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ABSTRACT 

 

STEREO VISION UTILIZING DEEP LEARNING 

 

Abdullah ABDULLAH 

Computer Engineering Graduate Program 

Thesis Supervisor: Assist. Prof. Dr. Tarkan AYDIN 

January 2020, 77 pages 

 

This thesis fixates on the problem of stereo vision based depth estimation as it represents 

one of the most challenging topics in computer vision research. 

 

Recently, deep learning methods gained wide spread adoption among computer vision 

researchers and specialists, thus the thesis continues on this effort with the design and 

implementation of a deep learning architecture that have compactness and ease of training 

as the main target. 

 

The Deep Neural Network architecture chosen to the task is a Fully Convolutional 

Encoder-Decoder and training data are stereo pair images with disparity maps as the 

output labels, several modifications are proposed in this design on the most recent 

proposals in the field and the new compact networks are trained and tested. 

 

Keywords: Computer Vision, Machine Learning, Deep Neural Networks, Encoder-

          Decoder, Disparity estimation 
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ÖZET 

 

GÖRÜNTÜ SINIFLANDIRMA İÇİN CNN MİMARLIKLARDA PERFORMANS 

GELİŞTİRME 

Abdullah ABDULLAH 

Bilgisayar Mühendisliği Yüksek Lisans Programı 

Tez Danışmanı: Dr. Öğr. Üyesi Tarkan AYDIN 

Ocak 2020, 77 sayfa 

 

Bu tez, bilgisayarlı görme araştırmalarındaki en zorlu konulardan birini temsil ettiği için 

stereo görüş tabanlı derinlik tahmini sorununa odaklanmaktadır. 

Son zamanlarda, derin öğrenme yöntemleri bilgisayar vizyonu araştırmacıları ve 

uzmanları arasında yaygın bir şekilde benimsenmiştir, bu nedenle ana hedef olarak 

kompaktlık ve eğitim kolaylığı olan derin bir öğrenme mimarisinin tasarımı ve 

uygulanması ile bu çabayı sürdürüyoruz. 

Göreve seçilen Derin Sinir Ağı mimarisi Tamamen Konvolüsyonel Enkoder-Kod 

Çözücüdür ve eğitim verileri çıktı etiketleri olarak eşitlik haritalarına sahip stereo çift 

görüntülerdir, bu tasarımda alandaki en son tekliflerde ve yeni kompaktta birkaç 

değişiklik önerilmiştir ağlar eğitilir ve test edilir.  

Anahtar Kelimeler: Bilgisayar Görüşü, Makine Öğrenme, Derin Sinir Ağı, Encoder-

                        Decoder, Eşitsizlik Tahmini  
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1. INTRODUCTION 

Stereo Vision is the hallmark of human perceptual capabilities, it enables a person to 

estimate depth and identify an object's distance by combining information from two eyes 

which represent the stereo input pair and deducing from them the all the useful 

information for fast and effective inference that allow us to perform feats such as avoiding 

collisions while walking or catching a flying ball. 

These abilities that seem simple at first glance when required to be performed by 

computerized systems demands from specialists a great deal of diligence and design, 

extensive research has been allocated to the task of Stereo Vision and Stereo Matching, 

many proposals have been admitted that addressed this problem with good results albeit 

requiring large computational resources and noticeable delays in output. 

The main aim of this thesis is to design a disparity mapping Deep Neural Network with 

the proprieties of small parameter size, ease of training and fast compute time by 

processing left and right stereo pairs as inputs and performing transformations on them 

to predict disparity values. These features are desired in systems that require fast 

execution with the best possible output fidelity, a prime example of such applications is 

the field of Robotic navigation. 

The thesis starts by defining the theory of stereo vision and deep learning providing the 

foundations on which it proceeds to present past systems and designs given for solving 

the problem. It takes from that to specify the implementation for the proposed system of 

this work detailing design choices, procedures and modifications. The thesis is finalized 

with conclusion notes on the proposed implementation as well as the obtained test results. 
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2. THEORY AND LITERATURE RIVIEW 

2.1 STEREO VISION  

This part of the thesis presents the theory of Stereo vision starting with a model of how 

cameras operate, camera parameters intrinsic and extrinsic, stereo camera systems and 

lastly the stereo matching problem with a general theory of the proposed solutions. 

 

2.1.1 Camera Model 

The camera model of choice to describe the process of picture capture is the pinhole 

camera model (Szeliski 2010). It is a projection model that specifies the relationship 

between 3D points in the real world and 2D points on the image plane by tracing the path 

of light rays through the pinhole apparatus, the incoming rays converge on a single point 

called the camera centre from there these rays diverge onto the specific points that 

comprises the projected image. 

 

               Figure 2.1: The Pinhole Camera Model  
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2.1.2 Camera Intrinsic Parameters 

Given a point in the real world with the three dimensional coordinates P = (X , Y, Z) the 

image plane projection of that point is given by the coordinates p = (x , y). 

The equations for finding x and y (Szeliski 2010) are formulated as: 

x = 𝑓
𝐗

𝐙
 , y = 𝑓

𝐘

𝐙
                                                                              (2.1)                   

Where f represents the camera's focal length. 

This transformation is unique but it is noted that performing the inverse is not, also noted 

that both the camera and the point of interest share the same coordinate system with the 

origin being the camera centre C. 

As for each image plane point there is a full line that could correspond to it thus it is 

deduced that capturing image projections with a single camera results in a loss of depth 

information. 

The pinhole camera model (Szeliski 2010) can be defined in a matrix formulation as in 

the following: 

𝜆 [
𝑥
𝑦
1

]    = [
𝑓 0 0 0
0 𝑓 0 0
0 0 1 0

] [

𝑋
𝑌
𝑍
1

]   

             = [
𝑓 0 0
0 𝑓 0
0 0 1

] [
1 0 0 0
0 1 0 0
0 0 1 0

] [

𝑋
𝑌
𝑍
1

] = 𝑘 𝐼 [

𝑋
𝑌
𝑍
1

]                            (2.2)                       
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       Figure 2.2: Image Projection  

  

The matrix k presented above is an approximation, physical digital cameras have active 

pixels not as mathematical points but with dimensions of width and height. 

Manufacturing these pixels is not a perfect process and resulting pixels could have non-

identical width and height dimensions as well as skew in positioning thus requiring extra 

parameters to accommodate these variations. 

 

To account for aspect ratio difference between x and y dimensions of pixels the focal 

length is represented by two different parameters fx and fy. 

If the image plane do not intersect directly with the principal axis offset parameters are 

introduced represented by cx and cy. 

Skew in the elements placements are also accounted and represented by the parameter s. 

 

The full k matrix with full form (Szeliski 2010) is presented as follows: 

 

𝑘 = [
𝑓𝑥 𝑠 𝑐𝑥

0 𝑓𝑦 𝑐𝑦

0 0 1

]                                                                                          (2.3)  
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2.1.3 Camera Extrinsic Parameters 

The coincidence of the origin point in the coordinate system that is related to the camera 

and the origin point in the coordinate system related to the object of interest is a highly 

idealized situation, mostly the camera will be in a different coordinate system with a 

different origin than the objects whose image being captured and this requires the 

introduction of extra parameters that calculate the transformations between the camera 

coordinate system and the coordinate system of real world objects. 

 

These parameters are referred to as the camera extrinsic parameters (Szeliski 2010) and 

they are expressed in the following matrix form: 

  [𝑅3×3 |   𝑇3×1] = [

𝑟11 𝑟12 𝑟13 𝑡1

𝑟21 𝑟22 𝑟23 𝑡2

𝑟31 𝑟32 𝑟33 𝑡3

]                                                (2.4) 

Where T is the matrix that encodes translations between camera origin and world origin 

while R is a matrix that encodes relative rotations between the two coordinate systems. 

 
           Figure 2.3: Camera to real world translations and rotations  

 

With the extrinsic parameters matrix equation (2.2) can be modified to account for 

translations and rotations between camera and real world coordinates resulting in the 

following form: 
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𝜆 [
𝑥
𝑦
1

] = [
𝑓𝑥 𝑠 𝑐𝑥

0 𝑓𝑦 𝑐𝑦

0 0 1

] [

𝑟11 𝑟12 𝑟13 𝑡1

𝑟21 𝑟22 𝑟23 𝑡2

𝑟31 𝑟32 𝑟33 𝑡3

] [

𝑋
𝑌
𝑍
1

]  

                    = 𝑘  [𝑅3×3 |   𝑇3×1] [

𝑋
𝑌
𝑍
1

]                                                         (2.5) 

2.1.4 Stereo Camera Systems 

As the process of projection from world coordinates to image plane results in loss of 

explicit depth information the general concept of retrieving depth from two pictures taken 

for a single scene is now presented, this process in referred to as stereo vision. 

Given two cameras with sensors that are aligned and coplanar to each other and having a 

certain separation distance in the plane of alignment, the rows of the images will 

correspond to the same lines on each sensor. 

Having a point representing an object of interest on a certain location in one image plane 

such as the left camera will correspond to a horizontally shifted position on the image 

plane of the right camera, the measure of the shift is referred to as the disparity (Szeliski 

2010), a near object to the two camera set will have a large disparity and vice versa thus 

establishing a relation between disparity measure and depth. 

 Figure 2.4: Disparity and depth form two cameras  
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The two cameras that can be used to obtain a disparity measure must be identical as well 

as calibrated to have similar parameters, for two cameras with the same focal length f and 

having a separation distance also known as the baseline B the disparity (Szeliski 2010) 

can be defined for a certain point with left image plane location x and right image plane 

location x' as follows: 

𝑑 = 𝑥 − 𝑥′ = 𝐵
𝑓

𝑍
                                                                                     (2.6)                

Where d is the disparity and Z is the real world depth. 

 

           Figure 2.5: Depth disparity relation  

 

The relation between depth and disparity can be furthermore generalized to the case of 

non-alignment between the stereo cameras with the concept of Epipolar geometry 

(Szeliski 2010). 

An Epipole is the point of intersection of the baseline with the image planes, considering 

that the baseline connects the optical centre of one camera to the optical centre of the 

other camera it can be deduced that an Epipole of a certain image plane is the projection 

of the optical centre of the other. 
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Using the two Epipoles and a real world point a plane embedded in three dimensions can 

be defined denoted as the Epipolar plane, the intersection of the Epipolar plane with each 

image plane defines two corresponding lines called the Epipolar lines. 

 
           Figure 2.6: Epipolar geometry  

 

For a certain real world point X there is a line that connects it to each image centre and 

these lines bound the Epipolar plane and the intersection of each line with its 

corresponding image plane is the projection of the real world point on that image plane, 

the Epipole of a certain image plane is the intersection of all possible Epipolar lines of 

that image plane. 

This geometric constraint can be used to deduce that the two corresponding image 

projections of a certain point must be located on the two corresponding Epipolar lines 

despite not being on the same horizontal line on the images due to camera misalignment. 

With the Epipolar geometry specified the problem of disparity is a problem of locating 

the matching points that are situated on the corresponding Epipolar lines this requires 

correlating the object’s or part of the object’s pixels between those two lines given that 

the two cameras are calibrated and the relative transformation between them is at 

acceptable accuracy bounds.  

This procedure of specifying the projection of an object or a point and searching for its 

corresponding position on the corresponding image plane with the constraint that it is on 

the corresponding Epipolar line is referred to as the procedure of stereo matching. 
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2.1.5 Stereo Matching 

Given that the intrinsic and extrinsic parameters of the two cameras are known the 

projections in each image plane can be transformed into a normalized image coordinates 

thus the process of searching corresponding pixels of interest becomes a one dimensional 

search problem as the Epipolar lines for rectified stereo pair are located on the same rows. 

Performing the stereo matching procedure (Szeliski 2010) on each pixel results in a map 

known as the disparity map which is used to obtain the desired depth information to be 

used in later applications. 

To build the disparity map a quantitative measure must be defined to find the 

correspondence, this measure is then required generally to be a similarity measure and is 

known as the matching cost. 

The simplest matching cost is difference between pixel intensities with minimum 

difference being the result of correspondence search, this suffers from many drawbacks 

most notably the presence of multiple candidates for the matching pixel as well as 

minimal differences of illumination or presence of occlusions can result in the correct 

pixel having non minimal difference and not being included in the search results. 

Practically other similarity measures are used such as sum of square distance or 

normalized correlation which are more resilient to noise and more effective as well as 

using windows to take into account the pixel’s neighbourhood in the process of 

correspondence. 
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           Figure 2.7: Matching cost  

 

More broadly techniques used in obtaining matching cost can be divided in two 

categories: local techniques and global techniques. 

Local techniques as mentioned above use the pixel and its neighbourhood to obtain a 

matching cost measure and search for correspondence candidates while global techniques 

apply energy function minimization over the whole stereo pair. 

The process of stereo matching faces several technical difficulties that add to its inherent 

complexity and reduce the quality of the obtained disparity map. 

Such technical difficulties include: 

 
a. Specular reflection and non-Lambertian surfaces: where light reflected from 

objects has different intensities from different points of view or angles this effect 

is most noticeable from highly non-random surfaces called non-Lambertian 

surfaces leading to incorrect estimates on disparity. 

 

 

 

 

 



 

11 
 

           Figure 2.8: Specular Reflection   

 

 

 

 

 

 

 

 

 

b. Transparencies in objects: leading to light from behind them to pass through and 

adversely affecting disparity estimates. 

 
           Figure 2.9: Transparencies    

 

 
 
 
 
 
 
 
 
 

 

c. Perspective change: that leads to some objects to appear foreshortened. 
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           Figure 2.10: Perspective change     

 

 

 

 

 

 

 

 

 

 

 

d.  Occlusions and discontinuities: where full objects or parts of them are hidden 

from a certain view by another object while a discontinuity is a sharp change of 

pixel values due to certain geometries of the object. 

 
           Figure 2.11: Occlusions     

 

 
 
 
 
 
 
 
 
 
 

e. Repetition of certain objects or patterns: leading to difficulty in establishing 

single candidates from the cost measure. 
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           Figure 2.12: Repetitive Objects     

 

 
 
 
 
 
 
 
 
 
 

f. Textureless surfaces: results in difficulty of establishing correspondence due to 

similarity of pixel values 

 

            Figure 2.13: Textureless Surface     

 

 
 
 
 
 
 
 
 
 
 

g. Distortions and noise: such as photometric distortions, faulty pixels and thermal 

noise. 
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            Figure 2.14: Distortions    

 

 

  

 

 

 

 

 

 

 2.1 DEEP LEARNING  

In this part a general theoretical introduction to deep learning systems is given starting 

with a definition of Neural Networks, Activation Functions, Deep learning, 

Convolutional Neural Networks and finally the Encoder-Decoder method. 

2.2.1 Neural Networks 

The human brain is a powerful information processing system capable of performing a 

variety of high complexity tasks such as speech recognition, motion planning as well as 

a plethora of vision related operations. 

Artificial Neural Networks (ANN) are networked models that took inspiration from the 

human brain and was adapted for the construction of many practical algorithms that 

initiated a new era of computation. 

Computationally ANN’s can be considered as a distributed, high connectivity and 

parallelized system with learnable parameters thus not requiring programming and 

therefore providing large saving of effort. 
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The Perceptron (Rosenblatt 1958) is the elementary building unit used in constructing 

Neural Networks, this unit receives inputs that may come from the data source or from 

other Perceptrons in the network. 

Each input denoted by the vector xj  where j = 1,… , d  has a specific “weight” value 

associated to it denoted by wj  and the most general form for calculating the output y is 

by taking the sum of the weighted inputs: 

𝑦 =  ∑ 𝑤𝑗𝑥𝑗 + 𝑤0
𝑑
𝑗=1                                                                                                         (2.7) 

W0 is the bias value which represents an intercept that generalizes the model and its value 

is set to +1. 

The dot product form of the above equation is presented as: 

𝑦 =  𝑊𝑇𝑋                                                                                                                                   (2.8) 

Where 𝑊 = [𝑤0, 𝑤1, … , 𝑤𝑑]𝑇 and  𝑋 = [1, 𝑥1, … , 𝑥𝑑]𝑇  

 
For the case of a single input the equation reduces to a line equation with slope w and 

intercept w0 thus a perceptron thus its output is a linear fit. 

