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 ABSTRACT 
 
 

FORECASTING ELECTRICITY CONSUMPTION USING DEEP LEARNING 
METHODS WITH HYPERPARAMETER TUNING 

 
 

Onur ARSLAN 
 

Big Data Analytics and Management 
 

Thesis Supervisor: Assist. Prof. Dr. Serkan AYVAZ 
 
 

January 2020, 50 pages 
 
 
In this study, it is tried to estimate one-day electricity consumption by using deep learning 
methods with a dataset that includes the change in time-dependent electricity 
consumption. After explaining the time series components and machine learning 
concepts, general information about previous studies on electricity consumption 
estimation is given. Since the dataset used is a time series, all the features are emphasized 
in detail and necessary operations like resample and reshape are performed before 
proceeding to the modeling. Tuning was applied to hyperparameters which significantly 
affect the performance of the algorithms used in the modeling stage and the most suitable 
parameters were searched for each method. Then the best results were compared with 
each other and the method with the lowest error rate was determined. 
 
Keywords:  Energy Consumption, Time Series, Deep Learning, Hyperparameter Tuning  
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 ÖZET 
 
 

HİPERPARAMETRE AYARLI DERİN ÖĞRENME YÖNTEMLERİ İLE ELEKTRİK 
TÜKETİMİNİN TAHMİNİ 

 
Onur ARSLAN 

 
Büyük Veri Analitiği ve Yönetimi 

 
Tez Danışmanı: Dr. Öğr. Üyesi Serkan AYVAZ 

 
 

Ocak 2020, 50 sayfa 
 
 
Bu çalışmada, zamana bağlı elektrik tüketimindeki değişimi içeren bir veri seti ile derin 
öğrenme yöntemleri kullanılarak bir günlük elektrik tüketimi tahmin edilmeye 
çalışılmıştır. Zaman serisi bileşenleri ve makine öğrenimi kavramları açıklandıktan sonra, 
elektrik tüketimi tahmini ile ilgili daha önceki çalışmalar hakkında genel bilgiler 
verilmiştir. Kullanılan veri kümesi bir zaman serisi olduğundan, zaman serisi özellikleri 
ayrıntılı olarak vurgulanmış ve modellemeye geçmeden önce yeniden örnekleme ve 
yeniden şekillendirme gibi gerekli işlemler gerçekleştirilmiştir. Modelleme aşamasında 
kullanılan algoritmaların performansını önemli ölçüde etkileyen hiperparametreler 
üzerinde çeşitli ayarlamalar yapılarak her yöntem için en uygun parametreler 
araştırılmıştır. Daha sonra en iyi sonuçları veren modeller birbirleriyle karşılaştırılmış ve 
en düşük hata oranına sahip yöntem belirlenmiştir. 
 
Anahtar Kelimeler: Enerji Tüketimi, Zaman Serileri, Derin Öğrenme, Hiperparametre 
Ayarı 
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1. INTRODUCTION  

Electrical energy is a type of energy that needs to be transmitted rapidly, with high quality, 

efficient and rapid consumption throughout the world. With the increasing population, 

urbanization, industrialization and especially rapidly developing technology as an 

indispensable part of human life, the need for electrical energy is increasing day by day 

[1]. Energy production, distribution, and transmission facilities need to be planned for the 

future in order to meet the increasing energy demand. On the other hand, environmental 

impacts such as global warming and political problems such as energy dependency; it 

brings the necessity of saving in electricity consumption. The most important way is to 

achieve a balance between electricity production and consumption of electrical energy. 

 

The continuous increase in the need for electrical energy, the limited resources and the 

inability to store electricity force the sector participants to make various plans. The 

necessity to consume electricity at the moment of production creates an obligation to 

maintain production/consumption balance. In recent years, this issue has been focused on 

since the inability to respond to the increasing consumption will cause great problems 

especially for countries in economic terms. On the other hand, environmental reasons 

such as global warming or national factors such as external dependence require saving in 

electrical energy. Under these conditions, regular plans are made in production, 

transmission and distribution systems in order to prevent bottlenecks in the electricity 

market; various consumption estimation methods are used to give predictable results [2]. 

The electricity demand estimates that are being made and to be made have an important 

place in the operation, control and planning of electric power systems, tariff arrangements 

and export areas for energy suppliers and consumers. 

 

For Turkey, which is largely dependent on foreign countries for energy resources, it is 

quite important to predict electric power consumption accurately. Differences in 

production/consumption resulting from estimates that do not reflect the reality will have 

a negative impact on the national economy. Excess of production compared to 

consumption will cause waste of available energy. If consumption is higher than 

production, energy deficits will occur; interruptions, system bottlenecks, etc. problems. 
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Therefore, studies on energy demand, especially electricity demand forecasting, have 

gained importance in recent years [3].  

 

The development of technology has enabled deeper learning algorithms to work faster 

and more efficiently. Thanks to the machines with high processing power, realistic 

estimation results have been obtained from large amounts of data sets. By taking 

advantage of these results, serious measures have been taken in many areas such as 

electricity consumption and significant financial gains have been achieved. In this way, 

it has become easier to develop and implement methods that have not been tried before 

in the machine environment, the detection and improvement processes of the errors have 

been accelerated and the door has been opened to the development of new methods 

depending on the data characteristics. In short, in the field of energy consumption, as in 

other areas, the development of technology is of paramount importance in the application 

of prediction algorithms, especially based on old data. 

 

Even though the improvement in forecasting methods is increasing day by day, it is not 

possible to achieve realistic results in all areas. It is quite difficult to foresee the changes 

created by situations such as natural disasters or holidays in the estimation processes 

performed in areas affected by many such variables. After a natural disaster such as an 

earthquake in the area where consumption is estimated, long-term power outages will be 

experienced, which will result in a significant decrease in consumption compared to 

previous times. In addition, considering the renewal of residential areas and changing 

usage patterns and user profiles, it is difficult to make consumption estimates covering 

long periods and covering large areas. 

 

The aim of this study is to make realistic estimates of electricity consumption by using 

deep learning methods by making use of innovations brought by technology. In order to 

obtain more accurate results in the estimations, adjustments will be made on each method 

according to the dataset used and the most suitable model will be searched to solve this 

problem. 
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The other parts of the study are listed as follows: in the second part, the estimation 

methods that are planned to be used for the study are explained and the previous energy 

consumption estimation studies are given. In the third chapter, the dataset used in the 

study is introduced and the time-series features of this dataset are discussed in detail. In 

the fourth chapter, the steps in the methods used are explained and in the fifth chapter, 

the findings obtained from these analyses are presented. In the sixth chapter, these 

findings were compared and the study was briefly summarized and finalized in the last 

chapter. 
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2. LITERATURE REVIEW 

2.1. BACKGROUND 

2.1.1. Time Series 

Time series are special data models that are widely used in science, engineering, and 

business. Data sets associated with discrete-time values are generally defined as time 

series. The prediction of future data based on past observations is also called time series 

analysis. However, for a successful time series analysis, the components of the time series 

must be known. In this context, time series can have four important characteristics: 

seasonality, trend, cyclic and irregular variations. 

2.1.1.1. Seasonal Variations 

Repeated patterns over less than one year are called seasonal variations, e.g. increase in 

swimsuit sales in summer or a decrease in natural gas consumption in summer meanwhile 

increase in the winter season. Although the term seasonal effect first comes to mind within 

a year, it actually includes all periods limited to a certain period of time. Increasing or 

decreasing traffic density at certain times of the day, the number of hourly users of a 

website or a phone application during the day, the average number of customers per week 

in a store are other examples of seasonal effects. Climate, social traditions, religious 

holidays cause seasonal effects [4]. 

