BÜLENT ECEVİT ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ

TERMİK SANTRAL BACA GAZI DESÜLFÜRİZASYON SİSTEMLERİNDE JİPS'İN SUSUZLAŞTIRILMASI

MADEN MÜHENDİSLİĞİ YÜKSEK LİSANS TEZİ HALİL İBRAHİM GÖNÜL

HAZİRAN 2017

BÜLENT ECEVİT ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ

TERMİK SANTRAL BACA GAZI DESÜLFÜRİZASYON SİSTEMLERİNDE JİPS'İN SUSUZLAŞTIRILMASI

MADEN MÜHENDİSLİĞİ

YÜKSEK LİSANS TEZİ

Halil İbrahim GÖNÜL

DANIŞMAN :Prof. Dr. İhsan TOROĞLU

ZONGULDAK Haziran 2017

KABUL:

Halil İbrahim GÖNÜL tarafından hazırlanan "Termik Santral Baca Gazı Desülfürizasyon Sistemlerinde Jips'in Susuzlaştırılması" başlıklı bu çalışma jürimiz tarafından değerlendirilerek Bülent Ecevit Üniversitesi, Fen Bilimleri Enstitüsü, Maden Mühendisliği Anabilim Dalında Yüksek Lisans Tezi olarak oybirliği ile kabul edilmiştir. 20/06/2017

Danışman: Prof. Dr. İhsan TOROĞLU Bülent Ecevit Üniversitesi, Mühendislik Fakültesi, Maden Mühendisliği

Üye:

Prof. Dr. Sait KIZGUT Bülent Ecevit Üniversitesi, Mühendislik Fakültesi, Maden Mühendisliği

Üye:

Prof. Dr. Ş. Levent ERGÜN Hacettepe Üniversitesi, Mühendislik Fakültesi, Maden Mühendisliği

ONAY:

Yukarıdaki imzaların, adı geçen öğretim üyelerine ait olduğunu onaylarım.

.../.../2017

Doç. Dr. Ahmet ÖZARSLAN Fen Bilimleri Enstitüsü Müdürü

"Bu tezdeki tüm bilgilerin akademik kurallara ve etik ilkelere uygun olarak elde edildiğini ve sunulduğunu; ayrıca bu kuralların ve ilkelerin gerektirdiği şekilde, bu çalışmadan kaynaklanmayan bütün atıfları yaptığımı beyan ederim."

Halil İbrahim GÖNÜL

ÖZET

Yüksek Lisans Tezi

TERMİK SANTRAL BACA GAZI DESÜLFÜRİZASYON SİSTEMLERİNDE JİPS'İN SUSUZLAŞTIRILMASI

Halil İbrahim GÖNÜL

Bülent Ecevit Üniversitesi Fen Bilimleri Enstitüsü Maden Mühendisliği Anabilim Dalı

Tez Danışmanı: Prof. Dr. İhsan TOROĞLU Haziran 2017, 81 sayfa

Elektrik üretiminin kömürle çalışan termik santrallerle yapılması baca gazı arıtma sistemlerinin kullanımını gerektirmektedir. Bu çalışmada baca gazı desülfürizasyon sistemlerinde üretilen jips'in susuzlaştırılmasını etkileyen parametreler araştırılmıştır. Baca gazı sisteminin 4 ayrı noktasından proses şartları değiştirilerek numuneler alınmıştır. Hidrosiklon basınçları ve çalışan siklon sayısı değiştirilerek alınan numuneler, jips'in sıcak ve soğuk suyla yıkanması sonucu ortaya çıkan örnekler üzerinde çalışılarak bulgular elde edilmiştir. Jips'in yıkanması ve hidrosiklon çalışma basıncı değiştiminin tane boyut dağılımı değiştirdiği ve buna bağlı olarak nem miktarını etkilediği tespit edilmiştir. Bu bulgular termik santrallerde susuzlaştırma sistemlerindeki performans problemleri ve nedenlerini azaltabilmek açısından faydalı olacaktır.

Anahtar Kelimeler: Baca gazı desülfürizasyon, susuzlaştırma, hidrosiklon, nem, alçıtaşı

Bilim Kodu: 607.01.02

ABSTRACT

M. Sc. Thesis

GYPSUM DEWATERING ON FLUE GAS DESULFURIZATION SYSTEM IN COAL FIRED PLANT

Halil İbrahim GÖNÜL

Bülent Ecevit University Graduate School of Natural and Applied Sciences Department of Mining Engineering

Thesis Advisor: Prof. Dr. İhsan TOROĞLU June 2017, 81 pages

Electric energy production in coal fired power stations are required flue gas treatment system. In this study effects parameters of gypsum dewatering are researched at flue gas desulfurization. With the samples from 4 different points of flue gas desulfurization. Process conditions are changed for hydrocyclone samples that have different pressure and running cyclone amount, gpypsum samples are taken after hot and cold water washing. Washing of gypsum and hydrocyclone working pressure differences effect particle size distribution due to moisture content of gypsum is changed by this study. These samples were analyzed and results would be helpful to decrease the problems related to dewatering performance and reasons of them at power station.

Keywords: Flue gas desulfurization, dewatering, hydrocyclone, moisture, gypsum

Science Code: 607.02.08

TEŞEKKÜR

Tez konusunun belirlenmesi ve değerlendirme sürecindeki katkılarından dolayı tez danışmanım Prof. Dr. İhsan TOROĞLU'na teşekkür ederim. Çalışma sürecinde katkılarını esirgemeyen Prof. Dr. Sait KIZGUT, Arş. Gör. Mehmet BİLEN'e ve Eren Enerji bünyesindeki yönetici ve saygı değer arkadaşlarıma; desteğini esirgemeyen tüm aile fertlerime teşekkür ederim.

İÇİNDEKİLER

	<u>Sayfa</u>
KABUL	ii
ÖZET	iii
ABSTRACT	v
TEŞEKKÜR	vii
İÇİNDEKİLER	ix
ŞEKİLLER DİZİNİ	xi
ÇİZELGELER DİZİNİ	xiii
EK AÇIKLAMALAR DİZİNİ	XV
SİMGELER VE KISALTMALAR DİZİNİ	xvii
BÖLÜM 1 GİRİŞ	1
BÖLÜM 2 BACA GAZI ARITMA SİSTEMLERİ VE ENERJİ ÜRETİMİ	
2.1 DESÜLFÜRİZASYON SİSTEMLERİ	
2.1.1 Tarihsel Gelişim	
2.1.2 Kireçtaşlı Islak Tip Desülfürizasyon Sistemleri	
2.1.3 Amonyaklı Desülfürizasyon Sistemi	
2.1.4 Deniz Sulu Desülfürizasyon Sistemi	
2.1.5 Çift Alkali Desülfürizasyon Sistemi	
2.2 DÜNYA ELEKTRİK ÜRETİMİ	
2.2.1 Kaynaklara Göre Enerji Üretimi	
2.2.2 Dünya Kömür Üretimi	
2.2.3 Dünya Kömür Tüketimi	

İÇİNDEKİLER (devam ediyor)

Sayfa
2.3 TÜRKİYE'DE KÖMÜR ÜRETİMİ VE TÜKETİMİ 19
BÖLÜM 3 DESÜLFÜRİZASYON SİSTEMİNDE YAPILMIŞ ÇALIŞMALAR23
3.1 DESÜLFÜRİZASYON SİSTEMİ
3.2 pH, SICAKLIK VE KALSİYUM SÜLFAT KONSANTRASYONUNUN ETKİSİ 24
3.3 ÇÖZELTİ KOMPOZİSYONUNUN ETKİSİ
3.4 KRİSTAL YAPILAR
BÖLÜM 4 DENEYSEL ÇALIŞMALAR
4.1 METODOLOJİ
4.2 ABSORBERDAN ALINAN ÇÖZELTİ ÖRNEĞİ ÜZERİNDEKİ ÇALIŞMALAR 41
4.2.1 Elementel Analiz
4.2.2 Tane Boyut Dağılımı
4.3 HİDROSİKLON NUMUNELERİ ÇALIŞMALARI43
4.4 ALÇITAŞI NUMUNELERİ İLE YAPILAN ÇALIŞMALAR
BÖLÜM 5 SONUÇLAR VE DEĞERLENDİRME51
KAYNAKLAR
EK AÇIKLAMALAR
ÖZGEÇMİŞ

ŞEKİLLER DİZİNİ

<u>No</u>

<u>Sayfa</u>

Şekil 2.1 FGD Prosesi (Walsh 2008).	5
Şekil 2.2 Bilyalı Değirmen (URL-3 2017).	6
Şekil 2.3 Değirmen Bilya Davranışı (URL-3 2017).	6
Şekil 2.4 Hidrosiklon çalışma prensibi (URL-4 2017).	
Şekil 2.5 Santrifüj Sistemi (URL-5 2017)	10
Şekil 2.6 Vakum Bandı (URL-6 2017).	10
Şekil 2.7 Amonyaklı Baca Gazı Arıtma Prosesi (Walsh 2008).	11
Şekil 2.8 Deniz Sulu Baca Gazı Arıtma Prosesi (Oikawa vd. 2003).	12
Şekil 2.9 Çift Alkali Proses (EPA 1981)	14
Şekil 2.10 Dünya elektrik talebinin dağılımı (IEA 2016).	15
Şekil 2.11 Dünya kömür üretimi (TKİ 2016)	16
Şekil 2.12 Ülkelere göre 2014 yılı dünya kömür üretimleri (TKİ 2016)	17
Şekil 2.13 Ülkelere göre 2014 yılı dünya kömür tüketimi (TKİ 2016)	
Şekil 2.14 Ülkelere göre 2014 yılı dünya kömür tüketimi (TKİ 2016)	
Şekil 2.15 Çeşitli ülkelerde elektrik üretiminde kömürün payı (TKİ 2016)	19
Şekil 2.16 Taş kömürü tüketimi (TKİ 2016)	21
Şekil 2.17 Ülkemiz enerji kaynaklarının elektrik üretimindeki dağılımı (TKİ 2016)	21
Şekil 3.1 pH'ın sülfat oksidasyon oranına etkisi (Li vd. 2013)	25
Şekil 3.2 Sıcaklığın reaksiyon süresi ve oksidasyon (Li vd. 2013)	
Şekil 3.3 pH değerinin dr/dt oranı (Li vd. 2013)	
Şekil 3.4 CaSO3 konsantrasyonunun oksidasyon oranına etkisi	27
Şekil 3.5 pH'ın desülfürizasyon çözeltisindeki partikül boyutuna etkisi	27
Şekil 3.6 Katkı maddelerinin desülfürizasyon partikül boyut dağılımına etkisi	
Şekil 3.7 SEM görüntüleri katkılı ve katısız (Li, Zhou and Zhu 2013)	

ŞEKİLLER DİZİNİ (devam ediyor)

No	<u>Sayfa</u>
Şekil 3.8 Katkılı ve katkısı SEM fotoğrafları, kristalizasyon şartları a-c T=50 °C ,pH	=5,5;(a)
katkısız;(b) C ₀ =0,02 mol/L;(c) C ₀ =0,02 mol/L (Pan,Wu and Yang 2016)	
Şekil 4.1 FGD sistemi akım şeması ve numune alma noktaları (Walsh 2008)	
Şekil 4.2 XRF Cihazına ait görünüm.	
Şekil 4.3 Işın dalga boyları basitleştirilmiş görüntü (URL-1 2017)	
Şekil 4.4 BOHR atom modeli (URL-1 2017)	
Şekil 4.5 Numune ışıması şematik görünümü (URL-1 2017)	
Şekil 4.6 Malvern Mastersizer S 2000 cihazına görünümü (URL-2 2007)	
Şekil 4.7 Jips hidrosiklon alt akışında basıncın tane boyut dağılımına etkisi	
Şekil 4.8 Jips hidrosiklon alt akışında basıncın tane boyut dağılımına etkisi	
Şekil 4.9 BA1704 ve BA1803 numunelerinin karşılaştırılması	
Şekil 4.10 Hidrosiklon giriş ,alt ve üst akış tane boyut dağılımları	
Şekil 4.11 Hidrosiklonun farklı çalışma basınçlarındaki tromp eğrisi	
Şekil 4.12 Tane boyut dağılımları karşılaştırma.	
Şekil 4.13 Vakum bandı sistemindeki alçıtaşı nem tayini sonuçlar	

ÇİZELGELER DİZİNİ

No	<u>Sayfa</u>
Çizelge 3.1 Mineral temel kristal yapıları (Atasoy 2000)	
Çizelge 3.2 Katıların bazı özellikleri (Aydın vd. 2001)	
Çizelge 4.1 Üniteler için numune alma noktaları ve numune alma sıklıkları	
Çizelge 4.2 Elementel analiz sonuçları	
Çizelge 4.3 Tane boyut dağılımı	
Çizelge 4.4 Tane boyut dağılımı	
Çizelge 4.5 Alçıtaşı numuneleri elementel analiz sonuçları.	
Çizelge 4.6 Alçıtaşı numuneleri tane boyut dağılımları	
Çizelge 4.7 Malvern analiz sonuçları	

EK AÇIKLAMALAR DİZİNİ

Çizelge A.1 Hidrosiklon girişi tane boyu dağılımı
Çizelge A.2 Hidrosiklon üst akış tane boyu dağılımı 150 kPa
Çizelge A.3 Hidrosiklon alt akış tane boyu dağılımı 150 kPa 57
Çizelge A.4 Hidrosiklon üst akış tane boyu dağılımı 160 kPa 58
Çizelge A.5 Hidrosiklon alt akış tane boyu dağılımı 160 kPa 59
Çizelge A.6 Hidrosiklon üst akış tane boyu dağılımı 170 kPa60
Çizelge A.7 Hidrosiklon alt akış tane boyu dağılımı 170 kPa
Çizelge A.8 Hidrosiklon üst akış tane boyu dağılımı 180 kPa
Çizelge A.9 Hidrosiklon alt akış tane boyu dağılımı 180 kPa
Çizelge A.10 Hidrosiklon üst akış tane boyu dağılımı 190 kPa64
Çizelge A.11 Hidrosiklon alt akış tane boyu dağılımı 190 kPa
Çizelge A.12 Hidrosiklon üst akış tane boyu dağılımı 200 kPa66
Çizelge A.13 Hidrosiklon alt akış tane boyu dağılımı 200 kPa
Cizelge A.14 Hidrosiklon girisi tane boyu dağılımı
, , , , , , , , , , , , , , , , , , , ,
Çizelge A.15 Hidrosiklon üst akış tane boyu dağılımı 150 kPa
Çizelge A.15 Hidrosiklon üst akış tane boyu dağılımı 150 kPa
Çizelge A.15 Hidrosiklon üst akış tane boyu dağılımı 150 kPa.69Çizelge A.16 Hidrosiklon alt akış tane boyu dağılımı 150 kPa.70Çizelge A.17 Hidrosiklon üst akış tane boyu dağılımı 160 kPa.71
Çizelge A.15 Hidrosiklon üst akış tane boyu dağılımı 150 kPa.69Çizelge A.16 Hidrosiklon alt akış tane boyu dağılımı 150 kPa.70Çizelge A.17 Hidrosiklon üst akış tane boyu dağılımı 160 kPa.71Çizelge A.18 Hidrosiklon alt akış tane boyu dağılımı 160 kPa.72
Çizelge A.15 Hidrosiklon üst akış tane boyu dağılımı 150 kPa.69Çizelge A.16 Hidrosiklon alt akış tane boyu dağılımı 150 kPa.70Çizelge A.17 Hidrosiklon üst akış tane boyu dağılımı 160 kPa.71Çizelge A.18 Hidrosiklon alt akış tane boyu dağılımı 160 kPa.72Çizelge A.19 Hidrosiklon üst akış tane boyu dağılımı 170 kPa.73
Çizelge A.15 Hidrosiklon üst akış tane boyu dağılımı 150 kPa.69Çizelge A.16 Hidrosiklon alt akış tane boyu dağılımı 150 kPa.70Çizelge A.17 Hidrosiklon üst akış tane boyu dağılımı 160 kPa.71Çizelge A.18 Hidrosiklon alt akış tane boyu dağılımı 160 kPa.72Çizelge A.19 Hidrosiklon üst akış tane boyu dağılımı 170 kPa.73Çizelge A.20 Hidrosiklon alt akış tane boyu dağılımı 170 kPa.74
Çizelge A.15 Hidrosiklon üst akış tane boyu dağılımı 150 kPa.69Çizelge A.16 Hidrosiklon alt akış tane boyu dağılımı 150 kPa.70Çizelge A.17 Hidrosiklon üst akış tane boyu dağılımı 160 kPa.71Çizelge A.18 Hidrosiklon alt akış tane boyu dağılımı 160 kPa.72Çizelge A.19 Hidrosiklon üst akış tane boyu dağılımı 170 kPa.73Çizelge A.20 Hidrosiklon alt akış tane boyu dağılımı 170 kPa.74Çizelge A.21 Hidrosiklon üst akış tane boyu dağılımı 180 kPa.75
Çizelge A.15 Hidrosiklon üst akış tane boyu dağılımı 150 kPa.69Çizelge A.16 Hidrosiklon alt akış tane boyu dağılımı 150 kPa.70Çizelge A.17 Hidrosiklon üst akış tane boyu dağılımı 160 kPa.71Çizelge A.18 Hidrosiklon alt akış tane boyu dağılımı 160 kPa.72Çizelge A.19 Hidrosiklon üst akış tane boyu dağılımı 170 kPa.73Çizelge A.20 Hidrosiklon alt akış tane boyu dağılımı 170 kPa.74Çizelge A.21 Hidrosiklon üst akış tane boyu dağılımı 180 kPa.75Çizelge A.22 Hidrosiklon alt akış tane boyu dağılımı 180 kPa.76
Çizelge A.15 Hidrosiklon üst akış tane boyu dağılımı 150 kPa.69Çizelge A.16 Hidrosiklon alt akış tane boyu dağılımı 150 kPa.70Çizelge A.17 Hidrosiklon üst akış tane boyu dağılımı 160 kPa.71Çizelge A.18 Hidrosiklon alt akış tane boyu dağılımı 160 kPa.72Çizelge A.19 Hidrosiklon üst akış tane boyu dağılımı 170 kPa.73Çizelge A.20 Hidrosiklon alt akış tane boyu dağılımı 170 kPa.74Çizelge A.21 Hidrosiklon üst akış tane boyu dağılımı 180 kPa.75Çizelge A.22 Hidrosiklon alt akış tane boyu dağılımı 180 kPa.76Çizelge A.23 Hidrosiklon üst akış tane boyu dağılımı 190 kPa.77
Çizelge A.15 Hidrosiklon üst akış tane boyu dağılımı 150 kPa.69Çizelge A.16 Hidrosiklon alt akış tane boyu dağılımı 150 kPa.70Çizelge A.17 Hidrosiklon üst akış tane boyu dağılımı 160 kPa.71Çizelge A.18 Hidrosiklon alt akış tane boyu dağılımı 160 kPa.72Çizelge A.19 Hidrosiklon üst akış tane boyu dağılımı 170 kPa.73Çizelge A.20 Hidrosiklon alt akış tane boyu dağılımı 170 kPa.74Çizelge A.21 Hidrosiklon üst akış tane boyu dağılımı 180 kPa.75Çizelge A.22 Hidrosiklon alt akış tane boyu dağılımı 180 kPa.76Çizelge A.23 Hidrosiklon üst akış tane boyu dağılımı 190 kPa.77Çizelge A.24 Hidrosiklon alt akış tane boyu dağılımı 190 kPa.78
Çizelge A.15 Hidrosiklon üst akış tane boyu dağılımı 150 kPa.69Çizelge A.16 Hidrosiklon ült akış tane boyu dağılımı 150 kPa.70Çizelge A.17 Hidrosiklon üst akış tane boyu dağılımı 160 kPa.71Çizelge A.18 Hidrosiklon alt akış tane boyu dağılımı 160 kPa.72Çizelge A.19 Hidrosiklon üst akış tane boyu dağılımı 170 kPa.73Çizelge A.20 Hidrosiklon alt akış tane boyu dağılımı 170 kPa.74Çizelge A.21 Hidrosiklon üst akış tane boyu dağılımı 180 kPa.75Çizelge A.22 Hidrosiklon üst akış tane boyu dağılımı 180 kPa.76Çizelge A.23 Hidrosiklon üst akış tane boyu dağılımı 190 kPa.77Çizelge A.24 Hidrosiklon üst akış tane boyu dağılımı 190 kPa.78Çizelge A.25 Hidrosiklon üst akış tane boyu dağılımı 200 kPa.79

SİMGELER VE KISALTMALAR DİZİNİ

cm	:	Santimetre
d	:	Tanecik boyutu
D_i	:	Partikül tane boyutu
D10	:	Numunenin %10'unun geçtiği boyut (µm)
D50	:	Numunenin %50'unun geçtiği boyut (µm)
D90	:	Numunenin %90'unun geçtiği boyut (µm) (µm)
D32	:	Hacim-yüzey ortalama çap (Sauter ortalaması)
D43	:	Hacim-ağırlık ortalama çap (DeBroukere ortalaması)
h	:	Saat
g	:	Gram
KW	:	Kilowatt
kcal	:	Kilokalori
kg	:	Kilogram
MW	:	Megawatt
MWe	:	Megawatt elektrik
Mtpe	:	Milyon ton petrol eşdeğeri
MPa	:	Mega Pascal
kPa	:	Kilo Pascal
mm	:	Milimetre
m ³	:	Metreküp
mt	:	Metrik ton
t	:	Ton
tep	:	Ton eşdeğer petrol
TWh	:	Terawatt saat
v_{i}	:	Partikül hacmi
°C	:	Derece, Celcius

SİMGELER VE KISALTMALAR DİZİNİ (devam ediyor)

μm : Mikrometre

KISALTMALAR

- ASTM: Uluslararası standartlar
- FGD : Baca gazı desülfürizasyonu
- ESP : Elektrostatik filtre
- EÜAŞ: Türkiye Elektrik Üretim Anonim Şirketi
- SEM : Taramalı elektron mikroskobu
- TS : Türk Standartları

BÖLÜM 1

GİRİŞ

Teknolojinin gelişimiyle birlikte günlük yaşam döngüsü içerisindeki birçok faaliyette enerjiye ihtiyaç duyulmaktadır. İnsan oğlunun tarihsel süreç içerisinde teknolojik ve sosyolojik gelişimiyle birlikte ihtiyaçlarının çeşitliliği artmıştır. Sanayi devriminden itibaren enerjiye gereksinimine ihtiyaç her zamankine oranla daha da artmıştır. Üretim faaliyetleri sırasında buhar, elektrik vb. enerji kaynaklarının kullanımı günden güne artmaktadır. Ülkeler tarımsal ekonomiden sanayiye dayalı ekonomiye yönelmektedir. Günümüzde ülkelerin ekonomik ve üretim faaliyetlerinin büyüklüğünün ölçüm aracı olarak enerji tüketimleri baz alınmaya başlanmıştır. Enerji ihtiyacını karşılamak adına bilinen mevcut kaynakları ışığında elektrik üretim yöntemlerinin çeşitliliği artmıştır. Elektrik tüketimin artması ve kaynakların yetersizliği nedeniyle nükleer, doğalgaz ve yenilenebilir enerji kaynaklarıyla elektrik üretiminde artış yaşanmaktadır. Yeryüzünde geniş coğrafyaya yayılmış olan kömür madeni elektrik üretiminin birincil enerji kaynağını oluşturmaktadır.

Termik santrallerde kullanılan kömürün sahip olduğu kimyasal enerji yakma sonrasında ısıya dönüşerek ara iletim maddesi olan buhara dönüştürülmektedir. Buharın sahip olduğu yüksek sıcaklık, basınç ve entalpi sayesinde türbinlere iş yapabilme yeteneği kazandırılmaktadır. Dönen türbin jeneratör içerisinde meydana gelen manyetik alanla birlikte mekanik hareketi elektrik enerjisine dönüştürmektedir. Elektrik, transformatörler aracılığıyla iletim hatlarına yönlendirilerek ihtiyaç duyulan tüketim noktalarına ulaştırılmaktadır. Teknolojik gelişimle birlikte fosil yakıtlardan enerji elde edilirken çevresel etkilerin azaltılması amacıyla arıtma sistemleri de geliştirilmiştir.

Kömürün yanması sonucu ortaya çıkan kükürt dioksit gazının baca gazı desülfürizasyon sistemlerinde tutulmaktadır. Desülfürizasyon prosesi dahilinde bulunan absorber sistemi içerisinde sürekli sirkülasyon yapılan kireç çözeltisi bulunmaktadır. Kireç çözeltisi ile yıkanan kükürt diosit gazı reaksiyona girerek alçıtaşına dönüştürülmekte ve arıtılmaktadır.

Süspansiyon halinde üretilen alçıtaşı hidrosiklon ve vakum bandı sistemlerinden geçirilerek susuzlaştırılmaktadır. Tez kapsamında, termik santralde bulunan baca gazı desülfürizasyon sisteminin 4 farklı noktasından numune alınmıştır. Susuzlaştırma performasını arttırmak için üretilen alçıtaşının tane boyutunun arttırılması için hidrosiklon çalışma basıncının, akış olan siklon sayısı ve alçıtaşının vakum bandı üzerinde sıcak ve soğuk suyla yıkanmasının tane boyutuna etkisi araştırılmıştır.

