
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(a) Let C > 0. We claim that
A=B=0. (4.17)

If not, A+ B > 0. So by choosing

a+p 7
A+ B’ C

To > max{

we see that Eq. (4.16) is impossible. Therefore Eq. (4.17) is true. In addition to

Eq. (4.17), we now also claim that

v =0. (4.18)

Otherwise, then v > 0. So by choosing

a+p ’y}

Ty < min {m, E

it follows again that Eq. (4.16) is impossible. Thus Eq. (4.18) also holds.

(b) Suppose that C' = 0 and for the sake of contradiction, let v (o + ) > 0. Then again
by choosing x( sufficiently small, we see that Eq. (4.16) is impossible. =

The following corollary of 4.1 states that Eq. (4.12), Eq. (4.13), (4.14), and Eq. (4.15)
are the only special cases of Eq. (4.11) with the property that every positive solution is
periodic with the same period. See [13].

Corollary 4.1 Let p € {2,3,4,5,6}. Suppose that B + C > 0, and that every positive
solution of Eq. (4.11) is periodic with period p. Then making a change of variables of the

form
Tn = A\Yn

Eq. (4.11) reduces to one of the Eq. (4.12), Eq. (4.13), (4.14), and Eq. (4.15).

4.5.1 PERIOD-2 SOLUTIONS OF gz, = 520t

Consider the difference equation

a + an + VLn—1
A+ Bz, +Cz,_1’

n 0.1, (4.19)

Tpy1 =
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with non-negative parameters and non-negative initial conditions. To avoid degenerate

cases, we shall assume that
a+p+v, B+C, B+ B, v+ C €(0,00)

We also suppose that the parameters and initial conditions are chosen in such a way that
the denominator of Eq. (4.19) is always positive. See [7] and [§].

There are now 30 with positive parameters which are included in Eq. (4.19) as special
cases.

For some choices of the non-zero parameters of Eq. (4.19), six of these equations have a
multitude of prime period-two solutions, six have a unique two-cycle, and two have one or
the other of the above properties, depending upon the particular values of the non-zero

parameters. See [8] and [13].

4.5.2 THE CASE C =0.

In the case C' = 0, Eq. (4.19) supposes the form

«@ + 6xn + ’Yxnfl
il = ., n=0,1,.. 4.20
Tp+1 A+ Bz, n ( )

and shows the following trichotomy character when B > 0.

v<B+A= every solution converges;
v= [+ A= every solution converges to a period-2 solution;

v>p+A= there exists unbounded solutions.

When

y=B8+A4

every prime period-2 solution of Eq. (4.20) is given by
Béw = o+ (¢ + 1) with 6,4 € 0,00) and ¢ # v

Remark 4.2 In the sequel, when we say that "every solution of a difference equation
converges to a periodic solution with period p," we mean that every solution of the equation
converges to a periodic solution of the equation with (not necessarily prime) period p, and

that there exists solutions of the equation with prime period p.
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4.5.3 THE CASE C > 0.

In the case C' > 0, a necessary condition for Eq. (4.19) to have a prime period-2 solution

is
v >0

and so we can rewrite Eq. (4.19) in the normalized form

o+ Bx, + x,_1
A+ Bz, + 2,1’

Lppy = n=0,1,.. (4.21)

with non-negative parameters and non-negative initial conditions.

SUBCASE (a)

Let a =3 =0.
In this case Eq. (4.21) is the equation

Tn-1

= =0,1,... 4.22
Tp+1 A-{-Bl’n +xn71’ n 07 ) ( )
with
A €0,00) and B > 0. (4.23)

Eq. (4.22) has prime period-2 solutions if and only if
A<l
Moreover when Eq. (4.23) holds, the following statements are true:
(a) When
B=1
every prime period-2 solution
s Oy,
of Eq. (4.22) is given by
¢+ =1—Awith ¢, € [0,00) and ¢ # 1.
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(b) When
B#1
Eq. (4.22) has the unique period-2 solution
01— AL (4.24)
and the solution Eq. (4.24) of Eq. (4.22) is locally asymptotically stable when
B>1
and is unstable when

0< B<1.

SUBCASE (b)

Assume that

a+ [ >0. (4.25)
In this case Eq. (4.21) has prime period-2 solutions if and only if

f+A<1l, B>1, and da<(1-—-A)[B(1-5—-A)—(1+35—A)]. (4.26)

Moreover, when Eq. (4.25) and Eq. (4.26) hold, Eq. (4.21) has the unique prime period-2

solution

e B2, . (4.27)

where the values of ¢ and v are the two positive and distinct roots of the quadratic
equation

a+p(1-5—-A)

2
P—(1-B8-A)t+ =

= 0. (4.28)

4.5.4 EQUATIONS WITH A UNIQUE PRIME PERIOD-TWO SOLUTION

It follows from 4.5.2 and 4.5.3 that after some obvious renormalizations, the only equations
of the type of Eq. (4.19) with a unique prime period-2 solutions are the following nine

equations with positive parameters. See also [8] and [13]
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Case 1 (See [13], p.18)

Yn—1

— n=0,1,..
p+yn—1

Yn+1 =

Case 2 (See [13], p.60)

Yn—1

— n=0,1,..
DYn + Yn—1

Yn+1 =

Case 3 (See [11] and [13], p.92)

p + Yn—1

_ =0,1,...
qQYn + Yn—1

Yn+1 =

Case 4 (See [13], p.113 and [12])

+ Yp—
Ynt1 = ZM, n=20,1,..
QYn + Yn—1

Case 5 (See [13], p.133)

yn—l
P+ qYn + Y1’

Ynt+1 = n=0,1,..

Case 6 (See [13], p.149)

p + qYn—1
1+ Yn + TYn—1 7

Yn+1 = n=0,1,...

