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ÖZET 

Yüksek Lisans Tezi 

DOĞRUSAL MATRĐS EŞĐTSĐZLĐK TABA�LI OTOMATĐK KO�TROL 

VE ÇEYREK ARAÇ MODELĐ AKTĐF SÜSPA�SĐYO� SĐSTEMĐ�E 

UYGULA�MASI 

Aslı SOYĐÇ 

Anadolu Üniversitesi                                                                                          

Fen Bilimleri Enstitüsü                                                                                   

Elektrik-Elektronik Mühendisliği Anabilim Dalı 

Danışman : Prof. Dr. Hüseyin AKÇAY                                                         

2009, 50 sayfa 

 

Bu tezde, doğrusal matris eşitsizlik tabanlı otomatik kontrol yaklaşımı ve bu 

yaklaşımın bir uygulaması olarak düşey ivme ölçümlü çeyrek araç modeli aktif 

süspansiyon sistemi tasarımı çalışılmıştır. Tasarım amaçları �∞ performansı, �� 
performansı, zaman bölgesi kısıtları ve kapalı çevrim kutup alanındaki kısıtların 

bir karışımıdır. Tasarımı gerçekleştirebilmek için iki serbestlik dereceli çeyrek 

araç modelinin matematiksel ifadesi kullanılmış ve sistem beyaz gürültü yol 

girdisine göre tanımlanmıştır. Doğrusal matris eşitsizlik yaklaşımı ile geri 

beslemeli kontrolcü tasarımı yapılması amaçlanmıştır. Bu kontrolcünün 

süspansiyon ve tekerlek deformasyonunu istenilen değerlerde tutarken, yolcu 

konforunu sağlamak amacıyla düşey ivmeyi mümkün olduğu kadar 

küçültebilmesi gerekmektedir. MATLAB simülasyonları kullanılarak, aktif 

süspansiyon ve pasif süspansiyon sistemleri karşılaştırılması yapılmıştır. Önerilen 

yaklaşım, kısıtları verilen değerlerde tutarken mümkün olan en iyi yol konforunu 

sağlamaktadır. 

Anahtar Kelimeler : Doğrusal Matris Eşitsizlikleri; Otomatik Kontrol; Çeyrek 

Araç Modeli; Aktif Süspansiyon 
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ABSTRACT 

Master of Science Thesis 

MULTIOBJECTIVE OUTPUT FEEDBACK CO�TROL via LMI 

OPTIMIZATIO� and QUARTER-CAR ACTIVE SUSPE�SIO� SYSTEM 

 

Aslı SOYĐÇ 

Anadolu University                                                                                    

Graduate School of Sciences                                                                    

Electrical and Electronics Engineering Program 

Supervisor  : Prof. Dr. Hüseyin AKÇAY                                                        

2009, 50 pages 

In this thesis, the linear matrix inequality approach to multiobjective synthesis of 

linear output-feedback controllers is investigated. Design objectives are a mixture 

of the �∞ performance, �� performance, the time-domain constraints, and the 

constraints on the closed-loop pole locations. As an application of the LMI 

approach, the quarter-car model active suspension system design with vertical 

acceleration measurement is studied. Two degree of freedom quarter-car model is 

defined and parametrized to the white noise velocity road inputs. Multiobjective 

output feedback controller is designed in order to minimize the rms vertical 

acceleration for achieving better ride comfort while keeping the tire deflection rms 

gain and the suspension travel rms response below some given bounds. MATLAB 

simulations of active and passive suspension systems are compared. The proposed 

approach achieves best possible ride comfort while keeping the constrained 

variables within the given bounds. 

Keywords : Linear Matrix Inequalities; Active Suspension; Quarter-Car Model; 

        Multiobjective Control 
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CHAPTER 1 

I�TRODUCTIO� 

 

The suspension systems serve a dual purpose – contributing to the car’s handling 

and braking for good active safety and driving pleasure, and keeping vehicle 

occupants comfortable and reasonably well isolated from road noise, bumps and 

vibrations. Automotive suspension systems are divided into three categories; 

passive suspension systems, semi-active suspension systems and active 

suspension systems according to their ability to add or extract energy. 

It is well known that compromise between ride comfort and handling 

performance has to be made to design passive suspension of a vehicle. To 

overcome this problem, many researchers have proposed to use active suspension 

systems. 

An active suspension system, has the capability to adjust itself continously 

to changing road conditions. It artificially extends the design parameters of the 

system by constantly monitoring and adjusting itself, thereby changing its 

character on an ongoing basis.  

Also, active suspensions may consume large amounts of energy in 

providing the control force and therefore in the design procedure for the active 

suspension the power limitations of actuators should also be considered as an 

important factor. In any vehicle suspension system, there are a variety of 

performance parameters which need to be optimized. Among them, three main 

performance requirements for advanced vehicle suspensions include isolating 

passengers from vibration and shock arising from road roughness (ride comfort), 

suppressing the hop of the wheels so as to maintain firm and uninterrupted contact 

of wheels to road (good handling), keeping suspension strokes within an 

allowable maximum (structural constraint) and restricting the active force due to 

the limited power provided by the vehicle engine [5,28]. These requirements are 

conflicting, and in order to manage the trade-offs between conflicting 

performance requirements, many active suspension control approaches are 
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proposed on various control techniques such as LQG (Linear Quadratic Gaussian) 

control, adaptive control, nonlinear control, �∞ or �� control and also LMI 

approach (e.g.[1, 2, 3, 4, 5, 6, 16, 17, 27, 28]). 

In this thesis, the LMI approach is applied to the active suspension system design 

problem. For getting a general view of control problems, a brief information about 

control problems and methods are given below. 

 The mathematical formulation of control problems, based on mathematical 

models of physical systems, is intrinsically complex, the fundamental ideas in 

control theory are simple enough and very intuitive. These key ideas can be found 

in nature, in the evolution and the behaviour of living beings [26]. 

 There are three fundamental concepts in control theory; the first one is that 

of feedback. The second key concept in control theory is that of need for 

fluctuations. And the third very important concept in control theory is that of 

optimization. The last one, optimization, is a very well established branch of 

mathematichs, whose goal is to find the values for variables in order to maximize 

the profit or to minimize the costs subject to some constraints [26, 11]. 

The problem of designing controllers that satisfy both the robust stability 

and some performance criteria is called robust control. The �∞ control theory is 
one of the cornerstones of modern control theory. It was developed to solve such 

problems with very strong practical implications. The widely accepted modern 

technique for solving robust control problems now is to reduce them to linear 

matrix inequalities (LMIs) and the LMI techniques are commonly examined in 

most researches and books (e.g.[9, 10, 11, 13, 14, 18]). 

 The LMIs and the LMI techniques have emerged as powerful design tools 

in areas ranging from control engineering to system identification and structural 

design. Three factors make LMI techniques appealing: 

• a variety of design specifications and constraints can be expressed as LMIs 

• once formulated in terms of LMIs, a problem can be solved exactly by 

efficient convex optimization algorithms (the “LMI solvers”) 
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• while most problems with multiple constraints or objectives lack analytical 

solutions in terms of matrix equations, they often reamin tractable in the 

LMI framework. This makes LMI-based design a valuable alternative to 

classical “analytical” methods [2, 11]. 

In active suspension system design, system requirements, mentioned 

above, only the first one, which provides ride comfort to passengers, requires a 

minimum while the others have to keep related states within the given bounds. 

These requirements are in fact hard constraints in time-domain and related to 

safety. Then the active suspension control problem can be considered as a 

disturbance attenuation problem with time-domain hard constraints [4, 5]. 

According to these informations, in this thesis, the LMI optimization is suggested 

to apply to the active suspension design problem. 

1.1       Scope of the Work 

In this thesis, multiobjective output-feedback control with LMI synthesis of a 

quarter-car active suspension system is studied. The design of a output-feedback 

controller that provides a better ride comfort and respects all constraints of active 

suspension system is aimed. The content of this thesis is organized as follows: 

 First, in Chapter 2, the LMIs are studied. Formulations, variables and 

feasibilty of the synthesis to the control problems are reviewed. In this chapter, 

also the quarter-car model of a vehicle is presented. The LMI synthesis is applied 

to the quarter-car model. 

 In Chapter 3, the LMI control procedure reviewed in Chapter 2 is applied 

to the quarter-car active suspension design problem for three cases. Firstly, the 

problem is stated and the variables are defined for the three cases. A parametric 

design study for different cases of the parameters is performed. 
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CHAPTER  2 

MULTIOBJECTIVE OUTPUT FEEDBACK CO�TROL via 

LMI OPTIMIZATIO� 

 

2.1 Linear Matrix Inequality – LMI 

The history of LMIs in the analysis of dynamical systems goes back more than 

100 years ago. The history has begun in about 1890, when Lyapunov published 

his seminal work. He showed that the differential equation 

                                                      
��
 ���� = �����                                            (2.1)    

is stabel if and only if there exists a positive definite matrix �  satisfying 

      ��� + �� < 0.               (2.2)      

The requiremetn ��� + �� < 0 is what we nowadays call a Lyapunov inequality 

on �  is a special form of an LMI [13, 22]. 

