
THE REPUBLIC OF TURKEY

BAHÇEŞEHİR UNIVERSITY

STEREO VISION UTILIZING DEEP LEARNING

Master’s Thesis

ABDULLAH NAZHAT ABDULLAH

 İSTANBUL, 2020

THE REPUBLIC OF TURKEY

BAHÇEŞEHİR UNIVERSITY

GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES

COMPUTER ENGINEERING GRADUATE PROGRAM

STEREO VISION UTILIZING DEEP LEARNING

Master’s Thesis

ABDULLAH NAZHAT ABDULLAH

Thesis Supervisor: ASSIST. PROF. DR. TARKAN AYDIN

İSTANBUL, 2020

THE REPUBLIC OF TURKEY

BAHCESEHIR UNIVERSITY

THE GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES

COMPUTER ENGINEERING

Title of the Master’s Thesis : Stereo Vision Utilizing Deep Learning

Name/Last Name of the Student : Abdullah Nazhat Abdullah ABDULLAH

Date of Thesis Defence : 10.01.2020

The thesis has been approved by the Graduate School of Natural and Applied Sciences.

Assist. Prof. Dr. Yücel Batu SALMAN

 Graduate School Director

I certify that this thesis meets all the requirements as a thesis for the degree of Master of

Science.

 Assist. Prof. Dr. Tarkan AYDIN

 Program Coordinator

This is to certify that we have read this thesis and we find it fully adequate in scope,

quality and content, as a thesis for the degree of Master of Science.

Examining Committee Members Signatures

Thesis Supervisor

Assist. Prof. Dr. Tarkan AYDIN ------------------------------------

Member

Assist. Prof. Dr. Cemal Okan ŞAKAR ------------------------------------

Member

Assist. Prof. Dr. Ulaş VURAL ------------------------------------

ACKNOWLEDGEMENTS

A great amount of time and effort have gone into the work of this thesis. I would like to

show my appreciation to all individuals who have encouraged and supported me

throughout my work of this thesis during its performing and until its completion.

I would like to express my sincere appreciation to my advisor, Asst. Prof. Dr. Tarkan

AYDIN, for his guidance and helpful support.

I would like also to thank my parents, teachers, friends and colleagues for supporting and

encouraging me during my research.

İstanbul, 2020 Abdullah ABDULLAH

iii

ABSTRACT

STEREO VISION UTILIZING DEEP LEARNING

Abdullah ABDULLAH

Computer Engineering Graduate Program

Thesis Supervisor: Assist. Prof. Dr. Tarkan AYDIN

January 2020, 77 pages

This thesis fixates on the problem of stereo vision based depth estimation as it represents

one of the most challenging topics in computer vision research.

Recently, deep learning methods gained wide spread adoption among computer vision

researchers and specialists, thus the thesis continues on this effort with the design and

implementation of a deep learning architecture that have compactness and ease of training

as the main target.

The Deep Neural Network architecture chosen to the task is a Fully Convolutional

Encoder-Decoder and training data are stereo pair images with disparity maps as the

output labels, several modifications are proposed in this design on the most recent

proposals in the field and the new compact networks are trained and tested.

Keywords: Computer Vision, Machine Learning, Deep Neural Networks, Encoder-

 Decoder, Disparity estimation

iv

ÖZET

GÖRÜNTÜ SINIFLANDIRMA İÇİN CNN MİMARLIKLARDA PERFORMANS

GELİŞTİRME

Abdullah ABDULLAH

Bilgisayar Mühendisliği Yüksek Lisans Programı

Tez Danışmanı: Dr. Öğr. Üyesi Tarkan AYDIN

Ocak 2020, 77 sayfa

Bu tez, bilgisayarlı görme araştırmalarındaki en zorlu konulardan birini temsil ettiği için

stereo görüş tabanlı derinlik tahmini sorununa odaklanmaktadır.

Son zamanlarda, derin öğrenme yöntemleri bilgisayar vizyonu araştırmacıları ve

uzmanları arasında yaygın bir şekilde benimsenmiştir, bu nedenle ana hedef olarak

kompaktlık ve eğitim kolaylığı olan derin bir öğrenme mimarisinin tasarımı ve

uygulanması ile bu çabayı sürdürüyoruz.

Göreve seçilen Derin Sinir Ağı mimarisi Tamamen Konvolüsyonel Enkoder-Kod

Çözücüdür ve eğitim verileri çıktı etiketleri olarak eşitlik haritalarına sahip stereo çift

görüntülerdir, bu tasarımda alandaki en son tekliflerde ve yeni kompaktta birkaç

değişiklik önerilmiştir ağlar eğitilir ve test edilir.

Anahtar Kelimeler: Bilgisayar Görüşü, Makine Öğrenme, Derin Sinir Ağı, Encoder-

 Decoder, Eşitsizlik Tahmini

v

CONTENTS

TABLES ... vii

FIGURES .. viii

ABBREVIATIONS ... xii

1. INTRODUCTION ... 1

2. THEORY AND LITERATURE RIVIEW .. 2

2.1 STEREO VISION ... 2

2.1.1 Camera Model .. 2

2.1.2 Camera Intrinsic Parameters.. 3

2.1.3 Camera Extrinsic Parameters ... 5

2.1.4 Stereo Camera Systems ... 6

2.1.5 Stereo Matching ... 9

2.1 DEEP LEARNING ... 14

2.2.1 Neural Networks... 14

2.2.2 Deep Learning and Deep Neural Networks ... 22

2.2.3 Activation Functions .. 24

2.2.4 Convolutional Neural Networks ... 28

2.2.5 Encoder-Decoder Architecture ... 33

2.3 LITERATURE RIVIEW .. 35

3. DATA AND METHOD .. 38

3.1 DATA SETS ... 38

3.2 SUPERVISED LEARNING IMPLEMENTATION OF PRETRAINED

ENCODER-DECODER NETWORK ... 41

3.3 SUPERVISED LEARINING IMPLEMENTATION OF ENCODER-

DECODER NETWORK .. 46

vi

3.4 UNSUPERVISED LEARNING IMPLEMENTATION OF ENCODER-

DECODER NETWORK .. 49

4. EXPERIMENTAL RESUTLS ... 53

4.1 HARDWARE AND SOFTWARE ... 53

4.2 RESULTS .. 54

5. DISCUSSION .. 72

6. CONCLUSIONS AND FUTURE WORK .. 76

6.1 CONCLUSIONS ... 76

6.2 FUTURE WORK .. 77

REFERENCES .. 78

APPENDICES ... 84

Appendix A.1 Table .. 85

vii

TABLES

Table 3.1: Pretrained Model with Inception Encoder ... 42

Table 3.2: Pretrained Model with VGG Encoder.. 44

Table 3.3: Supervised Model with Parameter reduced DenseMapNet 47

Table 3.4: Supervised Model with Siamese Network ... 48

Table 3.5: Unsupervised Model with DenseMapNet .. 50

Table 3.6: Unsupervised Model with Symmetric Network .. 51

viii

FIGURES

Figure 2.1: The Pinhole Camera Model .. 2

Figure 2.2: Image Projection ... 4

Figure 2.3: Camera to real world translations and rotations ... 5

Figure 2.4: Disparity and depth form two cameras ... 6

Figure 2.5: Depth disparity relation .. 7

Figure 2.6: Epipolar geometry .. 8

Figure 2.7: Matching cost ... 10

Figure 2.8: Specular Reflection... 11

Figure 2.9: Transparencies .. 11

Figure 2.10: Perspective change ... 12

Figure 2.11: Occlusions .. 12

Figure 2.12: Repetitive Objects... 13

Figure 2.13: Textureless Surface... 13

Figure 2.14: Distortions .. 14

Figure 2.15: The Perceptron .. 16

Figure 2.16: Multi Output Perceptron (Multi-Class) .. 17

Figure 2.17: Multi-Layer Perceptron (MLP) .. 19

Figure 2.18: The Geometric representation of Deep Learning 22

Figure 2.19: Recurrent Neural Networks (RNN) .. 24

Figure 2.20: Sigmoid and Tanh activation Functions ... 26

Figure 2.21: ReLU Activation Function ... 27

Figure 2.22: Local Receptive Field ... 30

Figure 2.23: Feature Maps .. 31

Figure 2.24: Max Pooling Layer ... 32

Figure 2.25: CNN General Architectu .. 32

Figure 2.26: Encoder-Decoder Architecture ... 33

Figure 2.27: Encoder-Decoder Application Example ... 34

Figure 2.28: Encoder-Decoder CNN for Computer Vision .. 35

Figure 2.29: GC-Net architecture .. 37

Figure 3.1: KITTI 2015 Data Set Example ... 39

ix

Figure 3.2: MPI-Sintel Data Set Example .. 40

Figure 3.3: Inception Module .. 44

Figure 4.1: Tensorflow Dataflow Graph Schematic. .. 54

Figure 4.2: Training and Validation Accuracy for Inception Pretrained Supervised

 Learning Model on KITTI Data Set ... 55

Figure 4.3: Training and Validation Accuracy for Inception Pretrained Supervised

 Learning Model on MPI-Sintel Data Set ... 55

Figure 4.4: Training and Validation Loss for Inception Pretrained Supervised Learning

 Model on KITTI Data Set .. 56

Figure 4.5: Training and Validation Loss for Inception Pretrained Supervised Learning

 Model on MPI-Sintel Data Set ... 56

Figure 4.6: Evaluation Output for Inception Pretrained Superviesed Learning Model on

 KITTI Data Set ... 57

Figure 4.7: Evaluation Output for Inception Pretrained Superviesed Learning Model on

 MPI-Sintel Data Set ... 57

Figure 4.8: Training and Validation Accuracy for VGG Pretrained Supervised

 Learning Model on KITTI Data Set ... 58

Figure 4.9: Training and Validation Accuracy for VGG Pretrained Supervised

 Learning Model on MPI-Sintel Data Set ... 58

Figure 4.10: Training and Validation Loss for VGG Pretrained Supervised Learning

 Model on KITTI Data Set .. 59

Figure 4.11: Training and Validation Loss for VGG Pretrained Supervised Learning

 Model on MPI-Sintel Data Set ... 59

Figure 4.12: Evaluation Output for VGG Pretrained Superviesed Learning Model on

 KITTI Data Set ... 60

Figure 4.13: Evaluation Output for VGG Pretrained Superviesed Learning Model on

 MPI-Sintel Data Set ... 60

Figure 4.14: Training and Validation Accuracy for DenseMapNet Supervised Learning

 Model on KITTI Data Set .. 61

Figure 4.15: Training and Validation Accuracy for DenseMapNet Pretrained Supervised

 Learning Model on MPI-Sintel Data Set ... 61

Figure 4.16: Training and Validation Loss for DenseMapNet Supervised Learning

x

 Model on KITTI Data Set .. 62

Figure 4.17: Training and Validation Loss for DenseMapNet Supervised Learning

 Model on MPI-Sintel Data Set ... 62

Figure 4.18: Evaluation Output for DenseMapNet Superviesed Learning Model on

 KITTI Data Set ... 63

Figure 4.19: Evaluation Output for DenseMapNet Superviesed Learning Model on MPI-

 Sintel Data Set .. 63

Figure 4.20: Training and Validation Accuracy for Siamese Network Supervised

 Learning Model on KITTI Data Set ... 64

Figure 4.21: Training and Validation Accuracy for Siamese Network Supervised

 Learning Model on MPI-Sintel Data Set ... 64

Figure 4.22: Training and Validation Loss for Siamese Network Supervised Learning

 Model on KITTI Data Set .. 65

Figure 4.23: Training and Validation Accuracy for Siamese Network Supervised

 Learning Model on MPI-Sintel Data Set ... 65

Figure 4.24: Evaluation Output for Siamese Network Superviesed Learning Model on

 KITTI Data Set ... 66

Figure 4.25: Evaluation Output for Siamese Network Superviesed Learning Model on

 MPI-Sintel Data Set ... 66

Figure 4.26: Training and Validation Reconstruction Loss for DenseMapNet

 Unsupervised Learning Model on KITTI Data Set 67

Figure 4.27: Training and Validation Reconstruction Loss for DenseMapNet

 Unsupervised Learning Model on MPI-Sintel Data Set 68

Figure 4.28: Evaluation Output for DenseMapNet Unsupervised Learning Model on

 KITTI Data Set ... 68

Figure 4.29: Evaluation Output for DenseMapNet Unsupervised Learning Model on

 MPI-Sintel Data Set ... 69

Figure 4.30: Training and Validation Reconstruction Loss for Symmetric Network

 Unsupervised Learning Model on KITTI Data Set 69

Figure 4.31: Training and Validation Reconstruction Loss for Symmetric Network

 Unsupervised Learning Model on MPI-Sintel Data Set 70

Figure 4.32: Evaluation Output for Symmetric Network Unsupervised Learning Model

xi

 on KITTI Data Set ... 70

Figure 4.33: Evaluation Output for Symmetric Network Unsupervised Learning Model

 on MPI-Sintel Data Set .. 71

xii

ABBREVIATIONS

ANN : Artificial Neural Networks

ADAM : Adaptive Momentum estimation

BN : Batch Normalization

CPU : Central Processing Unit

CV : Computer Vision

CNN : Convolutional Neural Networks

DL : Deep Learning

DNN : Deep Neural Network

GPU : Graphics Processing Unit

ML : Machine Learning

MLP : Multi-layer Perceptron

NLP : Natural Language Processing

RAM : Random Access Memory

ReLU : Rectified Linear Unit

RMSPROP : Root Mean Square Propagation

RNN : Recurrent Neural Network

SGD : Stochastic Gradient Descent

1. INTRODUCTION

Stereo Vision is the hallmark of human perceptual capabilities, it enables a person to

estimate depth and identify an object's distance by combining information from two eyes

which represent the stereo input pair and deducing from them the all the useful

information for fast and effective inference that allow us to perform feats such as avoiding

collisions while walking or catching a flying ball.

These abilities that seem simple at first glance when required to be performed by

computerized systems demands from specialists a great deal of diligence and design,

extensive research has been allocated to the task of Stereo Vision and Stereo Matching,

many proposals have been admitted that addressed this problem with good results albeit

requiring large computational resources and noticeable delays in output.

The main aim of this thesis is to design a disparity mapping Deep Neural Network with

the proprieties of small parameter size, ease of training and fast compute time by

processing left and right stereo pairs as inputs and performing transformations on them

to predict disparity values. These features are desired in systems that require fast

execution with the best possible output fidelity, a prime example of such applications is

the field of Robotic navigation.

The thesis starts by defining the theory of stereo vision and deep learning providing the

foundations on which it proceeds to present past systems and designs given for solving

the problem. It takes from that to specify the implementation for the proposed system of

this work detailing design choices, procedures and modifications. The thesis is finalized

with conclusion notes on the proposed implementation as well as the obtained test results.

2

2. THEORY AND LITERATURE RIVIEW

2.1 STEREO VISION

This part of the thesis presents the theory of Stereo vision starting with a model of how

cameras operate, camera parameters intrinsic and extrinsic, stereo camera systems and

lastly the stereo matching problem with a general theory of the proposed solutions.

2.1.1 Camera Model

The camera model of choice to describe the process of picture capture is the pinhole

camera model (Szeliski 2010). It is a projection model that specifies the relationship

between 3D points in the real world and 2D points on the image plane by tracing the path

of light rays through the pinhole apparatus, the incoming rays converge on a single point

called the camera centre from there these rays diverge onto the specific points that

comprises the projected image.

 Figure 2.1: The Pinhole Camera Model

3

2.1.2 Camera Intrinsic Parameters

Given a point in the real world with the three dimensional coordinates P = (X , Y, Z) the

image plane projection of that point is given by the coordinates p = (x , y).

The equations for finding x and y (Szeliski 2010) are formulated as:

x = 𝑓
𝐗

𝐙
 , y = 𝑓

𝐘

𝐙
 (2.1)

Where f represents the camera's focal length.

This transformation is unique but it is noted that performing the inverse is not, also noted

that both the camera and the point of interest share the same coordinate system with the

origin being the camera centre C.

As for each image plane point there is a full line that could correspond to it thus it is

deduced that capturing image projections with a single camera results in a loss of depth

information.

The pinhole camera model (Szeliski 2010) can be defined in a matrix formulation as in

the following:

𝜆 [
𝑥
𝑦
1

] = [
𝑓 0 0 0
0 𝑓 0 0
0 0 1 0

] [

𝑋
𝑌
𝑍
1

]

 = [
𝑓 0 0
0 𝑓 0
0 0 1

] [
1 0 0 0
0 1 0 0
0 0 1 0

] [

𝑋
𝑌
𝑍
1

] = 𝑘 𝐼 [

𝑋
𝑌
𝑍
1

] (2.2)

4

 Figure 2.2: Image Projection

The matrix k presented above is an approximation, physical digital cameras have active

pixels not as mathematical points but with dimensions of width and height.