Case 7 (See [13], p.158)

DPYn + Yn—1
Yn+1 = ; TL:O,L...
T+qyn +yn71

Case 8 (See [13], p.175)

T+ DYn + Yp—
Yn+1 = by Y 1, n=20,1,..
qQYn + Yn—1

Case 9 (See [13], p.184)

P+ QYn t Yna
Yn+1 = )
T SYn + Yn—1
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4.6 THE RICCATI DIFFERENCE EQUATION

The Riccati difference equation is the difference equation

a+ bz,
1 = . n=0,1,.. 4.38
it c+dz, " ( )

where the parameters a, b, ¢, d are given real numbers, and initial condition 2, is an arbi-
trary real number.
To avoid degenerate cases, we suppose throughout this section without further mention

that
la| + |b| #0 and |c| + |d| # 0.
We shall also assume throughout this section, unless otherwise stated, that
d#0 and bc—ad#0.
In fact, when d = 0, Eq. (4.38) is a linear equation, while if
d+#0 and bc —ad =0
Eq. (4.38) reduces to the trivial non-linear difference equation
X tbz, bctdz) b

il = - 2 n=01,..
il c+dz, d(c+dz,) d "

Assume that Z is an equilibrim point of Eq. (4.38). Then
dz* 4+ (c—b)Z —a =0.

Therefore we have that Eq. (4.38) has exactly two equilibrim points if (b — ¢)* +4ad > 0,
exactly one equilibrim point if (b — ¢)? 4+ 4ad = 0, and no equilibrim points if (b — ¢)® +
dad < 0.

For the results given in this section, see [6].

Theorem 4.2 The following statements are true:
(a) Eq. (4.38) has a prime period-2 solution if and only if b+ ¢ = 0.

(b) Assume that b+ c = 0. Then every solution {z,} -, of Eq. (4.38) with zy # 2

18 periodic with period-2.
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Let G be the set of all initial conditilons 2y € R such that the solution {z,},_, of Eq.
(4.38) exists for all n > 0, and set F =R—G.

Therefore F is the set of all 2y € R such that the solution of Eq. (4.38) with initial
conditilon zq fails to exist after a finite number of terms. G is called the good set of Eq.
(4.38), and F is called forbidden set of Eq. (4.38).

When b + ¢ = 0, the forbidden set of Eq. (4.38) is the singleton

c
F={-3}
while in the degenerate case d (bc — ad) = 0, the forbidden set of Eq. (4.38) is the empty

set.

Throughout the remainder of this section we shall suppose that
d#0, bc—ad#0, and b+ ¢ # 0. (4.39)

The change of variables

_bte _c
- d " d

Zn

transforms Eq. (4.38) into the difference equation with one parameter

R
W1 =1— ==, n=0,1,.. (4.40)
W,

where the parameter R, which we call the Riccati number of Eq. (4.38), is the non-zero

real number

R bc—a;i
(b+c)

and where the initial condition wy of Eq. (4.40) is

w _dxptc
07 hre

We make the further change of variables

Un+1
Wy, = forn=0,1,...
Up

Ug = 1
which reduces Eq. (4.40) to the second order linear difference equation
Upyo — Upy1 + Ru, =0, n=0,1,... (4.41)
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with initial conditions
up =1 and u; = wy.
The characteristic equation of Eq.(4.41) is
A=A+ R =0
with characteristic roots
1—+v1—-4R 1+V1-4R \/1—473.

M =——pg—— and A= 5
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CHAPTER 5

SOME SPECIAL MAX-TYPE DIFFERENCE EQUATIONS WITH
EVENTUALLY PERIODIC SOLUTIONS

5.1 The Equation z,,; = max {i 4 }

Tn? Tn—1

In this section, we consider the periodic character of solutions of the max-type difference

equation

1 A
Tnil :max{—, }, n=20,1,.. (5.1)

Tn Tp—1

where the parameter A and the initial conditions x_; and xg are nonzero real numbers.
The following theorem shows that every solution of Eq. (5.1) is eventually periodic with
period 2, 3 or 4, and it determines the period in terms of A and the initial conditions.

We take this theorem from [1], see page [402-403]. See also ([7], pp.62-64).

Theorem 5.1 Suppose that the parameter A and the initial conditions x_1 and xy are
nonzero real numbers. Then every solution of Eq. (5.1) is eventually periodic with 2,3,

or 4. More precisely, the following are true.

(a) Suppose that A < 0. Then every solution of Eq. (5.1) is eventually periodic with
period two and is of the form {p,1/p}, for some positive number p which depends

on A and the initial conditions x_; and xy.

(b) Suppose that A > 0 and the initial conditions x_1 and xo are not both negative

numbers. Then every solution of Eq. (5.1) is eventually periodic with period

2 if A<1
3 if A=1
4 if A>1.
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(c) Suppose that A > 0 and the initial conditions x_1 and xo are both negative numbers.

Then every solution of Eq. (5.1) is negative and eventually periodic with period

2 if A>1
3 if A=1
4 if A<1.

Before we give the proof of Theorem 5.1, we make the following obversation.

Remark 5.1 The periodic character of solutions of Eq. (5.1) depends upon whether the
parameter A is dominated 1 (i.e., when A < 1), equals 1 (i.e., when A = 1), or dominates
1 (i.e., when A > 1). In all cases it seems that the dominant term in Eq. (5.1) determines

the period of the solutions.

For example, when A < 1 ( when A is dominated by 1), every solution of Eq. (5.1) is
eventually periodic with period 2. Note that the "dominating" difference equation

1
Ty =—, n=01,.. (5.2)

n

has the property that every solution is periodic with period 2. When A > 1 ( when A
dominates 1), every solution of Eq. (5.1) is eventually periodic with period 4, and every

solution of the "dominating" difference equation

A
Tpy1 = , n=0,1,.. (5.3)

n—1

has period 4. Lastly, when A = 1, every solution of Eq. (5.1) is eventually periodic with
period 3, the avarage of the periods of the solutions of Eq. (5.2) and Eq. (5.3).
Proof of Theorem 5.1

(a) It is easy to see that in this case, every solution of Eq. (5.1 is eventually positive.

