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 Data collected for collaborative filtering purposes might be arbitrarily partitioned 

between two parties, even rival companies. Online vendors might have insufficient user 

ratings. Scarce data then might cause offering inaccurate and unreliable recommendations. 

In order to supply trustworthy and dependable predictions, one solution for such companies 

might be cooperation on partitioned user preference data. However, it is still a challenge to 

convince e-commerce sites cooperate on partitioned data so that they can provide richer 

collaborative filtering services, due to privacy concerns. Unless confidentiality is protected, 

such companies are expected to face with serious legal and financial deadlocks in 

managerial operations.  

 This study aims to scrutinize how to estimate predictions based on arbitrarily partitioned 

data configurations between two e-commerce companies without deeply jeopardizing their 

privacy. Privacy-preserving schemes are proposed to offer numerical or binary 

recommendations using item-based, trust-based, and naïve Bayesian classifier-based 

prediction algorithms on arbitrarily partitioned data. Along the study, how two parties ended 

up with cross partitioned data can provide CF services using hybrid CF algorithm is also 

investigated. It is shown that each proposed method does not intensely violate data owners’ 

confidentiality. The proposed schemes are also investigated in terms of supplementary 

computation, communication, and storage overheads. Experimental trials are conducted 

using real data sets to show how the quality of the predictions improves due to collaboration 

and privacy measures affect accuracy. All appraisements demonstrate that the proposed 

solutions are preferable for estimating higher quality predictions efficiently on partitioned 

data while preserving data holders’ privacy. 

 

 Keywords: Privacy, Collaborative Filtering, Arbitrarily Partitioned Data, Performance, 

and Accuracy.  
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GĐZLĐĞĐ KORUYARAK RASTGELE BÖLÜNMÜŞ VERĐ TABANLI ORTAK 
SÜZGEÇLEME 
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Bilgisayar Mühendisliği Anabilim Dalı 
 

Danışman: Doç. Dr. Hüseyin POLAT 
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 Ortak süzgeçleme amacıyla toplanan veriler iki firma hatta rakip şirketler arasında 

rastgele şekilde bölünmüş olabilir. Sanal alışveriş siteleri yetersiz kullanıcı oylarına sahip 

olabilirler. Yetersiz veri, hatalı ve güvenilir olmayan öneriler üretmeye sebep olabilir. 

Güvenilir öneriler sağlamak için bu şirketlerin parçalanmış tercih verileri üzerinden işbirliği 

yapmaları bir çözüm olabilir. Bununla birlikte gizlilik endişelerinden dolayı, e-ticaret 

sitelerinin bu şekilde dağılmış veri üzerinden daha iyi ortak süzgeçleme hizmetleri 

sağlamaları ciddi bir sorun teşkil etmektedir. Gizlilik sağlanmadığı takdirde, bu şirketlerin 

idari süreçlerinde ciddi hukuki ve finansal çıkmazlarla karşı karşıya gelmesi durumu söz 

konusudur. 

 Bu çalışma iki sanal alışveriş sitesinin gizliliklerini tehlikeye atmadan rastgele 

bölünmüş veri üzerinden nasıl öneri üretebileceklerini incelemeyi amaçlamaktadır. Ürün-

tabanlı, güven-tabanlı ve basit Bayes sınıflandırıcı-tabanlı algoritmalar kullanılarak rastgele 

bölünmüş veriler üzerinden nümerik ve ikili öneriler üreten gizlilik korumalı yöntemler 

önerilecektir. Çalışmada ayrıca çapraz bölünmüş verilere sahip iki şirketin hibrit ortak 

süzgeçleme algoritmaları kullanarak nasıl öneriler üreteceği ele alınmıştır. Önerilen her bir 

metod gizlilik açısından irdelenecektir. Ayrıca, önerilen yöntemler ilave hesaplama, 

haberleşme ve saklama yükleri açısından da incelenecektir. Đşbirliğinin öneri kalitesini nasıl 

artırdığını ve gizlilik ölçütlerinin doğruluğu nasıl etkilediğini göstermek için gerçek verilerle 

deneyler yapılacaktır. Bütün incelemeler ve deney sonuçları önerilen çözümlerin rastgele 

bölünmüş veriler üzerinden e-ticaret sitelerinin gizliliklerini ihlal etmeden ve etkin bir 

şekilde daha kaliteli öneriler üretmek için tercih edilebileceğini göstermiştir.   

   

 Anahtar Kelimeler: Gizlilik, Ortak Süzgeçleme, Rastgele Bölünmüş Veri, Performans 

ve Doğruluk. 
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1. INTRODUCTION 

Collaborative filtering (CF) algorithms are widely used by online vendors to 

provide predictions to their customers. It is possible to increase sales and/or 

profits through successful CF systems. E-commerce companies effectively use 

them either providing predictions or top-N lists directly or presenting product-

related information fitting best to the customers’ taste while surfing over their 

pages. CF-based recommender systems not only guide the users about products 

such as books, movies, music CDs, restaurants, and so on, which they have not 

sufficient information on yet, but also promote sales and/or visiting hits of e-

commerce sites. Such systems also provide web-based personalization on a range 

of products. 

 In case of inadequate data, it becomes a challenge to produce 

recommendations for all items; which leads to very low coverage. Some vendors 

especially newly established ones, might face with the cold start problem. In other 

words, they are not able to provide satisfactory predictions in quality and/or 

quantity due to insufficient data. Since similarities between users are computed 

over commonly rated items, data scarcity makes it difficult to find large enough 

commonly rated items. The similarities, computed over a small number of 

commonly rated items, then can be considered untrustworthy. Furthermore, to 

have a large enough neighborhood, data owners should have sufficient number of 

users. Since interrelated customers’ preferences about various products may be 

available in partitioned manner between two CF provider parties, in order to 

overcome data scarcity problem in recommender systems, such parties can 

cooperate on held data. However, due to privacy, legal, and financial reasons, they 

might not want to reveal their data to each other. If they are assured about the 

privacy of each own data, they can decide on cooperation over partitioned data to 

promote CF services. 

 Depending on the availability of customer data, two data holder parties can 

end up with different configurations of partitioned data. While this partition can 

be horizontal or vertical, in practice, it is more likely to be arbitrarily. This study 

focuses on how CF services can be provided on arbitrarily partitioned data 

configurations between two parties while ensuring their privacy. After proposing 
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solutions in such problematic framework, the proposals are going to be justified 

about privacy, efficiency, and output quality via theoretical and empirical 

analysis. It is shown that the offered schemes can be solutions against data 

scarcity problem in CF recommender systems. 

 This chapter is structured, as follows: CF and the related terminology are 

presented in Section 1.1. After privacy-preserving collaborative filtering (PPCF) 

schemes are pointed out in the following section, arbitrarily partitioned data is 

defined in Section 1.3. Then, privacy preservation issues and the contributions are 

presented, respectively. At the end of the chapter, the organization of this thesis is 

introduced. 

1.1. Collaborative Filtering 

Since CF’s conceptual introduction with Tapestry mail filtering system (Goldberg 

et al., 1992), there have already been various collaborative recommender 

proposals in the state-of-the-art. Some algorithms focus on improving scalability 

of CF systems by using dimensionality reduction tools such as singular value 

decomposition (SVD) (Sarwar et al., 2000), principal component analysis (PCA) 

(Goldberg et al., 2001), and clustering methods (Breese et al., 1998). There are 

also studies examining how to tackle with data sparsity (Papagelis et al., 2005; 

Kaya and Alpaslan, 2010) and cold start problems (Ahn, 2008; Li et al., 2009). 

Shilling attack scenarios are proposed in order to manipulate recommendation 

lists, maliciously (Ray and Mahanti, 2009). Some techniques are also offered to 

make CF systems robust against such attacks (Chirita et al., 2005; Ji et al., 2007). 

Novelty and diversity are other issues that take attention of CF researchers (Hurley 

and Zhang, 2011). 

In addition to CF, content-based filtering methods can be utilized for 

information filtering and recommendation purposes. While content-based filtering 

methods work on the inputs such as genres and synopses of movies, books, etc., 

CF operates on the user-item profile data such as ratings, preferences, and 

transactions. In contrast to content-based filtering, CF serendipitously provides 

filtering of items whose contents are too complex to be analyzed by computers 

(Herlocker et al., 1999). In addition to Tapestry (Goldberg et al., 1992), there are 

also hybrid information filtering solutions integrating content-based and CF 
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models (Balabanovic and Shoham, 1997). Vozalis and Margaritis (2007) 

contribute demographic data into CF process to enhance recommendations.  

 In a typical CF process, as shown in Fig. 1.1, the key elements are an n × m 

user-item preference matrix, an active user a, and a target item q. The main idea 

behind CF is that a will prefer those items that like-minded users prefer, or that 

dissimilar users do not. CF systems provide a prediction to user a about a q based 

on the preferences of a community of users (Herlocker et al., 1999). Usually, a 

has insufficient idea about q and CF contributes a’s decision process. 

Alternatively, CF algorithms recommend top-N lists with respect to a’s rating 

profile and similarities with a set of users. After collecting customers’ preferences 

about products they have already experienced, CF input data is constructed as n × 

m user-item matrix (D), where n and m represent the number of users and items, 

respectively. The systems then provide prediction paq for a about q grounded on 

D, a’s known ratings, and her prediction query. Generally speaking, CF process 

consists of the following three main steps (Herlocker et al., 1999): 

i. Similarity Estimation: Determine similarities between any two entities 

(users or items) with the same type using a similarity measure. 

ii. Neighborhood Formation: For a target entity, choose the best similar 

entities as neighbors either off-line or online. 

iii. Recommendation Computation: Estimate a prediction from the 

neighbors’ data using a CF algorithm; and return it as a recommendation 

to a. 

 

Figure 1.1. Key Elements in CF Process 
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Online prediction process can be performed either directly on D, or pre-

constructed model. The former kinds of algorithms are called memory-based 

algorithms while the latter type ones are referred to as model-based algorithms. 

Conventional CF algorithms are memory-based and have some scalability 

problems. Since the main computations are realized on commonly rated items, 

when data are very sparse such algorithms significantly degrade prediction 

accuracy and coverage. To overcome the deficiencies of memory-based CF 

algorithms, model-based algorithms featuring off-line computation process are 

proposed. However, in general, memory-based CF produces more accurate 

predictions over model-based ones. To benefit from both kinds of algorithms, 

hybrid schemes are also proposed. Moreover, CF algorithms can be classified 

with respect to entities, too. Some methods compute similarities between users, 

hence known as user-based CF algorithms. If such relations are constructed based 

on items, then they are called item-based CF method. Lastly, rating data type in 

CF can be numerical or binary values. Numerical ratings can be discrete, 

continuous, or even subzero depending on data collection mechanism. 

1.2. Privacy-Preserving Collaborative Filtering 

Privacy has many definitions according to different perspectives in historical 

background and it is hard to define it concisely. In information theoretic 

framework, a systematic definition is firstly propounded by Warren and Brandeis 

(Judith, 2008). Warren and Brandeis (1890) consider privacy as “right to liberty 

secures the exercise of extensive civil privileges”. According to Westin (1967), 

privacy can be defined as “the claim of individuals, groups, or institutions to 

determine for themselves when, how, and to what extent information about them 

is communicated to others”.  However, as the other information-based systems, 

emerging collaborative recommendation service technologies threaten this right or 

claim for both individuals and institutions. Let us consider individual case. In 

order to benefit from recommendation services, a user must provide some 

personal data especially preference or taste data to such systems, i.e. data 

controller (DC)1. By knowing these, DC might figure out the user and based on 

her profile, DC or its collaborator companies may disturb her by spam 
                                                 
1 OECD, Guidelines on the Protection of Privacy and Transborder Flows of Personal Data, 2005. 
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conversations, e. g. mails, phone calls, and so on for unsolicited marketing. They 

may also utilize such profile to offer higher prices for enjoyed items or services in 

price discrimination manner. Cranor (2004) extensively examines the possible 

privacy risks caused by e-commerce personalization. Such privacy concerns make 

users not to share opinions and taste information with DCs without being sure of 

the confidentiality of personal data. Lam et al. (2006) discuss probable exposure 

risks in case of “undesired access to personal user information” in the framework 

of CF recommender systems. 

There are also studies introducing attacks to infer private information from 

recommender systems. The first attack scenario trying to show the privacy risks in 

recommender systems is presented by Ramakrishnan et al. (2001). Their scenario 

assumes an attacker has anonymized version of the rating database and based 

especially on straddlers having diverse tastes and ratings over different genres of 

items. Calandrino et al. (2011) investigate how to infer individual user profile 

from the aggregated outputs and individuals’ auxiliary information such as a 

subset of her transactions, Facebook user profile, cited text from which books are 

tweeted by Amazon Kindle. They publish experimental results of their inference 

attack and conclude that with the help of some auxiliary information, user profiles 

can be deduced via inference attack on public outputs such as item similarity lists, 

item-to-item covariance, and/or relative popularity items. Cheng and Hurley 

(2009) argue informed attacks against particular vulnerability for model-based CF 

algorithms. In particular, they show the risk that such attacks can be applied on 

peer-to-peer (P2P) recommendation algorithms. 

In addition to user-to-DC transactions, there are some situations, where two 

parties may need to exchange some personal data. However, such DC-to-DC data 

exchange may cause serious complications related to data confidentiality. First of 

all, users’ preferences about different products may help companies to profile 

their customers in such a way to increase their sales and/or profits. Online vendors 

offer different discounts and coupons to their customers based on unrated items. 

Since revealing such information may cause financial losses, data collected for CF 

purposes are considered valuable asset. Secondly, each company is responsible for 

protecting the collected ratings about their customers and data transfers may not 
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be possible due to legal reasons. Kobsa (2007) points out that users are 

uncomfortable about a DC sharing their personal data with other DCs. 

Organization for Economic Co-operation and Development (OECD) stated that 

exposure of customers’ personal data is serious issue and  DCs must protect such 

data (OECD, 2000; OECD, 2005). Finally, customers’ preferences about products 

held by companies are considered online vendors’ confidential data.  

Based on user-to-DC and DC-to-DC privacy issues mentioned above and as 

schematized in Fig. 1.2, two privacy definitions can be defined in the context of 

CF systems, as follows: 

Individual Privacy: No exposure of any rating value and any information 

about which items are rated in each user profile. No doubt about the other 

personal data because CF mainly operates on ratings rather than demographic data 

(Cranor, 2004).  In addition to rating values and rated items, Lathia et al. (2007) 

consider the mean rating for any user and the total number of items rated by any 

user confidential. 

Corporate Privacy: No transactions causing information leakage conflicting 

individuals’ privacy between two or more DCs that are responsible for protecting 

privacy of users. They should hold the user profiles firmly so that they would not 

support their competitors in personalization power. 

 

Figure 1.2. Privacy Issues 

 PPCF schemes can be grouped into two major classes with respect to 

privacy definitions, as shown in Fig. 1.3. PPCF works conducted so far can be 
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discussed in such classification framework. According to the framework, PPCF 

schemes on APD between two parties are discussed in this thesis.  

 

Figure 1.3. State-of-the-Art in Privacy-Preserving Collaborative Filtering 

1.2.1. Individual Privacy-oriented Schemes 

Individual privacy takes attention of CF research community. In state-of-the-art, 

there are techniques focusing on how to collect user profiles while satisfying 

individual privacy protection. Agent-based architectures are also proposed to 

ensure confidentiality of individuals. Moreover, to get rid of concerning about 

data collection in the centralized manner, P2P network solutions are also applied. 

Such classes of solutions are given in detail in the following. 

 Since privacy metrics make sense for significant rate of users (Ackerman et 

al., 1999), DCs must verify to users that their recommendation system ensures 

their privacy. By the way, they promote own data quality and quantity, too. One 

solution for providing such privacy metrics is randomized perturbation techniques 

(RPT). Aggrawal and Srikant (2000) show that aggregates obtained by 

obfuscating sensitive values using particular randomized processes remains still 

valuable for data mining applications. Polat and Du (2005a) applies RPT to both 

correlation and SVD-based CF algorithms; and propose privacy-preserving 

solutions for recommendation services. Their empirical findings show that result 

predictions have satisfying accuracy with some losses due to random masking of 

private data. Berkovsky et al. (2007) examine how users approach to data 

obfuscation in PPCF and find that obfuscation-based privacy protection makes the 

Internet users more willing to share their personal information with DCs. 
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Yakut and Polat (2007b) apply disguising framework to the linear time 

recommendation algorithm Eigentaste (Goldberg et al., 2001). Moreover, Bilge 

and Polat (2012) utilize similar disguising framework on discrete wavelet 

transform (DWT)-based CF algorithm. They also enhance prediction quality using 

two different item ordering methods. To overcome scalability and sparsity 

problems in privacy-preserving conventional correlation-based CF system, Bilge 

and Polat (2011) offer two distinct preprocessing schemes such as using a novel 

content-based profiling of users to estimate similarities on a reduced data for 

better performance and pseudo-prediction protocol to surmount sparsity. Recently, 

Basu et al. (2012b) introduce privacy-preserving Slope One predictor scheme 

using additive and multiplicative perturbation techniques. They obtain satisfactory 

results because the Slope One predictor’s invertible affine transformation property 

is robust to certain types of noise. 

 In another approach, to fulfill the individual privacy demands  in central 

data-based PPCF, Parameswaran and Blough (2007) merge the nearest 

neighborhood data substitution (NeNDS) and geometric transformations such as 

rotation, scaling, and translation by taking advantages of both methods and 

present hybrid NeNDS-based obfuscation scheme to ensure privacy of personal 

rating data. According to their results, there are 5% losses of utility of ranking 

order in obfuscated data with respect to original data.  

Cissée and Albayrak (2007) focus on the recommender system functionality 

and propose an approach utilizing multi-agent system architecture to realize a 

privacy-preserving recommender. Their proposal is based on fundamental features 

of agents such as autonomy, adaptability, and the ability to communicate. Aïmeur 

et al. (2008) introduce a theoretical framework named ALAMBIC in order to 

achieve users’ privacy-protection objectives in a hybrid recommender system 

combining content-based, demographic, and CF techniques. Using agent-based 

architectures, their scheme splits customer data between DC and a semi-trusted 

third party (STTP), so that neither can derive sensitive information from their 

share alone. To ensure privacy in ALAMBIC, one must be sure about that DC and 

STTP are not colluding. 
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Verhaegh et al. (2004) offer a solution handling similarity computation and 

prediction estimation on encrypted rating profiles to protect individual privacy in 

memory-based CF system. Katzenbeisser and Petkovic (2008) consider patient 

privacy in medical recommendation system and provide cryptographic solutions 

ensuring patients’ confidentiality. Hoens et al. (2010b) point out privacy issues in 

similar application area and introduce a privacy-preserving solution based on data 

masking and anonymization procedures. Brun and Boyer (2009) focus on the 

study of how sequential association rules and Markov models can be adapted to 

obtain privacy compliant recommender system serving anytime. They respect 

privacy via executing recommender algorithm on input of anonymized user traces 

without using any other personal information. To address the scalability issues, 

Tada et al. (2010) introduce item-based solution with ensuring individual privacy 

via homomorphic encryption (HE) schemes. In order to facilitate the 

computations, they also contemplate the postulation that item similarities can be 

publicly available rather than user-user similarities. 