Absorber çıkışından alınan numuneler üzerinde tane boyutu analizi ve kimyasal içeriğini belirlemek amacıyla elementel analiz yapılmıştır. Hidrosiklon basıncı değiştirilerek siklon alt ve üst akıştan alınan numunelerin Malvern Mastersizer S 2000 cihazıyla boyut dağılımları belirlenmiştir. Çalışma basınçları ve tane boyut dağılımları kıyaslanmıştır. Vakum bandı üzerin bulunan alçıtaşı 20⁰C ve 100⁰C de kaynayan suyla yıkanmıştır. Bu yıkama işlemi öncesi ve sonrasındaki tane boyut dağılım ve kimyasal içeriği analiz edilerek kıyaslama yapılmıştır.

Tez kapsamında yapılan çalışmalarla, hidrosiklon çalışma şartlarının ve vakum bandında yapılan yıkama işleminin tane boyut dağılıma etkisi ve neminin giderilmesi için yapılan mukayeseler literature önemli bir katkı sunacaktır. Yapılan çalışmalarla ve bu çalışmayla alçıtaşının susuzlaştırılarak yapı sektöründe kullanımının yaygınlaştırılmasına fayda sağlayarak susuzlaştırma aşamasında sorun yaşayan tesislerin iyileştirme çalışmalarına katı sunacaktır.

BÖLÜM 2

BACA GAZI ARITMA SİSTEMLERİ VE ENERJİ ÜRETİMİ

2.1 DESÜLFÜRİZASYON SİSTEMLERİ

Kömür; homojen olmayan, kompakt, çoğunlukla lignoselülozik bitki parçalarından meydana gelen, tabakalaşma gösteren, içerisinde çoğunlukla karbon (C), az miktarda hidrojen (H), oksijen (O), kükürt (S) ve azot (N) elementlerinin bulunduğu, inorganik maddeleri de içeren, bataklıklarda oluşan, kahverengi ve siyah renk tonlarında, yanabilen, katı fosil organik kütledir (TKİ 2010).

Enerji üretimi için kömürün kullanıldığı sistemlerde azot oksitler için DENO_x, toz tutmak için ESP ve torbalı filtre, kükürt dioksit gazının arıtılması için FGD sistemleri yaygın olarak kullanılmaktadır.

2.1.1 Tarihsel Gelişim

20 yüzyıla girilirken kömür içerisindeki kükürt içeriğinin sülfürik asit üretimi için mükemmel bir kaynak olduğunun farkına varılmıştır. SO₂ ekstrasyonu metodu teknolojik avantaj yaratmıştı. Günümüzde SO₂ uzaklaştırma tekniği atmosferik hava kalitesinin iyileştirilmesi için faydalı olmaktadır. FGD sistemleri geçmişteki buluş amacından farklı olarak hava kirliliği kontrolü amacıyla kullanılmaktadır.1900-1930 tarihleri arasında araştırmaların büyük çoğunluğu SO₂'nin katalist kullanılarak oksidasyonu yönündeydi. Yalnız katalitik oksidasyon sistemeleri genel olarak kabul görmemiştir. Günümüzde öne çıkan en faydalı methot kireç veya kireç çözeltisine absorbsiyondur. 1950 yılı öncesine kadar bu methot konusunda çok az çalışma yapılmıştır (Marten 1977).

Bazı sistemler (sulu vb.) FGD teknolojisinin gelişimi için önemli yer tutmuştur. Sulu sistemlerinin verimini arttırmak için çözelti ve süspansiyonlar eklenerek çalışmalar yapılmıştır.

Yapılan çalışmalardan örnekler;

- Sulu
- Metal iyon çözeltisi
- Katalitik oksidasyon
- Kuru Adsorbsiyon
- Islak kireç
- Islak kireçtaşı
- Çift alkali prosesi
- Amonyak

1850 ile 1950 yılları arasında yoğun araştırmalar yapılmıştır. Maddeler halinde belirtilen birçok proses geniş ölçekli FGD uygulamaları konusunda aktif araştırma konusu olarak yer almaktadır. İlk büyük ölçekli FGD sistemi Battersea Station İngiltere de Londra Enerji Şirketi tarafından 1931 kurulmuştur. Ünite 5 temizleyici modüle sahiptir. Alkali oranı yüksek su ile yükselen baca gazı yıkanmakta ve gaz nem tutucu plakalardan geçerek atmosfere gitmekteydi. SO2 oksidasyonu sınırlı olmakla birlikte çöken katılar kullanılmadan boşaltılmaktaydı.9 kazanda oluşan baca gazı bu sistem tarafından arıtılmaktaydı. Santral dizayn kömür tüketimi 193 ton/h dır.

2.1.2 Kireçtaşlı İslak Tip Desülfürizasyon Sistemleri

Islak kireçtaşı prosesi baca gazından SO₂'nin uzaklaştırılması için kullanılmıştır. Bu proses absorbenti tekrar kullanılmayacak şekilde harcamaktadır. İlk kireç taşı arıtma sistemi Commonwealth Edition 175 MW elektrik santralinin 1. Nolu ünitesine kurulmuştur. Prosesin ilk gelişim evresinde tıkanıklık, korozyon gibi sayısız problemle karşılaşılmıştır. Mekanik revizyonlar sonrasında problemler azalmıştır. Son dönemlerinde yüksek kükürt içeriğine sahip kömürün arıtılması sırasında absorber ve nem tutucu sistemlerinde tıkanma problemleri ortaya çıkmıştır. Baca gazı ısıtıcı sistemlerin tıkanıklıklar ve kaçaklar meydana gelmiştir.

1976 yılında Pennsylvania enerji şirketi Bruce Mansfield Unit 1 (835 MW) de ıslak kireç prosesini devreye almıştır. Bu sistem 6 baca absorber modülünden oluşmaktaktadır. Her modül ayarlanabilir throat venturi yıkayıcısına sahiptir.

İki bölümden beslenen kireç çözeltisi satabil bir reaksiyon oluşmasını sağlıyordu. Üretilen çamur 7 mil uzaklıktaki baraja pompalanmıştır.

Şekil 2.1 FGD Prosesi (Walsh 2008).

FGD sisteminin genel çalışma prensibi; Kireçtaşı yaş bilyeli değirmenlerde öğütülerek 1400-1500 kg/m³ yoğunluğa sahip çözelti hidrosiklonlardan geçirilerek tane boyut ayrımı yapılmakta ve bu işlemden sonra yoğunluğu 1200-1250 kg/m³ arasına düşmektedir. Absorber tankı içerisine doldurulan kireç çözeltisi sirkülasyon pompaları vasıtasıyla arıtılmamış baca gazına spreylenerek kireç ve kükürt dioksit gazının reaksiyona girmesi sağlanır. Bu şekilde baca gazı içerisinde bulunan kükürt dioksit arıtılmaktadır. Absorber sistemine sürekli sprey yapılarak çözelti pH'ı 5,2-5,8 aralığında tutulur. Reaksiyon sonucunda oluşan alçıtaşı çözeltisi yoğunluğa bağlı olarak tankın altında toplanır. Sulu alçıtaşı jips hidrosiklonlarında tane boyutuna göre ayrıştırıldıktan sonra kalın partiküler vakum bandı sistemine gönderilerek susuzlaştırılmaktadır.

2.1.2.1 Bilyalı Değirmenler

Bilyalı değirmenler yaş ve kuru öğütme olarak kullanılabilir. FGD sistemlerinde kirecin öğütülmesi sırasında yaş öğütme kullanılmaktadır. Bilyalar dökme çelik, dökme demir veya dövme çelikten üretilirler. Düzgün bir öğütme sağlamak için farklı boyutlara sahip bilyalar kullanılmaktadır.30 mm,40 mm, 50 mm, 60 mm, 70 mm çaplı biyalar farklı oransal dağılımlarda kullanılırlar. Şekil 2.2 de bilyalı değirmen kesiti görülmektedir. Bilya aşınmaya karşı dayanımlarını arttırmak için her çap için farklı sertlikte malzeme kullanılmaktadır. Kireç öğütme sistemlerinde tek kademeli değirmen kullanıldığı için ön öğütme işlemlerinde kırıcı kullanılabilir. Genellikle 25 mm den küçük tane botuna sahip kireç taneleri ıslak tipli bilyalı değirmenlere beslenmektedir (Dökme ve Güven 2014).

Şekil 2. 2 Bilyalı Değirmen (URL-3 2017).

Şekil 2. 3 Değirmen Bilya Davranışı (URL-3 2017).

Dönen tambur içerisinde bilyalar ile birlikte dönen malzeme aşındırılarak küçük partiküller haline gelmektedir. Değirmenler motor, aktarma elemanları, aşınma plakaları ve bilyalardan

oluşmaktadır. Islak tipli değirmenlerin gövdesini korumak amacıyla kauçuk aşınma plakları vardır. Değirmenin bir ucundan beslenen kireç ve su bilyalar vasıtasıyla öğütüldükten sonra diğer çıkış bölmesinden tank içerisinde dökülmektedir. Şekil 2.3 de Değirmen çalışırken bilyaların davranışı gösterilmiştir. Öğütülmeyen malzeme değirmen çıkışındaki elek vasıtasıyla atılmaktadır. Öğütülmüş malzemenin yoğunluğun ayarlanması amacıyla değirmen çıkışındaki biriken malzemeye su ilavesi yapılır. Sonra sulandırılmış kireçtaşı tane boyutuna göre ayrılması amacıyla hidrosiklonlara gönderilir.

2.1.2.2 Hidrosiklonlar

Hidrosiklona teğetsel olarak basınç altında yapılan besleme süspansiyona dönüş hareketini verir. Siklonun çalışma prensibi Şekil 2.4 de gösterilmiştir. Siklona giren süspansiyon, siklonu alt çıkıştan terketmeyi amaçlayarak silindirik ve konik duvarların iç yüzünde girdabı oluşturur. Kaba parçacıkları taşıyarak, alt çıkış olarak siklonu terk eder. Geriye kalan sıvı kısım, kabalardan arınmış olarak veya arta kalan ince tanecikleri beraberinde taşıyarak, yukarıya doğru çıkar ve hidrosiklonun merkezini çevreleyen ikincil girdabı oluşturur ve sonuçta siklonu üst çıkıştan terk eder. İkincil girdabın merkezinde, kabarcıklar halinde içeriye taşınan veya giriş suyu içinde çözünmüş olarak bulunan bütün havanın toplandığı, bir düşük basınç bölgesi oluşur. İkincil girdapta dairesel hız daha fazla olduğundan daha yüksek değerlerde merkezkaç kuvvetleri oluşur. Bunun sonucu olarak daha etkili ikincil bir ayırım gerçekleşir. İkincil girdapta ayrılan ince tanecikler radyal olarak çökelerek birincil girdaba karışırlar ve birçoğu siklonu alt çıkıştan terk eder. Dolayısıyla hidrosiklon içindeki ayırım iki ayrı safha sonucunda gerçekleşir ve nihai ayırım iriliği baz alınarak içteki girdabın ivmesi ile belirlenir (Trawinski 1977).

Şekil 2. 4 Hidrosiklon çalışma prensibi (URL-4 2017).

Siklonlar genellikle 10 çeşit işlem için kullanılır. Bunlar;

- Koyulaştırma : Süspansiyon içindeki suyun çoğunu elimine ederek suyu alınmış katılar oluşturur.
- İnce tanelerden arındırma: Amaç üst akımla birlikte İnce tanelerin atılmasıdır. Bu adım arkadan gelecek flotasyon, yaş manyetik ayırma, filtrasyon gibi proseslere girecek ürünlerin daha elverişli hale getirilmesi açısından önemlidir. Kimya tesislerinde, bu çeşit siklonlar yaygın olarak kristalizasyon safhasını takiben suyun atılması amacıyla kullanılırlar.
- İri tanelerden arındırma : Üst akım ürün olarak kazanılır, az miktardaki iri tanelerde alt akımla atılır.
- Kapalı devre öğütme sistemleri : Bu tür sistemlerde siklonlar yaygın olarak hem ince tanelerin hemde iri tanelerin arındırılması amacıyla kullanılırlar.
- Seçmeli sınıflandırma : Homojen olmayan cevherlerin mineral bileşenlerine ayrılması işlemi, minerallerin farklı olan bazı özellikleri temel alınarak yapılır. Bazen de minerallerin tane iriliği dağılımları arasındaki fark tamamen mekanik olan bir ayırımı mümkün kılar.

- Katı kazanımı : Yıkama ve sudan arındırmada kullanılan aletlerden çıkan akıntılardan katıların kazanımı ince tanelerdekl kayıbın elenmesi acısından önem taşır. Kum spirallerinden, log yıkayıcılardan, vibro eleklerden ve sudan arıtma santrifüjlerinden ince tanelerin kazanılması isteği hidrosiklonlara kullanım alanı doğurur.
- Fraksiyonlara ayırma : Değişik proseslerde işlem görecek iki fraksiyonun ayrılması İşlemi hidrosiklonlar ile gerçekleştirilebilir. Bunun en tipik örneği demir cevheri konsantrelerinin sinterlik (kaba) ve peletlik (ince) olarak ayrılmasıdır.
- Zenginleştirme : Eğer mineral bileşenlerinin özgül ağırlıkları arasında geniş farklılıklar varsa, hidrosiklonlar öğütülmüş ürünlerin mineral bileşenlerinin zenglnleştirilmesinde kullanılırlar. Bu bir çeşit gravite ayırımı ve hatta merkezkaç kuvvetile yapılan bir ayırımdır.
- Sıvı kazanımı : Proses suyu veya sıvısının devreye geri sokulması gerekiyorsa, hidrosiklonlar tatminkar olarak arındırmada kullanılırlar. Paralel olarak bağlanmış siklonlar devridaim suyunun bulanıkldık seviyesini uygun bir değerde tutmak İçin kullanırlar.
- Ters akıntı İle yıkama : Ters akıntı yıkaması ite bir ürün periodik olarak sulandırma ve koyulaştırma işlemlerine tabi tutulur ve ürün içindeki ince taneciklerin, asitlerin ve diğer yabancı maddelerin atılması gerçekleştirilir. Son siklon girişine taze su eklenmesi bu yıkamanın verimliliğini arttırır (Trawinski 1977).

2.1.2.3 Vakum Bandı Filtresi ve Santrifüj Kurutma Sistemleri

Katı sıvı ayırma proseslerinde santrifüj kurutma sistemleri de kullanılmaktadır. Bu sistemler kesikli olarak çalıştırılmaktadır. Çalışma adımları; Dolum, malzemenin yıkanması, santrifüj, katıların boşaltılması ve ekipman içerisindeki kalıntıların temizlenmesi prensibine göre çalışmaktadır. Bu sistem otomatik olarak çalışmakla birlikte yarı otomatik veya manuel kullanılabilmektedir. Sistem çıkışındaki katıdaki nem oranı % 6 ile %10 arasındadır. Şekil 2.5 de santrifüj çalışma prensibi gösterilmiştir.

Şekil 2. 5 Santrifüj Sistemi (URL-5 2017).

Şekil 2. 6 Vakum Bandı (URL-6 2017).

Vakum bandı sisteminde bulunan ekipmanlar A: Dağıtıcı kanat, B: Vakum Bezi, C: Kauçuk band ve vakum kanalları, D: Su sprey yıkamaları, E:Vakum pompasının bağlı olduğu vakum tankı, F: Vakum bandı döküş noktası, G: Bez Yıkama Hattı, H:Band hizalama ve gerdirme sisteminden oluşmaktadır. Vakum bandı sıvı katı ayrımı yapmak amacıyla kullanılmakta olup çıkan üründeki nem miktarı %10 civarında olmaktadır. Hidrosiklon sisteminden gelen kalın taneli malzeme vakum bandı hattı üzerine hat başından dökülmektedir. Vakum pompası

aracığıyla bezin altında bulunan kauçuk banttaki hava kanalları bez altından uniform emiş yapmaktadır. Malzeme bez üzerinde ilerlemek suretiyle vakum altında suyu alınarak kurutma işlemi yapılmaktadır. Şekil 2.6 de vakum bandı sistemi gösterilmiştir. Kesiksiz sistemler olması ve üretilen ürünün yapı sektörünün ihyacını karşılaması nedeniyle vakum bandı sistemleri tercih edilmektedir (URL-6 2017).

2.1.3 Amonyaklı Desülfürizasyon Sistemi

Partiküllerin tutulmasından sonra sıcak baca gazı AS WFGD Absorber'ına girmektedir.

Şekil 2. 7 Amonyaklı Baca Gazı Arıtma Prosesi (Walsh 2008).

Baca gazı doymuş amonyum sülfat çözeltisiyle temas etmektedir. Şekil 2.7 de sistem akış şeması yer almaktadır. Amonyum sülfat formu SO₂, amonyak, oksijen ve suyun reaksiyona girmesiyle oluşmaktadır. Amonyak, absorber çözeltisinin pH değerini istenilen değerde tutmaktadır. Çözelti içerisindeki suyun buharlaştırılması sonrasında amonyum sülfat çöktürülmektedir. Baca gazı sıcaklığından faydalanılarak amonyum sülfatın kristalize olması sağlanır. Absorber içerisinde bulunan çözelti resirkülasyon pompalarıyla sprey nozullarına basılır ve bu şekilde çevrim sağlanmış olur. Baca gazı içerisinde bulunan SO₂ sprey nozullarına gönderilen çözeltiyle uzaklaştırılmaktadır. Son olarak arıtılmış baca gazı 2 kademeli nem tutucudan geçerek bacaya gönderilir (Walsh 2008).

Amonyak kullanılan sistemlerdeki reaksiyonlar (Evans vd. 2009);

 $SO_2 + 2NH_3 + H_2O \iff (NH_4)_2SO_3$

$$\begin{split} (\mathrm{NH}_4)_2\mathrm{SO}_3 + \frac{1}{2}\mathrm{O}_2 &\leftrightarrow (\mathrm{NH}_4)_2\mathrm{SO}_4\\ \mathrm{SO}_2 + \mathrm{H}_2\mathrm{O} &\leftrightarrow \mathrm{H}_2\mathrm{SO}_3\\ \mathrm{H}_2\mathrm{SO}_3 + (\mathrm{NH}_4)_2\mathrm{SO}_4 &\leftrightarrow \mathrm{NH}_4\mathrm{HSO}_4 + \mathrm{NH}_4\mathrm{HSO}_3\\ \mathrm{H}_2\mathrm{SO}_3 + (\mathrm{NH}_4)_2\mathrm{SO}_3 &\leftrightarrow 2\mathrm{NH}_4\mathrm{HSO}_3\\ \mathrm{H}_2\mathrm{SO}_3 + \mathrm{NH}_3 &\leftrightarrow \mathrm{NH}_4\mathrm{HSO}_3\\ \mathrm{NH}_4\mathrm{HSO}_3 + \mathrm{NH}_3 &\leftrightarrow (\mathrm{NH}_4)_2\mathrm{SO}_3\\ \mathrm{NH}_4\mathrm{HSO}_4 + \mathrm{NH}_3 &\rightarrow (\mathrm{NH}_4)_2\mathrm{SO}_4 \end{split}$$

2.1.4 Deniz Sulu Desülfürizasyon Sistemi

Deniz suyu termik santrallerde soğutma suyu amaçlı olarak uzun zamandır kullanılmaktadır. Deniz suyu pH değeri 7.6 ile 8.4 arasındadır. Deniz suyunun doğal alkalinitesi karbonat (CO_3^{-2}) ve bikarbonat (HCO_3^{-}) iyonlarından meydana gelmektedir. Deniz suyu prosesi Şekil 2.8 de gösterilmiştir. Baca gazı absorber sistemine girerek deniz suyuyla temas etmektedir.

Şekil 2. 8 Deniz Sulu Baca Gazı Arıtma Prosesi (Oikawa vd. 2003).
Bu sistemlerde deniz suyu ve baca gazı ters akışla hareket etmektedir. Arıtılan baca gazı nem tutuculara gitmekte ve sonra bacaya yönlendirilmektedir. Baca gazı içerisindeki SO₂ deniz suyuyla absorber içerisinde reaksiyona girmektedir. Bisülfit kimyasal oksijen ihtiyacının kaynağı olarak bilinmektedir. Bu nedenle SO₃⁻² iyonlarını analiz etmek amacıyla deniz suyu çıkış hatlarında kimyasal oksijen ölçüm cihazları takılmaktadır. HSO₃⁻ ve SO₃⁻² formları için kimyasal oksijen ihtiyacı arttırmakta ve hızla oksidasyona uğramaktadır. Deniz suyu deşarjından önce deşarj tankında bulunan su içerisine hava verilerek oksidasyonun tamamlanması sağlanmaktadır. Ayrıca reaksiyonlar sırasında oluşan H⁺ iyonları suyun asitliğini arttırmaktadır. Absorber sisteminde kullanılan deniz suyunu deşarj etmeden asitliği azaltmak amacıyla deşarj sistemine santral soğuta suyu geri dönüşünden veya denizden gelen hattan su verilmek suretiyle doğal alkaliniteden faydalanılarak nötralizasyon işlemi yapılmaktadır.

Deniz suyu kullanılan sistemlerdeki reaksiyonlar (Oikawa vd. 2003);

 $SO_{2} + H_{2}O \rightarrow HSO_{3}^{-} + H^{+}$ $HSO_{3}^{-} + 1/2O^{2} \rightarrow SO_{4}^{2-} + H^{+}$ $HCO_{3}^{-} + H^{+} \rightarrow CO_{2} + H_{2}O$ $CO_{3}^{2-} + 2H^{+} \rightarrow CO^{2} + H_{2}O$

2.1.5 Çift Alkali Desülfürizasyon Sistemi

Çift alkali FGD prosesi olarak isimlendirilmektedir. Çift alkali FGD de sodyum bazlı çözelti kullanılarak yanma sonucu ortaya çıkan SO₂ bertaraf edilmektedir. Soydum alkali çözeltisi SO₂'i absorbe etmekte ve absorbent çözelti kireç veya kireçtaşıyla rejenere edilmektedir. Sodyum ve kalsiyum bazlı komponentlerin ikisi de kullanıldığı için sistem double ve çift alkali sistem olarak adlandırılmaktadır. Şekil 2.9 da proses şeması yer almaktadır. Kalsiyum sülfit ve sülfat çöktürülerek çamur halinde boşaltılmaktadır. Rejenere edilmiş sodyum çözeltisi tekrar absorber sistemine gönderilmektedir. Çift alkali proses de absorber içerisinde tıkanma ve sarkık oluşumu problemi çok azdır çünkü sodyum komponentinin çözünürlüğü fazladır. Çift alkali sistemleri % 95 oranında SO₂ tutabilirler.

 $2NaOH + SO_2 \rightarrow Na_2SO_3 + H_2O$ $NaOH + SO_2 \rightarrow NaHSO_3$ SO₃ varlığındaki reaksiyon;

 $2NaOH + SO_3 \rightarrow Na_2SO_4 + H_2O$

 $NaHSO_3 + O_2 \rightarrow 2 Na_2SO_4$

Rejenerasyon;

 $2 \text{ NaHSO}_3 + \text{Ca(OH)}_2 \rightarrow \text{Na}_2\text{SO}_3 + \text{CaSO}_3.1/2 \text{ H}_2\text{O} + 3/2 \text{ H}_2\text{O}$

 $Na_2SO_3 + Ca(OH)_2 + \frac{1}{2}H_2O \rightarrow 2NaOH + CaSO_3.1/2H_2O$

 $Na_2SO_4 + Ca(OH)_2 \rightarrow 2NaOH + CaSO_4$

Şekil 2.9 Çift Alkali Proses (EPA 1981).

2.2 DÜNYA ELEKTRİK ÜRETİMİ

Ekonomik büyümeyle birlikte dünya elektrik talebi de artmaktadır. 2016 yılında dünya gayri safi geliri son 20 yıllık verilere göre daha yavaş büyümesine rağmen elektriğe olan talep artmaktadır(IEA 2016). 2012 yılında OECD üyesi olmayan ülkelerin elektrik tüketimi dünya elektrik üretiminin yarısını geçmiştir. Güçlü ekonomik büyümeyle birlikte 2040 yılına kadar OECD üyesi olmayan ülkelerin elektrik üretim miktarı % 61 artacağı öngörülmektedir. Söz konusu dönemde; OECD üyesi olmayan ülkelerin elektrik talebi 11,31 trilyon kwh'dan 22,30 kwh'a artarken, OECD üyesi ülkelerin 10,25 trilyon kwh'dan 14,15 kwh'a artacaktır (IEA 2016). Şekil 2.10'de Dünya elektrik talebinin dağılımı yer almaktadır.

Şekil 2.10 Dünya elektrik talebinin dağılımı (IEA 2016).

Uluslararası Enerji Ajansı tarafından, günümüzde mevcut politikaların sürdürüleceği varsayımına göre yapılan tahminlerde; 2012 yılında kömürün dünya elektrik üretimindeki payı %38,82 iken 2040 yılındaki payı %29,05'e düşecektir. 2012 ile 2040 yılları arasında kömürden enerji üretiminin yıllık %0,8 artacağı öngörülmektedir. Kömürün elektrik üretimindeki payı azalmasına rağmen toplam üretimine bakıldığında birinci sıradaki yerini koruyacaktır.

2.2.1 Kaynaklara Göre Enerji Üretimi

Dünya genelinde elektrik üretimi için kullanılan yakıtların kullanımları geçtiğimiz on yıllarda değişmektedir. Kömür elektrik üretimi için yaygın olarak kullanılmaya devam etmektedir fakat diğer enerji kaynaklarının üretimdeki yeri yükselmeye devam etmektedir. 1970'li ve 1980'li yıllarda nükleer enerji üretimi hızlı bir şekilde artış göstermiştir. 1980'lerden sonra gaz santralleriyle elektrik üretiminde yaygınlaşmıştır. 2000'li yılların başında gaz emisyonlarına olan ilgilinin artmasına bağlı olarak yenilenebilir enerji kaynaklarının kullanımı artmıştır.