So, Eq. (5.1 eventually becomes

.I'n+1 - —,
Tn

from which the result follows.

(b) We give the proof as the following 3 cases:
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(i) Let 0 < A < 1. For each n > —1, put x,, = A%. Then Eq. (5.1) is transformed

into the min-type difference equation

Yn+1 :min{_ynul_yn—l}a n:0717”' (54)

where y_; = %ln r_q1 and yy = %ln xo are real numbers. It suffices to show

that {y,} - , is eventually periodic with period 2. Put

sz{m,—a):—%gag%}.

Case 1. Suppose {y_1,%0} € S. Then {y,} - | is clearly periodic with period
2.Case 2. Suppose {y_1,%} ¢ S. Note that {y,} - ;| oscillates about zero,

and so, without loss of generality, we may assume that y_; > 0 and yo < 0.

Set
L={(o,—a):aeR}.

We claim there exists N € {0,1,...} such that (yn,yn+1) € L. For the sake of
contradiction, suppose this claim is false. Then {y,,} -, satisfies the difference

equation

Yni1=1—yp_1, n=0,1,.. (5.5)
as well as the difference inequality

Yy >1—y,_1, n=0,1,.. (5.6)

It follows from Eq. (5.5) that {y,} - , is periodic with period 4, while it

follows from inequality Eq. (5.6) that

lim y, = —o0.

n—~o0

This is a contradiction, and so we obtain that there does exist N > 0 so that
(yn,yn+1) € L. The proof follows from Case 1 if (yn,yns+1) € S. Therefore
suppose that (yn,yn+1) € L —S. Note that if yy < —%, then yyi1 > % and
thus

Ynt2 = min{—ynyi1,1 —yn} = —yn1.
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1
Then it follows that without loss of generality we may assume that y_; > 27

and that (y_1, o) € L. The first five terms of {y, } - , are

Y-1, —Y-1, 1- Y-1,Y-1 — 17 1- Y-1-

Hence (y_1, o) and (y9, y3) are elements of L, and the distance between (y_1, yo)
and (y2,y3) is v2. Now y_; > % and the length of S is /2, and so we can
easily see that (y2,ys) is closer to S than (y_1,yo) is. Therefore as the length
of S is v/2, it follows that there exists M > 0 such that (yas, yar41) € S, and

now the proof follows from Case 1.

(ii) Let A = 1. Tt can be easily seen that {z,}’__, contains two consecutive terms

(iii)

each greater than or equal to 1, and hence without loss of generality we may

assume that z_; > 1 and ¢ > 1. Then {z,} - | is either

1 1
T-1, %o, x_yx—l»x—lu x—;x—l»
-1 -1

or

1 1
T—_1,T0, x_ux()?x(h x_ax()?
0 0

Hence in either case {z,} - | is periodic with period 3.

Let A > 1. For each n > —1, put 2, = A¥*2. Then Eq. (5.1) is transformed

into the max-type difference equation

Ynr1 = max{—1—y,,—yp1}, n=0,1,.. (5.7)

Inx_ 1 Inz 1
L~ and Yo = 0 _ = are real numbers.

In A 2 InA 2

where y_; =

Put

B ={(e,3) : || + 8] < 1}

and

T={(a,—a—1):a <0}.

It can be easily seen that {y,} - | is of the form

Y-1,Y0, =Y-1, Yo, Y-1, Yo---
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if and only if (y_1,y0) € B, so it suffices to consider the case where (y_1,vo) ¢
B.It can be easily seen that {yn}i:_l contains two consecutive non-negative
terms, and so without loss of generality we may assume that y_; > 0 and
Yo > 0. So since y_1 +yo > 1, we see that either y; = —1 —yg and yo = —1—1;
ory; = —y_1 and yo = —1—y;. In either case (y1,y2) € T —B. Finally, suppose
that (yn,yn+1) € T — B for some N > 1. Clearly yy < —1, and then

Yn+2 = —YN, Yn43 = L+ YN, Ynpa = =2 —yn.

Note that (yni3,yn+a) € T, and that the distance between (yn,yny+1) and

(yN+3, Yn+4) is V2. Furthermore, the point (yn4s, yn1a) = (14 yn, —2 — yn)
is closer to B than the point (yn,yn+1) = (yn, —1 —yn) is. Consequently,
as the length of BN T is \/5, it follows that there exists ng > 4 such that

(ynm ynoJrl) € BNT.

(c) In this case, the change of variables x, = —yo reduces Eq. (5.1) to

1 A
yn+1:min{—, }, n=20,1,..,
Yn Yn—1

with positive initial conditions. The remaining part of the proof is similar to that

given in part (b) and will be omitted.

Remark 5.2 [t is interesting to note that the more general equation

A
Tl :ma,x{ﬁ, }, n=0,1,.., (5.8)

Tn Tp—1

where a, A, and the initial conditions x_; and xy are nonzero real numbers, does not have

the property that every solution is eventually periodic. In fact, if a = —1 and A = -2,

then the solution with the initial conditions x_1 = 2 and xy = —1/2 is unbounded and is
given by

1 1
2, ——,2,..,2" —— 2" ...

2 2n

In general, one can show that if a and A are both negative and not equal, then every

solution of Eq. (5.8) with initial conditions in R — {0} is unbounded.
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5.2 The Equation z,,; = max {f—s, x‘:il e m‘:’_“k}
In this section, we consider the periodic character of solutions of the max-type difference

equation

Ao Ay Apg

Tpe1 = MaxX { —, -
Tp Tp—1 Tn—k

bozn (59)
with initial conditions
To = g, T1 = A1,..., T = Q. (5.10)

where k is any fixed natural number; Aq, A4, ..., Ay and ag, aq, ..., a are fixed real numbers
such that Ay # 0.