Manufacturing these pixels is not a perfect process and resulting pixels could have non-

identical width and height dimensions as well as skew in positioning thus requiring extra

parameters to accommodate these variations.

To account for aspect ratio difference between x and y dimensions of pixels the focal

length is represented by two different parameters fx and fy.

If the image plane do not intersect directly with the principal axis offset parameters are

introduced represented by cx and cy.

Skew in the elements placements are also accounted and represented by the parameter s.

The full k matrix with full form (Szeliski 2010) is presented as follows:

𝑘 = [
𝑓𝑥 𝑠 𝑐𝑥

0 𝑓𝑦 𝑐𝑦

0 0 1

] (2.3)

5

2.1.3 Camera Extrinsic Parameters

The coincidence of the origin point in the coordinate system that is related to the camera

and the origin point in the coordinate system related to the object of interest is a highly

idealized situation, mostly the camera will be in a different coordinate system with a

different origin than the objects whose image being captured and this requires the

introduction of extra parameters that calculate the transformations between the camera

coordinate system and the coordinate system of real world objects.

These parameters are referred to as the camera extrinsic parameters (Szeliski 2010) and

they are expressed in the following matrix form:

 [𝑅3×3 | 𝑇3×1] = [

𝑟11 𝑟12 𝑟13 𝑡1

𝑟21 𝑟22 𝑟23 𝑡2

𝑟31 𝑟32 𝑟33 𝑡3

] (2.4)

Where T is the matrix that encodes translations between camera origin and world origin

while R is a matrix that encodes relative rotations between the two coordinate systems.

 Figure 2.3: Camera to real world translations and rotations

With the extrinsic parameters matrix equation (2.2) can be modified to account for

translations and rotations between camera and real world coordinates resulting in the

following form:

6

𝜆 [
𝑥
𝑦
1

] = [
𝑓𝑥 𝑠 𝑐𝑥

0 𝑓𝑦 𝑐𝑦

0 0 1

] [

𝑟11 𝑟12 𝑟13 𝑡1

𝑟21 𝑟22 𝑟23 𝑡2

𝑟31 𝑟32 𝑟33 𝑡3

] [

𝑋
𝑌
𝑍
1

]

 = 𝑘 [𝑅3×3 | 𝑇3×1] [

𝑋
𝑌
𝑍
1

] (2.5)

2.1.4 Stereo Camera Systems

As the process of projection from world coordinates to image plane results in loss of

explicit depth information the general concept of retrieving depth from two pictures taken

for a single scene is now presented, this process in referred to as stereo vision.

Given two cameras with sensors that are aligned and coplanar to each other and having a

certain separation distance in the plane of alignment, the rows of the images will

correspond to the same lines on each sensor.

Having a point representing an object of interest on a certain location in one image plane

such as the left camera will correspond to a horizontally shifted position on the image

plane of the right camera, the measure of the shift is referred to as the disparity (Szeliski

2010), a near object to the two camera set will have a large disparity and vice versa thus

establishing a relation between disparity measure and depth.

 Figure 2.4: Disparity and depth form two cameras

7

The two cameras that can be used to obtain a disparity measure must be identical as well

as calibrated to have similar parameters, for two cameras with the same focal length f and

having a separation distance also known as the baseline B the disparity (Szeliski 2010)

can be defined for a certain point with left image plane location x and right image plane

location x' as follows:

𝑑 = 𝑥 − 𝑥′ = 𝐵
𝑓

𝑍
 (2.6)

Where d is the disparity and Z is the real world depth.

 Figure 2.5: Depth disparity relation

The relation between depth and disparity can be furthermore generalized to the case of

non-alignment between the stereo cameras with the concept of Epipolar geometry

(Szeliski 2010).

An Epipole is the point of intersection of the baseline with the image planes, considering

that the baseline connects the optical centre of one camera to the optical centre of the

other camera it can be deduced that an Epipole of a certain image plane is the projection

of the optical centre of the other.

8

Using the two Epipoles and a real world point a plane embedded in three dimensions can

be defined denoted as the Epipolar plane, the intersection of the Epipolar plane with each

image plane defines two corresponding lines called the Epipolar lines.

 Figure 2.6: Epipolar geometry

For a certain real world point X there is a line that connects it to each image centre and

these lines bound the Epipolar plane and the intersection of each line with its

corresponding image plane is the projection of the real world point on that image plane,

the Epipole of a certain image plane is the intersection of all possible Epipolar lines of

that image plane.

This geometric constraint can be used to deduce that the two corresponding image

projections of a certain point must be located on the two corresponding Epipolar lines

despite not being on the same horizontal line on the images due to camera misalignment.

With the Epipolar geometry specified the problem of disparity is a problem of locating

the matching points that are situated on the corresponding Epipolar lines this requires

correlating the object’s or part of the object’s pixels between those two lines given that

the two cameras are calibrated and the relative transformation between them is at

acceptable accuracy bounds.

This procedure of specifying the projection of an object or a point and searching for its

corresponding position on the corresponding image plane with the constraint that it is on

the corresponding Epipolar line is referred to as the procedure of stereo matching.

9

2.1.5 Stereo Matching

Given that the intrinsic and extrinsic parameters of the two cameras are known the

projections in each image plane can be transformed into a normalized image coordinates

thus the process of searching corresponding pixels of interest becomes a one dimensional

search problem as the Epipolar lines for rectified stereo pair are located on the same rows.

Performing the stereo matching procedure (Szeliski 2010) on each pixel results in a map

known as the disparity map which is used to obtain the desired depth information to be

used in later applications.

To build the disparity map a quantitative measure must be defined to find the

correspondence, this measure is then required generally to be a similarity measure and is

known as the matching cost.

The simplest matching cost is difference between pixel intensities with minimum

difference being the result of correspondence search, this suffers from many drawbacks

most notably the presence of multiple candidates for the matching pixel as well as

minimal differences of illumination or presence of occlusions can result in the correct

pixel having non minimal difference and not being included in the search results.

Practically other similarity measures are used such as sum of square distance or

normalized correlation which are more resilient to noise and more effective as well as

using windows to take into account the pixel’s neighbourhood in the process of

correspondence.

10

 Figure 2.7: Matching cost

More broadly techniques used in obtaining matching cost can be divided in two

categories: local techniques and global techniques.

Local techniques as mentioned above use the pixel and its neighbourhood to obtain a

matching cost measure and search for correspondence candidates while global techniques

apply energy function minimization over the whole stereo pair.

The process of stereo matching faces several technical difficulties that add to its inherent

complexity and reduce the quality of the obtained disparity map.

Such technical difficulties include:

a. Specular reflection and non-Lambertian surfaces: where light reflected from

objects has different intensities from different points of view or angles this effect

is most noticeable from highly non-random surfaces called non-Lambertian

surfaces leading to incorrect estimates on disparity.

11

 Figure 2.8: Specular Reflection

b. Transparencies in objects: leading to light from behind them to pass through and

adversely affecting disparity estimates.

 Figure 2.9: Transparencies

c. Perspective change: that leads to some objects to appear foreshortened.

12

 Figure 2.10: Perspective change

d. Occlusions and discontinuities: where full objects or parts of them are hidden

from a certain view by another object while a discontinuity is a sharp change of

pixel values due to certain geometries of the object.

 Figure 2.11: Occlusions

e. Repetition of certain objects or patterns: leading to difficulty in establishing

single candidates from the cost measure.

13

 Figure 2.12: Repetitive Objects

f. Textureless surfaces: results in difficulty of establishing correspondence due to

similarity of pixel values

 Figure 2.13: Textureless Surface

g. Distortions and noise: such as photometric distortions, faulty pixels and thermal

noise.

14

 Figure 2.14: Distortions

 2.1 DEEP LEARNING

In this part a general theoretical introduction to deep learning systems is given starting

with a definition of Neural Networks, Activation Functions, Deep learning,

Convolutional Neural Networks and finally the Encoder-Decoder method.

2.2.1 Neural Networks

The human brain is a powerful information processing system capable of performing a

variety of high complexity tasks such as speech recognition, motion planning as well as

a plethora of vision related operations.

Artificial Neural Networks (ANN) are networked models that took inspiration from the

human brain and was adapted for the construction of many practical algorithms that

initiated a new era of computation.

Computationally ANN’s can be considered as a distributed, high connectivity and

parallelized system with learnable parameters thus not requiring programming and

therefore providing large saving of effort.

15

The Perceptron (Rosenblatt 1958) is the elementary building unit used in constructing

Neural Networks, this unit receives inputs that may come from the data source or from

other Perceptrons in the network.

Each input denoted by the vector xj where j = 1,… , d has a specific “weight” value

associated to it denoted by wj and the most general form for calculating the output y is

by taking the sum of the weighted inputs:

𝑦 = ∑ 𝑤𝑗𝑥𝑗 + 𝑤0
𝑑
𝑗=1 (2.7)

W0 is the bias value which represents an intercept that generalizes the model and its value

is set to +1.

The dot product form of the above equation is presented as:

𝑦 = 𝑊𝑇𝑋 (2.8)

Where 𝑊 = [𝑤0, 𝑤1, … , 𝑤𝑑]𝑇 and 𝑋 = [1, 𝑥1, … , 𝑥𝑑]𝑇

For the case of a single input the equation reduces to a line equation with slope w and

intercept w0 thus a perceptron thus its output is a linear fit.

With many inputs the equation generalizes to a multivariate fitting and the line becomes

a hyper-plane in the multidimensional space of the inputs.

16

 Figure 2.15: The Perceptron

To obtain a linear discriminant from the output of a perceptron a threshold function can

be implemented as:

𝑠(𝑥) = {
1, 𝑥 > 0
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (2.9)

So that the class choice reduces to:

𝑐ℎ𝑜𝑜𝑠𝑒 = {
𝑐1, 𝑠(𝑊𝑇𝑋) > 0
𝑐2, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (2.10)

Generally a probability measure is needed thus a sigmoid function is used on the output

of the perceptron as:

𝑦 = 𝑠𝑖𝑔𝑚𝑜𝑖𝑑(𝑊𝑇𝑋) =
1

1+exp−[𝑊𝑇𝑋]
 (2.11)

A perceptron can have multiple outputs instead of a single output this in particular useful

for discriminating multiple classes of object with linear hyperplanes.

Given that the output are represented by the vector yi running from 1 to k the general

equation of the perceptron is modified to:

𝑦𝑖 = ∑ 𝑤𝑖𝑗𝑥𝑗 + 𝑤𝑖0
𝑑
𝑗=1 (2.12)

17

Or in the dot product form as:

𝑦𝑖 = 𝑊𝑖
𝑇𝑋 (2.13)

 Figure 2.16: Multi Output Perceptron (Multi-Class)

In the simple terms the desired class is the one with maximum output yi but as with the

single output case a probability measure is more preferred and this is calculated using the

softmax function as:

𝑦𝑖 =
exp [𝑊𝑖

𝑇𝑋]

∑ exp [𝑊𝑘
𝑇𝑋]𝑘

 (2.14)

Where the index k runs through all the outputs representing the list of classes and the

softmax function provides the posterior probability of each class.

After defining the perceptron as a linear model describing a hyperplane in the input space

of the data then a fitting must be imposed on that hyperplane in order to minimize error

on prediction, this process is termed “training” of the perceptron.

Generally to train a perceptron a data vector termed an “instance” is drawn from the given

data set to be fitted and the properties of this data vector known as the “features” are

presented to the model as inputs to obtain the “predicted” value which then is used to

obtain an error measure provided that the data has the actual desired output value, the

18

connections of the perceptron represented by its “weights” are then updated according to

that error measure.

If the error measure is a differentiable function then gradient descent can be used to

minimize it and this process of gradual change of parameters with each instance is called

Stochastic Gradient Descent (SGD) (Kiefer and Wolfowitz 1952).

The update rule for the model weights with SGD for an instance of index t with input

features xit , label rt and prediction yt is given by:

△ 𝑤𝑗
𝑡 = 𝜂(𝑟𝑡 − 𝑦𝑡)𝑥𝑗

𝑡 (2.15)

Where η is the learning factor and Δwit is the weight update of connection i

Generally the update rule can be expressed as:

Update =Learning Factor ∙ (Desired Output – Predicted Output) ∙ Input

The general algorithm for (SGD) is given as follows:

For i = 1,…,K
 For j = 0,…, d
 𝑤𝑖𝑗 ← 𝑟𝑎𝑛𝑑(−0.01,0.01)

Repeat
 For all (xt,rt) ∈ X in random order
 For i = 1,…,K
 𝑜𝑖 ← 0
 For j = 0,…,d
 𝑜𝑖 ← 𝑜𝑖 + 𝑤𝑖𝑗 𝑥𝑗

𝑡

 For i = 1,…,K
 𝑦𝑖 ← 𝑒𝑥𝑝(𝑜𝑖) / ∑ 𝑒𝑥𝑝 (𝑜𝑘)𝑘
 For i = 1,…,K
 For j = 0,…,d
 𝑤𝑖𝑗 ← 𝑤𝑖𝑗 + 𝜂(𝑟𝑖

𝑡 − 𝑦𝑖
𝑡)𝑥𝑗

𝑡

Until convergence

https://projecteuclid.org/euclid.aoms/1177729392#author-euclidaoms1177729392KieferJ
https://projecteuclid.org/euclid.aoms/1177729392#author-euclidaoms1177729392WolfowitzJ

19

A single layer Perceptron can only implement linear discriminants thus it will not be able

to solve nonlinear problems which necessitates the use of a nonlinear estimator.

This nonlinearity can be introduced with adding extra “hidden” layer between the inputs

of the perceptron and the output calculation, this layer has units with weights and bias as

in the previous manner and its calculations are passed into activation functions.

The activation values pass forwardly from hidden units to the output therefore this type

of perceptron represents a “feed forward” model and the general name for a perceptron

with a hidden layer is a Multi-Layer Perceptron (MLP).

It is notable that if the hidden units are linear the output will be a linear combination of

linear models and the hidden layer will be limited in capability and unable to model

nonlinear problems thus several nonlinear differentiable “activation functions” are

applied in the hidden units such as the sigmoid activation functions and hyperbolic

tangent or “tanh” activation function, these activation functions perform a nonlinear

transformation on the input vector mapping it from the D-dimensional space of input

features to H-dimensional space where H spans the number of hidden units and providing

nonlinear basis to be combined by the output layer calculation.

 Figure 2.17: Multi-Layer Perceptron (MLP)

For the value of each hidden layer activation zh with h indexing the hidden units and

running from 1 to H the calculation of the sigmoid activation is given by:

20

𝑧ℎ =
1

1+𝑒𝑥𝑝−[∑ 𝑤ℎ𝑗𝑥𝑗+𝑤ℎ0
𝑑
𝑗=1]

 (2.16)

If vih is the hidden to output connection weights then the output of a one hidden layer

MLP is given by:

𝑦𝑖 = ∑ 𝑣𝑖ℎ𝑧ℎ + 𝑣𝑖0
𝐻
ℎ=1 (2.17)

MLP’s are trained using SGD as with the single layer Perceptron but since there is a

hidden layer with activation function the gradient calculation will be modified into a form

of chain rule of error propagation from output through the hidden units as in the following

equation:

𝜕𝐸

𝜕𝑤ℎ𝑗 =
𝜕𝐸

𝜕𝑦𝑖
𝜕𝑦𝑖

𝜕𝑧ℎ
𝜕𝑧ℎ

𝜕𝑤ℎ𝑗 (2.18)

The process of calculating error gradient by chain rule for MLP is termed

“Backpropagatoin” (Rumelhart, Hinton and Williams 1986) as the error is propagated

inversely through the network from a layer to the previous.

The general algorithm for Backpropagation is given as follows:

Initialize all 𝑣𝑖ℎ and 𝑤ℎ𝑗 to 𝑟𝑎𝑛𝑑(−0.01,0.01)

Repeat
 For all (xt,rt) ∈ X in random order
 For h = 1,…,H

 𝑧ℎ ← 𝑠𝑖𝑔𝑚𝑜𝑖𝑑(𝒘ℎ
𝑇𝒙𝑡)

 For i = 1,…,K
 𝑦𝑖 = 𝒗𝑖

𝑇𝒛
 For i = 1,…,K
 △ 𝑣𝑖 = 𝜂(𝑟𝑖

𝑡 − 𝑦𝑖
𝑡)𝒛

 For h = 1,…,H
 △ 𝑤ℎ = 𝜂(∑ (𝑟𝑖

𝑡 − 𝑦𝑖
𝑡)𝑣𝑖ℎ 𝑘)𝑧ℎ (1 − 𝑧ℎ)𝒙𝑡

 For i = 1,…,K
 𝑣𝑖 ← 𝑣𝑖 +△ 𝑣𝑖
 For h = 1,…,H
 𝑤ℎ ← 𝑤ℎ +△ 𝑤ℎ

21

Until convergence

A Multi-Layer Perceptron (MLP) can have more than one hidden layer and can be

designed with several hidden layers that provide multiple hierarchical mappings which

are used to extract the most relevant information representation to achieve best

performance results thus another way to think about ANN’s is to consider them as

hierarchically connected representation machines.