2.1.1.2. Trend 

In time series the long-term tendency is expressed by term trend. The change in the 

averages of observations can be used as a practical test for the presence of the trend to us. 

To understand the term trend, it is necessary to examine the data as long as possible period 

of time. For example, the trend on infant mortality rates may not seem to change when 

looking at ten-year data, but the existence of the trend can be noticed when one hundred 

years of data is examined. Some examples of the trend are: increase in inflation, decrease 

in the number of living species, increase in the need of food, increase in education level, 

increased life expectancy with increased income [4]. 
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2.1.1.3. Cyclic Variations 

When the observations of a time series show fluctuations without a specific time, such 

fluctuations are defined as cyclic fluctuations or variations. Usually, the duration of these 

fluctuations is more than two years. Business-related cycles have an unpredictable 

duration of more than two years. Cyclic behavior, often confused with seasonal behavior, 

refers to fluctuations that do not depend on a fixed period of time, unlike seasonal 

behavior. In such patterns, the cyclic length is usually longer than seasonal cycle lengths. 

The population of some species may show cyclic fluctuations in decades or some 

economic indicators also have some patterns like this [5]. 

2.1.1.4. Irregular Variations 

As the name suggests, it means unpredictable variations that occur in nature without being 

bound to a particular order. In a time series, these variations, which are excluded from 

trend, seasonal and cyclical components, are called residual variations. Irregular 

fluctuations are seen as a result of events that are not predictable, such as natural disasters, 

famine, wars, fires, etc [6]. 

Irregular fluctuations can be divided into two parts: episodic and residual fluctuations. 

Fluctuations that occur as a result of unpredictable but identified events such as strikes; 

fire and earthquakes are called episodic fluctuations. Residual variation is the name of 

random and unidentified variations that remain after the episodic variation is removed in 

a time series [6]. 

2.1.2. Time Series Decomposition 

As we explained above, time series can come up with many different characteristics. And 

the task of separating a time series into these components makes it easier to predict. When 

dividing into the components of the time series, the trend and cycle components are often 

combined into one component under the name of trend. Thus, a time series can be 

expressed by trend, seasonal and residual components [7]. 

 

𝑦𝑦𝑡𝑡  data, 𝑆𝑆𝑡𝑡 seasonal component, 𝑇𝑇𝑡𝑡 trend-cycle, and 𝑅𝑅𝑡𝑡 indicate that the remainder 

component and t is the time parameter thus the time series can be expressed by one of the 

additive (Equation 2.1) and multiplicative (Equation 2.2) decomposition methods.  
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𝒚𝒚𝒕𝒕 = 𝑺𝑺𝒕𝒕 + 𝑻𝑻𝒕𝒕 + 𝑹𝑹𝒕𝒕 (2.1) 

𝒚𝒚𝒕𝒕 = 𝑺𝑺𝒕𝒕  ×  𝑻𝑻𝒕𝒕 × 𝑹𝑹𝒕𝒕 (2.2) 

2.1.3. ARIMA (Autoregressive Integrated Moving Average) 

ARIMA is a time series model with the integration of AR (Autoregressive) and MA 

(Moving Average) models [8]. Such models are also referred to as Box-Jenkins models. 

When time-series data are relatively stationary, ARIMA models give high accuracy in 

forecasting. However, such models have a strong assumption that linear relationship 

between past and future data [8]. 

2.1.4. ANN (Artificial Neural Networks) 

The term artificial neural network was first used in 1943 by Warren McCulloch and Walter 

Pitts in an article entitled "A Logical Calculus of Ideas in Nervous Activity" [9]. The 

ANNs continued their development until the 1960s. The period between 1960 and 1980 

is called the dark period for ANNs. With the new network architectures discovered during 

the 1980s, interest in ANNs awoke. In the 1990s, Machine Learning algorithms for 

example Support Vector Machines had become preferable than ANNs. Since the early 

2000s, several new major developments have led to a tremendous development in the area 

of ANNs [10]. 

 

Since ANNs are systems that require large amounts of data due to their structure, 

increasing data amount positively affected their development. However, the huge increase 

in computer power also allowed the training of ANN architectures. In addition, 

improvements in training algorithms have contributed positively to the development of 

ANNs. Finally, increasing popularity after each success has led to the transfer of larger 

funds to ANN development [10].  

2.1.5. DNN (Deep Neural Networks) 

Artificial neural network structures with multiple layers established to extract applicable 

properties from raw data are called deep neural networks [11]. Deep neural networks are 

successful in areas such as image recognition, computer vision, natural language 

processing, voice recognition, speech recognition, etc [12]. The deeper you are in the 
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neural network, the more complex features you can recognize by your neurons, because 

they combine and reassemble the features from the previous layer [13]. 

2.1.6. LSTM (Long Short-Term Memory) 

LSTM networks are kind of special RNN network architectures that can learn long-term 

dependencies [14]. They were introduced by Hochreiter & Schmidhuber in 1997 [15].  

 

                 Figure 2.1: Long Short-Term Memory 

 
                     Source: [10] 

 

In the long term, the ability to learn what to store, what to discard and what to use from 

that stored information forms the character of LSTM architectures. When we examine the 

architecture, we can see from the upper left corner that the long-term c(t-1) has traveled 

through the network and forgotten some memories at the forget gate and obtained new 

information from the input gate. As you can see, the result c(t) is sent without any further 

conversion. It is seen that some memories were dropped and some memories were added. 

The short-term result h(t) is generated after the addition at the input gate by the hyperbolic 

tangent activation function and through the filter of the output gate [10].   

 

The four connected layers perform the task of creating new memories fed by the input 

vector x(t) and the previous state h(t). The main layer g(t) produces outputs. It produces 

direct outputs (y(t), h(t)) in a normal ANN neuron. However, it does not produce direct 

output in LSTM, instead of that is stored in a relatively long term [10].  
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The other three layers carry out the control of the gates. The logistic activation function 

is used in all three layers. For this reason, the outputs of these gates are between 0 and 1. 

The gates are opened or closed according to the value received. The gate f(t) determines 

which of the long-term stored information should be deleted. Which information created 

by g(t) is added in the long-term storage is decided by gate i(t). Finally, it is decided by 

the output gate that the generated information is read by the long-term situation and 

convert to output [10]. 

2.1.7. GRU (Gated Recurrent Unit) 

GRU can be thought of as a simplified version of LSTM.  

 

                       Figure 2.2: Gated Recurrent Unit 

 
                            Source: [10] 

 

Both state vectors in the LSTM are combined in the GRU. Unlike LSTM, the input and 

output gates are controlled by a single gate controller. If the input gate is open and the 

forget gate is closed, it is parameterized with a value of 1 in the gate controller. If the 

opposite occurs, the gate controller takes the value 0. Actually, this is common in LSTM. 

The GRU architecture does not have an output gate. Output generation is performed by 

the full state vector in any case [10]. 
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2.2. RELATED WORKS 

Time data has been tried in many applications in electricity consumption and price 

estimation models. In the study aimed to find the monthly energy need, the trend and 

fluctuation characteristics of the time series were separated and a single model with high 

estimation accuracy was produced by combining the results of two separate models [16]. 

In another application, time series were used to estimate the electricity price with error 

rates below 5% on a weekly basis by dynamic regression and transfer function methods 

[17]. 