     2.1.1 Problem statement and the motivation 

The LMIs have emerged as powerful formulation and design techniques 

for a variety of linear-control problems. Since solving the LMIs is a convex 

optimization problem, such formulations offer a numerically tractable means of 

attacking problems that lack an analytical solution [1]. 

In this thesis, multiobjective output-feedback synthesis for multi-input/multi-

output (MIMO) linear time invariant (LTI) systems is studied. The feedback 

configuration is as follows ; 

                                      

�� = �� + �� + ��!      �∞ = 	∞� + #∞� + #∞�!    �� = 	�� + #�� + #��!$ = 	� + #%!                                                (2.3)  

where ! ∈  ℛ() is the control input,   is the exogenous input, $ ∈ ℛ(*  is the 
measured output, �∞ and �� forms the outputs channels. ℛ denotes the reel 



5 

 

numbers, +, and +% indicate the size of ! and $ respectively. The output channel �∞ is associated with the �∞ performance while the channel �� is associated with 

the �� performance. 

The dynamical output-feedback controller shown in 2.1 and denoted by - 

satisfies ! = -$. Its realization is given by state-space ; 
   

.� = �/. + �/$! = 	/. + #/$                                                   (2.4) 
where �/, �/, 	/, #/ are the state-space parameters. 

 

   Figure 2.1 : The feedback configuration 

The closed-loop equations have the following form : 

    
��01 = �01�01 + �01       �∞ = 	01∞�01 + #01∞ �� = 	01��01 + #01�                                         (2.5) 

where 

�01 = 2 � + ��3#/	 ��3	/�/	 + �/#%3#/	 �/ + �/#%3	/4,           �01 = 5��0 6, 
	01∞ = �	∞ + #∞�3#/	 #∞�3	/�,                           #01∞ = #∞�, 
	01� = �	01� + #��3#/	 #��3	/�,                             #01� = #��, 
3 = �1 − #/#%�8�    and       �01 = 9� .:� .                                                    (2.6) 

The closed-loop transfer function from  ; to �; is denoted by <;�=� and  ; 
and �; are the specified input and output signals. 
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      2.1.2  The LMI formulation of the design specifications 

All the LMI characterizations are listed below. �01 is the closed-loop state 
matrix and �01 is the closed-loop state vector in equation (2.6). 

Since the closed-loop system must be internally stable, it must admit a 

quadratic Lyapunov function [1] : 

   >01 = �01� ��01,           � > 0                                 (2.7) 
such that 

    �01� � + ��01 < 0.                                                (2.8) 
The LMI consists of expressing each control specification or objectives as an 

additional constraint on admissible closed-loop Lyapunov functions staisfying 

(2.7) and (2.8) [1,8,6]. 

• @∞ Performance 

 <∞ is the closed-loop transfer matrix from the input   to the output 

channel �∞. Let ||<∞||∞ denote the �∞ norm of <∞ that is, its largest gain 
across frequency in the singular value. The �∞ norm of <∞ is also defined 
as, 

||<∞||∞ = maxE
||�∞||�|| ||� . 

 

The �∞ norm measures the system input-output gain for finite energy or 

finite rms input signals. For more information, see [11]. 

 

The �∞ nominal performance can be formulated as follows. The constraint F|<∞|F
∞

< G, for G > 0 can be interpreted as a disturbance rejection 
performance [1,11]. The closed-loop rms gain from   to �∞ does not 
exceed γ if and only if there exists a symmetric matrix �∞ such that 
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                          H�01�∞ + �∞�01� �01 �∞	01∞��01� −I #01∞�	01∞�∞ #01∞ −GI J < 0,                     (2.9) 
                                                                             �∞ > 0.                    (2.10) 
 

The closed-loop matrices �01, �01, 	01∞ and #01∞ are defined by equations 
(2.5) and (2.6). 

 

• @K Performance 
 <� is the closed-loop transfer function from the input   to the output 

channel ��, is defined in equation (2.5). The �� norm of  ||<�||� is defined 
by 

||<�||�� = 12L M <N�<�O∞

8∞ �P �<��P ��Q  

and corresponds to the asymptotic variance of the output �� when the 

system is deriven by the white noise input  . It is well-known that is norm 

can be computed as 

||<�||�� = inf {<NVWX�	01���	01�� �: �01�� + ���01� + �01�01� < 0} 
where #01� = 0 [2]. 
The inf denotes infimum and in mathematics, particularly set theory, the 

infimum of a subset of some set is the greatest elemnt that is less than or 

equal to all elements of the subset. 

Lets define the �� nominal performance. The �� norm of the closed-loop 

transfer function from   to �� does not exceed [, for [ > 0 if and only if #01� = 0 and there exists two symmetric matrices �� and \ such that 

[2,11] 

                                   ]�01�� + ���01� �01�01� −I^ < 0,                              (2.11)                        
      2 \ 	01�����	01�� �� 4 > 0,                                   (2.12) 
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                                      <NVWX�\� <  [�.                                    (2.13) 
The closed-loop matrices �01, �01, 	01� and #01� are defined by equations 
(2.5) and (2.6). 

Note that the trace of + × + square matrix ` is defined by 

    <N�`� ≡ ∑  cc(cd� , 

it is the sum of diagonal elements. For more information, see [30]. 

• Generalized @K Performance 
 

The generalized �� norm is defined by  

 

      
||<;||e = sup {i�;�<�i ∶  �01�0� = 0,                                 klN      < ≥ 0, n i ;���i�Q� ≤ 1}.�p                   (2.14) 

 

It measures the peak amplitude of the output signal �;��� over all unit-
energy inputs  ;��� [1]. 
 

Suppose that there exists a symmetric matrix �� satisfying 
 

  ]�01�� + ���01� �01�01� −I^ < 0,                                         (2.15) 
                                       2 �� 	01��	01� qI 4 > 0,         #01� = 0.            (2.16) 
The first inequality ensures that �Q Q�⁄ �>s�01���t −   ;���� ;��� ≪ 0 and 
the second inequality implies that �1 q⁄ �	01�� 	01� <  �� and thus �;�<���;�<�  ≤  q>s�01�<�t. Combining these two inequalities leads to 

  �;�<���;�<�  ≪  q n  ;���� ;���Q��p   

for all < ≥ 0, so i<;ie� <  q [1]. 
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• Pole Placement 

 

The closed-loop poles lie in the LMI region 

 

  # =  {� ∈ v ∶ w + x� + x��� < 0}  
with w =  w� =  9yc;:�zc,;z{ and x =  9�c;:�zc,;z{ if and only if there exists 

a symmetric matrix �|}1 satisfying 
  9yc;�|}1 + �c;�01�|}1 + �c;�|}1�01� :�zc,;z{ < 0,           (2.17) 
                                                                                    �|}1 > 0.           (2.18) 
 

To recover convexity, it must be required that all specifications are enforced by a 

single closed-loop Lyapunov function [3, 8, 6]. This amounts to imposing the 

constraint 

 

   � =  �~ = �� = �|}1.                                        (2.19) 
     2.1.3 The LMI approach to multiobjective synthesis 

The main goal is to compute a single LTI controller - that 

1. internally stabilizes the closed-loop and 

2. meets certain specifications on a particular set of channels [1]. 

+ is the number of states of the plant (size of � ) and � is the order of controller. 
Partition � and �8� as, 
                         � = 5 � ��� ∗ 6 ,               �8� = 5 � ��� ∗ 6                            (2.20) 
where � and � are + × + and symmetric real matrices. * replaces blocks that are 

readily inferred by symmetry. 

From ��8� = I, 
  �П� =  П�   with      П� ∶=  5 � I�� 06                                     (2.21) 
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              П� ∶=  5I �0 ��6.                                    (2.22) 
The motivation for the transformation of controller parameters lies in the 

following identities derived from (2.6), (2.21) and (2.22) after a short calculation 

[1, 29] : 

П����01П� =  П���01П� =  ]�� + ��	� � + ���1 − #/#%�8�#�	�� �� + ��	 ^  
П����01 =  П���01 =  2 �����4  
	01~П� =  s	~� + #~�	� 	~ + #~��1 − #/#%�8�#/	t  
	01�П� =  s	�� + #��	� 	� + #���1 − #/#%�8�#/	t  
П���П� =  П��П� =  5� II �6                                                                            (2.23) 
where the change of controller variables in equation (2.23) ��, �� , 	� and #� as 

follows : 

��
�
���� = ��/�� + ��� + ��3#/	�� + ��/sI + #%3#/t	�+s����3 + ��/#%3t	/��                                      �� =  ����3#/ + ��/#%3#/ + ��/                                      	� =  3#/	� + 3	/��                                                                #� =  #/                                                                                             

�                        (2.24) 

Note that the new variables ��, �� , 	� in equations (2.24) have dimensions + × +, + ×  +,, and +% × + respectively. If � and � have full row rank and ��, �� , 	�, #�, X, and � are given, the controller matrices �/, �/, 	/ and #/ that satisfy 
(2.4) can always be computed. If � and � matrices are square and invertible then 

controller matrices �/, �/, 	/ and  #/ are unique. For full order design � and � 

can always be assumed that have full row rank. Hence, the variables �/, �/, 	/ 
and #/ can be replaced by ��, �� , 	� and #� without loss of generality [1, 2]. 