Each layer can have another design factor which is the number of units “nodes” inside

each layer giving designs with wide layers or narrow layers and in that light it is

considerable to mention that an MLP with one hidden layer and arbitrary number of

hidden units is able to learn the representation of any nonlinear function of its inputs, this

property of MLP is called the Universal Approximation Theorem (Hornik et al. 1989)

where the aforementioned MLP is a Universal Approximator of the data representing

function.

Generally by increasing the number of layers in the network better and more robust

practical results can be achieved and this design parameter is referred to as the depth of

the network, with sufficiently large number of layers more rich representations can be

learned capable of performing on very high dimensional data from a variety of sources.

These networks started to be widely preferred and their design and development became

a rich and active field with the name of Deep Neural Networks (DNN).

22

2.2.2 Deep Learning and Deep Neural Networks

A Multi-layer Perceptron with increasing number of layers is referred to as a Deep Neural

Network with the general field being referred to as Deep Learning (DL) which has a focus

on the research of high “depth” hierarchical representation learning systems.

This move into deep models was driven by the limitation traditional machine learning

(ML) approaches faced which required deliberate data manipulations and preprocessing

to obtain relevant features to be provided as an input to “shallow” models and obtain good

practical performance, that resulted in a requirement of analysing data with a great deal

of domain expertise in order to extract suitable input vector choices and with exponential

increase in data size the effort becomes exponential added to that the variety of problems

that are hard to formalize effectively such as recognition of spoken words or recognition

of faces in images.

Deep Learning techniques as mentioned provide compounded representational learning

capable of finding sophisticated mappings from input space and when applied on raw data

shows the ability to extract the most relevant features by the process of compounding

simple concepts into more complex concepts.

A geometric picture of the efficacy of Deep Learning comes from considering the

mapping process as defining symmetry lines where the problem space can be compacted

into a less complex representation and with many layers this process is repeated with

sufficiency for recovering the representation suitable for the required task.

 Figure 2.18: The Geometric representation of Deep Learning

23

Deep Learning is now a valuable tool in many science and engineering tasks, most notably

are computer vision (CV), Robotics, audio processing, natural language processing

(NLP), search engines and finance.

Deep Learning architectures can be trained in both supervised and unsupervised learning

settings as well as reinforcement learning.

In supervised learning all the data vectors are provided with the actual desired output

value also known as the “ground truth” and the process of learning is performed with the

calculating the SGD in a Backpropagation algorithm.

While some data sets can have all its samples with labelled output ground truth other data

sets can have only a subset of it labelled and training in this setting is referred to as semi-

supervised learning.

Unsupervised learning is a setting where no data vector is labelled and the model must

learn from the implicit correlations within the data as well as some measures that can be

applied to the error signal to obtain performance indicators.

Reinforcement learning is a setting where the networked is given a logical or numeric

feedback value after completing several tasks to gauge the model performance and

perform adjustments on the network values which defines a certain “policy” on the tasks

given in the setting.

Deep Learning networks can be architected in two broad categories either as illustrated

with prediction computation going from input through the layers until the output

computation and this is termed as Feed Forward” architecture.

Or in addition to the feed forward connections the architecture can have connections

directing from a unit to itself or to units in previous layers in a recursive manner, these

connections provide a mechanism similar to memory and the architecture is referred to as

Recurrent Neural Networks (RNN).

24

 Figure 2.19: Recurrent Neural Networks (RNN)

In the feed forward architecture all the units in hidden layers can be connected to all the

units in the next hidden layers, this architecture is called “fully connected”.

To reduce computational burden especially in image processing another architectural

choice is employed that takes advantage of the mathematical operation of convolution

and the design known as Convolutional Neural Networks (CNN) gained a wide spread

adoption in computer vision and image processing tasks due to its notable result

improvements and comparative ease of implementation.

2.2.3 Activation Functions

Most tasks utilize Deep Learning algorithms are high complexity tasks with nonlinear

data distributions, this as illustrated required that the hidden units in Deep Neural

Networks apply nonlinear transformations on the weighted summation results of its

learnable parameters which are known as activation functions.

Many activation functions were proposed for Neural Network models each with its

specific transformation that achieves certain requirements or adheres to certain

considerations practical or theoretic with the most important quality of being a differential

function in order to be compatible with the process of backpropagation.

25

Some of these functions include:

a. Sigmoid: the Sigmoid activation function also known as the logistic function or

squashing function is one of the most implemented activation function in

feedforward architectures.

The Sigmoid function is defined on the reals with positive derivative and good

degree of smoothness, the Sigmoid function is given by:

𝑓(𝑥) =
1

(1+𝑒−𝑥)
 (2.19)

When Sigmoid is used in output layer of a model it provides probability on

predicted output, this activation function has the benefit of easy to understand and

implement but there are drawbacks of slowing convergence and gradient

saturation.

b. Hyperbolic Tangent (tanh): this activation function is more smooth than the

Sigmoid and have outputs ranging from -1 to 1, it provides better performance

than Sigmoid in deep models and it is given by the equation:

 𝑓(𝑥) =
(𝑒𝑥−𝑒−𝑥)

(𝑒𝑥+𝑒−𝑥)
 (2.20)

While the tanh activation function has zero centred outputs increasing

compatibility with the backpropagation process it has a vanishing gradient

drawback.

The Hyperbolic Tangent is mostly used in recurrent architectures and natural

language processing tasks.

26

 Figure 2.20: Sigmoid and Tanh activation Functions

c. Softmax: this function provides probability measure on several outputs and is

applied on the output layer of models with multi-class classification.

The equation describing the Softmax function is given by:

𝑓(𝑥𝑖) =
𝑒𝑥𝑖

∑ 𝑒
𝑥𝑗

𝑗
 (2.21)

Where i is the index of a specific class or output and j spans the class list or

outputs.

This activation function is similar to Sigmoid as both are probability calculations

where the Sigmoid is a binary classification related while the Softmax is

multivariate classification related and since both use divisions and exponentials

in the implementation the general behaviour is highly similar.

d. Rectified Linear Unit (ReLU): the (ReLU) function (Nair and Hinton 2010) is a

widely used and very successful activation due do its performance gains and

robustness against drawbacks that affected other activation functions.

This activation function is much faster as well as preserving linearity on a large

portion of the function span aiding in the gradient calculations and as its name

suggesting it applies a rectification on values less than zero eliminating the

vanishing gradient issue.

The equation describing the ReLU activation is given by:

27

𝑓(𝑥) = max(0, 𝑥) = {
𝑥, 𝑖𝑓 𝑥 ≥ 0
0, 𝑖𝑓 𝑥 < 0

 (2.22)

This activation functions with its simplicity requiring no calculation of divisions

of exponentials greatly improve the speed of the model while also introducing

squashing and sparse activation but the main drawback is the propensity to

overfitting and producing zero gradient resulting in either rigidity in model or the

issue of dead neuron units.

Another version that augments the positive portion of the function with negative

slope is also implemented which keeps the units “alive” with sustainable weight

update and is referred to as LeakyReLU (Maas, Hannun and Ng 2013).

Rectified Linear Unit activation function is used extensively with Convolutional

Neural Networks (CNN).

 Figure 2.21: ReLU Activation Function

In addition to the mentioned activation functions several other modifications and

enhancements have been implemented that address the illustrated drawbacks or introduce

enhancements in speed, some of these include Sigmoid-Weighted Linear Unit (SiLU)

(Elfwing 2017) and derivative of Sigmoid-Weighted Linear Unit (dSiLU) (Elfwing

2017).

28

Other functions have been proposed which offer nuanced approaches to address the

difficulties of nonlinear activation such as (Swish) (Ramachandran et al. 2017) which is

a hybrid of the input and its sigmoid, (Maxout) activation functions) (Goodfellow et al.

2013) that extends the learning process to the activation function in addition to the

traditional connection parameters by a process of piecewise approximation to nonlinear

functions which are optimized by gradient during training to provide the best activation

that is dictated by the performance.

2.2.4 Convolutional Neural Networks

Convolutional Neural Networks (CNN) (LeCun et al. 1989) are a specialized architecture

of the feed forward category adapted to data that can be expressed in grid like form such

as images which can be thought of as a 2D grid thus instead of having the fully connected

network converge on a suitable connectivity that is most performing on such data

structure, the structure itself can drive design choices to increase model efficiency.

CNN’s represent also a prominent case of biology and neuroscience influencing design

of successful algorithms in which the study of the human visual cortex specifically the

V1 area of the vision system known as the primary visual cortex provided the information

central to the formulation of the convolutional architecture.

Several properties of the V1 system are present in the general scheme of CNN primarily

V1 is arranged as a two dimensional spatial map with certain parts of the retina

corresponding to similar spatially located regions in V1 and this is employed in CNN as

it extracts two dimensional maps from data.

V1 shows groups of simple cells having linear activations of only small regions with

spatial locality and CNN employ this property of local receptive fields.

There exist in V1 complex cells that capture features with an important property of

invariance on shifting the position of the specific feature in the map, this feature is also

present in CNN architecture with the operation of pooling units.

The main mathematical operation used in the transformation performed by CNN’s is the

Convolution operation which has the general form:

𝑆(𝑡) = ∫ 𝑥(𝑎)𝑤(𝑡 − 𝑎)𝑑𝑎 (2.23)

29

The convolution operation can be denoted by an asterisk symbol with the equation

adopting the form:

𝑆(𝑡) = (𝑥 ∗ 𝑤)(𝑡) (2.24)

The variable x is taken to be the input of the operation while w is referred to as the kernel

of the convolution or by the term feature map.

Considering that in Deep Learning the data processed by CNN’s are discrete valued

usually with multiple indices “grids” and running only on finite ranges the more practical

form of convolution operation is written as:

𝑆(𝑖, 𝑗) = (𝐼 ∗ 𝐾)(𝑖, 𝑗) = ∑ ∑ 𝐼(𝑖 − 𝑚, 𝑗 − 𝑛)𝐾(𝑚, 𝑛)𝑛𝑚 (2.25)

Where i,j are indices of the input and m,n are kernel indices referred to as kernel size.

As mentioned in this thesis Convolutional Neural Networks (CNN) are motivated by

design considerations that mimic the brain’s primary visual cortex these considerations

are summarized in three principles: local receptive field, weight sharing and pooling.

The fully connected Neural Network contains an connectivity parameter for each input

pixel to each unit in the subsequent hidden layer while Convolutional Neural Networks

in contrast adopt a principle of sparse connectivity by implementing the concept of local

receptive fields, this is achieved by having a kernel that is significantly smaller than the

input image dimensions reducing the parameter requirement since the features to be

extracted are highly local such as lines and edges it is considerably inefficient and greatly

difficult to train a fully connected network to detect these features.

30

 Figure 2.22: Local Receptive Field

Each hidden neuron in CNN’s is connected to the input by a kernel that has a small

number of learnable parameters improving the efficiency as well as the convergence

characteristics of the network, this local receptive field of a certain kernel connecting a

specific hidden neuron is shifted on input compared to the previous hidden neuron with a

number of pixels referred to as the stride of the CNN thus it is seen that the result of a

convolutional layer is also a grid with each region correlated to a corresponding portion

of the input.

Another principle contributing to improving performance of CNN’s is weight sharing

which is a process where the kernel parameters of some or all hidden neurons in the

subsequent hidden layer are kept the same, this reduces the storage requirement for the

resulting model and since the output of learning in such a process is a grid of units with

parameters that activate the artificial neuron on the presence of a certain pattern such as

a specifically oriented line of edge the layer is thus called a feature map as it maps the

input to another representation on the presence of a certain feature.

For each stage in a CNN several of these feature maps can be computed and the choice

of the number of feature maps in a certain stage is decided by the designer.

31

 Figure 2.23: Feature Maps

 The outputted feature maps has a size comparable to the previous layer and implementing

the full CNN in this manner will result in a redundancy of the representation although the

aim of the network is to detect certain objects or patterns to be used by a later classifier

or another transformation.

Pooling is a design principle of Convolutional Networks that acts as an information

simplification process and when applied after each convolutional stage it reduces

redundancy by performing what is analogous to a statistical summarization.

As an illustration “Max Pooling” is the most used pooling mechanism by practitioners

and this layer outputs the maximum value that coincides in a certain rectangular region

other types of pooling include “Average Pooling” which outputs the average value of the

rectangular window and “L2 Pooling” that calculates the square root of sum of squares

for the window values.

Performing the Pooling Process also known as “Sub-sampling” Takes a statistical

summary of the mapping in feature maps, this besides filtration of the information

redundancy provides also an extraction of the targeted features regardless to the

localization or orientation of that feature in the input and providing an important property

of invariance in which small perturbation in the target object’s position still do not affect

the capability of the model to detect its presence.

32

 Figure 2.24: Max Pooling Layer

After performing several stages of convolutional, activation and pooling layers to the

specification of the desired architecture generally a fully connected network is used as

the end receptor of the feature maps in order to perform classification or regression tasks

depending on the application.

 Figure 2.25: CNN General Architecture

On image processing applications several CNN architectures have been implemented

such as LeNet (LeCun 1998),AlexNet (Krizhevsky, Sutskever and Hinton 2012),

VGGNet (Simonyan and Zisserman 2015), Inception (Szegedy et. al. 2014) and ResNet

(He et al. 2015a).

33

These architectures among others in addition to the general design principles mentioned

in this section apply several other modifications accompanied by the use of deeper models

trained with massive compute capability in data centres on large bodies of data provided

by the current data explosion sourced from social networks.

2.2.5 Encoder-Decoder Architecture

In Neural Networks data features are subjected to transformations in order to extract

relevant information, this property of embedding the data vector from input space to

another representation is the design principle behind the

Encoder-Decoder architecture (Ronneberger et al., 2015) which takes the input such as a

text in vector form and performs an Encoding into a contextual representation that

minimizes redundant information and this representation is then passed into a Decoding

process that returns the embedding into a from comparable to the input or into a specific

space that the application requires as an example the contextual embedding of the text

vector can be mapped into a translated text vector of another language.

 Figure 2.26: Encoder-Decoder Architecture

Encoder-decoder architectures can be implemented with fully connected Neural

Networks either in feed forward or recurrent variants which are applied in machine

translation tasks but this design principle is also compatible with the CNN

34

implementations in which it is applied to solve problems of extracting relevant

representation from images to contextual embedding space for tasks such as Semantic

Segmentation, Object Detection and Stereo Vision.

In CNN’s the encoder applies successive restriction on feature map size to extract the

most informative kernels representing the embedding then the decoder performs the

suitable transformation to map these kernels to the output space an example on this is

“De-noising Auto Encoders” (Bengio et al., 2013) that are a form of unsupervised

learning where the input and target are the same image and the Encoder-Decoder maps to

a form of the input with noise removed as the information extraction attenuates the non-

representative parts of the image and decoder stages reconstruct only the representative

information back into an image.

The same technique can be used in a supervised context where the input images are to be

mapped to an output image with some modifications or transformations where some

portions to be highlighted or subtracted or another grid representation is needed for a

specific application an example for such an implementation is in the medical sector where

images taken by radiology methods can be used in conjunction with expert knowledge in

labelling them for the identification of healthy and tumorous tissue, an Encoder-Decoder

CNN can be then trained to perform this process by the mentioned information extraction

and re-representation to automatically label radiology images.

 Figure 2.27: Encoder-Decoder Application Example

In Computer Vision tasks several issues still impose a challenge such as variability of

lighting, variability of object’s pose, occlusions and contextual as well as temporal

35

dynamics, Encoder-Decoder Convolutional Networks perform transformations from

inputs to representational embedding and reconstruction from that embedding thus it is

suitable for it to be utilized to address the issues of Computer Vision applications and to

illustrate such an adoption (Segnet) (Badrinarayanan 2015) is an example of an Encoder-

Decoder CNN that performs End-to-End Deep Learning with the use case of semantic

segmentation.

 Figure 2.28: Encoder-Decoder CNN for Computer Vision

2.3 LITERATURE RIVIEW

In this part a review of the literature and related work to the aim of the thesis is presented.