There are also central data-based PPCF solutions on binary ratings. Polat 

and Du (2006) propose a framework that collects binary data privately by 

randomized response techniques (RRT). They showed the possibility of providing 

recommendations by item-based CF algorithm on perturbed data via RRT. Kaleli 

and Polat (2007b) apply RRT to protect users’ privacy while producing accurate 

referrals using naïve Bayesian classifier (NBC). They also showed that it is 

possible to improve the overall performance of NBC-based CF with aid of k-

modes clustering while preserving users’ privacy including active users (Kaleli 

and Polat, 2009). Their experimental results demonstrate that their scheme not 

only significantly reduces online time but also enhances accuracy of referrals 

slightly. To provide more truthful recommendations by privacy-preserving NBC-

based CF, Bilge and Polat (2010) offer preprocessing steps such as selecting the 

best similar products to each item and filling the unrated cells with personalized 

ratings. They experimentally show that their modifications enhance the prediction 

quality while slightly worsen the efficiency.  

Surveys conducted on the Internet users show that individuals either being 

aware of privacy risks or not perceive privacy concept in different levels; and they 
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behave based on their privacy perceptions on the Internet (Ackerman et al., 1999; 

Spiekermann et al., 2001). Both surveys determine general clusters about privacy 

concerns about users. In order to adapt their findings on privacy-preserving 

recommender system, Aïmeur et al. (2008) classify users into four levels and 

define no, soft, hard, and full privacy. In no privacy case, a user does not care 

about the privacy of her personal information. Users having soft privacy profile 

behave like identity concerned as Spiekermann’s definition (Spiekermann et al., 

2001). While hard privacy allows DC about browsing behavior and actual 

purchasing information, full privacy anticipates keeping secret whole of 

personally direct/indirect information from DC. Polat and Du (2007) offer 

inconsistently masking data procedure as a solution to meet the diverse privacy 

expectations of users. For this reason, they discuss all possible privacy cases for 

RPTs. They also investigate how to provide predictions using correlation-based 

CF algorithm on inconsistently masked data.  Yakut and Polat (2007a) propose a 

model-based CF solution on this variant. Both of the solutions give the Internet 

users specify masking parameters from a particular range. 

In the context of provision of individual’s privacy, realizing secure 

computation protocols on fully distributed environments have been placed as a 

solution, too. Canny (2002a) propose a scheme in which users control all of their 

log data. In his algorithm, rather than processing individual-wise data, via some 

encryption schemes, a community of users can compute a public “aggregate” of 

their data, which allows personalized SVD-based recommendations to be 

computed by members of the community, or by outsiders. Canny (2002b) also 

introduces P2P recommender system based on factor analysis.   

Miller et al. (2004) propose a recommender system providing referrals to 

users in P2P network without storing user rating profile in conjunction with user 

identity and place. Berkovsky et al. (2005) offer data obfuscation in decentralized 

recommender system and set up experiments for a range of obfuscation policies to 

show the applicability of their proposal. The authors in (Berkovsky and Kuflik, 

2006) include hierarchy in peer neighborhood formation to avoid sharing 

obfuscated user profiles among all peers. 
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Lathia et al. (2007) present concordance metrics to evaluate similarities 

between peers rather than direct computations on rating values. Shokri et al. 

(2009) propose hybrid architecture that utilizes both server and distributed peer 

network. Each user stores her profile off-line, modifies it by partly merging it with 

the profile of similar users through direct contact with them, and only then 

periodically uploads her profile to the server. Kaleli and Polat (2010) investigate 

how to provide referrals on binary data in P2P manner and propose NBC-based 

solution in this variant. Their privacy-preservation is based on RRT. Ahn and 

Amtriain (2010) present an implementation of expert CF in fully distributed 

settings. They develop rich internet application (RIA) by combining RESTful 

architectural style with Linked Data’s basic principles, where REST and Linked 

data are latest web technologies. 

There also P2P proposals in such trendy topics as cloud and ubiquitous 

computing environments. Ahmad and Khokhar (2007) introduce bi-clustering-

based PPCF solution for ubiquitous computing infrastructure. While distributed 

bi-clustering excludes the need for trusted servers, the privacy preservation is 

based on HE. Basu et al. (2011b) focus on how to provide recommendations over 

cloud acting as P2P network and propose practical implementation of privacy-

preserving weighted Slope One predictor on a real world computing platform. 

Clients’ privacy issues in the nowadays’ Internet hit social network 

recommendation systems take care of PPCF research community. Chen and 

Williams (2010) point out the key problems that arise from the privacy dimension 

of social recommendations; and present an architecture to develop privacy-aware 

cooperative social recommender systems. Dokoohaki et al. (2010) integrate both 

trust-aware recommenders and privacy needs in social network; and introduce a 

privacy-preserving trust-aware recommender framework for social networks. 

Hoens et al. (2010a) develop a recommendation system for social networks, 

which protects the privacy of user profile while allowing them to learn aggregate 

results about ratings. Erkin et al. (2011) design privacy-enhanced recommender 

system for a social trust network. While they apply HE and secure multi-party 

computation techniques to ensure privacy, they improve the efficiency through 

computation and communication costs by packing data. Machanavajjhala et al. 
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(2011) examine privacy-utility trade-off for graph-based social recommender 

system. YANA (Li et al., 2011a) and Pistis (Li et al., 2011b) are two privacy-

preserving recommender proposals for online social communities. 

1.2.2. Corporate Privacy-oriented Schemes 

Data scarcity problems faced by DCs bring about privacy-preserving distributed 

data mining (P2D2M) solutions. However, corporate privacy considerations are 

the foremost challenge of such solutions and DCs. In other words, e-commerce 

companies can only cooperate when privacy measures are satisfied. In this variant, 

two parties can end up with three kinds of data configurations: horizontal, vertical, 

or arbitrary. Such configurations can be briefly defined in the jargon of e-

commerce, as follows: In horizontally partitioned data (HPD), two parties have 

the same item portfolio and the disjoint set of users while in vertically partitioned 

data (VPD), they end up with the same set of users and the disjoint set of items. In 

practice, the first one may be available when parties in the same commercial area 

open a stall for different regions as the latter one occurs for parties selling 

different set of products and having the same customer profile. Intuitively 

speaking, while HPD is profitable when there is insufficient number of users, 

VPD is advantageous when data holders have ratings belong to the limited 

number of items. Lastly, arbitrarily partitioned data cases can be defined as 

availability of records belongs to similar set of users for the similar set of items in 

arbitrary manner rather than purely HPD or VPD. Such configurations are 

familiarized in detail in Section 1.3. 

In the context of P2D2M, HPD is firstly studied by Kantarcioglu and Clifton 

(2004). They address the secure mining of association rules over HPD using 

commutative encryption (Pohlig and Hellman, 1978) and Yao’s secure function 

evaluation (Yao, 1986). Kantarcioglu and Vaidya (2003) present schemes for 

learning NBC on HPD securely. Yi and Zhang (2009) consider privacy-preserving 

NBC for HPD and propose both two-party and multi-party protocols to achieve it. 

In another study, Inan et al. (2007) study how to construct dissimilarity matrix 

privately on HPD among different sites. Yang and Huang (2008) present a 

clustering method for horizontally distributed multi-party data sets with privacy 

based on the orthogonal transformation and perturbation techniques. Emekci et al. 
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(2007) propose a method to build decision trees over HPD among multiple parties 

up to thousands of private data sources. Kaya et al. (2009) present a distributed 

clustering protocol for HPD based on a very efficient homomorphic additive 

secret sharing scheme with privacy. 

As HPD, VPD extensively investigated by P2D2M researchers, too. Vaidya 

et al. (2008a) introduce a generalized privacy-preserving variant of the ID3 

algorithm for VPD over two or more parties. Along with the algorithm, the 

authors prove that its security gives a tight bound on the information revealed. 

Oliveria and Zaїane (2007) use random projection techniques in clustering toward 

secure and effective data analysis for business collaboration. They offer solutions 

for vertically distributed configuration and also for centralized data. Skillicorn and 

McConnell (2008) present a simpler prediction approach for VPD. The method 

works in distributed computing manner in which work load is shared by all 

parties. Rozenberg and Gudes (2006) deal with the problem of association rule 

mining from VPD with the goal of preserving the confidentiality of each database 

and offer two different solutions. Yi and Zhang (2007) propose a privacy-

preserving association rule mining protocol based on a new semi-trusted mixer 

model for VPD. 

Polat and Du (2005b; 2005c) introduce privacy-preserving partitioned 

collaborative filtering (P3CF) problem in two different studies. In P3CF, the key 

question is “how can two e-commerce companies offer CF on partitioned data 

without disclosing their data to each other?” In (Polat and Du, 2005c), the authors 

investigate both threshold and best-N neighborhood determinations on obtained 

similarity values using modified Tanimoto metric and propose top-N 

recommendation solutions for horizontally partitioned binary data. The same 

authors examine how to realize recommendations using correlation-based CF 

algorithm on VPD (Polat and Du, 2005b). Kaleli and Polat (2007a) propose P3CF 

solutions for NBC-based binary referral estimation on both HPD and VPD, 

alternatively. Yakut and Polat (2010) examine how to estimate SVD-based 

predictions while guaranteeing corporate privacy of HPD and VPD; and introduce 

a model-based P3CF scheme. Hsieh et al. (2008) focus on correlation-based CF 

on HPD with corporate privacy; and propose a P3CF framework utilizing El 
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Gamal-based HE. Zhan et al. (2008) investigate empirically efficiency issues in 

P3CF on HPD by comparing computation and transportation time costs of El 

Gamal-, commodity-, and their revised commodity-based approach; and their 

experimental findings show that the revised approach outperforms the others. 

There are also PPCF studies caring about the problematic cases, which more 

than two DCs exist. Kaleli and Polat (2012b) discuss the challenges of vertically 

distributed data (VDD) among multi-party and propose a privacy-preserving self-

organizing map (SOM) algorithm for multi-party collaboration. The same authors 

also consider horizontally distributed data (HDD) for SOM-based CF algorithms 

(Kaleli and Polat, 2012a) and introduce a solution. In another study, Kaleli and 

Polat (2011) investigate how to provide trust-based recommendations on VDD 

while preserving corporate privacy.  

Basu et al. (2011a) present a privacy-preserving item-based CF scheme 

through the use of an additively homomorphic public-key cryptosystem on the 

weighted Slope One predictor; and show its applicability on both HDD and VDD.   

Basu et al. (2012a) implement the some components of a PPCF method in Java on 

the Google App Engine, which provides cloud computing platform for web 

applications in Google-driven data hubs. They observe the feasibility of PPCF 

services on cloud platform. Their results demonstrate that such engine can have 

significant performance bottlenecks to realize PPCF services in decent time.  

1.3. Arbitrarily Partitioned Data  

Two online vendors, A and B, can end up with APD, as shown in Fig. 1.4. Some 

ratings are held by A while others held by B. Since users do not rate all items, 

there are unrated cells, as well. When A and B sell similar set of products for the 

same customers, they might end up with APD. Any user may provide ratings for 

some items to A while she might rate some items held by B. As shown in Fig. 1.4, 

there might be non-common customers and products. Although there is no order 

of placement of ratings, it is assumed that each user provides one rating only for 

any item. Thus, there are no overlapping ratings. In other words, users’ 

preferences held by each party are distinct sets. 

Jagannathan and Wright (2005) introduce the concept of so called APD. 

The authors present a privacy-preserving protocol for k-means clustering based on 
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APD. For similar clustering goal, Prasad and Rangan (2007) develop a privacy-

preserving BIRCH algorithm on APD. They also introduce secure protocols for 

distance metrics and give a procedure for using these metrics in securely 

computing clusters over APD. Han and Ng (2007) propose a privacy-preserving 

decision tree induction algorithm on APD among multiple parties. Since secure 

scalar product is a core operation in decision tree induction, their main 

contribution in this work is a more efficient method to perform the secure scalar 

product operation on APD among multiple parties. In another study, privacy-

preserving support vector machine (SVM) classifier solution on APD is proposed 

by Yunhong et al. (2010). Despite the fact that the SVM classifier is public in 

their proposal, it does not divulge any privately held data. According to their 

empirical analysis on real world data, accuracy results are satisfactory with 

respect to ordinary SVM classifier. 

 

Figure 1.4. APD: Arbitrarily Partitioned Data 

Bansal et al. (2010) present a privacy-preserving algorithm for neural 

network learning when the data are arbitrarily partitioned between two parties. 

They show that their algorithm leaks no knowledge about other party’s data 

except the final weights learned by the network at the end of training. Upmanyu et 

al. (2010) propose a solution based on “cloud computing” using the paradigm of 

“secret sharing” to privately cluster an APD. Li et al. (2011c) offer privacy-

preserving distance-based outlier detection protocol on APD. 
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 In addition to APD, data owners might end up with CPD, as shown in Fig. 

1.5, where n1 + n2 = n and m1 + m2 = m. Suppose that there are two e-commerce 

companies, A and B, where both companies sell the same products to the same 

community of customers.  As seen in Fig. 1.5, A holds the ratings of the users 

from u1 to 
1nu for the items from i1 to

1mi ; and the ratings of the users from 11+nu  to 

un for the items from 11+mi  to im, while B owns the remaining ratings. A and B can 

end up with CPD under one of the following conditions: 

i. A makes discounts for the items from i1 to
1mi , while, at the same time, B 

makes discounts for the items from 11+mi  to im. During these sales 

campaigns, users from u1 to 
1nu buy and rate corresponding discounted 

items from A and B, respectively. After these discounts are over, A makes 

discounts for the items from 11+mi to im, while, at the same time, B makes 

discounts for the items from i1 to
1mi . Another group of customers, users 

from 11+nu to un, then buy and rate corresponding discounted items from A 

and B, respectively. Such sales offerings then lead to CPD between A and 

B, as shown in Fig. 1.5. 

 

Figure 1.5. CPD: Cross Partitioned Data 

ii. Customers choose vendors to buy various products depending on some 

parameters and intuition (Van den Poel and Buckinx, 2005; Chang et al., 

2007). This fact causes profiling of users. There are two types of user 

profiles, U1 and U2, which have different purchasing behaviors. Users in 

U1 (including n1 users from u1 to
1nu ) select companies A and B to buy 
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items from i1 to 
1mi and items from 11+mi  to im, respectively. Unlike users in 

U1, users in U2 (including n2 users from 11+nu  to un) select e-commerce 

sites A and B to buy items from 11+mi  to im and items from i1 to
1mi , 

respectively. Such purchasing profiles then result CPD between A and B, 

as shown in Fig. 1.5. 

iii. Huang et al. (2007) and Shapira et al. (2005) show that web users’ online 

exploration behavior is highly correlated and informative. Thus, 

customers may select different e-commerce sites at different times to 

purchase various products. They do not want to give their data to one 

online vendor only. In this way, they can have more control over their 

purchasing history, ratings, interested items, viewed items, view duration, 

and so on. A group of customers  (n1 users) give their ratings for m1 and 

m2 items to A and B, respectively, while another group of  users (n2 

customers) provide their ratings for m2 and m1 items to A and B, 

respectively. Such types of privacy concerns lead to CPD between A and 

B, as shown in Fig. 1.5. 

1.4. Privacy Preservation Framework 

After giving essential definitions in CF and state-of-art in PPCF and directing 

sight to the arbitrarily partitioned data configurations, it is now fitting place to 

express issues related to privacy preservation specifically for this dissertation.  

1.4.1. Privacy Constraints 

In the generic problem of P2D2M, user-item data can only be mined through 

collaborating parties without invading corporate privacy of DCs. For this study, 

the main objective of privacy preservation focuses on hiding the ratings and the 

rated items. Thus, actual rating values and the rated items are considered 

confidential data; and the principal privacy constraint implies that the proposed 

scheme cannot allow any leakage inferring the confidential data. During 

collaborative work, intermediate results are exchanged between aiding parties. 

Thus, the proposed method cannot involve any exchange of intermediate 

computation value allowing parties to infer confidential values, either. The 

auxiliary privacy constraint can be stated as “there are no transactions, which 
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conflict the principal privacy constraint.” Since user and item IDs can be thought 

as public values, sharing them does not violate neither principal nor auxiliary 

privacy constraints. It is assumed that the collaborating parties are semi-honest 

that obey the defined protocol; however, they might want to process any obtained 

data either intermediate or final result to learn private values. Moreover, each 

party can act as an active user in multiple scenarios to derive useful information 

about confidential data. Hence, the proposed schemes should prevent cooperating 

companies from learning confidential data and do not allow them to jeopardize the 

principal and the auxiliary privacy constraints. 

1.4.2. Privacy-Preserving Methods 

To achieve privacy, the proposed schemes mainly exploit randomization-based 

techniques, encryption schemes with homomorphic property, and oblivious 

transfer. Since randomization-based techniques take shape depending on the 

usage, they are explained in detail in the dissertation, where it is proposed to 

apply. The homomorphic cryptosystems are useful to perform addition and 

multiplication operations based on private data. Since the first introduction of 

homomorphic cryptosystems by Goldwasser and Micali (1984), several such 

systems have been proposed (Naccache and Stern, 1998; Paillier, 1999). Since 

Paillier cryptosystem avoids many of the drawbacks of the earlier homomorphic 

cryptosystems and provides faster encryption and decryption comparing to its 

alternatives (Pedersen et al., 2007), it is preferred to be utilized, where HE 

schemes are required along this dissertation.  

Based on public cryptosystems infrastructures, Paillier (1999) proposes an 

additive HE method with self-blinding property. Via the specified method, cipher-

texts can be processed to get encrypted version of their sums. Suppose that x and y 

are two numbers while ξK is encryption function with key, K. Then, encrypted 

versions of the numbers are ξK(x) and ξK(y). According to Paillier’s scheme, 

multiplication of these cipher-texts results cipher-text of their sum; in other words, 

ξK(x) × ξK(y) = ξK(x + y). Based on this rule, his scheme also supports 

multiplication, which can be performed as analogous manner: ξK(x)y = ξK(xy). 