In the light of these identities synthesis of LMI’s can be derived from 

analysis results of Section (2.1.2) with a suitable transformation. 
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At first, a detailed proof for the generalized �� problem is provided. Fix q > 0 and suppose that equations (2.15), (2.16) and (2.19) hold for some � > 0 
and some controller with realization (�/, �/, 	/, #/). That can be assumed 

without loss of generality, this controller is of order at least + (size of �) and � 

and � in equation (2.20) have full row rank. From equation (2.21), since � is 

nonsingular, П� has full column rank [1]. If a suitable transformation with Q�V��П�, I� is performed to inequalities in (2.15) and (2.16), take the forms : 

  ]П���01� �П� + П����01П� П����01�01� �П� −I ^ < 0 ,                              (2.25) 
                                                     2П���П� П��	01��	01�П� qI 4 > 0.                              (2.26) 
Now replace the equations from equation (2.23) in inequalities (2.25) and (2.26), 

then inequalities take forms : 

 H ��� ��� + � + ��3#�	 ���� + �� + ���3#�	�� ��� ������ ��� −I J < 0 ,                  (2.27) 

      H � I �	�� + #��	���I � �	� + #��3#/	��	�� + #��	� 	� + #��3#/	 qI J > 0 ,                   (2.28) 
with 

   ��� = ��� + �� + ��	� + 	�����, 
   ��� =  ��� + ��	�� + �� + ��	 . 

These inequalities are clearly affine in ��, �� , 	�, #�, �, and �. Thus, the 

solvability of these LMI’s is necessary for the existence of a stabilizing controller 

rendering the inequality �<�e� <  q [1]. 
     2.1.4 The LMI’s for full order synthesis 

The LMI formulation for each particular specification is outlined this 

section. For example, our design problem has an �~ constraint and also an �� 
constraint. 
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 @~ Synthesis 
In the �~ synthesis, the analysis LMI’s (2.9) and (2.10) are transformed with П� 
and Q�V��П�, I, I�. Then, inequalities take form : 

  

�
��

��� ��� �� �	~� + #��	���∗ ��� ��� �	~ + #��3#/	��∗ ∗ −GI #���∗ ∗ ∗ −GI �
�� < 0                        (2.29) 

where 

   ��� = ��� + �� + ��	� + 	�����, 
   ��� =  ��� + � + ��3#�	, 

   ��� =  ��� + ��	�� + ��� + ��	�  
and * denotes symmetric elements of the matrix. Since γ enters linearly, it can be 

directly minimized by the LMI optimization to find the smallest achievable �~ 

norm [1]. 

Generalized @K Synthesis 
In the generalized �� synthesis, the analysis LMI’s (2.11) – (2.13) are 

transformed with Q�V��П�, I� for the standart �� problem. Inequalities obtained 

as shown in (2.30) – (2.32) : 

  H��� ��� + � + ��3#�	 ��∗ ��� + ��	�� + ��� + ��	� ���∗ ∗ −I J < 0 ,                    (2.30) 

H � I �	�� + #��	���I � �	� + #��3#/	���	�� + #��	�� �	� + #��3#/	� \ J > 0 ,                  (2.31) 
                                                                              <NVWX�\� <  [                   (2.32) 
where ��� denotes to ��� + �� + ��	� + 	�����. 
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Regional Pole Placement 

The matrix Q�V��П�, ⋯ , П�� transforms inequality (2.17) to the LMI : 

  

�
��y;� 5� II �6 + �;� 2�� + ��	� � + ��#�	�� �� + ��	 4�

+��; 2�� + ��	� � + ��#�	�� �� + ��	 4 �
��

;�
< 0.        (2.33) 

Also, since the requirement � > 0 is common to all analysis results in Section 

(2.1.2), the constraint 

     5� II �6 > 0            (2.34) 

should always be included in the list of LMI’s [1, 2, 11]. 

2.2 Quarter – Car Model 

Performance requirements for advanced vehicle suspensions include;  

1. isolating passengers from vibration and shock arising from road roughness 

(ride comfort), 

2. suppressing the hop of the wheels so as to maintain firm and uninterrupted 

contact of wheels to road (good road holding), 

3. keeping suspension strokes within an allowable maximum [4, 5]. 

In order to manage the trade-offs between conflicting performance requirements, 

many active suspension control approaches based on various control techniques 

such as LQG, adaptive control and nonlinear control have been proposed in the 

literature. A common point of these approaches is that all control requirements are 

weighted and formulated in a single objective function to be minimized in order to 

find an optimum controller [4, 5]. 

 In designing an active suspension system, one needs to take the following 

aspects into consideration ; 

• as an indicator of ride comfort, the sprung mass vertical acceleration 

should be made as small as possible. 
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• the suspension travel should be kept below, the maximum allowable 

suspension stroke to prevent excessive suspension bottoming, which can 

result in structural damage and deterioration of ride comfort. 

• the dynamic tire load should not exceed the static ones, that is, �
��� −  � + 	
���� −  � � < 9.8��� − �,� 
• to avoid actuator saturation, the active force should be bounded, i.e., for 

some � > 0, !��� ≤ � for all � [3]. 
Thus designing control law for the suspension system is a multi-objective control 

problem. 

Figure 2.2 shows a two degree of freedom (2 DOF) quarter-car model where �� 
and �, denotes the sprung and the unsprung masses respectively. The pair 

(��, 	�) is the so-called passive suspension; �
 stands for the tire stiffness and 	
 
denotes the tire damping. The parameter values, except 	
, chosen for this study 
are shown in Table 2.1 [3]. 

 

 

 

 

 

 

Figure 2.2 : 2 DOF quarter-car model 

Equations of motion take the following form : 

����� =  −����� − �,� − 	����� − ��,� − !  
�,��, =  ����� − �,� + 	����� − ��,� + ! − �
��� −  � − 	
���, −  � �  
where �� is the displacement of the sprung mass, �, is the displacement of the 

unsprung mass and   is the road uneveness. To transform the equations of motion 
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of the quarter-car model into a state-space form, the following state variables are 

defined. 

�� : suspension travel �� − �, �� : tire deflection �, −   

�� : sprung mass absolute velocity ��� �  : unsprung mass absolute velocity ��,. 
 

�� Sprung mass 240 kg �, Unsprung mass 36 kg 	� Damping coefficient 980 Ns/m �� Suspension stiffness 16,000 N/m �
 Tire stiffness 160,000 N/m 

 

Table 2.1 : The system parameters and values of the quarter-car model 

The output vector � consists of the vertical acceleration, the suspension 
travel, and the tire deflection. 

�� =  ��� : vertical acceleration of the sprung mass, 

�� =  �� : the suspension travel, �� =  �� : the tire deflection. 
 

All achievable rms responses of the quarter-car model are parametrized to the 

white noise velocity road inputs [3, 27]. We assume that the derivative of   

denoted by >c obeys the relation [27] : 
   >c =   � = 2L+p√¢£¤���,             � ≥ 0                      (2.36) 
where ¤��� is a zero-mean white noise process with an autocovariance function x¥�¦� =  q���; κ and +p are the road roughness parameters; £ is the vehicle 
forward velocity; and q��� is the unit impulse function [3]. For this study +p and κ 
assume the values 0.15708 cycles per meter and 0.76 ×  10© respectively. The 
vehicle forward velocity is 20 m/s. 
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From equations (2.35) and (2.36) we obtain, 

   

�� = �� + ��>c + ��!       � =  	ª� + #ªE>c + #ª,!$ = 	� + #%!                                                    (2.37) 

where 

  � =  
�
��

0 0 1 −10 0 0 1− �«{« 0 − ¬«{«
¬«{«�«{) − �­{)

¬«{) − �¬«®¬­�{) �
��                                   (2.38) 

  �� =  
�
��

0−10¬­{) �
��,              �� =  

�
��

00− �{«�{) �
�� ,                                    (2.39) 

	ª =  H− �«{« 0 − ¬«{«
¬«{«1 0 0 00 1 0 0 J,           #ªE =  ¯000°,         #ª, = H− �{«00 J,      (2.40) 

  	 =  5− �«{« 0 − ¬«{«
¬«{«6,           #% =  − �{« .                    (2.41) 

 

     2.2.1 Application to the active suspension design problem 

In this section, multiobjective output control via LMI optimization is 

applied to design active suspension system, based on a two degree of freedom 

quarter-car model studied in Section 2.2. 

For application of the LMI control to the quarter-car model system, we must 

define �~ and �� outputs as in equation (2.3). Then, the quarter-car model in 

equation (2.37) takes the form : 

   

�� = �� + ��>c + ��!       �~ =  	~� + #~�>c + #~�!     �� =  	�� + #��>c + #��!$ = 	� + #%! .                                              (2.42) 
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In this thesis, the tire deflection is chosen as �~ output and, the vertical 

acceleration and the suspension travel are chosen as �� output. Thus, 
	~ =  �0 1 0 0� ,         #~� =  �0� ,          #~� =  �0� ,                         (2.43) 
	� =  ]− �«{« 0 − ¬«{«

¬«{«1 0 0 0 ^ ,        #�� =  5006 ,      #�� =  ]− �{«0 ^ .            (2.44) 
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CHAPTER 3 

RESULTS of the LMI APPROACH on the QUARTER-CAR 

VEHICLE MODEL 

 

In this chapter, results, obtained from designing a controller for suspension system 

of a vehicle by using LMI control, are studied. The frequency response plots, the 

rms values plots and the rms values of both active and passive suspension systems 

are presented. The results for different parameters are compared to each other. So, 

we tried to get an outcome about solution of the problem. For getting all of these 

results, MATLAB LMI Control Toolbox [2] was used. 