 

The results of previous studies with time-series datasets were effective in the selection of 

the ARIMA method. The ARIMA algorithm has many applications in the fields of social 

sciences, engineering, and finance [8]. In a study used to estimate the price of electricity, 

it was observed that some countries produced results with an error rate of about 5% in the 

hourly price estimate for the electricity market [18]. In another electrical charge 

estimation study, ARIMA showed that it was more successful than the ANN model of 20 

neurons. According to the same findings, it has been observed that as the prediction range 

increases, performance decreases even if it is ahead of ANN [19]. 

 

ANN, which is the traditional machine learning method, has been used in short and long 

term trials in energy consumption estimation [20] [21]. The ANN network, trained by the 

Levenberg-Marquardt algorithm, produced a model with an error rate of 5% -14% in 

short-term electricity price estimation. The ANN model, which was created using only 

three layers, as compared with ARIMA results and it was found that the ANN method 

was successful compared to ARIMA for each trial. According to ARIMA, the ability to 

calculate nonlinear functions, establish an input-output relationship and operate data-

driven was effective in the emergence of this performance [22]. 

 

In order to solve the long term dependency problem, the traditional ANN methods were 

replaced by the LSTM method and used in many analyzes in various fields. There are 

studies that have achieved success between 60% - 65% by trying various optimization 

approaches on stock price [23]. In a study in which LSTM was used together with S2S 

(Sequence to Sequence) architecture, it was observed that more successful results were 
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obtained compared to the classical LSTM method [24]. In the LSTM S2S method, 

variable-length input series are converted by the encoder into a fixed-length vector and 

used as input for the vector decoder. The results generated by the decoder include 

estimation up to the desired time. In this way, arbitrary-length inputs are allowed, and the 

random measurement values in the previous time steps become available as input for 

estimation in a random time step. As will be emphasized in this study, the success of the 

results obtained by optimizing the LSTM method varies considerably. There are 

applications that are more successful than other optimization methods such as SGD 

(Stochastic Gradient Descent) and RMSProp (Root Mean Square Propagation) in the 

estimation of electricity price made by ADAM (Adaptive Moment Estimation) 

optimization method [25]. 

 

Despite the significant differences in the architecture of the gate, such as the spread of 

memory information to all units without checking, these two methods have been used in 

comparison with each other in many studies. Given its structural similarity and 

performance in previous studies, it is difficult to say which method is better [26]. The 

GRU model, which has been applied by optimization in some of the analyses, where close 

results are generally obtained, has outperformed other machine learning algorithms [27]. 

When the Sequence to Sequence (S2S) technique is used together, it appears to be quite 

successful compared to the more comprehensive models such as RNN S2S and LSTM 

S2S as well as traditional RNN (Recurrent Neural Networks) and LSTM [28]. 

 

The fact that the dataset used in the study has the time series characteristics enabled us to 

work with supervised learning techniques in the machine learning model. Based on a real 

dataset, 1-day energy consumption is estimated with LSTM and GRU modeling. Firstly, 

detailed tests and visual evidence were obtained to eliminate the effects of time series 

attributes such as stationarity, and then the dataset was made ready for analysis. 

According to the aforementioned studies, the contribution of hyperparameter tuning to 

LSTM and GRU methods has been examined in detail and the best results have been 

created according to the data obtained with 1-year energy consumption. During the tuning 

process, the focus was on insufficient data. In addition to RNN methods, tuning was 



  

11 
 

performed on the ARIMA method which is traditionally tried in time data analysis and 

all results were compared with each other. 
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3. DATA EXPLORATION AND PREPARATION 

In this section, the data set used in the study is introduced. In order to better understand 

the data, various visual outputs were used before proceeding to the analysis stage, and 

detailed information was given on the preliminary preparations for the analyses to be 

performed. 

3.1. GENERAL INFORMATION OF DATA 

The dataset was collected from an energy distribution company in Turkey and it indicates 

the total hourly electricity consumption between 2017-04-03 and 2018-04-02. It was 

obtained directly from the organization and reflects the actual values. Since the value, 

which is kept as an index, describes a time, it is necessary to define this data as a time 

series and the investigations have been made in this direction. 

 

The data used consists of a total of 8760 rows and 4 columns. The dataset consists of the 

features listed below.  

i. date: hourly distributed time information. The index of the dataset. 

ii. power_consumption: energy consumption in an hour time period 

iii. temp: average temperature in that hour interval 

iv. humidity: average humidity in the same time interval.  

 

                    Figure 3.1: Dataset distribution 
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When the Figure 3.1 is examined, it is seen that the energy consumption, temperature, 

and humidity values change over time. According to these graphs drawn from hourly data, 

energy consumption shows almost no trend characteristics but includes a certain 

seasonality feature on a weekly basis. In addition, it is seen that these values are quite low 

at times and very high in rare cases. These disorders will be examined more clearly in the 

future. For the temperature and humidity values, it can be predicted that there is an annual 

seasonality, but these columns also do not contain a trend feature either. The values of 

these two columns appear to be more like fluctuation or appear to be very much affected 

by noise. 

 

  Figure 3.2: Power consumption distribution in January 2018 

 
 

When the monthly power consumption change is examined data taken from the real 

dataset for January 2018 in Figure 3.2, the weekly seasonality can be seen clearly. 

Another point that needs to be emphasized here is that consumption is quite low compared 

to weekdays at weekends. Considering the intensity of working weekdays, it is quite 

predictable that the consumption is more active than the weekend. The above graph also 

proves this situation. 

3.2. RESAMPLING 

Resampling is often used in time series datasets to better understand the data and achieve 

more accurate results during the analysis phase. This method can be defined as 

reconstructing the dataset at a lower or higher frequency. Downsampling is a process of 

aggregating data using operations such as sampling to a lower frequency, usually 

averaging or summing. For example, as we will do here, it is a downsampling process 
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that averages every 24-hour data group to create a daily dataset. The opposite is the 

process of creating the hourly dataset from a daily dataset using specific methods. 

 

The result required to be obtained is daily based and the completion of the studies with 

hourly data in a much longer time than expected shows that the resampling in the dataset 

should be performed. Therefore, the first preprocessing step with the dataset is to 

resample the data to an appropriate value.  

 

The power consumption distribution for the dataset that is regenerated based on the daily 

average is as follows in Figure 3.5. Looking at this graph, there was no change in trend, 

but it was observed that the weekly seasonality could be easily monitored. 

 

  Figure 3.3: Daily resampled power consumption distribution 

 
 

The following graphs Figure 3.6 and Figure 3.7 illustrate other down-sampling 

techniques, weekly and monthly average respectively. By looking at these two graphs, it 

can be clearly seen that it would be of no use to treat the data in this way. It is not possible 

to come across trend and seasonality components that define time series data in both types 

of resampling with this data set. In addition, 4-hour and quarter (3-month) resampling 

was also tried, but the same results were obtained. 
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  Figure 3.4: Weekly resampled power consumption distribution 

 
 

  Figure 3.5: Monthly resampled power consumption distribution 

 

3.3. FLUCTUATIONS 

Figure 3.3 and Figure 3.4 show hourly power consumption between 2017.04-2017.05 and 

2018.02-2018.03 respectively. The two graphs draw attention to the fact that there is 

hardly any energy consumption for a week. The fact that the data at these points contains 

a very small value reveals the possibility that this may be caused by any consumption 

problems. Therefore, in order to use this situation in the analyses, the values in the 

specified ranges are not changed by automatic filling operations, a new feature (isActive) 

is added to the dataset that describes these irregularities. This new column is filled in as 

0 for days where energy consumption is less than 200 and as 1 for days when it is high. 
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  Figure 3.6: Hourly power consumption between 2017.04-2017.05 

 
 

  Figure 3.7: Hourly power consumption between 2018.02-2018.03 

 

3.4. DATA CLEANING  

Since no column contains the missing value, no automatic filling technique was required. 