IEA 2016 verilerine göre kömür elektrik üretimindeki yaygınlığını korumaya devam etmektedir. Projeksiyona göre 2040 yılında yenilebilir enerjiden elektrik üretimi kömürlü sistemlerin önüne geçecektir. OECD ülkelerinde kömürün üretimdeki payının azalacağı

beklenmektedir. 2030 yılında Çin ve Hindistan da kömürün elektrik üretimindeki payı % 69 olması beklenmektedir.

2.2.2 Dünya Kömür Üretimi

Dünya kömür üretimi son otuz yılda iki kat artmıştır. Kömür üretimindeki artış büyük ölçüde başta Çin olmak üzere Asya kıtasındaki elektrik enerjisi talebinden kaynaklanmaktadır. Bu ülkenin elektrik enerjisi üretimi son on yılda 2,6 kat artarak 2014 yılında yaklaşık 5.650 TWh düzeyine yükselmiş ve konu üretimin %81'i kömüre dayalı termik santrallerden sağlanmıştır. Son on yılda Asya-Pasifik Bölgesi'indeki elektrik enerjisi üretim artışı ise 2 kattır, elektrik üretiminde kullanılan en yaygın kaynak kömürdür. 1999 yılından beri son 14 yıldır artmakta olan küresel küresel kömür üretimi 2014 yılında bir önceki yıla göre % 0,7 oranında artarak 8.023 milyon tona ulaşmıştır. 2000-2014 yılları arasındaki üretim artış oranı %85,4 iken koklaşabilir kömür üretimindeki artış oranı ise %77,7 düzeyinde gerçekleşmiştir. Linyit üretimi %4 düşmüştür.

Şekil 2.11 Dünya kömür üretimi (TKİ 2016).

Şekil 2.11 ve 2.12 de Ülkelere göre 2014 yılı kömür üretimleri sunulmuştur. 2014 yılında koklaşabilir kömür üretimi önceki yıla göre % 2,6 artmış ve 1.064 milyon ton seviyesine yükselmiştir. Buhar kömürü üretimi ise % 0,9 oranında azalmış ve 6.147 milyon ton düzeyine düşmüştür. 2014 yılı linyit üretimi de % 2,9 düşerek 810 milyon ton olarak kayıtlara geçmiştir. Toplam üretimin yaklaşık %90'ı taşkömürü ve %10'u ise linyit kategorisindedir.

2014 yılında dünya kömür üretiminin %46,7'i (3.748 milyon ton) Çin tarafından yapılmıştır. ABD'nin üretimdeki payı % 11,4 (916 milyon ton), Hindistan % 8,3 (668 milyon ton) ve Avustralya %6,1 (491 milyon ton) oranındadır. Diğer ülkelerin payları ise Endonezya 471 milyon ton, Rusya Federasyonu 334 milyon ton, Güney Afrika Cumhuriyeti 253 milyon ton ve Almanya 187 milyon tondur. Sekiz ülkenin dünya kömür üretimi içerisindeki toplam payları %88 seviyesindedir. (TKİ 2016).

Şekil 2.12 Ülkelere göre 2014 yılı dünya kömür üretimleri (TKİ 2016).

2.2.3 Dünya Kömür Tüketimi

Dünya kömür tüketimi, son otuz yılda 1,8 kat artmış ve 2014 yılında 7.923 milyon ton seviyesine kadar yükselmiştir. Bununla beraber 2014 yılındaki tüketim önceki yıla göre % 0,9 azalmıştır. 2000 yılından itibaren Çin'in kömür tüketim miktarındaki artışı dünya kömür tüketim miktarının kayda değer oranda artmasına neden olmuştur. Çin'in 2000-2014 yılları arasındaki kömür tüketim artışı % 192 oranındadır. Aynı yıllar arasında Endonezya'nın tüketimi % 172, Hindistan'ın % 154, Kazakistan'ın % 97 ve Güney Kore'nin tüketimi ise %85 oranında artmıştır. Aynı yıllarda bazı gelişmiş ülkelerin kömür tüketimlerinde ise ciddi düşmelere meydana gelmiştir. 2000-2014 yılları arasında İspanya'nın kömür tüketimi %51; Kanada'nın %33, ABD'nin %14, Rusya Federasyonu'nun %13 ve Ukrayna'nın %15 oranında azalmıştır (TKİ 2016).

Şekil 2.13 Ülkelere göre 2014 yılı dünya kömür tüketimi (TKİ 2016).

Şekil 2.14 Ülkelere göre 2014 yılı dünya kömür tüketimi (TKİ 2016).

2014 yılı dünya kömür tüketiminin yaklaşık yarısı Çin tarafından gerçekleştirilmiştir. Söz konusu yılda Çin'in kömür tüketimi 3.909 milyon ton olmuştur. Bu verilerle 2014 yılında ikinci sırada olan ABD üçüncü sıraya gerilemiş ve Hindistan ise ikinci sıraya yükselmiştir. İkinci sırada Hindistan %11,4, üçüncü sırada ABD %10,5 ve diğer ülkeler sırasıyla Almanya %3, Rusya %2,5, Japonya %2,4, Güney Afrika Cumhuriyeti %2,2, Polonya %1,7, Güney Kore %1,7 ve Avustralya %1,5 şeklindedir. Şekil 2.13 ve 2.14 de tüketim değerleri grafik halinde verilmiştir. Bu 10 ülkenin küresel kömür tüketimindeki toplam payı %86 dır. 2014 yılında Türkiye'nin dünya kömür tüketimi içindeki payı 97,2 milyon ton ile %1,2 seviyesindedir. 2014 yılı dünya kömür tüketiminin 1.032 milyon tonu koklaşabilir kömür ve 6.086 milyon tonu buhar kömürüdür. Linyit tüketimi 805 milyon ton seviyesindedir.

Son yıllarda dünya kömür üretiminin yaklaşık % 69'u elektrik ve ticari ısı üretimi amacıyla kullanılmakta, %13'ü demir-çelik sanayisinde, %15'i diğer sektörlerde ve kalan %3'lük oran ise ısınma amaçlı olarak tüketilmektedir. Elektrik üretimindeki en yaygın kullanılan yakıt kömürdür. Kömürün önümüzdeki sürecte elektrik üretimindeki en yüksek payını koruyacağı tahmin edilmektedir. 1990 yılında dünya elektrik üretimindeki payı % 37,4 iken 2013 yılı itibariyle % 41,2 oranına çıkmıştır. Uluslararası Enerji Ajansı mevcut politikaların gelecekte değişmeyeceği varsayımıyla yapılan tahmine göre kömürün elektrik üretimindeki kullanım oranı 2040 yılına gelindiğinde de yaklaşık aynı seviyede kalacaktır (IEA 2016). Uluslararası Enerji Ajansı'nın "Yeni Politikalar Senaryosu" kapsamında dahi doğal gazın veya nükleer enerjinin kömürün yanına yaklaşabilmesi mümkün olmadığı görülmüştür. Elektrik üretiminde kömürü yüksek oranda kullanan çok sayıda ülke bulunmaktadır. Bunlar arasında, 2013 yılı kayıtlarına göre Güney Afrika Cumhuriyeti %92,6, Polonya %83,7, Kazakistan %81,3, Çin %74,7, Hindistan %72,7, Avustralya %64,6, İsrail %54,7, Endonezya %51,2, Çek Cumhuriyeti %47,9, Almanya %44,6, ABD %39,7 ve Japonya %28,5 kömürü yüksek oranda kullanan ülkelerdir. Çeşitli ülkelerde elektrik üretiminde kömürün payı grafik halinde Şekil 2.15'de yer almaktadır.

Şekil 2.15 Çeşitli ülkelerde elektrik üretiminde kömürün payı (TKİ 2016).

2.3 TÜRKİYE'DE KÖMÜR ÜRETİMİ VE TÜKETİMİ

Türkiye de 2014 yılı satılabilir kömür üretimi 62,6 milyon ton linyit, 1,8 milyon ton taşkömürü ve 0,8 milyon ton asfaltit olmak üzere 2012 yılına göre % 8 artarak toplam 65,2

milyon tona çıkmıştır. 1980'li yıllardan beri düşme eğilimine giren taşkömürü üretimleri 2004 yılında 1,9 milyon tona kadar inmiştir. Bu tarihten sonra satılabilir taşkömürü üretimi 2012 yılında 2,3 milyon ton düzeyine çıkmıştır. 2013 yılında 1,9 milyon ton ve 2014 yılında ise 2013 yılına göre %5 oranında gerileyerek 1,8 milyon tona düşmüştür (TKİ 2016). 2015 yılı satılabilir taşkömürü üretimi ise 1,4 milyon ton seviyesindedir (TKİ 2016). Böylece, Zonguldak bölgesinin, Türkiye enerji talebine olan katkısı 2015 yılı itibariyle binde 7-8 düzeyine kadar düşmüştür. 2015 yılında özel sektör tarafından üretilen taşkömürü toplam üretimin %34'ü oranındadır (TKİ 2016).

Linyit üretimleri petrol krizi nedeniyle 1970'li yılların başlarından itibaren elektrik üretimine yönelik linyit işletmeleri yatırımlarının başlaması ile hızlanmıştır. 1970 yılında 5,8 milyon ton linyit üretimi 1998 yılında gelindiğinde 65 milyon ton seviyesine çıkmıştır. Ancak bu tarihten itibaren doğal gaz alım anlaşmaları nedeniyle linyit üretimi sürekli azalmış ve 2004 yılında 43,7 milyon ton ile en düşük seviyesini görmüştür. 2004 yılından sonra tekrar yükselen linyit üretimleri 2008 de 76 milyon tona ulaşmış ancak daha sonra tekrar gerileyerek 2013 yılında 57,5 milyon ton, 2014 yılında ise 2013 yılına göre % 8,9 artarak 62,6 milyon ton olmuştur (TKİ 2016). 2014 yılı satılabilir linyit üretimlerinin kuruluşlara dağılımları; TKİ 14,9 milyon ton, EÜAŞ ve bağlı ortaklıkları 19 milyon ton ve özel sektör 28,7 milyon ton şeklindedir. Özel sektörün linyit üretimindeki payı % 45,8 düzeyine yükselmiştir. 2015 yılında TKİ satılabilir linyit üretimi 12,9 milyon ton ve EÜAŞ'ın ise satılabilir üretimi ise 11,1 milyon ton olarak gerçekleşmiştir. Bu verilere göre 2015 yılı linyit üretimlerinin 2014 yılına göre büyük ölçüde gerilemiştir.

2014 yılında Türkiye de yerli ve ithal taşkömürü 31,8 milyon ton ve 65,4 milyon tonda linyit ve asfaltit olmak üzere toplamda 97,2 milyon ton tüketim olmuştur. 2013 yılına göre 2014 yılında taşkömürü tüketimi % 11,2 ve linyit tüketimi %16,8 oranında artmıştır. Toplam kömür tüketimi %15 düzeyinde artmıştır. 2014 yılında piyasaya sürülen taşkömürünün % 44,6 oranındaki kısmı elektrik üretiminde ve % 17,8'lil kısmı ise ısınma amaçlı olarak tüketilmiştir. Kok fabrikalarının payı %18,2 ve diğer sanayinin payı ise %16,9 seviyesindedir. Taşkömürü tüketiminde elektrik santrallerinin payı giderek artmaktadır. On yıl önce %20 düzeyinde olan söz konusu pay 2014 yılı itibariyle %45 seviyesine yaklaşmıştır.

Şekil 2.16 Taş kömürü tüketimi (TKİ 2016).

Şekil 2.17 Ülkemiz enerji kaynaklarının elektrik üretimindeki dağılımı (TKİ 2016).

Ülkemiz taş kömürünün sektörlere göre tüketimi ve enerji kaynaklarının elektrik üretimindeki dağılımı Şekil 2.16 ve 2.17 de grafik halinde sunulmuştur.

BÖLÜM 3

DESÜLFÜRİZASYON SİSTEMİNDE YAPILMIŞ ÇALIŞMALAR

3.1 DESÜLFÜRİZASYON SİSTEMİ

Kömürler çalışan santrallerde yakma sonucunda ortaya çıkan SO₂ arıtılması için dünya çapında yaygın bir metot olan FGD sistemleri kullanılmaktadır. Baca gazından kükürt giderme sistemleri ihtiyaçlara ve santrallerin bulunduğu bölgedeki kaynakların uygunluğuna göre farklı tiplerde dizayn edilmişlerdir. Bu tipler arasında yaygın olarak kullanılan modellerden biride ıslak tipli baca gazı arıtma sistemleridir. Bu proses de SO₂ absorbent ajanı olan kireçtaşı ile reaksiyona girerek alçıtaşını (jips) üretmektedir (Marchis vd. 2016). Bu sistemlerin tercih edilmesinin sebebi yüksek kükürt içerikli kömürlerin kullanılmasına imkan sağlaması ve yüksek kükürt tutma kapasitesine sahip olmasıdır. İlk yatırım maliyeti biraz yüksek olmasına karşı arıtma verimi % 95'in üzerindedir. Proses olarak FGD sistemlerinde önce tozu uzaklaştırmak için elektrostatik veya torbalı filtreler kullanılmaktadır.

Kazanda yanma gerçekleştikten sonra ortaya çıkan baca gazı absorber kulesinde sürekli çevrim yapılan kireç çözeltisi ile yıkanmaktadır.

FGD siteminde gerçekleşen reaksiyonlar;

- SO₂'nin çözünmesi
- $SO_{2 (g)} \leftrightarrow SO_{2(aq)}$
- $SO_{2(aq)} + H_2O \leftrightarrow H_2SO_{3(aq)}$
- $H_2SO_{3(aq)} \leftrightarrow 2H^+_{(aq)} + SO_3^{2-}_{(aq)}$
- $CaCO_{3(s)} + H^{+}_{(aq)} \leftrightarrow Ca^{+2}_{(aq)} + HCO_{3(aq)}$
- $HCO_{3(aq)} + H^{+}_{(aq)} \leftrightarrow CO_{2(aq)} + H_2O$
- $CO_{2(aq)} \leftrightarrow CO_{2(g)}$
- $CaCO_{3(s)} + SO_{2(g)} + 2H_2O \rightarrow CaSO_3.2H_2O_{(aq)} + CO_{2(g)}$
- $CaSO_3.2H_2O_{(aq)} + 1/2 O_{2(g)} \rightarrow CaSO_4.2H_2O_{(s)}$

pH 4.5 ile 5.5 arasında olduğu durumlarda

- Kalsiyum bisülfit formasyonu
 CaCO_{3(s)} + SO_{2 (g)} + H₂O → Ca(HSO₃)_{2(aq)} + CO_{2(aq)}+ H₂O
- Kalsiyum bisülfitin oksidayon ile Jips'e dönüşmesi Ca(HSO₃)₂ + 2H₂O + O₂ → CaSO₄.2H₂O_(s)+H₂SO_{4(aq)} CaCO₃ + H₂SO_{4(aq)} → CaSO₄.2H₂O_(s) + CO_{2(aq)}

Tuz formu SO₂ donüşüm reaksiyonunun FGD sistemi içerisinde oksidasyonunun gerçekleşme derecesine bağlıdır. Oksidasyon sonucunda kalsiyum sülfat (jips) oluşmaktadır. FGD alçıtaşı çimento ve alçı panel üretiminde yaygın olarak kullanılmaktadır (Cordoba 2014).

3.2 pH, SICAKLIK VE KALSİYUM SÜLFAT KONSANTRASYONUNUN ETKİSİ

Sekil 3.1 de pH'ın oksidasyon oranına ve sülfat oksidasyon oranına etkisi gösterilmiştir. Başlangıçtaki pH değeri, r: oksidasyon oranı, deneysel olarak liner artan reaksiyon süresi grafikte gösterilmiştir. Şekil 3.2 de reaksiyon önce artmakta ve sonra pH değerinin artmasına bağlı olarak düşmektedir. pH 4,5-5,9 değeri arasında olduğunda sodyum sülfat oksidasyonu oldukça düşüktür. Bu durum pH 5,9'un üzerinde çıkmadığı sürece geçerlidir. pH değeri arttıkça amonyum sülfat oksidasyonu azalmaktadır. Magnezyum sülfat oksidasyonu ise pH 6,5 de maksimum orana çıkmaktadır. Sıvı -katı ve gaz- sıvı arasında kütlü transferi için pH değeri uygulanabilir bir seçilerek hareket edilmelidir. Yüksek pH değerinde CaSO₃.1/2H₂O çözünürlüğü düşük, sıvı-katı kütle transferi az ve oksidasyon oranı düşüktür. Düşük pH değerinde ise $SO_2 + H_2O \rightarrow H^+ + HSO_3^-$ yüksek H^+ gaz sıvı kütle transferini sınırlamakta ve SO₂ absorbsiyonunu azaltmaktadır. pH değeri sırasıyla 5,5 ve 6,5 ayarlanarak deneysel sistem üzerinde partiküllerin kristal dağılımları incelenmiştir. Şekil 3.5 de pH'ın tane boyutuna etkisi gösterilmektedir. Yüsek pH değerinde kireçtaşının çözünürlüğü azaldığı için desülfürizasyon çözeltisi içerisindeki Ca²⁺ daha düşüktür. Bununla birlikte gaz sızı kütle transferinin artması SO² absorbsiyonu için faydalı olmakta ve iyon konsantrasyonunu arttırıcı yönde etkilemektedir. Kristalizasyon tankında oksidasyon yapıldıktan sonra Ca²⁺ ve SO₄²⁻ konsantrasyonu artmaktadır. pH değeri arttığı zaman çekirdeklenme desteklenmekte ve daha faza ince partikül üretilmekte ve partikül boyutu tamamen azalmaktadır (Pan vd. 2016). Önceki çalışmalar H⁺ kütle transferinin kontrol modeli ve kütle transferi/reaksiyon yüzeyi eş zamanlı olarak modellenmiştir. Deneysel çalışmalar sonucunda CaSO₃.1/2H₂O üretmek için olması gereken pH aralığı genelikle 5,8 ve 6,5 arasındadır. Klasik ıslak tipte kireç kullanan

FGD sistemlerinde oksidasyon tankındaki pH aralığı 5,1 ile 6,0 dır. Genel ortalamada ise pH 5,0 dür. Endüstriyel uygulamalardaki optimum pH aralığı laboratuvar çalışmalarından yüksektir. Bunun sebebi laboratuvar çalışmalarındaki süspansiyon halinde bulunan CaSO₃ oranı 0,01 ile 0,05 mol/L, katı oranı ise kütlesel olarak 0,12 ile 0,60 aralığındadır. Endüstriyel uygulamalarda ise süspansiyon içerisindeki CaSO3 oranı kütlece % 10 ile 15 arasındadır. Sekil 3.2 de Sıcaklığın sülfat oksidasyonu üzerindeki etkisinin araştırma sonucu görülmektedir. Sıcaklığın artışına bağlı olarak oksidasyon artmakta ve sonradan düşmektedir. Maksimum oksidasyon oranı ise 60 °C dir. Çözelti içerisindeki SO₂'nin 15-60 °C arasında çok az değişkenlik göstermektedir fakat sıcaklık 60 ⁰C'i geçtiğinde aniden düşmektedir. Bu sıcaklıktan sonra SO₂'nin sıvı tarafa kütle transferi zorlaşmaktadır. Sıcaklık 65 ⁰C'nin üzerine çıktığında CaSO₄.2H₂O dehidrate CaSO4 dönüşebilmektedir. Diğer taraftan CaSO₃.1/2H₂O çözünürlüğü sıcaklık değeri düştükçe ciddi oranda artmaktadır. 60 °C de 100 g çözelti içerisinde 0,0030 g, 40 °C de 100 g çözelti içerisinde 0,0041 g, 20 °C de 100 g çözelti içerisinde 0,0059 g çözünmektedir. Cözünürlüğün düşmesi oksidasyon için iyi değildir. Arrehenius kanununa göre sıcaklığın düşmesi oksidasyonu etkilemektedir. Bu nedenle sistem optimum sıcaklığa sahip olmalıdır (Liv vd. 2013). Bir başka çalışmada değişen sıcaklıkların partikül boyutunu etkisini araştırmak için termostatik su banyosunda çalışmalar yapılmış ve gösterilmiştir. pH değeri düştükçe reaksiyon oranının arttığı sonuçlar Şekil 3.5 de görülmüştür.

Şekil 3.1 pH'ın sülfat oksidasyon oranına etkisi (Li vd. 2013).

Şekil 3.2 Sıcaklığın reaksiyon süresi ve oksidasyon (Li vd. 2013).

Şekil 3.3 pH değerinin dr/dt oranı (Li vd. 2013).

Şekil 3.4 CaSO3 konsantrasyonunun oksidasyon oranına etkisi.

Şekil 3.5 pH'ın desülfürizasyon çözeltisindeki partikül boyutuna etkisi.

Şekil 3.4 de CaSO₃ konsantrasyonu arttıkça oksidasyon oranının azaldığı görülmektedir. Sülfit konsantrasyonu 0,01 mol/L ile 0,05 mol/L dir. Çözünmemiş oksijen konsantrasyonu reaksiyon süresiyle orantılı olarak azalmaktadır. Sistemdeki oksijen $SO_3^{2^-} + 1/2O_2 \rightarrow SO_4^{2^-}$ reaksiyonunda kullanılmaktadır. Bu nedenle CaSO₃ konsantrasyonu arttıkça oksidasyon oranı azalmaktadır.

pH ve sıcaklığın sülfit reaksiyonuna etkisi araştırılmış ve optimum reaksiyon şartları pH=4.0, T=60 0 C olarak gözlenmiştir. Optimum pH değeri endüstriyel uygulamalardaki CaSO₃ süspansiyon konsantrasyonunun deneysel çalışmalardan fazla olması nedeniyle daha yüksektir.

3.3 ÇÖZELTİ KOMPOZİSYONUNUN ETKİSİ

Islak FGD sistemleri içerisindeki uçucu kül ve desülfürizasyon mineralleri, farklı metal iyonları slurry çözeltisi içerisinde birikmektedir. Daha yüksek SO₂ tutuma verimi sağlamak adına proses esnasında katkı olarak kullanılabilir. Bunların varlığı yalnızca aglemerasyonu veya dağılıma davranışını etkilememektedir fakat ağırlıklı olarak partikül boyut dağılımı ve morfolojisini değiştirmektedir. Bu nedenle desülfürizasyon çözeltisi içerisine Fe⁺³, F⁻ iyonları eklenerek bu iyonların partikül boyut dağılımlarını ve morfolojilerine etkisi araştırılmıştır (Pan vd. 2016). Farklı katkı maddeleri farklı oranlarda eklenerek desülfürizasyon çözeltisinin partikül boyut dağılımı Şekil 3.6 da gösterilmiştir. Katkı maddelerinin bulunmayışı çözeltinin partikül boyut unu geniş bir ölçekte orta boyutlu olmasını sağlamaktadır. Şekil 3.6 da 0,02 mol.L⁻¹ Fe⁺³ iyonunun uniform şekilde çözelti içerisinde dağılmasının yarım mikron partikülleri yüzde miktarını açıkça arttırdığı görülmektedir. Şekil 3.6 b de F⁻ ilavesinin küçük boyuttaki kristallerin oluşumu büyük oranda engellediği görülmektedir.

Şekil 3.6 Katkı maddelerinin desülfürizasyon partikül boyut dağılımına etkisi.

Şekil 3.7 da eser miktardaki metal iyonlarının sülfit oksidasyonunun arttırabildiği ve Ca(OH)₂ den kalsiyum karbonat reaksiyonundan daha iyi oksidasyon gerçekleştiği görülmüştür. Oksidayonu arttırmak için dört metal iyonu, Mn^{2+} , Fe^{3+} , Cu^{2+} ve Co^{2+} eklenmiştir. Sadece Mn^{2+} veya Mn^{2+} ve Fe^{3+} iyonların birlikte kullanıldığında açık bir şekilde oksidasyon oranını arttırabilmektedir. Mn^{2+} ve Fe^{3+} ilavesi iğne yapraklı kristaller oluşturmaktadır. $Ca_3(SO_3)_2SO_4$ ürün içerisinde tespit edildiğinde Fe^{3+} ve Co^{2+} katkıları için oksidasyon oranının düşük olduğu görülmüştür. Filtre edilmiş slurry içerisinde yüksek konsantrasyonda bulunan Mn^{2+} birçok kez yeniden kullanılabilmektedir. Mn^{2+} iğne yapraklı kristal ürün ve yüksek oksidasyon oranı için mükemmel bir katkıdır (Li vd. 2013).

Çözelti içerisine metal iyonları karıştırıldığında farklı oksidasyonların ve buna bağlı olarak ürünün morfolojisinin değiştiği görülmektedir.