With many inputs the equation generalizes to a multivariate fitting and the line becomes 

a hyper-plane in the multidimensional space of the inputs.  
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                           Figure 2.15: The Perceptron  

 

 
To obtain a linear discriminant from the output of a perceptron a threshold function can 

be implemented as: 

𝑠(𝑥) = {
1, 𝑥 > 0
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

                                                                                                            (2.9) 

So that the class choice reduces to: 

𝑐ℎ𝑜𝑜𝑠𝑒 = {
𝑐1,         𝑠(𝑊𝑇𝑋) > 0
𝑐2,             𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

                                                                               (2.10) 

Generally a probability measure is needed thus a sigmoid function is used on the output 

of the perceptron as: 

𝑦 = 𝑠𝑖𝑔𝑚𝑜𝑖𝑑(𝑊𝑇𝑋) =
1

1+exp−[𝑊𝑇𝑋]
                                                 (2.11) 

A perceptron can have multiple outputs instead of a single output this in particular useful 

for discriminating multiple classes of object with linear hyperplanes. 

Given that the output are represented by the vector yi running from 1 to k the general 

equation of the perceptron is modified to: 

𝑦𝑖 =  ∑ 𝑤𝑖𝑗𝑥𝑗 + 𝑤𝑖0
𝑑
𝑗=1                                                                                  (2.12) 
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Or in the dot product form as: 

𝑦𝑖 =  𝑊𝑖
𝑇𝑋                                                                                                                                    (2.13) 

 
                          Figure 2.16: Multi Output Perceptron (Multi-Class)  

 

 
In the simple terms the desired class is the one with maximum output yi but as with the 

single output case a probability measure is more preferred and this is calculated using the 

softmax function as: 

𝑦𝑖 =
exp [𝑊𝑖

𝑇𝑋]

∑ exp [𝑊𝑘
𝑇𝑋]𝑘

                                                                                                          (2.14)                 

Where the index k runs through all the outputs representing the list of classes and the 

softmax function provides the posterior probability of each class. 

After defining the perceptron as a linear model describing a hyperplane in the input space 

of the data then a fitting must be imposed on that hyperplane in order to minimize error 

on prediction, this process is termed “training” of the perceptron. 

Generally to train a perceptron a data vector termed an “instance” is drawn from the given 

data set to be fitted and the properties of this data vector known as the “features” are 

presented to the model as inputs to obtain the “predicted” value which then is used to 

obtain an error measure provided that the data has the actual desired output value, the 
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connections of the perceptron represented by its “weights” are then updated according to 

that error measure. 

If the error measure is a differentiable function then gradient descent can be used to 

minimize it and this process of gradual change of parameters with each instance is called 

Stochastic Gradient Descent (SGD) (Kiefer and Wolfowitz 1952). 

The update rule for the model weights with SGD for an instance of index t with input 

features xit , label rt  and prediction yt  is given by: 

 

△ 𝑤𝑗
𝑡 = 𝜂(𝑟𝑡 − 𝑦𝑡)𝑥𝑗

𝑡                                                                                                 (2.15) 

Where η is the learning factor and Δwit   is the weight update of connection i 

 
Generally the update rule can be expressed as: 

Update =Learning Factor ∙ (Desired Output – Predicted Output) ∙ Input 

 
The general algorithm for (SGD) is given as follows: 

 

For i = 1,…,K 
        For j = 0,…, d 
                𝑤𝑖𝑗 ← 𝑟𝑎𝑛𝑑(−0.01,0.01)  

Repeat  
       For all (xt,rt) ∈ X in random order 
               For i = 1,…,K 
                       𝑜𝑖 ← 0 
                      For j = 0,…,d 
                             𝑜𝑖 ← 𝑜𝑖 + 𝑤𝑖𝑗  𝑥𝑗

𝑡 

              For i = 1,…,K 
                     𝑦𝑖 ← 𝑒𝑥𝑝(𝑜𝑖) / ∑ 𝑒𝑥𝑝 (𝑜𝑘)𝑘  
             For i = 1,…,K 
                    For j = 0,…,d 
                          𝑤𝑖𝑗  ← 𝑤𝑖𝑗  + 𝜂(𝑟𝑖

𝑡 − 𝑦𝑖
𝑡)𝑥𝑗

𝑡 

Until convergence 
 
 
 
 

https://projecteuclid.org/euclid.aoms/1177729392#author-euclidaoms1177729392KieferJ
https://projecteuclid.org/euclid.aoms/1177729392#author-euclidaoms1177729392WolfowitzJ
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A single layer Perceptron can only implement linear discriminants thus it will not be able 

to solve nonlinear problems which necessitates the use of a nonlinear estimator. 

This nonlinearity can be introduced with adding extra “hidden” layer between the inputs 

of the perceptron and the output calculation, this layer has units with weights and bias as 

in the previous manner and its calculations are passed into activation functions. 

The activation values pass forwardly from hidden units to the output therefore this type 

of perceptron represents a “feed forward” model and the general name for a perceptron 

with a hidden layer is a Multi-Layer Perceptron (MLP). 

It is notable that if the hidden units are linear the output will be a linear combination of 

linear models and the hidden layer will be limited in capability and unable to model 

nonlinear problems thus several nonlinear differentiable “activation functions” are 

applied in the hidden units such as the sigmoid activation functions and hyperbolic 

tangent or “tanh” activation function, these activation functions perform a nonlinear 

transformation on the input vector mapping it from the D-dimensional space of input 

features to H-dimensional space where H spans the number of hidden units and providing 

nonlinear basis to be combined by the output layer calculation. 

 
                           Figure 2.17: Multi-Layer Perceptron (MLP)  

  
 
 
For the value of each hidden layer activation zh with h indexing the hidden units and 

running from 1 to H the calculation of the sigmoid activation is given by: 
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𝑧ℎ =
1

1+𝑒𝑥𝑝−[∑ 𝑤ℎ𝑗𝑥𝑗+𝑤ℎ0
𝑑
𝑗=1 ]

                                                                     (2.16) 

If vih is the hidden to output connection weights then the output of a one hidden layer 

MLP is given by: 

𝑦𝑖 =  ∑ 𝑣𝑖ℎ𝑧ℎ + 𝑣𝑖0
𝐻
ℎ=1                                                                                  (2.17) 

MLP’s are trained using SGD as with the single layer Perceptron but since there is a 

hidden layer with activation function the gradient calculation will be modified into a form 

of chain rule of error propagation from output through the hidden units as in the following 

equation: 

𝜕𝐸

𝜕𝑤ℎ𝑗 =  
𝜕𝐸

𝜕𝑦𝑖 
𝜕𝑦𝑖

𝜕𝑧ℎ 
𝜕𝑧ℎ

𝜕𝑤ℎ𝑗                                                                                         (2.18) 

The process of calculating error gradient by chain rule for MLP is termed 

“Backpropagatoin” (Rumelhart, Hinton and Williams 1986) as the error is propagated 

inversely through the network from a layer to the previous. 

The general algorithm for Backpropagation is given as follows: 

Initialize all 𝑣𝑖ℎ  and 𝑤ℎ𝑗  to 𝑟𝑎𝑛𝑑(−0.01,0.01) 

Repeat  
       For all (xt,rt) ∈ X in random order 
              For h = 1,…,H 

                      𝑧ℎ ← 𝑠𝑖𝑔𝑚𝑜𝑖𝑑(𝒘ℎ
𝑇𝒙𝑡) 

              For i = 1,…,K 
                     𝑦𝑖 = 𝒗𝑖

𝑇𝒛 
              For i = 1,…,K 
                     △ 𝑣𝑖  = 𝜂(𝑟𝑖

𝑡 − 𝑦𝑖
𝑡)𝒛 

             For h = 1,…,H 
                    △ 𝑤ℎ  = 𝜂(∑ (𝑟𝑖

𝑡 − 𝑦𝑖
𝑡)𝑣𝑖ℎ  𝑘 )𝑧ℎ  (1 − 𝑧ℎ  )𝒙𝑡 

            For i = 1,…,K 
                   𝑣𝑖  ← 𝑣𝑖  +△ 𝑣𝑖   
            For h = 1,…,H 
                    𝑤ℎ  ← 𝑤ℎ  +△ 𝑤ℎ   
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Until convergence 
 

 

A Multi-Layer Perceptron (MLP) can have more than one hidden layer and can be 

designed with several hidden layers that provide multiple hierarchical mappings which 

are used to extract the most relevant information representation to achieve best 

performance results thus another way to think about ANN’s is to consider them as 

hierarchically connected representation machines. 

Each layer can have another design factor which is the number of units “nodes” inside 

each layer giving designs with wide layers or narrow layers and in that light it is 

considerable to mention that an MLP with one hidden layer and arbitrary number of 

hidden units is able to learn the representation of any nonlinear function of its inputs, this 

property of MLP is called the Universal Approximation Theorem (Hornik et al. 1989)  

where the aforementioned MLP is a Universal Approximator of the data representing 

function. 

Generally by increasing the number of layers in the network better and more robust 

practical results can be achieved and this design parameter is referred to as the depth of 

the network, with sufficiently large number of layers more rich representations can be 

learned capable of performing on very high dimensional data from a variety of sources. 

These networks started to be widely preferred and their design and development became 

a rich and active field with the name of Deep Neural Networks (DNN).   
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2.2.2 Deep Learning and Deep Neural Networks 

A Multi-layer Perceptron with increasing number of layers is referred to as a Deep Neural 

Network with the general field being referred to as Deep Learning (DL) which has a focus 

on the research of high “depth” hierarchical representation learning systems. 

This move into deep models was driven by the limitation traditional machine learning 

(ML) approaches faced which required deliberate data manipulations and preprocessing 

to obtain relevant features to be provided as an input to “shallow” models and obtain good 

practical performance, that resulted in a requirement of analysing data with a great deal 

of domain expertise in order to extract suitable input vector choices and with exponential 

increase in data size the effort becomes exponential added to that the variety of problems 

that are hard to formalize effectively such as recognition of spoken words or recognition 

of faces in images. 

Deep Learning techniques as mentioned provide compounded representational learning 

capable of finding sophisticated mappings from input space and when applied on raw data 

shows the ability to extract the most relevant features by the process of compounding 

simple concepts into more complex concepts. 

A geometric picture of the efficacy of Deep Learning comes from considering the 

mapping process as defining symmetry lines where the problem space can be compacted 

into a less complex representation and with many layers this process is repeated with 

sufficiency for recovering the representation suitable for the required task. 

 
                    Figure 2.18: The Geometric representation of Deep Learning  
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Deep Learning is now a valuable tool in many science and engineering tasks, most notably 

are computer vision (CV), Robotics, audio processing, natural language processing 

(NLP), search engines and finance.  

Deep Learning architectures can be trained in both supervised and unsupervised learning 

settings as well as reinforcement learning. 

In supervised learning all the data vectors are provided with the actual desired output 

value also known as the “ground truth” and the process  of learning is performed with the 

calculating the SGD in a Backpropagation algorithm. 

While some data sets can have all its samples with labelled output ground truth other data 

sets can have only a subset of it labelled and training in this setting is referred to as semi-

supervised learning. 

Unsupervised learning is a setting where no data vector is labelled and the model must 

learn from the implicit correlations within the data as well as some measures that can be 

applied to the error signal to obtain performance indicators. 

Reinforcement learning is a setting where the networked is given a logical or numeric 

feedback value after completing several tasks to gauge the model performance and 

perform adjustments on the network values which defines a certain “policy” on the tasks 

given in the setting. 

Deep Learning networks can be architected in two broad categories either as illustrated 

with prediction computation going from input through the layers until the output 

computation and this is termed as Feed Forward” architecture. 

Or in addition to the feed forward connections the architecture can have connections 

directing from a unit to itself or to units in previous layers in a recursive manner, these 

connections provide a mechanism similar to memory and the architecture is referred to as 

Recurrent Neural Networks (RNN). 
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                         Figure 2.19: Recurrent Neural Networks (RNN)  

 
 
 
In the feed forward architecture all the units in hidden layers can be connected to all the 

units in the next hidden layers, this architecture is called “fully connected”. 

To reduce computational burden especially in image processing another architectural 

choice is employed that takes advantage of the mathematical operation of convolution 

and the design known as Convolutional Neural Networks (CNN) gained a wide spread 

adoption in computer vision and image processing tasks due to its notable result 

improvements and comparative ease of implementation. 

2.2.3 Activation Functions 

Most tasks utilize Deep Learning algorithms are high complexity tasks with nonlinear 

data distributions, this as illustrated required that the hidden units in Deep Neural 

Networks apply nonlinear transformations on the weighted summation results of its 

learnable parameters which are known as activation functions. 

Many activation functions were proposed for Neural Network models each with its 

specific transformation that achieves certain requirements or adheres to certain 

considerations practical or theoretic with the most important quality of being a differential 

function in order to be compatible with the process of backpropagation. 
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Some of these functions include: 

a. Sigmoid: the Sigmoid activation function also known as the logistic function or 

squashing function is one of the most implemented activation function in 

feedforward architectures.  

The Sigmoid function is defined on the reals with positive derivative and good 

degree of smoothness, the Sigmoid function is given by: 

𝑓(𝑥) =
1

(1+𝑒−𝑥)
                                                                                                (2.19) 

When Sigmoid is used in output layer of a model it provides probability on 

predicted output, this activation function has the benefit of easy to understand and 

implement but there are drawbacks of slowing convergence and gradient 

saturation. 

 
b. Hyperbolic Tangent (tanh): this activation function is more smooth than the 

Sigmoid and have outputs ranging from -1 to 1, it provides better performance 

than Sigmoid in deep models and it is given by the equation: 

      𝑓(𝑥) =
(𝑒𝑥−𝑒−𝑥)

(𝑒𝑥+𝑒−𝑥)
                                                                                               (2.20) 

While the tanh activation function has zero centred outputs increasing     

compatibility with the backpropagation process it has a vanishing gradient 

drawback. 

The Hyperbolic Tangent is mostly used in recurrent architectures and natural 

language processing tasks. 
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                    Figure 2.20: Sigmoid and Tanh activation Functions  

 
 
 

c. Softmax: this function provides probability measure on several outputs and is 

applied on the output layer of models with multi-class classification. 

The equation describing the Softmax function is given by: 

𝑓(𝑥𝑖) =
𝑒𝑥𝑖

∑ 𝑒
𝑥𝑗

𝑗
                                                                                                     (2.21) 

Where i is the index of a specific class or output and j spans the class list or 

outputs. 

This activation function is similar to Sigmoid as both are probability calculations 

where the Sigmoid is a binary classification related while the Softmax is 

multivariate classification related and since both use divisions and exponentials 

in the implementation the general behaviour is highly similar. 

 
d. Rectified Linear Unit (ReLU): the (ReLU) function (Nair and Hinton 2010) is a 

widely used and very successful activation due do its performance gains and 

robustness against drawbacks that affected other activation functions. 

This activation function is much faster as well as preserving linearity on a large 

portion of the function span aiding in the gradient calculations and as its name 

suggesting it applies a rectification on values less than zero eliminating the 

vanishing gradient issue. 

The equation describing the ReLU activation is given by: 
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𝑓(𝑥) = max(0, 𝑥) = {
𝑥, 𝑖𝑓 𝑥 ≥ 0
0, 𝑖𝑓 𝑥 <  0

                                               (2.22) 

 
This activation functions with its simplicity requiring no calculation of divisions 

of exponentials greatly improve the speed of the model while also introducing 

squashing and sparse activation but the main drawback is the propensity to 

overfitting and producing zero gradient resulting in either rigidity in model or the 

issue of dead neuron units. 

Another version that augments the positive portion of the function with negative 

slope is also implemented which keeps the units “alive” with sustainable weight 

update and is referred to as LeakyReLU (Maas, Hannun and Ng 2013). 

Rectified Linear Unit activation function is used extensively with Convolutional 

Neural Networks (CNN). 

 
                      Figure 2.21: ReLU Activation Function  

 
 
 
 
In addition to the mentioned activation functions several other modifications and 

enhancements have been implemented that address the illustrated drawbacks or introduce 

enhancements in speed, some of these include Sigmoid-Weighted Linear Unit (SiLU) 

(Elfwing  2017) and derivative of Sigmoid-Weighted Linear Unit (dSiLU) (Elfwing  

2017). 
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Other functions have been proposed which offer nuanced approaches to address the 

difficulties of nonlinear activation such as (Swish) (Ramachandran et al. 2017) which is 

a hybrid of the input and its sigmoid, (Maxout) activation functions ) (Goodfellow et al. 