Moreover, self-blinding property allows publicly change of cipher-text into 

another one without affecting the plaintext. This can be achieved by multiplying 
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cipher-text with R
ɴ, where R is random integer value and ɴ is modulus of the 

operated public cryptosystem.  

Rabin (1981) introduce oblivious transfer (OT) concept that provides 

platform to share desired information by receiver among a range of private 

information of sender while sender is oblivious about what is received. 

Principally, it must satisfy three key requirements such as correctness of the 

received value, confidentiality of n-1 values, and privacy of which one is received. 

1-out-of-n OT refers to a protocol, where at the beginning of the protocol one 

party, Bob has n inputs X1, X2, …, Xn and at the end of the protocol the other party, 

Alice, learns one of the inputs Xi for some 1 ≤ i ≤ n of her choice, without learning 

anything about the other inputs and without allowing Bob to learn anything about 

i (Even et al., 1985). In this study, to afford privacy constraints, OT is included 

into proposals according to the one proposed by Naor and Pinkas (2001). 

1.5. Contributions 

Along the study, the generic question focused is that “when data collected for CF 

purposes are arbitrarily partitioned between two DCs, how do they offer 

recommendations based on APD without violating their corporate privacies?” 

Individually, the research problems can be listed, as follows: 

i. Item-based CF on APD: Two parties want to provide CF services via 

item-based algorithm on APD. 

ii. Trust-based CF on APD: Using trust-based CF metrics, how two parties 

realize CF services based on APD. 

iii. NBC-based CF on APD: How can a NBC-based CF algorithm be realized 

on arbitrarily partitioned binary data along two parties? 

iv. Hybrid CF on CPD:  Two online vendors, holding data as CPD, want to 

provide CF services using hybrid CF methods. 

 Each solution according to the listed problems must satisfy the 

abovementioned privacy constraints focusing to ensure hiding value of 

individuals’ ratings and which items are rated. Since privacy, accuracy, and 

efficiency are conflicting goals, it is expected that privacy preservation brings 

about some computation, communication, and storage overheads. Randomization-

based techniques are also expected to make accuracy worse. The solutions to be 
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proposed should bring reasonable amount of such listed overheads while 

promoting the quality of predictions. In other words, they will overcome data 

scarcity of DCs in realizable way. 

 The first contribution of this dissertation is to identify and study the 

problem of P3CF on arbitrarily partitioned data, which have not been studied in 

the literature. As state-of-art is discussed in earlier text, there are some P3CF 

solutions on HPD or VPD; however, this work focuses on APD. A couple of 

solutions about how to provide APD-based private predictions on item-based 

algorithms, trust-based, and NBC-based CF algorithms have proposed. Since there 

is no proposal covering PPCF on APD in the state-of-the-art, it is the first study 

focusing on APD in the context of P3CF. Second, this work is the first to 

introduce and study CPD concept in general. By the way, a P3CF scheme is 

proposed on CPD for the first time. Finally, by this dissertation, novel PPCF 

schemes are proposed on both numerical and binary ratings data. Some protocols, 

which are proposed to handle the problems pointed out, can be utilized in different 

tasks of PPDM literature. 

1.6. Organization of the Dissertation 

In the following chapter, privacy-preserving item-based CF on APD is 

scrutinized. While how trust-based CF can be realized on APD with privacy is 

discussed in Chapter 3, privacy-preserving NBC-based CF on arbitrarily 

partitioned binary data is presented in Chapter 4. How referrals can be estimated 

over CPD with privacy is the concentration of Chapter 5, where a solution 

exploiting hybrid CF algorithm is introduced. Finally, conclusions are drawn and 

future research directions are pointed out in Chapter 6. 
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2. PRIVACY-PRESERVING ITEM-BASED COLLABORATIVE 

FILTERING ON ARBITRARILY PARTITIONED DATA 

In this chapter, it is scrutinized how to estimate item-based predictions on APD 

between two e-commerce sites without deeply jeopardizing their privacy. The 

proposed scheme is analyzed in terms of privacy; and it is demonstrated that the 

method does not intensely violate data owners’ confidentiality. Experiments are 

conducted using real data sets to show how coverage and quality of the 

predictions improve due to collaboration. The proposed scheme is also 

investigated in terms of online performance; and it is justified that supplementary 

online costs caused by privacy measures are negligible. Moreover, some trials are 

performed to show how privacy concerns affect accuracy. The empirical results 

show that accuracy and coverage improve due to collaboration; and the proposed 

scheme is still able to offer truthful predictions with privacy concerns. 

2.1. Introduction 

With millions of customers and products, a typical web-based recommender 

system running conventional memory-based algorithms suffers serious scalability 

problems (Sarwar et al., 2000). To improve scalability, model- or item-based 

schemes are preferred over memory- or user-based ones because amount of online 

computations is relatively less in such approaches. Sarwar et al. (2001) propose an 

item-based algorithm to enhance scalability. Their algorithm can be considered as 

a hybrid one including both off-line computations (model construction) and online 

computations (prediction estimation).  

  Suppose that data collected for CF purposes are arbitrarily partitioned 

between two parties, A and B. Such vendors want to provide recommendations on 

their integrated data without revealing their confidential data to each other. 

Moreover, they want to estimate predictions with decent accuracy. Finally, online 

performance must allow them to offer referrals to their customers efficiently. 

Thus, the problem is how to offer item-based recommendations with decent 

accuracy on APD efficiently while achieving data owners’ confidentiality. Since 

privacy, accuracy, and performance are conflicting goals, the proposed scheme 

should provide equilibrium among them. 
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  CF with privacy on partitioned data is an interesting topic for CF 

researchers. Polat and Du (2008) show how to offer top-N recommendations based 

on horizontally or vertically partitioned data between two parties without deeply 

violating the data owners’ privacy. They provide sorted list of referrals on binary 

rating data. In another study, Polat and Du (2005b) discuss how to provide 

predictions for single items based on VPD between two parties while preserving 

their privacy. They consider all users in the database as neighbors and utilize the 

entire users’ data for prediction computations. Kaleli and Polat (2007a) 

investigate how to achieve NBC-based CF tasks on partitioned data with privacy. 

The authors employ binary ratings and the NBC-based CF algorithm to generate 

referrals, where the scheme determines whether a will like q or not. Yakut and 

Polat (2010) scrutinize how to provide SVD-based referrals on partitioned data 

without greatly jeopardizing data holders’ privacy. They offer two different 

solutions for horizontal or vertical partitioning cases. They show that their scheme 

does not introduce extra online costs. 

  Although there are various studies scrutinizing CF on distributed data with 

privacy, this study is the first one for providing predictions on APD with 

confidentiality. Since APD is the most probable and practical configuration over 

HPD and VPD, a novel scheme is going to be proposed in order to offer APD-

based referrals while preserving the data owners’ privacy. APD promises more 

useful prediction system and the solution for APD is expected to be more 

complicated. As recommendation generation algorithm, this study focuses on the 

item-based algorithm enabling pre-computing of item-item similarities proposed 

by Sarwar et al. (2001). Similarity computations and neighborhood formations, 

performed off-line, can eliminate the significant bottleneck of scalability. Rather 

than generating top-N list as in (Kaleli and Polat, 2007a; Polat and Du, 2008), the 

proposed solution yields predictions for single items. In (Kaleli and Polat, 2007a), 

the proposed scheme operates over the data featured as binary while this study is 

based on the numeric data in a specific range. Unlike all related work, data 

partitioning model concerned in this study is novel. 
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2.2. Item-based Collaborative Filtering 

Item-based CF techniques are proposed to overcome scalability and sparsity 

challenges of user-based techniques. Since item-item relationships are much more 

static than the relationship between users, item-based CF enables pre-computation 

of item-item similarities off-line. Therefore, prediction process consists of only a 

table look up for similarities and computation of a weighted sum. Sarwar et al. 

(2001) propose an item-based algorithm, which looks into the set of items that a 

has rated and calculates how similar they are to q. The most k similar items are 

chosen as neighbor off-line (referred to as model construction). The referrals are 

then computed online by taking the weighted average of a’s ratings on these 

similar items. In their scheme, to compute similarities between items, they use 

cosine-based, adjusted cosine, and correlation-based similarity metrics. They 

experimentally found that the adjusted cosine similarity, given in Eq. (2.1), 

performs the best:  
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in which simi,j is the similarity weight between items i and j, U  is the set of users, 

uyv is the rating of u for item y, and uv  is the average of user u’s ratings. After 

finding the similarities, final prediction is estimated online as a weighted sum of 

a’s ratings for similar items, as follows:   

 

∑
∑

∈

∈=
odNeighborhoj jq

odNeighborhoj ajjq

aq
sim

vsim
p

)*(
 (2.2) 

in which ajv  represents a rating of a for item j.  

2.3. Item-based Predictions on Arbitrarily Partitioned Data with Privacy 

In this section, the proposed scheme is introduced in detail. An overview of the 

proposed method is given in Fig. 2.1. As seen from the figure, this approach 

includes off-line and online phases. In off-line phase, after data masking and 

preprocessing steps, item vectors’ lengths and item-item similarities between each 

pair of items are estimated using private vector length estimation protocol and 

private adjusted cosine estimation protocol (PACEP), respectively. Then, each 
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party j constructs its own model, Modelj. Online phase is triggered by a, where 

she sends her rating vector and a query (target item q). After normalization and 

data masking processes, two parties collaborate securely to estimate final 

prediction value paq, where they utilize pre-constructed models in online phase. 

 

Figure 2.1. Overview of the Proposed Scheme 

  The user-item matrix D might be arbitrarily partitioned between A and B, 

as shown in Fig. 1.2., where DA and DB represent the sets owned by A and B, 

respectively. The adjusted cosine similarity is used to compute similarities 

between items, as proposed by Sarwar et al. (2001). Given two items, i and j, the 

similarity (wij) between them can be computed, as follows: 
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where iv′ and jv′  are two vectors including the mean normalized ratings by 

subtracting corresponding user average from own ratings, · denotes the dot-

product of the two vectors; and iv′  and jv′  show vector lengths of iv′ and jv′ , 
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respectively. To determine the item q’s neighbors, threshold method is used where 

those items whose similarity with q is bigger than a pre-defined threshold are 

selected as neighbors. In order to estimate recommendations, the item-based 

algorithm is employed proposed by (Sarwar et al., 2001), where z-scores are used 

rather than ratings, as follows: 
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where remember that paq is the prediction for an active user a on a target item q, 

av and aσ  represent the mean rating and the standard deviation of a’s ratings, J is 

the set of q’s neighbors, wqj is the similarity weight between items q and j, and zaj 

is the z-score of a’s rating on item j. Given a’s rating on item j (vaj), av , and aσ ; 

zaj can be computed, as follows: 
a

aaj

aj

vv
z

σ

−
= . The z-scores need to be computed 

for a only. Thus, the master party (MP) can easily calculate them after receiving 

the required data from a where MP is one of the companies asked for prediction 

by a. 

  CF process can be divided into off-line and online phases. Since off-line 

costs are not critical for overall success, computations should be done off-line as 

much as possible. In the item-based algorithm (Sarwar et al., 2001), similarity 

weights between items and neighborhood formations can be conducted off-line. 

Determining each item’s neighbors is called model generation. After constructing 

the model off-line, recommendations can be estimated online based on the model 

and a’s data. The parties should perform such computations in such a way so that 

they do not reveal their data to each other. 

2.3.1. Off-line Phase 

In order to protect their data, the parties first mask their private data sets, namely 

DA and DB. They then can estimate the model based on perturbed data. The parties 

can disguise their data, as follows: 

i. Each party j determines the number of unrated item cells in their 

databases. 

ii. They then uniformly randomly choose a value, θj, over the range (1, βj]. 
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iii. Next, each party j uniformly randomly selects θj percent of their empty 

cells. 

iv. A and B finally fill such cells with fake ratings (vf); and obtain the 

masked databases, AD′  and BD′ , respectively. 

  βj and vf can be called as performance parameters because their values 

definitely affect the overall performance of the scheme. There are various factors 

that might help the parties determine βj value like density/sparsity ratio, accuracy 

and privacy levels, number of cells with double ratings, and the originality of the 

collected data. With increasing sparsity, number of filled cells increases. 

Likewise, accuracy might get worse with augmenting randomness while privacy 

enhances. Due to the nature of data distribution, number of commonly filled cells 

by both vendors increases with increasing βj value. Finally, amount of inserted 

fake ratings affects the originality of the true data. Besides the value of βj, fake 

ratings are another factor especially effecting accuracy. In order to determine fake 

ratings, various techniques can be used. They can be grouped into three main 

classes, as follows: 

i. Non-personalized ratings: Utilize corresponding user, item, or overall 

average ratings, i.e. default ratings (vds), computed based on available 

data as vf. In other words, each data holder can compute them without 

help of the other party using its available ratings. For an entity j (user or 

item), if there are mj ratings, then the average vote is ∑= i jij mvv / , 

where i = 1, 2, …, mj. Similarly, overall average can be estimated, as 

follows: If there are mA number of ratings in A’s database, then the 

overall average vote is ∑= i AiA mvv /    in which i = 1, 2, …, mA. After 

calculating such ratings, uniformly randomly chosen empty cells can be 

filled with corresponding votes. For example, if any party decides to use 

user mean votes for data disguising, it fills randomly selected empty 

cells with corresponding users’ rating averages.  

ii. Ratings distribution: Determine vf based on available users’ ratings 

distribution. After determining each user’s ratings distribution and the 

values of its parameters (such distribution is usually Gaussian 
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distribution with µ and σ), data holders generate fake ratings for each 

user using the determined distribution and the values. They then fill 

uniformly randomly selected empty cells with related vf  values. 

iii. Personalized ratings: Use the most probable values estimated from 

available data using a prediction algorithm as vf. In this method, each 

party first estimates vf values based on its available data using a k-nn CF 

algorithm (employing Eq. (2.4)). They then filled randomly chosen cells 

with corresponding personalized ratings. 

  After masking their databases using fake ratings, the parties can construct 

a model. Model creation consists of computing the similarities and determining 

the neighbors. To calculate similarity weights based on normalized data, A and B 

should first find user average ratings and then calculate item vector lengths. How 

building blocks like mean and vector length can be estimated without violating 

data owners’ privacy based on filled databases can be explained, as follows: 

  Private Mean Estimation Protocol: Given xu ratings provided by a user 

u, their arithmetic average uv  can be computed, as follows: 
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where vuj represents the user u’s ratings for item j. Note that sum and count are 

examples of distributive measures, which can be computed by partitioning the 

data into smaller sets, computing each measure for each subset, and finally 

merging them to obtain the final value. Also note that since uv  = sum/count, it is 

an example of algebraic measure, which can be calculated by applying division 

function to distributive measures sum and count. Since the data are arbitrarily 

distributed between A and B, Eq. (2.5) can be written, as follows: 
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where xu shows the number of ratings including the fake ones for user u, xuA and 

xuB represent the number of ratings including the fake ones held by A and B, 
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respectively. The parties can estimate uv  values for all users, u = 1, 2, …, n, 

based on the masked databases in a distributive manner, as follows: 

i. A and B compute partial sum and count values based on their masked 

databases for all users.  

ii. Then, A sends estimated sub-aggregates for those users with odd indices 

to B, while B sends estimated sub-aggregates for those users with even 

indices to A. In other words, the parties exchange sub-aggregates for half 

of the users. 

iii. Next, A and B estimate user mean ratings for even and odd indexed users, 

respectively. 

iv. Finally, they exchange the estimated mean ratings. Thus, at the end of 

this private protocol, each party ends up with the uv  values for all users. 

  Although it is not easy to perform computations in a distributive manner 

without sharing any information, the parties exchange smaller amount of data as 

much as possible. The smaller the amount of data shared, the more privacy they 

have. Notice that each party sends data to the other party for half of the users in 

this protocol. Therefore, the companies cannot figure out the sum of the ratings 

and the rated items for such users during this protocol.  

  Private Vector Length Estimation Protocol: After estimating the user 

means, the parties can normalize their ratings by subtracting the corresponding 

user mean ratings from each vote. The next task is determining item vector 

lengths based on filled and normalized databases. Since vector length is an 

example of distributive measure like mean, it can be estimated in a distributive 

manner, as follows: 

 222
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in which xu is the set of users who provide ratings including the fake ones for item 

j, similarly, xuA and xuB represent the sets of users held by A and B, respectively, 

who provide ratings including the fake ones for item j. The parties can estimate 

the vector lengths for all items, j = 1, 2, …, m, based on masked databases in a 

distributive manner, as follows: 
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i. A and B first find deviation from mean values, compute their squares, and 

calculate the corresponding sum values for all items, respectively. 

ii. Then, A sends estimated sub-aggregates for those items with odd indices 

to B, while B sends estimated sub-aggregates for those items with even 

indices to A. They basically exchange sub-aggregates for half of the 

items. 

iii. Next, A and B estimate vector lengths for even and odd indexed users, 

respectively. 

iv. Finally, they exchange estimated item vector lengths. Hence, at the end 

of this private protocol, each party ends up with the values for all items. 

  Private Adjusted Cosine Estimation Protocol (PACEP): The parties 

normalize their ratings by subtracting the corresponding user mean ratings from 

each rating and then dividing the result by the corresponding item vector lengths 

after they estimate the mean and the vector lengths using the proposed protocols, 

explained previously. Then, Eq. (2.3) can be written, as follows: 

 
,),cos(

1
uj

n

u

uiij vvjiw ′×′=′′= ∑
=

rr

 (2.8) 

which is basically a scalar dot-product between two vectors including normalized 

ratings and iuuiui vvvv ′−=′ /)( . Since data are arbitrarily distributed, ivX ′=  

and jvY ′=  are partitioned between A and B. Therefore, scalar dot-product of X 

and Y can be written, as follows: 

 
BBABBAAA YXYXYXYXYX ⋅+⋅+⋅+⋅=⋅ . (2.9) 

  A and B can estimate AA YX ⋅  and BB YX ⋅ , respectively by themselves 

because they own such vectors. On the other hand, to compute BA YX ⋅  and

AB YX ⋅ , they need to collaborate. Notice again that the computations are based on 

filled matrices. In the following, how the parties can estimate BA YX ⋅  can be 

explained in a private manner: 

− B divides BY  into f random vectors, where ∑ =
=

f

i BiB YY
1

. 
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− B encrypts each value in each random vector with KB using an HE 

scheme, where KB is B’s public key. 

− B then sends encrypted values to A. 

− A similarly divides XA into g random vectors, where ∑ =
=

g

i AiA XX
1

. 