Şekil 3.8 de ürünlerin şekil yapıları gözükmektedir. Şekil 3.8 a katkısız çözeltinin kristallerinin genel olarak prizmatik şekilli ve uzunluğu 20 μ m ile 50 μ m, genişliği 5 μ m ile 15 μ m arasındadır. Bununla birlikte ince kristaller büyük partiküllerin pürüzlü yüzeylerine yerleşmiştir. Bu durumun baca gazı desülfürizasyon prosesinin gaz ve sıvı fazları arasında heterojen kimyasal reaksiyon gerçekleşmesi sonucu oluşmuş olabilir. Şekil 3.8 b de Fe⁺³ katkısı kristal morfolojisi görüntülenmiştir. Benzer prizmatik şekle sahip daha küçük partiküler oluşmuştur. Partiküllerin çok büyük bir oranı 2 μ m ile 5 μ m arasında oluşmuştur. Fe⁺³ varlığı düşük aktiviteyle birlikte CaSO₄ doygunluğunu azaltmıştır. Bununla birlikte kristal yüzeylerinde biriken metal iyonları sıvı katı yüzey geriliminin artmasına izin vererek

kristal büyüme oranının azalmasına neden olmuştur. Sonuç olarak jips kristalizasyonu uzun eksen yönünde normalden daha yavaş gelişmesine neden olmuştur. Şekil 3.8 c de F⁻ varlığının daha ince kristaller yarattığı görülmüştür. Yüzeylerinde pek çok ince partikül oluşmuştur. Kompleks içerikler F⁻ ve Al⁺³ iyonlarının kireçtaşıyla reaksiyona girmesiyle birlikte şekillenmektedir. Çözünmemiş kireçtaşı varlığı partikül üzerinde absorbe edildiğinde daha küçük kristal tanelerinin oluşmasını sağlamıştır. Sonuç olarak desülfürizasyon çözeltisi içerisindeki yüksek konsantrasyondaki Fe⁺³ ve F⁻ iyonlarının her ikisi de morfolojiyi değiştirmekte ve küçük kristaller yaratmaktadır ve Fe⁺³ 'ün etkisi daha açık görülmektedir.

a) Yüksek oksidasyon

b) Düşük oksidasyon

c) Mn²⁺ katkılı

d) Fe³⁺ katkılı

e) Cu⁺² katkılı

f) Co²⁺ katkılı

Şekil 3.7 SEM görüntüleri katkılı ve katısız (Li, Zhou and Zhu 2013).

a) Katkısız

b) Fe³⁺ iyonu katkılı

- c) F⁻ iyonu katkılı
- Şekil 3.8 Katkılı ve katkısı SEM fotoğrafları, kristalizasyon şartları a-c T=50 ⁰C ,pH=5,5;(a) katkısız;(b) C₀=0,02 mol/L;(c) C₀=0,02 mol/L (Pan,Wu and Yang 2016).

Kömür içerisinde eser miktarda bulunan Hg yüksek sıcaklığın etkisiyle birlikte buharlaşır ve desülfürizasyon sistemi içerisinde reaksiyona girer. Kömür içerisinde bulunan diğer tüm kirletici faktörler gibi ürün olan jips'in saflığını azaltmaktadır. Desülfürizasyon sistemindeki Hg⁰ emisyonunu incelemek amacıyla pH, sıcaklık, Cl⁻ ve oksijen konsantrasyonlarında değişiklik yapılmıştır. Slurry sıcaklığı 25 ^oC de iken Hg⁰ konsantrasyonu 1,29 µg/m³ tür. Sıcaklık 75 ^oC olduğunda konsantrasyon 4,87 µg/m³ çıkmaktadır. Hg konsantrasyonu çözelti içerisinde Cl⁻ yokken 4,23 µg/m³, çözeltide 5000 ppm Cl⁻ varken 1,24 µg/m³ düşmektedir. Baca gazı içerisinde % 0 oksijen varken Hg konsantrasyonu 6,87 µg/m³ iken O₂ konsantrasyonu %15 e çıktığı durumda Hg⁰ miktarı 2,62 µg/m³ düşmektedir. Yapılan çalışmalar sonucunda çözeltideki Cl⁻ konsantrasyonu ve oksijen miktarı arttığında Hg⁰ konsantrasyonu azaldığı görülmüştür. Sıcaklık arttığında ise Hg konsantrasyonu artmaktadır (Chen vd. 2014). Hg⁰,nin sudaki çözünürlüğü 1 atm 298 K de 6.1x10 ⁻⁵ g / kg su iken, 373 K de 48.1 x10⁻⁵ g/kg suya çıkmaktadır (Lash 1985).

$$Hg^{2+} + HSO^{3-} + H_2O \leftrightarrow Hg0 + SO_4^{2-} + 3H^+$$

 $2\mathrm{SO_3}^{2-} + \mathrm{O_2} \leftrightarrow 2\mathrm{SO_4}^{2-}$

 $\mathrm{Hg}^{2^+} + \mathrm{SO_3}^{2^-} \leftrightarrow \mathrm{Hg}\mathrm{SO_3}$

 $HgSO_3+H_2O \rightarrow Hg^0+SO_4^{2-}+2H^+$

 $HgSO_3 + Cl^- \leftrightarrow ClHgSO_3$

 $ClHgSO_3^{-} + Cl^{-} \leftrightarrow Cl_2HgSO3^{2-}$

 $ClHgSO3^{-} + H2O \longleftrightarrow Hg^{0} + SO4^{2-} + Cl^{-} + 2H^{+}$

Sonuç olarak desülfürizasyon çözeltisi içerisindeki kristal ve ince partiküllerin arasında ilişki araştırılmış ve işletme parametreleri ve desülfürizasyon çözeltisi içeriğinin jips kristalizasyonuna etkisi tartışılmıştır. Sonuçlar aşağıdadır;

- Küçük partiküllerin oluşması desülfürizasyon çözeltisi içeriğinde bulunan element ve morfolojiyle yakından ilgilidir.
- Çözelti içerisinde yüksek oranda bulunan ince taneli kristaller, ince taneli partiküllerin konsantrasyondaki miktarı desülfürizasyondan sonra artmaktadır. Bu durum jips

kristalizasyonunun optimize edilmesinin ince taneli partikülleri azaltmak için yararlı olacağını göstermektedir.

 Düşük pH ve optimum sıcaklığın desülfürizasyon çözeltisi içerisinde küçük kristallerin oluşmasını engellemekte faydalı olduğu görülmüştür.Buna ilave olarak desülfürizayon çözeltisi içerisindeki Fe⁺³ iyonları ve F⁻ iyonlarının her ikisinin küçük kristaller yarattığı, morfolojiyi değiştirdiği Fe⁺³ iyonununda açıkça görülmüştür.

3.4 KRİSTAL YAPILAR

Kristal bir katıda atomlar, iyonlar veya moleküller, düzenli bir şekilde istiflenmektedir. Kristal katılar belirli ve düzgün bir yüzeye sahiptir. Yüzeyler kenarlarla belirli açılarda birleşmektedir. Yüzeyler düzenli atom yığınları şeklinde dizilmektedir. Çizelge 3.1 de mineral temel kristal yapılarından örnekler verilmiştir. Kükürt, fosfor, iyot gibi katı ametaller ve katı argon kristal yapıdadır. Sodyum klorür, potasyum nitrat gibi iyonik bileşenler katyon ve anyonların elektrostatik düzenlemeler nedeniyle düzgün sekilde dizilerek kristal halde bulunurlar. İyonik kristallerde hidratize olmuş CuSO₄.5H₂O su molekülleri bulunabilir. Bileşiklerin birçoğunda atom, iyon veya moleküller kristalin oluştuğu şartlara bağlı olarak birden fazla şekilde düzenlenebilir (Atkins and Jones 1997). Minerallerde 1s1 iletimi, çizilmeye karşı dayanıklılık, kırılganlık gibi özellikler üç yönde aynı değildir. Özellikleri her yönde aynı olan minerallere izotrop, aynı olmayan minerallere ise anizotrop denmektedir. Mineraller üç boyutta aynı özelliği göstermeden büyümektedir. Bu şekillere kristal adı verilir. Kristallerin gözle görülmeyen iç yapıları aynı olmakla birlikte dış yapıları birbirinden farklıdır. Bunun nedeni kristallenme sırasındaki basınç, sıcaklık ve soğuma süresi gibi faktörlerden kaynaklanmaktadır. Kalsit kristal şeklinde bulunurken, jips ise kristal yığını seklinde bulunmaktadır. Çizelge 3.2 de katıların bazı özellikleri gösterilmiştir. Bu şekilde kristal yığını şeklinde bulunan malzemelere amorf maddeler denir. Bir mineralin kristal yapıda olması için sadece dış yapısının düzgün olması yeterli değildir. Tekrarlanan bu olaya kristal sistemi denir. Doğadaki kristal yapılı maddeler 7 temel kristal yapısına sahip olmakta birlikte üç boyutta tekrarlanması sonucu kristal örgüler meydana gelmektedir (Atasoy 2000). Kristal örgüsünün en küçük parçasına kristal ünitesi ve kristal çekirdeği olarak adlandırılmaktadır (Aydın vd. 2001).

Trklinik	$\alpha, \beta, \gamma \neq 90^{\circ}$	Hekzagonal		
Basit Monoklinik	$\beta \neq 90^{\circ}$ $\alpha, \gamma = 90^{\circ}$ γ β	Rombohedral	$a = \beta = \gamma \neq 90^{\circ}$	
Basit Ortorombik	$a \neq b \neq c$ $a \qquad b$	Basit Küp		
Basit Tetragonal				

Çizelge 3.3 Mineral temel kristal yapıları (Atasoy 2000).

Maddelerin kristal şekillerinin x-ışınları ile incelenmesiyle her atom molekül veya iyonların üç boyutlu bir sistemde düzenlenmesi ve bu düzenin kristal içerisinde doğru tekrarlanmasıyla oluştuğu anlaşılmıştır. CaSO₄.2H₂O monoklinik yapıda iken CaCO₃ ise hekzagonal yapıdadır.

	İyonik	Moleküler	Kovalent	Metalik
Kristali oluşturan tanecikler	Pozitif ve negatif iyonlar	Moleküller	Atomlar	Elektron ortamında pozitif iyonlar
Bağı oluşturan kuvvetler	Elektrostatik çekim kuvveti	Van der Waals ve dipol- dipol	Ortaklanmış elektronlar	Yüklü çekirdekler ile elektronlar arasındaki çekim
Özellikler	Çok sert ve kırılgan, erime noktası yüksek, elektriği hiç iletmezler	Çok yumuşak, erime noktası düşük ve uçucu, elektriği iletmezler	Çok sert, erime noktaları çok yüksek, elektriği iyi iletmezler	Sert veya yumuşak, orta veya çok yüksek erime noktası, elektriği iyi iletirler
Örnekler	NaCl, KNO ₃ , CaCO ₃	H ₂ , H ₂ O,CO ₂	Elmas, SiC, SiO ₂	Altın, platin, gümüş

Çizelge 3.4 Katıların bazı özellikleri (Aydın vd. 2001).

BÖLÜM 4

DENEYSEL ÇALIŞMALAR

Bu tez kapsamındaki çalışmalar 2x615 MW Pulvarize kömür kullanan santralinin 4 farklı noktasından alınan numuneler üzerinde gerçekleşmiştir.

Süper kritik özellikte 2 adet kazan bulunmaktadır. Her ünitenin ESP ve FGD sistemleri bağımız bölümler halindedir. FGD sisteminden çıkan ürün üzerinde araştırmalar yapılmıştır.

4.1 METODOLOJİ

Örnekler baca gazı içerisindeki NOx ve Uçucu Küllerin tutulmasından sonra FGD sisteminde bulunan Absorber, Jips hidrosiklonu ve vakum bandı üzerinden farklı proses şartlarında alınmıştır. Numune alma yeri ve sıklığı Çizelge 4.1'de yer almaktadır.

Çizelge 4.1 Üniteler için numune alma noktaları ve numune alma sıklıkları.

Numune Alındığı Yer	Numune Alma Sıklığı
Absorber	1 defa
Jips Hidrosiklonu	150 KPa,160 KPa,170 KPa, 180 KPa, 190 KPa, 200
	KPa basınçlarda siklon alt ve üst akışlardan birer defa
	numune alınmıştır.
Vakum Bandı Çıkışı	Her gün bir adet numune 1 hafta boyunca alınmıştır.

 Abosorber sisteminden alınan örnek çözelti yoğunluğu 1.160 kg/m3 iken deşarj pompası çıkışından alınmıştır.

- Vakum bandına üzerinde 3'er kg örnek alınmış ve çeyrekleme metodu ile analize hazırlanmıştır.
- Jips hidrosiklon çıkış numuneleri siklon girişinden akış ayarlaması yapan vana ile siklon akışkan basıncı değiştirilerek alınmıştır. Basınç değişiklikleri sonrasında 3'er dakika akışın dengelenmesi için beklenmiştir.

Şekil 4.1 FGD sistemi akım şeması ve numune alma noktaları (Walsh 2008).

Numune alma işlemi Çizelge 4.1'de belirtilen periyotlarda alınmıştır. Şekil 4.1 de FGD akım şeması ve numune alma noktaları gösterilmiştir. Alınan numuneler etiketlenerek sistematik şekilde kodlanmıştır. Numunelerin kodlandırılması gün, saat, numune adı, alındığı pH ve basıncı yer almaktadır.

Hidrosiklon numuneleri kodlaması; hidrosiklon adı, Siklon alt /üst akış, basınç, ve akış olan siklon adetlerine göre kodlandırma yapılmıştır. Ör: BU1803 B hidrosiklonu üst akış 180 kPa ve 3 siklon açık anlamındadır. Farklı noktalardan alınan numuneler üzerinde çok sayıda analiz yapılmıştır. Hidrosiklon numunelerinde incelik, vakum bandı üzerindeki numunelerde ise sıcak, soğuk yıkama işlemleri yapılmıştır. Sirkülasyon yapan pompaların basma yükseklikleri farkının jips kristal boyutuna etkisini ölçmek amacıyla çalışmalar yapılmıştır. Jips kimyasal analizlerinde Şekil 4.2 de gösterilen XRF cihazı kullanılmıştır.

Şekil 4.2 XRF Cihazına ait görünüm.

Alman fizikçi W. Roentgen tarafından 1895 te tesadüfen keşfedilen ve bilinmez anlamında X ışını olarak nitelenen bu ışınlar gerçekte görünen ışığın da içinde yer aldığı elektromanyetik dalga spektrumunun bir parçasıdır.

Şekil 4.3 Işın dalga boyları basitleştirilmiş görüntü (URL-1 2017).

Şekil 4.3 de ışın dalga boyları yer almaktadır. Gözle görülemeyen ve cisimlerin içinden geçen bu ışınlar ancak özel film veya detektörle tespit edilebilir. Atomun yapısı BOHR modeli baz alınarak incelendiğinde proton ve nötronlardan oluşan çekirdek etrafında elektronlar bulunmaktadır. Bahsi geçen elektronlar K, L, M, N farklı enerji seviyelerine sahip yörüngelerde doşalırlar.

Xray kaynağından salınan X ışınları malzemedeki elektronlara çarparak onları yerlerinden uzaklaştırırlar. Çarpışma sonrasında boşalan yere üst veya daha üst yörüngelerden elektronlar gelerek bu boşluğu doldururlar. Şekil 4. 4 de BOHR atom modeli gösterilmiştir.

Şekil 4.4 BOHR atom modeli (URL-1 2017).

Bu hareket esnasında her atoma özgü farklı enerji seviyesine sahip ikincil bir X ışını salınır. Her elementin kendine özgü bir enerji seviyesi spektrumuna sahip olduğundan elementler birbirinden kolayca ayrılabilir. Şekil 4.5 de numune ışımasının şematik görünümü yer almaktadır.

Şekil 4.5 Numune ışıması şematik görünümü (URL-1 2017).

Şekil 4.6 Malvern Mastersizer S 2000 cihazına görünümü (URL-2 2007).

0,1-2000 µm arası numunelerin boyut dağılımlarının belirlenmesinde birçok sektör tarafından kullanılarak rutin analiz metotları arasında yerini almıştır. Lazer önünden geçirilen malzemenin ışık verileri ile tane boyutları arasında ilişki kurularak tane boyut dağılımı elde edilir. Şekil 4.6 da Malvern Mastersizer cihazının görüntüsü bulunmaktadır.

Absorber deşarj pompası çıkışından, jips hidrosiklon alt akış ve üst akıştan, vakum bandı çıkışında nihai üründen numuneler alınmıştır. Hidrosiklon performansının çalışma basınç aralığıyla ilişkisini bulmak amacıyla 150 kPa, 160 kPa, 170 kPa, 180 kPa, 190 kPa, 200 kPa da alt ve üst akışlardan 3 siklon ve 4 siklonla çalıştırılarak 24 adet numune alınmıştır. Hidrosiklon girişi, siklon alt ve üst akışlardan alınan numunelerin tane boyut dağılımları Malvern Mastersizer cihazı ile tespit edilmiştir.

Ayrıca vakum bandı üzerindeki jips 'in 20 ⁰C ve kaynama noktasından (100 ⁰C) sıcaklığa sahip suyla yıkanarak tane boyutu ve kimyasal yapısındaki değişimler incelenmiştir. Kimyasal muhtevasındaki değişim XRF cihazıyla analiz edilmiştir.

4.2 ABSORBERDAN ALINAN ÇÖZELTİ ÖRNEĞİ ÜZERİNDEKİ ÇALIŞMALAR

Absorberdan alınan numune üzerinde tane boyut dağılımı ve kimyasal kompozisyonunu tespit etmek için XRF cihazında elementel analiz yapılmıştır.

4.2.1 Elementel Analiz

Absorber sistemindeki çözeltinin alt noktasında bulunan boru hattından 250 ml çözelti mezür doldurularak 1100 kg/m³ – 1200 kg/m³ ölçüm aralığına sahip dansimetreyle ölçüm yapılmıştır. Diğer çalışmalar sırasında referans alınmak amacıyla 1160 kg/m³ yoğunluğa sahip çözelti üzerinde çalışmalar yapılmıştır. Numune standartlara uygun azaltma aşamalarından geçirilerek elementel analiz yapılmış ve Çizelge 4.2'de analiz sonuçları verilmiştir. Absorberdan alınan numunenin jips oranının %87,74 olduğu görülmüştür.

Komponent	Kütlece (%)
CO ₂	8,37
Na ₂ O	0,03
MgO	0,86
Al ₂ O ₃	0,65
SiO ₂	1,76
P ₂ O ₅	0,01
SO3	47,75
Cl	0,10
K ₂ O	0,13
CaO	39,99
TiO ₂	0,02
Fe ₂ O ₃	0,34

Çizelge 4.2 Absorber çözeltisi kimyasal analiz sonuçları.

4.2.2 Tane Boyut Dağılımı

Numune absorber çözeltisini temsil etmektedir. Malvern Mastersizer cihazı kullanılarak tane boyut dağılım analizi yapılmıştır. Değerler Çizelge 4.3 ve 4.4 de verilmiştir.

Boyut (µm)	Miktar (%)	Boyuttan İri Toplam Miktar (%)	Boyut (µm)	Miktar (%)	Boyuttan İri Toplam Miktar (%)
0,0582	0	100,00	2,6512	0,44265	95,33
0,0679	0	100,00	3,0887	0,52749	94,89
0,0791	0	100,00	3,5983	0,6188	94,36
0,0921	0	100,00	4,192	0,69599	93,74
0,1073	0	100,00	4,8837	0,71502	93,05
0,125	0	100,00	5,6895	0,64947	92,33
0,1456	0	100,00	6,6283	0,50016	91,68
0,1697	0,00007	100,00	7,7219	0,35758	91,18
0,1977	0,00068	100,00	8,996	0,16427	90,83
0,2303	0,00481	100,00	10,4804	0,20311	90,66
0,2683	0,02373	99,99	12,2096	0,43941	90,46
0,3125	0,07429	99,97	14,2242	0,88187	90,02
0,3641	0,14489	99,90	16,5712	1,67106	89,14

Çizelge 4.3 Absorber çözeltisi tane boyut dağılımı.

Boyut (µm)	Miktar (%)	Boyuttan İri Toplam Miktar (%)	Boyut (µm)	Miktar (%)	Boyuttan İri Toplam Miktar (%)
0,4242	0,20903	99,75	19,3055	3,10801	87,47
0,4941	0,28557	99,54	22,4909	5,64473	84,36
0,5757	0,37168	99,26	26,2019	9,54405	78,71
0,6707	0,39814	98,89	30,5252	14,10075	69,17
0,7813	0,42401	98,49	35,5618	17,5676	55,07
0,9103	0,39604	98,06	41,4295	15,56911	37,50
1,0604	0,38546	97,67	48,2654	11,08319	21,93
1,2354	0,39183	97,28	56,2292	6,58394	10,85
1,4393	0,40577	96,89	65,507	3,14687	4,26
1,6767	0,39258	96,48	76,3157	1,11719	1,12
1,9534	0,36934	96,09	88,9077	0	0,00
2,2757	0,38977	95,72	103,5775	0	0,00

Çizelge 4.4 Absorber çözeltisi tane boyut dağılımı.

4.3 HİDROSİKLON NUMUNELERİ ÇALIŞMALARI

Kireç çözeltisinin kullanıldığı desülfürizasyon sistemlerimde oluşan jips'un ayrıştırılması için hidrosiklonlar kullanılmaktadır. Sistemimizde bulunan mevcut siklon bataryasında 4 adet siklon bulunmaktadır. Her siklon girişinde ve siklon bataryası girişinde vana bulunmaktadır. Siklon çalışma basıncı ve çalışan siklon sayısının ayırma sürecine etkisi araştırılmıştır. Sonuçlar ek açıklamalar bölümünde gösterilmiştir.

Şekil 4.7 Jips hidrosiklon alt akışında basıncın tane boyut dağılımına etkisi.

Hidrosiklon alt akışlarından çıkan ve vakum bandı üzerine susuzlaştırmak amacıyla gönderilen numunelerin tane boyut dağılımları incelenmiştir. Kristalizasyon aşamasından sonra hidrosiklonlardaki ayrıştırma sırasında daha iri partiküllerin elde edilebildiği görülmüştür. Şekil 4.7 de BA1803 numunesinin daha iri tane boyut dağılıma sahip olduğu yapılan çalışmalar sonucunda ortaya konulmuştur.

Şekil 4.8 Jips hidrosiklon alt akışında basıncın tane boyut dağılımına etkisi.

Şekil 4.8 de BA1704 numunesinin 4 siklonda daha iri tane boyut dağılıma sahip olduğu yapılan çalışmalar sonucunda ortaya konulmuştur.

Şekil 4.9 BA1704 ve BA1803 numunelerinin karşılaştırılması.

Şekil 4.9 de BA1704 ve BA1803 numuneleri diğer numunelere göre daha iri boyutlara sahip olduğu için tane boyut dağılımları karşılaştırılmıştır.BA1803 numunesinin D10 değeri 19,98 μm , D50 değeri 37,17 μm, D90 değeri 54,48 μm , BA1704 numunesinin D10 değeri

18,35 μm , D05 değeri 34,53 μm, D90 değeri 51,38 μm olarak çıkmıştır. BA1803 numunesi tane boyut dağılımı diğer numunelere göre daha iri partiküllere sahip olduğu görülmüştür.

Şekil 4.10 Hidrosiklon giriş ,alt ve üst akış tane boyut dağılımları.

Şekil 4.10 BA1803 tane boyutunun iri olduğu koşullarda hidrosiklon üst ve girişindeki çözeltisinin tane boyut dağılımlarının değişimleri görülmektedir. Tane boyutlarına göre en iyi ayrım 3 siklonun çalıştığı durumda gerçekleşmektedir.

Şekil 4.11 Hidrosiklonun farklı çalışma basınçlarındaki tromp eğrisi.

Şekil 4.11 de 3 siklonun farklı basınçlarda çalıştığı durumlardaki eğrileri çizilmiştir. Dizilişe göre en sağda olan 180 kPa basınçta çalışan siklonun en iri partikül ayrımı sağladığı tespit edilmiştir.180 kPa daki Ayrıma boyutu (d_{50}) 21,59 µm çıkmıştır. Hata faktörü (Ep) değeri 0,0058 mm çıkmaktadır. Eğri incelendiğinde 10 µm altındaki partiküllerin siklon altına geçtiği ve ayrımının verimli bir şekilde yapılamadığı tespit edilmiştir.

4.4 ALÇITAŞI NUMUNELERİ İLE YAPILAN ÇALIŞMALAR

Vakum bandı çıkışından 1 hafta boyunca numune alınmıştır. Standartlara uygun olarak hazırlanan numune 3 parçaya ayrılarak analizler yapılmıştır. Alçı-0 kodlu numune üzerinde herhangi bir işlem yapılamadan XRF cihazıyla elementel analiz, Malvern cihazıyla da tane boyut dağılımı yapılmıştır. Alçı-1 kodlu numune kaynayan saf suyla 5 dk. boyunca yıkanmış ve orta ölçekli süzgeç kağıdında süzülmüştür. Süzgeç üzerinde kalan alçıtaşına elementel ve tane boyut dağılımı analizi yapılmıştır. Alçı-2 kodlu numune 20 ⁰C deki saf suyla 5 dk. boyunca yıkanmış ve orta ölçekli süzgeç kağıdıyla süzülmüştür. Süzgeç üzerinde kalan alçıtaşına elementel ve tane boyut dağılımı analizi yapılmıştır. Alçı-2 kodlu numune 20 ⁰C deki saf suyla 5 dk. boyunca yıkanmış ve orta ölçekli süzgeç kağıdıyla süzülmüştür. Süzgeç üzerinde kalan alçıtaşına elementel ve tane boyut dağılımı analizi yapılmıştır. Sonuçlar Çizelge 4.5 ve 4.6 de verilmiştir.

Vame an ant	Alçı-0	Alçı-1	Alçı-2	
Komponent	Miktar %	Miktar %	Miktar %	
CO ₂	8,37	9,20	7,82	
Na ₂ O	0,03	0,03	0,01	
MgO	0,86	0,86	0,70	
Al_2O_3	0,65	0,68	0,63	
SiO ₂	1,76	1,85	1,66	
P_2O_5	0,01	0,01	0,01	
SO ₃	47,75	47,42	48,61	
Cl	0,10	0,01	0,01	
K ₂ O	0,13	0,12	0,12	
CaO	39,99	39,48	40,11	
TiO ₂	0,02	0,02	0,02	
Fe ₂ O ₃	0,34	0,32	0,31	

Çizelge 4.5 Alçıtaşı numuneleri elementel analiz sonuçları.