2013)  that extends the learning process to the activation function in addition to the 

traditional connection parameters by a process of piecewise approximation to nonlinear 

functions which are optimized by gradient during training to provide the best activation 

that is dictated by the performance. 

2.2.4 Convolutional Neural Networks 

Convolutional Neural Networks (CNN) (LeCun et al. 1989) are a specialized architecture 

of the feed forward category adapted to data that can be expressed in grid like form such 

as images which can be thought of as a 2D grid thus instead of having the fully connected 

network converge on a suitable connectivity that is most performing on such data 

structure, the structure itself can drive design choices to increase model efficiency. 

 

CNN’s represent also a prominent case of biology and neuroscience influencing design 

of successful algorithms in which the study of the human visual cortex specifically the 

V1 area of the vision system known as the primary visual cortex provided the information 

central to the formulation of the convolutional architecture.  

Several properties of the V1 system are present in the general scheme of CNN primarily 

V1 is arranged as a two dimensional spatial map with certain parts of the retina 

corresponding to similar spatially located regions in V1 and this is employed in CNN as 

it extracts two dimensional maps from data. 

V1 shows groups of simple cells having linear activations of only small regions with 

spatial locality and CNN employ this property of local receptive fields. 

There exist in V1 complex cells that capture features with an important property of 

invariance on shifting the position of the specific feature in the map, this feature is also 

present in CNN architecture with the operation of pooling units. 

The main mathematical operation used in the transformation performed by CNN’s is the 

Convolution operation which has the general form: 

𝑆(𝑡) = ∫ 𝑥(𝑎)𝑤(𝑡 − 𝑎)𝑑𝑎                                                                                  (2.23) 



 

29 
 

The convolution operation can be denoted by an asterisk symbol with the equation 

adopting the form: 

𝑆(𝑡) = (𝑥 ∗ 𝑤)(𝑡)                                                                                                            (2.24) 

The variable x is taken to be the input of the operation while w is referred to as the kernel 

of the convolution or by the term feature map. 

Considering that in Deep Learning the data processed by CNN’s are discrete valued 

usually with multiple indices “grids” and running only on finite ranges the more practical 

form of convolution operation is written as: 

 

𝑆(𝑖, 𝑗) = (𝐼 ∗ 𝐾)(𝑖, 𝑗) = ∑ ∑ 𝐼(𝑖 − 𝑚, 𝑗 − 𝑛)𝐾(𝑚, 𝑛)𝑛𝑚             (2.25) 

Where i,j are indices of the input and m,n are kernel indices referred to as kernel size. 

 

As mentioned in this thesis Convolutional Neural Networks (CNN) are motivated by 

design considerations that mimic the brain’s primary visual cortex these considerations 

are summarized in three principles: local receptive field, weight sharing and pooling. 

The fully connected Neural Network contains an connectivity parameter for each input 

pixel to each unit in the subsequent hidden layer while Convolutional Neural Networks 

in contrast adopt a principle of sparse connectivity by implementing the concept of local 

receptive fields, this is achieved by having a kernel that is significantly smaller than the 

input image dimensions reducing the parameter requirement since the features to be 

extracted are highly local such as lines and edges it is considerably inefficient and greatly 

difficult to train a fully connected network to detect these features. 
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                  Figure 2.22: Local Receptive Field  

 
 
 
Each hidden neuron in CNN’s is connected to the input by a kernel that has a small 

number of learnable parameters improving the efficiency as well as the convergence 

characteristics of the network, this local receptive field of a certain kernel connecting a 

specific hidden neuron is shifted on input compared to the previous hidden neuron with a 

number of pixels referred to as the stride of the CNN thus it is seen that the result of a 

convolutional layer is also a grid with each region correlated to a corresponding portion 

of the input. 

Another principle contributing to improving performance of CNN’s is weight sharing 

which is a process where the kernel parameters of some or all hidden neurons in the 

subsequent hidden layer are kept the same, this reduces the storage requirement for the 

resulting model and since the output of learning in such a process is a grid of units with 

parameters that activate the artificial neuron on the presence of a certain pattern such as 

a specifically oriented line of edge the layer is thus called a feature map as it maps the 

input to another representation on the presence of a certain feature. 

For each stage in a CNN several of these feature maps can be computed and the choice 

of the number of feature maps in a certain stage is decided by the designer. 
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                        Figure 2.23: Feature Maps  

 
 
 The outputted feature maps has a size comparable to the previous layer and implementing 

the full CNN in this manner will result in a redundancy of the representation although the 

aim of the network is to detect certain objects or patterns to be used by a later classifier 

or another transformation. 

Pooling is a design principle of Convolutional Networks that acts as an information 

simplification process and when applied after each convolutional stage it reduces 

redundancy by performing what is analogous to a statistical summarization. 

As an illustration “Max Pooling” is the most used pooling mechanism by practitioners 

and this layer outputs the maximum value that coincides in a certain rectangular region 

other types of pooling include “Average Pooling” which outputs the average value of the 

rectangular window and “L2 Pooling” that calculates the square root of sum of squares 

for the window values. 

Performing the Pooling Process also known as “Sub-sampling” Takes a statistical 

summary of the mapping in feature maps, this besides filtration of the information 

redundancy provides also an extraction of the targeted features regardless to the 

localization or orientation of that feature in the input and providing an important property 

of invariance in which small perturbation in the target object’s position still do not affect 

the capability of the model to detect its presence.      
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                          Figure 2.24: Max Pooling Layer  

 
 
After performing several stages of convolutional, activation and pooling layers to the 

specification of the desired architecture generally a fully connected network is used as 

the end receptor of the feature maps in order to perform classification or regression tasks 

depending on the application. 

 
  
                         Figure 2.25: CNN General Architecture  

 
 
 
On image processing applications several CNN architectures have been implemented 

such as LeNet (LeCun 1998),AlexNet (Krizhevsky, Sutskever and Hinton 2012), 

VGGNet (Simonyan and Zisserman 2015), Inception (Szegedy et. al. 2014) and ResNet 

(He et al. 2015a).  
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These architectures among others in addition to the general design principles mentioned 

in this section apply several other modifications accompanied by the use of deeper models 

trained with massive compute capability in data centres on large bodies of data provided 

by the current data explosion sourced from social networks. 

2.2.5 Encoder-Decoder Architecture 

In Neural Networks data features are subjected to transformations in order to extract 

relevant information, this property of embedding the data vector from input space to 

another representation is the design principle behind the  

Encoder-Decoder architecture (Ronneberger et al., 2015) which takes the input such as a 

text in vector form and performs an Encoding into a contextual representation that 

minimizes redundant information and this representation is then passed into a Decoding 

process that returns the embedding into a from comparable to the input or into a specific 

space that the application requires as an example the contextual embedding of the text 

vector can be mapped into a translated text vector of another language. 

 
                  Figure 2.26: Encoder-Decoder Architecture  

 
 
 
 
 

Encoder-decoder architectures can be implemented with fully connected Neural 

Networks either in feed forward or recurrent variants which are applied in machine 

translation tasks but this design principle is also compatible with the CNN 
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implementations in which it is applied to solve problems of extracting relevant 

representation from images to contextual embedding space for tasks such as Semantic 

Segmentation, Object Detection and Stereo Vision. 

In CNN’s the encoder applies successive restriction on feature map size to extract the 

most informative kernels representing the embedding then the decoder performs the 

suitable transformation to map these kernels to the output space an example on this is 

“De-noising Auto Encoders” (Bengio et al., 2013) that are a form of unsupervised 

learning where the input and target are the same image and the Encoder-Decoder maps to 

a form of the input with noise removed as the information extraction attenuates the non-

representative parts of the image and decoder stages reconstruct only the representative 

information back into an image. 

The same technique can be used in a supervised context where the input images are to be 

mapped to an output image with some modifications or transformations where some 

portions to be highlighted or subtracted or another grid representation is needed for a 

specific application an example for such an implementation is in the medical sector where 

images taken by radiology methods can be used in conjunction with expert knowledge in 

labelling them for the identification of healthy and tumorous tissue, an Encoder-Decoder 

CNN can be then trained to perform this process by the mentioned information extraction 

and re-representation to automatically label radiology images. 

 
                  Figure 2.27: Encoder-Decoder Application Example 

 
In Computer Vision tasks several issues still impose a challenge such as variability of 

lighting, variability of object’s pose, occlusions and contextual as well as temporal 



 

35 
 

dynamics, Encoder-Decoder Convolutional Networks perform transformations from 

inputs to representational embedding and reconstruction from that embedding thus it is 

suitable for it to be utilized to address the issues of Computer Vision applications and to 

illustrate such an adoption (Segnet) (Badrinarayanan 2015) is an example of an Encoder-

Decoder CNN that performs End-to-End Deep Learning with the use case of semantic 

segmentation. 

 

                Figure 2.28: Encoder-Decoder CNN for Computer Vision         

 

2.3 LITERATURE RIVIEW 

In this part a review of the literature and related work to the aim of the thesis is presented. 

 

The problem of stereo vision and stereo matching being one of the most challenging tasks 

in the field garnered the attention and effort of the researchers throughout the years, 

classical stereo matching solutions where based on hand crafted algorithms either through 

local methods that calculate correspondence between small image patches by minimizing 

a cost function such as sum of square distance (SSD) (Hannah 1974) and Normalized 

Cross Correlation (NCC) (Lewis 1995) or global approaches that use some assumptions 

on the full image to obtain a disparity estimate such as Semi-Global Matching (SGM)( 

Hirschmueller 2005) and Markov Random Field (MRF)( Zhang and Seitz 2007). 
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Recently Deep Learning methods and implementations were on the rise in solving the 

general stereo vision tasks such as optical flow, object reconstruction, orientation and 

most importantly depth estimation. 

For depth and disparity mapping two main approaches were implemented either by 

mimicking the local hand crafted methods and their operations or methods that utilize the 

full capability of Neural Networks to extract semantic based depth estimation on full 

images. 

Local patch methods compute the estimate from a certain image patch and a 

corresponding patch after applying a CNN or an MLP to convert the patch data into 

feature maps, examples of these approaches are MC-CNN (Zbontar and LeCun 2015) and 

Content-CNN (Luo, Schwing and Urtasun 2016) these approaches are still 

computationally expensive and not trainable end to end as several calculations must be 

done to obtain the desired disparity map including calculating cost aggregation, left to 

right consistency checking as well as interpolation. 

End to end disparity estimation using Deep Learning rely on the ability of deep CNN’s 

to extract the relevant information to obtain the depth estimate, these approaches use a 

CNN architecture analogous to autoencoders that consist of an encoding stage of both left 

and right images followed by a decoder stage to the target map. Examples of these 

approaches are DispNet (Mayer, Ilg, Hausser, Fischer, Cremers, Dosovitskiy and Brox 

2016) and GC-Net (Kendall, Martirosyan, Dasgupta, Henry, Kennedy, Bachrach and Bry 

2017) in which the left and right images of the rectified stereo pair are passed into a 

Siamese CNN encoder that contain convolutional layers with weight sharing between the 

left and right paths, GC-Net also use a Cost Volume calculation using 3D convolution. 
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             Figure 2.29: GC-Net architecture  

 

Since these methods contain a large number of layers with large number of parameters in 

addition to the computational burden during training there is also the issue of vanishing 

gradients and to address that GC-Net and DispNet use connections from lower layers to 

high level layers and in the case of DispNet an auxiliary loss function is also employed 

to prevent gradient decay. 

DenseMapNet takes another take on the issue that is based on the DenseNet (Huang, Liu, 

Weinberger and van der Maaten 2017) architecture in which previous layer inputs are 

concatenated with the next layer inputs to address the gradient vanishing and another 

feature of DenseMapNet (Atienza 2018) design is the emphasis on obtaining an efficient 

implementation with small number of parameters preventing over fitting on small data 

sets.    

A method that is widely used in CNN computer vision implementations to reduce 

parameter size is to convert the regular convolutional layers into Depthwise Separable 

Convolution layers this greatly reduce the computational requirements for training the 

architecture leading to more efficient designs.   
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3. DATA AND METHOD 

This part presents the data sets chosen for the work and the Deep Learning proposed 

implementations. 

3.1 DATA SETS 

Machine learning in general and Deep Learning approaches in particular rely heavily 

on the availability of appropriately large, contextually relevant data sets with suitable 

variety in order for the learning system to capture an effective model and obtain proper 

results. 

Since in this work Deep Learning is utilized for solving the stereo matching task 

specificity must be taken in choosing the data sets to train and evaluate the proposed 

architectures. 

To this consideration two data sets have been chosen in this work, the KITTI data set 

(Geiger et al. 2013) and MPI-Sintel data set (Butler et al. 2012) in which both have been 

used comparatively in training and evaluation aims to illuminate on the effect of the data 

on model performance. 

The choice is based on the relevancy of these sets to the stereo vision research and the 

aim of this thesis which studying Deep Learning solutions for depth estimation as the use 

of the mentioned data sets is numerous in the literature and research particular to the task. 

These two data sets offer contrasting takes on the source of data as KITTI is an approach 

based on camera plus Light Detection and Ranging (LiDAR) for capturing the stereo pair 

and producing the ground truth data while MPI-Sintel is a synthetic data set in which a 

Computer Generated Imagery (CGI) sequence is prepared in a stereo format along with 

the ground truth data. 
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The KITTI 2015 data set: This data set contains 200 stereo image pairs with resolution 

of 1241 by 376 pixels both Gray scale and RGB taken from a stereo rig platform mounted 

on a moving vehicle, ground truth is established using a LiDAR system and the data is 

collected from real world scenes of street recordings. 

The data provide information collected from physical situations in traffic heavy streets 

which is preferable particularly for applications in autonomous vehicle research and the 

use of laser ranging provides precision ground truth but the number of samples provided 

is not large and the ground truth contain sparse values. 

Data set have been divided into 150 image pairs for training, 50 image pairs for validation 

and the data set provides 200 image pairs non labelled that can be used for test purposes. 

 

Figure 3.1: KITTI 2015 Data Set Example: left stereo image (above),                 

right stereo image (middle), ground truth (below) 
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The MPI-Sintel data set: This data set contains 1064 stereo image pairs with resolution 

of 1024 by 436 pixels taken from the synthetic animation named Sintel the stereo pairs 

are in RGB format and the generated ground truth is in Gray scale. 

The data contains a variety of scenes with high complexity in non-rigid motion, specular 

reflections, blur and atmosphere effects and being a larger data set gives an advantage in 

using it for machine learning based applications with the added benefit of non-sparse 

information dense ground truth that is a very important characteristic to be present in data 

used for training a Deep Learning solution.  

This data set is divided into 900 image pairs for training, 100 image pairs for validation 

and 64 pairs were reserved for testing purposes. 

 
Figure 3.2: MPI-Sintel Data Set Example: left stereo image (above),                 

right stereo image (middle), ground truth (below) 
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The selection of the data sets was to have a thorough investigation for the effect of the 

data both in size and context on how the proposed architectures will perform in training, 

validation and testing and which design parameters are most sensitive to the data 

characteristics. 

It is taken into account the computational resources available to produce this work as very 

large data sets will incur a computational burden taking in mind that several architectural 

choices are to be comparatively studied in experimental implementations and the chosen 

data sets can provide solid basis for evaluation while large size data sets that require 

extensive resources can be used for scaling and generalizing the results obtained in this 

thesis. 

 

3.2 SUPERVISED LEARNING IMPLEMENTATION OF PRETRAINED 

ENCODER-DECODER NETWORK 

The first design consideration partaken in this work is to investigate the effectiveness of 

a pretrained Neural Network architecture in the task of stereo vision depth estimation. 

Many Deep Learning Neural Network predesigned and pretrained architectures are 

available and in this thesis two architectures have been chosen to be implemented: VGG 

and Inception. 

The VGG pretrained architecture: this convolutional architecture is categorized as a 

very deep design with up to 19 layers and the main aim of its development is large scale 

image classification, it uses a unified convolutional kernel parameter of 3 by 3 for all of 

its convolutional layers and the number of feature maps starts from 64 in the first CNN 

layer up to 512 in the last layer, number of parameters is 14.4 million parameter. 