− Then, A finds )()( BijAijKB

X

BijKB YXY Aij ×= ξξ  values using HE property, 

where E represents encryption; and XAij and YBij represent a value in a 

random vector. HE allows a multiplication operation to be conducted 

based on the encrypted data without decrypting them. An efficient HE 

scheme proposed by Paillier (1999) is utilized.  

− A also divides the result of AA YX ⋅  into a1 random pieces and encrypts 

each piece with KB using the homomorphic scheme. 

− A then permutes all encrypted values using a permutation function fpA; and 

sends them to B. 

− B decrypts them and adds them up. 

− In order to estimate AB YX ⋅ , they follow the same steps by switching the 

roles. 

− Finally, to find the similarity weights, they exchange such partial sums in 

such a way so that for half of the items, the similarity weights are kept by 

A; and for the others, they are kept by B. 

Model Construction: After estimating the item-item similarities, the 

parties can now construct a model, which is basically determining the neighbors 

of each item. For each item, they can select those items satisfying a pre-

determined threshold (τ) as neighbors. The optimum values of various controlling 

parameters like τ in traditional CF approaches are determined experimentally. 

Sarwar et al. (2001) perform some experimentation to determine the optimum 

values of some parameters including the neighborhood size. Thus, both parties 

can use the same threshold value previously determined experimentally. Note that, 

at the end of the PACEP, for half of the items, the similarity weights are kept by 

A; and for the others, they are kept by B. The parties then choose those items, for 

which they have the similarity weights, satisfying the τ as neighbors. In other 

words, the model is partitioned between A and B because for each item, some of 
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the neighbors and their similarity weights are held by A while the remaining are 

held by B.  

2.3.2. Online Phase: Recommendation Estimation 

Once the parties create the model off-line for prediction purposes, based on their 

distributed data with privacy, they then start providing recommendations online 

using it. Since the model is distributed between A and B, the parties can estimate 

predictions in a distributive manner using Eq. (2.4), as follows: 
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where JA and JB are the set of q’s neighbors held by A and B, respectively. 

Suppose that a sends a query to A that acts as a MP. The parties then follow the 

following steps: 

− A finds av  and aσ  values; and computes zaj values.  

− Then, A uniformly randomly selects some of a’s unrated item cells; and 

fills them with default z-scores, estimated from available data off-line. A 

follows the similar steps as done while masking DA. 

− A then removes those items’ z-scores from a’s vector, which are q’s 

neighbors and held by itself. 

− Next, A encrypts the remaining z-scores using an HE scheme using its 

public key KA; and sends them to B together with the query. 

− B divides wqj values into random pieces wqjB; computes 

))(mod()(mod)( 2 nwznz qjBajKA

w

ajKA
qjB ×= ξξ  using the HE property, where 

HE allows multiplication operation to be conducted on an encrypted value 

and a plain value without decrypting the encrypted value.  

− B then permutes them using a permutation function fB; and sends them A 

together with∑ ∈ BJj qjw . 

− A decrypts them and finds∑ ∈
×

BJj ajqj zw . She finally estimates paq and 

returns it to a.  
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The parties are able to construct a model off-line using the proposed 

scheme without deeply jeopardizing their confidentiality. After estimating the 

model, they then provide predictions based on the distributed model using the 

proposed privacy-preserving scheme. In the followings, the proposed scheme is 

analyzed in terms of performance, privacy, and accuracy.  

2.4. Privacy Analysis 

Privacy requirements state that the collaborating parties should not be able to 

learn true ratings and the rated items held by each other. Before utilizing various 

protocols, data holders perturb their data by inserting fake ratings. Notice that fake 

ratings are estimated on available data by each company without sharing any 

information. Moreover, they do not exchange such fake ratings. Also note that 

they do not use a single fake value for all selected empty cells. Number of 

different fake ratings depends on the method they utilize. For example, if they use 

personalized ratings, they use different votes for each chosen empty cell.  

  Since the proposed method includes various protocols, they are discussed 

separately. In the private mean estimation protocol, A and B exchange partial sum 

and count (denoted as M) values estimated on perturbed data for each user. Given 

the count values, the parties can guess the number of filled cells and the filled 

cells with some probabilities. For each party, the probability of guessing the 

correct θj is 1/βj; and the probability of guessing the correct βj is 1/100. After 

guessing the correct θj, each party then can find out the number of truly rated 

items (mr) from received count values, as follows: mr = (θj × M)/100. Then, 

guessing the rated items for each user is 1 out of m

mr
C , where X

YC  represents the 

number of ways of picking Y unordered outcomes from X possibilities. Also note 

that 
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!
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X
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== − . Thus, the probability of guessing the rated items 

for each user is 
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jβ . Given the partial sums, the parties 

cannot determine the true ratings as long as M > 2, because there are two known 

values only (sum and count (M)) and M unknown values. The parties can mask 

their data by inserting fake ratings in such a way so that M > 2 for each user. Note 

also that the parties do not know the fake ratings estimated by each other. Finally, 
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as explained before, since they exchange data for half of the users, they are not 

able to derive information about other users’ data.  

  Unlike the private mean estimation protocol, in the private vector length 

estimation protocol, the parties exchange partial sum values only. To estimate 

vector lengths, they do not need count values. They do not know how many users 

rated each item held by each other. Also, due to filled cells with fake ratings 

(which are also unknown), normalization, and taking squares, it becomes difficult 

to guess true ratings given partial sums only. Moreover, the parties exchange data 

for half of the items only.  

The protocol proposed to estimate similarities consists of distributed scalar 

product computations in which privacy is achieved through HE, permutation, and 

random division at the same time. Paillier (1999) shows that HE is semantically 

secure for inference of input values. In other words, the parties cannot derive any 

information from the exchanged encrypted values. Moreover, utilizing 

permutation prevents the parties from learning the correct order of such encrypted 

values. However, they can guess their actual order with some probabilities. If 

there are h encrypted values, correctly guessing their order is 1 out of h!, where 

value of h depends on f, g, a1, and number of commonly rated items. Random 

division also enhances privacy. Even if one sub-vector is determined, others are 

still private. And finally, as explained previously, the parties hold half of the 

similarity weights only for each item. Hence, the parties are not able to derive 

information about each other data while conducting the PACEP. During model 

construction performed off-line, the parties decide neighbors for each item based 

on the similarity weights they hold and the τ value. Since they do not exchange 

anything during model creation, nothing can be inferred.    

  Online phase includes how to estimate prediction based on the model and 

a’s data. Recommendation estimation, as explained previously, consists of 

masking a’s data like train data masking, using HE, permutation, and random 

division. Since the computations are similar to the ones conducted in the PACEP, 

the parties cannot obtain information about each other’s data while offering 

predictions online due to the same reasons described previously. To sum up, the 
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proposed method allows data owners provide recommendations while preserving 

their privacy during both off-line online phases. 

2.5. Supplementary Costs Analysis 

Unlike off-line performance, online efficiency is critical for the overall success of 

CF systems. Since privacy and efficiency are conflicting goals, supplementary 

costs are inevitable due to privacy concerns. The proposed scheme is first 

analyzed in terms of additional online costs and then off-line costs are explained. 

  To evaluate computational complexity of CF schemes, online phase is 

much more vital than off-line phase because the algorithm must respond to the 

thousands of prediction requests in a few seconds. In the traditional item-based 

algorithm proposed by (Sarwar et al., 2001), online process includes prediction 

generation step, which involves only a table look up for the similarity values and 

the computation of the weighted sum. In the proposed scheme, since the model is 

partitioned between A and B, extra computations are inevitable. Due to random 

selection, filling, removing, division, and permutation, additional costs are 

negligible. However, due to encryption, computation costs increase. Suppose that 

A is the MP. It performs maB encryptions, where maB shows the number of z-scores 

sent to B. It also performs maB× wqjB decryptions. To determine the running times 

of cryptographic algorithms, benchmarks for the CRYPTO++ toolkit from 

http://www.cryptopp.com/ can be used. Similarly, due to random division and HE, 

the number of exponentiations conducted by B increase by wqjB times.  

  In order to estimate online times spent for providing a single prediction, 

experiments are performed using a computer, which is Intel Core2Duo, 2.4GHz 

with 4GB RAM. According to study conducted by Goldberg et al. (2001), it takes 

350 ms for providing a single prediction using k-nn algorithm with k = 80. Item-

based algorithm proposed by Sarwar et al. (2001) spends 237 ms for producing a 

single prediction. Without privacy concerns and communication overheads, item-

based scheme on partitioned data is expected to spend about 237/2 ms for 

estimating a single recommendation due to parallel computations. In the proposed 

scheme, dominant supplementary costs are due to HE and decryption. Assuming 

that there are 20 commonly rated items involve in recommendation process during 

online phase (that number is usually less than 20)  and each similarity weight is 
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divided into five random pieces, on average, there are 20/2 encryption and 5 × 10 

= 50 decryptions. The benchmarks are used given above and it is determined that 

an encryption and decryption take 80 milliseconds. Thus, due to cryptographic 

computations, the parties spend about 2.4 seconds for each prediction during 

online phase. Compared to traditional CF schemes, 2.4 seconds for a single 

prediction can seem to be a large value. However, that number can be improved if 

e-commerce sites utilize enhanced computing machines because note that the 

computer used in the trials is Intel Core2Duo, 2.4GHz with 4GB RAM. Similarly, 

with rapidly evolving hardware, software, and information technologies, the 

online process can be realized in less time. The parties can also utilize parallel 

computation techniques to improve online time.           

  Like extra online computation costs, online communication costs are also 

expected to increase due to privacy concerns. In a traditional CF algorithm, a 

sends her rating vector and query to the system, which returns a prediction to a. 

Thus, number of communications is two only. In the proposed scheme, number of 

communications and amount of data to be transferred between a and the MP do 

not increase due to privacy measures. However, in the proposed scheme, the MP 

must communicate with the collaborating party in order to exchange data. 

Remember that the MP sends some encrypted z-scores and the query to the 

collaborating company, while it receives some encrypted values. Thus, since they 

perform two additional communications, online number of communications 

increases by two times. Without privacy concerns, when two parties want to 

collaborate, the MP sends a’s z-scores and the query to the collaborating party. 

Hence, amount of data to be transferred is about (6 × ma + 2) bytes, where ma 

represents number of a’s ratings, and it is assumed that four and two bytes are 

needed to store a z-score and its index, respectively. Thus, 6 × ma bytes are used 

for storing a’s z-scores and their indices; and two bytes for storing target item 

index. The collaborating party sends back to the MP two partial sums, which 

require eight bytes. Hence, amount of data to be transferred is about (6 × ma + 10) 

bytes. In the proposed scheme, the MP fills mf = [(m - ma) × θj]/100 number of 

cells with fake ratings. After finding the z-scores, it removes those items’ z-scores 

from a’s vector, which are q’s neighbors and held by itself. It then encrypts the 
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remaining z-scores. Thus, assuming that half of the z-scores are removed, on 

average, it encrypts (ma + mf)/2 number of z-scores. The size of the encrypted 

value produced by block cipher encryption can be computed as size of plain text + 

block size – (size of plain text mod block size) (Obviex, 2011). Assuming also 

that 16 bytes blocks or 128-bit key are used, for an encrypted value, there is need 

for 4 + 16 – (4 mod 16) = 16 bytes. Therefore, amount of data that the MP sends 

to the collaborating company is about (ma + mf)/2 × 16 + (ma + mf)/2 × 2 + 2 = 9 × 

(ma + mf) + 2 bytes. The collaborating party B encrypts (wqjB + 1) values because 

remember that B divides similarity weights into wqjB pieces and sends a partial 

sum to the MP A. Thus, amount of data to be sent by B to A is about 16 × (wqjB + 

1) bytes. To sum up, amount of data to be transferred increases from (6 × ma + 10) 

bytes to (9 × (ma + mf) + 16 × wqjB + 18) bytes.           

  Storage costs should also be analyzed. Storage overheads due to the 

privacy-preserving scheme are, as follows: Besides original user-item matrices, 

the parties need to keep filled and normalized user-item matrices (perturbed 

databases). Thus, additional storage costs due to such masked matrices are in the 

order of O(nm). Similarly, the parties need to save default z-scores for all items to 

mask a’s data. Therefore, extra storage costs due to them are in the order of O(m). 

To sum up, due to privacy-preserving measures, like computation and 

communication overheads, extra storage costs are also expected.  

  Additional off-line costs are not that critical. Extra computation costs due 

to data masking can be considered negligible. However, if personalized ratings are 

used as fake ratings, supplementary costs are expected due to utilizing a 

traditional algorithm to estimate personalized ratings. In private mean and vector 

lengths computations, there are no extra computation costs. However, additional 

communication costs are inevitable. Although model generation does not 

introduce supplementary costs, due to PACEP, there are extra computation and 

communication costs. The parties perform encryptions, decryptions, and 

additional multiplications. Since they are conducted off-line, they do not affect the 

online performance. How often the model is updated is also vital for off-line 

performance. However, the model can be updated periodically and off-line 
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without interrupting online prediction process. In other words, the parties offer CF 

services to their customers using the existing model while updating in process.   

2.6. Prediction Quality Analysis: Experiments 

To examine how collaboration affects coverage and accuracy; and to demonstrate 

the effects of privacy-preserving measures on accuracy, several experiments are 

performed using real data sets.  

  Two different data sets, called MovieLens Public (MLP) and MLM, are 

utilized from GroupLens research community (GroupLens). Both data sets include 

personal taste evaluations on a range of movies. Users have rated the movies by 

selecting an integer between 1 and 5. In MLP, there are 100K ratings on 1,682 

items of 943 users. MLM contains approximately one million ratings of 

approximately 3,592 movies made by 6,040 users. In the conducted experiments, 

the entire MLP data set is utilized, which has a density of 6.3%. However, from 

MLM data set, we first determined those users who rated at least 50 items. Their 

data is used in experimental trials, where density of the selected set is about 

5.05%. Both sets can be considered as sparse data sets. Notice that the raw MLM 

set has 6,040 users who provided at least 20 ratings for about 3,592 movies. In 

order to obtain denser data set and improve the quality of the data, those users 

who rated less than 50 movies (about 950 users) filtered out. In such trials, 

available ratings are uniformly randomly divided into two disjoint sets, called 

training and testing. 80% of all ratings are used for item-based model construction 

(training), while the remaining votes are used for testing. 

  Examples of the most common criteria for CF like Mean Absolute Error 

(MAE) and Normalized Mean Absolute Error (NMAE) are used (Goldberg et al., 

2001; Canny, 2002a) as evaluation criteria to evaluate the overall performance in 

terms of accuracy. MAE can be formulized, as follows: 

 
∑
=

−=
t

i

ii pr
t

MAE
1

1
, (2.11) 

where t is the number of ratings in the test set, ri and pi are the original rating and 

the predicted output of the proposal, respectively. NMAE can be obtained by 

normalizing the MAE, as follows: 
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1

−
= , (2.12) 

where rmax and rmin are maximum and minimum boundary values of original 

ratings (five and one, respectively). We used NMAE in order to compare obtained 

results with the existing results, where data sets might include ratings from 

variable ranges. To scrutinize how collaboration affects coverage, the following 

metric is utilized, 

 

test

res

r

r
Coverage= , (2.13) 

where rres and rtest stand for the number of predictions returned and the number of 

test ratings.  

In order to demonstrate whether the improvements are statistically 

significant or they are occurred by chance, statistical t-tests are applied. t values 

are first computed on empirical results. A p-value is determined for each t-value 

from t-distribution table. If the p-value chosen for some significance level (α) 

(usually 0.05, 0.01, or 0.001) is less than the calculated t value, then it is 

concluded that the improvements are statistically significant and they are not 

happened by chance. 

Experiment 1-Effects of supplementary ratings: Due to the nature of 

data partitioning and the proposed privacy-preserving scheme, some cells in user-

item matrices might contain double ratings. The effects of such cases are first 

studied. In APD-based schemes, although it is assumed that the parties A and B 

hold disjoint sets of ratings, due to inserted fake ratings by both parties, they 

might fill the same cells or they may choose the filled cells by the other party to 

be filled. Thus, the parties may end up with cells with double ratings, which can 

be used for predictions. It is explored that the probability of having cells with 

double ratings and how that affects accuracy. Suppose that A and B have rating 

sets RA and RB, respectively, having values for disjoint cells. Let each rating set Rj 

having size of n × m and rating density of ρj, where j is A or B. Thus, the size of 

each rating set is nmR
j

j
100

||
ρ

= . According to disguising process, the parties 
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generate fake rating sets FA and FB, respectively. The number of fake ratings for 

each party j can be estimated as follows where θj is selected over the range (0, βj): 
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where )(E jθ  represents the expected value of θj, which equals βj/2 due to uniform 

distribution over (0, βj). For any filled cell by A, the probability of being filled 

twice or being already filled cell (Poc) can be estimated, as follows:
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||||
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= . Similarly, for A and B, the probability of having cells with 

double ratings (Po) can be estimated, as follows: 
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×= . Although any rating is used only once, 

some cells might have two ratings, which are not necessarily the same. Thus, 

amount of ratings involved in prediction computations increases. Also note that 

fake ratings estimated from available data using a CF algorithm are most likely to 

represent users’ true preferences. 

  Experiments are performed to show how varying βj values affect number 

of cells with double ratings. MLP is used while varying βj values from 3.125 to 

100 to estimate Po values. Trials are run for 100 times in which uniformly 

randomly selected different training sets are utilized for each experiment to make 

the results more statistically sound. The outcomes are displayed in Fig. 2.2. As 

seen from Fig. 2.2, Po values increase with increasing βj values. For smaller βj 

values (less than 25), only about 4% of those cells with any ratings have double 

votes. 

Trials are conducted to demonstrate how amount of such cells affect accuracy 

without privacy concerns. Both data sets are used. For MLM, 1,000 users’ data is 

used. In order to determine fake ratings used to fill unrated cells, user, item, or 

overall mean votes, user distribution, and personalized ratings estimated from 

available data are utilized. βj is set at 50. Predictions are first estimated on 

integrated data assuming that the cells with ratings contain single votes only 
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(Single Votes). Recommendations are then computed on integrated data, where 

some cells might have double ratings (Double Votes). The MAEs for both data 

sets are demonstrated in Table 2.1. 

 

Figure 2.2. Percentages of Overlapped Cells (Po) with Varying βj Values 

  Accuracy changes due to supplementary votes for MLP are negligible, as 

seen from Table 2.1. For all methods used to determine fake ratings, the results 

are almost the same for both cases in experiments using MLP. Almost the same 

results are obtained for MLM. There are two exceptions. When user or item mean 

votes are used as fake ratings, allowing double votes improves accuracy. 