The fact that all columns except the time information are numeric type provides great 

convenience in the analysis methods to be used. Therefore, preprocessing operations such 

as One Hot Encoding to use categorical columns for analysis such as deep learning 

methods or ARIMA are not needed. 

 

Irregular progress was observed in the temperature and humidity features to be used for 

the analysis. For both of these, the probability that these qualifications are determined 

randomly creates a trust problem. Therefore, an external source [29] was used for weather 

information related to the days in the data set. Since the current dataset is distributed over 

the daily average, the added weather information was collected in the same format and 

the old temperature and humidity values were removed during the addition process. The 

distributions of the resulting dataset are as in Figure 3.8. Looking at these graphs, sudden 
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humidity drops can be seen in some months. The temperature data exhibits an annual 

seasonality as expected and exhibits a highly variable distribution during the winter 

months. 

 

  Figure 3.8: Daily power consumption after difference process 

 

3.5. SEASONALITY & TREND 

Seasonal component, one of the most important elements explaining the temporal series, 

was re-examined by means of various boxplots in addition to the previous items. Firstly, 

the dataset containing the daily averages created by resampling was copied and two new 

columns, month and week names, were added to the copied new dataset. Below it is 

possible to see the distribution of power consumption according to these two new columns 

on the boxplot monthly (Figure 3.9) and days of the week (Figure 3.10). By looking at 

these graphs, it is re-proved that it is impossible to determine a monthly seasonality. Apart 

from the increase in March, the change in power consumption has continued on a fairly 

stable level. The low two quartiles in May 2017 and February 2018 are due to the phases 

in which the aforementioned energy consumption is almost nonexistent. While power 

consumption continues normally in both months, a one-week interruption or consumption 

issue has caused data corruption. 
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  Figure 3.9: Monthly power consumption boxplot 

 
 

In spite of all these, the weekly seasonality was confirmed when the data was examined 

weekly in Figure 3.10. Just as envisaged, the energy consumed at weekends is at very low 

levels almost every week. Outliers on weekdays are thought to be due to holidays. During 

the national days or public holidays on weekdays, energy consumption was observed just 

like the weekends and therefore they could not enter the 95 percent range in normal 

distributions. In summary, the use of weekly periods in seasonal studies will yield the 

most accurate results. 

 

  Figure 3.10: Days of week power consumption boxplot 

 
 

Figure 3.11 shows the decomposition of seasonal, trend and residual values for the power 

consumption attribute. Since the seasonal variation is generally constant at previous 

findings, the decomposition process is set to additive. By looking at the obtained graph, 

it has been proved that our data does not really contain a trend. It is not possible to 

determine the seasonality with the help of these results. The absence of a certain trend, or 

even its irregularity, has made this decomposition very uncertain and prevented the 

determination of the seasonality. 
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  Figure 3.11: Decomposition of power consumption 

 
 

In light of all these findings, it was decided to continue on the basis of daily resampling 

of the dataset, and there was no clear trend for this new dataset but there was a weekly 

seasonality. Further studies were carried out on this daily dataset. 

3.6. STATIONARITY 

For a series, stationarity means that statistical properties such as mean, variance, 

autocorrelation are constant over time. If one of these statistic values is not stable in time, 

the series does not show stationarity. Tests such as ADF (Augmented Dickey-Fuller) or 

KPSS (Kwiatkowski–Phillips–Schmidt–Shin) are used in addition to using visual tables 

to determine whether a series is stationary. These tests are based on the rejection or 

validity of the null hypothesis proposed. Table 3.1 shows the ADF and KPSS test results 

related to the power consumption in the daily data set. 
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  Table 3.1: ADF and KPSS test results 

 ADF KPSS 

Test Statistic -4.567 0.19 

p-value 0.000148 0.10 

Critical Value (1%) -3.449 0.739 

Critical Value (5%) -2.870 0.463 

Critical Value (10%) -2.571 0.347 

 

In order to interpret these results, it is necessary to mention in which situations the series 

can be specified as stationary. For ADF, if the test statistic is lower than critical values, 

the null hypothesis is rejected and in this case, the series is considered stationary. p-value 

of less than 0.05 is also one of the conditions for rejecting this hypothesis. For KPSS, the 

null hypothesis is rejected if the critical values are smaller than the test statistic, but this 

means that the series is not stationary. In the light of this information, when the results in 

Table 3.2 are considered, it is appropriate to say that the data set is stationary with both 

tests. 

 

Whether a series is stationary can be interpreted by looking at the autocorrelation graph 

in addition to the tests mentioned above. Figure 3.12 shows the autocorrelation graph for 

the daily power consumption changes. Autocorrelation is an important way to measure 

and explain the intrinsic relationship between observations within the time series. The 

strength of an internal correlation within a given time period can be checked by this 

method. The values shown on the graph are +1 if the correlation is very strong and 

positive, -1 if the correlation is very strong and negative, and 0 if no correlation exists. 

The area formed by the dashed lines indicates the confidence interval, and in general, it 

can be said that dataset has a certain correlation. If looking carefully, a high and positive 

correlation can be seen in lag values that are multiples of 7. 
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  Figure 3.12: Autocorrelation plot of power consumption 

 
 

Unlike the results of ADF and KPSS tests, the autocorrelation graph clearly shows that 

this series is not stationary. Therefore, in order to stationaries the series, the difference 

taking method was used. This method can be summarized as subtracting the values in the 

series from their values after shifted. As in the datasets used in this study, it is necessary 

to shift the series by the number of days creating seasonality. The new series (Figure 3.13) 

obtained after the difference process shows the difference between the value of each day 

and their value in the next period (7 days). When the graph is examined visually, it can 

be clearly seen that there is no seasonality as before. 

 

Figure 3.13: Daily power consumption after difference process 

 
 

Table 3.2 shows the results of the ADF and KPSS tests with the new series and Figure 

3.14 shows the autocorrelation graph. Both outputs characterize that the new series is 

stationary in line with the aforementioned explanations. As a result, the stationarity in the 

series has been removed and subsequent studies have been continued on this new series. 
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  Table 3.2: ADF and KPSS test results after difference process 

 ADF KPSS 

Test Statistic -5.412 0.028 

p-value 0.000003 0.10 

Critical Value (1%) -3.449 0.739 

Critical Value (5%) -2.870 0.463 

Critical Value (10%) -2.571 0.347 

 

       Figure 3.14: Daily power consumption after difference process 

 
 

3.7. NORMALIZATION 

Figure 3.15 shows the boxplot for each attribute in the data set to be used for analysis. In 

general, even if there is a propagation around 0, there are values between -1000 and 1000. 

The normalization of such series that are not of the same scale plays an important role in 

eliminating optimization problems during modeling. The normalization process makes 

learning less sensitive to the scale of the features and improves the quality of the analysis. 