The pretraining is performed on ImageNet data set (Deng et al. 2009) with 1.3 million 

training images, it is imperative to evaluate how such a pretrained system with 

classification task at hand can be useful for the task of depth estimation. 

The architectural design choices in VGG are the usage of highly deep layer size and 

unified parameter selection for kernels in each feature map for each CNN layer thus its 

performance makes explicit the informational content and variability of the data set it 

uses to train the weight parameters. 
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The VGG network is used in the encoder stage with only the convolutional layers omitting 

the fully connected layers which represent a classifier process. 

Since the system is designed for stereo input pair the encoder contains two VGG branches 

that are joined by a concatenation of their feature maps which are subjected to a Batch 

Normalization (BN) process (Ioffe and Szegedy 2015) to reduce over fitting. 

The decoder stage is comprised of four convolution layers of successively reduced feature 

size from 64 kernels down to 3 for the output convolution that comprise the 3 channels 

of target image. 

The following table gives a full view of the layers used in the model: 

 

Table 3.1: Pretrained Supervised Model with VGG Encoder  

 

Layer(type) Output Shape Paramete

rs 

Number 

Connected to 

input_1 (Input layer) (None,750,750,3) 0 * 

input_2 (Input layer) (None,750,750,3) 0 * 

vgg16 (Model) Multiple 14714688 input_1[0][0]           

input_2[0][0]           

batchnormalization_1 

(BatchNormalization) 

(None,23, 23,512) 2048 vgg16[1][0] 

batchnormalization_2 

(BatchNormalization) 

(None,23, 23,512) 2048 vgg16[2][0] 

concatenate_1 

(Concatenate) 

(None,23, 23,1024) 0 batchnormalizatio

n_1[0][0] 

batchnormalizatio

n_2[0][0] 

conv2d_1 (Conv2D) (None,23, 23,64) 589888 concatenate_1[0][

0] 

upsampling2d_1 

(UpSampling2D) 

(None,92, 92,64) 0 conv2d_1[0][0] 

https://arxiv.org/search/cs?searchtype=author&query=Ioffe%2C+S
https://arxiv.org/search/cs?searchtype=author&query=Szegedy%2C+C
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The weight of VGG model are shared for the branches to reduce computational cost and 

only upper layers were selected to be trainable for tuning with the decoder stage thus the 

number of trainable parameters for the design is 5,335,075 in addition to that batch 

normalization introduces parameters that do not enter in training process giving the model 

a total number of parameters of 15,332,195. 

The Network is trained on the provided system for 1000 epochs on each of the two data 

sets and outputs were taken on the available testing image pairs. 

The loss function used is binary cross entropy with an (RMSPROP) optimizer having 

learning rate of 10-3 and decay rate of 10-6.  

 
The inception pretrained architecture: a convolutional architecture that is based on the 

concept of sparse connectivity and clustering of connections between modules of 

convolution that capture the optimal local statistics. 

The modules are stacked on top of each other with each cluster connected to the previous 

cluster in a hierarchical structure, feature maps of this architecture use kernel sized of 1 

by 1, 3 by 3 and 5 by 5. This modularity facilitates increasing the number of units without 

major upsurge in number of parameters in the network thus conserving computational 

resources 

conv2d_2 (Conv2D) (None,92, 92,32) 18464 upsampling2d_1 

[0][0] 

upsampling2d_2 

(UpSampling2D) 

(None,368, 368,32) 0 conv2d_2[0][0] 

conv2d_3 (Conv2D) (None,368, 368,16) 4624 upsampling2d_2 

[0][0] 

upsampling2d_3 

(UpSampling2D) 

(None,736, 736,16) 0 conv2d_3[0][0] 

conv2d_3 (Conv2D) (None,736, 736,3) 435 upsampling2d_3 

[0][0] 
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                  Figure 3.3: Inception Module  

 

The typical implementation of inception modules is LeNet architecture which has 22 

inception layers and with counting the inner layers of the modules the number is up to 

100 convolutional layers making this architecture a highly deep design providing large 

learning capacity. In this work the Inception convolutional network with no fully 

connected classifier and only upper layer training allowed is used for each branch of the 

encoder stage taking input from the stereo image pair and the two branches of the encoder 

are connected with a concatenation process, the decoder stage is identical to the decoder 

used for the pretrained VGG design. 

The following table gives full view of the layers used in the model: 

Table 3.2: Pretrained Supervised Model with Inception Encoder  
 

Layer(type) Output Shape Paramet

ers 

Number 

Connected to 

input_1 (Input layer) (None,750,750,3) 0 * 

input_2 (Input layer) (None,750,750,3) 0 * 

Inception_v3(Model) Multiple 2180278

4 

input_1[0][0]           

input_2[0][0]           

concatenate_1 

(Concatenate) 

(None,22, 22,4096) 0 Inception_v3[1][0] 

Inception_v3[2][0] 
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Number of trainable parameters for this design is 18,598,819, total number of parameters 

is 24,185,667. 

The Network is trained on the provided system for 1000 epochs on each of the two data 

sets and outputs were taken on the available testing image pairs. 

The loss function used is binary cross entropy with an (RMSPROP) optimizer having 

learning rate of 10-6 and nor decay rate employed.  

It is noticeable that the Inception implementation has higher number of parameters 

compared to the VGG implementation and since sparse connectivity and batch 

normalization are built in features of the Inception module no extra batch normalization 

layers were added to the implementation in the Inception case. 

 

 

 

 

conv2d_1 (Conv2D) (None,22, 22,64) 2359360 concatenate_1[0][0

] 

upsampling2d_1 

(UpSampling2D) 

(None,44, 44,64) 0 conv2d_1[0][0] 

conv2d_2 (Conv2D) (None,44, 44,32) 18464 upsampling2d_1 

[0][0] 

upsampling2d_2 

(UpSampling2D) 

(None,176, 176,32) 0 conv2d_2[0][0] 

conv2d_3 (Conv2D) (None,176, 176,16) 4624 upsampling2d_2 

[0][0] 

upsampling2d_3 

(UpSampling2D) 

(None,704, 704,16) 0 conv2d_3[0][0] 

conv2d_3 (Conv2D) (None,704, 704,3) 435 upsampling2d_3 

[0][0] 
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3.3 SUPERVISED LEARINING IMPLEMENTATION OF ENCODER-

DECODER NETWORK   

 
The second design consideration assumed in this thesis is to formulate non-trained 

architectures specific to the task of stereo vision based on the latest approaches and 

suggestions in literature. 

Focussed on the principles of efficiency and ease of training, Depth-wise Separable 

Convolution (V. Vanhoucke 2014) is chosen as the main operation in the construction of 

the architectures as it provides a considerable decrease in the parameter size of the models 

leading to a reduction in computational requirements and overfitting thus making the 

same choice of convolution operations adopted in Xception architecture (Chollet 2016). 

Two architectures are proposed in this work for the non-trained architectures: parameter 

reduced DenseMapNet and a Siamese Network (Bromley et al., 1993) with encoder local 

skip connections combined with correlation extraction merge of stereo branches. 

 
Parameter reduced DenseMapNet: this model is a modification of the DenseMapNet 

architecture from the use of typical convolution operation to the use of the depth-wise 

separable convolution. 

This architecture uses a DenseNetwork inspired structure where each layer or module of 

several layers is connected not just to the feedforward input but also to the inputs of the 

previous layer or module with the aim of providing paths for information to flow in 

between layers to aid in gradient calculations and preventing vanishing gradients. 

As an example of mapping type encoder-decoder architecture DenseMapNet consists of 

two sections a Correspondence Network that learns to perform stereo matching on the 

stereo image pair and a Disparity Network which applies the resulting disparity on the 

reference image by performing a decoding of the obtained representation of 

correspondence and convolving the output to the reference image that is provided as a 

feature map from the initial layers of the architecture. The network contains 18 

convolutional units with up to 63 layers and the proposed implementation of this work 

that utilizes the depth-wise separable convolution method has a parameter size of 697,512 

parameter. The model is trained for 1000 epochs on both of the provided data sets and 

results are obtained for evaluation on the available test image pairs. The loss function 
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used is binary cross entropy with an (RMSPROP) optimizer having learning rate of 10-3 

and decay rate of 10-6. 

The following table gives an overview of the layers used in the model “for the full view 

see. Appendix-1, Table-1”: 

Table 3.3: Supervised Model with Parameter reduced DenseMapNet 
 

 
Siamese Network with encoder local skip connections and correlation merge: this 

model is based on the skipping connection mechanism (Ronneberger, Fischer and Brox 

2015) which typically connects the encoder layers to the decoder layers, it is proposed 

within this work in addition to this design criterion the implementation of a skipping 

connection within the encoder to increase information flow from the initial layers to layers 

deep in the encoder thus providing in addition to amplifying the representation relevancy 

of the deep layers a procedure to facilitate a more robust gradient calculation . 

Since the application is in stereo vision the encoder consists of two branches that are 

identical in parameters and use the method of weight sharing between the encoder 

branches to achieve a “Siamese” network layout, further reduction of parameter 

requirement is performed with the application of depth-wise separable convolution 

operation. 

Layer(type) Output Shape Param

eters 

Numbe

r 

Connected to 

input_1 (Input layer) (None,748,744,3) 0 * 

input_2 (Input layer) (None,748,744,3) 0 * 

concatenate_1 

(Concatenate) 

(None,748,744,6) 0 input_1[0][0]           

input_2[0][0]           

separable_conv2d_3 

(SeparableConvolution) 

(None, 748, 744, 128) 1046 concatenate_1[0][0] 

Continu. 

disparity_output 

(Activation) 

(None, 748, 744, 3) 0 separable_conv2d_1

4[0][0] 
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Another design choice that is proposed for this model is to merge the Siamese branches 

with a process of correlation calculation inspired by the brain (Welchman 2016), the 

process consists of a multiplication merge layer followed by a convolution operation layer 

in which the kernel is characterized by an asymmetric window with preference for the 

horizontal direction provided that the inputs are rectified, this choice provides lower 

number of feature maps that contain correlations of the two branches and with the 

preference for the horizontal direction the computational requirement for learning the 

matching procedure can be further reduced. 

The network contains 51 layers and the number of parameters is 453,686. 

The model is trained for 1000 epochs on both of the provided data sets and results are 

obtained for evaluation on the available test image pairs. 

The loss function used is binary cross entropy with an (RMSPROP) optimizer having 

learning rate of 10-3 and decay rate of 10-6. 

 

The following table gives an overview of the layers used in the model “for the full view 

see. Appendix-1, Table-2”: 

 
Table 3.4: Supervised Model with Siamese Network 
 

Layer(type) Output Shape Param

eters 

Numbe

r 

Connected to 

input_1 (Input layer) (None, 672, 672, 3) 0 * 

input_2 (Input layer) (None, 672, 672, 3) 0 * 

separable_conv2d_1 

(SeparableConvolution) 

(None, 672, 672, 32) 275 input_1[0][0]           

input_2[0][0]           

batch_normalization_1 

(BatchNormalization) 

(None, 672, 672, 32) 128 separable_conv2d_

1 [0][0]                                                                          

separable_conv2d_

1 [1][0] 
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3.4 UNSUPERVISED LEARNING IMPLEMENTATION OF ENCODER-

DECODER NETWORK 

The third design consideration in this thesis is to apply the unsupervised learning 

approach to the task of stereo vision (Wang et al. 2018) (Jiang et al. 2018) (Zhan et al. 

2019). 

Unsupervised learning is the technique of training the machine learning algorithm without 

providing the labelled targets and rely on other indicators to optimize the performance of 

the model, denoising auto-encoders represent an example where the image itself is to be 

used as an input and a measure of performance. 

For stereo vision one can rely on the availability of left and right image pair and take 

advantage of the spatial consistency between them by considering a modification of the 

Auto Encoder architecture in which the left image is chosen as a reconstruction target and 

the neural network apply learned transformations on the right image taken as an input to 

reduce the reconstruction loss and the internal decoder model outputs will be forced to 

learn the disparity mapping through this modified loss criterion. 

Other approaches rely on temporal consistency between image frames in videos which 

also can be used to train a depth inference encoder Neural Network. 

It is chosen in this work to implement the stereo consistency approach and two 

architectures are proposed: a modified DenseMapNet that is included within unsupervised 

loss process and Symmetric Encoder-Decoder no skip connections.  

   

activation_1 (Activation) (None, 672, 672, 32) 0 batch_normalizatio

n_1[0][0]                                                                       

batch_normalizatio

n_1[1][0] 

Continu. 

separable_conv2d_11 

(SeparableConvolution) 

(None, 672, 672, 3) 3843 concatenate_7[0][0] 
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DenseMapNet based Encoder-decoder: this architecture repurposes the design of 

DenseMapNet to accommodate a “self-supervised” learning mechanism by using the left 

image as a reference for a consistency based unsupervised loss thus omitting the 

convolutional path for it in the architecture which applies a single convolutional operation 

on the left image and feed to the last stage to apply depth estimation mapping. 

The right image convolutional path which represents the core operations of DenseMapNet 

model is utilized as the target model to be trained to capture the depth mapping procedure 

and similar to the supervised approach all convolutions are performed using the depth-

wise separable technique to reduce overall parameter requirement. 

 

While the complete system used in training phase is using the stereo image pair the trained 

Encoder-Decoder resulting from applying the unsupervised approach only requires a 

single image representing the right image form the pair, this is an advantage of this 

methodology as it only requires the full stereo camera systems for capturing training data 

while deployment setting only requires mono images. 

Another advantage of the unsupervised technique and in particular the employed self-

supervision by consistency measures is that it relies on the actual physical consideration 

of spatial or temporal dependability  between multiple views or multiple successive 

captures of localized scenes to enforce a performance measure on the training process 

reducing the work or hardware resources to obtain ground truth samples.   

The network contains 63 layers and the number of parameters is 753,166. 

The model is trained for 1000 epochs on both of the provided data sets and results are 

obtained for evaluation on the available test image pairs. 

The optimizer used is (ADAM) optimizer. 

The following table gives an overview of the layers used in the model “for the full view 

see. Appendix-1, Table-3”: 
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Table 3.5: Unsupervised Model with DenseMapNet Encoder-decoder 
 

 

Symmetric Encoder-decoder: this architecture is designed with the aim of applying the 

unsupervised approach to a minimalistic Symmetric Encoder-Decoder architecture. 

The main consideration is to have a straightforward skip connections free architecture 

with symmetry of parameter selection for the convolutional kernels, this choice can then 

make explicit the effect of self-supervised learning mechanism on the flow of the weight 

values during training and its susceptibility to overfitting as well as the overall ability to 

extract relevant representations from provided unlabelled data due to consistency loss 

functions. 

In this design the depth-wise separable technique is also used to reduce parameter 

requirement with the goal that the reconstruction loss captures the transformations 

required for producing the stereo matching mechanism. 

The network contains 33 layers and the number of parameters is 661,782. 

The model is trained for 1000 epochs on both of the provided data sets and results are 

obtained for evaluation on the available test image pairs. 

The optimizer used is (ADAM) optimizer. 

Layer(type) Output Shape Param

eters 

Numbe

r 

Connected to 

input_1 (Input layer) (None, 672, 672, 3) 0 * 

input_2 (Input layer) (None, 672, 672, 3) 0 * 

model_1 (Model) (None, 672, 672, 3) 753166  input_1[0][0] 

custom_layer_8 

(CustomLayer) 

(None, 672, 672, 3) 0 input_1[0][0]                                                                                    

input_2[0][0]                                                                                    

model_1[1][0] 

Conitnu. 

disparity_output 

(Activation) 

(None, 672, 672, 3) 0 separable_conv2d_32

[0][0] 
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The following table gives an overview of the layers used in the model “for the full view 

see. Appendix-1, Table-4”: 

 
Table 3.6: Unsupervised Model with Symmetric Encoder-decoder 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Layer(type) Output Shape Parame

ters 

Number 

Connected to 

input_1 (Input layer) (None, 672, 672, 3) 0 * 

input_2 (Input layer) (None, 672, 672, 3) 0 * 

model_1 (Model) (None, 672, 672, 3) 661782   input_1[0][0] 

custom_layer_8 

(CustomLayer) 

(None, 672, 672, 3) 0 input_1[0][0]                                                                                    

input_2[0][0]                                                                                    

model_1[1][0] 

Continu. 

separable_conv2d_9 

(SeparableConvolution) 

(None, 672, 672, 3) 771 up_sampling2d_4 

[0][0] 
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4. EXPERIMENTAL RESUTLS 

 

This part presents the hardware system available to implement and run the proposed 

architectures and the results obtained from the execution of the implementations. 