It is useful to rewrite the recursion Eq. (5.9) as

1
{zn/Ao, (2n-1) /A1), oo (Tnk) /AR) } (n 2 k). (5.11)

Some features of this sequence are listed and conjectured in [18]. The case when all the

Tp+1 = Min

coefficients A; are negative is completely open. The main conjecture is the following. For
any coefficients A; € R and for initial values a; € R (0 <i < k) and k € N this sequence
is eventually periodic if and only if it is bounded, and furthermore it is always bounded
for positive numbers A; € R and a; € R (0 <i < k). The case k = 1 is considered in [1].
In this section we give a complete characterization of the behaviour of the sequences
satisfying Eq. (5.9) and Eq. (5.10) in the case when all the coefficients A; (0 < i < k)
are negative (see theorem 5.2). In Theorem 5.2 we also give a simple argument for an
already stated result for the case when all the coefficients have the same fixed positive

value (see Theorem 5.3).

5.2.1 THE NEGATIVE COEFFICIENTS CASE

The following Theorem completely describe the behaviour of the sequnce when all the
coefficients are negative: A; < 0, Ay # 0, but a; € R are arbitrary real numbers for i < k.

We take this theorem from [26], see page [25-29].

Theorem 5.2 For any k > 0 and A; < 0, Ay # 0, a; € R (i < k) the following

statements are equivalent:
(a) The sequence (x,) is periodic;
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(b) The sequence (x,,) is periodic with period k + 2;
(C) Az = Ak—z‘ fOT‘O S 1 S ]{7,

(d) The sequence (x,,) is bounded.

Proof. We observe first that A;/z, ; and hence z,,; are positive if and only if x,,_; is
negative for some 7 < k. This implies that enlarging n step by step we leave behind all

the negative elements of the sequence. In other words, we reach to an ng such that

Tpg—i >0 for 0 <i <k, (5.12)
Let
20 = £n0+1.

Clearly zp is negative, and by Eq. (5.12), the previous k + 1 elements of the sequence are
positive. This by Eq. (5.12) implies that the next k + 1 elements of the sequence are

A :
Tpgtoti = . for0<i<k (5.13)

and all of them are positive.

Now it can be easily seen that

A; .
zlzxn0+k+3:z0.max{ - :nggk}.
Api

A repeated argument shows that for every natural number ¢t € N
2t = Tng+1+t.(k+2) — Zo-Kt,
where

A;
K:max{Aki :igk}.

This clearly shows (c)<(d).

Checking now the terms between z; and z;,; we obtain (c)=-(a)+(b).

Since (a)=-(d) is obvious, theorem is proved.

Observe also that A; # 0 must hold for ¢ < k if there is no positive term among these
coeeficients.

The argument given above shows that for n > k + 2 the solution consists of positive
semicycles of length k + 1, followed by negative semicycles of length 1, etc., or the other
way around (i.e. replace positive by negative), hence there exists an N € {1,2, ...,k + 2}

such that xny < 0.
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5.2.2 THE SAME POSITIVE COEFFICIENTS CASE

Assume that now that all the coefficents A; € R have the same fixed positive value
A; = A. Tt ca now be proved that the sequence is periodic also in this case, using an

argument similar to the proof of Theorem 5.2.

Theorem 5.3 (([26], pp.25-29])) In the case A; = A > 0 (i < k) where A is any fived

real number, the sequence (x,) is periodic with period k + 2.

Proof Let o = v A. We observe first that A, /Tn—; > a and x,41 > « hold exactly in
the case if x,,_; < « for some ¢ < k. This implies that step by step enlarging n we reach

an ng such that

Tpo—i > a fori < k. (5.14)
The above inequality clearly implies

Tpgt1 < &

and so the next k£ + 1 elements of the sequence are

Tpgtati = for ¢ < k. (5.15)

'rn0+].
In other words, all they have the same value which is greater than «. Then it can be

easily seen that

1

xn0—|—2

Tno+k+3 = = Tng+1

and also that the sequence is periodic with period k + 2.

Consequently, Theorem is proved.
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CHAPTER 6

EXAMPLES ON THE PERIODICITY OF SOLUTIONS OF THE SYSTEM
OF RATIONAL DIFFERENCE EQUATIONS

In this chapter, we give some examples of the periodicity of solutions of the system of

rational difference equations.

Example 6.1 ([14], p.411) Suppose that yo = a, y_1 = b, xg = ¢, x_1 = d be arbitrary
real numbers and assume that {x,,y,} be a solution of the system

Tp—1 + Yn Yn—1 + T
Tyl = ) Yny1 = ———— (6.1)
YnTpn—1 — 1 TnYn—1 — 1

Also, let ad # 1 and cb # 1. All solutions of (6.1) are given as follows:

p

dta n==6k+1

ad—1 7
b, n=6k+2
a , n=6k+3
Ty = , k=0,1,2,... (6.2)
e pn=06k+4
d , n=6k+5
c , n=6k+6

bbe o =6k+1

d , n=06k+2
c , n=6k+3
yn:< I k:O71727"' (63)
e n=6k+4
b , n=6k+5
a , n=6k+6

\

Solution. Forn =0,1,2,3,4,5, we have

r_1+ Yo d+a
Iy = - )