Alçıtaşı numuneleri üzerinde yapılan yıkama işlemlerinin kimyasal muhtevasını değiştirdiği görülmüştür.

	Alçı-0	Alçı-1	Alçı-2		Alçı-0	Alçı-1	Alçı-2
Boyut	Boyuttan İri Miktar %	Boyuttan İri Miktar %	Boyuttan İri Miktar %	Boyut	Boyuttan İri Miktar %	Boyuttan İri Miktar %	Boyuttan İri Miktar %
0,0582	100,00	100,00	100,00	7,72	91,18	92,49	91,39
0,0679	100,00	100,00	100,00	9,00	90,83	92,22	91,13
0,0791	100,00	100,00	100,00	10,48	90,66	92,13	91,02
0,0921	100,00	100,00	100,00	12,21	90,46	92,02	90,83
0,1073	100,00	100,00	100,00	14,22	90,02	91,78	90,42
0,125	100,00	100,00	100,00	16,57	89,14	91,25	89,58
0,1456	100,00	100,00	100,00	19,31	87,47	90,21	87,98
0,1697	100,00	100,00	100,00	22,49	84,36	88,21	85,02
0,1977	100,00	100,00	100,00	26,20	78,71	84,42	79,68
0,2303	100,00	100,00	100,00	30,53	69,17	77,51	70,66
0,2683	99,99	99,99	99,98	35,56	55,07	66,02	57,08
0,3125	99,97	99,95	99,93	41,43	37,50	49,74	39,60
0,3641	99,90	99,85	99,78	48,27	21,93	30,80	23,55
0,4242	99,75	99,66	99,53	56,23	10,85	15,70	11,83
0,4941	99,54	99,40	99,20	65,51	4,26	6,03	4,73
0,5757	99,26	99,06	98,79	76,32	1,12	1,03	1,27
0,6707	98,89	98,66	98,31	88,91	0,00	0,00	0,00
0,7813	98,49	98,25	97,82	103,58	0,00	0,00	0,00
0,9103	98,06	97,84	97,33	120,67	0,00	0,00	0,00
1,0604	97,67	97,47	96,90	140,58	0,00	0,00	0,00
1,2354	97,28	97,12	96,49	163,77	0,00	0,00	0,00
1,4393	96,89	96,78	96,10	190,80	0,00	0,00	0,00
1,6767	96,48	96,42	95,70	222,28	0,00	0,00	0,00
1,9534	96,09	96,08	95,33	258,95	0,00	0,00	0,00
2,2757	95,72	95,78	94,99	301,68	0,00	0,00	0,00
2,6512	95,33	95,47	94,64	351,46	0,00	0,00	0,00
3,0887	94,89	95,14	94,26	409,45	0,00	0,00	0,00
3,5983	94,36	94,75	93,82	477,01	0,00	0,00	0,00
4,192	93,74	94,32	93,32	555,71	0,00	0,00	0,00
4,8837	93,05	93,84	92,78	647,41	0,00	0,00	0,00
5,6895	92,33	93,34	92,24	754,23	0,00	0,00	0,00
6,6283	91,68	92,87	91,76	878,67	0,00	0,00	0,00

Çizelge 4.6 Alçıtaşı numuneleri tane boyut dağılımları.

Çizelge 4.6 ve 4.7 de Alçı-0, Alçı-1 ve Alçı-2 kodlu numunelerinin tane boyut dağılımları çıkarılarak yıkama işleminin partikül boyutuna etkisi üzerinde çıkarım yapılmaya çalışılmıştır.
Çizelge 4.7 Malvern analiz sonuçları.

Numune	Alçı-0	Alçı-1	Alçı-2
D05	31,93	35,48	32,52

Alçı-0 numunesi D50 değeri 31,93 μm, Alçı-1 numunesi D50 değeri 35,48 μm, Alçı-2 numunesi D50 değeri 32,52 μm olarak tespit edilmiştir.

Şekil 4.12 Tane boyut dağılımları karşılaştırma.

Vakum bandı üzerinden alınan numuneler üzerinde yapılan deneysel çalışmalarda kimyasal ve tane boyut dağılımları incelenmiştir. Şekil 4.12 da tane boyut dağılım verileri kullanılarak oluşturulan grafikte Alçı-1 numunesinin daha büyük partikül boyutunca olduğu tespit edilmiştir.

Alçı-0, Alçı-1 ve Alçı-2 numuneleri vakum bandı sistemi üzerinde uygulanmıştır. Vakum bandı sistemi üzerinde yapılan soğuk ve sıcak su yıkama işlemleri sonrasındaki sonuçlar Şekil 4.13 de gösterilmiştir.

Numune	Alçı-0	Alçı-1	Alçı-2
Nem %	12,15	8,93	12

Şekil 4.13 Vakum bandı sistemindeki alçıtaşı nem tayini sonuçlar.

BÖLÜM 5

SONUÇLAR VE DEĞERLENDİRME

Bu çalışmada Termik santralin FGD sisteminde absorberdan, Hidrosiklon alt ve üst akışlarından, vakum bandı üzerindeki alçı olmak üzere 4 farklı noktadan numuneler alınarak hidrosiklon basıncının ve vakum bandı üzerindeki alçıtaşının sıcak ve soğuk yıkama işlemlerinin tane boyut dağılımına etkisi araştırılmıştır. Yıkama işlemi sonucunda alçıtaşı kimyasal içeriğindeki değişimlerde izlenmiştir.

Hidrosiklon numuneleri santraldeki mevcut sistem üzerinde basınç değiştirilerek alınmıştır. Deney çalışmaları XRF cihazı ve Maden Mühendisliği bölümünde Malvern Mastersizer cihazı kullanılarak yapılmıştır.

- Absorberdan alınan numunelere elementel ve tane boyut dağılımı analizleri uygulanmıştır.
- Kimyasal içeriğindeki CaO ve SO₃ konsantrasyon toplamları 87,74 olarak tayin edilmiştir.
- Hidrosiklondan alınan numuneler üzerinde tane boyut dağılım analizi yapılmıştır. Siklon alt akışında daha iri partikül ayrımı yapabilmek için hidrosiklon çalışma basıncı ve çalışan siklon adetinin etkisi araştırılmıştır.

BA1803 numunesinin D10 değeri 19,98 μ m , D50 değeri 37,16 μ m, D90 değeri 54,48 μ m , BA1704 numunesinin D10 değeri 18,35 μ m , D50 değeri 34,53 μ m, D90 değeri 51,38 μ m olarak tespit edilmiştir. Yapılan değerlendirme ve çalışmalara göre hidrosiklon basıncının 180 kPa olduğu ve 3 siklonun aktif şekilde çalıştığı durumun diğer şartlara göre daha iri partikül dağılımı sağladığı görülmüştür.

İstenilen iri partikül ayrışımın sağlandığı G150 ,BA1803 ve BU1803 numunelerinde D50 değeri sırasıyla 27,17 µm ,37,16 µm ve 3,82 µm çıktığı belirlenmiştir.

180 kPa işletme basıncında tromp eğrisinde ayrıma boyutu (d_{50}) 21,59 µm çıkmıştır. Hata faktörü (Ep) değeri 0,0058 mm çıkmaktadır. Eğri incelendiğinde 10 µm altındaki partiküllerin siklon altına geçtiği ve küçük partiküllerdeki ayrımının verimli bir şekilde yapılamadığı tespit edilmiştir. Sorunların ana kaynağı ayırma boyutunun düşük olması ve alt çıkıştaki ince miktarının gereğinden fazla olmasıdır. Siklon hava koridorunun yeterli seviyede oluşmaması hatalı boyut ayrımına neden olmaktadır. İyileştirme için ayırma boyutunun arttırılması gerekmektedir. Bu da tromp eğrisi grafiklerinde net olarak görülmektedir.

• Vakum bandı üzerinden alınan alçıtaşı örneklerinde deney düzeneği üzerinde soğuk ve sıcak su yıkama işlemi yapılarak boyut ve kimyasal analizi yapılmıştır.

Alçı-0 numunesi D50 değeri 31,93 µm, Alçı-1 numunesi D50 değeri 35,48 µm, Alçı-2 numunesi D50 değeri 32,52 µm olarak tespit edilmiştir. Kaynayan saf su içerisinde 5 dk. süreyle yıkanan Alçı-1 numunesi D50 değeri yıkanmamış alçıya göre 3,55 µm daha irileşerek D50 değeri 35,48 µm çıkmıştır.

Deneme amaçlı olarak alçıtaşının soğuk ve sıcak suyla yıkama işlemi vakum bandı üzerinde yapılmıştır. Alçı-1 numunesinin nemi % 8,93 iken Alçı 0 numunesinin nemi %12,15, Alçı-2 numunesinin nemi % 12 çıkmıştır. Bu sonuçlara göre sıcak suyla yıkama işlemi alçıtaşı nem miktarını % 3,07 oranında düşürmektedir.

Alçı-0 ve Alçı-1 numunesinin kimyasal içeriğinde bulunan CaO,SO₃, MgO,Fe₂O₃,Al₂O₃,CO2,SiO2 değerleri toplamı %99,72 den 99,81'e çıkmıştır. Kömür içerisinde eser miktar bulunan maddeler yanma sonucunda jips içerisine kadar ulaşmaktadır. Sıcak su yıkama işleminin jips içerisindeki Hg⁰ gibi elementinin azalmasına yardımcı olduğu ve ürün saflığını arttırdığı görülmektedir. Hg'nin 1 atm 298 K deki çözünürlüğü 6.1x10⁻⁵ g / kg su iken, 373 K de 48.1 x10⁻⁵ g/kg suya çıkmaktadır. Sıcak su yıkaması yapı malzemesi niteliğinde jipsdeki safsızlıkların azaltılması açısından faydalıdır.

Baca gazı desülfürizasyonu sırasında üretilen alçının susuzlaştırma performansını arttırmak için tane boyut dağılımı ile hidrosiklon çalışma şartları ve kimyasal içeriğin etkisi arasında ilişki kurmak amacıyla çalışma yapılmıştır. 4 farklı noktadan alınan numunelerle siklon çalışma şartları ve alçıtaşı yıkama işlemlerinin tane boyut dağılımlarına etkisi ilişkilendirilmiştir.

KAYNAKLAR

- Atasoy B (2000) Genel Kimya. ISBN: 975-6859-11-3, Gündüz Eğitim ve Yayıncılık, Ankara, 365.
- Atkins P, Jones L (1997) Chemistry Molecules, Matter and Change, Bilim Yayıncılık, 1st edition, ISBN: 975-556-033-5, Ankara, 410.
- Aydın A.O (2001) Temel Kimya. ISBN:975-8289-16-0, 2, Aşiyan Yayınları, Sakarya, 377.
- Chen C, Liu S, Gao Y and Liu Y (2014) Investigation on Mercury Reemission from Limestone-Gypsum Wet Flue Gas Desulfurization Slurry. *The Scientic World Journal*, 2014:6.
- **Cordoba P** (2014) Status of Flue Gas Desulphurisation (FGD) systems from coal-fired power plants: Overview of the physic-chemical control processes of wet limestone FGDs. *Fuel*, 144:274-286.
- **Dökme F, Güven O** (2014) Bilyalı Değirmenlerde Hızın Performansa Olan Etkilerinin Deneysel Olarak İncelenmesi. *Mühendis ve Makine*,55: 38-55.
- **Evans P.A , Miller C and Pouliot S** (2009) Operational Experience of Commercial, Full Scale Ammonia Based Wet FGD for Over a Decade. Coal-Gen, 20 Ağustos 2009, North Carolina, ABD.
- **EPA** (1981) Environmental Protection Agency, Flue Gas Desulfurization (Acid Gas Removal) Systems, ABD.
- IEA (2016) The International Energy Outlook 2016, 11 Mayıs 2016, Washington, ABD, E-kitap,81-100.
- Li Y, Zhou J, Zhu T and Jing P (2014) Calcium Sulfite Ozidation and Crystal Growth in the Process of Calcium Carbide Residue to Produce Gypsum, *Waste Biomass*, 5: 125-131.
- Lash T.D (1985) Ultrasound in the Undergraduate Lab. *Journal of Chemical Education*, 62: 720.
- Marten J.C (1977) A History Of Flue Gas Desulfurization Systems Since 1850. Air Pollution Control Association, 10:948-961.

- Marchis D, Badulescu C and Nistor M C (2016) Benefits of Using FGD Gypsum From S.E. *Turceni in Agriculture*, 48: 247-253.
- **Oikawa K, Yongsiri C, Takeda K and Harimoto T** (2003) Seawater Flue Gas Desulfurization: Its Technical Implications and Performance Results, *Environmental Progress*, 22:67 73.
- Pan D, Wu H and Yang L (2016) Investigation on Relationship Between The Fine Particle Emission and Crystallization Characteristics of Gypsum During Wet Flue Gas Desulfurization Process, *Journal of Sciences*, 55:303-310.
- **Trawinski H** (1976) Hidrosiklon Teorisi, Uygulama Alanları, Ayrım Sınırına Etki Eden Faktörler ve Çalışma Prensipleri, *Engineering and Mining Journal*, 177:9.
- TKİ (2010) Linyit Sektör Raporu 2010, Türkiye Kömür İşletmeleri Kurumu, Ankara
- TKİ (2016) Kömür Sektör Raporu 2015, Türkiye Kömür İşletmeleri Kurumu, Ankara.
- Walsh M.A (2008) Wet FGD Types and Fundamentals, Marsulex Environmental Technologies, Pennsylvania, ABD.
- URL-1 (2016) http://www.repamet.com/xrfalasim.htm
- URL-2 (2007) http://www.malvern.com/en/support/product-support/mastersizerrange/mastersizer-2000/
- URL-3 (2017) https://www.slideshare.net/FarhanAlfin/5-boyut-kltme-2-62873321
- URL-4 (2017) http://dx.doi.org/10.1590/S1516-89132007000200003
- URL-5 (2017) https://www.ferrum.net
- URL-6 (2017) http://www.flsmidth.com

EK AÇIKLAMALAR

Numune Kodu	Boyut (µm)	Miktar (%)	Boyuttan İri Toplam Miktar (%)	Boyuttan İnce Toplam Miktar (%)
	0,0582	0.00000	100,000	0,000
	0,0679	0.00002	100,000	0,000
	0,0791	0.00006	100,000	0,000
	0,0921	0.00022	100,000	0,000
	0,1073	0.00085	100,000	0,000
	0,125	0.00311	99,999	0,001
	0,1456	0.01019	99,996	0,004
	0,1697	0.02925	99,986	0,014
	0,1977	0.07302	99,956	0,044
	0,2303	0.15908	99,883	0,117
	0,2683	0.29840	99,724	0,276
	0,3125	0.46499	99,426	0,574
	0,3641	0.59781	98,961	1,039
	0,4242	0.68085	98,363	1,637
	0,4941	0.76072	97,682	2,318
	0,5757	0.83787	96,921	3,079
	0,6707	0.85942	96,084	3,916
	0,7813	0.88752	95,224	4,776
	0,9103	0.87598	94,337	5,663
	1,0604	0.87561	93,461	6,539
	1,2354	0.88325	92,585	7,415
	1,4393	0.89136	91,702	8,298
	1,6767	0.87348	90,810	9,190
	1,9534	0.84179	89,937	10,063
C150	2,2757	0.83798	89,095	10,905
G150	2,6512	0.84959	88,257	11,743
	3,0887	0.86770	87,408	12,592
	3,5983	0.87335	86,540	13,460
	4,192	0.84948	85,667	14,333
	4,8837	0.77682	84,817	15,183
	5,6895	0.65781	84,040	15,960
	6,6283	0.52090	83,382	16,618
	7,7219	0.24399	82,862	17,138
	8,996	0.28056	82,618	17,382
	10,4804	0.48137	82,337	17,663
	12,2096	0.93197	81,856	18,144
	14,2242	1,740	80,924	19,076
	16,5712	3,034	79,184	20,816
	19,3055	4,952	76,150	23,850
	22,4909	7,541	71,198	28,802
	26,2019	10,606	63,657	36,343
	30,5252	13,644	53,051	46,949
	35,5618	13,715	39,407	60,593
	41,4295	11,454	25,692	74,308
	48,2654	7,976	14,238	85,762
	56,2292	4,617	6,262	93,738
	65,507	1,645	1,645	98,355
	76,3157	0,000	0,000	100,000
	88,9077	0,000	0,000	100,000
	103,5775	0,000	0,000	100,000

Çizelge A.1 Hidrosiklon girişi tane boyu dağılımı.

Numune Kodu	Boyut	Miktar	Boyuttan İri Toplam	Boyuttan İnce Toplam
	(µm)	(%)	Miktar (%)	Miktar (%)
	0,0582	0.00785	100,000	0,000
	0,0679	0.02038	99,992	0.00785
	0,0791	0.04241	99,972	0,028
	0,0921	0.08260	99,929	0,071
	0,1073	0.15500	99,847	0,153
	0,125	0.27795	99,692	0,308
	0,1456	0.46931	99,414	0,586
	0,1697	0.74216	98,944	1,056
	0,1977	1,100	98,202	1,798
	0,2303	1,531	97,102	2,898
	0,2683	1,986	95,571	4,429
	0,3125	2,362	93,585	6,415
	0,3641	2,569	91,223	8,777
	0,4242	2,641	88,654	11,346
	0,4941	2,694	86,013	13,987
	0,5757	2,744	83,318	16,682
	0,6707	2,739	80,574	19,426
	0,7813	2,794	77,835	22,165
	0,9103	2,906	75,041	24,959
	1,0604	3,040	72,135	27,865
	1.2354	3,187	69.095	30,905
	1,4393	3,332	65,908	34.092
	1.6767	3,430	62,576	37.424
	1.9534	3.478	59,146	40.854
	2.2757	3.512	55.668	44.332
BU1503	2.6512	3.527	52,156	47.844
	3.0887	3,525	48.629	51.371
	3,5983	3,515	45,104	54,896
	4,192	3,502	41,589	58,411
	4.8837	3,480	38.086	61,914
	5.6895	3,443	34,606	65,394
	6 6283	3 379	31,000	68.837
	7 7219	3 298	27 784	72 216
	8 996	3,115	24 486	75 514
	10 4804	2 884	21,100	78,629
	12 2096	2,004	18 487	81 513
	14 2242	2,031	15,407	84 143
	16 5712	2,387	13,470	86 530
	10,3712	1 00/	11,708	88,702
	22 4000	1,994	0 304	90,696
	26,4909	1,041	7,463	90,090
	20,2019	1,000	7,403	92,337
	30,3232	1,010	3,113	94,223
	41 4205	1,291	4,203	93,133
	41,4293	0.85200	2,974	97,020
	40,2034	0.62412	1,902	70,070
	50,2292	0.03412	1,049	70,931
	03,307	0.41516	0,415	99,383
	/0,313/	0,000	0,000	100,000
	88,9077	0,000	0,000	100,000
1	103,5775	0,000	0,000	100,000

Çizelge A.2 Hidrosiklon üst akış tane boyu dağılımı 150 kPa.

	Pount	Miletor	Pouutton İri	Popultan İnas Tonlam
Numune Kodu	Boyut	(0/)	Toplam Milstor (%)	Milstor (%)
	(μ)	(70)	Topiani Miktai (76)	WIIKtal (70)
	0,0582	0.00000	100,000	0,000
	0,0679	0.00000	100,000	0,000
	0,0791	0.00000	100,000	0,000
	0,0921	0.00000	100,000	0,000
	0,1073	0.00000	100,000	0,000
	0,125	0.00000	100,000	0,000
	0,1456	0.00000	100,000	0,000
	0,1697	0.00004	100,000	0,000
	0,1977	0.00037	100,000	0,000
	0,2303	0.00277	100,000	0,000
	0,2683	0.01429	99,997	0,003
	0,3125	0.04695	99,983	0,017
	0,3641	0.09614	99,936	0,064
	0,4242	0.14559	99,839	0,161
	0,4941	0.20844	99,694	0,306
	0,5757	0.28379	99,485	0,515
	0,6707	0.31739	99,202	0,798
	0,7813	0.35179	98,884	1,116
	0,9103	0.33496	98,532	1,468
	1,0604	0.33055	98,198	1,803
	1,2354	0.33372	97,867	2,133
	1,4393	0.33063	97,533	2,467
	1,6767	0.29345	97,203	2,797
	1,9534	0.24680	96,909	3,091
D 1 1 500	2,2757	0.23477	96,662	3,338
BA1503	2,6512	0.24874	96,428	3,572
	3.0887	0.28547	96,179	3.821
	3,5983	0.32966	95,893	4,107
	4,192	0.36975	95,564	4.436
	4.8837	0.38271	95,194	4.806
	5.6895	0.35493	94.811	5,189
	6.6283	0.28084	94,456	5,544
	7 7219	0 19907	94 175	5 825
	8 996	0.07468	93 976	6.024
	10 4804	0.09645	93,902	6.098
	12 2096	0 24906	93,805	6 195
	14 2242	0.57430	93,556	6 444
	16 5712	1 179	92 982	7.018
	19 3055	2 269	91.803	8 197
	22 / 909	1 197	89 535	10.465
	26,2010	7 376	85 338	14,662
	20,2019	11,200	77.061	22.020
	35 5619	16 226	66 152	22,039
	41 4205	18 920	10 927	50,172
	41,4293	10,022	47,027	50,175
	48,2004	14,897	31,004	08,990
	30,2292	9,422	10,10/	02,075
	05,50/	4,///	0,085	93,313
	/0,315/	1,908	1,908	98,092
	88,90//	0.00000	0,000	100,000
1	103,5775	0.00000	0,000	100,000

Çizelge A.3 Hidrosiklon alt akış tane boyu dağılımı 150 kPa.

	Boyut	Miktar	Boyuttan İri Tonlam	Boyuttan İnce
Numune Kodu	(um)	(%)	Miktar (%)	Toplam Miktar (%)
	0.0582	0.00000	100.000	0.000
	0,0582	0.00000	100,000	0,000
	0,00791	0.00000	100,000	0,000
	0,0791	0.00000	100,000	0,000
	0,0921	0.00000	100,000	0,000
	0,1075	0.00000	100,000	0,000
	0,125	0.00000	100,000	0,000
	0.1697	0.00000	100,000	0,000
	0,1077	0.00003	100,000	0,000
	0,1977	0.00033	100,000	0,000
	0,2303	0.00233	00,000	0,000
	0,2085	0.01372	99,997	0,003
	0,3123	0.04020	99,985	0,017
	0,3041	0.09340	99,937	0,003
	0,4242	0.14443	99,842	0,158
	0,4941	0.20044	99,097	0,303
	0,5757	0.28045	99,491	0,509
	0,6/0/	0.31106	99,210	0,790
	0,7813	0.34245	98,899	1,101
	0,9103	0.32404	98,557	1,443
	1,0604	0.31914	98,233	1,767
	1,2354	0.32366	97,914	2,086
	1,4393	0.32351	97,590	2,410
	1,6767	0.28871	97,267	2,733
	1,9534	0.24313	96,978	3,022
BU1603	2,2757	0.23181	96,735	3,265
201000	2,6512	0.24568	96,503	3,497
	3,0887	0.28172	96,257	3,743
	3,5983	0.32436	95,975	4,025
	4,192	0.36445	95,651	4,349
	4,8837	0.38041	95,287	4,713
	5,6895	0.35947	94,906	5,094
	6,6283	0.29242	94,547	5,453
	7,7219	0.21103	94,254	5,746
	8,996	0.07444	94,043	5,957
	10,4804	0.08843	93,969	6,031
	12,2096	0.22727	93,880	6,120
	14,2242	0.53020	93,653	6,347
	16,5712	1,094	93,123	6,877
	19,3055	2,105	92,029	7,971
	22,4909	3,893	89,925	10,075
	26,2019	6,886	86,032	13,968
	30,5252	11,238	79,146	20,854
	35,5618	16,059	67,908	32,092
	41,4295	19,243	51,849	48,151
	48,2654	15,814	32,606	67,394
	56,2292	10,290	16,792	83,208
	65,507	5,355	6,502	93,498
	76,3157	1,147	1,147	98,853
	88,9077	0,000	0,000	100.000
	103,5775	0,000	0,000	100,000

Çizelge A.4 Hidrosiklon üst akış tane boyu dağılımı 160 kPa.