However, generally speaking, improvements in accuracy due to additional ratings 

can be considered insignificant for both data sets. As seen from Table 2.1, there 

are very little variations among methods and data sets. This phenomenon can be 

explained, as follows:  First, as seen from Fig. 2.2, percentage of the overlapped 

ratings is about 14% when βj at 50. Second, the outcomes are very similar for both 

data sets because they include movie ratings over the same range. Third, the 

results for single votes are slightly better for MLP due its somewhat higher 

density compared to the MLM set that is used. Forth, since density of the MLM 

set used in these trials is smaller, the improvements due to overlapping votes are 

larger for MLM. Finally, data normalization (using z-score normalization) 

smoothes the effects of different protocols used for data masking.   
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Table 2.1. Effects of Supplementary Ratings on Accuracy 

Method for Fake 

Ratings 

User 

Mean 

Item 

Mean 

Overall 

Mean 
Distribution Personalized 

MLP 

Single 

Votes 
0.7331 0.7653 0.7336 0.7809 0.7508 

Double 

Votes 
0.7333 0.7649 0.7330 0.7783 0.7507 

MLM 

Single 

Votes 
0.7395 0.7869 0.7231 0.7741 0.7408 

Double 

Votes 
0.7201 0.7510 0.7208 0.7670 0.7414 

 

  Experiment 2-Accuracy and coverage improvements due to 

collaboration: When data owners cooperate with each other, amount of ratings 

involved in prediction processes increases. That is why it is more likely to offer 

predictions for more items and provide high quality referrals. To verify how APD-

based CF improves preciseness and coverage, experiments are performed. Such 

trials are run for 100 times while utilizing uniformly randomly selected different 

training sets for each experiment to make the results more statistically sound. 

Recall that n and m stands for number of users and items, respectively. First of all, 

accuracy changes are examined with varying n and m values during collaboration. 

For MLP data set, m is set at 1,682, while n is varied from 125 to 943. Similarly, 

for MLM data set, m is set at 3,591 and n is varied from 125 to 2,000. Similarly, n 

is set at 943 and 1,000 for MLP and MLM, respectively; and m is varied values. 

Predictions are first estimated for test data using partitioned data only. 

Recommendations are then produced for the same test data using the integrated 

data. After estimating overall averages, since the results are very similar, the 

outcomes are displayed for varying m values only in Table 2.2 for MLP while 

showing the results for varying n values only for MLM in Table 2.3.  
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Table 2.2. Accuracy Improvements due to Collaboration (MLP) 

m 200 400 800 1,682 

MAE 
Split 0.8662 0.8223 0.7876 0.7620 

Integrated 0.8168 0.7782 0.7509 0.7337 

Coverage 
Split 70.06 78.04 83.16 86.40 

Integrated 87.15 93.27 97.17 98.22 

 

  It is hypothesized that coverage improves due to collaboration. To verify 

this, trials are conducted using both data sets while varying n and m values. Two 

criteria are defined to compute coverage values: (i) To estimate the similarity 

between two items, there must be at least two users who rated the both items and  

(ii) To provide prediction for q, a must provide ratings for at least two of the q’s 

neighbors. Coverage values are estimated for split data only and integrated data 

for both data sets with varying n and m values. Coverage values are displayed as 

percent in Table 2.2 and Table 2.3. 

Table 2.3. Accuracy Improvements due to Collaboration (MLM) 

n 125 250 500 1,000 2,000 

MAE 
Split 0.7919 0.7798 0.7625 0.7464 0.7318 

Integrated 0.7689 0.7553 0.7377 0.7240 0.7134 

Coverage 
Split 56.48 67.34 75.31 82.81 87.69 

Integrated 67.15 75.88 82.49 88.35 91.60 

   

 Experimental results show that collaboration between vendors definitely 

enhances both the quality of the recommendations and coverage, as seen from 

Table 2.2 and Table 2.3. Through partnership, amount of true ratings involved in 

prediction estimations increases. Similarities between various entities then can be 

estimated using more commonly rated entities. Similarly, number of neighbors 

joining in recommendation process online increases, as well. Thus, more truthful 

and dependable neighborhoods can be formed; and more precise and reliable 

referrals can be provided. For all varying values of n and m values, the results are 

better for integrated data than the outcomes on split data only, as expected. For 

MLP, when m is 200, accuracy improves by about 5.7% due to collaboration. 
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Such improvement is about 3.7% when m is 1,682. For the same cases, coverage 

values improve about 24% and 14%, respectively. The outcomes are similar for 

MLM, as seen from Table 2.3. When n is 125, accuracy enhances by about 2.9%. 

It is about 2.5% for n being 2.000. Due to collaboration, coverage enhances by 

about 21% when n is 125. Even if n is 2.000, coverage increases by about 4.5%. 

In terms of both coverage and preciseness, although the improvements become 

smaller with increasing n and m values, the outcomes on combined data still beat 

the results on split data only for both data sets. Relative improvements due to 

collaboration are significant and still promising for CF services. Therefore, 

collaboration is effective and vital for the success of recommendation systems. 

Empirical findings verify that collaboration contributes not only to the quality of 

the predictions but also query response rate. 

  Data collected for CF purposes might be unevenly partitioned between two 

parties. Hence, just to give an idea about if there is any benefit for the party with 

the larger portion of data, another set of experiments are conducted using MLP 

only, where entire data set is used. Xj is defined as the percentage of data held by 

the party j; and 1-Xj percent of the data held by the other party. Xj is varied from 

10 to 100 in order to show how accuracy changes with varying amount of 

unevenly partitioned data. Note that when Xj is 100, it means that predictions are 

estimated on integrated data. The trials are run for 100 times, overall averages are 

computed, and the MAE values are displayed in Fig. 2.3. 

 As seen from Fig. 2.3, with increasing Xj values, benefits due to 

collaboration becomes smaller. Notice that with larger Xj values (bigger than 50), 

the outcomes become closer to the results on combined data because the results 

for Xj = 100 represent the outcomes on integrated data. Conversely, with 

decreasing amount of data, accuracy significantly becomes worse. Therefore, 

benefits due to collaboration are larger for those companies with smaller portion 

of data. Even if the results are close to the ones on integrated data for the 

company holding the larger portion of data, the party still benefit from 

collaboration. When comparing these results with the ones given in Table 2.7, it is 

observed that the company with the larger portion of data benefits from 

collaboration when Xj  is smaller than 90 for small βj values. 
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Figure 2.3. Effects of Unevenly Partitioned Data on Accuracy 

  Experiment 3-Methods for determining fake ratings: To observe how 

accuracy changes with different fake ratings, trials are performed using both sets. 

In these experiments, βj is set at 50 and selected θj uniformly randomly over the 

range (1, 50). Data sets are used with sizes 943×1,682 and 1,000×3,591 for MLP 

and MLM, respectively. Since there are proposed three major methods (non-

personalized ratings, ratings distribution, and personalized ratings) to find out fake 

ratings, they are used for determining the best one. The base results (results 

without privacy concerns) are first determined on integrated data and split data 

only. Predictions are then provided for the same test data based on masked data, 

which was disguised by filling fake ratings, estimated using various methods. 

Data disguising scheme is run for 100 times in order to make the outcomes more 

statistically sound and obtain results that are more dependable. After computing 

overall averages for both data sets, the outcomes are displayed in Table 2.4. 

  For MLP data set, user mean and overall mean methods slightly give better 

results compared to the outcomes on the integrated data, as seen from Table 2.4. 

Other methods make accuracy worse. Although personalized ratings method 

provides better results than the ones on split data only, accuracy losses are 

significant compared to the results on integrated data. The similar results are 

proposed for MLM. All methods, except overall mean method, make accuracy 

worse than the outcomes on integrated data. Since the overall mean method is the 
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only scheme, which provides enhanced outcomes for both data sets, it is chosen to 

determine fake ratings. 

Table 2.4. Effects of Different Methods on Accuracy for Determining Fake Ratings 

 No Masking Used Fake Rating Type 

Split 

Data 

Integrated 

Data 

Non-personalized Ratings 
Ratings 

Distribution 

Personalize

d Ratings 
User 

Mean 

Item 

Mean 

Overall 

Mean 

MLP 0.7620 0.7337 0.7331 0.7653 0.7336 0.7809 0.7508 

MLM 0.7493 0.7276 0.7395 0.7869 0.7231 0.7741 0.7408 

 

 Experiment 4-Level of perturbation: Number of unrated cells to be filled 

is determined according to θj values, which are uniformly randomly chosen over 

the (1, βj). With increasing βj values, number of filled cells increases; that 

definitely affect accuracy. Although inserted votes increase the amount of data 

involved in prediction process, they may or may not represent users’ true 

preferences. To assess the effects of varying βj values, trials are done using both 

data sets, where overall mean method is utilized for determining fake ratings. Data 

sets are used with sizes 943×1,682 and 1,000×3,591 for MLP and MLM, 

respectively. Data disguising scheme is run for 100 times in order to make the 

outcomes more statistically sound and obtain results that are more dependable. 

After calculating overall averages, the MAE values are displayed in Table 2.5 for 

both data sets. 

Table 2.5. Level of Perturbation vs. Accuracy 

β 
0 3.125 6.25 12.5 25 50 100 

MLP 0.7337 0.7336 0.7334 0.7333 0.7335 0.7336 0.7336 

MLM 0.7276 0.7230 0.7230 0.7230 0.7231 0.7231 0.7232 

  

As seen from Table 2.5, accuracy slightly changes with varying β values for 

MLP. The quality of the referrals slightly becomes better with increasing β values 

from 0 to 25, while it becomes worse for larger β values. However, such changes 

are insignificant. For MLM, similar findings are obtained. Filling some of the 

unrated cells enhances accuracy. With increasing β values from 3.125 to 100, 
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accuracy slightly becomes worse. However, compared to the base result, the 

quality of the recommendations enhances faintly. Number of filled cells also 

affects overall performance because amount of data involved in the 

recommendation generation processes increases. Thus, 12.5 is selected as the 

optimum value of β for masking both data sets.  

 Like train data sets, active users’ data are also masked utilizing the same 

scheme. The same methods can be utilized to find out fake z-scores or default z-

scores. The similar experiments are conducted as determining the best method for 

estimating fake ratings to mask the train data. Since the similar outcomes are 

obtained, they are not shown. According to conducted experiments, personalized 

ratings method achieves the best results. Thus, that scheme is selected to produce 

default values for perturbing active users’ data. Since accuracy is affected by 

varying perturbing levels, trials are also performed using both data sets while 

varying β values from 0 to 100. Data sets are similarly used with sizes 943×1,682 

and 1,000×3,591 for MLP and MLM, respectively. The personalized ratings 

approach is utilized for finding fake z-scores. After running experiments 100 

times, the overall averages of the MAEs are computed and displayed for both data 

sets in Table 2.6. 

Table 2.6. Level of Perturbation vs. Accuracy (Masking a’s Data) 

β 0 3.125 6.25 12.5 25 50 100 

MLP 0.7337 0.7397 0.7430 0.7480 0.7553 0.7628 0.7699 

MLM 0.7276 0.7255 0.7292 0.7329 0.7432 0.7502 0.7566 

 

  As seen from Table 2.6, the quality of the referrals becomes worse with 

increasing β values for both data sets. Although the results are worse than the base 

results for MLP, the outcomes are better than the base one for MLM even if they 

become worse with increasing β values. For MLP, accuracy losses due to inserted 

fake ratings are about less than 1% when β is set at 6.25. Since the best outcomes 

are obtained when β is 3.125, it is selected as the optimum value of β for 

disguising a’s data for both data sets. 

  Experiment 5-Overall performance: Some experiments finally 

performed to show the joint effects of the previously described factors. Both data 
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sets are used while varying n and m values. In the first set of experiments, m is 

fixed at 1,682 and 3,591 for MLP and MLM, respectively; and n values are 

varied. In the second set of trials, n is fixed at 943 and 1,000 for MLP and MLM, 

respectively; and m values are varied. Such trials are run for 100 times while 

utilizing uniformly randomly selected different training sets for each experiment 

to make the results more statistically sound. To mask train data sets using fake 

ratings, overall mean approach is utilized for finding such fake ratings, where we 

set β at 12.5. Similarly, in order to disguise a’s data, personalized votes scheme is 

employed for determining default values, where β equals 3.125. To obtain 

dependable outcomes, trials are conducted for 100 times. To compare the 

outcomes on split data only and the results on collaboration with privacy 

concerns, the MAEs for split data are displayed, as well. The outcomes of the first 

and the second sets of experiments are displayed as MAEs in Table 2.7 and Table 

2.8 for both data sets, respectively. 

Table 2.7. Overall Performance with Varying n Values 

n 125 250 500 943\1,000 

MLP 

Split 0.8013 0.7901 0.7769 0.7620 

Proposed 0.8030 0.7766 0.7564 0.7380 

Gain (%) -2.12 1.71 2.64 3.15 

MLM 

Split 0.7919 0.7798 0.7625 0.7464 

Proposed 0.7946 0.7883 0.7507 0.7221 

Gain (%) -0.34 -1.09 1.55 3.26 

  

 Due to collaboration, accuracy improvements are expected, as shown 

previously. Since privacy and accuracy are conflicting goals, privacy-preserving 

measures might make accuracy worse. However, such losses should be small 

enough so that the gains due to partnership can compromise them. As seen from 

Table 2.7, proposed privacy-preserving scheme-based results are better than the 

outcomes on split data only for MLP when n is bigger than 125. Similarly, the 

proposed scheme provides improved results for MLM when n is larger than 250. 

It means that the improvements due to cooperation overweigh the downfalls on 

accuracy caused by privacy-preserving measures. With increasing n values, 
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improvements as a result of the proposed scheme usually increase for both data 

sets. When n is 1,000 for MLM, precision improves by 3.25%. For MLP, when n 

is 943, it enhances by 3.14%. 

Table 2.8. Overall Performance with Varying m Values 

m 200 400 800 1,682\1,600 

MLP 

Split 0.8662 0.8223 0.7876 0.7620 

Proposed 0.8233 0.7684 0.7468 0.7391 

Gain (%) 4.95 6.55 5.18 3.01 

MLM 

Split 0.9043 0.8497 0.8055 0.7703 

Proposed 0.8249 0.7822 0.7490 0.7452 

Gain (%) 8.78 7.94 7.01 3.26 

  

  The comparable results are obtained with varying m values, as seen from 

Table 2.8. Compared to the improvements with changing n values, enhancements 

with varying m values are more notable. For MLM, amount of improvements 

decreases with increasing m values. The trend is very similar for MLP, as well. 

However, the improvements reach their peak when m is 400; and the accuracy 

enhances by 6.55%. It picks up by 8.81% for MLM when m is 200. The 

significance of these improvements are also evaluated using the t-tests. Each of 

the improvements in Table 2.7 satisfies the t-test for α = 0.001. For example, t-

values are 20.84 and 16.39 for MLP and MLM, respectively, where n is 500. 

Hence, the proposed scheme significantly ensures the accuracy improvements for 

higher values of n. As seen from Table 2.8, for any number of items integrated 

data responses better results. By the t-tests, all the improvements are significant 

for α being 0.001. The t-values are 21.32 and 29.62 for MLP with m being 200 

and for MLM with m being 1,600, respectively. 

 In order to show how overall performance change for larger values of β, 

another experiment is conducted with varying n and m values only using both data 

sets. We followed the same methodology and set β at 50. After estimating overall 

averages, the MAEs are displayed in Table 2.9 for varying n values only due to 

the similar trends. 
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Table 2.9. Overall Performance with Varying n Values for β = 50 

n 125 250 500 943\1,000 

MLP 

Split 0.8228 0.8008 0.7791 0.7594 

Proposed 0.8116 0.7932 0.7860 0.7580 

Gain (%) 1.36 0.95 -0.89 0.18 

MLM 

Split 0.8132 0.8103 0.7737 0.7386 

Proposed 0.7861 0.7787 0.7794 0.7516 

Gain (%) 3.33 3.90 -0.74 -1.76 

 

  As seen from Table 2.9, accuracy changes due to privacy-preserving 

measures for MLP are smaller than the ones for MLM. For both data sets, 

accuracy slightly becomes worse when n is bigger than or equal to 500. Compared 

to the results for smaller β values displayed in Table 2.7, for n values less than 

500, improvements are better for larger β value. However, they are worse for n 

values bigger than 250. Number of users is usually very large in the data sets 

constructed for CF purposes, utilizing larger β values makes improvements 

smaller. Since fake ratings might not represent the true users’ preferences and 

increasing number of filled cells with fake ratings might damage quality of the 

data, data owners should select smaller β values. They also should consider 

privacy requirements discussed in Section 2.5. 

  We finally compared obtained results with other prediction methods in the 

state-of-the-art. For this purpose, NMAE measure is used. As seen from Table 

2.7, the best outcome of proposed scheme in terms of NMAE is 0.1845 for MLP. 

Herlocker et al. (1999) propose a memory-based algorithm. Their scheme’s 

NMAE value is around 0.1894. Another CF scheme proposed by Sarwar et al. 

(2000) utilizes dimensionality reduction methods. NMAE value achieved by that 

method is 0.1838. Bogdanova and Georgieva (2008) utilize error-correcting 

dependencies for CF and improve CF’s performance. Their approach’s 

performance in terms of NMAE is 0.1776. Lemire and Maclachlan (2005) 

propose a scheme based on average rating differential, which achieves the NMAE 

value of 0.1880. Compared to other approaches, this scheme provides promising 

and comparable results while preserving confidentiality.  
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2.7. Chapter Summary 

A privacy-preserving scheme is proposed to offer recommendations on APD 

between two parties. This method can be considered as hybrid, combining model 

generation off-line and estimating referrals online. The proposed scheme consists 

of various protocols, which are explained in detail and justified about satisfaction 

over privacy constraints. The proposed method makes it possible to produce 

predictions on partitioned data between two parties. The vendors are able to offer 

richer and better CF services on integrated data without jeopardizing privacy. 

Although supplementary costs are inevitable caused by privacy concerns, such 

costs are negligible. Since some works are performed off-line (model generation) 

and the off-line costs are not that critical, additional off-line costs do not affect 

overall performance. In this chapter, it is also demonstrated that the scheme is 

secure and prevents the vendors from deriving the true ratings and the rated items 

held by each other. Real data-based experiments are conducted to evaluate the 

method in terms of accuracy. Attained experimental results show that 

collaboration significantly improves precision. Although privacy concerns cause 

accuracy losses, they are overweighed by the gains as a result of partnership. 

Therefore, the proposed scheme can be used to provide accurate recommendations 

efficiently while preserving privacy. 