Yor_1—1 ad—1

Y_1+ o b+ c

o= Toy_1 — 1 T -1
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Tr3 =

Ys =

Ty =

Ys =

Iy =

Ys =

and

Tg —

Yo =

Formn

rg =

Ys =

Tg =

c c(cb— b+c
To+y1 C—i—cl;,tl B (bcbl,)TJr _czb+b_
nao—1 Jhe-1 ed e
Yotz At 4 _ a(ad;ilf{dﬂ _ald+d
ny -1 Ffe-1 o4 a? +1
d a(1+d2)
T1itys _ adta1+d _ Tt _,
Y2z — 1 dadc?_—al —1 Zilﬂ ’
Y +%2 oy b :C(1+b2>zc
Igyl—]. b%—l b2—|—1 ’
Tat+ys  btc
ysto —1 cb—1’
Yo + I3 . d+a
T3ys —1  ad—1’
T3+ Ys a+$ia1 B a?d—a+d+a B
y4$3—1_f;ala—l_adnLaQ—ad—i—l_ ’
Ys+xg C+Cl§,tcl _b—l—bcz_
rays —1  Hee—1 241 ’
Ty + Ys _ cl;j—cl‘i'b :C<b2+1>zc
ysta —1  bIEe —1 b2 +1 ’
Ys +T5 addtal—i_d _ad2+a_
I5y4—1 d%—l d2+1
=6,7,8,9,10,11, we have
T5 + Ys d+a
== :I].?
Yers —1 ad—1
Ys + Tg b+c _
xeys — 1  cb—1 I
e + Y7 c+ 35 b(c®+1)
1~ ke T T2 =b= 2,
YrTe — Cb—_lc—l c +
yo + 1y o+ 24 _dd+d
$7y6—1 der_ala—l CL2—|—1 Y2,
l’7+y8 % ad2—i—1 a "
yszr —1  de -1 d*+1
yr+as S _c—l—ch_C_
zgyr —1 b —1 B2+ 1 Y3
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sty  bt+c

Tig = = =z
10 yors —1 cb—1 4’
. UYs + Tg o d+a -
Y10 Toys — 1 ad—1 Ya,
S T9 + Y10 _a+;ldta1 —a2d+d—d—x
T yloxlo—l_%a—l_cﬁ—l—l_ >
I = _C2b+b—b_
o Ty — 1 Hee—1  A41 &
and
S T10 + Yn _%"’_6_0"‘@2_6_%
BT w1 bEE 1 14 6
Yot rn adcia1+d_ad2+a_a_
- ruyo—1  dEHE -1 241 Yo
Also, we get
d+a
ry = ad_1:$7:l’13:...:l’6n+1,n:O,1,2,3,...
Ty = b:$8:$14:...:$6n+2, n:O,1,2,3,...
I3 = a4=T9g=T15 = ... = Ten+3, n:0,1,2,3,...
b+ c
Ty = b — 1 = X190 = 16 = .-- = Lont4, n:0,1,2,3,...
Iy = d:l'll = X117 = ... = Ten+5; n:0,1,2,3,...
Te = C=T12 =T18 = ... = Ten+6; n:O,1,2,3,...
and
b+ c
B = =Y7 = Y13 = --- = Y6n+1, n:O,1,2,3,...
ch—1
Y2 = d:y8:y14:---:y6n+27 7’L=0,1,2,3,...
Ys = C=Yg = Y15 = ... = Y6n+3, n:0,1,2,3,...
d+a
Ys = ad — 1 = Y10 = Y16 = --- = Ybn+4, n:071a2737'“
Ys = b:y11:y17:---:y6n+57 n:0,1,2,3,...
Yo = @ =Yi12 = Y18 = ... = Y6n+6, n:O7172737"'

Remark 6.1 From Ezxample 6.1 we have the following two observations:

(a) Let yo = a, y_1 = b, xg = ¢, z_1 = d be arbitrary real numbers and let {x,,y,} be

a solution of the system Eq. (6.1). Also, assume that ad # 1 and cb # 1. The

solutions of x,, and vy, are siz periodic.
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(b) Ifn € N then Tenir = Yonti+s-

Example 6.2 (23], p.1) Suppose that yo = a, y—1 = b, y_o = ¢, v9 = d, v_1 = e,
o= f,20=Fk, 2.1 =p, and z_y = q be arbitrary real numbers, and let {x,,y,,z,} be

a solution of the system

Yn—2 Tp—2 Lp—2 + Yn—2

Tnt1 = y Yn41 = y Rn41 =

, n € Ny
-1 + Yn—2Tp—-1Yn -1 + Tn—2Yn—1Tn -1 + Tp—2Yn—1Tn 0

(6.4)

Also, assume that b # 0, e # 0, fbd # 1, and cea # 1. Then, all six-period solutions of
(6.4) are as follows:

. B c B f ; L f+c
6n+1—1_ceau y6n+1——fbd_17 6n+1 — —fbd—l’
Tent2 = b (fbd —1), Yeni2 =e(cea —1), Znt2 = — (e + D) (cea + 1),
. B a B d s _ d+a
6n+3 = T og) y6n+3_—fbd_1> 6n+3 = —fbd+1’
c(fbd+1) + f(cea+1) n € No.
Ten4+4 = f ) Yén+4 = C, Z6n+4 = bd + 1 )
b(fbd+1)+e(cea+1)
Ten+s5 — €, Yen+5 = b, Z6n+5 — Fod 1 1 )
a(fod+1)+d(cea+1)
Tent6 = d, Yon+6 — @, Z6n+6 — Fbd + 1 )

(6.5)
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Solution. For n =0,1,2,3,4,5, we have

_ Y—2 - c
R Y_ox_1yo —1 4 cea’

- T2 _ f
e +x oy 1xg —14+ fbd’

P T_o+Y_9 o f+ec

YT 14 rayaxe —1+ fod

zy = L - b - b = b(fbd —1)
—l+yazoyr  —140d(f/(fod—=1)) 1/ (fbd—1) ’

Yy = Tl = ¢ = c =e(cea—1),
—1+z1y011 —1+ea(c/(cea—1)) 1/(cea—1)

r_1+y_1 e+b e+b

SR T ayor1  —1+ea (¢/ (cea — 1)) - 1/ (cea —1) = (e+)(cea—1),

B Yo B a _a
BT T Yor1y2 —1+a(c/(cea—1)e(cea—1)) cea—1

. Zo . d . d
BT it aopas L+ d(f/(fod—1)b(fbd—1))  fbd— 1’

B TotY% d+a _d+a
BT D taopme  —1+d(f/(fod—1)b(fod—1)) fobd—1
L m 7/ (fbd— 1)

—l+uyimoys  —1+ (f/(fod—1))b(fbd —1)(d/ (fbd — 1))

/Y I L (N

TTF (b (=) 1/ (fed—1)
y = Ty _ ¢/ (cea — 1)
—1+xyews =14 (¢/(cea—1))e(cea—1)(a/ (cea — 1))

B ¢/ (cea —1) _¢/(cea—1)

~ —1+(cea/(cea—1))  1/(cea—1) .