Kotu (0) (76) (76) (76) (76) (76) (76) 0.0582 0.00788 100,000 0,000 0.0679 0.02046 99,992 0.00788 0.0791 0.04258 99,972 0.028 0.0921 0.08286 99,929 0.071 0.1073 0.15526 99,846 0.154 0.125 0.27773 99,691 0.309 0.1456 0.46728 99,413 0.587 0.1697 0.73554 98,946 1.054 0.1977 1.084 98,210 1.790 0.2303 1,500 97,126 2.874 0.2683 1,936 95,626 4.375 0.3125 2.293 93,690 6,310 0.3441 2,400 98,946 1.054 0.7813 2,722 78,422 21,578 0.5757 2,657 83,739 16,262 0.6707 2,459 88,907 11,093	Numune	Boyut	Miktar	Boyuttan İri	Boyuttan İnce
BA1603 BA1603	Kodu	(µIII)	(70)		
BA1603 BA160 BA1		0,0582	0.00788	100,000	0,000
BA1603 BA1603		0,0679	0.02046	99,992	0.00788
BA1603 0,0921 0,002 0,1073 0,15526 99,846 0,154 0,107 0,1552 0,27773 99,691 0,309 0,1456 0,46728 99,413 0,587 0,1697 0,73554 98,946 1,054 1,054 0,1977 1,084 98,210 1,790 0,2303 1,500 97,126 2,874 0,2683 1,936 95,626 4,375 0,3125 2,293 93,690 6,310 0,3641 2,490 91,396 8,604 0,4242 2,559 88,907 11,093 0,4941 2,609 86,348 13,652 0,575 2,657 83,739 16,262 0,6707 2,659 81,081 18,919 0,7813 2,722 78,422 2,1578 0,9103 2,852 75,700 24,300 1,0604 3,003 72,848 27,152 1,2354 3,165 69,845 30,155 1,4393 3,323 66,680 33,320 1,676 3,429 63,356 36,644 1,9534 3,474 59,927 40,073 2,2757 3,497 56,453 43,547 2,6512 3,491 52,957 47,043 3,087 3,463 49,466 50,534 3,5983 3,424 46,003 53,997 4,192 3,386 42,578 57,422 4,8837 3,345 39,193 60,807 5,6895 3,299 35,848 64,152 6,6283 3,238 32,549 67,451 7,7219 3,166 29,310 70,690 8,996 3,020 26,144 73,856 10,4804 2,839 23,125 76,875 12,2096 2,646 20,286 79,714 14,2242 2,468 17,640 82,360 16,5712 2,319 15,173 84,827 19,3055 2,200 12,854 87,146 22,499 2,093 10,654 89,346 26,2019 1,969 8,560 91,440 30,525 1,798 6,591 93,409 35,5618 1,560 4,793 95,207 41,4295 1,260 3,232 96,768 482,265 0,9585 1,973 98,8027 56,292 0,65761 1,014 98,986 65,507 0,3566 0,357 99,643 76,3157 0,000 0,000 10,000		0,0791	0.04258	99,972	0,028
BA1603 BA160 BA1603 BA160 BA1603 BA1603 BA1603 BA1603 BA1603 BA160 BA1603 BA160 BA1603 BA		0,0921	0.08286	99,929	0,071
BA1603 0,125 0,127 0,167 0,73554 99,413 0,587 0,1697 0,73554 98,946 1,054 0,1977 1,084 98,210 1,790 0,2303 1,500 97,126 2,874 0,2683 1,936 95,626 4,375 0,3125 2,293 93,690 6,310 0,3641 2,490 91,396 8,604 0,4242 2,559 88,907 11,093 0,4941 2,609 86,548 13,652 0,5757 2,657 83,739 16,262 0,6707 2,659 81,081 18,919 0,7813 2,722 78,422 21,578 0,9103 2,852 75,700 24,300 1,0604 3,003 72,848 27,152 1,2354 3,165 69,845 30,155 1,4393 3,323 66,680 33,320 1,676 3,429 63,356 36,644 1,9534 3,474 59,927 40,073 2,2757 3,497 56,453 43,547 2,6551 2,3,491 52,957 47,043 3,0887 3,463 49,466 50,534 3,5983 3,424 46,003 53,997 4,192 3,386 42,578 57,422 4,8837 3,345 39,193 60,807 5,6895 3,299 35,848 64,152 6,6283 3,238 22,549 67,451 7,7219 3,166 29,310 70,690 8,996 3,020 26,144 73,856 10,4804 2,839 23,125 76,875 12,206 2,646 20,286 79,714 14,224 2,468 17,640 82,360 16,5712 2,319 15,173 84,827 19,3055 2,200 12,854 87,146 22,4909 2,093 10,654 89,346 26,2019 1,969 8,560 91,440 30,525 1,798 6,591 93,409 35,5618 1,560 4,793 95,207 41,4295 1,260 3,232 96,768 48,2654 0,95856 1,973 98,027 56,2292 0,65761 1,014 98,986 65,507 0,3567 0,357 99,643 76,3157 0,000 0,000 100,000		0,1073	0.15526	99,846	0,154
BA1603 BA1603		0,125	0.27773	99,691	0,309
BA1603 BA1603		0,1456	0.46728	99,413	0,587
BA1603 0,1977 1,084 98,210 1,790 0,2303 1,500 97,126 2,874 0,2683 1,936 95,626 4,375 0,3125 2,293 93,690 6,310 0,3641 2,490 91,396 8,604 0,4242 2,559 88,907 11,093 0,4941 2,609 86,348 13,652 0,5757 2,657 83,739 16,262 0,6707 2,659 81,081 18,919 0,7813 2,722 78,422 21,578 0,9103 2,852 75,700 24,300 1,0604 3,003 72,848 27,152 1,2354 3,165 69,845 30,155 1,4393 3,323 66,680 33,320 1,6767 3,429 63,356 36,644 1,9534 3,474 59,927 40,073 2,2757 3,497 56,453 43,547 2,2757 3,497 56,453 43,547 2,26512 3,491 52,957 47,043 3,0887 3,463 49,466 50,534 3,5983 3,424 46,003 53,997 4,192 3,386 42,578 57,422 4,8837 3,345 39,193 60,807 5,6895 3,299 35,848 64,152 6,6283 3,238 22,549 67,451 7,7219 3,166 29,310 70,690 8,996 3,020 26,144 73,856 10,4804 2,839 23,125 76,875 12,2096 2,646 20,286 79,714 14,2242 2,468 17,640 82,360 16,5712 2,319 15,173 84,827 19,3055 2,200 12,854 87,146 22,409 2,093 10,654 89,346 22,601 1,969 8,560 91,440 30,5252 1,798 6,591 93,409 35,5618 1,560 4,793 95,207 41,4295 1,260 3,232 96,768 48,2654 0,95856 1,973 98,027 56,2292 0,65761 1,014 98,986 65,507 0,3567 0,357 99,643 76,3157 0,000 0,000 100,000		0,1697	0.73554	98,946	1,054
BA1603 0,2303 1,500 97,126 2,874 0,2683 1,936 95,626 4,375 0,3125 2,293 93,690 6,310 0,3641 2,490 91,396 8,604 0,4242 2,559 88,907 11,093 0,4941 2,609 86,348 13,652 0,5757 2,657 83,739 16,262 0,6707 2,659 81,081 18,919 0,7813 2,722 78,422 21,578 0,9103 2,852 75,700 24,300 1,0604 3,003 72,848 27,152 1,2354 3,165 69,845 30,155 1,4393 3,323 66,680 33,320 1,6767 3,429 63,356 36,644 1,9534 3,474 59,927 40,073 2,2757 3,497 56,453 43,547 2,6512 3,491 52,957 47,043 3,0887 3,463 49,466 50,534 3,5983 3,424 46,003 53,997 4,192 3,386 42,578 57,422 4,8837 3,345 39,193 60,807 5,6895 3,299 35,848 64,152 6,6283 3,238 32,549 67,451 7,7219 3,166 29,310 70,690 8,996 3,020 2,646 20,286 79,714 14,224 2,468 17,640 82,360 16,5712 2,319 15,173 84,827 19,3055 2,200 12,854 87,146 22,490 2,093 10,654 89,346 26,2019 1,969 8,560 91,440 30,525 1,206 3,232 96,768 48,2654 0,95856 1,973 98,027 56,2292 0,65761 1,014 98,986 65,507 0,3566 0,000 100,000		0,1977	1,084	98,210	1,790
BA1603 BA160 BA16		0,2303	1,500	97,126	2,874
BA1603 0,3125 0,325 0,325 0,325 0,325 0,424 0,325 0,424 0,424 0,559 0,5757 0,567 0,5757 0,568 0,5757 0,568 0,5757 0,568 0,5757 0,568 0,5757 0,568 0,5757 0,575 0,57 0,575 0,57 0,57 0,57		0,2683	1,936	95,626	4,375
BA1603 0,3641 2,490 91,396 8,604 0,4242 2,559 88,907 11,093 0,4941 2,609 86,348 13,652 0,5757 2,657 83,739 16,262 0,6707 2,659 81,081 18,919 0,7813 2,722 78,422 21,578 0,9103 2,852 75,700 24,300 1,0604 3,003 72,848 27,152 1,2354 3,165 69,845 30,155 1,4393 3,323 66,680 33,320 1,6767 3,429 63,356 36,644 1,9534 3,474 59,927 40,073 2,2757 3,497 56,453 43,547 2,6512 3,491 52,957 47,043 3,0887 3,463 49,466 50,534 3,5983 3,424 46,003 53,997 4,192 3,386 42,578 57,422 4,8837 3,345 39,193 60,807 5,6895 3,299 35,848 64,152 6,6283 3,238 32,549 67,451 7,7219 3,166 29,310 70,690 8,996 3,020 26,144 73,856 10,4804 2,839 23,125 76,875 12,2096 2,646 20,286 79,714 14,2242 2,468 17,640 82,360 16,5712 2,319 15,173 84,827 19,3055 2,200 12,854 87,146 22,4909 2,093 10,654 89,346 26,2019 1,969 8,550 91,440 30,5252 1,798 6,591 93,409 35,5618 1,560 4,793 95,207 41,4295 1,260 3,232 96,768 48,2654 0,95856 1,973 98,027 56,2292 0,65761 1,014 98,986 65,507 0,35667 0,357 99,643 76,3157 0,000 0,000 100,000		0,3125	2,293	93,690	6,310
BA1603 0,4242 0,559 88,907 11,093 0,4941 2,609 86,348 13,652 0,5757 2,657 83,739 16,262 0,6707 2,659 81,081 18,919 0,7813 2,722 78,422 21,578 0,9103 2,852 75,700 24,300 1,0604 3,003 72,848 27,152 1,2354 3,165 69,845 30,155 1,4393 3,323 66,680 33,320 1,6767 3,429 63,356 36,644 1,9534 3,474 59,927 40,073 2,2757 3,497 56,453 43,547 2,6512 3,491 52,957 47,043 3,0887 3,463 49,466 50,534 3,5983 3,424 46,003 53,997 4,192 3,386 42,578 57,422 4,8837 3,345 39,193 60,807 5,6895 3,299 35,848 64,152 6,6283 3,238 32,549 67,451 7,7219 3,166 29,310 70,690 8,996 3,020 26,144 73,856 10,4804 2,839 23,125 76,875 12,200 12,854 87,146 22,499 2,093 10,654 89,346 26,2019 1,969 8,560 91,440 30,5252 1,798 6,591 93,409 35,5618 1,560 4,793 95,207 41,4295 1,260 3,232 96,768 48,2654 0,95856 1,973 98,027 56,2292 0,65761 1,014 98,986 65,507 0,35667 0,357 99,643 76,3157 0,000 0,000 100,000 88,9077 0,000 0,000 100,000		0,3641	2,490	91,396	8,604
BA1603 BA160 BA165 BA1		0,4242	2,559	88,907	11,093
BA1603 0,5757 2,657 83,739 16,262 0,6707 2,659 81,081 18,919 0,7813 2,722 78,422 21,578 0,9103 2,852 75,700 24,300 1,0604 3,003 72,848 27,152 1,2354 3,165 69,845 30,155 1,4393 3,323 66,680 33,320 1,6767 3,429 63,356 36,644 1,9534 3,474 59,927 40,073 2,2757 3,491 52,957 47,043 3,0887 3,463 49,466 50,534 3,5983 3,424 46,003 53,997 4,192 3,386 42,578 57,422 4,8837 3,345 39,193 60,807 5,6895 3,299 35,848 64,152 6,6283 3,238 32,549 67,451 7,7219 3,166 29,310 70,690 8,996 3,020 26,144		0,4941	2,609	86,348	13,652
BA1603 0,6707 2,659 81,081 18,919 0,7813 2,722 78,422 21,578 0,9103 2,852 75,700 24,300 1,0604 3,003 72,848 27,152 1,2354 3,165 69,845 30,155 1,4393 3,323 66,680 33,320 1,6767 3,429 63,356 36,644 1,9534 3,474 59,927 40,073 2,2757 3,497 56,453 43,547 2,6512 3,491 52,957 47,043 3,0887 3,463 49,466 50,534 3,5983 3,424 46,003 53,997 4,192 3,386 42,578 57,422 4,8837 3,345 39,193 60,807 5,6895 3,299 35,848 64,152 6,6283 3,238 32,549 67,451 7,7219 3,166 29,310 70,690 8,996 3,020 26,144		0,5757	2,657	83,739	16,262
BA1603 0,7813 2,722 78,422 21,578 0,9103 2,852 75,700 24,300 1,0604 3,003 72,848 27,152 1,2354 3,165 69,845 30,155 1,4393 3,322 66,680 33,320 1,6767 3,429 63,356 36,644 1,9534 3,474 59,927 40,073 2,2757 3,497 56,453 43,547 2,6512 3,491 52,957 47,043 3,0887 3,463 49,466 50,534 3,5983 3,424 46,003 53,997 4,192 3,386 42,578 57,422 4,8837 3,345 39,193 60,807 5,6895 3,299 35,848 64,152 6,6283 3,238 32,549 67,451 7,7219 3,166 29,310 70,690 8,996 3,020 26,144 73,856 10,4804 2,839 23,125		0,6707	2,659	81,081	18,919
BA1603 2,852 75,700 24,300 1,0604 3,003 72,848 27,152 1,2354 3,165 69,845 30,155 1,4393 3,323 66,680 33,320 1,6767 3,429 63,356 36,644 1,9534 3,474 59,927 40,073 2,2757 3,497 56,453 43,547 2,6512 3,491 52,957 47,043 3,0887 3,463 49,466 50,534 3,5983 3,424 46,003 53,997 4,192 3,386 42,578 57,422 4,8837 3,345 39,193 60,807 5,6895 3,299 35,848 64,152 6,6283 3,231 70,690 8,996 3,020 26,144 73,856 10,4804 2,839 23,125 76,875 12,2096 2,646 20,286 79,714 14,2242 2,468 17,640 82,360		0,7813	2,722	78,422	21,578
$BA1603 = \begin{bmatrix} 1,0604 & 3,003 & 72,848 & 27,152 \\ 1,2354 & 3,165 & 69,845 & 30,155 \\ 1,4393 & 3,323 & 66,680 & 33,320 \\ 1,6767 & 3,429 & 63,356 & 36,644 \\ 1,9534 & 3,474 & 59,927 & 40,073 \\ 2,2757 & 3,497 & 56,453 & 43,547 \\ 2,6512 & 3,491 & 52,957 & 47,043 \\ 3,0887 & 3,463 & 49,466 & 50,534 \\ 3,5983 & 3,424 & 46,003 & 53,997 \\ 4,192 & 3,386 & 42,578 & 57,422 \\ 4,8837 & 3,345 & 39,193 & 60,807 \\ 5,6895 & 3,299 & 35,848 & 64,152 \\ 6,6283 & 3,238 & 32,549 & 67,451 \\ 7,7219 & 3,166 & 29,310 & 70,690 \\ 8,996 & 3,020 & 26,144 & 73,856 \\ 10,4804 & 2,839 & 23,125 & 76,875 \\ 12,2096 & 2,646 & 20,286 & 79,714 \\ 14,2242 & 2,468 & 17,640 & 82,360 \\ 16,5712 & 2,319 & 15,173 & 84,827 \\ 19,3055 & 2,200 & 12,854 & 87,146 \\ 22,4909 & 2,093 & 10,654 & 89,346 \\ 26,2019 & 1,969 & 8,560 & 91,440 \\ 30,5252 & 1,798 & 6,591 & 93,409 \\ 35,5618 & 1,560 & 4,793 & 95,207 \\ 41,4295 & 1,260 & 3,232 & 96,768 \\ 48,2654 & 0.95856 & 1,973 & 98,027 \\ 56,2292 & 0.65761 & 1,014 & 98,986 \\ 65,507 & 0.35667 & 0,357 & 99,643 \\ 76,3157 & 0,000 & 0,000 & 100,000 \\ \hline $		0,9103	2,852	75,700	24,300
I.2354 3,165 69,845 30,155 1,4393 3,323 66,680 33,320 1,6767 3,429 63,356 36,644 1,9534 3,474 59,927 40,073 2,2757 3,497 56,453 43,547 2,6512 3,491 52,957 47,043 3,0887 3,463 49,466 50,534 3,5983 3,424 46,003 53,997 4,192 3,386 42,578 57,422 4,8837 3,345 39,193 60,807 5,6895 3,299 35,848 64,152 6,6283 3,238 32,549 67,451 7,7219 3,166 29,310 70,690 8,996 3,020 26,144 73,856 10,4804 2,839 23,125 76,875 12,2096 2,646 20,286 79,714 14,2242 2,468 17,640 82,360 16,5712 2,319 15,173 84,827		1,0604	3,003	72,848	27,152
I,4393 3,323 66,680 33,320 1,6767 3,429 63,356 36,644 1,9534 3,474 59,927 40,073 2,2757 3,497 56,453 43,547 2,6512 3,491 52,957 47,043 3,0887 3,463 49,466 50,534 3,5983 3,424 46,003 53,997 4,192 3,386 42,578 57,422 4,8837 3,345 39,193 60,807 5,6895 3,299 35,848 64,152 6,6283 3,238 32,549 67,451 7,7219 3,166 29,310 70,690 8,996 3,020 26,144 73,856 10,4804 2,839 23,125 76,875 12,2096 2,646 20,286 79,714 14,2242 2,468 17,640 82,360 16,5712 2,319 15,173 84,827 19,3055 2,200 12,854 87,146		1,2354	3,165	69,845	30,155
BA1603 1,6767 3,429 63,356 36,644 1,9534 3,474 59,927 40,073 2,2757 3,497 56,453 43,547 2,6512 3,491 52,957 47,043 3,0887 3,463 49,466 50,534 3,5983 3,424 46,003 53,997 4,192 3,386 42,578 57,422 4,8837 3,345 39,193 60,807 5,6895 3,299 35,848 64,152 6,6283 3,238 32,549 67,451 7,7219 3,166 29,310 70,690 8,996 3,020 26,144 73,856 10,4804 2,839 23,125 76,875 12,2096 2,646 20,286 79,714 14,2242 2,468 17,640 82,360 16,5712 2,319 15,173 84,827 19,3055 2,200 12,854 87,146 22,4909 2,093 10,654 <td></td> <td>1,4393</td> <td>3,323</td> <td>66,680</td> <td>33,320</td>		1,4393	3,323	66,680	33,320
BA1603 1,9534 3,474 59,927 40,073 2,2757 3,497 56,453 43,547 2,6512 3,491 52,957 47,043 3,0887 3,463 49,466 50,534 3,5983 3,424 46,003 53,997 4,192 3,386 42,578 57,422 4,8837 3,345 39,193 60,807 5,6895 3,299 35,848 64,152 6,6283 3,238 32,549 67,451 7,7219 3,166 29,310 70,690 8,996 3,020 26,144 73,856 10,4804 2,839 23,125 76,875 12,2096 2,646 20,286 79,714 14,2242 2,468 17,640 82,360 16,5712 2,319 15,173 84,827 19,3055 2,200 12,854 87,146 22,4909 2,093 10,654 89,346 26,2019 1,969 8,560 <td></td> <td>1,6767</td> <td>3,429</td> <td>63,356</td> <td>36,644</td>		1,6767	3,429	63,356	36,644
BA1603 2,2757 3,497 56,453 43,547 2,6512 3,491 52,957 47,043 3,0887 3,463 49,466 50,534 3,5983 3,424 46,003 53,997 4,192 3,386 42,578 57,422 4,8837 3,345 39,193 60,807 5,6895 3,299 35,848 64,152 6,6283 3,238 32,549 67,451 7,7219 3,166 29,310 70,690 8,996 3,020 26,144 73,856 10,4804 2,839 23,125 76,875 12,2096 2,646 20,286 79,714 14,2242 2,468 17,640 82,360 16,5712 2,319 15,173 84,827 19,3055 2,200 12,854 87,146 22,4909 2,093 10,654 89,346 26,2019 1,969 8,560 91,440 30,5252 1,798 6,591 <td></td> <td>1,9534</td> <td>3,474</td> <td>59,927</td> <td>40,073</td>		1,9534	3,474	59,927	40,073
$\begin{array}{r c c c c c c c c c c c c c c c c c c c$	DA1(02	2,2757	3,497	56,453	43,547
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	BA1603	2,6512	3,491	52,957	47,043
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		3,0887	3,463	49,466	50,534
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$		3,5983	3,424	46,003	53,997
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$		4,192	3,386	42,578	57,422
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$		4,8837	3,345	39,193	60,807
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$		5,6895	3,299	35,848	64,152
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$		6,6283	3,238	32,549	67,451
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$		7,7219	3,166	29,310	70,690
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$		8,996	3.020	26,144	73.856
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		10,4804	2,839	23,125	76,875
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$		12.2096	2.646	20.286	79,714
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$		14.2242	2.468	17.640	82,360
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$		16.5712	2.319	15,173	84,827
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		19.3055	2.200	12.854	87,146
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		22 4909	2 093	10,654	89 346
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		26 2019	1 969	8 560	91 440
35,5618 1,560 4,793 95,207 41,4295 1,260 3,232 96,768 48,2654 0.95856 1,973 98,027 56,2292 0.65761 1,014 98,986 65,507 0.35667 0,357 99,643 76,3157 0,000 0,000 100,000 88,9077 0,000 0,000 100,000		30 5252	1 798	6 591	93 409
41,4295 1,260 3,232 96,768 48,2654 0.95856 1,973 98,027 56,2292 0.65761 1,014 98,986 65,507 0.35667 0,357 99,643 76,3157 0,000 0,000 100,000 88,9077 0,000 0,000 100,000		35 5618	1 560	4 793	95 207
43,225 1,200 3,232 90,108 48,2654 0.95856 1,973 98,027 56,2292 0.65761 1,014 98,986 65,507 0.35667 0,357 99,643 76,3157 0,000 0,000 100,000 88,9077 0,000 0,000 100,000		41 4295	1,500	3 232	96 768
+6,2034 0.73630 1,775 98,027 56,2292 0.65761 1,014 98,986 65,507 0.35667 0,357 99,643 76,3157 0,000 0,000 100,000 88,9077 0,000 0,000 100,000		18 2654	0.95856	1 073	98.027
50,2222 0.05701 1,014 98,980 65,507 0.35667 0,357 99,643 76,3157 0,000 0,000 100,000 88,9077 0,000 0,000 100,000		56 22024	0.55050	1,775	08 086
05,507 0.5507 0,557 99,043 76,3157 0,000 0,000 100,000 88,9077 0,000 0,000 100,000		65 507	0.03701	0.357	90,900
70,5157 0,000 0,000 100,000 88,9077 0,000 0,000 100,000		76 2157	0.000/	0,000	100.000
00,7077 0,000 0,000 100,000		88 0077	0,000	0,000	100,000
		103 5775	0,000	0,000	100,000

Çizelge A.5 Hidrosiklon alt akış tane boyu dağılımı 160 kPa.

Numune Kodu	Boyut (µm)	Miktar (%)	Boyuttan İri Toplam Miktar (%)	Boyuttan İnce Toplam Miktar (%)
	0,0582	0.01409	100,000	0,000
	0,0679	0.03477	99,986	0.01409
	0,0791	0.06788	99,951	0,049
	0,0921	0.12268	99,883	0,117
	0,1073	0.21229	99,761	0,239
	0,125	0.35092	99,548	0,452
	0,1456	0.54889	99,197	0,803
	0,1697	0.81012	98,649	1,352
	0,1977	1,130	97,838	2,162
	0.2303	1,493	96,708	3,292
	0,2683	1,858	95,215	4,785
	0.3125	2.150	93,357	6,643
	0.3641	2.310	91,207	8,793
	0.4242	2.368	88,897	11.103
	0.4941	2,411	86,529	13,471
	0.5757	2.452	84,118	15,882
	0.6707	2.457	81.665	18,335
	0.7813	2.511	79.208	20,792
	0.9103	2.616	76.697	23,303
	1.0604	2,735	74,082	25,918
	1,0001	2,755	71,347	28,653
	1,4393	2,976	68,487	31,513
	1,6767	3 055	65 511	34 489
	1,9534	3,092	62,456	37,544
	2 2757	3,092	59 364	40.637
BU1703	2,2737	3 125	56 248	43 752
	3 0887	3 123	53 123	46 877
	3 5983	3,119	50,000	50.001
	4 192	3 1 1 8	46 881	53 119
	4,8837	3,118	43,763	56.237
	5 6895	3 1 1 3	40.645	59 355
	6.6283	3,090	37,532	62,468
	7.7219	3.046	34,442	65,558
	8 996	2 986	31,396	68 604
	10 4804	2,900	28 410	71 590
	12 2096	2,911	25,499	74 501
	14 2242	2,010	22,683	77 317
	16.5712	2,706	19,937	80.063
	19 3055	2,780	17,231	82 769
	22 4909	2,664	14 542	85 458
	26 2019	2,589	11,878	88 122
	30,5252	2,303	9.289	90.711
	35,5618	2,144	6.866	93,134
	41,4295	1,759	4,722	95,278
	48,2654	1,373	2.963	97,037
	56 2292	0.98769	1 590	98 410
	65 507	0.60220	0.602	99 398
	76 3157	0.000	0.000	100.000
	88 9077	0,000	0,000	100,000
	103,5775	0.000	0.000	100,000

Çizelge A.6 Hidrosiklon üst akış tane boyu dağılımı 170 kPa.