 

4.1 HARDWARE AND SOFTWARE 

The hardware system used for thesis work is a desktop build with Intel Core i9 9900k, 

32GB of system RAM, Nvidia RTX 2080 Ti GPU with 11GB of RAM,Cuda toolkit 

version 10.1.167 with cudnn version 7.6 and the operating system used is UBUNTU 

18.04.3 LTS. 

The programming platform chosen to perform the implementation is Google Tensorflow 

with Keras API in the Python programming language. 

 
Python programming language: a high level, interpreted, dynamically typed and object 

oriented programming language designed to be modular and open source allowing for 

rapid development of code bases and due to having clear and readable syntax it provides 

low cost on debugging and maintenance. 

Python version used is computed using Anaconda package management environment 

3.7.3 of version 4.7.5    

 
Tensorflow: a machine learning platform designed for large scale and data intensive 

computations, it represents the state, operations and transformations on states with the 

methodology of a Dataflow graph.  

Nodes of the dataflow graph can be assigned to different machines in a cluster and to 

different computational devices in a single machine, the devices include multicore CPUs, 

GPUs, and application specific chips such as Tensor Processing Units (TPUs). 

Such a platform provides developers and researchers with the flexibility to perform a 

variety of learning and optimization projects and increases sharing and collaboration. 

Tensorflow version used is 1.14 
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                     Figure 4.1: Tensorflow Dataflow Graph Schematic  

 
 
 
Keras API:  a Python based high level API for programming Neural Networks developed 

for fast and seamless prototyping and evaluation with capability of running on both CPU 

and GPU.  

Keras emphasizes on modularity and readability and provides support for a wide class of 

architectures including recurrent and convolutional Neural Networks. 

Keras version used is 2.2.4 

 

4.2 RESULTS 

This part presents the obtained results of the proposed architectures from performing 

training and evaluation with the designated data sets executed on the hardware system 

provided. 

All designs were trained for 1000 epochs with accuracy and loss curves obtained for 

training and validation on each epoch from training and validation sets respectively, 

image results are obtained from evaluating on the test data sets.  

 
Pretrained supervised learning Encoder-Decoder architectures:  

 

The following figure shows the training and validation accuracies attained for the 

Inception pretrained supervised learning Encoder-decoder: 
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                  Figure 4.2: Training and Validation Accuracy for Inception  

                  Pretrained Supervised Learning Model on KITTI Data Set 

 
 
 
                  Figure 4.3: Training and Validation Accuracy for Inception  

                  Pretrained Supervised Learning Model on MPI-Sintel Data Set 
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The following figure shows the training and validation losses attained for the Inception 

pretrained supervised learning Encoder-decoder: 

 
          Figure 4.4: Training and Validation Loss for Inception Pretrained   

          Supervised Learning Model on KITTI Data Set 

          

 

 

 

 

 

 

 

 

 

           

 

          Figure 4.5: Training and Validation Loss for Inception  

          Pretrained Supervised Learning Model on MPI-Sintel Data Set 
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The following figure shows the evaluation image result attained for the Inception 

pretrained supervised learning Encoder-decoder: 

 
          Figure 4.6: Evaluation Output for Inception Pretrained Superviesed  

          Learning Model on KITTI Data Set 

 
  
 
 
 
 
 
           

 

 

 

 

 

 

            Figure 4.7: Evaluation Output for Inception Pretrained Superviesed 

            Learning Model on MPI-Sintel Data Set 
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The following figure shows the training and validation accuracies attained for the VGG 

pretrained supervised learning Encoder-decoder: 

 
          Figure 4.8: Training and Validation Accuracy for VGG  

          Pretrained Supervised Learning Model on KITTI Data Set 

 
           

            Figure 4.9: Training and Validation Accuracy for VGG  

            Pretrained Supervised Learning Model on MPI-Sintel Data Set 
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The following figure shows the training and validation losses attained for the VGG 

pretrained supervised learning Encoder-decoder: 

 
           Figure 4.10: Training and Validation Loss for VGG  

           Pretrained Supervised Learning Model on KITTI Data Set 

 
          

              Figure 4.11: Training and Validation Loss for VGG 

              Pretrained Supervised Learning Model on MPI-Sintel Data Set 
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The following figure shows the evaluation disparity map result attained for the VGG 

pretrained supervised learning Encoder-decoder: 

 
            Figure 4.12: Evaluation Output for VGG Pretrained Superviesed              

            Learning Model on KITTI Data Set 

 
             Figure 4.13: Evaluation Output for VGG Pretrained Superviesed                    

             Learning Model on MPI-Sintel Data Set 
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Supervised learning Encoder-Decoder architectures: 
 
The following figure shows the training and validation accuracies attained for the 

parameter reduced DenseMapNet supervised learning Encoder-decoder: 

 

          Figure 4.14: Training and Validation Accuracy for DenseMapNet    

          Supervised Learning Model on KITTI Data Set 

 
 
           Figure 4.15: Training and Validation Accuracy for DenseMapNet  

           Pretrained Supervised Learning Model on MPI-Sintel Data Set 
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The following figure shows the training and validation losses attained for the parameter 

reduced DenseMapNet supervised learning Encoder-decoder: 

 
          Figure 4.16: Training and Validation Loss for DenseMapNet 

          Supervised Learning Model on KITTI Data Set 

 
 
 
            Figure 4.17: Training and Validation Loss for DenseMapNet  

            Supervised Learning Model on MPI-Sintel Data Set 
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The following figure shows the evaluation image result attained for the parameter reduced 

DenseMapNet supervised learning Encoder-decoder: 

 
          Figure 4.18: Evaluation Output for DenseMapNet Superviesed            

          Learning Model on KITTI Data Set 

         

           Figure 4.19: Evaluation Output for DenseMapNet Superviesed             

           Learning Model on MPI-Sintel Data Set 
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The following figure shows the training and validation accuracies attained for the Siamese 

Network with encoder local skip connections and correlation merge supervised learning 

Encoder-decoder: 

          Figure 4.20: Training and Validation Accuracy for Siamese Network 

          Supervised Learning Model on KITTI Data Set 

 
 
 
          Figure 4.21: Training and Validation Accuracy for Siamese Network  

          Supervised Learning Model on MPI-Sintel Data Set 
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The following figure shows the training and validation losses attained for Siamese 

Network with encoder local skip connections and correlation merge supervised learning 

Encoder-decoder: 

           Figure 4.22: Training and Validation Loss for Siamese Network  

           Supervised Learning Model on KITTI Data Set 

 

        

           Figure 4.23: Training and Validation Accuracy for Siamese Network  

           Supervised Learning Model on MPI-Sintel Data Set 
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The following figure shows the evaluation disparity map result attained for the Siamese 

Network with encoder local skip connections and correlation merge supervised learning 

Encoder-decoder: 

 
          Figure 4.24: Evaluation Output for Siamese Network Superviesed          

          Learning Model on KITTI Data Set 

 

            Figure 4.25: Evaluation Output for Siamese Network Supervised      

            Learning Model on MPI-Sintel Data Set 

Unsupervised learning Encoder-Decoder architectures: 
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In the unsupervised technique no labelled images are provided to the network and the 

measure for optimization is the left image to right image consistency that acts as a 

reconstruction loss and directs the evolution of the weights. 

Accuracy metric is omitted in the unsupervised case as ground truth images are not 

needed in this implementation and the reconstruction losses of training and validation are 

recorded. 

The following figure shows the training and validation reconstruction losses attained for 

the DenseMapNet based unsupervised learning Encoder-decoder: 

 
           Figure 4.26: Training and Validation Reconstruction Loss for      

           DenseMapNet Unsupervised Learning Model on KITTI Data Set 
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          Figure 4.27: Training and Validation Reconstruction Loss for            

          DenseMapNet Unsupervised Learning Model on MPI-Sintel Data Set 

 

The following figure shows the evaluation image result attained for the DenseMapNet 

based unsupervised learning Encoder-decoder: 

 
          Figure 4.28: Evaluation Output for DenseMapNet Unsupervised         

          Learning Model on KITTI Data Set 
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              Figure 4.29: Evaluation Output for DenseMapNet Unsupervised         

              Learning Model on MPI-Sintel Data Set 

 
The following figure shows the training and validation reconstruction losses attained for 

the Symmetric Encoder-decoder based unsupervised learning Encoder-decoder: 

 
            Figure 4.30: Training and Validation Reconstruction Loss for                

            Symmetric Network Unsupervised Learning Model on KITTI                        

            Data Set 
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          Figure 4.31: Training and Validation Reconstruction Loss for               

          Symmetric Network Unsupervised Learning Model on MPI-Sintel               

          Data Set 

 

The following figure shows the evaluation disparity map result attained for the Symmetric 

Encoder-decoder based unsupervised learning Encoder-decoder: 

 
            Figure 4.32: Evaluation Output for Symmetric Network Unsupervised 

            Learning Model on KITTI Data Set 

         

 



 

71 
 

          

         Figure 4.33: Evaluation Output for Symmetric Network Unsupervised 

         Learning Model on MPI-Sintel Data Set 
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5. DISCUSSION 

 
This thesis aims at formulating compact, efficient and specific Deep Learning models for 

the task of stereo vision by training different architecture designs that implement the latest 

techniques presented in literature with the proposed modifications. 

It is  observed from the implementation process that the hardware requirements for 

performing Deep Learning for computer vision and specifically CNN architectures are 

demanding in computational requirements most notably on the specifications of the 

hardware accelerators represented by the GPU, from the onset of the implementation the 

libraries and platforms employed required resent iteration of such hardware which are 

capable of supporting the compatible versions such as supporting Nvidia Cuda 

acceleration library of version 10 which is at the present an essential feature for execution 

of the implementations. Specific to the models is the GPU RAM consumption which 

further restricts the hardware choice as the general models with conventional convolution 

required RAM availability of more than 10 GB for preferable parameter sizes with some 

literature work operating with hardware envelop of multi GPU and multi CPU thus the 

main objective was to choose compact models and further reduce parameter requirements. 

From the obtained results it is observed a strong dependence of the training and validation 

behaviour as well as output depth map detail and performance on the data set specification 

and characteristics, the main factor identified  is the size of the data set as KITTI data set 

provide a lower number of example stereo pairs to the architecture to train on compared 

to MPI-Sintel which noticeably reflects on the detail provided by the output depth maps 

from architectures trained on these data sets respectively, from the training and validation 

accuracy and loss curves KIITI data set display the typical signs of overfitting within the 

first 100 epochs which is recorded on all supervised architectures and explainable by the 

low sample size of KITTI data set.  

MPI-Sintel training and validation curves display a loss and accuracy saturation within a 

very small number of epochs but provide output performance that is more semantically 

relevant to the stereo vision task, this can be understood from the second factor  identified 

that is data set characteristics and it is seen that MPI-Sintel is a synthetic data set having 

a lower complexity in relations of data points compared to KITTI data set that is generated 

from real world imaging therefore MPI-Sintel data set allows the architectures to capture 
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the information within the first epochs while having the learning process balanced by the 

larger number of provided examples and the specifically constructed scenes with labelled 

ground truth images which prevent typical overfitting. In contrast KITTI data set outputs 

show lower semantic relevancy and the designs output depth maps that has a tendency to 

produce the salient features that are inherently present in LiDAR generated ground truth 

which is the presence of scan line repeated patterns which the networks overfit on due to 

optimization flow, also noticeable the high contrast of the produced features between up 

and down the detected horizon line due to the sharply increasing vanishing values of  large 

distances typical to LiDAR data. Architecture wise the outputs obtained from pretrained 

supervised designs display weaker information capture and less semantic relevancy in the 

generated depth maps for which this can be explained with two factors:  

Firstly, these designs are pretrained with a classification task on data sets containing 

millions of samples oriented for such a task thus the representation encoded in the weight 

values of these pretrained architectures are optimized for scale invariant representations 

that maximize relevant object detectability and classification this runs in contrast to the 

task of recovering information that defines scale.  

Secondly, these architectures are large on the layer depth parameter making them less 

compact and more susceptible to overfitting on small data sets similar to the ones 

generally available to stereo vision task despite that the implementation only tunes the 

last layers of the pretrained system as an encoder to match the weights obtained for the 

decoder system.  

 The Inception based implementation provides larger contrast in the outputs this is 

attributed to Inception employing in its subunits the process of regularization through 

batch normalization and the presence of fan out structures that enhance the gradient flow 

in the backpropagation phase of training to overcome vanishing gradients. 

The VGG based design displays greater detail for the generated depth maps as the VGG 

system captures greater detail due to less propensity to overfitting given by the smaller 

number of weight parameters allowing the optimizer to evolve the weight values to 

greater extent. 

 Based on the previous observations this work partakes into designing non-pretrained 

CNN Encoder-Decoder architectures that are specific to the task of generating stereo 

vision depth maps and constructed with compactness and low parameter size. 
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For the DenseMapNet based supervised learning architecture the observation of 

improvement in output detail with reducing parameter size relative to data size is 

implemented by employing the depth wise separable convolution technique and this 

design choice is validated by the generated output maps as it displays relevant depth 

annotation on semantic features and objects based on depth and this is most evident with 

training on MPI-Sintel data set. It is observed for this architecture a box artefact effects 

that introduce regions with variance in response activation to depth semantics this is due 

to the architecture structure that utilize a process of successive layer to layer input 

concatenation to alleviate vanishing gradient issue but introduce information mixing 

resulting in reconstruction artefacts. For the Siamese based architecture with skipping 

connection the design choice is to apply symmetry for the two stereo branches in kernel 

parameters and the layer structure of the Encoder-Decoder, moreover it is employed in 

this work a weight sharing mechanism in between the branches of the encoder system to 

enhance this symmetry with identical gradient calculations and reduction in parameter 

requirement which is further enhanced by using depth wise separable convolution. 

A skipping connection mechanism is also introduced in two modes: 

A typical encoder to decoder skipping connections connecting the feature extraction 

layers of the encoder with the decoder layers symmetric to it in kernel parameter size 

enhancing information flow.  

A local to Encoder skip connection that connects the first information representations 

generated by the early encoding layers and introduce it the last encoding layers to further 

reduce information loss. 

Another design choice is to merge the branches with a correlation extraction method that 

reduces parameters and emphasise on generating correspondence representations from 

the embedded information recovered from each branch. 

It is observed an enhancement of generated depth maps compared to the DensemapNet 

architecture with more pronounced semantic depth identification and absence of box 

artefact behaviour present in the DenseMapNet design. Additionally the supervised 

learning Siamese based architecture extends the use of batch normalization to enhance 

the optimizer performance. 

Considering that data sets provided with properly annotated ground truth images for the 

task of stereo vision are not prevalent relative to other computer vision tasks such as 
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classification, Unsupervised Learning provides an opportunity to gain performance 

improvements while simplifying the data gathering process which requires either costly 

and complex Lidar based measurement systems or designing specific computer generated 

imagery of characteristics specific to obtain relevant depth ground truth. 

Incorporated in the work the technique of self-supervised learning by customizing the 

Encoder-Decoder to train on KITTI and MPI-Sintel date sets with omitted labels for 

modified DenseMapNet architecture and Symmetric architecture with omitted skip 

connections. 

It is observed that the applied technique of imposing a reconstruction loss acquired 

through the consistency in spatial information of scenes between left and right images 

produces different behaviours on the extracted depth maps. 

While still suffering from overfitting effects on KITTI data set the consistency based 

measure manages to extract object outline information as displayed on the obtained 

outputs signifying an increase in feature embedding in the networks. 

On MPI-Sintel the semantic depth information are more prominent on the outputs in 

accordance with the supervised method although displaying different artefact effects that 

shows a misidentification of highly illuminated regions as low depth and this activation 

is conserved in both the DenseMapNet and Symmetric architectures indicating that the 

artefact is a characteristic of the consistency measure and not specific to network design 

details. 