For this reason, power consumption normalization was performed and the values in the 

whole series were changed with their equivalents between 0 and 1. In addition, unlike 

power consumption, temperature, humidity, and isActive qualities are not required a 

normalization process. As seen in Figure 3.15, all three attributes have the same scales 

and values close to each other. 
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Figure 3.15: Autocorrelation plot of power consumption 

 

3.8. SPLIT TRAIN & TEST SET 

Before proceeding to the modeling stage, one of the most important procedures to prevent 

problems such as overfitting and underfitting is to divide the dataset into training and test 

set. After the modeling process is done with the training set, it is observed by using the 

test set how accurate a result is found. This prevents data from being memorized and 

achieves a comparable model success. 

The resample dataset, which indicates 365 days, was 358 rows as a result of the 

difference. 70 percent of these 358 samples are split for use as a training set and the rest 

as a test set. Thus, the training set consists of 250 samples and the test set consists of 108 

samples. 

3.9. RESHAPE 

According to the modeling methods to be used when analyzing time series, various 

transformations should be made on the data. Since the data set used is a time data, the 

problem is handled as supervised learning (using the observation in the previous time 

steps as an input to predict the observation in the current time step). This can be 
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considered as trying to predict the next day with 7-day data. In this way, each element in 

the training set that will form the model will have a small dataset containing 7 days of 

data. Univariate or multivariate time series are reshaped by this method and made ready 

for use in various RNN models. 

In special RNN methods such as LSTM and GRU, the dataset given to the input layer 

must have a 3-dimensional shape. These dimensions are given below with their 

description. 

i. Samples: The number of rows of the dataset given to the input layer, or the size 

of the data to be used for training in the dataset. 

ii. Time steps: Number of points containing backward information in each instance 

of the training data. For the example given above, this value is 7. 

iii. Features: Number of features per observation. For univariate datasets, this value 

is 1, whereas for multivariate datasets it is the number of features. 

For special RNN methods such as LSTM and GRU, it is very important to determine 

how many days of data will be used in reshape, to determine the number of features or 

the number of outputs. Since the expected time specified in the problem definition is 1 

day, each sample in the output (Y) series to be generated must contain a single value. 

During the creation of the input (X) series, 3-day backward information was used. As a 

result of the reshaping process, the inputs and outputs to be used in the neural network 

models are divided into training and test sets as shown in Table 3.3. 

 

  Table 3.3: Input and output sets after reshape 

X_train Y_train X_test Y_test 

(247, 3, 4) (247, 1) (105, 3, 4) (105,1) 

 

This reshaping process is not required in the ARIMA method to be applied. Also, in this 

method, the model will only be fed with the difference of power consumption attribute, 

so a univariate analysis will be performed. Therefore, the sizes of the training and test 

datasets to be used for ARIMA are (250, 1) and (108, 1) respectively.  
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4. METHODS & ANALYSIS 

4.1. LSTM 

The first method used for analysis is the LSTM, a deep learning method, unlike ordinary 

machine learning approaches. In the training of this model, the aforementioned 247 

sample training set was used. Each sample in this training set contains 4 numerical 

attributes, including 3-day temperature, humidity, isActive and 

power_consumption_diff_scaled. 

 

LSTM application is made in 3-dimensional tensor using Python language Tensorflow 

background in Keras deep learning library. 2 layers were used in each experiment and 

Dropout layers with a threshold value of 0.2 were added after these layers. On the output, 

there is a 1-unit Dense layer that indicates the power consumption value of a single day. 

In the optimization methods, learning rate and momentum values are left by default.  

 

The structuring phase in deep learning methods such as LSTM is a very difficult task. In 

order to fully understand a particular predictive modeling problem, different 

configurations need to be explored from both a dynamic and objective perspective. These 

configurations are called hyperparameters in machine learning. There are many 

hyperparameters that affect the accuracy of the model for the LSTM method. Although 

this analysis method is very popular for time series, it differs in each dataset for 

hyperparameter selection, and the use of correct parameters yields very high successes. 

Therefore, the choice of hyperparameters was emphasized in the analysis performed with 

LSTM and the success of this study was tried to be increased. 

 

In order to summarize the success of the model, RMSE (Root Mean Square Error) was 

used as the error score scale between the test set and predictions, and MAE (Mean 

Absolute Error) was used during the fit procedure. The RMSE scale is very successful in 

punishing big errors and also produces a score in the same units as the predicted data. The 

numerical results shown in all studies will be evaluated on this scale. 
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10 experiments were performed with the same hyperparameters in order to avoid the 

randomness of the model performance. This is because initial weights within the LSTM 

network can produce very different results in each trial. These weights can also be 

considered as a hyperparameter for LSTM and initial values are of great importance in 

that the analysis results are not subject to the problem of vanishing/exploding gradients. 

To address these problems, the LSTM architecture includes the activation functions 

mentioned earlier. In the study, such as changing the initial values or differentiation of 

activation functions were not performed. Randomly selected initial values and 

tanh/sigmoid activation functions from the LSTM architecture were used. 

 

In order to monitor the model performance more controlled, loss graph of both training 

and test data was plotted for epoch steps during each fit process, and error (RMSE) values 

were calculated after the fit and test dataset. In the graphs drawn, the training set was tried 

to be separated as blue and the test set as orange. The following are the hyperparameters 

that are evaluated respectively. 

4.1.1. Epochs  

In the LSTM modeling process, all of the training data may not participate in the training 

at the same time in the backward parameter update process. They can take part in training 

in a number of parts. The first part is trained, the performance of the model is tested, and 

the weights are updated according to the success with backpropagation. Then the model 

is re-trained with the new training set and the weights are updated again. This process is 

repeated in each training step and the most suitable weight values are calculated for the 

model. Each of these training steps is called epoch. The first LSTM parameter used for 

tuning is the number of training periods. 

 

Since the most appropriate weight values are calculated step by step to solve the problem 

in deep learning, the performance in the first epochs will be low and the performance will 

increase as the number of epochs increases. However, after a certain step, the learning 

momentum of the model will decrease considerably. The size of the epoch number also 

varies according to the type of problem. Epoch number should be kept larger than other 

models in methods such as pattern learned LSTM. As the number of epochs increases, 

the performance of the model increases significantly. But, since the performance will 
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increase in very small units after a certain epoch, training can be terminated at these 

points. 

 

Other fixed hyperparameters determined for the epoch comparison are as in Table 4.1. 

Using these fixed parameters, model training was repeated 10 times in 50, 100, 200, 500 

and 1000 epochs. 

 

Table 4.1: Fixed hyperparameters on LSTM epoch tuning 

Batch Size Neuron Sizes Optimizer 

8 50x75 ADAM 

 

4.1.2. Batch Size 

In deep learning applications, learning by processing all the data in the data set at the 

same time is a costly task in terms of time and memory. Because backpropagation is used 

to calculate the gradient descent and the weight values are updated in each iteration of 

learning. The higher the number of data in this calculation, the more the calculation takes. 

To solve this problem; before the data is applied to the learning process, it is divided into 

small groups and applied in this way. In this way, the processing of multiple inputs into 

pieces is called batch. The value specified as batch parameter when designing the model; 

means how much data the model can process at the same time. 

 

Batch value can be specified as a value between 1 and the number of all data in the training 

set. When this value is set to 1, which is the smallest value it can take, “stochastic gradient 

descent” is made. This means that only one data is processed for each iteration. If the 

batch value is equal to the number of all elements in the training set, the process will be 

the same as the “batch gradient descent”, since all data in the training set will enter the 

training at the same time. Fewer oscillations will appear in the error graphs and the 

process will take shorter but often no real learning will take place. 
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Other fixed hyperparameters specified for batch size comparison are as in Table 4.2. 

Using these parameters, analysis was repeated 10 times with 4, 8, 16, 32 and 64 batch 

sizes. 