  Optimum values of various controlling parameters are usually determined 

experimentally. According to empirical results in Section 2.6, the optimum values 

of βj (and θj) are determined. These results based on MLP and MLM can be 

generalized. Like quality of the predictions, privacy level and preserving data 

originality are other factors that affect the choice of controlling parameters’ 

values.   



 

51 
 

3. PRIVACY-PRESERVING TRUST-BASED COLLABORATIVE 

FILTERING ON ARBITRARILY PARTITIONED DATA 

Trust issues discussed in the context of CF; and trust-based algorithms are shown 

to be successful for CF schemes. This study examines how to estimate trust-based 

predictions on APD while guaranteeing privacy of the enterprise data. For such 

CF problem, a privacy-preserving solution requiring plausible amount of 

resources and responding online in decent time is proposed. The proposal is also 

analyzed through dimensions of privacy preservation and extra resource usage. 

Moreover, to observe effects of APD on accuracy and coverage; and how the 

proposed privacy-preservation method affects prediction quality, a couple of 

experiments are performed. All conducted analyses demonstrate that the proposed 

scheme efficiently performs trust-based CF on APD while preserving 

confidentiality. 

3.1. Introduction 

Trust is so popular in social networks (Fogel and Nehmad, 2009) and also takes 

attention of e-commerce researches (Zhang et al., 2007). Trust metrics are applied 

into CF algorithms and satisfactory results are obtained (Hwang and Chen, 2007; 

Massa and Avesani, 2007). Massa and Bhattacharjee (2004) show that trust 

concept can be applied for CF recommender systems. In their model, trust values 

between users are determined based on web of trust composed of directly 

specification by users. To increase the coverage of trust-based CF system, Massa 

and Avesani (2007) offer propagated trust metric. Hwang and Chen (2007) 

present a CF method deriving both direct and propagated trust values from 

traditional rating profile data. They experimentally demonstrate that rating-based 

trust approach gives predictions having better accuracy over correlation-based CF 

methods. In this study, it is preferred to use the method proposed by Hwang and 

Chen (2007) due to the ease of availability of rating profile data. 

  In this chapter, it is investigated how to provide trust-based CF services on 

APD while protecting privacy of any party’s data to the other. As stated before, 

focused APD configuration is non-overlapping. Privacy guarantee is main factor 

making parties cooperate, accuracy is key parameter to measure CF output 
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quality, and efficiency is core requirement for online responding information 

systems. At the same time, they are conflicting goals. Despite of such conflicting 

goals, a computationally achievable solution providing privacy requirements and 

responding quality predictions is going to be proposed. Such solution is also 

justified in privacy, supplementary overheads, and prediction quality via 

analyzing theoretically and empirically. 

  There are some privacy-preserving CF schemes caring about trust metrics. 

Dokoohaki et al. (2010) investigate optimal privacy in trust-aware social networks 

using randomized disguising techniques as a preprocessing step. While their 

scheme is a solution for such networks in P2P manner, in this proposal, there are 

two parties whose data constitute APD. Kaleli and Polat (2011) examine how to 

provide trust-based recommendations on VPD and present a solution in this 

variant. This work differs from theirs in data partitioning configuration and 

considers APD scenario for trust-based CF mechanism. 

3.2. Trust-based Collaborative Filtering 

Hwang and Chen (2007) define trust between users a and u, ta→u, which means 

how much a trusts u, or vice versa. The trust can be computed, as follows: 
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where Ia and Iu stands for the rated item set of users a and u, respectively, and ρ is 

the range of the operated ratings, u

ajp  is prediction for trust computation and it can 

also be derived, as follows: 

 )( uuja

u

aj vvvp −+= , (3.2) 

where ujv is the rating of item j given by u,  av and uv are mean ratings of users a 

and u, respectively. Hwang and Chen (2007) also introduce trust propagation 

metric in order to evaluate trust values between users who have no commonly 

rated items, as shown in Eq. (3.3): 
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where users s and h are non-commonly rated users but v has co-rated items with 

both of them. The final inferred trust ts→h is the average of the values for each user 

v computed by Eq. (3.3). After computing trust between users, prediction paq for a 

for target item q can be computed, as follows: 

 

∑
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where S stands for the users have rated q and in trust neighborhood of a, i.e. a’s 

mostly trusted users. 

3.3. Trust-based Predictions on Arbitrarily Partitioned Data with Privacy 

In this section, the scheme proposed for privacy-preserving trust-based CF on 

APD is presented. The proposal consists of four different sub-processes. At first, 

preprocessing is performed to determine user means and normalize data held by 

each party. Secondly, secure trust computation process is done covering users 

having commonly rated items. Then, for user pairs having no commonly rated 

item, trust propagation computation is taken place. Finally, it is proposed how 

predictions are estimated online over the constructed models. 

3.3.1. Preprocessing 

To normalize user ratings using deviation from mean normalization method and 

compute prediction for trust values, the parties need user mean values. User or 

row mean can be expressed as sum over count of user ratings. Rather than directly 

sharing of such sum and count values for each user, it is more convenient to 

exchange such values after filling some unrated cells of original data set with 

default ratings vd so that the original sum and count values are preserved. In 

default filling scheme, vds can be determined alternatively, as follows: 

a. Using POP algorithm (Goldberg et al., 2001), for each item, each party 

computes vd as average from the ratings available for that item. 

b. As row-variant of the previous method, for each user, each party 

computes vd as average from the ratings available for that user. 

c. Overall mean of the available data can be utilized. 

  The other factor required to be defined for default filling scheme is θj as 

the amount of unrated cells to be filled. θj should be selected from the range (0, 
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βj], where βj is upper bound parameter of filling amount. Before filling process, 

each party should agree on specific βj, which should be dependent on the density 

dj of the available data set by each party j. Considering the originality of data, it 

can be offered that the maximum βj as value of 100 correspond to the number of 

rated cells available by each party. After such default filling scheme, they can 

share sum and count values computed over own filled database and normalize 

such own database. Then, each party carries on the remaining tasks over their own 

filled databases. 

3.3.2. Secure Trust Computation 

Before computing trust values, Eq. (3.1) can be rearranged by using Eq. (3.2) and 

some simplifications, as follows: 
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in which uaau IIc ∩= . Considering APD; 

i. ρ is obviously public. Moreover, c can be considered public because the 

data is filled and default ratings are included. In the following, trust 

computation scheme, auc  can be derived from the context. 

ii. Absolute difference - )()( uujaja vvvv −+− : Recall that to compute trust 

value between users a and u, they must rate at least one item j commonly. 

If this condition is satisfied, there are two cases of availability of the 

ratings for item j. In the first case, full availability occurs as both ratings 

are available either in A or B. Second case is cross-wise availability in 

which one of the ratings is in A and the other is in B. There is no problem 

for determination of commonly rated ones and computation of this 

expression in one-side full availability case. However, cross-wise 

available ratings make trust computation task challenging. To compute 

trust values privately on APD, secure trust computation protocol (STCP) 

is introduced in the following. Considering Eq. (3.1) and Eq. (3.3), it can 

be said that trust values between two users are symmetric, i.e ta→u = tu→a 

causing that trust values between users constitute upper-half triangular 
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matrix. It is proposed that such triangular trust matrix would be vertically 

shared among two parties. Note that, half of trust values in STCP stand 

for plausible and possible number of trust values providing the acute 

vertical division with respect to the number of users in APD. 

Secure Trust Computation Protocol (STCP) 

I. For the first half of the trust values 

 For each distinct user pair (a, u) 

1. A and B compute and store absolute differences for fully available ratings 

own-side. 

2. A and B continue ignoring set of ratings handled in Step 1. 

3. A encrypts all available )( aja vv − values using HE with its public key KA 

and obtains ξKA(vaA) and generates X-1 random vectors and hides the 

vector holding the rated item indices of vaA into such random vectors, then 

send ξKA(vaA) and all X vectors to B. 

4. B encrypts all available )( uuj vv − values using HE with KA and obtains 

ξKA(vuB). 

5. B also performs ξKA(vaA + vuB )= ξKA(vaA)×ξKA(vuB) for only commonly 

corresponding item indices for each X vectors. 

6. For each different vector, B permutes each obtained values using its 

private permutation function fB. Then, it sends all permuted values to A. 

7. Using OT protocol, A takes the permuted set holding actual rated ones. 

8. A decrypts them, takes absolute values and accumulates them. A also adds 

initially found absolute differences for fully available ones. A now has the 

half-trust values. 

9. Switching their roles, applying Step 3-8, B also has the complementary 

half-trust values. 

10. B sends such complementary values to A that obtains the final trust values. 

II. For the remaining half, switching their roles, they perform Step 1-10 and B 

obtains final trust values. 
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3.3.3. Trust Propagation Computation 

After performing the STCP, each party ends up with its corresponding trust 

values. However, some of them are null because the absence of co-rated items 

among any two users. Thus, they must utilize trust propagation metric given in 

Eq. (3.3) to determine trust values for such users. After establishing which of the 

values are needed for trust propagation calculation, the parties inform each other 

about such values. Then, for each required value, they exchange local aggregated 

numerator and denominator values of Eq. (3.3). They sum up such values and 

obtain propagated trust values. By the way, they get rid of the null values and 

update related trust values via Eq. (3.3). 

3.3.4. Prediction Generation 

To generate a prediction for a on q, Eq. (3.4) must be considered. The parties can 

follow the similar steps given in Section 3.3.2. The ratings of item q are held by 

the parties A and B can be labeled as vuqA and vuqB, respectively. Based on such 

arbitrarily distributed ratings and vertically distributed trust values, they can 

generate prediction using Prediction Generation Protocol (PGP) explained in the 

following. Assume that A acts as MP from whom a requests a prediction for q. 

Note that as in the STCP, A and B perform computations with fully available 

components and store such fully available sub-aggregates just after being 

informed about a and q and go on computations ignoring them unless specifying 

their contributions to PGP. 

Prediction Generation Protocol 

 0. Active user a asks a prediction about q from A. 

1. A zeroes all trust values below the threshold τ. 

2. Using its own public key and self-blinding property, A encrypts all 

available trust values of a and sends them to B. 

3. B multiplies just the rated ones of vuqB using homomorphic property. B 

accumulates the results for numerator and it also accumulates 

corresponding trust values for denominator. It obtains 

[ ]( )
ASu uauuqBKA tvv∑ ∈ →×− )(ξ  and [ ]( )

ASu uaKA t∑ ∈ →ξ , respectively, where 

[ ]
Auat → is trust value of a held by A. 
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4. Switching their roles, they perform Step 1-3 for vuqA and trust values of a 

held by B. A obtains [ ]( )
BSu uauuqAKB tvv∑ ∈ →×− )(ξ  and [ ]( )

BSu uaKB t∑ ∈ →ξ . 

After encrypting fully available sub-aggregates with KB, A adds 

corresponding parts of numerator and denominator and sends them to B.   

5. B decrypts the obtained values in Step 4 and encrypts them with KA. 

Then, it also encrypts its fully available sub-aggregates similarly. 

6. B adds correspondent obtained values in Step 3 and Step 5. 

7. B returns ( )∑ ∈ →×−
Su uauuqKA tvv )(ξ  and ( )∑ ∈ →Su uaKA tξ  to A. 

8. A determines paq using Eq. (3.4). 

3.4. Privacy Analysis 

Since the proposed scheme does not involve any direct exchange of information 

about individual rating values and which items are rated, principal privacy 

constraint is satisfied. However, there are some protocols prescribing change of 

aggregate values in secure manner. Such transactions should be examined whether 

they conflicts auxiliary privacy constraint or not. The proposed protocols’ privacy 

protection is based on default ratings and cryptographic tools. Since Paillier 

(1999) justifies that his HE schemes are semantically secure and Naor and Pinkas 

(2001) examine the security of their OT protocols, the proposed protocols are 

secure in their anticipated framework. However, in privacy perspective, it is still 

interesting to investigate disclosed intermediary values, aggregates, and default 

ratings in addition to actual rating values. Considering such values, the proposed 

scheme is going to be analyzed in terms of inference probability rates and privacy 

enhancement. 

  In normalization, default ratings hide the total number of ratings of each 

user has already rated and avoid directly sharing actual local mean of each user. In 

the STCP, B can guess a subset of A’s rated items. Let the size of this subset f, 

over random vectors, the probability of guessing such subset is 1/X at Step 3. 

Similarly, after switching their roles, A can also guess it similarly. The value of X 

should be set to proper value depending on sensitivity of items and privacy 

requirements. Again, in the same protocol, A obtains individual aggregates of 

commonly rated items for the subset of cross-wise components in Step 8. Let A 
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obtains g pieces of such aggregates. Then, A can infer the subset of the rated items 

with probability f

gC . By switching their roles, B may also infer in the same 

possibility for the complementary cross-wise components.  

  In trust propagation, each party learns which trust value is null in the other 

party’s trust sub-matrix and two sub-aggregate values; one for numerator and the 

other for denominator part of Eq. (3.3). In order to deduce trust values owned by 

the other party, how many values are included to compute such sub-aggregates 

should be known. However, it is unknown in the proposed scheme. After guessing 

such value, they are still conundrums that which trust values are included and 

what are such trust values. In prediction generation, cooperator, who is not MP, 

learns only sub-aggregates of final prediction value and MP learns only final 

prediction value. For both parties, the same applies as in trust propagation because 

there are sub-aggregates in similar computational manner. 

  Filling with default ratings and removing processed fully available 

components enhances privacy. Both operations decrease the rate of original rating 

components over totally contributed ones to generate aggregate values. Default 

ratings also give denial of possession of the rated items in case of inferring the 

other’s ratings. To compare privacy preservation with respect to type of default 

ratings, POP algorithm can be considered to be the best over the others. Since the 

computation process is realized user by user and user-based aggregates are shared 

through the proposed protocols, using item mean for default ratings, each user 

rating vector is expected to have different default rating values. However, in user 

mean usage, filled default ratings are the same for each user and this may facilitate 

the inference manner of the other party. Also, row-variant POP preference is not 

suitable for applications, where local user means are sensitive about privacy 

because the actual mean is disclosed each other. Overall mean’s handicap about 

privacy is that it is the same for all local data. This fact is also advantage to the 

party intending to deduce some extra sensitive information from the other’s data. 

Despite such issues, the proposed default rating types can be still efficient solution 

for filling. 

  Conducted privacy analysis indicates that there is no conflict of both 

principal and auxiliary privacy constraints in the proposed approach. There are no 
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direct or indirect leakage of the parties’ individual rating values and the rated 

items. However, the inference possibilities are scrutinized over the shared 

intermediate values. One additional issue is related to trust updates. To enhance 

privacy and complicate inference possibilities, the parties prefer to re-fill their 

original data with defaults for each update phase because default rating values and 

filled unrated cells are changed and different input data are obtained.   

3.5. Supplementary Costs Analysis 

The proposed scheme brings about some overheads in computation, 

communication, and storage. In this section, the proposal is examined in terms of 

such extra costs. First of all, considering computational resources, this scheme can 

be contemplated for implementation as two phases: off-line and online.  

Preprocessing and computations of direct and propagated trust values can be 

computed off-line. However, prediction generation needs online interactions and 

it should be considered for running online. Since off-line costs are not critical, 

PGP must be evaluated in terms of computational efficiency. While the party j 

realizes totally n/2 encryptions, rfj homomorphic multiplications, rfj homomorphic 

additions, and 2 decryptions, the cooperator party performs additional two 

decryptions and two homomorphic additions, where rfj stands for number of rating 

and filled ratings in a’s vector held by the party j. Since τ can be determined 

previously, the parties can encrypt trust values after comparing them with τ and 

store the encrypted trust values off-line. However, this brings n
2/4 storage 

requirement for each party. To benchmark cryptographic operations, CRYPTO++ 

(2009) can be referred. 

  Secondly, the proposed method bids parties to communicate for trust 

computation and prediction generation. In the STCP, there must be at least two 

communications consisting of significant sizes of data exchange in bi-directional 

way while trust propagation requires two mutual communications; one for 

informing which of the held trusts are null and the other for sharing the sub-

aggregates for propagated trusts. During the PGP, there must be at least three 

communications. Recall that if two parties collaborate on APD with off-line 

generated trust values, two online communications are needed to provide CF 

services. 



 

60 
 

  Thirdly, there are also storage overheads with respect to off-line model 

generation. During off-line phase, the parties temporarily need spaces to keep 

default ratings, user mean values, and auc . However, trust values computed off-

line requires n
2/4 spaces from each party in order to utilize the constructed CF 

prediction model online. Note that, depending on data entry traffic and 

recommended product profiles, trust model must be updated in a particular period.  

3.6. Prediction Quality Analysis: Experiments 

Using MLP, the proposal is empirically evaluated in terms of its accuracy and 

coverage. This data set consists of 100,000 ratings collected from 943 users on 

1,682 movies. While ratings are integers from 1 (dislike) to 5 (like), each user has 

rated at least 20 movies. 80% and 20% of available ratings are randomly selected 

for training and testing, respectively. While training subset is used as input data 

for specified CF process, test ratings are queried for prediction. The returned 

prediction values are compared based on the accuracy metric MAE. Another 

metric used for evaluation is coverage given in Eq. (2.13). To reach more 

dependable results, each experiment is performed 100 times and overall averages 

are presented. 

  Hwang and Chen (2007) evaluate experiments in which the scheme 

determines a’s neighborhood selecting the best k similar users. However, rather 

than such determination, it is preferred to use threshold-based scheme in order to 

simplify prediction generation process. Herlocker et al. (1999) empirically 

demonstrate that such process can be performed either of both methods. To 

determine the optimum value of the threshold τ, various experiments were 

conducted using MLP. According to the outcomes, it is concluded that 0.7 

produces satisfactory accuracy and coverage values. Thus, τ is set at 0.7 in the 

following trials. 

  In the first experiment, it is investigated how collaboration on APD affects 

accuracy and coverage of trust-based CF system. For this reason, an experiment is 

conducted comparing split and combined data without any privacy considerations. 

The number of users in input data is varied and MAE and coverage values are 

computed. The results are given in Table 3.1. Both accuracy and coverage gains 

show similar manner with respect to increasing number of users. Such gains are 
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initially higher; however, with joining more users into CF process, they decrease 

in deceleration. APD generally contributes more significant to accuracy rather 

than coverage according to results in Table 3.1. This experiment shows that APD 

contributes more to the prediction quality of CF system when amount of available 

rating profile is lower.  