L mtn (e ) (/1)
* —14+z1y2x3 —1+4(¢/(cea —1))e(cea — 1) (a/ (cea — 1))

_ c(fbd —1)+ f(cea —1)

Tod—1 !

B Yo B e(cea —1) B
o= —1+ sy —1+e(cea—1)(a/(cea—1))c - ¢

o b(fbd — 1) _,

T i mypes 14 0(Jbd—1)(d/(fld—1)]

B To iy b(fbd —1)+e(cea—1) _ b(fbd—1)+e(cea—1)
BT Tl agysrs 14 b(fbd— D) (d) (fod—1) f Fbd — 1
Y 11
" “lysmays -1+ (d/(fod—1) b

B T3 B a/ (cea — 1) B
R z3yars  —1+ (a/ (cea—1))ce @

e — x3 + Y3 :(a/(cea—l))—i—(d/(fbd—l)):a(fbd—l)—i-d(cea—l)

—1 + z3ys75 1+ (a/ (cea — 1) ce) fbd —1
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For n =6,7,8,9,10,11, we get

X7

Y7

7 =

xg

Ys

z8

T9

Yg

29

T10

Y10

210 =

T11

Y1

211

T12

Y12

212

xs,

= Z3,

Yy o c -
—1+ysrsys —1+ cea ’
T4 _ f _
-1+ T4lYsTg N -1+ fbd 9
Ta+Ys f+ec _ .
1+ aaysms  —14 fbd U
Ys b
s R IV e ) B e
Iy . € . .
—1+asysz7  —1+ea(c/(—1+cea)) ¢(cea—1) =,
Ts + Ys e+b
1+ 25yerr  —1+ea (¢/ (=1 + cea)) = (e+b)(cea—1) =2,
Us B a a
—1+yszrys —1+a(c/(=1+cea))e(cea—1) cea—1
T . d . d .
1+ aeyiws  —L+d(f/(—1+ fbd)b(fbd—1) fbd—1 2>
ret+yYs d+a _d+a
Tt aprs | 14 d(] (L1 f0d)b(Jbd—1)  fbd—1
Yz _ f/(=1+ fbd)
—L+ymasye  —1+(f/ (=14 fbd))b(fbd —1)(d/(fbd — 1))

[/ (=1+ fbd)

:-4+UMMeHjM»:f:M’

X7 _ ¢/ (=1 + cea)
—1+x7yszg  —1+4(¢/ (=14 cea))e(cea —1) (a/ (cea — 1))
¢/ (—1 + cea)

T OTIy (cea/ (—1 + cea))

= Y4,

_ b(fbd—1)+e(cea—1)

Fbd — 1

= Z5,

Yo _ d/ (fbd —1)

—1 + yox10y11

- =1+ (d/ (fbd —1)) fb

Tg B a/ (cea — 1)

—1 + zoy10711
9 + Yo _

~ —1+(a/(cea—1))ce
_ (a/(cea=1)) + (d/ (fbd — 1))

:d:xG’

= qQ =

Ye,

—1+ zoy10711

Fbd — 1

= 26,
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—1+ (a/(cea — 1)) ce
_a(fbd—1)+d(cea—1)

Trtyr (¢/(=1+cea)) + (f/ (=14 fbd))
—1+xysz9  —1+ (¢/ (=1 + cea)e(cea — 1) a/ (cea — 1))
~oc(fbd—1)+ f(cea—1)
- Fod — 1 A
Us _ e(cea —1) ey
—1+4+ysxoyio —1+e(cea—1)(a/(cea—1))c >
g B b(fod—1) o
T+ oo —1+b(bd—1) @/ (fod—1)f
Tgtys b(fbd —1)+ e(cea —1)
—1+asyorro  —1+b(fbd—1)(d/(fbd—1)) f



are true. Also, we have for n € Ny

c
ry = = X7 =T13 = ... = Ten+1,
cea — 1
Ty = b(fbd — 1) =Ty = T14 = ... = Ten+2;
a
xr3 = = X9 = T15 = ... = T6n+3,
cea — 1
Ty = f[=2T10=72T16=-.. = Tentd,
Ty = €=T11 = T17 = ... = Tpnts,
Tg = d=T12 =T18 = ... = Tent6,
1 Tbd —1 7 13 = ... 6n-+15
ya = e(cea—1)=ys=yu=...= Yont2,
d
Ys = Fbd — 1 =Yg = Y15 = --- = Y6n+3;
Ygs = C=Yi0o = Y16 = --- = Ybn+4,
Ys = b=yn =Y7 = ... = Yonts,
Y = a="Yi2 =Y18 = ... = Y6n+6,
21 = fte =27 =213=..=2
1 = fbd—1_7_ 13 = .. = Z6n+1,
2z = (e+b)(cea—1)=25=214=... = Zgns2,
d+a
z — = 29 — Z15 = ... = Z6n+3,
3 Thd — 1 9 15 6n-+3
c(fbd —1)+ f(cea —1)
24 = =210 = 216 = --- = Zgnid,
4 Thd — 1 10 16 6n+4
b(fbd—1)+e(cea—1)
5 Thd — 1 11 17 6n-+5
a(fbd—1)+d(cea —1)
z = = Z =z = ... :Zn .
6 Thd — 1 12 18 6n+6

Remark 6.2 The following conclusions are valid for n € N :

(a) Ten+2Y6n+3 = Lon+6Y6n+5,
(b) Ten+1Y6n+2 = Ten+5Y6n+6,
(C) Ten+1Y6n+6 = Ten+3Y6n+4,

(d) Ten+4Y6n+3 = Tén+6Y6n+1-
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Example 6.3 (/23], p.4) Let yo = a, y 1 =b,y o =c¢, 190 =d, 1 =€, x_9 = [,
20 =k, z_1 = p, and z_o = q be arbitrary real numbers, and suppose that {x,, yn,zn} be

a solution of the system

Yn—2 o Tn—2 o Tn—2 + Yn—2
1 y Ynt+1 = 1 y Antl = 1
—1 = Yn—2Tn-1Yn —1 = Tp2Yn—1Tn —1 = Tp2Yn—1Tn

Tpt+1 = 5 nec No.