 

Table 4.2: Fixed hyperparameters on LSTM batch size tuning 

Epoch Neuron Sizes Optimizer 

1000 50x75 ADAM 

 

4.1.3. Neuron Sizes 

The most important feature that distinguishes the deep learning method from other 

artificial neural networks, especially in complex problems, is the number of layers and 

neurons. The concept of depth comes from here. Since the increase in the number of layers 

reduces the backpropagation effect to reach the first layers, it does not affect much after 

a certain point. Therefore, the process of determining the correct number of layers 

emerges as a hyperparameter problem and it is not clear how many layers’ structure 

should be established with the available data. 

 

The number of neurons indicates the number of information stored in each layer. The high 

number of neurons leads to a significant increase in memory requirement and calculation 

time. However, the low number of neurons causes underfitting. Just like the number of 

layers, the number of neurons is a hyperparameter that has serious performance effects. 

 

Other fixed hyperparameters identified are listed in Table 4.3. Along with these 

parameters, the analysis was repeated 10 times using the number of [50x50], [50x100], 

[100x100], [100x200] and [200x200] neurons, first and second layers respectively. 

 

Table 4.3: Fixed hyperparameters on LSTM neuron sizes tuning  

Batch Size Epoch Optimizer 

8 1000 ADAM 
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4.1.4. Optimizer 

The learning process in deep learning applications is basically an optimization problem. 

Various optimization methods are used to find the optimum value in the solution of this 

problem and each algorithm shows significant differences in performance and speed 

between each other. Even though stochastic gradient descent is often used in deep 

learning models, it has been found to be insufficient in many studies. Other methods, such 

as ADAM or RMSPROP, set the learning rate itself unlike the SGD, so it can change 

dynamically during training. However, it is impossible to say that these algorithms give 

the best results in any case. 

 

The learning speed and momentum values of the algorithms used in the optimization test 

were not changed and only the algorithm differences were tested. Other fixed 

hyperparameters identified are listed in Table 4.4. With these parameters, ADAM, 

RMSPROP and SGD optimization methods were repeated 10 times. 

 

Table 4.4: Fixed hyperparameters on LSTM optimizer tuning  

Batch Size Neuron Sizes Epoch 

8 50x75 1000 

 

4.2. GRU 

Although the GRU method is a simpler model that saves time compared to LSTM, it gives 

serious results in performance. Therefore, the second method to be used in the analysis 

was GRU. The input layer configurations for LSTM also apply to this modeling and are 

identical to LSTM. Since there are very similar methods, there is no extra process to be 

done for input data or input layer. It is therefore quite common for most LSTM analyzes 

to compare with GRU. 

Python Keras library is used in GRU modeling. The applications mentioned in the LSTM 

method were also tested for GRU and the parameters yielding the best results were 

searched. 
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4.3. ARIMA 

Since the dataset used is a time series, ARIMA which is a traditional statistical algorithm 

has been tried. ARIMA modeling is widely used with such series even though it does not 

generally give as good results as deep learning methods. 

In order to determine the specified parameters (p, d, q) while defining this method, the 

model was tried again for all combinations in the range of 0-2 and the final model was 

obtained with the parameters giving the smallest AIC (Akaike Information Criteria) 

value. 
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5. RESULTS 

5.1. LSTM 

5.1.1. Epochs 

In order to find the optimal epoch value, the loss graphs during the model training are 

shown in Figure 5.1. Looking at the loss graphs of the models obtained with 50, 100, 200, 

500 and 1000 epoch, respectively, the decrease continued up to 200 epochs but little 

change was observed after this point. 

 

        Figure 5.1: Train and validation loss graphs on LSTM epoch tuning 
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In addition, the box graph of the RMSE error values obtained after the evaluation of the 

models obtained from the experiments with each epoch value using the test set is given 

in Figure 5.2 and the numerical values are given in Table 5.1. A closer look at these values 

shows that there is a significant loss in the 50 and 100 epoch values compared to the 500 

and 1000 epoch values. Even if the 500 and 1000 epoch results are very close to each 

other, it can be said that the best result according to the minimum value and average is 

obtained at 1000 epoch. 
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  Figure 5.2: Boxplot of RMSE scores on test set for LSTM epoch tuning 

 
 

Table 5.1: RMSE scores on test set for LSTM epoch tuning 

 50 100 200 500 1000 

count 10.000000 10.000000 10.000000 10.000000 10.000000 

mean 283.520539 270.812690 213.908783 169.990968 164.434183 

std 7.460235 11.325412 32.203664 19.743634 19.416149 

min 275.266416 253.839944 163.128961 145.917819 143.045504 

25% 278.207906 265.722232 196.809879 155.985935 154.031371 

50% 282.136338 272.012532 206.663074 168.909331 159.238482 

75% 286.438350 277.067459 238.559849 175.136357 171.089739 

max 300.873477 289.533909 265.424189 215.194983 208.873126 

t (sec) 20.11 35.22 66.32 148.38 285.53 

 

5.1.2. Batch Size 

As a result of changes in batch size parameter, error statistics in predictions made with 

test data set are shown in Figure 5.3 and Table 5.2. It is easy to see that error averages 

and standard deviations increase as the batch grows. When batch size is 4, it can be said 

that the median value is the lowest and the lowest mean error occurs at this value. Even 
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if the smallest RMSE scores of the 50 trials in total were obtained at 16 and 32 batch size 

values, moving with average and standard deviation results would produce a more 

accurate result in generalizing the model results. When the model working time and 

training set RMSE scores were taken into account, the optimum value was determined as 

8. 

 

  Figure 5.3: Boxplot of RMSE scores on test set for LSTM batch size tuning 

 
 

Table 5.2: RMSE scores on test set for LSTM batch size tuning 

 4 8 16 32 64 

count 10.000000 10.000000 10.000000 10.000000 10.000000 

mean 153.182355 158.514539 166.519215 165.343546 189.047181 

std 7.393169 9.048812 20.866356 24.021260 26.244330 

min 144.122504 143.869367 139.080442 139.427379 145.078555 

25% 148.681620 154.607908 151.571187 150.624652 177.179728 

50% 150.823043 160.184897 163.825079 159.690964 192.928754 

75% 154.507492 162.304250 182.990252 178.420388 203.582843 

max 167.469270 175.685157 200.713642 216.089866 226.076749 

t (sec) 500.53 261.18 141.64 89.77 52.98 
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5.1.3. Neuron Sizes 

The error statistics of the predictions made with the test data set as a result of changes in 

the number of neurons are shown in Figure 5.4 and Table 5.3. When the results are 

examined, it is seen that the error scores obtained at 50x50 are in a very high range. Even 

if the most stable results were obtained at 100x100, when the average and minimum 

values were taken into consideration, it was observed that the best results were obtained 

in neuron numbers of 100x200. It would not be wrong to say that there is no improvement 

in the number of 200x200 neurons compared to 100x200, and even worse results are 

obtained. 