3.1 Design Example with Tire Deflection Rms Gain Constraint 

The problem is: for given numbers G, ±�, ±� > 0, design an output feedback 
controller ! = -�=�$ that satisfies i<ª²³´i~ <  G and minimizes ±�i<ªµ³´i�� +
±�i<ª¶³´i�� [3]. 

The parameters G, ±� and ±� of the multiobjective control problem are the 

design parameters. Let ·ª¸³´ denotes the open loop transfer function from >c to 
the output variable �� where � = 1,2,3. For some positive parameters � and µ, the 
parameters are chosen as ±� =  i·ªµ³´i�8�

, ±� =  i·ª¶³´i�8�� and G = i·ª²³´i~�. 
The parameters � and µ control the trade-offs. 

This problem is solved by the hinfmix command of MATLAB LMI 

Control Toolbox. A MATLAB code implementing the design is provided in 

Appendix A. Figure 3.1 shows the frequency responses of the active and passive 

suspension systems with parameters � = 0.1, � = 1, and 	
 = 50 Ns/m with the 

vertical acceleration and the suspension travel measurements. Table 3.1 shows the 

rms values of active and passive suspension systems. 
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 Passive Susp. System Active Susp. System 

The rms vertical acceleration 0.5337 0.4887 

The rms suspension travel 0.0046 0.0045 

The rms tire deflection 0.0017 0.0016 

The tire deflection rms gain 0.0347 0.0304 

 

Table 3.1 :  The rms values of ��, � = 1,2,3, and the tire deflection rms gain table of passive and 

      active suspension systems with � = 0.1, � = 1 and 	
 = 50 Ns/m 

 

Figure 3.1 : The vertical acceleration, the suspension travel and the tire deflection frequency     

       responses with � = 0.1, � = 1 and 	
 = 50 Ns/m; (—) passive suspension, (-.-)   

       active suspension 

The vertical acceleration-tire deflection and the suspension travel-tire 

deflection trade-offs are notable. The declining responses as functions of the tire 

damping indicate that the tire damping improves passive and active suspension 

performances [5]. Figure 3.2 shows the rms values of ��, � = 1,2,3 and the tire 
deflection rms gain of the vehicle subjected to the white noise velocity input as a 

function of 	
 with parameters � = 0.1 and � = 1 . 
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Figure 3.2 : The rms values and the tire deflection rms gain of the vehicle subjected to white 

        noise velocity input as a function of 	
 with � = 0.1 and � = 1; (—) passive   

        suspension,  (-.-) active suspension 

Now lets change parameters and again examine the results. For � = 0.1 and   � = 2, and no change in other parameters, the results are as shown in Figure 3.3. 

 The Closed-Loop Rms Values 

The rms vertical acceleration 0.3208 

The rms suspension travel 0.0054 

The rms tire deflection 0.0022 

The tire deflection rms gain 0.0615 

 

Table 3.2 : The rms values of ��, � = 1,2,3, and the tire deflection rms gain table of passive and 

      active suspension systems with � = 0.1, � = 2 and 	
 = 50 Ns/m 
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Figure 3.3 : The vertical acceleration, the suspension travel and the tire deflection frequency  

       responses with � = 0.1, � = 2 and 	
 = 50 Ns/m; (—) passive suspension,  

       (-.-) active suspension 

From these bode plots and the rms values, we do not observe any 

improvement in the design. Because, when the vertical acceleration rms value 

decreased, the suspension travel and also the rms tire deflection rised. In bode 

plots, especially in the frequency range 4~8 Hertz where the human body is much 

sensitive to vibrations in the vertical direction, results are good. But, on the other 

hand, besides this interval, active system gives us worse and inconsistent results in 

comparison the passive system. 

In Figure 3.4 the rms values as a function of the tire damping for a range 

between 0 and 100 Ns/m are plotted for � = 0.1 and � = 2. 
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Figure 3.4 : The rms values and the tire deflection rms gain of the vehicle subjected to white noise 

        velocity input as a function of 	
 with � = 0.1 and � = 2; (—) passive suspension,  

        (-.-) active suspension 

The results do not confirm our predictions about the active suspension 

design. 

From the results, we conclude that when we increase value of the 

parameter µ, we also increase the limit of the constraint. Therefore, the tire 

damping rms gain is rised, and contingently suspension stroke rms value also is 

rised. But, on the other hand, the vertical acceleration falls down in accordance 

with them. 

We examined whether it was possible to reduce the rms vertical 

acceleration without increasing the rms suspension travel and the rms tire 

deflection. In the next design ezample, our objective is to minimize the rms 

vertical acceleration while keeping the tire deflection rms gain and the suspension 

travel rms response below some given bounds. 
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3.2 Design Example with Tire Deflection Rms Gain Constraint 

and Rms Suspension Travel Constraint 

Let’s add another constraint to the design problem. New problem is: for given 

numbers G, ±�, [ > 0, design an output feedback controller ! = -�=�$ that 
satisfies i<ª²³´i~ <  G, i<ª¶³´i� <  [ and minimizes ±�i<ªµ³´i�� . 

Now, a new parameter [ is introduced for the rms suspension travel 

constraint. We will use this new parameter in changing limit 2 − +lN� of the 

suspension travel of active suspension system and ezamine its effect on the 

design. 

Lets choose values of [ = i·ª¶³´i�
 and G = i·ª²³´i~� , where 
 and � 
are scaling parameters that control the constraints. In addition to these choices, ±� 
will be accepted 1. New parameter 
 is also 1 at first. 

After all parameter values are determined, we get the rms values and plots. 

Firstly, Table 3.3 has the rms values of active suspension system obtained by 

running the MATLAB code given in Appendix B. In this table, we accepted  
 = 1, � = 1 and 	
 = 50 Ns/m. 

 The Closed-Loop Rms Values 

The rms vertical acceleration 0.4891 

The rms suspension travel 0.0042 

The rms tire deflection 0.0016 

The tire deflection rms gain 0.0304 

 

Table 3.3 : The rms values of ��, � = 1,2,3, and the tire deflection rms gain table of passive and 

      active suspension systems with 
 = 1, � = 1 and 	
 = 50 Ns/m 

A comparison of the results in Table 3.3 with the resulst in the Table 3.1 

shows that the second design problem improves the rms suspension travel value. 

On the other hand, the first design example yields 8.43% improvement on the rms 

vertical acceleration, as opposed to in the second design problem 8.36% 

improvement. They are very close to each other so that the difference between 
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them can be neglected. Figure 3.5 shows the rms value plots as 	
 is varied from 0 

to 100 Ns/m. 

 

Figure 3.5 : The rms values and the tire deflection rms gain of the vehicle subjected to white noise

       velocity input as a function of 	
 with 
 = 1 and � = 1; (—) passive suspension,  

       (-.-) active suspension 

In Figure 3.6, the vertical acceleration, the suspension travel, and the tire 

deflection frequency responses of the active suspension system designed with 

parameters 
 = 1,  � = 1 and 	
 = 50 Ns/m are plotted. 
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Figure 3.6 : The vertical acceleration, the suspension travel and the tire deflection frequency  

       responses with 
 = 1, � = 1 and 	
 = 50 Ns/m; (—) passive suspension, (-.-) active 

       suspension 

Now, let us examine the changes in the suspension response when the 

upper bound on the rms tire deflection is changed. We set � = 2 and keep the 
remaining parameters value as before. 

 The Closed-Loop Rms Values 

The rms vertical acceleration 0.4019 

The rms suspension travel 0.0044 

The rms tire deflection 0.0018 

The tire deflection rms gain 0.0428 

 

Table 3.4 : The rms values of ��, � = 1,2,3, and the tire deflection rms gain table of passive and 

      active suspension systems with 
 = 1, � = 2 and 	
 = 50 Ns/m 
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Figure 3.7 : The rms values and the tire deflection rms gain of the vehicle subjected to white noise 

     velocity input as a function of 	
 with 
 = 1 and � = 2; (—) passive suspension, 

     (-.-) active suspension 

Until now, the upper bound on the rms tire deflection was changed and the effect 

of this change on the rms values of other outputs of interest and the frequency 

response were studied. In the first design example, for different values of µ, not 

only the rms tire deflection increased but also the rms suspension travel increased 

above their maximums. Then, in the second design example, we added a new 

constraint on the rms suspension travel, and µ is changed, the rms suspension 

travel was kept below the upper limit. Both the rms suspension travel and the rms 

tire deflection were below the given bounds and also the rms vertical acceleration 

was reduced. Figure 3.7 and Table 3.4 show us the rms suspension travel 

increased a little when the rms tire deflection increased. The MATLAB code is 

given in the Appendix B is used to solve the second design example. 