 

 

 

 

 

 

 

 

 

 



 

76 
 

6. CONCLUSIONS AND FUTURE WORK 

 

In this part conclusions acquired and prospects for future work are presented. 

6.1 CONCLUSIONS 

 
It is concluded from this work presented in this thesis that the task of obtaining stereo 

vision depth maps utilizing deep learning shows a strong dependency on data size and 

data characteristics and most data sets publicly available for this task are oriented for the 

traditional stereo vision techniques in comparison with other tasks in computer vision 

such as classification and object detection where data sets are much larger with up to 

millions of samples, this has most impact in the supervised learning implementations for 

stereo vision. Another strong dependency is availability of hardware capability that is an 

essential requirement with deep convolutional architectures, mainline designs that are 

pretrained on large data sets with data centre level hardware provided to high corporations 

such as Inception and VGG are concluded to be not suitable for the stereo vision task due 

to different end goal criteria as well as the difficulty of fully retraining such very large 

designs within readily available hardware specifications. It is also concluded that for 

efficient Encoder-Decoder CNN architectures that are trained in a supervised learning 

setting for the task of generating stereo vision depth maps a Siamese design that 

emphasizes symmetry on the left and right encoder branches in both kernel parameter 

size and sharing of left and right weight values in addition to skip connection mechanism 

for information flow show an enhanced performance in extraction of semantically 

annotated depth information that the successively linked architecture of DenseNet 

inspired designs that suffer from reconstruction artefacts. Identified by this work the 

procedure of the depth wise separable convolution as a desirable Enhancements on 

parameter requirements resulting in more efficient implementations that critical to meet 

the hardware envelop provided to this work. Other enhancements are using batch 

normalization for mitigating the vanishing gradient effects and the use of correlation 

based merge of left and right feature maps. For the unsupervised learning setting this work 

concluded that it is applicable for the stereo vision task by implementing a self-learning 

reconstruction loss on right to left images on both a DenseMapNet architecture and a 



 

77 
 

Symmetric network architecture, this is very desirable as data sets for this learning setting 

can be constructed with less requirement and effort. 

It is identified a conserved artefact effect in this setting which is high activation in depth 

maps for strongly illuminated section in the input stereo pair. 

6.2 FUTURE WORK 

 
Further future work venues can be identified based on this thesis, exploration of 

unsupervised and self-supervised architectures is still in its early stages and extending the 

consistency measure based reconstruction loss which can be taken to incorporate full 

simulation of the physical parameters such as light propagation characteristics or object 

movement profiles, alternatively the reconstruction loss can be specified to the outputs of 

highly precise although computationally intensive traditional depth estimation 

algorithms. 

Data collection and generation in large sized and specific features for stereo vision is also 

a high recommendation in the supervised learning approach. 

Another venue for research is to investigate hardware implementation of the 

recommended efficient architectures for fast real time applications such as Robotic 

navigation.      

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

78 
 

REFERENCES 

 

Books 
 
Alpaydin, E., 2010, Introduction to Machine Learning, 2nd edn. London: The MIT 

Press. 

Bishop, C., 2006, Pattern Recognition and Machine Learning. Springer. 

Kriesel, D., 2005, A Brief Introduction to Neural Networks. 

Szeliski, R., 2010, Computer Vision: Algorithms and Applications. Springer. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

79 
 

Periodicals 
 
Agarap, A., 2019. Deep Learning using Rectified Linear Units (ReLU). [online] 

Available at: https://arxiv.org/pdf/1803.08375.pdf  [accessed 15 July 2019] 

Atienza, R., 2018. Fast Disparity Estimation using Dense Networks. [online] Available 

at: https://arxiv.org/pdf/1805.07499.pdf  [accessed 6 May 2019] 

Badrinarayanan,V. et. al., 2017. SegNet: A Deep Convolutional Encoder-Decoder 

Architecture for Image Segmentation. IEEE Transactions on Pattern Analysis and 

Machine Intelligence (TPAMI) [online] Available at: 

https://www.repository.cam.ac.uk/bitstream/handle/1810/271007/07803544.p

df?sequence=7  [accessed 22 November 2019] 

Bosch, M. et. al., 2019. Semantic Stereo for Incidental Satellite Images. 2019 IEEE 

Winter Conference on Applications of Computer Vision (WACV)  [online] Available 

at: https://arxiv.org/ftp/arxiv/papers/1811/1811.08739.pdf [accessed 6 May 

2019] 

Butler,D. et. al., 2012. A Naturalistic Open Source Movie for Optical Flow Evaluation. 

European Conference on Computer Vision ECCV 2012 [online] Available at: 

https://homes.cs.washington.edu/~djbutler/papers/ButlerECCV2012.pdf   

[accessed 5 April 2019] 

Chollet, F., 2017. Xception: Deep Learning with Depthwise Separable Convolutions. 

2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR) [online] 

Available at: 

http://openaccess.thecvf.com/content_cvpr_2017/papers/Chollet_Xception_Deep_

Learning_CVPR_2017_paper.pdf  [accessed 10 July 2019] 

Deng, J., Dong, W., Socher, R., Li, L., 2009. ImageNet: A Large-Scale Hierarchical 

Image Database. IEEE Computer Vision and Pattern Recognition (CVPR) [online] 

Available at: http://www.image-net.org/papers/imagenet_cvpr09.pdf  [accessed 6 May 

2019] 

Geiger,A. et. al.,2013. Vision meets robotics: The KITTI dataset [online] Available at: 

http://ww.cvlibs.net/publications/Geiger2013IJRR.pdf  [accessed 5 April 2019] 

 

https://arxiv.org/pdf/1803.08375.pdf
https://arxiv.org/pdf/1805.07499.pdf
https://www.repository.cam.ac.uk/bitstream/handle/1810/271007/07803544.pdf?sequence=7
https://www.repository.cam.ac.uk/bitstream/handle/1810/271007/07803544.pdf?sequence=7
https://arxiv.org/ftp/arxiv/papers/1811/1811.08739.pdf
https://homes.cs.washington.edu/~djbutler/papers/ButlerECCV2012.pdf
http://openaccess.thecvf.com/content_cvpr_2017/papers/Chollet_Xception_Deep_Learning_CVPR_2017_paper.pdf
http://openaccess.thecvf.com/content_cvpr_2017/papers/Chollet_Xception_Deep_Learning_CVPR_2017_paper.pdf
http://www.image-net.org/papers/imagenet_cvpr09.pdf
http://ww.cvlibs.net/publications/Geiger2013IJRR.pdf


 

80 
 

Guo,J. et.al.,2018. Network Decoupling: From Regular to Depthwise Separable 

Convolutions.  BMVC 2018 [online] Available at: 

http://bmvc2018.org/contents/papers/0849.pdf  [accessed 10 July 2019] 

Ioffe, S., Szegedy, C., 2015. Batch Normalization: Accelerating Deep Network Training 

by Reducing Internal Covariate Shift.  ICML 2015 [online], Available at: 

https://arxiv.org/pdf/1502.03167.pdf  [accessed 10 July 2019] 

Ji, M. et. al., 2017, ‘SurfaceNet: An End-to-End 3D Neural Network for Multiview 

Stereopsis. 2017 IEEE International Conference on Computer Vision (ICCV) 

[online] Available at: https://arxiv.org/pdf/1708.01749.pdf [accessed 15 July 2019] 

Jiang,H. et. al., 2018. Self-Supervised Relative Depth Learning for Urban Scene 

Understanding. European Conference on Computer Vision ECCV 2018 [online] 

Available at: https://arxiv.org/pdf/1712.04850.pdf  [accessed 14 August 2019] 

Jiao, J. et. al. ,,2014. Local Stereo Matching with Improved Matching Cost and 

Disparity Refinement. IEEE MultiMedia, [online] Available at: 

https://jianbojiao.com/pdfs/mm.pdf  [accessed 10 July 2019] 

Kendall,A. et. al., 2017. End-to-End Learning of Geometry and Context for Deep Stereo 

Regression. 2017 IEEE International Conference on Computer Vision (ICCV) 

[online] Available at: https://arxiv.org/pdf/1703.04309.pdf [accessed 10 July 2019] 

Kingma, D.,Welling,M.,2014. Auto-Encoding Variational Bayes. ICLR 2014 [online] 

Available at: https://arxiv.org/pdf/1312.6114.pdf  [accessed 10 July 2019] 

Koch, G. et. al., 2015. Siamese Neural Networks for One-Shot Image Recognition. 

[online] Available at: https://www.cs.cmu.edu/~rsalakhu/papers/oneshot1.pdf [accessed 

12 July 2019] 

Luo, W. et.al. , 2016. Efficient Deep Learning for Stereo Matching. 2016 IEEE 

Conference on Computer Vision and Pattern Recognition (CVPR) [online]  Available 

at: https://www.cv-

foundation.org/openaccess/content_cvpr_2016/papers/Luo_Efficient_Deep_Learning_C

VPR_2016_paper.pdf 

[accessed 10 July 2019] 

 

Mazaheri, G. et. al., 2019. A Skip Connection Architecture for Localization of Image 

Manipulations.  CVPR Workshops 2019. [online] Available at: 

http://bmvc2018.org/contents/papers/0849.pdf
https://arxiv.org/pdf/1502.03167.pdf
https://arxiv.org/pdf/1708.01749.pdf
https://arxiv.org/pdf/1712.04850.pdf
https://jianbojiao.com/pdfs/mm.pdf
https://arxiv.org/pdf/1703.04309.pdf
https://arxiv.org/pdf/1312.6114.pdf
https://www.cs.cmu.edu/~rsalakhu/papers/oneshot1.pdf
https://www.cv-foundation.org/openaccess/content_cvpr_2016/papers/Luo_Efficient_Deep_Learning_CVPR_2016_paper.pdf
https://www.cv-foundation.org/openaccess/content_cvpr_2016/papers/Luo_Efficient_Deep_Learning_CVPR_2016_paper.pdf
https://www.cv-foundation.org/openaccess/content_cvpr_2016/papers/Luo_Efficient_Deep_Learning_CVPR_2016_paper.pdf


 

81 
 

http://openaccess.thecvf.com/content_CVPRW_2019/papers/Media%20Forensics/Maza

heri_A_Skip_Connection_Architecture_for_Localization_of_Image_Manipulations_CV

PRW_2019_paper.pdf  [accessed 12 July 2019] 

Nwankpa, C. et. al.,2018. Activation Functions: Comparison of Trends in Practice and 

Research for Deep Learning.  [online] Available at: 

https://arxiv.org/pdf/1811.03378.pdf  [accessed 15 July 2019] 

Ramachandran, P. et. al., 2017. Swish: a Self-Gated Activation Function. [online] 

Available at: 

https://pdfs.semanticscholar.org/4f57/f486adea0bf95c252620a4e8af39232ef8bc.pdf  

[accessed 10 July 2019] 

Szegedy, C. et. al., 2014. Going Deeper with Convolutions. IEEE [online]  Available at: 

https://arxiv.org/pdf/1409.4842.pdf [accessed 6 May 2019] 

Tardon, et.al. 2011. Markov Random Fields in the Context of Stereo Vision [online] 

Available at: 

https://www.researchgate.net/publication/221909970_Markov_Random_Fields_in_the_

Context_of_Stereo_Vision  

[accessed 10 July 2019] 

Trucco, Emanuele, Roberto, Vito, Tinonin, Corbatto, 1970. SSD Disparity Estimation 

for Dynamic Stereo. [online]  Available at: 

https://www.researchgate.net/publication/2600153_SSD_Disparity_Estimation_for_Dy

namic_Stereo  [accessed 10 July 2019] 

Wang, F. et. al.,2018. Self-Supervised Learning of Depth and Camera Motion from 360◦ 

Videos’ [online]  Available at: https://arxiv.org/pdf/1811.05304.pdf  [accessed 14 

August 2019] 

Wei, Hu, Hao, Zhou, Hua-wei, Lau, 2019. Characterizing Rock Facies Using Machine 

Learning Algorithm Based on a Convolutional Neural Network and Data Padding 

Strategy.  Pure and Applied Geophysics. 1-13. 10.1007/s00024-019-02152-0. [online] 

Available at: 

https://www.researchgate.net/publication/331991539_Characterizing_Rock_Facies_Usi

ng_Machine_Learning_Algorithm_Based_on_a_Convolutional_Neural_Network_and_

Data_Padding_Strategy  [accessed 10 July 2019] 

http://openaccess.thecvf.com/content_CVPRW_2019/papers/Media%20Forensics/Mazaheri_A_Skip_Connection_Architecture_for_Localization_of_Image_Manipulations_CVPRW_2019_paper.pdf
http://openaccess.thecvf.com/content_CVPRW_2019/papers/Media%20Forensics/Mazaheri_A_Skip_Connection_Architecture_for_Localization_of_Image_Manipulations_CVPRW_2019_paper.pdf
http://openaccess.thecvf.com/content_CVPRW_2019/papers/Media%20Forensics/Mazaheri_A_Skip_Connection_Architecture_for_Localization_of_Image_Manipulations_CVPRW_2019_paper.pdf
https://arxiv.org/pdf/1811.03378.pdf
https://pdfs.semanticscholar.org/4f57/f486adea0bf95c252620a4e8af39232ef8bc.pdf
https://arxiv.org/pdf/1409.4842.pdf
https://www.researchgate.net/publication/221909970_Markov_Random_Fields_in_the_Context_of_Stereo_Vision
https://www.researchgate.net/publication/221909970_Markov_Random_Fields_in_the_Context_of_Stereo_Vision
https://www.researchgate.net/publication/2600153_SSD_Disparity_Estimation_for_Dynamic_Stereo
https://www.researchgate.net/publication/2600153_SSD_Disparity_Estimation_for_Dynamic_Stereo
https://arxiv.org/pdf/1811.05304.pdf
https://www.researchgate.net/publication/331991539_Characterizing_Rock_Facies_Using_Machine_Learning_Algorithm_Based_on_a_Convolutional_Neural_Network_and_Data_Padding_Strategy
https://www.researchgate.net/publication/331991539_Characterizing_Rock_Facies_Using_Machine_Learning_Algorithm_Based_on_a_Convolutional_Neural_Network_and_Data_Padding_Strategy
https://www.researchgate.net/publication/331991539_Characterizing_Rock_Facies_Using_Machine_Learning_Algorithm_Based_on_a_Convolutional_Neural_Network_and_Data_Padding_Strategy


 

82 
 

Welchman,A.,2016 The Human Brain in Depth: How We See in 3D’, The Annual 

Review of Vision Science 2016. [online] Available at: 

https://www.repository.cam.ac.uk/bitstream/handle/1810/271007/07803544.pdf?sequen

ce=7  [accessed 15 June 2019] 

Yasrab,R. et. al.,2017. An Encoder-Decoder Based Convolution Neural Network (CNN) 

for Future Advanced Driver Assistance System (ADAS).  Applied Sciences [online] 

Available at: 

https://pdfs.semanticscholar.org/0510/00dd99635b74862b4b33f6dd84aca34f7471.pdf?_

ga=2.120936589.429826482.1576776997-284257306.1530051971                      

[accessed 10 July 2019] 

Ye, J.,Sung,W.,2019, ‘Understanding Geometry of Encoder-Decoder CNNs’,[online], 

Available at: https://arxiv.org/pdf/1901.07647.pdf [accessed 10 July 2019] 

Zhang, Y. et. al.,2018. ActiveStereoNet: End-to-End Self-Supervised Learning for 

Active Stereo Systems. European Conference on Computer Vision ECCV 2018 [online] 

Available at: 

http://openaccess.thecvf.com/content_ECCV_2018/papers/Yinda_Zhang_Active_Stereo

_Net_ECCV_2018_paper.pdf  [accessed 14 August 2019] 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
 

https://www.repository.cam.ac.uk/bitstream/handle/1810/271007/07803544.pdf?sequence=7
https://www.repository.cam.ac.uk/bitstream/handle/1810/271007/07803544.pdf?sequence=7
https://www.researchgate.net/journal/2076-3417_Applied_Sciences
https://pdfs.semanticscholar.org/0510/00dd99635b74862b4b33f6dd84aca34f7471.pdf?_ga=2.120936589.429826482.1576776997-284257306.1530051971
https://pdfs.semanticscholar.org/0510/00dd99635b74862b4b33f6dd84aca34f7471.pdf?_ga=2.120936589.429826482.1576776997-284257306.1530051971
https://arxiv.org/pdf/1901.07647.pdf
http://openaccess.thecvf.com/content_ECCV_2018/papers/Yinda_Zhang_Active_Stereo_Net_ECCV_2018_paper.pdf
http://openaccess.thecvf.com/content_ECCV_2018/papers/Yinda_Zhang_Active_Stereo_Net_ECCV_2018_paper.pdf


 

83 
 

Other Publications 

 

Ewbank, T., 2017. Efficient and precise stereoscopic vision for humanoid robots. 