The problem of stereo vision and stereo matching being one of the most challenging tasks

in the field garnered the attention and effort of the researchers throughout the years,

classical stereo matching solutions where based on hand crafted algorithms either through

local methods that calculate correspondence between small image patches by minimizing

a cost function such as sum of square distance (SSD) (Hannah 1974) and Normalized

Cross Correlation (NCC) (Lewis 1995) or global approaches that use some assumptions

on the full image to obtain a disparity estimate such as Semi-Global Matching (SGM)(

Hirschmueller 2005) and Markov Random Field (MRF)(Zhang and Seitz 2007).

36

Recently Deep Learning methods and implementations were on the rise in solving the

general stereo vision tasks such as optical flow, object reconstruction, orientation and

most importantly depth estimation.

For depth and disparity mapping two main approaches were implemented either by

mimicking the local hand crafted methods and their operations or methods that utilize the

full capability of Neural Networks to extract semantic based depth estimation on full

images.

Local patch methods compute the estimate from a certain image patch and a

corresponding patch after applying a CNN or an MLP to convert the patch data into

feature maps, examples of these approaches are MC-CNN (Zbontar and LeCun 2015) and

Content-CNN (Luo, Schwing and Urtasun 2016) these approaches are still

computationally expensive and not trainable end to end as several calculations must be

done to obtain the desired disparity map including calculating cost aggregation, left to

right consistency checking as well as interpolation.

End to end disparity estimation using Deep Learning rely on the ability of deep CNN’s

to extract the relevant information to obtain the depth estimate, these approaches use a

CNN architecture analogous to autoencoders that consist of an encoding stage of both left

and right images followed by a decoder stage to the target map. Examples of these

approaches are DispNet (Mayer, Ilg, Hausser, Fischer, Cremers, Dosovitskiy and Brox

2016) and GC-Net (Kendall, Martirosyan, Dasgupta, Henry, Kennedy, Bachrach and Bry

2017) in which the left and right images of the rectified stereo pair are passed into a

Siamese CNN encoder that contain convolutional layers with weight sharing between the

left and right paths, GC-Net also use a Cost Volume calculation using 3D convolution.

37

 Figure 2.29: GC-Net architecture

Since these methods contain a large number of layers with large number of parameters in

addition to the computational burden during training there is also the issue of vanishing

gradients and to address that GC-Net and DispNet use connections from lower layers to

high level layers and in the case of DispNet an auxiliary loss function is also employed

to prevent gradient decay.

DenseMapNet takes another take on the issue that is based on the DenseNet (Huang, Liu,

Weinberger and van der Maaten 2017) architecture in which previous layer inputs are

concatenated with the next layer inputs to address the gradient vanishing and another

feature of DenseMapNet (Atienza 2018) design is the emphasis on obtaining an efficient

implementation with small number of parameters preventing over fitting on small data

sets.

A method that is widely used in CNN computer vision implementations to reduce

parameter size is to convert the regular convolutional layers into Depthwise Separable

Convolution layers this greatly reduce the computational requirements for training the

architecture leading to more efficient designs.

38

3. DATA AND METHOD

This part presents the data sets chosen for the work and the Deep Learning proposed

implementations.

3.1 DATA SETS

Machine learning in general and Deep Learning approaches in particular rely heavily

on the availability of appropriately large, contextually relevant data sets with suitable

variety in order for the learning system to capture an effective model and obtain proper

results.

Since in this work Deep Learning is utilized for solving the stereo matching task

specificity must be taken in choosing the data sets to train and evaluate the proposed

architectures.

To this consideration two data sets have been chosen in this work, the KITTI data set

(Geiger et al. 2013) and MPI-Sintel data set (Butler et al. 2012) in which both have been

used comparatively in training and evaluation aims to illuminate on the effect of the data

on model performance.

The choice is based on the relevancy of these sets to the stereo vision research and the

aim of this thesis which studying Deep Learning solutions for depth estimation as the use

of the mentioned data sets is numerous in the literature and research particular to the task.

These two data sets offer contrasting takes on the source of data as KITTI is an approach

based on camera plus Light Detection and Ranging (LiDAR) for capturing the stereo pair

and producing the ground truth data while MPI-Sintel is a synthetic data set in which a

Computer Generated Imagery (CGI) sequence is prepared in a stereo format along with

the ground truth data.

39

The KITTI 2015 data set: This data set contains 200 stereo image pairs with resolution

of 1241 by 376 pixels both Gray scale and RGB taken from a stereo rig platform mounted

on a moving vehicle, ground truth is established using a LiDAR system and the data is

collected from real world scenes of street recordings.

The data provide information collected from physical situations in traffic heavy streets

which is preferable particularly for applications in autonomous vehicle research and the

use of laser ranging provides precision ground truth but the number of samples provided

is not large and the ground truth contain sparse values.

Data set have been divided into 150 image pairs for training, 50 image pairs for validation

and the data set provides 200 image pairs non labelled that can be used for test purposes.

Figure 3.1: KITTI 2015 Data Set Example: left stereo image (above),

right stereo image (middle), ground truth (below)

40

The MPI-Sintel data set: This data set contains 1064 stereo image pairs with resolution

of 1024 by 436 pixels taken from the synthetic animation named Sintel the stereo pairs

are in RGB format and the generated ground truth is in Gray scale.

The data contains a variety of scenes with high complexity in non-rigid motion, specular

reflections, blur and atmosphere effects and being a larger data set gives an advantage in

using it for machine learning based applications with the added benefit of non-sparse

information dense ground truth that is a very important characteristic to be present in data

used for training a Deep Learning solution.

This data set is divided into 900 image pairs for training, 100 image pairs for validation

and 64 pairs were reserved for testing purposes.

Figure 3.2: MPI-Sintel Data Set Example: left stereo image (above),

right stereo image (middle), ground truth (below)

41

The selection of the data sets was to have a thorough investigation for the effect of the

data both in size and context on how the proposed architectures will perform in training,

validation and testing and which design parameters are most sensitive to the data

characteristics.

It is taken into account the computational resources available to produce this work as very

large data sets will incur a computational burden taking in mind that several architectural

choices are to be comparatively studied in experimental implementations and the chosen

data sets can provide solid basis for evaluation while large size data sets that require

extensive resources can be used for scaling and generalizing the results obtained in this

thesis.

3.2 SUPERVISED LEARNING IMPLEMENTATION OF PRETRAINED

ENCODER-DECODER NETWORK

The first design consideration partaken in this work is to investigate the effectiveness of

a pretrained Neural Network architecture in the task of stereo vision depth estimation.

Many Deep Learning Neural Network predesigned and pretrained architectures are

available and in this thesis two architectures have been chosen to be implemented: VGG

and Inception.

The VGG pretrained architecture: this convolutional architecture is categorized as a

very deep design with up to 19 layers and the main aim of its development is large scale

image classification, it uses a unified convolutional kernel parameter of 3 by 3 for all of

its convolutional layers and the number of feature maps starts from 64 in the first CNN

layer up to 512 in the last layer, number of parameters is 14.4 million parameter.

The pretraining is performed on ImageNet data set (Deng et al. 2009) with 1.3 million

training images, it is imperative to evaluate how such a pretrained system with

classification task at hand can be useful for the task of depth estimation.

The architectural design choices in VGG are the usage of highly deep layer size and

unified parameter selection for kernels in each feature map for each CNN layer thus its

performance makes explicit the informational content and variability of the data set it

uses to train the weight parameters.

42

The VGG network is used in the encoder stage with only the convolutional layers omitting

the fully connected layers which represent a classifier process.

Since the system is designed for stereo input pair the encoder contains two VGG branches

that are joined by a concatenation of their feature maps which are subjected to a Batch

Normalization (BN) process (Ioffe and Szegedy 2015) to reduce over fitting.

The decoder stage is comprised of four convolution layers of successively reduced feature

size from 64 kernels down to 3 for the output convolution that comprise the 3 channels

of target image.

The following table gives a full view of the layers used in the model:

Table 3.1: Pretrained Supervised Model with VGG Encoder

Layer(type) Output Shape Paramete

rs

Number

Connected to

input_1 (Input layer) (None,750,750,3) 0 *

input_2 (Input layer) (None,750,750,3) 0 *

vgg16 (Model) Multiple 14714688 input_1[0][0]

input_2[0][0]

batchnormalization_1

(BatchNormalization)

(None,23, 23,512) 2048 vgg16[1][0]

batchnormalization_2

(BatchNormalization)

(None,23, 23,512) 2048 vgg16[2][0]

concatenate_1

(Concatenate)

(None,23, 23,1024) 0 batchnormalizatio

n_1[0][0]

batchnormalizatio

n_2[0][0]

conv2d_1 (Conv2D) (None,23, 23,64) 589888 concatenate_1[0][

0]

upsampling2d_1

(UpSampling2D)

(None,92, 92,64) 0 conv2d_1[0][0]

https://arxiv.org/search/cs?searchtype=author&query=Ioffe%2C+S
https://arxiv.org/search/cs?searchtype=author&query=Szegedy%2C+C

43

The weight of VGG model are shared for the branches to reduce computational cost and

only upper layers were selected to be trainable for tuning with the decoder stage thus the

number of trainable parameters for the design is 5,335,075 in addition to that batch

normalization introduces parameters that do not enter in training process giving the model

a total number of parameters of 15,332,195.

The Network is trained on the provided system for 1000 epochs on each of the two data

sets and outputs were taken on the available testing image pairs.

The loss function used is binary cross entropy with an (RMSPROP) optimizer having

learning rate of 10-3 and decay rate of 10-6.

The inception pretrained architecture: a convolutional architecture that is based on the

concept of sparse connectivity and clustering of connections between modules of

convolution that capture the optimal local statistics.

The modules are stacked on top of each other with each cluster connected to the previous

cluster in a hierarchical structure, feature maps of this architecture use kernel sized of 1

by 1, 3 by 3 and 5 by 5. This modularity facilitates increasing the number of units without

major upsurge in number of parameters in the network thus conserving computational

resources

conv2d_2 (Conv2D) (None,92, 92,32) 18464 upsampling2d_1

[0][0]

upsampling2d_2

(UpSampling2D)

(None,368, 368,32) 0 conv2d_2[0][0]

conv2d_3 (Conv2D) (None,368, 368,16) 4624 upsampling2d_2

[0][0]

upsampling2d_3

(UpSampling2D)

(None,736, 736,16) 0 conv2d_3[0][0]

conv2d_3 (Conv2D) (None,736, 736,3) 435 upsampling2d_3

[0][0]

44

 Figure 3.3: Inception Module

The typical implementation of inception modules is LeNet architecture which has 22

inception layers and with counting the inner layers of the modules the number is up to

100 convolutional layers making this architecture a highly deep design providing large

learning capacity. In this work the Inception convolutional network with no fully

connected classifier and only upper layer training allowed is used for each branch of the

encoder stage taking input from the stereo image pair and the two branches of the encoder

are connected with a concatenation process, the decoder stage is identical to the decoder

used for the pretrained VGG design.

The following table gives full view of the layers used in the model:

Table 3.2: Pretrained Supervised Model with Inception Encoder

Layer(type) Output Shape Paramet

ers

Number

Connected to

input_1 (Input layer) (None,750,750,3) 0 *

input_2 (Input layer) (None,750,750,3) 0 *

Inception_v3(Model) Multiple 2180278

4

input_1[0][0]

input_2[0][0]

concatenate_1

(Concatenate)

(None,22, 22,4096) 0 Inception_v3[1][0]

Inception_v3[2][0]

45

Number of trainable parameters for this design is 18,598,819, total number of parameters

is 24,185,667.

The Network is trained on the provided system for 1000 epochs on each of the two data

sets and outputs were taken on the available testing image pairs.

The loss function used is binary cross entropy with an (RMSPROP) optimizer having

learning rate of 10-6 and nor decay rate employed.

It is noticeable that the Inception implementation has higher number of parameters

compared to the VGG implementation and since sparse connectivity and batch

normalization are built in features of the Inception module no extra batch normalization

layers were added to the implementation in the Inception case.

conv2d_1 (Conv2D) (None,22, 22,64) 2359360 concatenate_1[0][0

]

upsampling2d_1

(UpSampling2D)

(None,44, 44,64) 0 conv2d_1[0][0]

conv2d_2 (Conv2D) (None,44, 44,32) 18464 upsampling2d_1

[0][0]

upsampling2d_2

(UpSampling2D)

(None,176, 176,32) 0 conv2d_2[0][0]

conv2d_3 (Conv2D) (None,176, 176,16) 4624 upsampling2d_2

[0][0]

upsampling2d_3

(UpSampling2D)

(None,704, 704,16) 0 conv2d_3[0][0]

conv2d_3 (Conv2D) (None,704, 704,3) 435 upsampling2d_3

[0][0]

46

3.3 SUPERVISED LEARINING IMPLEMENTATION OF ENCODER-

DECODER NETWORK

The second design consideration assumed in this thesis is to formulate non-trained

architectures specific to the task of stereo vision based on the latest approaches and

suggestions in literature.

Focussed on the principles of efficiency and ease of training, Depth-wise Separable

Convolution (V. Vanhoucke 2014) is chosen as the main operation in the construction of

the architectures as it provides a considerable decrease in the parameter size of the models

leading to a reduction in computational requirements and overfitting thus making the

same choice of convolution operations adopted in Xception architecture (Chollet 2016).

Two architectures are proposed in this work for the non-trained architectures: parameter

reduced DenseMapNet and a Siamese Network (Bromley et al., 1993) with encoder local

skip connections combined with correlation extraction merge of stereo branches.

Parameter reduced DenseMapNet: this model is a modification of the DenseMapNet

architecture from the use of typical convolution operation to the use of the depth-wise

separable convolution.

This architecture uses a DenseNetwork inspired structure where each layer or module of

several layers is connected not just to the feedforward input but also to the inputs of the

previous layer or module with the aim of providing paths for information to flow in

between layers to aid in gradient calculations and preventing vanishing gradients.

As an example of mapping type encoder-decoder architecture DenseMapNet consists of

two sections a Correspondence Network that learns to perform stereo matching on the

stereo image pair and a Disparity Network which applies the resulting disparity on the

reference image by performing a decoding of the obtained representation of

correspondence and convolving the output to the reference image that is provided as a

feature map from the initial layers of the architecture. The network contains 18

convolutional units with up to 63 layers and the proposed implementation of this work

that utilizes the depth-wise separable convolution method has a parameter size of 697,512

parameter. The model is trained for 1000 epochs on both of the provided data sets and

results are obtained for evaluation on the available test image pairs. The loss function

47

used is binary cross entropy with an (RMSPROP) optimizer having learning rate of 10-3

and decay rate of 10-6.

The following table gives an overview of the layers used in the model “for the full view

see. Appendix-1, Table-1”:

Table 3.3: Supervised Model with Parameter reduced DenseMapNet

Siamese Network with encoder local skip connections and correlation merge: this

model is based on the skipping connection mechanism (Ronneberger, Fischer and Brox

2015) which typically connects the encoder layers to the decoder layers, it is proposed

within this work in addition to this design criterion the implementation of a skipping

connection within the encoder to increase information flow from the initial layers to layers

deep in the encoder thus providing in addition to amplifying the representation relevancy

of the deep layers a procedure to facilitate a more robust gradient calculation .

Since the application is in stereo vision the encoder consists of two branches that are

identical in parameters and use the method of weight sharing between the encoder

branches to achieve a “Siamese” network layout, further reduction of parameter

requirement is performed with the application of depth-wise separable convolution

operation.

Layer(type) Output Shape Param

eters

Numbe

r

Connected to

input_1 (Input layer) (None,748,744,3) 0 *

input_2 (Input layer) (None,748,744,3) 0 *

concatenate_1

(Concatenate)

(None,748,744,6) 0 input_1[0][0]

input_2[0][0]

separable_conv2d_3

(SeparableConvolution)

(None, 748, 744, 128) 1046 concatenate_1[0][0]

Continu.

disparity_output

(Activation)

(None, 748, 744, 3) 0 separable_conv2d_1

4[0][0]

48

Another design choice that is proposed for this model is to merge the Siamese branches

with a process of correlation calculation inspired by the brain (Welchman 2016), the

process consists of a multiplication merge layer followed by a convolution operation layer

in which the kernel is characterized by an asymmetric window with preference for the

horizontal direction provided that the inputs are rectified, this choice provides lower

number of feature maps that contain correlations of the two branches and with the

preference for the horizontal direction the computational requirement for learning the

matching procedure can be further reduced.

The network contains 51 layers and the number of parameters is 453,686.

The model is trained for 1000 epochs on both of the provided data sets and results are

obtained for evaluation on the available test image pairs.