Numune Kodu	Boyut	Miktar	Boyuttan İri Toplam	Boyuttan İnce Toplam
	(µm)	(70)	IVIIKtar (70)	Miktar (70)
	0,0582	0.00000	100,000	0,000
	0,0679	0.00000	100,000	0,000
	0,0791	0.00000	100,000	0,000
	0,0921	0.00000	100,000	0,000
	0,1073	0.00000	100,000	0,000
	0,125	0.00000	100,000	0,000
	0,1456	0.00001	100,000	0,000
	0,1697	0.00008	100,000	0,000
	0,1977	0.00066	100,000	0,000
	0,2303	0.00416	99,999	0,001
	0,2683	0.01891	99,995	0,005
	0,3125	0.05677	99,976	0,024
	0,3641	0.11047	99,919	0,081
	0,4242	0.16294	99,809	0,191
	0,4941	0.22832	99,646	0,354
	0,5757	0.30557	99,418	0,582
	0,6707	0.34129	99,112	0,888
	0,7813	0.37818	98,771	1,229
	0,9103	0.36406	98,393	1,607
	1,0604	0.36239	98,029	1,971
	1,2354	0.36829	97,666	2,334
	1,4393	0.36723	97,298	2,702
	1,6767	0.33016	96,931	3,069
	1,9534	0.28173	96,601	3,399
BA1703	2,2757	0.26797	96,319	3,681
DAT/05	2,6512	0.28039	96,051	3,949
	3,0887	0.31667	95,770	4,230
	3,5983	0.35836	95,454	4,546
	4,192	0.39318	95,095	4,905
	4,8837	0.39568	94,702	5,298
	5,6895	0.35424	94,307	5,693
	6,6283	0.26932	93,952	6,048
	7,7219	0.07906	93,683	6,317
	8,996	0.05655	93,604	6,396
	10,4804	0.12989	93,547	6,453
	12,2096	0.32632	93,418	6,583
	14,2242	0.72226	93,091	6,909
	16,5712	1,450	92,369	7,631
	19,3055	2,764	90,919	9,081
	22,4909	5,051	88,155	11,845
	26,2019	8,592	83,103	16,897
	30,5252	12,913	74,511	25,489
	35,5618	16,442	61,598	38,402
	41,4295	17,679	45,156	54,844
	48,2654	13,402	27,477	72,523
	56,2292	8,308	14,075	85,925
	65,507	4,155	5,767	94,233
	76,3157	1,612	1,612	98,388
	88,9077	0,000	0,000	100,000
	103,5775	0,000	0,000	100,000

Çizelge A.7 Hidrosiklon alt akış tane boyu dağılımı 170 kPa.

Numune Kodu	Boyut (µm)	Miktar (%)	Boyuttan İri Toplam Miktar (%)	Boyuttan İnce Toplam Miktar (%)
	0,0582	0,01262	100,000	0,000
	0,0679	0,03122	99,987	0,013
	0,0791	0,06114	99,956	0,044
	0,0921	0,11090	99,895	0,105
	0,1073	0,19261	99,784	0,216
	0,125	0,31958	99,592	0,408
	0,1456	0,50167	99,272	0,728
	0,1697	0,74299	98,770	1,230
	0,1977	1,04010	98,027	1,973
	0,2303	1,37870	96,987	3,013
	0,2683	1,72127	95,609	4,392
	0,3125	1,99797	93,887	6,113
	0,3641	2,15308	91,889	8,111
	0,4242	2,21410	89,736	10,264
	0,4941	2,26065	87,522	12,478
	0,5757	2,30479	85,261	14,739
	0,6707	2,31203	82,957	17,043
	0,7813	2,36121	80,645	19,355
	0,9103	2,44636	78,283	21,717
	1,0604	2,54310	75,837	24,163
	1,2354	2,64088	73,294	26,706
	1,4393	2,72867	70,653	29,347
	1,6767	2,78054	67,924	32,076
	1,9534	2,79657	65,144	34,856
DUIDOD	2,2757	2,80442	62,347	37,653
B01803	2,6512	2,80560	59,543	40,457
	3,0887	2,80644	56,737	43,263
	3,5983	2,81703	53,931	46,069
	4,192	2,84713	51,114	48,886
	4,8837	2,89695	48,267	51,733
	5,6895	2,96359	45,370	54,630
	6,6283	3,03393	42,406	57,594
	7,7219	3,10185	39,372	60,628
	8,996	3,16322	36,270	63,730
	10,4804	3,21285	33,107	66,893
	12,2096	3,25218	29,894	70,106
	14,2242	3,26557	26,642	73,358
	16,5712	3,26627	23,377	76,624
	19,3055	3,24553	20,110	79,890
	22,4909	3,18255	16,865	83,135
	26,2019	3,04896	13,682	86,318
	30,5252	2,81669	10,633	89,367
	35,5618	2,46962	7,817	92,184
	41,4295	2,01647	5,347	94,653
	48,2654	1,56331	3,330	96,670
	56,2292	1,11015	1,767	98,233
	65,507	0,65699	0,657	99,343
	76,3157	0,00000	0,000	100,000
	88,9077	0,00000	0,000	100,000
	103,5775	0,00000	0,000	100,000

Çizelge A.8 Hidrosiklon üst akış tane boyu dağılımı 180 kPa.

Numune Kodu	Boyut	Miktar	Boyuttan İri Toplam Miktar (%)	Boyuttan İnce Toplam Miktar (%)
	0.0592	0,00000	100.000	0.000
	0,0582	0.00000	100,000	0,000
	0,0079	0.00000	100,000	0,000
	0,0791	0.00000	100,000	0,000
	0,0921	0.00000	100,000	0,000
	0,1075	0.00000	100,000	0,000
	0,125	0.00000	100,000	0,000
	0,1430	0.00000	100,000	0,000
	0,1077	0.0004	100,000	0,000
	0,1977	0.00041	100,000	0,000
	0,2303	0.00294	100,000	0,000
	0,2085	0.01443	99,997	0,003
	0,3125	0.04369	99,982	0,018
	0,3041	0.09219	99,930	0,064
	0,4242	0.13890	99,844	0,156
	0,4941	0.19588	99,705	0,295
	0,5757	0.26110	99,510	0,490
	0,6707	0.28907	99,248	0,752
	0,7813	0.31538	98,959	1,041
	0,9103	0.29953	98,644	1,356
	1,0604	0.29447	98,344	1,656
	1,2354	0.29894	98,050	1,950
	1,4393	0.30146	97,751	2,249
	1,6767	0.27457	97,450	2,550
	1,9534	0.23708	97,175	2,825
BA1803	2,2757	0.22955	96,938	3,062
	2,6512	0.24379	96,708	3,292
	3,0887	0.27633	96,465	3,535
	3,5983	0.31241	96,188	3,812
	4,192	0.34702	95,876	4,124
	4,8837	0.36183	95,529	4,471
	5,6895	0.34744	95,167	4,833
	6,6283	0.29236	94,820	5,180
	7,7219	0.21691	94,527	5,473
	8,996	0.07126	94,310	5,690
	10,4804	0.07497	94,239	5,761
	12,2096	0.19306	94,164	5,836
	14,2242	0.46623	93,971	6,029
	16,5712	0.98463	93,505	6,495
	19,3055	1,911	92,520	7,480
	22,4909	3,534	90,609	9,391
	26,2019	6,251	87,075	12,925
	30,5252	10,305	80,824	19,176
	35,5618	15,175	70,519	29,481
	41,4295	19,099	55,343	44,657
	48,2654	16,736	36,244	63,756
	56,2292	11,498	19,508	80,492
	65,507	6,273	8,010	91,990
	76,3157	1,737	1,737	98,263
	88,9077	0,000	0,000	100,000
	103,5775	0,000	0,000	100,000

Çizelge A.9 Hidrosiklon alt akış tane boyu dağılımı 180 kPa.

Numune Kodu	Boyut (µm)	Miktar (%)	Boyuttan İri Toplam Miktar (%)	Boyuttan İnce Toplam Miktar (%)
	0,0582	0.00695	100.000	0.000
	0,0679	0.01813	99,993	0.007
	0,0791	0.03796	99,975	0.025
	0,0921	0.07442	99,937	0.063
	0.1073	0.14048	99.863	0.137
	0,125	0.25312	99,722	0.278
	0,1456	0.42882	99,469	0.531
	0,1697	0.67942	99,040	0.960
	0,1977	1.008	98,361	1.639
	0.2303	1.403	97.353	2.647
	0.2683	1.821	95,949	4.051
	0.3125	2,169	94,128	5.872
	0.3641	2.367	91,959	8.041
	0.4242	2,444	89,592	10.408
	0.4941	2,502	87,148	12,852
	0.5757	2,502	84 645	15 355
	0.6707	2,555	82,090	17,910
	0.7813	2,555	79 535	20.465
	0,9103	2,005	76.931	23,069
	1 0604	2,057	74,234	25,009
	1,0004	2,808	71,426	28,574
	1,2334	2,928	68 408	20,574
	1,4373	2 126	65 451	24 540
	1,0707	3,120	62 225	34,349
	2 2757	3,103	50.162	40.838
BU1903	2,2737	3,193	55 060	40,838
	2,0312	3,213	53,909	44,031
	3,0007	3,224	32,730	47,244
	3,3983	3,235	49,332	52,702
	4,192	3,240	40,298	56.048
	4,005	3,237	45,052	50,948
	5,0895	3,230	39,790	60,204
	7 7210	3,228	22,211	05,401
	2,7219	3,108	33,311	00,089
	0,990	3,082	30,143	72.020
	10,4804	2,975	27,061	72,939
	12,2096	2,825	24,085	/5,915
	14,2242	2,695	21,261	/8,/40
	16,5/12	2,599	18,566	81,434
	19,3055	2,537	15,967	84,033
	22,4909	2,483	13,430	86,571
	26,2019	2,398	10,946	89,054
	30,5252	2,239	8,548	91,452
	35,5618	1,979	6,308	93,692
	41,4295	1,620	4,329	95,671
	48,2654	1,262	2,709	97,291
	56,2292	0.90290	1,447	98,553
	65,507	0.54411	0,544	99,456
	76,3157	0,000	0,000	100,000
	88,9077	0,000	0,000	100,000
	103,5775	0,000	0,000	100,000

Çizelge A.10 Hidrosiklon üst akış tane boyu dağılımı 190 kPa.

Numune Kodu	Boyut (µm)	Miktar (%)	Boyuttan İri Toplam Miktar (%)	Boyuttan İnce Toplam Miktar (%)
	0,0582	0.00000	100,000	0.000
	0,0679	0.00000	100,000	0,000
	0,0791	0.00000	100,000	0,000
	0,0921	0.00000	100,000	0,000
	0,1073	0.00000	100,000	0.000
	0,125	0.00000	100,000	0.000
	0,1456	0.00000	100,000	0,000
	0,1697	0.00005	100,000	0,000
	0,1977	0.00043	100,000	0,000
	0,2303	0.00302	100,000	0,000
	0,2683	0.01485	99,997	0,004
	0,3125	0.04697	99,982	0.018
	0,3641	0.09366	99,935	0.065
	0,4242	0.13923	99,841	0,159
	0,4941	0.19641	99,702	0,298
	0,5757	0.26434	99,505	0,495
	0.6707	0.29377	99.241	0.759
	0.7813	0.32427	98,947	1.053
	0.9103	0.30911	98.623	1.377
	1.0604	0.30547	98.314	1,686
	1,0001	0.30928	98,008	1,000
	1 4393	0.30819	97,699	2 301
	1,6767	0.27602	97 391	2,501
	1,0707	0.23420	97,115	2,885
	2 2757	0.22405	96 881	3 119
BA1903	2,6512	0.23833	96.657	3 343
	3 0887	0.23053	96.418	3 582
	3 5983	0.31271	96 146	3,854
	4 192	0.34884	95.833	4 167
	4 8837	0.36232	95 484	4 516
	5 6895	0.34155	95,101	4 878
	6 6283	0.27833	94 780	5 220
	7 7219	0.19972	94 502	5 498
	8 996	0.06586	94 302	5,698
	10 4804	0.07497	94 236	5,764
	12 2096	0.19807	94 162	5 838
	14 2242	0.47988	93,963	6.037
	16.5712	1.019	93,484	6,516
	19 3055	1 999	92 464	7 536
	22 4909	3 739	90,465	9 535
	26 2019	6 6 5 4	86 726	13 274
	30,5252	10,910	80,071	19,929
	35,5618	15,740	69,162	30,838
	41,4295	19,210	53,422	46.578
	48,2654	16.208	34,212	65,788
	56,2292	10.814	18,004	81,996
	65.507	5,767	7,189	92,811
	76 3157	1 422	1 422	98 578
	88 9077	0,000	0,000	100.000
	103,5775	0.000	0,000	100,000

Çizelge A.11 Hidrosiklon alt akış tane boyu dağılımı 190 kPa.

Numune Kodu	Boyut (µm)	Miktar (%)	Boyuttan İri Toplam Miktar (%)	Boyuttan İnce Toplam Miktar (%)
	0,0582	0.00756	100,000	0,000
	0,0679	0.01968	99,992	0,008
	0,0791	0.04112	99,973	0,027
	0,0921	0.08048	99,932	0,068
	0,1073	0.15174	99,851	0,149
	0,125	0.27334	99,699	0,301
	0,1456	0.46339	99,426	0,574
	0,1697	0.73542	98,963	1,037
	0,1977	1,094	98,227	1,773
	0,2303	1,526	97,134	2,866
	0,2683	1,985	95,607	4,393
	0,3125	2,364	93,623	6,377
	0,3641	2,574	91,258	8,742
	0,4242	2,648	88,684	11,316
	0,4941	2,700	86,036	13,964
	0,5757	2,743	83,336	16,664
	0.6707	2,725	80,593	19,407
	0.7813	2,759	77.868	22,132
	0.9103	2.839	75,109	24.891
	1.0604	2,940	72.270	27.730
	1,2354	3.055	69.330	30.670
	1,4393	3,172	66.276	33.724
	1.6767	3.253	63,104	36.896
	1.9534	3.294	59.851	40,149
	2.2757	3.331	56.557	43,443
BU2003	2.6512	3,357	53,226	46.774
	3.0887	3.371	49.869	50,131
	3,5983	3.375	46,498	53,502
	4.192	3,372	43,123	56.877
	4.8837	3,354	39.751	60.249
	5.6895	3.312	36.397	63,603
	6.6283	3.231	33.085	66.915
	7,7219	3,115	29,853	70,147
	8,996	2,976	26,738	73.262
	10.4804	2.758	23,762	76.238
	12.2096	2,543	21.005	78,995
	14.2242	2,368	18,461	81,539
	16.5712	2,249	16.093	83,907
	19.3055	2,182	13.844	86,156
	22,4909	2,138	11.662	88,338
	26.2019	2,075	9,523	90,477
	30.5252	1.948	7,448	92.552
	35.5618	1.727	5,500	94,500
	41,4295	1,414	3,773	96,228
	48.2654	1,100	2,359	97.641
	56,2292	0.78633	1,259	98,741
	65,507	0.47272	0,473	99,527
	76.3157	0.000	0.000	100,000
	88,9077	0.000	0.000	100,000
	103,5775	0,000	0,000	100,000

Çizelge A.12 Hidrosiklon üst akış tane boyu dağılımı 200 kPa.

Numune Kodu	Boyut (µm)	Miktar (%)	Boyuttan İri Toplam Miktar (%)	Boyuttan İnce Toplam Miktar (%)
	0,0582	0.00000	100,000	0,000
	0,0679	0.00000	100,000	0,000
	0,0791	0.00000	100,000	0,000
	0,0921	0.00000	100,000	0,000
	0,1073	0.00000	100,000	0,000
	0,125	0.00000	100,000	0,000
	0,1456	0.00005	100,000	0,000
	0,1697	0.00042	100,000	0,000
	0,1977	0.00270	100,000	0,000
	0,2303	0.01310	99,997	0,003
	0,2683	0.04704	99,984	0,016
	0.3125	0.11784	99,937	0.063
	0.3641	0.20345	99,819	0.181
	0.4242	0.27621	99.615	0.385
	0.4941	0.35593	99,339	0.661
	0.5757	0.43877	98,983	1.017
	0.6707	0.46395	98,545	1,456
	0.7813	0.48528	98.081	1,130
	0,9103	0.46528	97 595	2 405
	1 0604	0.42591	97,393	2,403
	1,0004	0.41327	96 721	3 279
	1,2394	0.39318	96 308	3,277
	1,4393	0.33877	95,915	4 085
	1,0707	0.27826	95,576	4,005
	2 2757	0.27820	05 208	4 702
BA2003	2,2737	0.25452	95.043	4,702
	2,0312	0.23031	93,043	5 213
	3,0007	0.27087	94,787	5,215
	3,3983	0.30104	94,310	5,490
	4,192	0.31027	03 802	6 108
	5 6895	0.25011	03 588	6.412
	6,6292	0.23911	93,388	6,672
	7 7210	0.18000	93,320	6.858
	2,7219	0.05454	93,142	6.012
	0,990	0.00020	93,087	6.070
	10,4804	0.13938	93,021	0,979
	12,2096	0.39578	92,862	7,138
	14,2242	0.80098	92,400	/,534
	10,3/12	1,705	91,605	8,393
	19,3055	5,215	89,900	10,100
	22,4909	5,803	86,687	13,313
	26,2019	9,771	80,884	19,116
	30,5252	14,603	/1,113	28,887
	35,5618	18,605	56,509	43,491
	41,4295	16,/34	37,904	62,096
	48,2654	11,834	21,170	78,830
	56,2292	6,868	9,336	90,665
	65,507	2,468	2,468	97,532
	76,3157	0,000	0,000	100,000
	88,9077	0,000	0,000	100,000
	103,5775	0,000	0,000	100,000

Çizelge A.13 Hidrosiklon alt akış tane boyu dağılımı 200 kPa.

Numune Kodu	Boyut (µm)	Miktar (%)	Boyuttan İri Toplam Miktar (%)	Boyuttan İnce Toplam Miktar (%)
	0,0582	0.00000	100,000	0,000
	0,0679	0.00002	100,000	0,000
	0.0791	0.00006	100.000	0.000
	0.0921	0.00022	100.000	0.000
	0.1073	0.00085	100.000	0.000
	0.125	0.00311	99,999	0.001
	0.1456	0.01019	99,996	0.004
	0.1697	0.02925	99,986	0.014
	0,1977	0.07302	99,956	0,044
	0.2303	0.15908	99,883	0,117
	0.2683	0.29840	99,724	0.276
	0.3125	0.46499	99.426	0,574
	0.3641	0.59781	98,961	1.039
	0.4242	0.68085	98,363	1.637
	0.4941	0.76072	97.682	2.318
	0.5757	0.83787	96 921	3 079
	0,6707	0.85942	96,084	3,916
	0.7813	0.88752	95 224	4 776
	0.9103	0.87598	94 337	5 663
	1 0604	0.87561	93 461	6 539
	1,0004	0.88325	92 585	7 415
	1,2354	0.89136	91 702	8 298
	1,4375	0.87348	90.810	9 190
	1,0707	0.84179	89.937	10.063
	2 2757	0.83708	89,095	10,005
G150	2,2757	0.83798	89,095	11,743
	2,0312	0.84939	88,237	12 502
	3,0887	0.80770	86,540	12,392
	3,3983	0.87333	80,540	13,400
	4,192	0.77682	83,007	15 183
	5,6805	0.65781	84,817	15,060
	6,6282	0.52000	82 282	16,618
	7 7210	0.24399	83,382	17,138
	8 006	0.24399	82,802	17,150
	10,4804	0.28030	82,018	17,562
	12 2006	0.48137	82,557	19.144
	14,2090	1.740	81,830	10,144
	14,2242	1,740	70,184	20.816
	10,3712	3,034	79,184	20,810
	19,3033	4,932	70,130	25,650
	22,4909	10.000	/1,198	28,802
	20,2019	10,606	52.051	30,343
	25 5(10	12,044	20,407	40,747
	33,3018	13,/13	39,407	74 209
	41,4295	7.076	23,092	/4,308
	48,2654	/,9/6	14,238	85,/62
	56,2292	4,017	0,262	93,/38 09.255
	65,507	1,645	1,645	98,355
	/6,315/	0,000	0,000	100,000
	88,9077	0,000	0,000	100,000
	103.5775	0,000	0.000	100,000

Cizelge A	.14 Hidro	siklon	girisi	tane	boyu	dağılımı.
3			03-			

Numune Kodu	Boyut (µm)	Miktar (%)	Boyuttan İri Toplam Miktar (%)	Boyuttan İnce Toplam Miktar (%)
-	0,0582	0.00217	100,000	0,000
	0,0679	0.00620	99,998	0,002
	0,0791	0.01459	99,992	0,008
	0,0921	0.03282	99,977	0,023
	0,1073	0.07195	99,944	0,056
	0,125	0.15068	99,872	0,128
	0,1456	0.29394	99,722	0,278
	0,1697	0.52861	99,428	0,572
	0,1977	0.87605	98,899	1,101
	0,2303	1,340	98,023	1,977
	0,2683	1,872	96,683	3,317
	0,3125	2,340	94,811	5,189
	0,3641	2,605	92,471	7,529
	0,4242	2,696	89,867	10,133
	0,4941	2,761	87,171	12,829
	0,5757	2,817	84,411	15,589
	0,6707	2,792	81,593	18,407
	0,7813	2,833	78,802	21,198
	0,9103	2,934	75,968	24,032
	1,0604	3,065	73,034	26,966
	1,2354	3,224	69,969	30,031
	1,4393	3,394	66,745	33,255
	1,6767	3,507	63,351	36,649
	1,9534	3,554	59,844	40,156
DU1504	2,2757	3,598	56,290	43,710
BU1304	2,6512	3,619	52,692	47,308
	3,0887	3,619	49,073	50,927
	3,5983	3,604	45,454	54,546
	4,192	3,588	41,850	58,150
	4,8837	3,565	38,262	61,738
	5,6895	3,538	34,697	65,303
	6,6283	3,496	31,159	68,841
	7,7219	3,364	27,663	72,337
	8,996	3,173	24,299	75,701
	10,4804	2,932	21,126	78,874
	12,2096	2,664	18,194	81,806
	14,2242	2,403	15,531	84,469
	16,5712	2,172	13,128	86,872
	19,3055	1,982	10,956	89,044
	22,4909	1,824	8,974	91,026
	26,2019	1,677	7,150	92,850
	30,5252	1,510	5,473	94,527
	35,5618	1,302	3,963	96,037
	41,4295	1,047	2,662	97,338
	48,2654	0.79268	1,615	98,385
	56,2292	0.53819	0,822	99,178
	65,507	0.28370	0,284	99,716
	76,3157	0,000	0,000	100,000
	88,9077	0,000	0,000	100,000
	103,5775	0,000	0,000	100,000

Çizelge A.15 Hidrosiklon üst akış tane boyu dağılımı 150 kPa.

Numune Kodu	Boyut (µm)	Miktar (%)	Boyuttan İri Toplam Miktar (%)	Boyuttan İnce Toplam Miktar (%)
	0,0582	0.00000	100,000	0,000
	0,0679	0.00000	100,000	0,000
	0,0791	0.00000	100,000	0,000
	0,0921	0.00000	100,000	0,000
	0,1073	0.00000	100,000	0,000
	0,125	0.00000	100,000	0,000
	0,1456	0.00000	100,000	0,000
	0,1697	0.00004	100,000	0,000
	0,1977	0.00039	100,000	0,000
	0,2303	0.00284	100,000	0,000
	0,2683	0.01427	99,997	0,003
	0,3125	0.04634	99,982	0,018
	0,3641	0.09599	99,936	0,064
	0,4242	0.14839	99,840	0,160
	0,4941	0.21422	99,692	0,308
	0,5757	0.29163	99,478	0,522
	0,6707	0.32905	99,186	0,814
	0,7813	0.36500	98,857	1,143
	0,9103	0.34946	98,492	1,508
	1,0604	0.34667	98,142	1,858
	1,2354	0.35302	97,796	2,204
	1,4393	0.35105	97,443	2,557
	1,6767	0.30921	97,092	2,908
	1,9534	0.25699	96,782	3,218
DA1504	2,2757	0.24275	96,525	3,475
BA1504	2,6512	0.25459	96,283	3,717
	3,0887	0.29040	96,028	3,972
	3,5983	0.33349	95,738	4,262
	4,192	0.37267	95,404	4,596
	4,8837	0.38135	95,032	4,968
	5,6895	0.34674	94,650	5,350
	6,6283	0.26599	94,303	5,697
	7,7219	0.18663	94,037	5,963
	8,996	0.07771	93,851	6,149
	10,4804	0.10961	93,773	6,227
	12,2096	0.27942	93,664	6,336
	14,2242	0.62871	93,384	6,616
	16,5712	1,277	92,755	7,245
	19,3055	2,467	91,478	8,522
	22,4909	4,608	89,011	10,989
	26,2019	8,126	84,403	15,597
	30,5252	12,808	76,277	23,723
	35,5618	16,989	63,470	36,530
	41,4295	18,509	46,480	53,520
	48,2654	13,836	27,972	72,028
	56,2292	8,410	14,136	85,864
	65,507	4,139	5,726	94,274
	76,3157	1,587	1,587	98,413
	88,9077	0,000	0,000	100,000
	103,5775	0,000	0,000	100,000

Çizelge A.16 Hidrosiklon alt akış tane boyu dağılımı 150 kPa.