[online]  Available at: https://matheo.uliege.be/bitstream/2268.2/3144/5/master-thesis-

Tom-Ewbank.pdf  [accessed 1 May 2019] 

Goodfellow,I. et.al., 2016. Deep Learning ’,MIT press 2016. [online]  Available at: 

http://www.deeplearningbook.org  [accessed 1 May 2019] 

Kar, A., 2017. Learning to Reconstruct 3D Objects. [online]  Available at: 

https://www2.eecs.berkeley.edu/Pubs/TechRpts/2017/EECS-2017-199.pdf [accessed 1 

May 2019] 

Nilsen,M.,2015. Neural Networks and Deep Learning. Determination press 2015 

[online], Available at: http://neuralnetworksanddeeplearning.com  [accessed 1 May 

2019] 

Pisapia, R., 2016. Disparity map extraction for a low cost 3D sensor. [online]  

Available at: 

https://members.loria.fr/SATabbone/Disparity%20map%20extraction%20for%20a%20l

ow%20cost%203D%20sensor%20-%20Pisapia%20Roberto.pdf  [accessed 1 May 2019] 

Poggi, M., 2017. Deep Learning for stereo matching and related tasks. [online]  

Available at: http://vision.disi.unibo.it/~mpoggi/talks/Deep_learning_stereo.pdf  

[accessed 10 July 2019] 

Stigborn, P., 2018. Generating 3D-objects using neural networks. [online] Available at: 

http://www.diva-portal.org/smash/get/diva2:1218064/FULLTEXT01.pdf  [accessed 1 

May 2019]    

 

 
 
 
 
 
 

https://matheo.uliege.be/bitstream/2268.2/3144/5/master-thesis-Tom-Ewbank.pdf
https://matheo.uliege.be/bitstream/2268.2/3144/5/master-thesis-Tom-Ewbank.pdf
http://www.deeplearningbook.org/
https://www2.eecs.berkeley.edu/Pubs/TechRpts/2017/EECS-2017-199.pdf
http://neuralnetworksanddeeplearning.com/
https://members.loria.fr/SATabbone/Disparity%20map%20extraction%20for%20a%20low%20cost%203D%20sensor%20-%20Pisapia%20Roberto.pdf
https://members.loria.fr/SATabbone/Disparity%20map%20extraction%20for%20a%20low%20cost%203D%20sensor%20-%20Pisapia%20Roberto.pdf
http://vision.disi.unibo.it/~mpoggi/talks/Deep_learning_stereo.pdf
http://www.diva-portal.org/smash/get/diva2:1218064/FULLTEXT01.pdf


 

 
 

APPENDICES 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

85 
 

Appendix A.1 Table 

Table-1: Supervised Model with Parameter reduced DenseMapNet 
 

Layer(type) Output Shape Param

eters 

Numbe

r 

Connected to 

input_1 (Input layer) (None,748,744,3) 0 * 

input_2 (Input layer) (None,748,744,3) 0 * 

concatenate_1 

(Concatenate) 

(None,748,744,6) 0 input_1[0][0]           

input_2[0][0]           

separable_conv2d_3 

(SeparableConvolution) 

(None, 748, 744, 128) 1046 concatenate_1[0][0] 

max_pooling2d_1 

(MaxPooling2D) 

(None, 93, 93, 128) 0 separable_conv2d_3 

[0][0] 

batch_normalization_1 

(BatchNormalization) 

(None, 93, 93, 128) 512 max_pooling2d_1[0] 

[0] 

downsampled_stereo 

(Activation) 

(None, 93, 93, 128) 0 batch_normalization

_1[0][0] 

separable_conv2d_4 

(SeparableConvolution) 

(None, 93, 93, 64) 11456 downsampled_stereo 

[0][0] 

separable_conv2d_5 

(SeparableConvolution) 

(None, 93, 93, 64) 11456   downsampled_stereo 

[0][0] 

dropout_1 (Dropout) (None, 93, 93, 64) 0 separable_conv2d_4 

[0][0] 

separable_conv2d_6 

(SeparableConvolution) 

(None, 93, 93, 64) 11456 downsampled_stereo 

[0][0] 

dropout_2 (Dropout) (None, 93, 93, 64) 0 separable_conv2d_5 

[0][0] 
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concatenate_2 

(Concatenate) 

(None, 93, 93, 192) 0 dropout_1[0][0]                                                                       

downsampled_stere    

[0][0] 

separable_conv2d_7 

(SeparableConvolution) 

(None, 93, 93, 64) 11456 downsampled_stereo 

[0][0] 

dropout_3 (Dropout) (None, 93, 93, 64) 0 separable_conv2d_6 

[0][0] 

concatenate_3 

(Concatenate) 

(None, 93, 93, 256) 0 dropout_2[0][0]                                                                                   

concatenate_2[0][0] 

separable_conv2d_1 

(SeparableConvolution) 

(None, 748, 744, 128) 587 input_1[0][0] 

dropout_4 (Dropout) (None, 93, 93, 64) 0 separable_conv2d_7 

[0][0] 

concatenate_4 

(Concatenate) 

(None, 93, 93, 320) 0 dropout_3[0][0]                                                                                   

concatenate_3[0][0] 

max_pooling2d_2 

(MaxPooling2D) 

(None, 93, 93, 128) 0 separable_conv2d_1 

[0][0] 

concatenate_5 

(Concatenate) 

(None, 93, 93, 384) 0 dropout_4[0][0]                                                                                   

concatenate_4[0][0] 

concatenate_6 

(Concatenate) 

(None, 93, 93, 512) 0 max_pooling2d_2 

[0][0]                                                                             

concatenate_5 [0][0] 

batch_normalization_2 

(BatchNormalization) 

(None, 93, 93, 512) 2048 concatenate_6[0][0] 

activation_1 (Activation) (None, 93, 93, 512) 0 batch_normalization

_2[0][0] 

separable_conv2d_8 

(SeparableConvolution) 

(None, 93, 93, 64) 33344 activation_1[0][0] 

batch_normalization_3 

(BatchNormalization) 

(None, 93, 93, 64) 256 separable_conv2d_8 

[0][0] 
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activation_2 (Activation) (None, 93, 93, 64) 0 batch_normalization

_3[0][0]   

conv2d_1 (Conv2D) (None, 93, 93, 64) 102464 activation_2[0][0] 

dropout_5 (Dropout) (None, 93, 93, 64) 0 conv2d_1[0][0] 

concatenate_7 

(Concatenate) 

(None, 93, 93, 576) 0 concatenate_6[0][0]                                                                               

dropout_5[0][0] 

batch_normalization_4 

(BatchNormalization) 

(None, 93, 93, 576) 2304 concatenate_7[0][0] 

activation_3 (Activation) (None, 93, 93, 576) 0 batch_normalization

_4[0][0] 

separable_conv2d_9 

(SeparableConvolution) 

(None, 93, 93, 64) 37504 activation_3[0][0] 

batch_normalization_5 

(BatchNormalization) 

(None, 93, 93, 64) 256 separable_conv2d_9 

[0][0] 

activation_4 (Activation) (None, 93, 93, 64) 0    batch_normalization

_5[0][0] 

conv2d_2 (Conv2D) (None, 93, 93, 64) 102464 activation_4[0][0] 

dropout_6 (Dropout)    (None, 93, 93, 64) 0 conv2d_2[0][0] 

concatenate_8 

(Concatenate)   

(None, 93, 93, 640) 0 concatenate_7[0][0]                                                                               

dropout_6[0][0] 

batch_normalization_6 

(BatchNormalization) 

(None, 93, 93, 640) 2560 concatenate_8[0][0] 

activation_5 (Activation) (None, 93, 93, 640) 0 batch_normalization

_6[0][0] 

separable_conv2d_10 

(SeparableConvolution) 

(None, 93, 93, 64) 41664 activation_5[0][0] 

batch_normalization_7 

(BatchNormalization) 

(None, 93, 93, 64) 256 separable_conv2d_1

0[0][0] 

activation_6 (Activation) (None, 93, 93, 64) 0 batch_normalization

_7[0][0] 

conv2d_3 (Conv2D)     (None, 93, 93, 64) 102464 activation_6[0][0] 
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dropout_7 (Dropout) (None, 93, 93, 64) 0 conv2d_3[0][0]   

concatenate_9 

(Concatenate) 

(None, 93, 93, 704) 0 concatenate_8[0][0]                                                                               

dropout_7[0][0] 

batch_normalization_8 

(BatchNormalization) 

(None, 93, 93, 704) 2816 concatenate_9[0][0] 

activation_7 (Activation) (None, 93, 93, 704) 0 batch_normalization

_8[0][0] 

separable_conv2d_11 

(SeparableConvolution) 

(None, 93, 93, 64) 45824 activation_7[0][0] 

batch_normalization_9 

(BatchNormalization) 

(None, 93, 93, 64) 256 separable_conv2d_1

1[0][0] 

activation_8 (Activation) (None, 93, 93, 64) 0 batch_normalization

_9[0][0] 

conv2d_4 (Conv2D) (None, 93, 93, 64) 102464   activation_8[0][0] 

dropout_8 (Dropout) (None, 93, 93, 64) 0 conv2d_4[0][0] 

upsampled_disparity 

(Concatenate) 

(None, 93, 93, 768) 0 concatenate_9[0][0]                                                                               

dropout_8[0][0] 

batch_normalization_10 

(BatchNormalization) 

(None, 93, 93, 768) 3072 upsampled_disparity 

[0][0] 

activation_9 (Activation) (None, 93, 93, 768) 0 batch_normalization

_10[0][0] 

separable_conv2d_12 

(SeparableConvolution) 

(None, 93, 93, 64) 49984 activation_9[0][0] 

up_sampling2d_1 

(UpSampling2D) 

(None, 744, 744, 64) 0 separable_conv2d_1

2[0][0] 

zero_padding2d_1 

(ZeroPadding2D 

(None, 748, 744, 64) 0 up_sampling2d_1    

[0] [0]     

separable_conv2d_2 

(SeparableConvolution) 

(None, 748, 744, 1) 79 input_1[0][0] 

concatenate_10 

(Concatenate) 

(None, 748, 744, 65) 0 zero_padding2d_1 

[0][0]                                                                            
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separable_conv2d_2 

[0][0] 

 

batch_normalization_11 

(BatchNormalization) 

(None, 748, 744, 65) 260   concatenate_10[0][0

] 

activation_10 (Activation) (None, 748, 744, 65) 0 batch_normalization

_11[0][0] 

separable_conv2d_13 

(SeparableConvolution) 

(None, 748, 744, 64) 5849 activation_10[0][0] 

concatenate_11 

(Concatenate) 

(None, 748, 744, 129) 0 concatenate_10  

[0][0]                                                                              

separable_conv2d_1

3[0][0] 

batch_normalization_12 

(BatchNormalization) 

(None, 748, 744, 129) 516 concatenate_11[0][0

]    

activation_11 (Activation) (None, 748, 744, 129) 0 batch_normalization

_12[0][0]   

separable_conv2d_14 

(SeparableConvolution) 

(None, 748, 744, 3) 10839 activation_11[0][0] 

disparity_output 

(Activation) 

(None, 748, 744, 3) 0 separable_conv2d_1

4[0][0] 
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Table-2: Supervised Model with Siamese Network 
 

Layer(type) Output Shape Param

eters 

Numbe

r 

Connected to 

input_1 (Input layer) (None, 672, 672, 3) 0 * 

input_2 (Input layer) (None, 672, 672, 3) 0 * 

separable_conv2d_1 

(SeparableConvolution) 

(None, 672, 672, 32) 275 input_1[0][0]           

input_2[0][0]           

batch_normalization_1 

(BatchNormalization) 

(None, 672, 672, 32) 128 separable_conv2d_

1 [0][0]                                                                          

separable_conv2d_

1 [1][0] 

activation_1 (Activation) (None, 672, 672, 32) 0 batch_normalizatio

n_1[0][0]                                                                       

batch_normalizatio

n_1[1][0] 

max_pooling2d_1 

(MaxPooling2D) 

(None, 336, 336, 32) 0 activation_1[0][0]                                                                                

activation_1[1][0] 

separable_conv2d_2 

(SeparableConvolution) 

(None, 336, 336, 64) 3680 max_pooling2d_1 

[0][0]                                                                             

max_pooling2d_1 

[1][0] 

batch_normalization_2 

(BatchNormalization) 

(None, 336, 336, 64) 256 separable_conv2d_

2 [0][0]                                                                        

separable_conv2d_

2 [1][0] 

activation_2 (Activation) (None, 336, 336, 64) 0 batch_normalizatio

n_2[0][0]                                                                      
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batch_normalizatio

n_2[1][0] 

max_pooling2d_2 

(MaxPooling2D) 

(None, 168, 168, 64) 0 activation_2[0][0]                                                                                

activation_2[1][0] 

separable_conv2d_3 

(SeparableConvolution) 

(None, 168, 168, 128) 9920 max_pooling2d_2  

[0][0]                                                                            

max_pooling2d_2  

[1][0] 

batch_normalization_3 

(BatchNormalization) 

(None, 168, 168, 128) 512 separable_conv2d_

3 [0][0]                                                                        

separable_conv2d_

3 [1][0] 

activation_3 (Activation) (None, 168, 168, 128) 0 batch_normalizatio

n_3 [0][0]                                                                       

batch_normalizatio

n_3[1][0] 

max_pooling2d_5 

(MaxPooling2D) 

(None, 84, 84, 32) 0 activation_1[0][0]                                                                               

activation_1[1][0] 

max_pooling2d_3 

(MaxPooling2D) 

(None, 84, 84, 128) 0 activation_3[0][0]                                                                                

activation_3[1][0] 

concatenate_1 

(Concatenate) 

(None, 84, 84, 160) 0 max_pooling2d_5  

[0][0]                                                                           

max_pooling2d_3  

[0][0] 

concatenate_2 

(Concatenate) 

(None, 84, 84, 160) 0 max_pooling2d_5 

[1][0]                                                 

max_pooling2d_3 

[1][0] 

separable_conv2d_4 

(SeparableConvolution) 

(None, 84, 84, 256) 42656 concatenate_1[0][0]                                                                               

concatenate_2[0][0] 
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batch_normalization_4 

(BatchNormalization) 

(None, 84, 84, 256) 1024 separable_conv2d_

4 [0][0]                                                                          

separable_conv2d_

4 [1][0] 

activation_4 (Activation) (None, 84, 84, 256) 0 batch_normalizatio

n_4[0][0]                                                                       

batch_normalizatio

n_4[1][0] 

max_pooling2d_4 

(MaxPooling2D) 

(None, 42, 42, 256) 0   activation_4[0][0]                                                                                

activation_4[1][0] 

multiply_1 (Multiply) (None, 42, 42, 256) 0 max_pooling2d_4 

[0][0]                                                                             

max_pooling2d_4 

[1][0] 

separable_conv2d_5 

(SeparableConvolution) 

(None, 42, 42, 256) 66816 multiply_1[0][0] 

batch_normalization_5 

(BatchNormalization) 

(None, 42, 42, 256) 1024 separable_conv2d_

5 [0][0] 

activation_5 (Activation) (None, 42, 42, 256) 0 batch_normalizatio

n_5[0][0] 

max_pooling2d_6 

(MaxPooling2D) 

(None, 21, 21, 256) 0 activation_5[0][0] 

separable_conv2d_6 

(SeparableConvolution) 

(None, 21, 21, 256) 66816 max_pooling2d_6 

[0][0] 

batch_normalization_6 

(BatchNormalization) 

(None, 21, 21, 256) 1024   separable_conv2d_

6 [0][0] 

activation_6 (Activation) (None, 21, 21, 256) 0 batch_normalizatio

n_6[0][0] 

up_sampling2d_1 

(UpSampling2D) 