(6.7)

Also, assume that b # 0, e # 0, fbd # 1, and cea # 1. Then, all siz-period solutions of
(6.7) are as follows:

_ c _ f _ _ —fQA+fbd)+c
Ton+1 = " 1dcea’ Yén+1 = " Fbd+10 Z6n+1 = — Fbd+1 )
Tenia = —0(fbd+ 1), yYenio = —e(cea+ 1), Zoni2 =€ — b (1 + cea) ,
= 2 S - — _ Zd(fbd+1)ta
L6n+3 = ~ Ticea’ Y6n+3 = ~ Foai1 “on+3 = T fpdy1 cN
fc(fbd+1)+f(1+cea+c262a2) n 0-
Tenta = [, Y6n+4a = C, Z6n+4 = (Fbd+1)(ceatl) )
—b(142fbd+ f2b2d?) +e(1+cea)
Ten+s5 = €, Yén+5 = b> Z6n+5 — Fbd+1 ’
—a(fbd+1)+d(1+cea+cze2a2)
Tente = d, Yen+6 = a; Z6n+6 = (1tcea)(fbdt1) ;
(6.8)
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Solution. For n =0,1,2,3,4,5, we have

Y—2 c c

R YoT_1yo —l—cea  1+cea’ (6.9)
_ L2 _ f _ f
A T_oy_1xg —1—fbd  fbd+1’
B rTotys  f+c  f+c
T T yame —1—fbd 1+ fbd
vy = L b b —b(fbd+1),
© T Leyar —1-=bd(=(f/(fed+ 1))~ (1/(fbd+ 1)
b2 —1—z_qyor1 —1—ea(—(c/(1+ cea))) —(1/(1+ cea)) —el(ceat1),
r_1+y_1 e+b e+b
A r_yyor; —1—ea(—(c/(1+cea))) —(1/(1+cea)) (e+) {1+ cea),
Yo a a
s —1—yox1ye —1—a(—(c/(1+4cea)))— (e(l+ cea)) 1+ cea’
i d d
BT T wmy - L= d( (7 (U fbd) (<b (L fod)) L+ fbd
B To+Y d+a L d+a
T Teware L d(= (F/ (U fed) (b (L fbd)) L fbd
o — (1] (Lt )
Y “T—wmays 1+ (f/(L+ fbd)) b (1+ fbd) (d/ (1+ fbd))
LU0 /()
—1+(fbd/ (1 + fod)) — —(1/ (1 + fod))
. 1 _ —(¢/ (1 + cea))
—1—x1yp23 =1+ (¢/ (14 cea))e(1l+ cea)(a/(1+ cea))
_ —(¢/ (1 + cea)) _ - (¢/ (1 + cea)) _
—1+4 (cea/ (14 cea)) —(1/(1+ cea))
L _mtw (e () () (4 )
! —1—ayoxs —14(¢/(1+cea))e(1+ cea) (a/ (1 + cea))
(14 fbd) + f (1 + cea)
1+ fbd ’
o Yo _ —e (1 + cea) B
> —1—yoz3ys —1—e(1+cea)(a/(1l+ cea))c
B To B —b (1 + fbd) B
T T e 1 b1t bd) (@ (L fbd) [
B ro+ya —b(1+ fbd) —e(1+ cea) b(1+ fbd) + e (14 cea)
BT T tgysra —1—b(1+ fbd) (d) (1 + fbd)) f 1+ fbd
o w @iy
° —1—yszays  —1+(d/(1+ fbd)) fb 7
B T3 ~ —(a/(1+cea)) "
S w3yars  —1+ (a/ (1+cea))ce
I T3tys = (a/ (1 +cea)) — (d/ (1 + fbd)) _ a(l+ fbd) +d (1 + cea)
0 —1 — x3ysxs —1+ (a/ (14 cea))ce 1+ fbd '
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For n =6,7,8,9,10,11, we get

X7

Y7

27

xg

Ys

z8

T9

Yg

29

T10

Y10

210

T11

Y1

211

Z12

Y12

212

= T,

Ya B c B c
—1 —ysxsys  —1 — cea 1+ cea

T4 I [
1 tgysre  —1— fbd 1+ fbd 7V

Tg+ Ya . f+ec

f+ec

—1 — 24y576

T T1—fbd 1+ fbd
b

= 21,

xs,

= Ys,

= Z3,

Ys
A 7L ) R AR
75 = c = —e(1+ cea) = yo,
—1—xsyexrr  —1+ea(c/(1+ cea))
T5 + Ys e+b
—1— 2syers  —1+ea (¢/ (1 + cea)) = (eF0) (L +cea) =2,
Ye - a - a -
—1—yerrys —1—a(c/(1+cea))e(l+cea)  1+cea
Tg . d . d
—1 —zeyrrs  —1—d(f/(1+ fbd)b(1+ fod) 1+ fbd
ret+yYs d+a ~d+ta
—1—zeyrzs  —1—d(f/(1+ fbd)b(1+ fbd) 1+ fbd
w (/) (L+ b))
—1—ymwsyg  —1+(f/(1+ fbd))b (1 + fod) (d/ (1 + fbd))
TR RS )
—1/(1+ fbd) v
x7 B —(¢/ (1 4 cea))
—1—a7yszg  —14 (¢/ (14 cea))e(1+ cea) (a/ (1 + cea))
—(¢/(1+4cea))
/(I +ceay U
Tty — (¢/ (1 +cea)) — (f/ (1 + fbd))
—1—arysrg —14(¢/(1+cea))e(1+ cea)(a/(1+ cea))
c(1+4 fod) + f (1 +cea)
1+ fbd A
Us _ —e (1 + cea) ey
—1—yswoy1o —1—e(l+cea)(a/(1+ cea))c >
Ts B —b(1+ fbd) L
1 agyerie 1 b(L+ fod) @/ (L+ fod)f
vs+ys  —b(1+ fbd) —e (1l + cea)
—1—agyorro  —1—b(1+ fod)(d/ (1+ fbd)) f
b(1+ fbd) + e (1 + cea) _,
1+ fbd >
Yo - (d/ (1 + fbd)) s
—1—yoxroy11  —1+(d/ (L + fbd)) fb ”
Tg = (a/(1+ cea)) =y