Numune Kodu	Boyut (µm)	Miktar (%)	Boyuttan İri Toplam Miktar (%)	Boyuttan İnce Toplam Miktar (%)
	0,0582	0.00769	100,000	0,000
	0,0679	0.01970	99,992	0.00769
	0,0791	0.04038	99,973	0,027
	0,0921	0.07739	99,932	0,068
	0,1073	0.14300	99,855	0,145
	0,125	0.25305	99,712	0,288
	0,1456	0.42287	99,459	0,541
	0,1697	0.66394	99,036	0,964
	0,1977	0.98015	98,372	1,628
	0,2303	1,362	97,392	2,608
	0,2683	1,768	96,030	3,970
	0,3125	2,108	94,262	5,738
	0,3641	2,305	92,154	7,846
	0,4242	2,387	89,849	10,151
	0,4941	2,456	87,462	12,538
	0,5757	2,526	85,006	14,994
	0,6707	2,547	82,479	17,521
	0,7813	2,621	79,932	20,068
	0,9103	2,738	77,311	22,689
	1,0604	2,872	74,573	25,427
	1,2354	3,012	71,702	28,298
	1,4393	3,144	68,690	31,310
	1,6767	3,230	65,545	34,455
	1,9534	3,263	62,316	37,684
DUICOA	2,2757	3,282	59,052	40,948
BU1604	2,6512	3,285	55,770	44,230
	3,0887	3,276	52,485	47,515
	3,5983	3,268	49,209	50,791
	4,192	3,272	45,941	54,059
	4,8837	3,283	42,670	57,330
	5,6895	3,298	39,387	60,613
	6,6283	3,299	36,089	63,911
	7,7219	3,286	32,790	67,210
	8,996	3,262	29,504	70,496
	10,4804	3,157	26,243	73,758
	12,2096	3,016	23,085	76,915
	14,2242	2,858	20,069	79,931
	16,5712	2,695	17,211	82,789
	19,3055	2,533	14,516	85,484
	22,4909	2,367	11,983	88,018
	26,2019	2,180	9,615	90,385
	30,5252	1,950	7,436	92,564
	35,5618	1,666	5,485	94,515
	41,4295	1,382	3,819	96,181
	48,2654	1,097	2,438	97,562
	56,2292	0.81260	1,341	98,659
	65,507	0.52813	0,528	99,472
	76,3157	0,000	0,000	100,000
	88,9077	0,000	0,000	100,000
	103,5775	0,000	0,000	100,000

Çizelge A.17 Hidrosiklon üst akış tane boyu dağılımı 160 kPa.

Numune Kodu	Boyut (µm)	Miktar (%)	Boyuttan İri Toplam Miktar (%)	Boyuttan İnce Toplam Miktar (%)
	0,0582	0.00000	100,000	0,000
	0,0679	0.00000	100,000	0,000
	0,0791	0.00000	100,000	0,000
	0,0921	0.00000	100,000	0,000
	0,1073	0.00000	100,000	0,000
	0,125	0.00000	100,000	0,000
	0,1456	0.00000	100,000	0,000
	0,1697	0.00004	100,000	0,000
	0,1977	0.00039	100,000	0,000
	0,2303	0.00284	100,000	0,000
	0,2683	0.01427	99,997	0,003
	0,3125	0.04634	99,982	0,018
	0,3641	0.09599	99,936	0,064
	0,4242	0.14839	99,840	0,160
	0,4941	0.21422	99,692	0,308
	0,5757	0.29163	99,478	0,522
	0,6707	0.32905	99,186	0,814
	0,7813	0.36500	98,857	1,143
	0.9103	0.34946	98,492	1,508
	1,0604	0.34667	98,142	1,858
	1,2354	0.35302	97,796	2,204
	1,4393	0.35105	97,443	2,557
	1.6767	0.30921	97,092	2,908
	1,9534	0.25699	96,782	3,218
	2.2757	0.24275	96,525	3,475
BA1604	2,6512	0.25459	96,283	3,717
	3.0887	0.29040	96,028	3,972
	3,5983	0.33349	95,738	4,262
	4,192	0.37267	95,404	4,596
	4.8837	0.38135	95.032	4,968
	5,6895	0.34674	94,650	5,350
	6.6283	0.26599	94,303	5,697
	7.7219	0.18663	94.037	5,963
	8,996	0.07771	93,851	6,149
	10.4804	0.10961	93,773	6,227
	12.2096	0.27942	93,664	6,336
	14.2242	0.62871	93,384	6,616
	16.5712	1,277	92,755	7,245
	19.3055	2,467	91,478	8,522
	22,4909	4,608	89,011	10,989
	26,2019	8,126	84,403	15,597
	30.5252	12,808	76,277	23,723
	35 5618	16,989	63,470	36,530
	41,4295	18,509	46,480	53,520
	48,2654	13,836	27,972	72,028
	56,2292	8,410	14,136	85,864
	65.507	4,139	5,726	94,274
	76.3157	1,587	1,587	98,413
	88,9077	0,000	0,000	100.000
	103,5775	0,000	0,000	100,000

Çizelge A.18 Hidrosiklon alt akış tane boyu dağılımı 160 kPa.

Numune Kodu	Boyut (µm)	Miktar (%)	Boyuttan İri Toplam Miktar (%)	Boyuttan İnce Toplam Miktar (%)
	0,0582	0.00653	100,000	0,000
	0,0679	0.01717	99,993	0,007
	0,0791	0.03626	99,976	0,024
	0,0921	0.07173	99,940	0,060
	0,1073	0.13662	99,868	0,132
	0,125	0.24816	99,732	0,268
	0,1456	0.42323	99,484	0,516
	0,1697	0.67415	99,060	0,940
	0,1977	1,004	98,386	1,614
	0,2303	1,403	97,382	2,618
	0,2683	1,825	95,979	4,021
	0,3125	2,178	94,154	5,846
	0,3641	2,381	91,976	8,024
	0,4242	2,462	89,595	10,405
	0,4941	2,525	87,133	12,867
	0,5757	2,584	84,609	15,391
	0,6707	2,591	82,025	17,975
	0,7813	2,650	79,433	20,567
	0,9103	2,753	76,783	23,217
	1,0604	2,873	74,031	25,969
	1,2354	3,002	71,157	28,843
	1,4393	3,127	68,155	31,845
	1,6767	3,207	65,028	34,972
	1,9534	3,240	61,821	38,179
DUITOA	2,2757	3,263	58,581	41,419
BU1/04	2,6512	3,272	55,318	44,682
	3,0887	3,270	52,046	47,954
	3,5983	3,267	48,776	51,224
	4,192	3,270	45,510	54,490
	4,8837	3,276	42,239	57,761
	5,6895	3,278	38,963	61,037
	6,6283	3,263	35,685	64,315
	7,7219	3,230	32,422	67,578
	8,996	3,186	29,192	70,808
	10,4804	3,073	26,005	73,995
	12,2096	2,939	22,932	77,068
	14,2242	2,803	19,993	80,007
	16,5712	2,674	17,189	82,811
	19,3055	2,550	14,515	85,485
	22,4909	2,416	11,966	88,034
	26,2019	2,251	9,550	90,450
	30,5252	2,032	7,299	92,701
	35,5618	1,746	5,267	94,733
	41,4295	1,400	3,520	96,480
	48,2654	1,053	2,121	97,879
	56,2292	0.70691	1,067	98,933
	65,507	0.36050	0,361	99,639
	76,3157	0,000	0,000	100,000
	88,9077	0,000	0,000	100,000
	103,5775	0,000	0,000	100,000

Çizelge A.19 Hidrosiklon üst akış tane boyu dağılımı 170 kPa.

Numune Kodu	Boyut (µm)	Miktar (%)	Boyuttan İri Toplam Miktar (%)	Boyuttan İnce Toplam Miktar (%)
	0,0582	0.00000	100,000	0,000
	0,0679	0.00000	100,000	0,000
	0.0791	0.00000	100,000	0,000
	0,0921	0.00000	100,000	0,000
	0,1073	0.00000	100,000	0,000
	0,125	0.00000	100,000	0,000
	0,1456	0.00000	100,000	0,000
	0,1697	0.00002	100,000	0,000
	0,1977	0.00022	100,000	0,000
	0,2303	0.00187	100,000	0,000
	0,2683	0.01056	99,998	0,002
	0,3125	0.03725	99,987	0,013
	0,3641	0.08123	99,950	0,050
	0,4242	0.12918	99,869	0,131
	0,4941	0.18931	99,740	0,260
	0,5757	0.25904	99,550	0,450
	0,6707	0.29011	99,291	0,709
	0,7813	0.31749	99,001	0,999
	0,9103	0.29914	98,684	1,316
	1,0604	0.29274	98,385	1,615
	1,2354	0.29793	98,092	1,908
	1,4393	0.30136	97,794	2,206
	1,6767	0.27215	97,493	2,507
	1,9534	0.23202	97,220	2,780
DA1704	2,2757	0.22488	96,988	3,012
DA1/04	2,6512	0.23924	96,763	3,237
	3,0887	0.27098	96,524	3,476
	3,5983	0.30522	96,253	3,747
	4,192	0.33698	95,948	4,052
	4,8837	0.34678	95,611	4,389
	5,6895	0.32627	95,264	4,736
	6,6283	0.26618	94,938	5,062
	7,7219	0.18994	94,672	5,328
	8,996	0.05973	94,482	5,518
	10,4804	0.06687	94,422	5,578
	12,2096	0.17871	94,355	5,645
	14,2242	0.43748	94,177	5,823
	16,5712	0.93484	93,739	6,261
	19,3055	1,842	92,804	7,196
	22,4909	3,472	90,963	9,037
	26,2019	6,272	87,491	12,509
	30,5252	10,532	81,219	18,781
	35,5618	15,650	70,687	29,313
	41,4295	19,572	55,037	44,963
	48,2654	16,788	35,465	64,535
	56,2292	11,230	18,677	81,323
	65,507	5,981	7,446	92,554
	76,3157	1,465	1,465	98,535
	88,9077	0,000	0,000	100,000
	103,5775	0,000	0,000	100,000

Çizelge A.20 Hidrosiklon alt akış tane boyu dağılımı 170 kPa.

Numune Kodu	Boyut (µm)	Miktar (%)	Boyuttan İri Toplam Miktar (%)	Boyuttan İnce Toplam Miktar (%)
	0,0582	0.01332	100,000	0,000
	0,0679	0.03278	99,987	0,013
	0,0791	0.06377	99,954	0,046
	0,0921	0.11484	99,890	0,110
	0,1073	0.19806	99,775	0,225
	0,125	0.32655	99,577	0,423
	0,1456	0.50990	99,251	0,749
	0,1697	0.75202	98,741	1,259
	0,1977	1,049	97,989	2,011
	0,2303	1,388	96,939	3,061
	0,2683	1,731	95,551	4,449
	0,3125	2,008	93,821	6,179
	0,3641	2,166	91,813	8,187
	0,4242	2,231	89,646	10,354
	0,4941	2,281	87,415	12,585
	0,5757	2,328	85,134	14,866
	0,6707	2,337	82,806	17,195
	0,7813	2,385	80,469	19,531
	0,9103	2,465	78,083	21,917
	1,0604	2,557	75,618	24,382
	1,2354	2,650	73,062	26,938
	1,4393	2,735	70,412	29,588
	1,6767	2,789	67,676	32,324
	1,9534	2,812	64,887	35,113
DUIDOA	2,2757	2,831	62,076	37,924
BU1804	2,6512	2,847	59,245	40,755
	3,0887	2,864	56,398	43,602
	3,5983	2,889	53,533	46,467
	4,192	2,929	50,644	49,356
	4,8837	2,980	47,716	52,284
	5,6895	3,038	44,736	55,264
	6,6283	3,089	41,698	58,302
	7,7219	3,129	38,609	61,391
	8,996	3,155	35,480	64,520
	10,4804	3,164	32,325	67,675
	12,2096	3,161	29,161	70,839
	14,2242	3,143	26,000	74,000
	16,5712	3,128	22,857	77,143
	19,3055	3,112	19,730	80,270
	22,4909	3,075	16,618	83,382
	26,2019	2,984	13,543	86,457
	30,5252	2,802	10,559	89,441
	35,5618	2,503	7,757	92,243
	41,4295	2,083	5,254	94,746
	48,2654	1,577	3,170	96,830
	56,2292	1,054	1,593	98,407
	65,507	0.53106	0,539	99,461
	76,3157	0.00812	0,008	99,992
	88,9077	0,000	0,000	100,000
	103,5775	0,000	0,000	100,000

Çizelge A.21 Hidrosiklon üst akış tane boyu dağılımı 180 kPa.

Numune Kodu	Boyut (µm)	Miktar (%)	Boyuttan İri Toplam Miktar (%)	Boyuttan İnce Toplam Miktar (%)
	0,0582	0.00000	100,000	0,000
	0,0679	0.00000	100,000	0,000
	0,0791	0.00000	100,000	0,000
	0,0921	0.00000	100,000	0,000
	0,1073	0.00000	100,000	0,000
	0,125	0.00000	100,000	0,000
	0,1456	0.00000	100,000	0,000
	0,1697	0.00004	100,000	0,000
	0,1977	0.00037	100,000	0,000
	0,2303	0.00272	100,000	0,000
	0,2683	0.01364	99,997	0,003
	0,3125	0.04400	99,983	0,017
	0,3641	0.08982	99,939	0,061
	0,4242	0.13642	99,849	0,151
	0,4941	0.19430	99,713	0,287
	0,5757	0.26179	99,519	0,481
	0,6707	0.29163	99,257	0,743
	0,7813	0.32029	98,965	1,035
	0,9103	0.30427	98,645	1,355
	1,0604	0.29935	98,341	1,659
	1,2354	0.30336	98,041	1,959
	1,4393	0.30409	97,738	2,262
	1,6767	0.27398	97,434	2,566
	1,9534	0.23347	97,160	2,840
DA 1904	2,2757	0.22459	96,926	3,074
BA1804	2,6512	0.23938	96,702	3,298
	3,0887	0.27285	96,462	3,538
	3,5983	0.31119	96,190	3,810
	4,192	0.34528	95,878	4,122
	4,8837	0.35814	95,533	4,467
	5,6895	0.33884	95,175	4,825
	6,6283	0.27879	94,836	5,164
	7,7219	0.20190	94,557	5,443
	8,996	0.06581	94,355	5,645
	10,4804	0.07296	94,290	5,710
	12,2096	0.19185	94,217	5,783
	14,2242	0.46527	94,025	5,975
	16,5712	0.98762	93,560	6,440
	19,3055	1,933	92,572	7,428
	22,4909	3,607	90,639	9,361
	26,2019	6,424	87,033	12,967
	30,5252	10,614	80,608	19,392
	35,5618	15,538	69,994	30,006
	41,4295	19,280	54,457	45,543
	48,2654	16,530	35,177	64,823
	56,2292	11,136	18,647	81,353
	65,507	5,980	7,511	92,489
	76,3157	1,530	1,530	98,470
	88,9077	0,000	0,000	100,000
	103,5775	0,000	0,000	100,000

Çizelge A.22 Hidrosiklon alt akış tane boyu dağılımı 180 kPa.

Numune Kodu	Boyut (µm)	Miktar (%)	Boyuttan İri Toplam Miktar (%)	Boyuttan İnce Toplam Miktar (%)
	0,0582	0.00669	100,000	0,000
	0,0679	0.01750	99,993	0,007
	0,0791	0.03678	99,976	0,024
	0,0921	0.07238	99,939	0,061
	0,1073	0.13719	99,867	0,133
	0,125	0.24816	99,729	0,271
	0,1456	0.42192	99,481	0,519
	0,1697	0.67064	99,059	0,941
	0,1977	0.99786	98,389	1,611
	0,2303	1,392	97,391	2,609
	0,2683	1,810	95,998	4,002
	0,3125	2,158	94,188	5,812
	0,3641	2,353	92,031	7,970
	0,4242	2,427	89,677	10,323
	0,4941	2,480	87,251	12,749
	0,5757	2,527	84,771	15,229
	0,6707	2,519	82,244	17,756
	0,7813	2,558	79,726	20,274
	0,9103	2,638	77,168	22,832
	1,0604	2,736	74,530	25,470
	1,2354	2,844	71,795	28,205
	1,4393	2,952	68,951	31,049
	1,6767	3,023	65,999	34,001
	1,9534	3,057	62,976	37,024
D11004	2,2757	3,089	59,919	40,081
BU1904	2,6512	3,111	56,830	43,170
	3,0887	3,126	53,719	46,281
	3,5983	3,141	50,593	49,407
	4,192	3,161	47,452	52,548
	4,8837	3,182	44,291	55,709
	5,6895	3,199	41,109	58,891
	6,6283	3,199	37,910	62,090
	7,7219	3,177	34,711	65,289
	8,996	3,139	31,534	68,466
	10,4804	3,087	28,395	71,605
	12,2096	3,001	25,308	74,692
	14,2242	2,923	22,307	77,693
	16,5712	2,855	19,384	80,616
-	19,3055	2,789	16,528	83,472
	22,4909	2,703	13,739	86,261
	26,2019	2,566	11,036	88,964
	30,5252	2,351	8,470	91,530
	35,5618	2,045	6,119	93,881
	41,4295	1,658	4,074	95,926
	48,2654	1,232	2,415	97,585
	56,2292	0.80514	1,184	98,816
	65,507	0.37852	0,379	99,621
	76,3157	0,000	0,000	100,000
	88,9077	0,000	0,000	100,000
	103,5775	0,000	0,000	100,000

Çizelge A.23 Hidrosiklon üst akış tane boyu dağılımı 190 kPa.

Numune Kodu	Boyut (µm)	Miktar (%)	Boyuttan İri Toplam Miktar (%)	Boyuttan İnce Toplam Miktar (%)
	0,0582	0.00000	100,000	0,000
	0,0679	0.00000	100,000	0,000
	0.0791	0.00000	100,000	0,000
	0.0921	0.00000	100,000	0,000
	0.1073	0.00000	100,000	0,000
	0.125	0.00000	100,000	0,000
	0.1456	0.00000	100,000	0,000
	0,1697	0.00005	100,000	0,000
	0,1977	0.00050	100,000	0,000
	0,2303	0.00335	99,999	0,001
	0.2683	0.01594	99,996	0,004
	0.3125	0.04950	99,980	0,020
	0,3641	0.09870	99,931	0,069
	0.4242	0.14798	99,832	0,168
	0.4941	0.20925	99,684	0,316
	0.5757	0.28114	99,475	0,525
	0.6707	0.31420	99,194	0,806
	0.7813	0.34714	98,879	1.121
	0.9103	0.33218	98,532	1.468
	1.0604	0.32879	98,200	1,800
	1 2354	0.33310	97.871	2.129
	1 4393	0.33084	97,538	2,462
	1,1393	0.29415	97.207	2.793
	1,0707	0.24760	96.913	3.087
	2 2757	0.23556	96,666	3.334
BA1904	2,6512	0.24949	96,430	3.570
	3 0887	0.28572	96,181	3.819
	3 5983	0.32902	95,895	4.105
	4 192	0.36698	95,566	4.434
	4.8837	0.37851	95,199	4.801
	5 6895	0.34989	94,820	5,180
	6.6283	0.27593	94,470	5,530
	7,7219	0.19538	94,194	5,806
	8,996	0.07402	93,999	6,001
	10.4804	0.09676	93,925	6,075
	12.2096	0.25029	93,828	6,172
	14.2242	0.57734	93,578	6,422
	16.5712	1,187	93,001	6,999
	19,3055	2,290	91,813	8,187
	22,4909	4,243	89,523	10,477
	26.2019	7,452	85,281	14,719
	30.5252	11,872	77,829	22,171
	35,5618	16,284	65,957	34,043
	41,4295	18,676	49,673	50,327
	48,2654	14,810	30,997	69,003
	56.2292	9,429	16,187	83,813
	65.507	4,819	6,758	93,242
	76,3157	1,939	1,939	98,061
	88,9077	0,000	0,000	100.000
	103,5775	0,000	0,000	100,000

Çizelge A.24 Hidrosiklon alt akış tane boyu dağılımı 190 kPa.

Numune Kodu	Boyut (µm)	Miktar (%)	Boyuttan İri Toplam Miktar (%)	Boyuttan İnce Toplam Miktar (%)
	0,0582	0.00619	100,000	0,000
	0,0679	0.01616	99,994	0,006
	0,0791	0.03391	99,978	0,022
	0,0921	0.06661	99,944	0,056
	0,1073	0.12608	99,877	0,123
	0,125	0.22785	99,751	0,249
	0,1456	0.38723	99,523	0,477
	0,1697	0.61566	99,136	0,864
	0,1977	0.91687	98,520	1,480
	0,2303	1,281	97,603	2,397
	0,2683	1,669	96,322	3,678
	0,3125	1,995	94,653	5,347
	0,3641	2,183	92,658	7,342
	0,4242	2,258	90,475	9,525
	0,4941	2,315	88,217	11,783
	0,5757	2,366	85,902	14,098
	0,6707	2,361	83,536	16,464
	0,7813	2,396	81,175	18,825
	0,9103	2,457	78,779	21,221
	1,0604	2,534	76,322	23,678
	1,2354	2,617	73,788	26,212
	1,4393	2,700	71,171	28,829
	1,6767	2,751	68,471	31,529
	1,9534	2,769	65,720	34,280
D1/204	2,2757	2,789	62,951	37,049
BU204	2,6512	2,804	60,162	39,838
	3,0887	2,819	57,358	42,642
	3,5983	2,838	54,539	45,461
	4,192	2,871	51,701	48,299
	4,8837	2,916	48,830	51,170
	5,6895	2,969	45,914	54,086
	6,6283	3,017	42,945	57,055
	7,7219	3,060	39,928	60,072
	8,996	3,095	36,868	63,132
	10,4804	3,121	33,773	66,227
	12,2096	3,139	30,652	69,348
	14,2242	3,153	27,513	72,487
	16,5712	3,173	24,360	75,640
	19,3055	3,183	21,187	78,813
	22,4909	3,158	18,004	81,996
	26,2019	3,066	14,846	85,154
	30,5252	2,872	11,780	88,220
	35,5618	2,558	8,908	91,092
	41,4295	2,128	6,351	93,649
	48,2654	1,699	4,222	95,778
	56,2292	1,270	2,523	97,477
	65,507	0.84101	1,253	98,747
	76,3157	0.41187	0,412	99,588
	88,9077	0,000	0,000	100,000
	103,5775	0,000	0,000	100,000

Çizelge A.25 Hidrosiklon üst akış tane boyu dağılımı 200 kPa.

Numune Kodu	Boyut (µm)	Miktar (%)	Boyuttan İri Toplam Miktar (%)	Boyuttan İnce Toplam Miktar (%)
	0,0582	0.00000	100,000	0,000
	0,0679	0.00000	100,000	0,000
	0,0791	0.00000	100,000	0,000
	0,0921	0.00000	100,000	0,000
	0,1073	0.00000	100,000	0,000
	0,125	0.00000	100,000	0,000
	0,1456	0.00001	100,000	0,000
	0,1697	0.00007	100,000	0,000
	0,1977	0.00060	100,000	0,000
	0,2303	0.00390	99,999	0,001
	0,2683	0.01787	99,995	0,005
	0,3125	0.05422	99,978	0,022
	0,3641	0.10774	99,923	0,077
	0,4242	0.16259	99,816	0,184
	0,4941	0.23020	99,653	0,347
	0,5757	0.30858	99,423	0,577
	0,6707	0.34681	99,114	0,886
	0,7813	0.38361	98,767	1,233
	0,9103	0.36898	98,384	1,616
	1,0604	0.36632	98,015	1,985
	1,2354	0.37233	97,648	2,352
	1,4393	0.37073	97,276	2,724
	1,6767	0.32989	96,905	3,095
	1,9534	0.27666	96,576	3,424
D 4 204	2,2757	0.26072	96,299	3,701
BA204	2,6512	0.27283	96,038	3,962
	3,0887	0.30898	95,765	4,235
	3,5983	0.35339	95,456	4,544
	4,192	0.39101	95,103	4,897
	4,8837	0.39745	94,712	5,288
	5,6895	0.35768	94,314	5,685
	6,6283	0.27197	93,957	6,043
	7,7219	0.07941	93,685	6,315
	8,996	0.05675	93,605	6,395
	10,4804	0.13072	93,549	6,451
	12,2096	0.32819	93,418	6,582
	14,2242	0.72461	93,090	6,910
	16,5712	1,452	92,365	7,635
	19,3055	2,771	90,913	9,087
	22,4909	5,098	88,142	11,858
	26,2019	8,788	83,044	16,956
	30,5252	13,381	74,256	25,744
	35,5618	17,188	60,875	39,125
	41,4295	17,847	43,687	56,313
	48,2654	13,012	25,839	74,161
	56,2292	7,751	12,827	87,173
	65,507	3,714	5,076	94,924
	76,3157	1,362	1,362	98,638
	88,9077	0.00000	0,000	100,000
	103,5775	0.00000	0,000	100,000

Çizelge A.26 Hidrosiklon alt akış tane boyu dağılımı 200 kPa.

ÖZGEÇMİŞ

Halil İbrahim GÖNÜL 1987 yılında Zonguldak/Merkez'de doğdu; ilk ve orta öğrenimini Zonguldak'da; lise öğrenimini ise TED Zonguldak Kolejinde tamamladı. 2005 yılında Atatürk Üniversitesi Mühendislik Fakültesi Kimya Mühendisliği Bölümüne girdi.2009 yılında Kimya Mühendisliğinden, 2012 yılında Anadolu Üniversite İşletme bölümünden mezun olmuştur. 2011 yılında Eren Enerji Termik Santralinde İşletme Mühendisi olarak göreve başlamış ve halen aynı görevinde devam etmektedir.

ADRES BİLGİLERİ

- Adres : Bülent Ecevit Üniversitesi Mühendislik Fakültesi Maden Mühendisliği Bölümü 67100 İncivez/Zonguldak
- Tel : (+90) 536 691 75 91
- E-posta : h.ibrahimgonul@hotmail.com