 

Table 3.1. Effects of APD on Accuracy 

MAE 
Type n = 125 250 500 943 

Split 0.8196 0.7935 0.7730 0.7631 

Integrated 0.7803 0.7621 0.7498 0.7446 

Gain (%) 4.80 3.96 3.00 2.42 

 

Table 3.2. Effects of APD on Coverage 

Coverage (%) 

Type n = 125 250 500 943 

Split 91.51 95.91 98.01 98.97 

Integrated 95.99 97.74 98.71 99.14 

Gain (%) 4.90 1.91 0.71 0.17 

 

  After justifying how APD contributes prediction accuracy and coverage of 

CF system, how default ratings affect accuracy is analyzed. By setting n to 500, 

for different levels of filling, i.e. βj and different types of default ratings, accuracy 

changes are observed on combined data. The obtained results are given in Fig. 

3.1. According to outcomes given in the figure, it can be said that accuracy is 

inversely proportional to filling level for all types of default ratings. However, 

considering MAE value for split data for n = 500 in Table 3.1, which is 0.7730, 

accuracy for all types and levels in the proposed model is more accurate. To speak 

about specific types of default ratings, for βj ≤ 50, the best default rating type is 

overall mean. However, after such value, for overall mean-based default filling, 

accuracy significantly becomes worse. 
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 There is a parallel relation in terms of accuracy between filling with item 

and user mean default ratings. However, user mean shows better accuracy as seen 

from Fig. 3.1. For the values of θd higher than 100, both schemes achieve very 

similar results. The outcomes become very closer to each other. 

In the final experiment, the goal is to benchmark the accuracy values 

obtained by using the split data only and the combined data by the proposed 

method. For this purpose, trials are conducted for different level of filling with 

respect to varying number of users. Considering average number rated items per 

user is 106 in MLP, if βj = 10 then E(θj)= 5 and E(|fc|)= 0.05×106 = 5.3, where 

E(x) is expected value of x and |fc| stands for the number of filled cells. Roughly 

speaking, it is expected about 5 of unrated cells would be filled with default 

ratings. Similarly, for βj = 20 and 50, E(|fc|) values are 10.6 and 26.5, respectively. 

Since such listed E(|fc|) values can be considered decent values providing balance 

between privacy and data originality, for βj being 10, 20, and 50 with the best 

filling scheme, i.e. overall mean, for such values trials are performed and the 

results are displayed in Fig. 3.2. According to such figure, it is obvious that for all 

n and focused βj values, the proposed methods outperform the results on split data 

only. Especially for smaller number of users, the proposed scheme provides more 

quality referrals due to the insufficient amount of ratings in partitioned case. 

These outcomes show that the proposed scheme is preferable in order to overcome 

problems caused by split data. 

Figure 3.1. Accuracy vs. Level of Default Filling 
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Figure 3.2. Single Party vs. the Proposed Method 

3.7. Chapter Summary 

In this chapter, in order to provide trust-based predictions on APD with privacy, a 

solution is presented. This solution makes it possible for two parties to provide 

predictions using their joint data without divulging their sensitive data to each 

other. The proposed scheme gives control of some parameters to the collaborating 

parties. The solution is justified in terms of efficiency, privacy-preservation, and 

accuracy through theoretical and experimental analyses. The experimental 

analyses demonstrate that the solutions produce satisfactory results in prediction 

quality especially in situations where available data are insufficient.  
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4. PRIVACY-PRESERVING NAÏVE BAYESIAN CLASSIFIER-BASED 

COLLABORATIVE FILTERING ON ARBITRARILY PARTITIONED 

DATA 

In order to eliminate privacy, financial, and legal concerns of those companies 

having inadequate data and want to provide recommendations on combined data, 

a privacy-preserving scheme is proposed to estimate naïve Bayesian classifier-

based predictions on arbitrarily partitioned data between two parties. This method 

is intended to help online vendors provide binary ratings-based predictions on 

partitioned data without violating their corporate privacy requirements. It is 

shown that the proposed scheme is secure and able to offer recommendations 

efficiently. Conducted real data-based experiments demonstrate that collaboration 

is vital for better services; and accuracy losses due to privacy measures can be 

suppressed by the gains due to collaboration. Thus, the proposed method is 

preferable for estimating accurate predictions efficiently on partitioned data while 

preserving data holders’ privacy over the scheme on split data only. 

4.1. Introduction 

Users’ preferences about different products can be represented either using 

numeric ratings or binary votes. In some applications, it is preferable to know 

whether a user likes an item or not, rather than knowing how much she likes it. If 

a customer likes an item, the related rating is represented as like (1). Similarly, if 

she dislikes it, the vote is then dislike (0). If users’ preferences about various 

products are represented by binary ratings, NBC can be used to predict whether a 

will like the target item q or not. Hence, a scheme is proposed to show how to find 

NBC-based predictions on APD with confidentiality.          

NBC is a supervised learning method based on the probabilistic model of 

Bayes theorem. With many attributes, it is very hard and time consuming to 

calculate the Bayes probabilities. However, naïve assumption facilitates that by 

stating these attributes are conditionally independent. Moreover, NBC is robust 

against isolated noise points and irrelevant attributes (Amatriain et al., 2011). 

NBC has been approved of successful solution for many real world applications 

from text classification (Youn and Jeong, 2009) to medicine (Geenen et al., 2011). 
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Due to its popularity, it takes attention for recommendation system infrastructure, 

as well. Due to the ease of availability over numerical ratings, binary ratings-

based CF mechanisms, like NBC-based scheme, take special attention of 

recommender systems research community. In case of binary ratings, traditional 

numerical ratings-based CF schemes cannot be used to provide recommendations 

from such binary ones. Miyahara and Pazzani (2000) apply NBC to CF to offer 

binary rating-based referrals. They show that NBC-based scheme provide 

comparable results with correlation-based schemes. Su and Khoshgoftaar (2006) 

point out that although NBC-based scheme performs worse in terms of accuracy, 

it offers better scalability comparing to correlation-based methods. In this work, 

NBC-based scheme is scrutinized to examine the feasibility of providing CF 

services on APD. Additionally, binary rating-based CF promises relatively higher 

availability of input preference data either explicitly or implicitly. 

Privacy-preserving schemes proposed for providing recommendations 

should achieve privacy, accuracy, and efficiency. Thus, the proposed scheme 

should meet the principal and auxiliary privacy constraints, be able to provide 

predictions with decent accuracy (accuracy losses due to privacy should be 

compensated by gains due to collaboration), and not cause too much additional 

costs (online costs do not prevent the scheme from estimating many predictions in 

restricted time intervals). Additional computation, communication, and memory 

overheads are inevitable due to privacy. They should be small enough to still 

estimate predictions efficiently. Online time requirements are much more rigid 

than off-line ones. Supplementary online costs should be minimized as much as 

possible. Therefore, the problem that is desired to be solved can be briefly 

defined, as follows: How to provide NBC-based recommendations with decent 

accuracy on APD efficiently while achieving the collaborating parties’ corporate 

privacy?  

4.2. NBC-based Collaborative Filtering 

When users express their opinions about the products they bought before or 

showed interest using binary ratings, CF process becomes a classification. In other 

words, it is predicted whether a will like q or not. NBC is a popular and widely 

used classification algorithm. It is simple, easy to understand, and achieves 
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comparable classification accuracy. Due to naïve assumption, its performance 

becomes better. It is utilized in various applications for classifying unlabeled 

samples (Lee, 2006). NBC-based CF scheme works, as follows (Miyahara and 

Pazzani, 2000): 

1. Let D be training set of users and their related ratings for various items. 

Each user is represented by an m-dimensional rating vector, V = (v1, v2, …, 

vm), depicting ratings for m products including null ratings.  

2. The algorithm operates on two classes, like and dislike. Given an active 

user a, the classifier predicts that a’s rating for q belongs to the class 

having the higher probability.   

3. The naïve assumption states that features or ratings are independent, given 

the class label. Thus, the probability of the target item q for a belonging to 

classj (Cj), where j is like or dislike, given a’s m rating values, can be 

written, as follows: 

 
∏
=

m

h

jhjmj CvpCpvvvCp
1

21 )|()(),...,|( α  (4.1) 

4. In Eq. (4.1), prior, p(Cj), and conditional probabilities, p(vh|Cj), can be 

estimated from training data, where vh represents the feature value or rating 

of item h for a. To assign a target item q to a class, the probability of each 

class is computed; and the example is assigned to the class with the higher 

probability. 

NBC also takes attention of P2D2M community. Vaidya et al. (2008b) 

examine the similar problem for the case of VPD; and offer NBC scheme on VPD 

with privacy. Keshavamurthy et al. (2010) propose secure multi-party 

computation-based approach with trusted third party to compute the aggregate 

class instances for VPD using the probabilistic model of classifier such as naïve 

Bayes technique. In another study (Skarkala et al., 2011), privacy-preserving tree 

augmented NBC is offered for statistical databases that are horizontally 

partitioned. In their method, privacy is ensured by multi-candidate election 

scheme. 

  NBC-based CF algorithms are examined considering privacy-related 

issues. Kaleli and Polat (2007b) present solutions for achieving private referrals 
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on NBC using randomized response techniques. Their solution makes it possible 

for servers to collect private data without greatly compromising users’ privacy. 

Their scheme is based on a central server. In another study (Kaleli and Polat, 

2009), the authors further investigate how to improve privacy-preserving NBC-

based CF systems’ online performance by grouping users in various clusters. 

Their proposal makes it sufficient to realize computation on a few subsets of input 

data rather than dealing with full of available data. Bilge and Polat (2010) offer a 

preprocessing scheme to promote efficiency and accuracy of NBC-based CF 

scheme with privacy. On the contrary of all these schemes, which are based on 

central data, this proposal is based on partitioned data between two parties, where 

data partitioning is arbitrary. Although there is an NBC-based CF solution on 

partitioned data between two parties without greatly exposing their privacy (Kaleli 

and Polat, 2007a), the authors consider HPD and VPD. Their method helps data 

holders produce binary ratings-based predictions on HPD or VPD without deeply 

jeopardizing their confidentiality. Unlike their approach, a scheme is going to be 

proposed when data is partitioned arbitrarily. Kaleli and Polat (2010) also suggest 

an NBC-based CF solution for P2P environments. While in their proposal the 

transactions are realized between peers on individual data, in the proposed 

scheme, data holders collaborate on a set of users’ data. 

4.3. NBC-based Predictions on Arbitrarily Partitioned Data with Privacy 

When users’ ratings are held by a single company, it is easy to estimate NBC-

based predictions without considering privacy concerns. On the other hand, when 

users’ ratings including the active users are arbitrarily partitioned between two 

parties, it is challenging to offer NBC-based referrals efficiently without 

jeopardizing data owners’ confidentiality. Due to privacy concerns, online 

performance and accuracy become worse. In order to improve online efficiency, 

collaborating parties prefer performing as much computations as possible off-line. 

The companies can construct the NBC-based prediction model off-line using the 

proposed secure protocols satisfying predefined constraints and implications. 

After constructing such model, they then serve their customers demanding CF 

services online. Thus, the proposal is explained in terms of off-line and online 

phases in the following.  
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4.3.1. Off-line Phase: Model Generation 

The model consists of two arguments, the likelihood )|( jCVP  and the priori 

)( jCP probabilities. Thus, the parties A and B need to compute these probabilities 

off-line while preserving their confidentiality. In this section, how the parties can 

estimate the required probabilities in a secure manner using the proposed 

protocols is explained.  

  Estimating the Likelihood Probabilities: Any active user a can ask a 

prediction for any item. Hence, the target item q can be one of m items. Moreover, 

a might rate any individual item. Thus, the parties need to consider every possible 

rating (1 or 0) for any item. Suppose that H and Q represent the rating sets for an 

item h and a target item q, respectively. Also, let HA and QA; and HB and QB be 

rating sets for items h and q held by A and B, respectively. Due to arbitrary 

partitioning, H = (HA || HB) and Q = (QA || QB), while assuming that the parties 

hold disjoint sets of ratings. Considering arbitrary partitioning, for any rating vh, 

the likelihood can be formulated, as follows: 
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in which ηAA represents number of users whose ratings for h and q (notice that the 

rating for q represents the class label) are held by A and their ratings for item h 

satisfy the condition, ηAB represents number of users whose ratings for h and q are 

held by A and B, respectively; and their ratings for item h satisfy the condition, 

and so on. Similarly, δAA represents number of users whose class label is Cj and 

rated both h and q; and such ratings are held by A, δAB represents number of users 

whose class label is Cj and rated both h and q; and the ratings for h and q are held 

by A and B, respectively, and so on. Due to arbitrary partitioning between two 

parties A and B, four possible cases are considered in order to estimate numerator 

and denominator. Also note that since users’ preferences are represented using 

binary ratings, the parties need to estimate P(vh | Cj) probabilities for four possible 

cases (vh = 1 or 0 and Cj = 1 or 0). 

Due to the availability of data, A can compute pure components, ηAA and 

δAA, by itself without the help of B. Similarly, B can calculate ηBB and δBB by itself 

without the help of A. However, there are crosswise components like ηAB, ηBA, δAB, 
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and δBA, which must be computed collaboratively using the integrated data. 

Considering self-computable and cooperative-computable components, to 

calculate η and δ values securely, Numerator of Likelihood Computation Protocol 

(NLCP) and Denominator of Likelihood Computation Protocol (DLCP) are 

proposed respectively in which DLCP is the variant of NLCP. The parties 

estimate η securely using the NLCP, as follows: 

Numerator of Likelihood Computation Protocol 

For each possible four cases (vh = 1 or 0 & Cj = 1 or 0; notice that vh and Cj can 

take two different values) 

     For each item pairs ((h, q) | h = 1, 2, …, m; q = 2, 3, …, m; h < q) 

i. If vh = 0, then A inverts the vector HA (converts 1s into 0s and 0s into 

1s). 

ii. If Cj = 0, then B inverts the vector QB (converts 1s into 0s and 0s into 

1s). 

iii. A and B fill empty cells with zero in HA  and QB, respectively. 

iv. A encrypts each value in HA using an HE scheme with its public key 

KA; and obtains ξKA (HA) so that it prevents B from learning such 

values. 

v. A then generates a random vector, RA, which is necessary for self-

blinding. 

vi. Using self-blinding property of HE, A computes ξKA (HA, RA) = ξKA 

(HA) × (RA)N. 

vii. A finally sends ξKA (HA, RA) to B. Due to encryption and self-blinding, 

B cannot derive useful information from such encrypted values. 

viii. Using HE property, B performs ξKA (HA, RA)
��; and finds ξKA (HA × 

QB). 

ix. B performs element wise homomorphic addition of ξKA (HA × QB); and 

finds ξKA (ηAB). 

x. B sends it to A, who can decrypt it using its related private key, which 

is known by it only; and obtains ηAB. 

xi. The parties switch their roles and perform the same steps to find ηBA. 



 

70 
 

xii. A and B finds ηA = ηAA + ηAB and ηB = ηBB + ηBA, respectively; and 

exchange them. 

xiii. Each part finally computes η = ηA + ηB, which is required for the 

numerator of Eq. (4.2). 

In the NLCP, the goal is to count the corresponding cross-wise elements, 

which are required to compute the numerator of Eq. (4.2). Notice that Eq. (4.2) 

estimates P (vh| Cj) values. In the first and the second steps, if vh and/or Cj values 

are equal to zero, then the related vectors are inverted. In the third step, the 

unrated cells are simply ignored by assigning them zero values. In the following 

steps up to the Step x, using HE with self-blinding property, the parties achieve 

secure multiplication of plaintexts over distinguished ciphertexts. In the remaining 

steps, they perform complementary computations and exchanges. They finally 

complete the protocol by having the numerator, i.e η, of P(vh | Cj) in Eq. (4.2). 

To estimate likelihood probabilities using Eq. (4.2), in addition to the 

numerator, the parties need to compute the denominator. For the denominator 

part, the parties need to determine those users whose class label is known (rated q) 

and they also rated the related item h. As stated before, A and B can estimate δAA 

and δBB by themselves without needing each other. However, they need to 

collaborate to estimate δAB and δBA values. The DLCP is offered to compute δ 

values without violating A and B’s privacy, as follows: 

Denominator of Likelihood Computation Protocol 

For each possible four cases (vh = 1 or 0 & Cj = 1 or 0) 

 For each item pairs ((h, q) | h = 1, 2, …, m; q = 2, 3, …, m; h < q) 

i. If vh = 0, then A inverts the vector HA (converts 1s into 0s and 0s into 

1s). 

ii. B replaces each rating in vector QB by 1. 

iii. A and B fill empty cells with zero in HA  and QB, respectively. 

iv. A encrypts each value in HA using an HE scheme with its public key 

KA; and obtains ξKA (HA) so that it prevents B from learning such 

values. 

v. A then generates a random vector, ZA, which is necessary for self-

blinding. 
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vi. Using self-blinding property of HE, A computes ξKA (HA, ZA) = ξKA 

(HA) × (ZA)N. 

vii. A finally sends ξKA (HA, ZA) to B. Due to encryption and self-blinding, 

B cannot derive useful information from such encrypted values. 

viii. Using HE property, B performs ξKA (HA, ZA)
��; and finds ξKA (HA × 

QB). 

ix. B performs element wise homomorphic addition of ξKA (HA × QB); and 

finds ξKA (δAB). 

x. B sends it to A, who can decrypt it using its related private key because 

it is known by it only; and obtains δAB. 

xi. The parties switch their roles and perform the same steps to find δBA. 

xii. A and B finds δA = δAA + δAB and δB = δBB + δBA, respectively; and 

exchange them. 

xiv. Each part finally computes δ = δA + δB, which is required for the 

denominator of Eq. (4.2). 

The goal of the DLCP is to count the satisfying values for the denominator 

of P (vh | Cj) in Eq. (4.2). The protocol follows the similar steps and ideas like the 

NLCP. It is actually based on the same mathematical and cryptographic property. 

However, the DLCP counts the number of commonly rated items providing that 

the first value vh equals the specific value of either 1 or 0. In the first step, the 

value of the vh is considered. If its value is zero, then we invert the vector. In the 

second step, the rated cells are taken consideration for the following 

computations. The remaining steps flow similarly like in the NLCP. At the end of 

the protocol, the required value for the denominator, i.e δ, of P(vh | Cj) is obtained. 

Once they completed the abovementioned protocols, the parties have the values 

for numerator and denominator parts (η and δ values, respectively). They can now 

estimate all necessary likelihood probabilities, P(vh | Cj), using Eq. (4.2).  In order 

to complete the model, in addition to estimating P(vh | Cj) values, A and B must 

compute priori probabilities, P(Cj) values. 