(None, 42, 42, 256) 0 activation_6[0][0] 
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concatenate_3 

(Concatenate) 

(None, 42, 42, 512) 0 up_sampling2d_1 

[0][0]                                                                             

activation_5[0][0] 

separable_conv2d_7 

(SeparableConvolution) 

(None, 42, 42, 256) 135936 concatenate_3[0][0] 

batch_normalization_7 

(BatchNormalization) 

(None, 42, 42, 256) 1024 separable_conv2d_

7 [0][0] 

activation_7 (Activation) (None, 42, 42, 256) 0 batch_normalizatio

n_7[0][0] 

up_sampling2d_2 

(UpSampling2D) 

(None, 84, 84, 256) 0 activation_7[0][0] 

concatenate_4 

(Concatenate) 

(None, 84, 84, 512) 0 up_sampling2d_2 

[0][0]                                                                             

activation_4[0][0] 

separable_conv2d_8 

(SeparableConvolution) 

(None, 84, 84, 128) 78464 concatenate_4[0][0] 

batch_normalization_8 

(BatchNormalization) 

(None, 84, 84, 128) 512   separable_conv2d_

8 [0][0] 

activation_8 (Activation) (None, 84, 84, 128) 0 batch_normalizatio

n_8[0][0] 

up_sampling2d_3 

(UpSampling2D) 

(None, 168, 168, 128) 0 activation_8[0][0] 

concatenate_5 

(Concatenate) 

(None, 168, 168, 256) 0 up_sampling2d_3 

[0][0]                                                                             

activation_3[0][0]   

separable_conv2d_9 

(SeparableConvolution) 

(None, 168, 168, 64) 28992 concatenate_5[0][0] 

batch_normalization_9 

(BatchNormalization) 

(None, 168, 168, 64) 256 separable_conv2d_

9 [0][0] 

activation_9 (Activation) (None, 168, 168, 64) 0 batch_normalizatio

n_9[0][0] 
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up_sampling2d_4 

(UpSampling2D) 

(None, 336, 336, 64) 0 activation_9[0][0] 

concatenate_6 

(Concatenate) 

(None, 336, 336, 128) 0 up_sampling2d_4 

[0][0]                                                                             

activation_2[0][0]   

separable_conv2d_10 

(SeparableConvolution) 

(None, 336, 336, 32) 10400 concatenate_6[0][0] 

batch_normalization_10 

(BatchNormalization) 

(None, 336, 336, 32) 128 separable_conv2d_

10[0][0]    

activation_10 (Activation) (None, 336, 336, 32) 0 batch_normalizatio

n_10[0][0] 

up_sampling2d_5 

(UpSampling2D) 

(None, 672, 672, 32) 0 activation_10[0][0] 

up_sampling2d_6 

(UpSampling2D) 

(None, 672, 672, 256) 0 activation_6[0][0] 

concatenate_7 

(Concatenate) 

(None, 672, 672, 320) 0 up_sampling2d_5 

[0][0]                                                                            

activation_1[0][0]                                                                                

up_sampling2d_6 

[0][0] 

separable_conv2d_11 

(SeparableConvolution) 

(None, 672, 672, 3) 3843 concatenate_7[0][0] 
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Table-3: Unsupervised Model with DenseMapNet Encoder-decoder 
 

Layer(type) Output Shape Param

eters 

Numbe

r 

Connected to 

input_1 (Input layer) (None, 672, 672, 3) 0 * 

input_2 (Input layer) (None, 672, 672, 3) 0 * 

model_1 (Model) (None, 672, 672, 3) 753166  input_1[0][0] 

custom_layer_8 

(CustomLayer) 

(None, 672, 672, 3) 0 input_1[0][0]                                                                                    

input_2[0][0]                                                                                    

model_1[1][0] 

model_1 (Model) 

input_1(InputLayer) (None, 672, 672, 3) 0 * 

separable_conv2d_17 

(SeparableConvolution) 

(None, 672, 672, 128 587 input_1[0][0] 

max_pooling2d_3 

(MaxPooling2D) 

(None, 84, 84, 128) 0 separable_conv2d_17

[0][0] 

batch_normalization_13 

(BatchNormalization) 

(None, 84, 84, 128) 512 max_pooling2d_3 

[0][0] 

downsampled_stereo 

(Activation) 

(None, 84, 84, 128) 0 batch_normalization_

13[0][0] 

separable_conv2d_18 

(SeparableConvolution) 

(None, 84, 84, 128) 19712 downsampled_ stereo 

[0][0]    

separable_conv2d_19 

(SeparableConvolution) 

(None, 84, 84, 128) 19712 downsampled_stereo 

[0][0] 
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dropout_9 (Dropout) (None, 84, 84, 128) 0 separable_conv2d_18

[0][0]   

separable_conv2d_20 

(SeparableConvolution) 

(None, 84, 84, 128) 19712 downsampled_stereo 

[0][0] 

dropout_10 (Dropout) (None, 84, 84, 128) 0 separable_conv2d_19

[0][0] 

concatenate_10 

(Concatenate) 

(None, 84, 84, 256) 0 dropout_9[0][0]                                                                                   

downsampled_stereo 

[0][0] 

separable_conv2d_21 

(SeparableConvolution) 

(None, 84, 84, 128) 19712 downsampled_stereo 

[0][0] 

dropout_11 (Dropout) (None, 84, 84, 128) 0 separable_conv2d_20

[0][0] 

concatenate_11 

(Concatenate) 

(None, 84, 84, 384) 0 dropout_10[0][0]                                                                                  

concatenate_10[0][0] 

dropout_12 (Dropout)   (None, 84, 84, 128) 0 separable_conv2d_21

[0][0] 

concatenate_12 

(Concatenate) 

(None, 84, 84, 512) 0 dropout_11[0][0]                                                                                  

concatenate_11[0][0] 

max_pooling2d_4 

(MaxPooling2D) 

(None, 84, 84, 128) 0 separable_conv2d_17

[0][0] 

concatenate_13 

(Concatenate) 

(None, 84, 84, 640) 0 dropout_12[0][0]                                                                                  

concatenate_12[0][0]   

concatenate_14 

(Concatenate) 

(None, 84, 84, 768) 0 max_pooling2d_4 

[0][0]                                                                             

concatenate_13[0][0] 

batch_normalization_14 

(BatchNormalization) 

(None, 84, 84, 768) 3072  concatenate_14[0][0] 

activation_12 (Activation) (None, 84, 84, 768) 0 batch_normalization_

14[0][0] 



 

97 
 

separable_conv2d_22 

(SeparableConvolution) 

(None, 84, 84, 128) 99200 activation_12[0][0] 

batch_normalization_15 

(BatchNormalization) 

(None, 84, 84, 128) 512 separable_conv2d_22

[0][0] 

activation_13 (Activation) (None, 84, 84, 128) 0 batch_normalization_

15[0][0] 

separable_conv2d_23 

(SeparableConvolution) 

(None, 84, 84, 64) 11456 activation_13[0][0] 

dropout_13 (Dropout)   (None, 84, 84, 64) 0 separable_conv2d_23

[0][0]    

concatenate_15 

(Concatenate) 

(None, 84, 84, 832) 0   concatenate_14[0][0]                                                                              

dropout_13[0][0]    

batch_normalization_16 

(BatchNormalization) 

(None, 84, 84, 832) 3328  concatenate_15[0][0] 

activation_14 (Activation) (None, 84, 84, 832) 0 batch_normalization_

16[0][0] 

separable_conv2d_24 

(SeparableConvolution) 

(None, 84, 84, 128) 107456 activation_14[0][0] 

batch_normalization_17 

(BatchNormalization) 

(None, 84, 84, 128) 512 separable_conv2d_24

[0][0] 

activation_15 (Activation) (None, 84, 84, 128) 0 batch_normalization_

17[0][0]   

separable_conv2d_25 

(SeparableConvolution) 

(None, 84, 84, 64) 11456 activation_15[0][0] 

dropout_14 (Dropout) (None, 84, 84, 64) 0 separable_conv2d_25

[0][0] 

concatenate_16 

(Concatenate) 

(None, 84, 84, 896) 0 concatenate_15[0][0]                                                                              

dropout_14[0][0] 

batch_normalization_18 

(BatchNormalization) 

(None, 84, 84, 896) 3584 concatenate_16[0][0] 
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activation_16 (Activation) (None, 84, 84, 896) 0 batch_normalization_

18[0][0]   

separable_conv2d_26 

(SeparableConvolution) 

(None, 84, 84, 128) 115712 activation_16[0][0] 

batch_normalization_19 

(BatchNormalization) 

(None, 84, 84, 128) 512 separable_conv2d_26

[0][0] 

activation_17 (Activation) (None, 84, 84, 128) 0 batch_normalization_

19[0][0] 

separable_conv2d_27 

(SeparableConvolution) 

(None, 84, 84, 64) 11456 activation_17[0][0]   

dropout_15 (Dropout)   (None, 84, 84, 64) 0 separable_conv2d_27

[0][0] 

concatenate_17 

(Concatenate) 

(None, 84, 84, 960) 0 concatenate_16[0][0]                                                                              

dropout_15[0][0] 

batch_normalization_20 

(BatchNormalization) 

(None, 84, 84, 960) 3840  concatenate_17[0][0] 

activation_18 (Activation) (None, 84, 84, 960) 0 batch_normalization_

20[0][0] 

separable_conv2d_28 

(SeparableConvolution) 

(None, 84, 84, 128) 123968 activation_18[0][0] 

batch_normalization_21 

(BatchNormalization) 

(None, 84, 84, 128) 512 separable_conv2d_28

[0][0] 

activation_19 (Activation) (None, 84, 84, 128) 0 batch_normalization_

21[0][0] 

separable_conv2d_29 

(SeparableConvolution) 

(None, 84, 84, 64) 11456 activation_19[0][0] 

dropout_16 (Dropout) (None, 84, 84, 64) 0   separable_conv2d_29

[0][0] 

upsampled_disparity 

(Concatenate) 

(None, 84, 84, 1024) 0 concatenate_17[0][0]                                                                              

dropout_16[0][0] 
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batch_normalization_22 

(SeparableConvolution) 

(None, 84, 84, 1024) 4096   upsampled_disparity 

[0][0] 

activation_20 (Activation) (None, 84, 84, 1024) 0 batch_normalization_

22[0][0] 

separable_conv2d_30 

(SeparableConvolution) 

(None, 84, 84, 128) 132224   activation_20[0][0] 

up_sampling2d_2 

(UpSampling2D) 

(None, 672, 672, 128) 0 separable_conv2d_30

[0][0] 

batch_normalization_23 

(BatchNormalization) 

(None, 672, 672, 128) 512 up_sampling2d_2 

[0][0] 

activation_21 (Activation) (None, 672, 672, 128) 0 batch_normalization_

23[0][0] 

separable_conv2d_31 

(SeparableConvolution) 

(None, 672, 672, 64) 11456 activation_21[0][0]   

concatenate_18 

(Concatenate) 

(None, 672, 672, 192) 0 up_sampling2d_2 

[0][0]                                                                           

separable_conv2d_31

[0][0] 

batch_normalization_24 

(SeparableConvolution) 

(None, 672, 672, 192) 768   concatenate_18[0][0] 

activation_22 (Activation) (None, 672, 672, 192) 0 batch_normalization_

24[0][0] 

separable_conv2d_32 

(SeparableConvolution) 

(None, 672, 672, 3) 16131 activation_22[0][0] 

disparity_output 

(Activation) 

(None, 672, 672, 3) 0 separable_conv2d_32

[0][0] 
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Table-4: Unsupervised Model with Symmetric Encoder-decoder 

 

Layer(type) Output Shape Parame

ters 

Number 

Connected to 

input_1 (Input layer) (None, 672, 672, 3) 0 * 

input_2 (Input layer) (None, 672, 672, 3) 0 * 

model_1 (Model) (None, 672, 672, 3) 661782   input_1[0][0] 

custom_layer_8 

(CustomLayer) 

(None, 672, 672, 3) 0 input_1[0][0]                                                                                    

input_2[0][0]                                                                                    

model_1[1][0] 

model_1(Model) 

input_1 (InputLayer) (None, 672, 672, 3) 0 * 

separable_conv2d_1 

(SeparableConvolution) 

(None, 672, 672, 64) 403 input_1 [0][0] 

batch_normalization_1 

(BatchNormalization) 

(None, 672, 672, 64) 256 separable_conv2d_1 

[0][0] 

activation_1 (Activation) (None, 672, 672, 64) 0   batch_normalization

_1 

max_pooling2d_1 

(MaxPooling2D) 

(None, 336, 336, 64) 0 activation_1[0][0] 

separable_conv2d_2 

(SeparableConvolution) 

(None, 336, 336, 128) 11456 max_pooling2d_1 

[0][0] 

batch_normalization_2 

(BatchNormalization) 

(None, 336, 336, 128) 512 separable_conv2d_2 

[0][0] 

activation_2 (Activation) (None, 336, 336, 128) 0 batch_normalization

_2[0][0] 

max_pooling2d_2 

(MaxPooling2D) 

(None, 168, 168, 128) 0 activation_2[0][0] 
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separable_conv2d_3 

(SeparableConvolution) 

(None, 168, 168, 256) 36224 max_pooling2d_2 

[0][0] 

batch_normalization_3 

(BatchNormalization) 

(None, 168, 168, 256) 1024 separable_conv2d_3 

[0][0] 

activation_3 (Activation) (None, 168, 168, 256) 0 batch_normalization

_3[0][0] 

max_pooling2d_3 

(MaxPooling2D) 

(None, 84, 84, 256) 0 activation_3[0][0] 

separable_conv2d_4 

(SeparableConvolution) 

(None, 84, 84, 512) 133888 max_pooling2d_3 

[0][0] 

batch_normalization_4 

(BatchNormalization) 

(None, 84, 84, 512) 2048 separable_conv2d_4 

[0][0] 

activation_4 (Activation) (None, 84, 84, 512)   0 batch_normalization

_4[0][0] 

max_pooling2d_4 

(MaxPooling2D) 

(None, 42, 42, 512)   0 activation_4[0][0] 

separable_conv2d_5 

(SeparableConvolution) 

(None, 42, 42, 512) 267264 max_pooling2d_4 

[0][0] 

batch_normalization_5 

(BatchNormalization) 

(None, 42, 42, 512) 2048   separable_conv2d_5 

[0][0] 

activation_5 (Activation) (None, 42, 42, 512)   0 batch_normalization

_5[0][0] 

up_sampling2d_1 

(UpSampling2D) 

(None, 84, 84, 512) 0 activation_5[0][0] 

separable_conv2d_6 

(SeparableConvolution) 

(None, 84, 84, 256) 144128 up_sampling2d_1 

[0][0] 

batch_normalization_6 

(BatchNormalization) 

(None, 84, 84, 256)   1024 separable_conv2d_6 

[0][0] 

activation_6 (Activation) (None, 84, 84, 256) 0 batch_normalization

_6[0][0] 
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up_sampling2d_2 

(UpSampling2D) 

(None, 168, 168, 256)   0 activation_6[0][0] 

separable_conv2d_7 

(SeparableConvolution) 

(None, 168, 168, 128) 45440   up_sampling2d_2 

[0][0] 

batch_normalization_7 

(BatchNormalization) 

(None, 168, 168, 128) 512   separable_conv2d_7 

[0][0] 

activation_7 (Activation) (None, 168, 168, 128)   0 batch_normalization

_7[0][0] 

up_sampling2d_3 

(UpSampling2D) 

(None, 336, 336, 128) 0 activation_7[0][0] 

separable_conv2d_8 

(SeparableConvolution) 

(None, 336, 336, 64)   14528   up_sampling2d_3 

[0][0] 

batch_normalization_8 

(BatchNormalization) 

(None, 336, 336, 64) 256 separable_conv2d_8 

[0][0] 

activation_8 (Activation) (None, 336, 336, 64) 0 batch_normalization

_8[0][0] 

up_sampling2d_4 

(UpSampling2D) 

(None, 672, 672, 64) 0 activation_8[0][0] 

separable_conv2d_9 

(SeparableConvolution) 

(None, 672, 672, 3) 771 up_sampling2d_4 

[0][0] 