 

  Figure 5.4: Boxplot of RMSE scores on test set for LSTM neuron sizes tuning 
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Table 5.3: RMSE scores on test set for LSTM neuron sizes tuning 

 [50 50] [50 100] [100 100] [100 200] [200 200] 

count 10.000000 10.000000 10.000000 10.000000 10.000000 

mean 175.685195 164.172904 161.036149 155.575822 158.840529 

std 23.957854 11.629970 17.756128 8.845982 10.792678 

min 151.389766 148.660474 145.811042 141.785663 146.503004 

25% 156.611914 153.910903 154.603056 149.452513 153.019893 

50% 168.102890 164.007033 156.160852 154.483164 155.620396 

75% 192.355569 171.094593 159.214115 160.769929 161.466729 

max 220.218070 185.058480 210.154045 169.639731 184.699626 

t (sec) 244.25 281.66 332.63 584.61 877.69 

5.1.4. Optimizer 

Figure 5.5 and Table 5.4 show the results of the optimization algorithms. The SGD 

method has the highest error values among these three methods. ADAM and RMSPROP 

produced almost the same results. The average values for these two methods do not show 

much difference, but the minimum and 25 percent threshold values are lower in the 

ADAM algorithm. Although the standard deviation amount is less in RMSPROP 

algorithm, it can be said that the best result is obtained from the ADAM algorithm because 

of the success of ADAM at minimum values. 

    Figure 5.5: Boxplot of RMSE scores on test set for LSTM optimizer tuning 

 
                  



  

37 
 

                  Table 5.4: RMSE scores on test set for LSTM optimizer tuning 

 ADAM RMSPROP SGD 

count 10.000000 10.000000 10.000000 

mean 157.538988 157.235942 297.919606 

std 11.168737 4.686880 4.462940 

min 146.434476 151.333688 288.994125 

25% 147.886829 154.082046 295.308935 

50% 156.320678 156.919133 298.625578 

75% 161.439789 158.896919 301.110326 

max 178.692520 166.839376 303.347586 

t (sec) 275.37 279.30 260.56 

5.1.5. Tuned Model 

The hyperparameters that yield the best results from the tuning process are shown in Table 

5.5. LSTM modeling using these parameters was done one more time. RMSE scores 

obtained with training and test datasets were 63.37 and 142.11, respectively. As 

mentioned before, these scores may vary slightly according to the random initial value, 

but generally close to this value will be obtained. 

 

Table 5.5: Tuned LSTM hyperparameters 

Epochs Batch Size Neuron Sizes Optimizer 

1000 8 100x200 ADAM 

 

  Figure 5.6: Tuned LSTM predictions 
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In addition, the estimates made using the latest model generated on the daily power 

consumption distribution graph are shown in Figure 5.6. The blue color in this graph 

shows the actual power consumption values in the data set, the orange color is the 

estimates made by the training set, and the green color is the estimates made by the test 

set. As can be seen from this graph, the model produced very close results to the actual 

values in the estimations made with the training set, but it was difficult to capture some 

points in the test set. It has successfully predicted the fluctuation points in the training set 

but failed in the test dataset. 

5.2. GRU 

5.2.1. Epochs 

The loss graphs from the experiments with the determined epoch numbers are as in Figure 

5.7. It is seen that the models in all graphs are rapidly reaching saturation. Almost all of 

the training set losses were found to be lower than the validation set, and after 500 epoch 

values, there was almost no decrease for both datasets. 

 

     Figure 5.7: Train and validation loss graphs on GRU epoch tuning  
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The RMSE scores in the estimations made with the obtained models are shown in Table 

5.6 and the box graph is shown in Figure 5.8. When these values were examined, 50 and 

100 epoch values showed very high error amounts, but it was observed that this ratio 

decreased as the epoch grew. Even if the results of the experiments with 500 and 1000 

epochs were very close to each other, it was found that the error rate on average and 25 

percent threshold was better for 500 epochs. Even if the standard deviation amount is high 

for 500 epochs, it can be said that the best results for this dataset can be obtained in the 

examination made according to minimum values. 
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  Figure 5.8: Boxplot of RMSE scores on test set for GRU epoch tuning 

 
 

Table 5.6: RMSE scores on test set for GRU epoch tuning 

 50 100 200 500 1000 

count 10.000000 10.000000 10.000000 10.000000 10.000000 

mean 293.853688 281.503900 209.513137 166.285670 168.151003 

std 8.863664 12.026953 36.662356 21.265344 16.470604 

min 283.923186 265.083179 168.695438 145.245438 150.289281 

25% 285.756096 273.692475 176.200011 150.557154 159.217694 

50% 293.302473 278.147492 202.489678 160.685719 163.789620 

75% 301.386614 289.703740 241.575708 179.983464 175.988485 

max 306.876463 299.408947 263.340273 208.585559 204.881170 

t (sec) 14.05 23.74 44.79 113.67 215.05 

5.2.2. Batch Size 

Table 5.7 and Figure 5.9 were obtained as a result of the predictions made with the test 

set of the models obtained from batch size trials. RMSE scores for all batch values can be 

seen in a very large range. There is a big difference between the maximum and minimum 

error values for the 8 and 32 batch size parameters. Results for 4 and 16 were very similar. 
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Since minimum and 25 percent threshold results are quite successful, it is not wrong to 

say that the best results for this modeling method are obtained at this 16 batch value. 

 

  Figure 5.9: Boxplot of RMSE scores on test set for GRU batch size tuning 

 
 

Table 5.7: RMSE scores on test set for GRU batch size tuning 

 4 8 16 32 64 

count 10.000000 10.000000 10.000000 10.000000 10.000000 

mean 169.421403 175.167263 162.012748 173.158660 175.909591 

std 19.810899 21.415485 8.681756 19.002828 15.441555 

min 152.102224 150.421032 150.490196 152.305822 152.156453 

25% 159.084510 158.175633 155.578127 159.016863 164.329316 

50% 163.127222 171.447831 161.308094 165.577610 177.134362 

75% 173.435542 185.573891 167.616149 187.619287 184.535884 

max 221.226383 212.388241 176.726579 207.832395 204.875120 

t (sec) 400.87 208.14 114.83 74.07 43.93 

5.2.3. Neuron Sizes 

Figure 5.10 and Table 5.8 show the RMSE scores obtained by evaluating the models 

obtained from 10 experiments with various neuron numbers with the test data set. As a 
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result of this evaluation, close values were obtained for all neuron numbers. The minimum 

and maximum range of 50x50, 50x100 and 200x200 were found to be higher than others. 

According to the standard deviation and average values, it was determined that 100x200 

neuron numbers would give the best results for this modeling method. 

 

  Figure 5.10: Boxplot of RMSE scores on test set for GRU neuron sizes tuning 

 
 

Table 5.8: RMSE scores on test set for GRU neuron sizes tuning 

 [50 50] [50 100] [100 100] [100 200] [200 200] 

count 10.000000 10.000000 10.000000 10.000000 10.000000 

mean 171.421920 170.217221 166.259818 161.709010 164.092121 

std 26.792710 17.703515 13.301766 8.067852 16.058728 

min 141.085789 140.805947 149.239883 146.077288 144.660984 

25% 156.207693 159.388332 157.860563 157.748615 153.129637 

50% 165.609998 168.121712 163.090456 161.285290 161.479899 

75% 181.042755 182.658302 169.645607 165.232409 169.566665 

max 235.960561 198.777702 192.403549 173.659698 196.534449 

t (sec) 199.41 227.60 263.09 427.03 629.80 



  

43 
 

5.2.4. Optimizer 

The RMSE scores of the test data evaluations obtained from the optimization methods 

experiment, the last hyperparameter trial, are as in Figure 5.11 and Table 5.9. When these 

results are analyzed, it is seen that the SGD method is quite unsuccessful compared to the 

other two optimization methods. The ADAM algorithm produced model results of 172.42 

averages and performed quite successfully compared to the others. Therefore, using 

ADAM optimization method in GRU modeling with this dataset will give the best results. 