 How about effects of changes in the suspension travel constraint? What 

happened that the suspensiontravel constraint limit is increased with no other 

change in the problem? Now lets try to change the suspension travel limit with 
 = 2 and look at how it effects the results. The results are shown in Table 3.5. 
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 The Closed-Loop Rms Values 

The rms vertical acceleration 0.4881 

The rms suspension travel 0.0056 

The rms tire deflection 0.0016 

The tire deflection rms gain 0.0304 

 

Table 3.5 : The rms values of ��, � = 1,2,3, and the tire deflection rms gain table of passive and 

     active suspension systems with 
 = 2, � = 1 and 	
 = 50 Ns/m 

 

Figure 3.8 : The rms values and the tire deflection rms gain of the vehicle subjected to white noise 

       velocity input as a function of 	
 with 
 = 2 and � = 1; (—) passive suspension,  

        (-.-) active suspension 

As it is obviously seen from the values on the Table 3.5 and Figure 3.8, 

changing only the rms suspension travel limit value is not enough to exceed the 

rms tire deflection upper bound. With this design, we can reduce the rms vertical 

acceleration without increasing the rms suspension travel and the rms tire 

deflection. 
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3.3 Design Example with Constraints on the Rms Tire 

Deflection and the Rms Suspension Travel 

In this design example, the design problem has been simplified just a little. We 

have focused only on the rms vertical acceleration. 

 The new problem is: for given numbers G, [ > 0, design an output 
feedback controller ! = -�=�$ that satisfies i<ª²³´i~ <  G, i<ª¶³´i� <  [ and 
minimizes i<ªµ³´i�� . 

First of all, the design parameters must be chosen with vertical 

acceleration measurement. The all parameters are accepted as the previous design 

example except ±�. The parameter ±� equals to 1 in this design example. The 

results obtained by running the MATLAB code given in Appendix C for different 

parameter values. 

We begin with parameters 
 = 1 and � = 1. Figure 3.9 shows the 

frequency response of active and passive suspension systems with the constant 

tire damping 	
 = 50. Table 3.6 has the active system rms values. 

 

 The Closed-Loop Rms Values 

The rms vertical acceleration 0.4898 

The rms suspension travel 0.0042 

The rms tire deflection 0.0016 

The tire deflection rms gain 0.0303 

 

Table 3.6 : The rms values of ��, � = 1,2,3, and the tire deflection rms gain table of passive and 

      active suspension systems with 
 = 1, � = 1 and 	
 = 50 Ns/m 
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Figure 3.9 : The vertical acceleration, the suspension travel and the tire deflection frequency  

      responses with 
 = 1, � = 1 and 	
 = 50 Ns/m; (—) passive suspension, (-.-) active 

      suspension 

Figure 3.10 shows the rms values of active and passive suspension systems 

when the tire damping is varied from 0 to 100 Ns/m for parameters 
 = 1 and � = 1 . 
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Figure 3.10 : The rms values and the tire deflection rms gain of the vehicle subjected to white  

          noise velocity input as a function of 	
 with 
 = 1 and � = 1; (—) passive  

          suspension, (-.-) active suspension 

Effect of changes in the design parameters � and 
 on the design problem was 

studied in the previous section. In this design, the response of the system was 

studied for only different values of ±�. The rms vertical acceleration has been 

minimized when the rms suspension travel and the rms tire deflection have been 

kept below their upper bounds. The improvement on the rms vertical acceleration 

is around 8.22% in the third design. The rms values were calculated for different 

values of the design parameters µ and α they were shown on Table 3.7 and 3.8. 
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 The Closed-Loop Rms Values 

The rms vertical acceleration 0.4015 

The rms suspension travel 0.0044 

The rms tire deflection 0.0018 

The tire deflection rms gain 0.0429 

 

Table 3.7 : The rms values of ��, � = 1,2,3, and the tire deflection rms gain table of passive and 

      active suspension systems with 
 = 1, � = 2 and 	
 = 50 Ns/m 

 The Closed-Loop Rms Values 

The rms vertical acceleration 0.4887 

The rms suspension travel 0.0053 

The rms tire deflection 0.0016 

The tire deflection rms gain 0.0304 

 

Table 3.8 : The rms values of ��, � = 1,2,3, and the tire deflection rms gain table of passive and 

      active suspension systems with 
 = 2, � = 1 and 	
 = 50 Ns/m 

All these results claimed that, we can decrease the rms vertical 

acceleration when the rms suspension travel and the rms tire deflection were 

below the given bounds [ and γ respectively. Firstly, we changed only the rms tire 

deflection constraint limit. It did not have an influence on increasing the rms 

suspension travel above its upper limit. Likewise, when we changed only the 

upper limit of the rms suspension travel constraint, it did not have an effect on 

increasing the rms tire deflection above its maximum. 
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CHAPTER 4 

CO�CLUSIO�S 

 

In this thesis, we examined solutions of an quarter-car active suspension design 

problem with multiobjective output-feedback control via LMI synthesis. The 

problem was discussed for three cases. Some constraints were defined in all the 

three design examples. We also defined parameters for these constraints. For 

different parameter values, the response of the system was studied. 

In the first design, we tried to minimize both the rms suspension travel and 

the rms vertical acceleration with the constraint on the rms tire damping. In the 

second and the third designs, we examined whether we can minimize only the rms 

vertical acceleration while the rms tire damping and the rms suspension travel 

below allowable maximum values. The results of all the three designs were given 

with the bode plots, the rms plots and the rms values. 

As a result, in the first design, it was observed that the rms suspension 

travel can not be controlled when the rms vertical acceleration minimized. The 

other designs confirmed the expected behaviours on the rms values and plots. 

Namely, analysis and simulation resulst confirmed achieving better ride comfort 

while keeping suspension strokes within bounds and ensuring firm contact of the 

wheels to road. 

4.1 Future Work 

As a reccomendation for the active suspension future work, we suggest using half-

car and full-car models in the design. Especially full-car model gives us more 

realistic results. Also, multiobjective state-feedback again via LMI synthesis can 

be studied and responses can be examined. 

 In this thesis, the quarter-car model is parametrized for the white noise 

velocity road inputs. For the active suspension future work, we can use coloured 

noise velocity road inputs to parametrize the quarter-car model and to design 

active suspension. 
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This study can be used for productions of wheels and shock absorbers. And also, 

it can be examined usage of this method for the dynamical analysis of the vehicle 

(motor, clutch, gear box, etc.). 
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Appendix A 

 

%QUARTER CAR ACTIVE SUSPENSION SYSTEM DESIGN% 
%LMI Hinfinity/H2% 
%ASLI SOYĐÇ - 36019402702 % 
  
%VALUES OF VARIABLES% 
ms = 240; mu = 36; Cs = 980; ks = 16000; kt = 160000; 
  
v = 20;  % vehicle velocity 
  
n0 = 0.15708; 
kappa = 0.76e-5; 
K_n = 2*pi*n0*sqrt(kappa*v); 
  
% 0 <= Ct <= 100 % 
for i = 1:100, 
    Ct = i-1; 
    damping(i,1) = Ct; 
     
% dx/dt= A*x + B1*w + B2*u % 
A = [0 0 1 -1;0 0 0 1;-(ks/ms) 0 -(Cs/ms) (Cs/ms);(ks/mu) -(kt/mu) 
(Cs/mu) -((Cs+Ct)/mu)]; 
B1 = [0;-1;0;(Ct/mu)]; 
B2 = [0;0;-(1/ms);(1/mu)]; 
  
%tire deflection z_i = C_i*x + D1i*Vi + D2i*u % 
  
C_i = [0 1 0 0]; 
D1i = 0; D2i=0; 
  
%z_2 = C2*x + D12*Vi + D22*u % 
  
C2 = [-(ks/ms) 0 -(Cs/ms) (Cs/ms);1 0 0 0;]; 
D12 = [0;0]; 
D22 = [-(1/ms);0]; 
  
% exogenous output z = Cz*x + D1z*Vi + D2z*u % 
  
Cz = [-(ks/ms) 0 -(Cs/ms) (Cs/ms);1 0 0 0;0 1 0 0]; 
D1z = [0;0;0]; 
D2z = [-(1/ms);0;0]; 
  
  
%measurement output y = C_y*x + D1y*Vi + D2y*u% 
Cy = [-(ks/ms) 0 -(Cs/ms) (Cs/ms);1 0 0 0]; 
D1y = [0;0]; 
D2y = [-(1/ms);0]; 
  
  
%RMS values of system% 
  
n_i = normhinf(A,B1,C_i,D1i);  %H_inf norm of tire deflection% 
n_iop(i,1) = n_i; 
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n_1 = norm2(ltisys(A,B1,C2(1,:),D12(1,:)));   
 %H2 norm of vertical acceleration% 
n_2 = norm2(ltisys(A,B1,C2(2,:),D12(2,:)));   
 %H2 norm of suspension travel% 
n_3 = norm2(ltisys(A,B1,C_i,D1i));             
%H2 norm of tire deflection% 
n1_op(i,1) = K_n*n_1; 
n2_op(i,1) = K_n*n_2; 
n3_op(i,1) = K_n*n_3; 
  