The loss function used is binary cross entropy with an (RMSPROP) optimizer having

learning rate of 10-3 and decay rate of 10-6.

The following table gives an overview of the layers used in the model “for the full view

see. Appendix-1, Table-2”:

Table 3.4: Supervised Model with Siamese Network

Layer(type) Output Shape Param

eters

Numbe

r

Connected to

input_1 (Input layer) (None, 672, 672, 3) 0 *

input_2 (Input layer) (None, 672, 672, 3) 0 *

separable_conv2d_1

(SeparableConvolution)

(None, 672, 672, 32) 275 input_1[0][0]

input_2[0][0]

batch_normalization_1

(BatchNormalization)

(None, 672, 672, 32) 128 separable_conv2d_

1 [0][0]

separable_conv2d_

1 [1][0]

49

3.4 UNSUPERVISED LEARNING IMPLEMENTATION OF ENCODER-

DECODER NETWORK

The third design consideration in this thesis is to apply the unsupervised learning

approach to the task of stereo vision (Wang et al. 2018) (Jiang et al. 2018) (Zhan et al.

2019).

Unsupervised learning is the technique of training the machine learning algorithm without

providing the labelled targets and rely on other indicators to optimize the performance of

the model, denoising auto-encoders represent an example where the image itself is to be

used as an input and a measure of performance.

For stereo vision one can rely on the availability of left and right image pair and take

advantage of the spatial consistency between them by considering a modification of the

Auto Encoder architecture in which the left image is chosen as a reconstruction target and

the neural network apply learned transformations on the right image taken as an input to

reduce the reconstruction loss and the internal decoder model outputs will be forced to

learn the disparity mapping through this modified loss criterion.

Other approaches rely on temporal consistency between image frames in videos which

also can be used to train a depth inference encoder Neural Network.

It is chosen in this work to implement the stereo consistency approach and two

architectures are proposed: a modified DenseMapNet that is included within unsupervised

loss process and Symmetric Encoder-Decoder no skip connections.

activation_1 (Activation) (None, 672, 672, 32) 0 batch_normalizatio

n_1[0][0]

batch_normalizatio

n_1[1][0]

Continu.

separable_conv2d_11

(SeparableConvolution)

(None, 672, 672, 3) 3843 concatenate_7[0][0]

50

DenseMapNet based Encoder-decoder: this architecture repurposes the design of

DenseMapNet to accommodate a “self-supervised” learning mechanism by using the left

image as a reference for a consistency based unsupervised loss thus omitting the

convolutional path for it in the architecture which applies a single convolutional operation

on the left image and feed to the last stage to apply depth estimation mapping.

The right image convolutional path which represents the core operations of DenseMapNet

model is utilized as the target model to be trained to capture the depth mapping procedure

and similar to the supervised approach all convolutions are performed using the depth-

wise separable technique to reduce overall parameter requirement.

While the complete system used in training phase is using the stereo image pair the trained

Encoder-Decoder resulting from applying the unsupervised approach only requires a

single image representing the right image form the pair, this is an advantage of this

methodology as it only requires the full stereo camera systems for capturing training data

while deployment setting only requires mono images.

Another advantage of the unsupervised technique and in particular the employed self-

supervision by consistency measures is that it relies on the actual physical consideration

of spatial or temporal dependability between multiple views or multiple successive

captures of localized scenes to enforce a performance measure on the training process

reducing the work or hardware resources to obtain ground truth samples.

The network contains 63 layers and the number of parameters is 753,166.

The model is trained for 1000 epochs on both of the provided data sets and results are

obtained for evaluation on the available test image pairs.

The optimizer used is (ADAM) optimizer.

The following table gives an overview of the layers used in the model “for the full view

see. Appendix-1, Table-3”:

51

Table 3.5: Unsupervised Model with DenseMapNet Encoder-decoder

Symmetric Encoder-decoder: this architecture is designed with the aim of applying the

unsupervised approach to a minimalistic Symmetric Encoder-Decoder architecture.

The main consideration is to have a straightforward skip connections free architecture

with symmetry of parameter selection for the convolutional kernels, this choice can then

make explicit the effect of self-supervised learning mechanism on the flow of the weight

values during training and its susceptibility to overfitting as well as the overall ability to

extract relevant representations from provided unlabelled data due to consistency loss

functions.

In this design the depth-wise separable technique is also used to reduce parameter

requirement with the goal that the reconstruction loss captures the transformations

required for producing the stereo matching mechanism.

The network contains 33 layers and the number of parameters is 661,782.

The model is trained for 1000 epochs on both of the provided data sets and results are

obtained for evaluation on the available test image pairs.

The optimizer used is (ADAM) optimizer.

Layer(type) Output Shape Param

eters

Numbe

r

Connected to

input_1 (Input layer) (None, 672, 672, 3) 0 *

input_2 (Input layer) (None, 672, 672, 3) 0 *

model_1 (Model) (None, 672, 672, 3) 753166 input_1[0][0]

custom_layer_8

(CustomLayer)

(None, 672, 672, 3) 0 input_1[0][0]

input_2[0][0]

model_1[1][0]

Conitnu.

disparity_output

(Activation)

(None, 672, 672, 3) 0 separable_conv2d_32

[0][0]

52

The following table gives an overview of the layers used in the model “for the full view

see. Appendix-1, Table-4”:

Table 3.6: Unsupervised Model with Symmetric Encoder-decoder

Layer(type) Output Shape Parame

ters

Number

Connected to

input_1 (Input layer) (None, 672, 672, 3) 0 *

input_2 (Input layer) (None, 672, 672, 3) 0 *

model_1 (Model) (None, 672, 672, 3) 661782 input_1[0][0]

custom_layer_8

(CustomLayer)

(None, 672, 672, 3) 0 input_1[0][0]

input_2[0][0]

model_1[1][0]

Continu.

separable_conv2d_9

(SeparableConvolution)

(None, 672, 672, 3) 771 up_sampling2d_4

[0][0]

53

4. EXPERIMENTAL RESUTLS

This part presents the hardware system available to implement and run the proposed

architectures and the results obtained from the execution of the implementations.

4.1 HARDWARE AND SOFTWARE

The hardware system used for thesis work is a desktop build with Intel Core i9 9900k,

32GB of system RAM, Nvidia RTX 2080 Ti GPU with 11GB of RAM,Cuda toolkit

version 10.1.167 with cudnn version 7.6 and the operating system used is UBUNTU

18.04.3 LTS.

The programming platform chosen to perform the implementation is Google Tensorflow

with Keras API in the Python programming language.

Python programming language: a high level, interpreted, dynamically typed and object

oriented programming language designed to be modular and open source allowing for

rapid development of code bases and due to having clear and readable syntax it provides

low cost on debugging and maintenance.

Python version used is computed using Anaconda package management environment

3.7.3 of version 4.7.5

Tensorflow: a machine learning platform designed for large scale and data intensive

computations, it represents the state, operations and transformations on states with the

methodology of a Dataflow graph.

Nodes of the dataflow graph can be assigned to different machines in a cluster and to

different computational devices in a single machine, the devices include multicore CPUs,

GPUs, and application specific chips such as Tensor Processing Units (TPUs).

Such a platform provides developers and researchers with the flexibility to perform a

variety of learning and optimization projects and increases sharing and collaboration.

Tensorflow version used is 1.14

54

 Figure 4.1: Tensorflow Dataflow Graph Schematic

Keras API: a Python based high level API for programming Neural Networks developed

for fast and seamless prototyping and evaluation with capability of running on both CPU

and GPU.

Keras emphasizes on modularity and readability and provides support for a wide class of

architectures including recurrent and convolutional Neural Networks.

Keras version used is 2.2.4

4.2 RESULTS

This part presents the obtained results of the proposed architectures from performing

training and evaluation with the designated data sets executed on the hardware system

provided.

All designs were trained for 1000 epochs with accuracy and loss curves obtained for

training and validation on each epoch from training and validation sets respectively,

image results are obtained from evaluating on the test data sets.

Pretrained supervised learning Encoder-Decoder architectures:

The following figure shows the training and validation accuracies attained for the

Inception pretrained supervised learning Encoder-decoder:

55

 Figure 4.2: Training and Validation Accuracy for Inception

 Pretrained Supervised Learning Model on KITTI Data Set

 Figure 4.3: Training and Validation Accuracy for Inception

 Pretrained Supervised Learning Model on MPI-Sintel Data Set

56

The following figure shows the training and validation losses attained for the Inception

pretrained supervised learning Encoder-decoder:

 Figure 4.4: Training and Validation Loss for Inception Pretrained

 Supervised Learning Model on KITTI Data Set

 Figure 4.5: Training and Validation Loss for Inception

 Pretrained Supervised Learning Model on MPI-Sintel Data Set

57

The following figure shows the evaluation image result attained for the Inception

pretrained supervised learning Encoder-decoder:

 Figure 4.6: Evaluation Output for Inception Pretrained Superviesed

 Learning Model on KITTI Data Set

 Figure 4.7: Evaluation Output for Inception Pretrained Superviesed

 Learning Model on MPI-Sintel Data Set

58

The following figure shows the training and validation accuracies attained for the VGG

pretrained supervised learning Encoder-decoder:

 Figure 4.8: Training and Validation Accuracy for VGG

 Pretrained Supervised Learning Model on KITTI Data Set

 Figure 4.9: Training and Validation Accuracy for VGG

 Pretrained Supervised Learning Model on MPI-Sintel Data Set

59

The following figure shows the training and validation losses attained for the VGG

pretrained supervised learning Encoder-decoder:

 Figure 4.10: Training and Validation Loss for VGG

 Pretrained Supervised Learning Model on KITTI Data Set

 Figure 4.11: Training and Validation Loss for VGG

 Pretrained Supervised Learning Model on MPI-Sintel Data Set

60

The following figure shows the evaluation disparity map result attained for the VGG

pretrained supervised learning Encoder-decoder:

 Figure 4.12: Evaluation Output for VGG Pretrained Superviesed

 Learning Model on KITTI Data Set

 Figure 4.13: Evaluation Output for VGG Pretrained Superviesed

 Learning Model on MPI-Sintel Data Set

61

Supervised learning Encoder-Decoder architectures:

The following figure shows the training and validation accuracies attained for the

parameter reduced DenseMapNet supervised learning Encoder-decoder:

 Figure 4.14: Training and Validation Accuracy for DenseMapNet

 Supervised Learning Model on KITTI Data Set

 Figure 4.15: Training and Validation Accuracy for DenseMapNet

 Pretrained Supervised Learning Model on MPI-Sintel Data Set

62

The following figure shows the training and validation losses attained for the parameter

reduced DenseMapNet supervised learning Encoder-decoder:

 Figure 4.16: Training and Validation Loss for DenseMapNet

 Supervised Learning Model on KITTI Data Set

 Figure 4.17: Training and Validation Loss for DenseMapNet

 Supervised Learning Model on MPI-Sintel Data Set

63

The following figure shows the evaluation image result attained for the parameter reduced

DenseMapNet supervised learning Encoder-decoder:

 Figure 4.18: Evaluation Output for DenseMapNet Superviesed

 Learning Model on KITTI Data Set

 Figure 4.19: Evaluation Output for DenseMapNet Superviesed

 Learning Model on MPI-Sintel Data Set

64

The following figure shows the training and validation accuracies attained for the Siamese

Network with encoder local skip connections and correlation merge supervised learning

Encoder-decoder:

 Figure 4.20: Training and Validation Accuracy for Siamese Network

 Supervised Learning Model on KITTI Data Set

 Figure 4.21: Training and Validation Accuracy for Siamese Network

 Supervised Learning Model on MPI-Sintel Data Set

65

The following figure shows the training and validation losses attained for Siamese

Network with encoder local skip connections and correlation merge supervised learning

Encoder-decoder:

 Figure 4.22: Training and Validation Loss for Siamese Network

 Supervised Learning Model on KITTI Data Set

 Figure 4.23: Training and Validation Accuracy for Siamese Network

 Supervised Learning Model on MPI-Sintel Data Set

66

The following figure shows the evaluation disparity map result attained for the Siamese

Network with encoder local skip connections and correlation merge supervised learning

Encoder-decoder:

 Figure 4.24: Evaluation Output for Siamese Network Superviesed

 Learning Model on KITTI Data Set

 Figure 4.25: Evaluation Output for Siamese Network Supervised

 Learning Model on MPI-Sintel Data Set

Unsupervised learning Encoder-Decoder architectures:

67

In the unsupervised technique no labelled images are provided to the network and the

measure for optimization is the left image to right image consistency that acts as a

reconstruction loss and directs the evolution of the weights.

Accuracy metric is omitted in the unsupervised case as ground truth images are not

needed in this implementation and the reconstruction losses of training and validation are

recorded.

The following figure shows the training and validation reconstruction losses attained for

the DenseMapNet based unsupervised learning Encoder-decoder:

 Figure 4.26: Training and Validation Reconstruction Loss for

 DenseMapNet Unsupervised Learning Model on KITTI Data Set

68

 Figure 4.27: Training and Validation Reconstruction Loss for

 DenseMapNet Unsupervised Learning Model on MPI-Sintel Data Set

The following figure shows the evaluation image result attained for the DenseMapNet

based unsupervised learning Encoder-decoder:

 Figure 4.28: Evaluation Output for DenseMapNet Unsupervised

 Learning Model on KITTI Data Set

69

 Figure 4.29: Evaluation Output for DenseMapNet Unsupervised

 Learning Model on MPI-Sintel Data Set

The following figure shows the training and validation reconstruction losses attained for

the Symmetric Encoder-decoder based unsupervised learning Encoder-decoder:

 Figure 4.30: Training and Validation Reconstruction Loss for

 Symmetric Network Unsupervised Learning Model on KITTI

 Data Set

70

 Figure 4.31: Training and Validation Reconstruction Loss for

 Symmetric Network Unsupervised Learning Model on MPI-Sintel

 Data Set

The following figure shows the evaluation disparity map result attained for the Symmetric

Encoder-decoder based unsupervised learning Encoder-decoder:

 Figure 4.32: Evaluation Output for Symmetric Network Unsupervised

 Learning Model on KITTI Data Set

71

 Figure 4.33: Evaluation Output for Symmetric Network Unsupervised

 Learning Model on MPI-Sintel Data Set

72

5. DISCUSSION

This thesis aims at formulating compact, efficient and specific Deep Learning models for

the task of stereo vision by training different architecture designs that implement the latest

techniques presented in literature with the proposed modifications.

It is observed from the implementation process that the hardware requirements for

performing Deep Learning for computer vision and specifically CNN architectures are

demanding in computational requirements most notably on the specifications of the

hardware accelerators represented by the GPU, from the onset of the implementation the

libraries and platforms employed required resent iteration of such hardware which are

capable of supporting the compatible versions such as supporting Nvidia Cuda

acceleration library of version 10 which is at the present an essential feature for execution

of the implementations. Specific to the models is the GPU RAM consumption which

further restricts the hardware choice as the general models with conventional convolution

required RAM availability of more than 10 GB for preferable parameter sizes with some

literature work operating with hardware envelop of multi GPU and multi CPU thus the

main objective was to choose compact models and further reduce parameter requirements.

From the obtained results it is observed a strong dependence of the training and validation

behaviour as well as output depth map detail and performance on the data set specification

and characteristics, the main factor identified is the size of the data set as KITTI data set

provide a lower number of example stereo pairs to the architecture to train on compared

to MPI-Sintel which noticeably reflects on the detail provided by the output depth maps

from architectures trained on these data sets respectively, from the training and validation

accuracy and loss curves KIITI data set display the typical signs of overfitting within the

first 100 epochs which is recorded on all supervised architectures and explainable by the

low sample size of KITTI data set.

MPI-Sintel training and validation curves display a loss and accuracy saturation within a

very small number of epochs but provide output performance that is more semantically

relevant to the stereo vision task, this can be understood from the second factor identified

that is data set characteristics and it is seen that MPI-Sintel is a synthetic data set having

a lower complexity in relations of data points compared to KITTI data set that is generated

from real world imaging therefore MPI-Sintel data set allows the architectures to capture

73

the information within the first epochs while having the learning process balanced by the

larger number of provided examples and the specifically constructed scenes with labelled

ground truth images which prevent typical overfitting. In contrast KITTI data set outputs

show lower semantic relevancy and the designs output depth maps that has a tendency to

produce the salient features that are inherently present in LiDAR generated ground truth

which is the presence of scan line repeated patterns which the networks overfit on due to

optimization flow, also noticeable the high contrast of the produced features between up

and down the detected horizon line due to the sharply increasing vanishing values of large

distances typical to LiDAR data. Architecture wise the outputs obtained from pretrained

supervised designs display weaker information capture and less semantic relevancy in the

generated depth maps for which this can be explained with two factors:

Firstly, these designs are pretrained with a classification task on data sets containing

millions of samples oriented for such a task thus the representation encoded in the weight

values of these pretrained architectures are optimized for scale invariant representations

that maximize relevant object detectability and classification this runs in contrast to the

task of recovering information that defines scale.