—1 — 2oy10711
g9 + Yo _

~ —1+(a/ (1 +cea))ce
_ —(a/(14cea)) — (d/ (1 + fbd))

—1 — z9y10711

~a(14 fbd) +d/ (14 cea)

1+ fbd

= Z6-
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—1+4 (a/ (1 + cea)) ce

(6.10)



are true. Also, we have for n € Ny

c
T = —1+C€a—1‘7—1‘13—---—1‘6n+1;
Ty = —b (1 + fbd) =Ty = T14 = ... = Ten+2;
a
r3 = — =29 = T15 = ... = Tgp+3,
3 11 cea 9 15 6n+3
Ty = f=$10=$16=---=$6n+4,
Ty = €=T11 = T17 = ... = Tpnts,
Tg = d=T12 =T18 = ... = Tent6,
1 1+ fbd 7 13 = ... 6n-+15
y2 = —e(l+cea)=ys=yis= ... = Yoni2,
d
Ys = _1—|—fbd_y9_yl5_"'_y6”+3’
Yg = C=Yi0o = Y16 = --- = Ybn+4,
Ys = b=yn =Y7 = ... = Yonts,
Y = a="Yi2 =Y18 = ... = Y6n+6,
21 = — fte =27 =213 = ..=2
1 = 1+fbd—7—13—---— 6n+15
29 = —(e+0b)(1+cea) =23 =214 = ... = Zgni2,
d+a
23 = — =29 = 215 = ... = 26p+3,
3 1+ fod 9 15 6n+3
B c(l—i—fbd)+f(1—|—cea)_z .
4 1+ fbd = 210 = 216 = .-+ = Z6n+4,
b(1+ fbd) + e (1 + cea)
25 = =211 = 217 = ... = Z6n+5,
5 1+ fod 11 17 6n-+5
a(l+ fbd) 4+ d (1 + cea)
26 = = 219 = 218 = ... = ZEn+6-
6 1+ fbd 12 18 6n+6

Remark 6.3 The following conclusions are valid for n € N :

(a) Ten+1Y6n+6 = Lon+3Y6n+4,
(b) Ten+6Y6n+1 — Ten+4Y6n+3,
(C) Ten+3Yen+2 = Tn+5Y6n+6,

(d) Ten+1Y6n+2 = Tén+5Y6n+4-
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Example 6.4 ([19], p.107) Suppose that a,b,c,d,e and f are real numbers such that
(ad — 1) (cb—1) # 0, abef # 0. We suppose that the initial values to be yo = a, xy = ¢,

y1=">b,x_1=d, 20 =e, z_1 = f. Assume that {z,,Yyn, 2, } be a solution of the system

Ty n— 1
Tnil = —————, Yoy1 = Lu Zn+1 = ,  n €Ny, (6.11)
YnTp-1 — 1 TpYn-1 — 1 Yn<n—1
Then, all solutions of (6.11) are as follows:
( d
—  n=2%-1
r, ={ (ad—1) L k=1,2,.. (6.12)
\c(cb—l)k ., n=2k
( b
. n=2%-1
yp =14 (cb=1) L k=1,2,.. (6.13)
\a(ad—l)k ., n=2k
(—— (k= 1)
Cn=4(k—1)+1
af (ad —1)"!
(cb—1)

@) —4(k—1)+2
P b e (6.14)

m , n=4(k—-1)+3

e(be—1F | n=4(k—-1)+4
Solution It is obvious to show (6.12) and (6.13) and referred to [15]. Here, we only
focus on (6.14). First, for k=1, from 6.11 and 6.13, we easily check that

1 1
z = = —,
! Yoz-1 af
1 1 ch—1
z o _— = s
2 Y120 ﬁe be
1 J
Z = _ = —
3 Y221 ad—1’
1
2y = — =e(cb—1).
! Yszo ( )

Now, we assume the conclusion is true for k, that is, (6.14) holds. Then, for k+ 1, we
confirm it. Indeed, from (6.11) and (6.13) and (6.14), we obtain

1 1 1
S YakZa(k—1)+3 T a (ad — 1)*" x ﬁ N af (ad —1)*
1 1 (cb—1)F
R W x e(ch—1)" - be '
1 1 f
ks Yak+224k+1 N a(ad — 1) x af(a;—l)k N (ad — 1)F
Akt = y4k+31z4k+2 B \ (cb—1)**? —° (Cb a 1)k+1

b
(Cb_1)2k+2 X be
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Example 6.5 ([19], p.109) Suppose that the assumption of Example 6.4 holds. Also,
if ad = c¢b =2, then all solutions of (6.11) are periodic.

Solution. In this case, from (6.12), (6.13) and (6.14), we get

d , n=2k—-1
Ty, = , k=12, .. (6.15)
c , n=2k
b , n=2k-1
Y = L k=1,2,.. (6.16)
a n =2k
(
# , n=4(k—-1)+1
Lo n=4(k-1)+2
Zn =14 b ( ) k=12, ... (6.17)
f o, n=4(k—-1)+3
e , n=4(k—-1)+4
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