%multiobjective control design% 
  
Tz = diag([1/n_1 1/n_2]); 
lamda = 0.1; 
W = [1 0;0 lamda]*Tz;     %scaling factor% 
  
sys = ltisys(A,[B1 B2],[C_i;W*C2;Cy],[D1i D2i;W*D12 W*D22;D1y 
D2y]); 
beta = 1; 
  
[gopt,h2opt,K] = hinfmix(sys,[2 2 1],[beta*n_i 0 0 1]); 
  
%K is the output feedback controller % 
%state space equations of controller% 
  
[Ak,Bk,Ck,Dk] = ltiss(K); 
  
  
%CLOSED LOOP STATE SPACES MATRICES% 
  
M = inv(1-(Dk*D2y)); 
A_cl = [A+B2*M*Dk*Cy B2*M*Ck;Bk*(Cy+D2y*M*Dk*Cy) Ak+Bk*D2y*M*Ck]; 
B_cl = [(B1+B2*M*Dk*D1y);Bk*(D1y+D2y*M*Dk*D1y)]; 
C_cl = [(Cz+D2z*M*Dk*Cy) D2z*M*Ck]; 
D_cl = [D1z+D2z*M*Dk*D1y]; 
  
%CLOSED LOOP RMS VALUES% 
  
n_icl(i,1) = normhinf(A_cl,B_cl,C_cl(3,:),D_cl(3,:)); 
n1_cl(i,1) = K_n*norm2(ltisys(A_cl,B_cl,C_cl(1,:),D_cl(1,:))); 
n2_cl(i,1) = K_n*norm2(ltisys(A_cl,B_cl,C_cl(2,:),D_cl(2,:))); 
n3_cl(i,1) = K_n*norm2(ltisys(A_cl,B_cl,C_cl(3,:),D_cl(3,:))); 
  
end 
  
figure(1) 
plot(damping,n1_op,damping,n1_cl,'b-.') 
ylabel('RMS vertical acceleration '); 
xlabel('tire damping'); 
  
figure(2) 
plot(damping,n2_op,damping,n2_cl,'b-.'); 
ylabel('RMS suspension stroke'); 
xlabel('tire damping'); 
  
 
 



40 

 

figure(3) 
plot(damping,n3_op,damping,n3_cl,'b-.'); 
ylabel('RMS tire deflection'); 
xlabel('tire damping'); 
  
figure(4) 
plot(damping,n_iop,damping,n_icl,'b-.'); 
ylabel('tire deflection RMS gain'); 
xlabel('tire damping'); 
  
% BODE PLOTS % 
  
sys_open = ss(A,B1,Cz,D1z); 
sys_cls = ss(A_cl,B_cl,C_cl,D_cl); 
  
w = logspace(-2,3,1000); 
sys_openg = frd(sys_open,w); 
sys_clsg = frd(sys_cls,w); 
  
figure(5) 
loglog(abs(sys_openg(1,:)),abs(sys_clsg(1,:)),'-.'); 
xlabel('Frequency (Hz)'); 
ylabel('Vertical acceleration'); 
  
figure(6) 
loglog(abs(sys_openg(2,:)),abs(sys_clsg(2,:)),'-.'); 
xlabel('Frequency (Hz)'); 
ylabel('Suspension travel'); 
  
figure(7) 
loglog(abs(sys_openg(3,:)),abs(sys_clsg(3,:)),'-.'); 
xlabel('Frequency (Hz)'); 
ylabel('Tire Damping'); 
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Appendix B 

 

% LMI CONTROL IN ACTIVE SUSPENSION 
% ASLI SOYĐÇ - 36019402702 
  
ms=240; mu=36; Cs=980; ks=16000; kt=160000; 
  
v=20;                              % vehicle velocity m/s 
  
n0=0.15708; 
kappa=0.76e-5; 
K_n=2*pi*n0*sqrt(kappa*v); 
  
%%%% 0 <= Ct <= 100 %%%% 
  
for i=1:100, 
  Ct=i-1; 
  damping(i,1)=Ct; 
   
%%%% dx/dt= A*x + B1*Vi + B2*u %%%% 
A = [0 0 1 -1;0 0 0 1;-(ks/ms) 0 -(Cs/ms) (Cs/ms);(ks/mu) -(kt/mu) 
(Cs/mu) -((Cs+Ct)/mu)]; 
B1 = [0;-1;0;(Ct/mu)]; 
B2 = [0;0;-(1/ms);(1/mu)]; 
  
%%%% z = Cz*x + Dzw*Vi + Dzu*u %%%% 
Cz = [-(ks/ms) 0 -(Cs/ms) (Cs/ms);1 0 0 0;0 1 0 0]; 
Dzw = [0;0;0]; 
Dzu = [-(1/ms);0;0]; 
  
%%%% y = C*x + Dy*u %%%% 
C = [-(ks/ms) 0 -(Cs/ms) (Cs/ms)]; 
Dy = [-(1/ms)]; 
D1y = [0];  
  
%%%% H_infinity Z_i = C_i*x + D11*Vi + D12*u  - tire deflection 
%%%% 
C_i = [0 1 0 0]; 
D11 = 0; 
D12 = 0; 
  
% output for H_2 z_2 = C2*x + D21*Vi + D22*u  - suspension % 
C2 = [-(ks/ms) 0 -(Cs/ms) (Cs/ms);1 0 0 0]; 
D21 = [0;0]; 
D22 = [-(1/ms);0]; 
  
%H_inf norm of tire deflection% 
n_i=normhinf(A,B1,C_i,D11);                               
n_iop(i,1)=n_i; 
  
%%%% AÇIK DÖNGÜ RMS DEĞERLERĐ %%%% 
n1=norm2(ltisys(A,B1,Cz(1,:),Dzw(1,:)));                
n2=norm2(ltisys(A,B1,Cz(2,:),Dzw(2,:)));                  
n_3=norm2(ltisys(A,B1,Cz(3,:),Dzw(3,:)));                 
n1_op(i,1)=K_n*n1; 
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n2_op(i,1)=K_n*n2; 
n3_op(i,1)=K_n*n_3; 
  
Tz=diag([1/n1 1]); 
lamda=1; 
W=[1 0;0 lamda]*Tz;     %scaling factor% 
C_2 = W*C2; 
D_21 = W*D21; 
D_22 = W*D22; 
  
%%%% LMI VARIABLES %%%% 
setlmis([]); 
  
X = lmivar(1,[4 1]); 
Y = lmivar(1,[4 1]); 
A_tilda = lmivar(2,[4 4]); 
B_tilda = lmivar(2,[4 1]); 
C_tilda = lmivar(2,[1 4]);                          
Dk = lmivar(2,[1 1]);                      % Dk = D_tilda 
[Q,n,Q1] = lmivar(1,[2 1]); 
gamma = lmivar(2,[1 1]); 
  
%%%% LMI CONSTRAINTS %%%% 
%%%% H_inf PERFORMANCE %%%% 
  
lmiterm([1 1 1 X],A,1,'s');                %LMI #1 : X*A' + A*X 
lmiterm([1 1 1 C_tilda],B2,1,'s');                           
% LMI #1 : B2*C_tilda + C_tilda'*B2' 
  
lmiterm([1 2 1 A_tilda],1,                 % LMI #1 : A_tilda 
lmiterm([1 2 1 0],A');                     % LMI #1 : A' 
lmiterm([1 2 1 -Dk],C',(inv(1-Dk*Dy))'*B2');                 
% LMI #1 : ( B2*inv(1-Dk*Dy)*D_tilda*C )' 
  
lmiterm([1 2 2 Y],1,A,'s');                                  
% LMI #1 : Y*A + A'*Y' 
lmiterm([1 2 2 B_tilda],1,C,'s');                            
% LMI #1 : B_tilda*C + C'*B_tilda' 
  
lmiterm([1 3 1 0],B1');                    % LMI #1 : B1' 
  
lmiterm([1 3 2 -Y],B1',1                   % LMI #1 : B1'*Y' 
  
lmiterm([1 3 3 0],-1);                     % LMI #1 : -gamma*I 
  
lmiterm([1 4 1 X],C_i,1);                  % LMI #1 : C_i*X 
lmiterm([1 4 1 C_tilda],D12,1);            % LMI #1 : D12*C_tilda 
  
lmiterm([1 4 2 0],C_i);                    % LMI #1 : C_i 
lmiterm([1 4 2 Dk],D12*inv(1-Dk*Dy),C);                      
% LMI #1 : D12*inv(1-Dk*Dy)*Dk*C 
  
lmiterm([1 4 3 0],D11);                    % LMI #1 : D11 
  
lmiterm([1 4 4 gamma],-1,1);               % LMI #1 : -gamma*I 
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%%%% H _2 PERFORMANCE %%%% 
  
lmiterm([-2 1 1 Q],1,1);                   % LMI #2 : Q 
  
lmiterm([-2 1 2 X],C_2,1);                 % LMI #2 : C_2*X 
  
lmiterm([-2 1 2 C_tilda],D_22,1);          % LMI #2 : D22*C_tilda 
  
lmiterm([-2 1 3 0],C_2);                   % LMI #2 : C_2 
lmiterm([-2 1 3 Dk],D_22*inv(1-Dk*Dy),C);   
% LMI #2 : D22*inv(1-Dk*Dy)*Dk*C 
  
lmiterm([-2 2 2 X],1,1);                   % LMI #2 : X 
  
lmiterm([-2 2 3 0],1);                     % LMI #2 : I 
  
lmiterm([-2 3 3 Y],1,1);                   % LMI #2 : Y 
  
%%%% trace(Q) < nü   %%%% 
qdec = lmivar(3,diag(Q1)); 
lmiterm([3 1 1 trace(qdec)],ones(1,2),0.5,'s');  
% LMI #3 : trace(Q) 
lmiterm([3 1 1 qdec],-[1 0],0.5,'s'); 
lmiterm([3 1 1 0],-(n2^2));                 % LMI #3 : nü   
sclf=max(1,nu0^2/1e3); 
  