  Figure 5.11: Boxplot of RMSE scores on test set for GRU optimizer tuning 

 
 
                  Table 5.9: RMSE scores on test set for GRU optimizer tuning 

 ADAM RMSPROP SGD 

count 10.000000 10.000000 10.000000 

mean 171.423307 191.610631 299.792814 

std 23.181214 20.832299 7.880646 

min 136.819984 161.292229 290.349117 

25% 156.851501 176.169125 296.479238 

50% 170.730910 195.232235 297.162455 

75% 180.331058 207.345136 298.188706 

max 220.524742 223.233208 316.896592 

t (sec) 197.00 192.56 190.29 
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5.2.5. Tuned Model 

The hyperparameters that yield the best results from tuning are shown in Table 5.10. By 

using these parameters, GRU modeling was done one more time. RMSE scores obtained 

with training and test datasets were 98.14 and 158.51, respectively. 

 

Table 5.10: Tuned GRU hyperparameters 

Epochs Batch Size Neuron Sizes Optimizer 

500 16 100x200 ADAM 

 

Figure 5.12 shows the comparison of the predicted GRU model with the actual data. Like 

the LSTM, it produced a very successful estimate for the training set at GRU but failed 

on the test set. It is observed that it performs quite poorly in fluctuation points in both 

train and test data. 

 

     Figure 5.12: Tuned GRU predictions 

 

5.3. ARIMA 

The most appropriate (p, d, q) parameters were also searched for the ARIMA model, 

which is different from the deep learning methods. The model was reproduced with all 

combinations from 0 to 2 and the parameters giving the lowest AIC value were searched. 

The obtained AIC value is as in Table 5.11. While creating this table, parameters with 

higher AIC values compared to the previous value were not included and only lower 

combinations were tried to be shown. When looking at this table, it is seen that the best 

results can be obtained by parameters (2, 0, 1). 
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Table 5.11: AIC values on ARIMA tuning 

p d q AIC 

0 0 0 -397.45 

0 0 1 -547.89 

0 1 0 -584.22 

1 0 0 -615.75 

1 0 1 -620.03 

2 0 0 -620.37 

2 0 1 -644.98 

 

As a result of ARIMA modeling using the most appropriate parameters, RMSE scores of 

138.33 and 291.22 were obtained in the evaluation made with the training and test set, 

respectively. In addition, the comparison of the actual values with the estimates made 

with this model is given in Figure 5.13. Looking at the estimates produced by the test set, 

it can be said that there was almost no performance at the fluctuation points. This situation 

has a significant effect on RMSE scores. 

 

  Figure 5.13: Tuned ARIMA predictions 

 

5.4. FINAL 

Based on this problem, the best results obtained according to the results of time-series 

analyses (Table 5.12) with 1-year hourly data were obtained by LSTM. While 

determining the error score, tuning was emphasized and the most important 

hyperparameters were changed. With the RMSE score of 142.11, 13 percent error was 

obtained according to the data set with a mean of 1076.  
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  Table 5.12: RMSE comparisons of tuned methods 

Method Train Set RMSE Test Set RMSE 

Tuned LSTM 63.37 142.11 

Tuned GRU 98.14 158.51 

Tuned ARIMA 138.33 291.22 
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6. DISCUSSION 

It is important to make various estimates using the available data in order to be able to 

make various plans or arrangements in advance against the situations that may occur in 

the consumption of energy. As long as the accuracy of these estimations increases, the 

operations can be carried out more effectively and in a timely manner, thus providing an 

efficient process in energy consumption. 

 

Although the score obtained from GRU modeling is close to LSTM results, it can be 

clearly stated that LSTM is successful in comparing deep learning methods. When 

comparing the two methods, batch size and epoch hyperparameters are observed. The 

best results were obtained in 8 batch sizes & 1000 epoch for LSTM and 16 batch sizes & 

500 epochs for GRU. GRU's unique gate approach and the time-saving hyperparameters 

that are sufficient for learning make this algorithm different from LSTM. 

 

The ARIMA method, which is widely used in time series analysis, has been quite 

unsuccessful compared to other methods. The reasons for this are; univariate analysis, 

lack of trend in the original dataset, inadequacy of the ARIMA method for learning 

fluctuation points. At the same time, it can be easily emphasized that the ARIMA model 

cannot make a clear learning process when the results of the estimations made with the 

test dataset are examined. 

 

It can be said that there is an overfitting situation by looking at the difference between the 

estimation results with training and test sets for all types of analysis. However, this is due 

to irregularity in the test set rather than the problem of overfitting. Looking at the graphs 

showing the predictions, it can be seen that the results that affect the amount of error the 

most are at the points where these irregularities occur. When all methods tried to apply 

the order that they learned with the training set with a small and irregular test set, a higher 

error rate than normal was observed. 

 

Since the data set of the time series type collected was not large enough, an error rate of 

13 percent could be concluded. The number of layers used in deep learning methods was 
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also kept low due to the insufficient number of samples in the data set. The first thing to 

do to achieve better results should be to collect more data. In this way, it is possible to 

make weekly or monthly estimations with more downsampling operations on the data 

instead of daily analysis because the available data is insufficient. At the same time, a 

significant increase in performance in daily results can easily be predicted. 

 

In order to improve the results, technical data affecting the number of people living in the 

region may be added to the dataset, except temperature and humidity information. In this 

way, it is easier for deep learning methods to learn the situations indicated as fluctuations. 
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7. CONCLUSION 

Electricity consumption is of great importance as an increasing need as time goes on. 

Efficient regulation of the balance between the generation and consumption of this energy 

source yields substantial financial gains. The fact that it is an energy type that cannot be 

stored and the amount of consumption is increasing day by day with the advancement in 

technology requires investment and capacity determination issues in this field. More 

effective planning in the future is directly related to how much the predictions reflect the 

reality. 

 

With the advancement of technology, advances in machine learning accelerated and 

prediction algorithms with low error rates were developed. As mentioned in the literature 

review, many estimation methods have been tried before and these modeling methods 

have been compared with each other. Although many studies have achieved very 

successful results, ways of minimizing error rates have been sought in order to make the 

necessary adjustments early. 

 

In this study, it is aimed to produce realistic predictions by using deep learning methods 

to solve the above-mentioned problems. A daily consumption estimate was made with 

the time series dataset, which includes hourly electricity consumption within a year. After 

explaining the features such as seasonality and trend of the time series in detail, the 

preparatory processes such as resampling, normalization and reshape required for the 

analysis phase were completed. As a method of analysis, LSTM and GRU algorithms 

which are one of the most popular methods of deep learning and the ARIMA which is 

frequently used in time data analysis has been tested. During these trials, hyperparameter 

improvements affecting prediction were emphasized. For each type of modeling, the 

parameters that produced the best results were searched and the most suitable parameters 

for each model were compared with the results. 

 

As a result of the tests and comparisons, the best results were obtained with LSTM and a 

daily electricity consumption estimate was obtained with a 13 percent error rate. Although 

the GRU method has a close error rate, it is lagging behind LSTM. ARIMA, on the other 
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hand, showed a rather unsuccessful performance compared to the other two deep learning 

methods and proved to be inadequate for this prediction process. 

 

Although the result of the study can produce very good estimates of electricity 

consumption for this dataset, more samples and independent variables are needed to 

achieve more reliable success rates. Looking at the results obtained, the first process that 

should be performed for other researchers who will work in this field can be described as 

data collection. It is inevitable that when the number of samples is increased and other 

factors affecting consumption are added, significant-good results can be achieved. 
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