Secondly, these architectures are large on the layer depth parameter making them less

compact and more susceptible to overfitting on small data sets similar to the ones

generally available to stereo vision task despite that the implementation only tunes the

last layers of the pretrained system as an encoder to match the weights obtained for the

decoder system.

 The Inception based implementation provides larger contrast in the outputs this is

attributed to Inception employing in its subunits the process of regularization through

batch normalization and the presence of fan out structures that enhance the gradient flow

in the backpropagation phase of training to overcome vanishing gradients.

The VGG based design displays greater detail for the generated depth maps as the VGG

system captures greater detail due to less propensity to overfitting given by the smaller

number of weight parameters allowing the optimizer to evolve the weight values to

greater extent.

 Based on the previous observations this work partakes into designing non-pretrained

CNN Encoder-Decoder architectures that are specific to the task of generating stereo

vision depth maps and constructed with compactness and low parameter size.

74

For the DenseMapNet based supervised learning architecture the observation of

improvement in output detail with reducing parameter size relative to data size is

implemented by employing the depth wise separable convolution technique and this

design choice is validated by the generated output maps as it displays relevant depth

annotation on semantic features and objects based on depth and this is most evident with

training on MPI-Sintel data set. It is observed for this architecture a box artefact effects

that introduce regions with variance in response activation to depth semantics this is due

to the architecture structure that utilize a process of successive layer to layer input

concatenation to alleviate vanishing gradient issue but introduce information mixing

resulting in reconstruction artefacts. For the Siamese based architecture with skipping

connection the design choice is to apply symmetry for the two stereo branches in kernel

parameters and the layer structure of the Encoder-Decoder, moreover it is employed in

this work a weight sharing mechanism in between the branches of the encoder system to

enhance this symmetry with identical gradient calculations and reduction in parameter

requirement which is further enhanced by using depth wise separable convolution.

A skipping connection mechanism is also introduced in two modes:

A typical encoder to decoder skipping connections connecting the feature extraction

layers of the encoder with the decoder layers symmetric to it in kernel parameter size

enhancing information flow.

A local to Encoder skip connection that connects the first information representations

generated by the early encoding layers and introduce it the last encoding layers to further

reduce information loss.

Another design choice is to merge the branches with a correlation extraction method that

reduces parameters and emphasise on generating correspondence representations from

the embedded information recovered from each branch.

It is observed an enhancement of generated depth maps compared to the DensemapNet

architecture with more pronounced semantic depth identification and absence of box

artefact behaviour present in the DenseMapNet design. Additionally the supervised

learning Siamese based architecture extends the use of batch normalization to enhance

the optimizer performance.

Considering that data sets provided with properly annotated ground truth images for the

task of stereo vision are not prevalent relative to other computer vision tasks such as

75

classification, Unsupervised Learning provides an opportunity to gain performance

improvements while simplifying the data gathering process which requires either costly

and complex Lidar based measurement systems or designing specific computer generated

imagery of characteristics specific to obtain relevant depth ground truth.

Incorporated in the work the technique of self-supervised learning by customizing the

Encoder-Decoder to train on KITTI and MPI-Sintel date sets with omitted labels for

modified DenseMapNet architecture and Symmetric architecture with omitted skip

connections.

It is observed that the applied technique of imposing a reconstruction loss acquired

through the consistency in spatial information of scenes between left and right images

produces different behaviours on the extracted depth maps.

While still suffering from overfitting effects on KITTI data set the consistency based

measure manages to extract object outline information as displayed on the obtained

outputs signifying an increase in feature embedding in the networks.

On MPI-Sintel the semantic depth information are more prominent on the outputs in

accordance with the supervised method although displaying different artefact effects that

shows a misidentification of highly illuminated regions as low depth and this activation

is conserved in both the DenseMapNet and Symmetric architectures indicating that the

artefact is a characteristic of the consistency measure and not specific to network design

details.

76

6. CONCLUSIONS AND FUTURE WORK

In this part conclusions acquired and prospects for future work are presented.

6.1 CONCLUSIONS

It is concluded from this work presented in this thesis that the task of obtaining stereo

vision depth maps utilizing deep learning shows a strong dependency on data size and

data characteristics and most data sets publicly available for this task are oriented for the

traditional stereo vision techniques in comparison with other tasks in computer vision

such as classification and object detection where data sets are much larger with up to

millions of samples, this has most impact in the supervised learning implementations for

stereo vision. Another strong dependency is availability of hardware capability that is an

essential requirement with deep convolutional architectures, mainline designs that are

pretrained on large data sets with data centre level hardware provided to high corporations

such as Inception and VGG are concluded to be not suitable for the stereo vision task due

to different end goal criteria as well as the difficulty of fully retraining such very large

designs within readily available hardware specifications. It is also concluded that for

efficient Encoder-Decoder CNN architectures that are trained in a supervised learning

setting for the task of generating stereo vision depth maps a Siamese design that

emphasizes symmetry on the left and right encoder branches in both kernel parameter

size and sharing of left and right weight values in addition to skip connection mechanism

for information flow show an enhanced performance in extraction of semantically

annotated depth information that the successively linked architecture of DenseNet

inspired designs that suffer from reconstruction artefacts. Identified by this work the

procedure of the depth wise separable convolution as a desirable Enhancements on

parameter requirements resulting in more efficient implementations that critical to meet

the hardware envelop provided to this work. Other enhancements are using batch

normalization for mitigating the vanishing gradient effects and the use of correlation

based merge of left and right feature maps. For the unsupervised learning setting this work

concluded that it is applicable for the stereo vision task by implementing a self-learning

reconstruction loss on right to left images on both a DenseMapNet architecture and a

77

Symmetric network architecture, this is very desirable as data sets for this learning setting

can be constructed with less requirement and effort.

It is identified a conserved artefact effect in this setting which is high activation in depth

maps for strongly illuminated section in the input stereo pair.

6.2 FUTURE WORK

Further future work venues can be identified based on this thesis, exploration of

unsupervised and self-supervised architectures is still in its early stages and extending the

consistency measure based reconstruction loss which can be taken to incorporate full

simulation of the physical parameters such as light propagation characteristics or object

movement profiles, alternatively the reconstruction loss can be specified to the outputs of

highly precise although computationally intensive traditional depth estimation

algorithms.

Data collection and generation in large sized and specific features for stereo vision is also

a high recommendation in the supervised learning approach.

Another venue for research is to investigate hardware implementation of the

recommended efficient architectures for fast real time applications such as Robotic

navigation.

78

REFERENCES

Books

Alpaydin, E., 2010, Introduction to Machine Learning, 2nd edn. London: The MIT

Press.

Bishop, C., 2006, Pattern Recognition and Machine Learning. Springer.

Kriesel, D., 2005, A Brief Introduction to Neural Networks.

Szeliski, R., 2010, Computer Vision: Algorithms and Applications. Springer.

79

Periodicals

Agarap, A., 2019. Deep Learning using Rectified Linear Units (ReLU). [online]

Available at: https://arxiv.org/pdf/1803.08375.pdf [accessed 15 July 2019]

Atienza, R., 2018. Fast Disparity Estimation using Dense Networks. [online] Available

at: https://arxiv.org/pdf/1805.07499.pdf [accessed 6 May 2019]

Badrinarayanan,V. et. al., 2017. SegNet: A Deep Convolutional Encoder-Decoder

Architecture for Image Segmentation. IEEE Transactions on Pattern Analysis and

Machine Intelligence (TPAMI) [online] Available at:

https://www.repository.cam.ac.uk/bitstream/handle/1810/271007/07803544.p

df?sequence=7 [accessed 22 November 2019]

Bosch, M. et. al., 2019. Semantic Stereo for Incidental Satellite Images. 2019 IEEE

Winter Conference on Applications of Computer Vision (WACV) [online] Available

at: https://arxiv.org/ftp/arxiv/papers/1811/1811.08739.pdf [accessed 6 May

2019]

Butler,D. et. al., 2012. A Naturalistic Open Source Movie for Optical Flow Evaluation.

European Conference on Computer Vision ECCV 2012 [online] Available at:

https://homes.cs.washington.edu/~djbutler/papers/ButlerECCV2012.pdf

[accessed 5 April 2019]

Chollet, F., 2017. Xception: Deep Learning with Depthwise Separable Convolutions.

2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR) [online]

Available at:

http://openaccess.thecvf.com/content_cvpr_2017/papers/Chollet_Xception_Deep_

Learning_CVPR_2017_paper.pdf [accessed 10 July 2019]

Deng, J., Dong, W., Socher, R., Li, L., 2009. ImageNet: A Large-Scale Hierarchical

Image Database. IEEE Computer Vision and Pattern Recognition (CVPR) [online]

Available at: http://www.image-net.org/papers/imagenet_cvpr09.pdf [accessed 6 May

2019]

Geiger,A. et. al.,2013. Vision meets robotics: The KITTI dataset [online] Available at:

http://ww.cvlibs.net/publications/Geiger2013IJRR.pdf [accessed 5 April 2019]

https://arxiv.org/pdf/1803.08375.pdf
https://arxiv.org/pdf/1805.07499.pdf
https://www.repository.cam.ac.uk/bitstream/handle/1810/271007/07803544.pdf?sequence=7
https://www.repository.cam.ac.uk/bitstream/handle/1810/271007/07803544.pdf?sequence=7
https://arxiv.org/ftp/arxiv/papers/1811/1811.08739.pdf
https://homes.cs.washington.edu/~djbutler/papers/ButlerECCV2012.pdf
http://openaccess.thecvf.com/content_cvpr_2017/papers/Chollet_Xception_Deep_Learning_CVPR_2017_paper.pdf
http://openaccess.thecvf.com/content_cvpr_2017/papers/Chollet_Xception_Deep_Learning_CVPR_2017_paper.pdf
http://www.image-net.org/papers/imagenet_cvpr09.pdf
http://ww.cvlibs.net/publications/Geiger2013IJRR.pdf

80

Guo,J. et.al.,2018. Network Decoupling: From Regular to Depthwise Separable

Convolutions. BMVC 2018 [online] Available at:

http://bmvc2018.org/contents/papers/0849.pdf [accessed 10 July 2019]

Ioffe, S., Szegedy, C., 2015. Batch Normalization: Accelerating Deep Network Training

by Reducing Internal Covariate Shift. ICML 2015 [online], Available at:

https://arxiv.org/pdf/1502.03167.pdf [accessed 10 July 2019]

Ji, M. et. al., 2017, ‘SurfaceNet: An End-to-End 3D Neural Network for Multiview

Stereopsis. 2017 IEEE International Conference on Computer Vision (ICCV)

[online] Available at: https://arxiv.org/pdf/1708.01749.pdf [accessed 15 July 2019]

Jiang,H. et. al., 2018. Self-Supervised Relative Depth Learning for Urban Scene

Understanding. European Conference on Computer Vision ECCV 2018 [online]

Available at: https://arxiv.org/pdf/1712.04850.pdf [accessed 14 August 2019]

Jiao, J. et. al. ,,2014. Local Stereo Matching with Improved Matching Cost and

Disparity Refinement. IEEE MultiMedia, [online] Available at:

https://jianbojiao.com/pdfs/mm.pdf [accessed 10 July 2019]

Kendall,A. et. al., 2017. End-to-End Learning of Geometry and Context for Deep Stereo

Regression. 2017 IEEE International Conference on Computer Vision (ICCV)

[online] Available at: https://arxiv.org/pdf/1703.04309.pdf [accessed 10 July 2019]

Kingma, D.,Welling,M.,2014. Auto-Encoding Variational Bayes. ICLR 2014 [online]

Available at: https://arxiv.org/pdf/1312.6114.pdf [accessed 10 July 2019]

Koch, G. et. al., 2015. Siamese Neural Networks for One-Shot Image Recognition.

[online] Available at: https://www.cs.cmu.edu/~rsalakhu/papers/oneshot1.pdf [accessed

12 July 2019]

Luo, W. et.al. , 2016. Efficient Deep Learning for Stereo Matching. 2016 IEEE

Conference on Computer Vision and Pattern Recognition (CVPR) [online] Available

at: https://www.cv-

foundation.org/openaccess/content_cvpr_2016/papers/Luo_Efficient_Deep_Learning_C

VPR_2016_paper.pdf

[accessed 10 July 2019]

Mazaheri, G. et. al., 2019. A Skip Connection Architecture for Localization of Image

Manipulations. CVPR Workshops 2019. [online] Available at:

http://bmvc2018.org/contents/papers/0849.pdf
https://arxiv.org/pdf/1502.03167.pdf
https://arxiv.org/pdf/1708.01749.pdf
https://arxiv.org/pdf/1712.04850.pdf
https://jianbojiao.com/pdfs/mm.pdf
https://arxiv.org/pdf/1703.04309.pdf
https://arxiv.org/pdf/1312.6114.pdf
https://www.cs.cmu.edu/~rsalakhu/papers/oneshot1.pdf
https://www.cv-foundation.org/openaccess/content_cvpr_2016/papers/Luo_Efficient_Deep_Learning_CVPR_2016_paper.pdf
https://www.cv-foundation.org/openaccess/content_cvpr_2016/papers/Luo_Efficient_Deep_Learning_CVPR_2016_paper.pdf
https://www.cv-foundation.org/openaccess/content_cvpr_2016/papers/Luo_Efficient_Deep_Learning_CVPR_2016_paper.pdf

81

http://openaccess.thecvf.com/content_CVPRW_2019/papers/Media%20Forensics/Maza

heri_A_Skip_Connection_Architecture_for_Localization_of_Image_Manipulations_CV

PRW_2019_paper.pdf [accessed 12 July 2019]

Nwankpa, C. et. al.,2018. Activation Functions: Comparison of Trends in Practice and

Research for Deep Learning. [online] Available at:

https://arxiv.org/pdf/1811.03378.pdf [accessed 15 July 2019]

Ramachandran, P. et. al., 2017. Swish: a Self-Gated Activation Function. [online]

Available at:

https://pdfs.semanticscholar.org/4f57/f486adea0bf95c252620a4e8af39232ef8bc.pdf

[accessed 10 July 2019]

Szegedy, C. et. al., 2014. Going Deeper with Convolutions. IEEE [online] Available at:

https://arxiv.org/pdf/1409.4842.pdf [accessed 6 May 2019]

Tardon, et.al. 2011. Markov Random Fields in the Context of Stereo Vision [online]

Available at:

https://www.researchgate.net/publication/221909970_Markov_Random_Fields_in_the_

Context_of_Stereo_Vision

[accessed 10 July 2019]

Trucco, Emanuele, Roberto, Vito, Tinonin, Corbatto, 1970. SSD Disparity Estimation

for Dynamic Stereo. [online] Available at:

https://www.researchgate.net/publication/2600153_SSD_Disparity_Estimation_for_Dy

namic_Stereo [accessed 10 July 2019]

Wang, F. et. al.,2018. Self-Supervised Learning of Depth and Camera Motion from 360◦

Videos’ [online] Available at: https://arxiv.org/pdf/1811.05304.pdf [accessed 14

August 2019]

Wei, Hu, Hao, Zhou, Hua-wei, Lau, 2019. Characterizing Rock Facies Using Machine

Learning Algorithm Based on a Convolutional Neural Network and Data Padding

Strategy. Pure and Applied Geophysics. 1-13. 10.1007/s00024-019-02152-0. [online]