%%%% P > 0 %%%% 
  
lmiterm([-4 1 1 X],1,1);                     % LMI #4 : X 
  
lmiterm([-4 2 1 0],1);                       % LMI #4 : I 
  
lmiterm([-4 2 2 Y],1,1);                     % LMI #4 : Y 
  
 
%%%% gamma < n_i^2  %%%% 
  
lmiterm([5 1 1 gamma],1,1);               % LMI #5 : gamma 
lmiterm([-5 1 1 0],(n_i^2));              % LMI #5 : n_i^2 
  
%%%% Q > 0  %%%% 
  
lmiterm([-6 1 1 Q],1,1); 
  
lmisys = getlmis; 
  
n_dec = decnbr(lmisys);         % number of decision variables % 
 c = zeros(n_dec,1);            % dimensions 'c' c'*x% 
  
 for j=1:n_dec,                 % objectve function definition % 
       
      qj = defcx(lmisys,j,qdec); 
     c(j) = sqrt(trace(qj(1,1))); 
         
 end 
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 options = [0 200 1e8 0 0]; 
 [copt,xopt] = mincx(lmisys,c',options); 
  
%%%% VALUES OF LMI VARIABLES %%%% 
  
X = dec2mat(lmisys,xopt,X); 
Y = dec2mat(lmisys,xopt,Y); 
A_tilda = dec2mat(lmisys,xopt,A_tilda); 
B_tilda = dec2mat(lmisys,xopt,B_tilda); 
C_tilda = dec2mat(lmisys,xopt,C_tilda); 
Dk = dec2mat(lmisys,xopt,Dk);              
Q = dec2mat(lmisys,xopt,Q); 
gamma = dec2mat(lmisys,xopt,gamma); 
  
[u,sd,v]=svd(eye(4)-X*Y);             %M*N' = I - X*Y 
N=v;  M=u*sd;  
  
%%%% PARAMETERS OF CONTROLLER %%%% 
  
Ck = (1-Dk*Dy)*C_tilda*transpose(inv(M))-Dk*C*X*transpose(inv(M)); 
Bk = inv(N)*(B_tilda-Y'*B2*inv(1-Dk*Dy)*Dk) 

*inv(1+Dy*inv(1-Dk*Dy)*Dk); 
Ak = inv(N)*(A_tilda-(Y'*A*X)-(Y'*B2*inv(1-Dk*Dy)*Dk*C*X) 

-(Y'*B2*inv(1-Dk*Dy)*Ck*M')-(N*Bk*C*X) 
-(N*Bk*Dy*inv(1-Dk*Dy)*Dk*C*X) 
-(N*Bk*Dy*inv(1-Dk*Dy)*Ck*M'))*inv(M'); 

  
%%%% CLOSED-LOOP SYSTEM %%%% 
  
F = inv(1-(Dk*Dy)); 
A_cl = [A+B2*F*Dk*C B2*F*Ck;Bk*(C+Dy*F*Dk*C) Ak+Bk*Dy*F*Ck]; 
B_cl = [(B1+B2*F*Dk*D1y);Bk*(D1y+Dy*F*Dk*D1y)]; 
C_cl = [(Cz+Dzu*F*Dk*C) Dzu*F*Ck]; 
D_cl = [Dzw+Dzu*F*Dk*D1y]; 
  
n_icl(i,1) = normhinf(A_cl,B_cl,C_cl(3,:),D_cl(3,:)); 
n1_cl(i,1) = K_n*norm2(ltisys(A_cl,B_cl,C_cl(1,:),D_cl(1,:))); 
n2_cl(i,1) = K_n*norm2(ltisys(A_cl,B_cl,C_cl(2,:),D_cl(2,:))); 
n3_cl(i,1) = K_n*norm2(ltisys(A_cl,B_cl,C_cl(3,:),D_cl(3,:))); 
  
  
end 
  
sys_open = ss(A,B1,Cz,Dzw); 
sys_cls = ss(A_cl,B_cl,C_cl,D_cl); 
  
w = logspace(-2,3,1000); 
sys_openg = frd(sys_open,w); 
sys_clsg = frd(sys_cls,w); 
  
figure(1) 
loglog(abs(sys_openg(1,:)),abs(sys_clsg(1,:)),'-.'); 
xlabel('Frequency (Hz)'); 
ylabel('Vertical acceleration'); 
  
figure(2) 
loglog(abs(sys_openg(2,:)),abs(sys_clsg(2,:)),'-.'); 
xlabel('Frequency (Hz)'); 
ylabel('Suspension travel'); 
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figure(3) 
loglog(abs(sys_openg(3,:)),abs(sys_clsg(3,:)),'-.'); 
xlabel('Frequency (Hz)'); 
ylabel('Tire Damping'); 
  
figure(4) 
plot(damping,n1_op,damping,n1_cl,'b-.') 
ylabel('vertical acceleration RMS'); 
xlabel('tire damping'); 
  
figure(5) 
plot(damping,n2_op,damping,n2_cl,'b-.'); 
ylabel('suspension stroke RMS'); 
xlabel('tire damping'); 
  
figure(6) 
plot(damping,n3_op,damping,n3_cl,'b-.'); 
ylabel('tire deflection RMS'); 
xlabel('tire damping'); 
  
figure(7) 
plot(damping,n_iop,damping,n_icl,'b-.'); 
ylabel('tire damping RMS gain'); 
xlabel('tire damping'); 
  
  
 
 

 

 

 

 

 

 

 

 

 

 

 



46 

 

Appendix C 

 

% LMI CONTROL IN ACTIVE SUSPENSION 
% ASLI SOYĐÇ - 36019402702 
  
ms=240; mu=36; Cs=980; ks=16000; kt=160000; 
  
v=20;  % vehicle velocity 
  
n0=0.15708; 
kappa=0.76e-5; 
K_n=2*pi*n0*sqrt(kappa*v); 
  
%%%% 0 <= Ct <= 100 %%%% 
  
for i=1:100, 
  Ct=i-1; 
  damping(i,1)=Ct; 
   
%%%% dx/dt= A*x + B1*Vi + B2*u %%%% 
  
A = [0 0 1 -1;0 0 0 1;-(ks/ms) 0 -(Cs/ms) (Cs/ms);(ks/mu) -(kt/mu) 
(Cs/mu) -((Cs+Ct)/mu)]; 
B1 = [0;-1;0;(Ct/mu)]; 
B2 = [0;0;-(1/ms);(1/mu)]; 
  
  
%%%% z = Cz*x + Dzw*Vi + Dzu*u %%%% 
  
Cz = [-(ks/ms) 0 -(Cs/ms) (Cs/ms);1 0 0 0;0 1 0 0]; 
Dzw = [0;0;0]; 
Dzu = [-(1/ms);0;0]; 
  
%%%% y = C*x + Dy*u %%%% 
  
C = [-(ks/ms) 0 -(Cs/ms) (Cs/ms)]; 
Dy = [-(1/ms)]; 
D1y = [0];  
  
%%%% H_inf Z_i = C_i*x + D11*Vi + D12*u  - tire deflection %%%% 
  
C_i = [0 1 0 0]; 
D11 = 0; 
D12 = 0; 
  
% output for H_2 z_2 = C2*x + D21*Vi + D22*u  - suspension % 
  
C2 = [-(ks/ms) 0 -(Cs/ms) (Cs/ms);1 0 0 0]; 
D21 = [0;0]; 
D22 = [-(1/ms);0]; 
  
n_i=normhinf(A,B1,C_i,D11);          
%H_inf norm of tire deflection% 
n_iop(i,1)=n_i; 
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%%%% OPEN-LOOP RMS VALUES %%%% 
  
n1=norm2(ltisys(A,B1,Cz(1,:),Dzw(1,:)));                
%H2 norm of vertical acceleration% 
n2=norm2(ltisys(A,B1,Cz(2,:),Dzw(2,:)));                 
%H2 norm of suspension travel% 
n_3=norm2(ltisys(A,B1,Cz(3,:),Dzw(3,:)));                
%H2 norm of tire deflection% 
n1_op(i,1)=K_n*n1; 
n2_op(i,1)=K_n*n2; 
n3_op(i,1)=K_n*n_3; 
  