Available at:

https://www.researchgate.net/publication/331991539_Characterizing_Rock_Facies_Usi

ng_Machine_Learning_Algorithm_Based_on_a_Convolutional_Neural_Network_and_

Data_Padding_Strategy [accessed 10 July 2019]

http://openaccess.thecvf.com/content_CVPRW_2019/papers/Media%20Forensics/Mazaheri_A_Skip_Connection_Architecture_for_Localization_of_Image_Manipulations_CVPRW_2019_paper.pdf
http://openaccess.thecvf.com/content_CVPRW_2019/papers/Media%20Forensics/Mazaheri_A_Skip_Connection_Architecture_for_Localization_of_Image_Manipulations_CVPRW_2019_paper.pdf
http://openaccess.thecvf.com/content_CVPRW_2019/papers/Media%20Forensics/Mazaheri_A_Skip_Connection_Architecture_for_Localization_of_Image_Manipulations_CVPRW_2019_paper.pdf
https://arxiv.org/pdf/1811.03378.pdf
https://pdfs.semanticscholar.org/4f57/f486adea0bf95c252620a4e8af39232ef8bc.pdf
https://arxiv.org/pdf/1409.4842.pdf
https://www.researchgate.net/publication/221909970_Markov_Random_Fields_in_the_Context_of_Stereo_Vision
https://www.researchgate.net/publication/221909970_Markov_Random_Fields_in_the_Context_of_Stereo_Vision
https://www.researchgate.net/publication/2600153_SSD_Disparity_Estimation_for_Dynamic_Stereo
https://www.researchgate.net/publication/2600153_SSD_Disparity_Estimation_for_Dynamic_Stereo
https://arxiv.org/pdf/1811.05304.pdf
https://www.researchgate.net/publication/331991539_Characterizing_Rock_Facies_Using_Machine_Learning_Algorithm_Based_on_a_Convolutional_Neural_Network_and_Data_Padding_Strategy
https://www.researchgate.net/publication/331991539_Characterizing_Rock_Facies_Using_Machine_Learning_Algorithm_Based_on_a_Convolutional_Neural_Network_and_Data_Padding_Strategy
https://www.researchgate.net/publication/331991539_Characterizing_Rock_Facies_Using_Machine_Learning_Algorithm_Based_on_a_Convolutional_Neural_Network_and_Data_Padding_Strategy

82

Welchman,A.,2016 The Human Brain in Depth: How We See in 3D’, The Annual

Review of Vision Science 2016. [online] Available at:

https://www.repository.cam.ac.uk/bitstream/handle/1810/271007/07803544.pdf?sequen

ce=7 [accessed 15 June 2019]

Yasrab,R. et. al.,2017. An Encoder-Decoder Based Convolution Neural Network (CNN)

for Future Advanced Driver Assistance System (ADAS). Applied Sciences [online]

Available at:

https://pdfs.semanticscholar.org/0510/00dd99635b74862b4b33f6dd84aca34f7471.pdf?_

ga=2.120936589.429826482.1576776997-284257306.1530051971

[accessed 10 July 2019]

Ye, J.,Sung,W.,2019, ‘Understanding Geometry of Encoder-Decoder CNNs’,[online],

Available at: https://arxiv.org/pdf/1901.07647.pdf [accessed 10 July 2019]

Zhang, Y. et. al.,2018. ActiveStereoNet: End-to-End Self-Supervised Learning for

Active Stereo Systems. European Conference on Computer Vision ECCV 2018 [online]

Available at:

http://openaccess.thecvf.com/content_ECCV_2018/papers/Yinda_Zhang_Active_Stereo

_Net_ECCV_2018_paper.pdf [accessed 14 August 2019]

https://www.repository.cam.ac.uk/bitstream/handle/1810/271007/07803544.pdf?sequence=7
https://www.repository.cam.ac.uk/bitstream/handle/1810/271007/07803544.pdf?sequence=7
https://www.researchgate.net/journal/2076-3417_Applied_Sciences
https://pdfs.semanticscholar.org/0510/00dd99635b74862b4b33f6dd84aca34f7471.pdf?_ga=2.120936589.429826482.1576776997-284257306.1530051971
https://pdfs.semanticscholar.org/0510/00dd99635b74862b4b33f6dd84aca34f7471.pdf?_ga=2.120936589.429826482.1576776997-284257306.1530051971
https://arxiv.org/pdf/1901.07647.pdf
http://openaccess.thecvf.com/content_ECCV_2018/papers/Yinda_Zhang_Active_Stereo_Net_ECCV_2018_paper.pdf
http://openaccess.thecvf.com/content_ECCV_2018/papers/Yinda_Zhang_Active_Stereo_Net_ECCV_2018_paper.pdf

83

Other Publications

Ewbank, T., 2017. Efficient and precise stereoscopic vision for humanoid robots.

[online] Available at: https://matheo.uliege.be/bitstream/2268.2/3144/5/master-thesis-

Tom-Ewbank.pdf [accessed 1 May 2019]

Goodfellow,I. et.al., 2016. Deep Learning ’,MIT press 2016. [online] Available at:

http://www.deeplearningbook.org [accessed 1 May 2019]

Kar, A., 2017. Learning to Reconstruct 3D Objects. [online] Available at:

https://www2.eecs.berkeley.edu/Pubs/TechRpts/2017/EECS-2017-199.pdf [accessed 1

May 2019]

Nilsen,M.,2015. Neural Networks and Deep Learning. Determination press 2015

[online], Available at: http://neuralnetworksanddeeplearning.com [accessed 1 May

2019]

Pisapia, R., 2016. Disparity map extraction for a low cost 3D sensor. [online]

Available at:

https://members.loria.fr/SATabbone/Disparity%20map%20extraction%20for%20a%20l

ow%20cost%203D%20sensor%20-%20Pisapia%20Roberto.pdf [accessed 1 May 2019]

Poggi, M., 2017. Deep Learning for stereo matching and related tasks. [online]

Available at: http://vision.disi.unibo.it/~mpoggi/talks/Deep_learning_stereo.pdf

[accessed 10 July 2019]

Stigborn, P., 2018. Generating 3D-objects using neural networks. [online] Available at:

http://www.diva-portal.org/smash/get/diva2:1218064/FULLTEXT01.pdf [accessed 1

May 2019]

https://matheo.uliege.be/bitstream/2268.2/3144/5/master-thesis-Tom-Ewbank.pdf
https://matheo.uliege.be/bitstream/2268.2/3144/5/master-thesis-Tom-Ewbank.pdf
http://www.deeplearningbook.org/
https://www2.eecs.berkeley.edu/Pubs/TechRpts/2017/EECS-2017-199.pdf
http://neuralnetworksanddeeplearning.com/
https://members.loria.fr/SATabbone/Disparity%20map%20extraction%20for%20a%20low%20cost%203D%20sensor%20-%20Pisapia%20Roberto.pdf
https://members.loria.fr/SATabbone/Disparity%20map%20extraction%20for%20a%20low%20cost%203D%20sensor%20-%20Pisapia%20Roberto.pdf
http://vision.disi.unibo.it/~mpoggi/talks/Deep_learning_stereo.pdf
http://www.diva-portal.org/smash/get/diva2:1218064/FULLTEXT01.pdf

APPENDICES

85

Appendix A.1 Table

Table-1: Supervised Model with Parameter reduced DenseMapNet

Layer(type) Output Shape Param

eters

Numbe

r

Connected to

input_1 (Input layer) (None,748,744,3) 0 *

input_2 (Input layer) (None,748,744,3) 0 *

concatenate_1

(Concatenate)

(None,748,744,6) 0 input_1[0][0]

input_2[0][0]

separable_conv2d_3

(SeparableConvolution)

(None, 748, 744, 128) 1046 concatenate_1[0][0]

max_pooling2d_1

(MaxPooling2D)

(None, 93, 93, 128) 0 separable_conv2d_3

[0][0]

batch_normalization_1

(BatchNormalization)

(None, 93, 93, 128) 512 max_pooling2d_1[0]

[0]

downsampled_stereo

(Activation)

(None, 93, 93, 128) 0 batch_normalization

_1[0][0]

separable_conv2d_4

(SeparableConvolution)

(None, 93, 93, 64) 11456 downsampled_stereo

[0][0]

separable_conv2d_5

(SeparableConvolution)

(None, 93, 93, 64) 11456 downsampled_stereo

[0][0]

dropout_1 (Dropout) (None, 93, 93, 64) 0 separable_conv2d_4

[0][0]

separable_conv2d_6

(SeparableConvolution)

(None, 93, 93, 64) 11456 downsampled_stereo

[0][0]

dropout_2 (Dropout) (None, 93, 93, 64) 0 separable_conv2d_5

[0][0]

86

concatenate_2

(Concatenate)

(None, 93, 93, 192) 0 dropout_1[0][0]

downsampled_stere

[0][0]

separable_conv2d_7

(SeparableConvolution)

(None, 93, 93, 64) 11456 downsampled_stereo

[0][0]

dropout_3 (Dropout) (None, 93, 93, 64) 0 separable_conv2d_6

[0][0]

concatenate_3

(Concatenate)

(None, 93, 93, 256) 0 dropout_2[0][0]

concatenate_2[0][0]

separable_conv2d_1

(SeparableConvolution)

(None, 748, 744, 128) 587 input_1[0][0]

dropout_4 (Dropout) (None, 93, 93, 64) 0 separable_conv2d_7

[0][0]

concatenate_4

(Concatenate)

(None, 93, 93, 320) 0 dropout_3[0][0]

concatenate_3[0][0]

max_pooling2d_2

(MaxPooling2D)

(None, 93, 93, 128) 0 separable_conv2d_1

[0][0]

concatenate_5

(Concatenate)

(None, 93, 93, 384) 0 dropout_4[0][0]

concatenate_4[0][0]

concatenate_6

(Concatenate)

(None, 93, 93, 512) 0 max_pooling2d_2

[0][0]

concatenate_5 [0][0]

batch_normalization_2

(BatchNormalization)

(None, 93, 93, 512) 2048 concatenate_6[0][0]

activation_1 (Activation) (None, 93, 93, 512) 0 batch_normalization

_2[0][0]

separable_conv2d_8

(SeparableConvolution)

(None, 93, 93, 64) 33344 activation_1[0][0]

batch_normalization_3

(BatchNormalization)

(None, 93, 93, 64) 256 separable_conv2d_8

[0][0]

87

activation_2 (Activation) (None, 93, 93, 64) 0 batch_normalization

_3[0][0]

conv2d_1 (Conv2D) (None, 93, 93, 64) 102464 activation_2[0][0]

dropout_5 (Dropout) (None, 93, 93, 64) 0 conv2d_1[0][0]

concatenate_7

(Concatenate)

(None, 93, 93, 576) 0 concatenate_6[0][0]

dropout_5[0][0]

batch_normalization_4

(BatchNormalization)

(None, 93, 93, 576) 2304 concatenate_7[0][0]

activation_3 (Activation) (None, 93, 93, 576) 0 batch_normalization

_4[0][0]

separable_conv2d_9

(SeparableConvolution)

(None, 93, 93, 64) 37504 activation_3[0][0]

batch_normalization_5

(BatchNormalization)

(None, 93, 93, 64) 256 separable_conv2d_9

[0][0]

activation_4 (Activation) (None, 93, 93, 64) 0 batch_normalization

_5[0][0]

conv2d_2 (Conv2D) (None, 93, 93, 64) 102464 activation_4[0][0]

dropout_6 (Dropout) (None, 93, 93, 64) 0 conv2d_2[0][0]

concatenate_8

(Concatenate)

(None, 93, 93, 640) 0 concatenate_7[0][0]

dropout_6[0][0]

batch_normalization_6

(BatchNormalization)

(None, 93, 93, 640) 2560 concatenate_8[0][0]

activation_5 (Activation) (None, 93, 93, 640) 0 batch_normalization

_6[0][0]

separable_conv2d_10

(SeparableConvolution)

(None, 93, 93, 64) 41664 activation_5[0][0]

batch_normalization_7

(BatchNormalization)

(None, 93, 93, 64) 256 separable_conv2d_1

0[0][0]

activation_6 (Activation) (None, 93, 93, 64) 0 batch_normalization

_7[0][0]

conv2d_3 (Conv2D) (None, 93, 93, 64) 102464 activation_6[0][0]

88

dropout_7 (Dropout) (None, 93, 93, 64) 0 conv2d_3[0][0]

concatenate_9

(Concatenate)

(None, 93, 93, 704) 0 concatenate_8[0][0]

dropout_7[0][0]

batch_normalization_8

(BatchNormalization)

(None, 93, 93, 704) 2816 concatenate_9[0][0]

activation_7 (Activation) (None, 93, 93, 704) 0 batch_normalization

_8[0][0]

separable_conv2d_11

(SeparableConvolution)

(None, 93, 93, 64) 45824 activation_7[0][0]

batch_normalization_9

(BatchNormalization)

(None, 93, 93, 64) 256 separable_conv2d_1

1[0][0]

activation_8 (Activation) (None, 93, 93, 64) 0 batch_normalization

_9[0][0]

conv2d_4 (Conv2D) (None, 93, 93, 64) 102464 activation_8[0][0]

dropout_8 (Dropout) (None, 93, 93, 64) 0 conv2d_4[0][0]

upsampled_disparity

(Concatenate)

(None, 93, 93, 768) 0 concatenate_9[0][0]

dropout_8[0][0]

batch_normalization_10

(BatchNormalization)

(None, 93, 93, 768) 3072 upsampled_disparity

[0][0]

activation_9 (Activation) (None, 93, 93, 768) 0 batch_normalization

_10[0][0]

separable_conv2d_12

(SeparableConvolution)

(None, 93, 93, 64) 49984 activation_9[0][0]

up_sampling2d_1

(UpSampling2D)

(None, 744, 744, 64) 0 separable_conv2d_1

2[0][0]

zero_padding2d_1

(ZeroPadding2D

(None, 748, 744, 64) 0 up_sampling2d_1

[0] [0]

separable_conv2d_2

(SeparableConvolution)

(None, 748, 744, 1) 79 input_1[0][0]

concatenate_10

(Concatenate)

(None, 748, 744, 65) 0 zero_padding2d_1

[0][0]

89

separable_conv2d_2

[0][0]

batch_normalization_11

(BatchNormalization)

(None, 748, 744, 65) 260 concatenate_10[0][0

]

activation_10 (Activation) (None, 748, 744, 65) 0 batch_normalization

_11[0][0]

separable_conv2d_13

(SeparableConvolution)

(None, 748, 744, 64) 5849 activation_10[0][0]

concatenate_11

(Concatenate)

(None, 748, 744, 129) 0 concatenate_10

[0][0]

separable_conv2d_1

3[0][0]

batch_normalization_12

(BatchNormalization)

(None, 748, 744, 129) 516 concatenate_11[0][0

]

activation_11 (Activation) (None, 748, 744, 129) 0 batch_normalization

_12[0][0]

separable_conv2d_14

(SeparableConvolution)

(None, 748, 744, 3) 10839 activation_11[0][0]

disparity_output

(Activation)

(None, 748, 744, 3) 0 separable_conv2d_1

4[0][0]

90

Table-2: Supervised Model with Siamese Network

Layer(type) Output Shape Param

eters

Numbe

r

Connected to

input_1 (Input layer) (None, 672, 672, 3) 0 *

input_2 (Input layer) (None, 672, 672, 3) 0 *

separable_conv2d_1

(SeparableConvolution)

(None, 672, 672, 32) 275 input_1[0][0]

input_2[0][0]

batch_normalization_1

(BatchNormalization)

(None, 672, 672, 32) 128 separable_conv2d_

1 [0][0]

separable_conv2d_

1 [1][0]

activation_1 (Activation) (None, 672, 672, 32) 0 batch_normalizatio

n_1[0][0]

batch_normalizatio

n_1[1][0]

max_pooling2d_1

(MaxPooling2D)

(None, 336, 336, 32) 0 activation_1[0][0]

activation_1[1][0]

separable_conv2d_2

(SeparableConvolution)

(None, 336, 336, 64) 3680 max_pooling2d_1

[0][0]

max_pooling2d_1

[1][0]

batch_normalization_2

(BatchNormalization)

(None, 336, 336, 64) 256 separable_conv2d_

2 [0][0]

separable_conv2d_

2 [1][0]

activation_2 (Activation) (None, 336, 336, 64) 0 batch_normalizatio

n_2[0][0]

91

batch_normalizatio

n_2[1][0]

max_pooling2d_2

(MaxPooling2D)

(None, 168, 168, 64) 0 activation_2[0][0]

activation_2[1][0]

separable_conv2d_3

(SeparableConvolution)

(None, 168, 168, 128) 9920 max_pooling2d_2

[0][0]

max_pooling2d_2

[1][0]

batch_normalization_3

(BatchNormalization)

(None, 168, 168, 128) 512 separable_conv2d_

3 [0][0]

separable_conv2d_

3 [1][0]

activation_3 (Activation) (None, 168, 168, 128) 0 batch_normalizatio

n_3 [0][0]

batch_normalizatio

n_3[1][0]

max_pooling2d_5

(MaxPooling2D)

(None, 84, 84, 32) 0 activation_1[0][0]

activation_1[1][0]

max_pooling2d_3

(MaxPooling2D)

(None, 84, 84, 128) 0 activation_3[0][0]

activation_3[1][0]

concatenate_1

(Concatenate)

(None, 84, 84, 160) 0 max_pooling2d_5

[0][0]

max_pooling2d_3

[0][0]

concatenate_2

(Concatenate)

(None, 84, 84, 160) 0 max_pooling2d_5

[1][0]

max_pooling2d_3

[1][0]

separable_conv2d_4

(SeparableConvolution)