%%%% LMI DEĞĐŞKENLERĐ %%%% 
C_2=C2; 
D_21=D21; 
D_22=D22; 
  
%%%% LMI CONSTRAINTS %%%% 
  
setlmis([]); 
  
X = lmivar(1,[4 1]); 
Y = lmivar(1,[4 1]); 
A_tilda = lmivar(2,[4 4]); 
B_tilda = lmivar(2,[4 1]); 
C_tilda = lmivar(2,[1 4]);                          
Dk = lmivar(2,[1 1]);                  % Dk = D_tilda 
[Q,n,Q1] = lmivar(1,[2 1]); 
gamma = lmivar(2,[1 1]); 
  
%%%% H_inf PERFORMANCE %%%% 
  
lmiterm([1 1 1 X],A,1,'s');            %LMI #1 : X*A' + A*X 
lmiterm([1 1 1 C_tilda],B2,1,'s');      
% LMI #1 : B2*C_tilda + C_tilda'*B2' 
  
lmiterm([1 2 1 A_tilda],1,1);          % LMI #1 : A_tilda 
lmiterm([1 2 1 0],A');                 % LMI #1 : A' 
lmiterm([1 2 1 -Dk],C',(inv(1-Dk*Dy))'*B2');                 
% LMI #1 : ( B2*inv(1-Dk*Dy)*D_tilda*C )' 
  
lmiterm([1 2 2 Y],1,A,'s');                                  
% LMI #1 : Y*A + A'*Y' 
lmiterm([1 2 2 B_tilda],1,C,'s');                         
% LMI #1 : B_tilda*C + C'*B_tilda' 
  
lmiterm([1 3 1 0],B1');                % LMI #1 : B1' 
  
lmiterm([1 3 2 -Y],B1',1);             % LMI #1 : B1'*Y' 
  
lmiterm([1 3 3 0],-1);                 % LMI #1 : -gamma*I 
  
lmiterm([1 4 1 X],C_i,1);              % LMI #1 : C_i*X 
lmiterm([1 4 1 C_tilda],D12,1);        % LMI #1 : D12*C_tilda 
  
lmiterm([1 4 2 0],C_i);                % LMI #1 : C_i 
lmiterm([1 4 2 Dk],D12*inv(1-Dk*Dy),C);              
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% LMI #1 : D12*inv(1-Dk*Dy)*Dk*C 
  
lmiterm([1 4 3 0],D11);                % LMI #1 : D11 
  
lmiterm([1 4 4 gamma],-1,1);           % LMI #1 : -gamma*I 
  
%%%% H _2 PERFORMANCE %%%% 
  
lmiterm([-2 1 1 Q],1,1);               % LMI #2 : Q 
  
lmiterm([-2 1 2 X],C_2,1);             % LMI #2 : C_2*X 
  
lmiterm([-2 1 2 C_tilda],D_22,1);      % LMI #2 : D22*C_tilda 
  
lmiterm([-2 1 3 0],C_2);                                    
% LMI #2 : C_2 
lmiterm([-2 1 3 Dk],D_22*inv(1-Dk*Dy),C);                   
% LMI #2 : D22*inv(1-Dk*Dy)*Dk*C 
  
lmiterm([-2 2 2 X],1,1);               % LMI #2 : X 
  
lmiterm([-2 2 3 0],1);                 % LMI #2 : I 
  
lmiterm([-2 3 3 Y],1,1);               % LMI #2 : Y 
  
%%%% trace(Q) < nü  %%%% 

 
qdec = lmivar(3,diag(Q1)); 
lmiterm([3 1 1 trace(qdec)],ones(1,2),0.5,'s');                 
% LMI #3 : trace(Q) 
lmiterm([3 1 1 qdec],-[1 0],1/2,'s'); 
lmiterm([3 1 1 0],-((n2)^2));         % LMI #3 : nü   

  
%%%% P > 0  %%%% 
  
lmiterm([-4 1 1 X],1,1);              % LMI #4 : X 
  
lmiterm([-4 2 1 0],1);                % LMI #4 : I 
  
lmiterm([-4 2 2 Y],1,1);              % LMI #4 : Y 
  
%%%% gamma < n_i^2  %%%% 
  
lmiterm([5 1 1 gamma],1,1);           % LMI #5 : gamma 
lmiterm([-5 1 1 0],(n_i^2));          % LMI #5 : n_i^2 
  
%%%% Q > 0 %%%% 
  
lmiterm([-6 1 1 Q],1,1); 
  
lmisys = getlmis; 
  
n_dec = decnbr(lmisys);       % number of decision variables % 
c = zeros(n_dec,1);           % dimensions 'c' c'*x% 
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 for j=1:n_dec,               % objectve function definition % 
       
      qj = defcx(lmisys,j,qdec); 
     c(j) = sqrt(trace(qj(1,1))); 
         
      end 
  
options = [0 0 0 0 0]; 
[copt,xopt] = mincx(lmisys,c',options); 
  
%%%% VALUES OF LMI VARIABLES %%%% 
  
X = dec2mat(lmisys,xopt,X); 
Y = dec2mat(lmisys,xopt,Y); 
A_tilda = dec2mat(lmisys,xopt,A_tilda); 
B_tilda = dec2mat(lmisys,xopt,B_tilda); 
C_tilda = dec2mat(lmisys,xopt,C_tilda); 
Dk = dec2mat(lmisys,xopt,Dk);              
Q = dec2mat(lmisys,xopt,Q); 
gamma = dec2mat(lmisys,xopt,gamma); 
  
[u,sd,v]=svd(eye(4)-X*Y);                      %M*N' = I - X*Y 
N=v;  M=u*sd;  
  
%%%% PARAMETERS OF CONTROLLER %%%% 
  
Ck = (1-Dk*Dy)*C_tilda*transpose(inv(M))-Dk*C*X*transpose(inv(M)); 
Bk = inv(N)*(B_tilda-Y'*B2*inv(1-Dk*Dy)*Dk) 

*inv(1+Dy*inv(1-Dk*Dy)*Dk); 
Ak = inv(N)*(A_tilda-(Y'*A*X)-(Y'*B2*inv(1-Dk*Dy)*Dk*C*X) 

-(Y'*B2*inv(1-Dk*Dy)*Ck*M')-(N*Bk*C*X) 
-(N*Bk*Dy*inv(1-Dk*Dy)*Dk*C*X) 
-(N*Bk*Dy*inv(1-Dk*Dy)*Ck*M'))*inv(M'); 

  
 
%%%% CLOSED-LOOP SYSTEM %%%% 
  
F = inv(1-(Dk*Dy)); 
A_cl = [A+B2*F*Dk*C B2*F*Ck;Bk*(C+Dy*F*Dk*C) Ak+Bk*Dy*F*Ck]; 
B_cl = [(B1+B2*F*Dk*D1y);Bk*(D1y+Dy*F*Dk*D1y)]; 
C_cl = [(Cz+Dzu*F*Dk*C) Dzu*F*Ck]; 
D_cl = [Dzw+Dzu*F*Dk*D1y]; 
  
n_icl(i,1) = normhinf(A_cl,B_cl,C_cl(3,:),D_cl(3,:)); 
n1_cl(i,1) = K_n*norm2(ltisys(A_cl,B_cl,C_cl(1,:),D_cl(1,:))); 
n2_cl(i,1) = K_n*norm2(ltisys(A_cl,B_cl,C_cl(2,:),D_cl(2,:))); 
n3_cl(i,1) = K_n*norm2(ltisys(A_cl,B_cl,C_cl(3,:),D_cl(3,:))); 
  
end 
  
sys_open = ss(A,B1,Cz,Dzw); 
sys_cls = ss(A_cl,B_cl,C_cl,D_cl); 
  
w = logspace(-2,3,1000); 
sys_openg = frd(sys_open,w); 
sys_clsg = frd(sys_cls,w); 
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figure(1) 
loglog(abs(sys_openg(1,:)),abs(sys_clsg(1,:)),'-.'); 
xlabel('Frequency (Hz)'); 
ylabel('Vertical acceleration'); 
  
figure(2) 
loglog(abs(sys_openg(2,:)),abs(sys_clsg(2,:)),'-.'); 
xlabel('Frequency (Hz)'); 
ylabel('Suspension travel'); 
  
figure(3) 
loglog(abs(sys_openg(3,:)),abs(sys_clsg(3,:)),'-.'); 
xlabel('Frequency (Hz)'); 
ylabel('Tire Damping'); 
  
figure(4) 
plot(damping,n1_op,damping,n1_cl,'b-.') 
ylabel('vertical acceleration RMS'); 
xlabel('tire damping'); 
  
figure(5) 
plot(damping,n2_op,damping,n2_cl,'b-.'); 
ylabel('suspension stroke RMS'); 
xlabel('tire damping'); 
  
figure(6) 
plot(damping,n3_op,damping,n3_cl,'b-.'); 
ylabel('tire deflection RMS'); 
xlabel('tire damping'); 
  
figure(7) 
plot(damping,n_iop,damping,n_icl,'b-.'); 
ylabel('tire damping RMS gain'); 
xlabel('tire damping'); 
  
  
  
  
 
 