(None, 84, 84, 256) 42656 concatenate_1[0][0]

concatenate_2[0][0]

92

batch_normalization_4

(BatchNormalization)

(None, 84, 84, 256) 1024 separable_conv2d_

4 [0][0]

separable_conv2d_

4 [1][0]

activation_4 (Activation) (None, 84, 84, 256) 0 batch_normalizatio

n_4[0][0]

batch_normalizatio

n_4[1][0]

max_pooling2d_4

(MaxPooling2D)

(None, 42, 42, 256) 0 activation_4[0][0]

activation_4[1][0]

multiply_1 (Multiply) (None, 42, 42, 256) 0 max_pooling2d_4

[0][0]

max_pooling2d_4

[1][0]

separable_conv2d_5

(SeparableConvolution)

(None, 42, 42, 256) 66816 multiply_1[0][0]

batch_normalization_5

(BatchNormalization)

(None, 42, 42, 256) 1024 separable_conv2d_

5 [0][0]

activation_5 (Activation) (None, 42, 42, 256) 0 batch_normalizatio

n_5[0][0]

max_pooling2d_6

(MaxPooling2D)

(None, 21, 21, 256) 0 activation_5[0][0]

separable_conv2d_6

(SeparableConvolution)

(None, 21, 21, 256) 66816 max_pooling2d_6

[0][0]

batch_normalization_6

(BatchNormalization)

(None, 21, 21, 256) 1024 separable_conv2d_

6 [0][0]

activation_6 (Activation) (None, 21, 21, 256) 0 batch_normalizatio

n_6[0][0]

up_sampling2d_1

(UpSampling2D)

(None, 42, 42, 256) 0 activation_6[0][0]

93

concatenate_3

(Concatenate)

(None, 42, 42, 512) 0 up_sampling2d_1

[0][0]

activation_5[0][0]

separable_conv2d_7

(SeparableConvolution)

(None, 42, 42, 256) 135936 concatenate_3[0][0]

batch_normalization_7

(BatchNormalization)

(None, 42, 42, 256) 1024 separable_conv2d_

7 [0][0]

activation_7 (Activation) (None, 42, 42, 256) 0 batch_normalizatio

n_7[0][0]

up_sampling2d_2

(UpSampling2D)

(None, 84, 84, 256) 0 activation_7[0][0]

concatenate_4

(Concatenate)

(None, 84, 84, 512) 0 up_sampling2d_2

[0][0]

activation_4[0][0]

separable_conv2d_8

(SeparableConvolution)

(None, 84, 84, 128) 78464 concatenate_4[0][0]

batch_normalization_8

(BatchNormalization)

(None, 84, 84, 128) 512 separable_conv2d_

8 [0][0]

activation_8 (Activation) (None, 84, 84, 128) 0 batch_normalizatio

n_8[0][0]

up_sampling2d_3

(UpSampling2D)

(None, 168, 168, 128) 0 activation_8[0][0]

concatenate_5

(Concatenate)

(None, 168, 168, 256) 0 up_sampling2d_3

[0][0]

activation_3[0][0]

separable_conv2d_9

(SeparableConvolution)

(None, 168, 168, 64) 28992 concatenate_5[0][0]

batch_normalization_9

(BatchNormalization)

(None, 168, 168, 64) 256 separable_conv2d_

9 [0][0]

activation_9 (Activation) (None, 168, 168, 64) 0 batch_normalizatio

n_9[0][0]

94

up_sampling2d_4

(UpSampling2D)

(None, 336, 336, 64) 0 activation_9[0][0]

concatenate_6

(Concatenate)

(None, 336, 336, 128) 0 up_sampling2d_4

[0][0]

activation_2[0][0]

separable_conv2d_10

(SeparableConvolution)

(None, 336, 336, 32) 10400 concatenate_6[0][0]

batch_normalization_10

(BatchNormalization)

(None, 336, 336, 32) 128 separable_conv2d_

10[0][0]

activation_10 (Activation) (None, 336, 336, 32) 0 batch_normalizatio

n_10[0][0]

up_sampling2d_5

(UpSampling2D)

(None, 672, 672, 32) 0 activation_10[0][0]

up_sampling2d_6

(UpSampling2D)

(None, 672, 672, 256) 0 activation_6[0][0]

concatenate_7

(Concatenate)

(None, 672, 672, 320) 0 up_sampling2d_5

[0][0]

activation_1[0][0]

up_sampling2d_6

[0][0]

separable_conv2d_11

(SeparableConvolution)

(None, 672, 672, 3) 3843 concatenate_7[0][0]

95

Table-3: Unsupervised Model with DenseMapNet Encoder-decoder

Layer(type) Output Shape Param

eters

Numbe

r

Connected to

input_1 (Input layer) (None, 672, 672, 3) 0 *

input_2 (Input layer) (None, 672, 672, 3) 0 *

model_1 (Model) (None, 672, 672, 3) 753166 input_1[0][0]

custom_layer_8

(CustomLayer)

(None, 672, 672, 3) 0 input_1[0][0]

input_2[0][0]

model_1[1][0]

model_1 (Model)

input_1(InputLayer) (None, 672, 672, 3) 0 *

separable_conv2d_17

(SeparableConvolution)

(None, 672, 672, 128 587 input_1[0][0]

max_pooling2d_3

(MaxPooling2D)

(None, 84, 84, 128) 0 separable_conv2d_17

[0][0]

batch_normalization_13

(BatchNormalization)

(None, 84, 84, 128) 512 max_pooling2d_3

[0][0]

downsampled_stereo

(Activation)

(None, 84, 84, 128) 0 batch_normalization_

13[0][0]

separable_conv2d_18

(SeparableConvolution)

(None, 84, 84, 128) 19712 downsampled_ stereo

[0][0]

separable_conv2d_19

(SeparableConvolution)

(None, 84, 84, 128) 19712 downsampled_stereo

[0][0]

96

dropout_9 (Dropout) (None, 84, 84, 128) 0 separable_conv2d_18

[0][0]

separable_conv2d_20

(SeparableConvolution)

(None, 84, 84, 128) 19712 downsampled_stereo

[0][0]

dropout_10 (Dropout) (None, 84, 84, 128) 0 separable_conv2d_19

[0][0]

concatenate_10

(Concatenate)

(None, 84, 84, 256) 0 dropout_9[0][0]

downsampled_stereo

[0][0]

separable_conv2d_21

(SeparableConvolution)

(None, 84, 84, 128) 19712 downsampled_stereo

[0][0]

dropout_11 (Dropout) (None, 84, 84, 128) 0 separable_conv2d_20

[0][0]

concatenate_11

(Concatenate)

(None, 84, 84, 384) 0 dropout_10[0][0]

concatenate_10[0][0]

dropout_12 (Dropout) (None, 84, 84, 128) 0 separable_conv2d_21

[0][0]

concatenate_12

(Concatenate)

(None, 84, 84, 512) 0 dropout_11[0][0]

concatenate_11[0][0]

max_pooling2d_4

(MaxPooling2D)

(None, 84, 84, 128) 0 separable_conv2d_17

[0][0]

concatenate_13

(Concatenate)

(None, 84, 84, 640) 0 dropout_12[0][0]

concatenate_12[0][0]

concatenate_14

(Concatenate)

(None, 84, 84, 768) 0 max_pooling2d_4

[0][0]

concatenate_13[0][0]

batch_normalization_14

(BatchNormalization)

(None, 84, 84, 768) 3072 concatenate_14[0][0]

activation_12 (Activation) (None, 84, 84, 768) 0 batch_normalization_

14[0][0]

97

separable_conv2d_22

(SeparableConvolution)

(None, 84, 84, 128) 99200 activation_12[0][0]

batch_normalization_15

(BatchNormalization)

(None, 84, 84, 128) 512 separable_conv2d_22

[0][0]

activation_13 (Activation) (None, 84, 84, 128) 0 batch_normalization_

15[0][0]

separable_conv2d_23

(SeparableConvolution)

(None, 84, 84, 64) 11456 activation_13[0][0]

dropout_13 (Dropout) (None, 84, 84, 64) 0 separable_conv2d_23

[0][0]

concatenate_15

(Concatenate)

(None, 84, 84, 832) 0 concatenate_14[0][0]

dropout_13[0][0]

batch_normalization_16

(BatchNormalization)

(None, 84, 84, 832) 3328 concatenate_15[0][0]

activation_14 (Activation) (None, 84, 84, 832) 0 batch_normalization_

16[0][0]

separable_conv2d_24

(SeparableConvolution)

(None, 84, 84, 128) 107456 activation_14[0][0]

batch_normalization_17

(BatchNormalization)

(None, 84, 84, 128) 512 separable_conv2d_24

[0][0]

activation_15 (Activation) (None, 84, 84, 128) 0 batch_normalization_

17[0][0]

separable_conv2d_25

(SeparableConvolution)

(None, 84, 84, 64) 11456 activation_15[0][0]

dropout_14 (Dropout) (None, 84, 84, 64) 0 separable_conv2d_25

[0][0]

concatenate_16

(Concatenate)

(None, 84, 84, 896) 0 concatenate_15[0][0]

dropout_14[0][0]

batch_normalization_18

(BatchNormalization)

(None, 84, 84, 896) 3584 concatenate_16[0][0]

98

activation_16 (Activation) (None, 84, 84, 896) 0 batch_normalization_

18[0][0]

separable_conv2d_26

(SeparableConvolution)

(None, 84, 84, 128) 115712 activation_16[0][0]

batch_normalization_19

(BatchNormalization)

(None, 84, 84, 128) 512 separable_conv2d_26

[0][0]

activation_17 (Activation) (None, 84, 84, 128) 0 batch_normalization_

19[0][0]

separable_conv2d_27

(SeparableConvolution)

(None, 84, 84, 64) 11456 activation_17[0][0]

dropout_15 (Dropout) (None, 84, 84, 64) 0 separable_conv2d_27

[0][0]

concatenate_17

(Concatenate)

(None, 84, 84, 960) 0 concatenate_16[0][0]

dropout_15[0][0]

batch_normalization_20

(BatchNormalization)

(None, 84, 84, 960) 3840 concatenate_17[0][0]

activation_18 (Activation) (None, 84, 84, 960) 0 batch_normalization_

20[0][0]

separable_conv2d_28

(SeparableConvolution)

(None, 84, 84, 128) 123968 activation_18[0][0]

batch_normalization_21

(BatchNormalization)

(None, 84, 84, 128) 512 separable_conv2d_28

[0][0]

activation_19 (Activation) (None, 84, 84, 128) 0 batch_normalization_

21[0][0]

separable_conv2d_29

(SeparableConvolution)

(None, 84, 84, 64) 11456 activation_19[0][0]

dropout_16 (Dropout) (None, 84, 84, 64) 0 separable_conv2d_29

[0][0]

upsampled_disparity

(Concatenate)

(None, 84, 84, 1024) 0 concatenate_17[0][0]

dropout_16[0][0]

99

batch_normalization_22

(SeparableConvolution)

(None, 84, 84, 1024) 4096 upsampled_disparity

[0][0]

activation_20 (Activation) (None, 84, 84, 1024) 0 batch_normalization_

22[0][0]

separable_conv2d_30

(SeparableConvolution)

(None, 84, 84, 128) 132224 activation_20[0][0]

up_sampling2d_2

(UpSampling2D)

(None, 672, 672, 128) 0 separable_conv2d_30

[0][0]

batch_normalization_23

(BatchNormalization)

(None, 672, 672, 128) 512 up_sampling2d_2

[0][0]

activation_21 (Activation) (None, 672, 672, 128) 0 batch_normalization_

23[0][0]

separable_conv2d_31

(SeparableConvolution)

(None, 672, 672, 64) 11456 activation_21[0][0]

concatenate_18

(Concatenate)

(None, 672, 672, 192) 0 up_sampling2d_2

[0][0]

separable_conv2d_31

[0][0]

batch_normalization_24

(SeparableConvolution)

(None, 672, 672, 192) 768 concatenate_18[0][0]

activation_22 (Activation) (None, 672, 672, 192) 0 batch_normalization_

24[0][0]

separable_conv2d_32

(SeparableConvolution)

(None, 672, 672, 3) 16131 activation_22[0][0]

disparity_output

(Activation)

(None, 672, 672, 3) 0 separable_conv2d_32

[0][0]

100

Table-4: Unsupervised Model with Symmetric Encoder-decoder

Layer(type) Output Shape Parame

ters

Number

Connected to

input_1 (Input layer) (None, 672, 672, 3) 0 *

input_2 (Input layer) (None, 672, 672, 3) 0 *

model_1 (Model) (None, 672, 672, 3) 661782 input_1[0][0]

custom_layer_8

(CustomLayer)

(None, 672, 672, 3) 0 input_1[0][0]

input_2[0][0]

model_1[1][0]

model_1(Model)

input_1 (InputLayer) (None, 672, 672, 3) 0 *

separable_conv2d_1

(SeparableConvolution)

(None, 672, 672, 64) 403 input_1 [0][0]

batch_normalization_1

(BatchNormalization)

(None, 672, 672, 64) 256 separable_conv2d_1

[0][0]

activation_1 (Activation) (None, 672, 672, 64) 0 batch_normalization

_1

max_pooling2d_1

(MaxPooling2D)

(None, 336, 336, 64) 0 activation_1[0][0]

separable_conv2d_2

(SeparableConvolution)

(None, 336, 336, 128) 11456 max_pooling2d_1

[0][0]

batch_normalization_2

(BatchNormalization)

(None, 336, 336, 128) 512 separable_conv2d_2

[0][0]

activation_2 (Activation) (None, 336, 336, 128) 0 batch_normalization

_2[0][0]

max_pooling2d_2

(MaxPooling2D)

(None, 168, 168, 128) 0 activation_2[0][0]

101

separable_conv2d_3

(SeparableConvolution)

(None, 168, 168, 256) 36224 max_pooling2d_2

[0][0]

batch_normalization_3

(BatchNormalization)

(None, 168, 168, 256) 1024 separable_conv2d_3

[0][0]

activation_3 (Activation) (None, 168, 168, 256) 0 batch_normalization

_3[0][0]

max_pooling2d_3

(MaxPooling2D)

(None, 84, 84, 256) 0 activation_3[0][0]

separable_conv2d_4

(SeparableConvolution)

(None, 84, 84, 512) 133888 max_pooling2d_3

[0][0]

batch_normalization_4

(BatchNormalization)

(None, 84, 84, 512) 2048 separable_conv2d_4

[0][0]

activation_4 (Activation) (None, 84, 84, 512) 0 batch_normalization

_4[0][0]

max_pooling2d_4

(MaxPooling2D)

(None, 42, 42, 512) 0 activation_4[0][0]

separable_conv2d_5

(SeparableConvolution)

(None, 42, 42, 512) 267264 max_pooling2d_4

[0][0]

batch_normalization_5

(BatchNormalization)

(None, 42, 42, 512) 2048 separable_conv2d_5

[0][0]

activation_5 (Activation) (None, 42, 42, 512) 0 batch_normalization

_5[0][0]

up_sampling2d_1

(UpSampling2D)

(None, 84, 84, 512) 0 activation_5[0][0]

separable_conv2d_6

(SeparableConvolution)

(None, 84, 84, 256) 144128 up_sampling2d_1

[0][0]

batch_normalization_6

(BatchNormalization)

(None, 84, 84, 256) 1024 separable_conv2d_6

[0][0]

activation_6 (Activation) (None, 84, 84, 256) 0 batch_normalization

_6[0][0]

102

up_sampling2d_2

(UpSampling2D)

(None, 168, 168, 256) 0 activation_6[0][0]

separable_conv2d_7

(SeparableConvolution)

(None, 168, 168, 128) 45440 up_sampling2d_2

[0][0]

batch_normalization_7

(BatchNormalization)

(None, 168, 168, 128) 512 separable_conv2d_7

[0][0]

activation_7 (Activation) (None, 168, 168, 128) 0 batch_normalization

_7[0][0]

up_sampling2d_3

(UpSampling2D)

(None, 336, 336, 128) 0 activation_7[0][0]

separable_conv2d_8

(SeparableConvolution)

(None, 336, 336, 64) 14528 up_sampling2d_3

[0][0]

batch_normalization_8

(BatchNormalization)

(None, 336, 336, 64) 256 separable_conv2d_8

[0][0]

activation_8 (Activation) (None, 336, 336, 64) 0 batch_normalization

_8[0][0]

up_sampling2d_4

(UpSampling2D)

(None, 672, 672, 64) 0 activation_8[0][0]

separable_conv2d_9

(SeparableConvolution)

(None, 672, 672, 3) 771 up_sampling2d_4

[0][0]