 Priori computation: Priori computation includes determining the 

probability of having 1 or 0 for the target item q. The class probabilities for both 

classes should be estimated based on q’s ratings. In other words, priori 
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computation is performed by just determining probability of selecting a rating 

belonging to class Cj from a set of ratings for an item vector because the target 

item can be one of m items. It can be calculated for ratings arbitrarily partitioned 

between A and B, as follows: 
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Since the target item can be any item, the parties need to find out priori 

probabilities for all items off-line. To do so, they need to exchange the partial 

aggregates in Eq. (4.3). However, exchanging such values directly infers how 

many users liked or disliked an item. To prevent the parties from deriving such 

information and enhance privacy, we propose to mask target item’s rating vector 

using randomized perturbation techniques. The parties first perturb the target 

item’s rating vector and then estimate partial aggregates in Eq. (4.3) based on 

masked data. They finally can exchange such aggregates and find priori 

probabilities. To determine priori values, Privately Priori Estimation Protocol 

(PPEP) is proposed which is given as follows: 

Privately Priori Estimation Protocol 

I. A uniformly randomly selects half of the items (mA items). 

II. For each item i = 1, 2, …, mA 

a. A determines the rating density (di) and the number of unrated cells 

(NRi). 

b. A uniformly randomly chooses θi over the range (0, di]. Notice that 

number of filled cells is associated the density. 

c. A then uniformly randomly selects mAi = (θi × NRi)/100 number of 

unrated cells to fill with default or fake ratings. 

d. A finally fills them with pre-determined default of fake ratings, 

where B does not know the default or fake ratings. 

e. A now finds |��,��| values for both classes and |QA| values; and 

sends them to B. 

f. B determines |��,�� | values for both classes and |QB| values; and 

computes P(Cj) values for both classes using Eq. (3) 

g. B saves such priori probabilities for mA items 
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III. For the remaining mB items (m = mA + mB), the parties switch their roles 

and perform the same steps to find the priori probabilities for mB items 

  The PPEP aims to fill randomly selected subset of the unrated cells in each 

item vector in order to hide actual numbers of like and dislike values. Sometimes 

it might be more damaging for revealing such values. Thus, each party joins such 

filling process for randomly chosen half of items, as pointed in the step I. In the 

step II, each item is taken into process; and mAi pieces of the unrated cells are 

filled with default or fake ratings. Notice that the amount of cells and which cells 

to be filled are determined based on density. Then, A computes the local 

aggregates over such filled data and sends them to B. After obtaining final priories 

for such half of items, B stores them. In the step III, priories are computed for the 

remaining subset of items in the same manner with swapping duties. At the end of 

the protocol, each party ends up complementary subset of all estimated priori 

values.  

  In order to disguise each item vector in a decent way, the following issues 

are presented that should be considered by the parties: 

1. Density-based determination of amount of filling: They must consider 

the density of item rating vectors in order to determine how many 

unrated cells should be filled with predetermined default or fake 

ratings. 

2. Number of cells to be filled with 1 or 0 can be determined, as follows: 

a. The parties can fill selected unrated cells in such a way so that 

like/dislike ratio is preserved as much as possible to approximate 

priori probability to original value. 

b. The parties determine default ratings and fill the cells with the 

corresponding ones. 

3. Default or fake ratings can be determined, as follows: 

a. Randomly 

b. Non-personalized ratings on available data 

i. Item mode 

ii. User mode 

iii. Overall mode 
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c. Personalized ratings on available data estimated using NBC-

based scheme 

At the end of off-line phase, the parties now own the model, which can be 

used to offer NBC-based recommendations online. 

4.3.2. Online Phase: Recommendation Estimation 

Online phase is triggered by a who asks a prediction (paq) for q from MP. One of 

the parties acts as an MP interacting with a. Assume that A acts as an MP. Also 

note that a’s ratings are arbitrarily partitioned between A and B. MP first needs to 

estimate probabilities for both classes using Eq. (4.1). It then assigns the item into 

the class with the higher probability. Such probabilities can be estimated in a 

distributive manner, as follows: 
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where MA and MB show the number of a’s ratings held by A and B, respectively. 

Proposed Online Recommendation Estimation Protocol (OREP) works, as 

follows:  

1. A informs B about q. 

2. If q is one of the mA items, A computes∏ =

AM

h jh Cvp
1

)|(   and B 

calculates ∏ =

BM

h jhj CvpCp
1

)|()( values for both classes based on a’s 

data held by A and B, respectively. 

3. If q is one of the mB items, A computes ∏ =

AM

h jhj CvpCp
1

)|()(  and B 

calculates ∏ =

BM

h jh Cvp
1

)|(  values for both classes based on a’s data 

held by A and B, respectively. 

4. B sends such aggregates for both classes to A. 

5. A computes the final probabilities for both classes using Eq. (4.4) and 

compares them to determine the q’s class label for a. 

6. It finally assign the item to the class with the higher probability and 

returns the class label to a.   
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4.4. Privacy Analysis 

The proposed scheme is examined in terms of privacy based on the lemma and its 

proof below. Recall that each party is semi-honest; thus, tries to guess information 

as much as they can while obeying the rules of the game. Remember also that a 

chain is only as strong as its weakest link. Adopted analogy assumes that the 

chain preserves privacy while the weakest link is the maximum inference 

probability. 

Lemma: The proposal satisfies the auxiliary privacy constraint at lower 

bound of 1out of 










AB

Hv Ah
C

η
, . 

Proof: There are some information exchanges during the proposed 

protocols conducted in off-line and online phases. In the NLCP, the parties share 

encrypted vectors of items with each other, where each party obtains one self-

crosswise component; and final numerator and denominator values are obtained 

by both companies.  

i. Encrypted data exchange: Paillier (1999) shows that the HE scheme is 

semantically secure; and it also supports self-blinding property, which 

diversifies cipher-texts of the same plaintexts by addition of particular 

random values. 

ii. Self-crosswise components (ηAB or ηBA): This can be examined in terms 

of A. If A knows ηAB, for A, the probability of guessing those users who 

rated q as Cj held by B is 1 out of of  










AB

Hv Ah
C

η
, . Similarly, if A knows 

δAB, it can guess those users who rated q as Cj held by B with 

probability of 1 out of 








AB

AH

δ
. In general, due to the characteristics of 

the rating data, the first combination value is expected to be smaller 

than the latter one. Therefore, the probability 1/ 










AB

Hv Ah
C

η
,  is larger 

inference probability value. Since the protocol is symmetric, this 

inference possibility also applies for B. 
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iii. Final numerator and denominator values: Considering the guessing 

process in terms of A and recalling Eq. (4.2), it is much harder to 

derive information from exchanged aggregates required for numerator 

and denominator. Since the self-computable values (known by B only) 

are added to collaborative-computable values, A cannot infer useful 

information from δB values. Again, due to the symmetric property, B 

cannot learn useful information from δA.    

  For priori computation, after disguising process, each party shares the 

amount of liked and disliked ratings of each item. Since θ is uniformly randomly 

chosen from the interval of (0, ρq], its expected value is ρq/2. It should be 

remarked that the density (ρq) is unknown to A; and first of all, A must guess it 

correctly. After guessing it correctly, the problem is determining what the value of 

θ is because it is randomly selected. The most rational probability of guessing its 

value is 1 out of E[θ]. After A guess ρq and θ, it can find the number of filled 

cells. Even if it figures out such information, due to data sparsity, it cannot learn 

the actual filled cells (those users who really rated q and held by B) from knowing 

the number of rated and filled cells. However, it can guess it with probability of 1 

out of 








B

u

q

n
 in which nu = n – number of users rated q and held by A; and qB 

shows the number of users who rated q and held by B. Notice that qB can be 

estimated after guessing the density and θ.    

 At the final stage (in the online prediction computation), the helping 

party returns two aggregate values for each class. Primarily, it is not clear to MP 

or A that how many of the conditional probabilities are used for determining these 

aggregated values. Note that such aggregates are multiplication of some and yet 

unknown number of conditional probabilities. Also note that MP can act as an 

active user in multiple scenarios to derive conditional probabilities. To eliminate 

such attack, during each transaction, the parties can fill some of a’s rating vector 

with default ratings or remove a few ratings from her rating vector. Moreover, 

they update their model periodically.    

 Corollary: Since there is no direct exchange of the actual ratings and the 

rated items, principal privacy constraints are satisfied and their guarantee directly 
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depends on the satisfaction of auxiliary privacy constraint. The proposal satisfies 

the principal privacy constraint at the lower bound of 1 out of 










AB

Hv Ah
C

η
,  because it 

satisfies the auxiliary privacy constraint at the same lower bound.  

4.5. Supplementary Costs Analysis 

Collaboration over partitioned data and privacy measures bring supplementary 

costs. In this section, the overheads are highlighted in terms of computation, 

communication, and storage costs. Compared to online costs, off-line costs are not 

that critical for overall performance. Hence, additional online costs should be as 

small as possible for overall performance of the proposed scheme.  

Supplementary storage costs can be explained, as follows: Additional costs 

are expected due to saving the model. Each party stores likelihood probabilities 

and half of priori probabilities. Due to storing likelihood probabilities, each party 

needs four m × m matrices. Similarly, each party needs one 1 × m/2 matrices for 

storing priori probabilities. Hence, additional storage costs due to the proposed 

scheme are in the order of O(m2).   

The proposed scheme also causes some additional communication costs. 

Since online costs are more important, extra online communication costs are first 

explained. In a traditional CF system, there are two communications only. In the 

proposed scheme, on the other hand, there are four communications due to data 

exchange between collaborating parties. Hence, online communication costs 

increases two times. During off-line phase, the parties perform three protocols. 

Due to such protocols, number of off-line communications is in the order of O(m), 

assuming that they exchange 1 × m vectors. Although additional off-line 

communication costs are significant, they do not affect online performance and 

they are acceptable as long as they are done off-line.      

Additional online computation costs are also important for overall 

performance. Compared to central server-based scheme, proposed scheme does 

not introduce extra online computation costs. In other words, the scheme performs 

the same number of multiplications, additions, and comparisons with a traditional 

NBC-based scheme on integrated data held by a single company. Unlike online 

phase, off-line phase causes significant extra computation costs. Additional 



 

78 
 

computation costs performed off-line can be explained, as follows: Additional 

costs due to encryptions, decryptions, multiplications, and exponentiations 

dominate off-line computation costs. Compared to such operations, additional 

costs due to random number generation, filling, addition, and so on are negligible. 

Number of encryptions, decryptions, multiplications, and exponentiations 

conducted off-line are in the order of O(mn), O(m2), O(mn), and O(m2
n), 

respectively. In order to find out the running times of cryptographic functions, 

benchmarks are available at the CRYPTO++ toolkit (CRYPTO++, 2009). Off-line 

phase should be performed periodically to update the model by inserting new 

data. The periods of model updating depends on data flow, applications, and 

system administration. To speed up update process, modified elements only 

should be considered in each update. In a traditional user- and NBC-based CF 

(Miyahara and Pazzani, 2000), online prediction can be processed in the order of 

O(mn). Hence, additional costs introduced during off-line phase can be considered 

acceptable. 

4.6. Prediction Quality Analysis: Experiments 

In this section, the proposed scheme is evaluated empirically to observe prediction 

quality using real data sets. Two different data sets, namely MLP and MLM are 

used, which have been already used in previous chapters. Recall that in both data 

sets, ratings are integer value from dislike to like as a range of [1, 5]. In order to 

perform NBC-based CF tasks on these data sets, the integer ratings are performed 

to binary ones with respect to threshold value of 4. If any rating value is greater 

than or equal to 4, then it is assigned to class 1, or 0 otherwise. The generic 

experimentation method is to divide already selected data into training and testing 

components in the percentages of 80 and 20, respectively. During data division 

process, ratings are randomly categorized for training or testing sets. 

In order to benchmark the prediction qualities, two different evaluation 

metrics are utilized: classification accuracy (CA) and F-measure (F1). While CA 

is derived by obtaining the percentage of correctly predicted ratings, to calculate 

F1, precision and recall values must be evaluated. F1 is the harmonic mean of 

precision and recall, as follows: 
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In the first experiment, trials are conducted to verify the hypothesis that 

APD contributes the prediction quality of the data owners. It is desired to show 

how CA and F1 values improve due to collaboration. Trials are performed using 

MLP for comparing split and combined data while varying n from 125 to 943. To 

reach reliable outcomes, the experiments are repeated for 100 times; and in each 

case, the train users are randomly selected from the input data. After computing 

CA and F1 values for split and integrated data, they are displayed in Table 4.1. 

How much gain is provided by APD with respect to split data is also computed. 

According to results presented in Table 4.1, first of all, the APD-contribution 

hypothesis is correct for all cases and both metrics; because all gain values are 

conspicuously larger.  From these results, second deduction issue is that combined 

data provide better gain for both CA and F1 metrics for lower n values. Table 4.1 

also shows that F1 gain is less than CA gain for all cases. Hence, it can be said 

that APD-based data combination contributes more to the parties having fewer 

amounts of data. Online vendors prefer providing recommendations on their 

integrated data to offer enhanced outcomes. 

Table 4.1. Effects of Collaboration on Accuracy (MLP) 

n 125 250 500 943 

Split 
CA 0.6069 0.6307 0.6511 0.6645 

F1 0.6697 0.6883 0.7047 0.7151 

Integrated 
CA 0.6356 0.6555 0.6696 0.6776 

F1 0.6907 0.7070 0.7179 0.7239 

APD Gain (%) 
CA 4.73 3.93 2.85 1.98 

F1 3.13 2.71 1.87 1.23 

t-values 
CA 14.98 20.11 24.09 31.25 

F1 6.07 8.52 10.54 20.07 

 

To justify the empirical results given in Table 4.1 in terms of the 

improvements, some t-tests are conducted and the results are also given in Table 

4.1. According to t-values and t-table, it can be said that the improvements are 
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statistically significant for the confidence level of 99.9%. Notice that the t-values 

are inversely proportional to the APD gain percentages. While improvements in 

accuracy increase, statistical significance level reduces. The reason for this 

phenomenon can be explained with data scarcity. If the amount of input data 

becomes lesser, then fluctuations in accuracy should be expected to rise.  

After ensuring about APD-based prediction quality gain, accuracy losses 

due to privacy-preservation must be investigated, too. In online phase, there are 

no operations affecting prediction quality. Considering off-line phase, since 

likelihood computation is just based on encryption, which does not perform 

modifications on the content of data or say plaintext, it does not affect the output 

accuracy. However, during priori probability computation, rather than encryption-

based operations, this scheme proposes randomization-based operations, which 

perturb the original data. Thus, some losses in accuracy can be expected while 

hypothesizing that these changes do not crucially affect the prediction quality. To 

check whether this hypothesis holds or not, experimental trials are carried out 

using MLP data set. In these trials, it is anticipated to compare the outcomes 

produced on the originally combined data and that on disguised data with respect 

to varying number of users. The results are given in Table 4.2. 

Table 4.2. Effects of Privacy-preservation Measures on Prediction Quality (MLP) 

n 125 250 500 943 

Original 
CA 0.635594 0.655465 0.669643 0.677621 

F1 0.690713 0.706966 0.717855 0.723857 

Disguised 
CA 0.635804 0.655533 0.669716 0.677657 

F1 0.690849 0.706986 0.717878 0.723880 

Variation (%) 
CA 0.033 0.010 0.011 0.005 

F1 0.020 0.003 0.003 0.003 

 

According to outcomes given in Table 4.2, it can be observed that random 

disguise procedure’s effects on accuracy are so small, even that can be neglected. 

In order to differentiate the outcomes, the results are displayed in higher precision 

to the six-digit, the percentage of variation at most 0.03%. Proposed disguising 

policy bounds this variation since random values are added while like/dislike ratio 
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is preserved. Considering all findings in this section, prediction qualities are 

improved due to APD while privacy-preservation of proposed scheme does not 

affect the prediction quality. 

Experiments are also performed using MLM data set to show how 

collaboration and the proposed privacy-preserving schemes affect accuracy. The 

outcomes are summarized in Table 4.3. Improvements due to collaboration (APD 

gain) are derived by comparing the results of split and combined cases while 

ultimate gain values were determined by considering split data only and 

collaboration over proposed method. These results on MLM verify the first 

hypothesis. In other words, APD contributes prediction quality in the same 

manner as MLP. 

Table 4.3. Effects of Collaboration and Privacy-preservation on Prediction Quality (MLM) 

n 125 250 500 1,000 2,000 

Split 
CA 0.622681 0.646837 0.664281 0.677421 0.685142 

F1 0.695649 0.711724 0.725984 0.736373 0.742484 

Integrated 
CA 0.646436 0.665044 0.675931 0.68288 0.686343 

F1 0.713083 0.725903 0.735649 0.741808 0.745324 

Proposed 
CA 0.646543 0.665115 0.675959 0.682899 0.686349 

F1 0.713157 0.725938 0.735670 0.741821 0.745327 

APD Gain 

(%) 

CA 3.8150 2.8148 1.7538 0.8059 0.1754 

F1 2.5062 1.9922 1.3312 0.7382 0.3825 

Ultimate 

Gain (%) 

CA 3.8321 2.8257 1.7580 0.8087 0.1762 

F1 2.5167 1.9971 1.3342 0.7399 0.3829 

 

Rather than looking variation between combined and disguised cases as in 

Table 4.2, ultimate gains promised by proposed method are put forward in Table 

4.3. Note that such values are in percentages and there are negligible differences, 

starting from 10-4 in ratio, between APD gains and ultimate gains among different 

numbers of users. According to results depicted in Table 4.3, it can be concluded 

that proposed privacy-preserving scheme contributes CA and F1 values ultimately 

over single party. Using t-test analysis, it is also checked whether such ultimate 

gain is statistically significant or not. t-values are computed for ultimate gains of 
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both CA and F1 metrics as shown in Table 4.4. According to empirical outcomes 

in Table 4.4, it can be said that obtained ultimate gains are statistically significant 

at the confidence level of 99.9%. 

Obtained empirical outcomes show that collaboration between two parties 

definitely improves accuracy in terms of both CA and F1 measure. Moreover, 

recommendations estimated from integrated data can be considered more reliable 

than the ones computed from split data only. Due to accuracy improvements, 

online vendors, even the competing ones, want to collaborate. If they provide 

more accurate and dependable predictions, then more customers prefer their sites 

to trade. When they have privacy, financial, and legal concerns, they can utilize 

the proposed scheme to eliminate such concerns. Due to proposed randomization-

based data masking, accuracy losses are expected. However, as seen from 

obtained experimental outcomes, such losses are very small and can be neglected. 

Accuracy gains due to collaboration definitely compensate the accuracy losses 

due to privacy-preserving measures. In conclusion, online vendors can use the 

proposed scheme to provide accurate referrals while preserving their 

confidentiality. 

Table 4.4. Statistical Significances of Ultimate Gains (MLM) 

n 125 250 500 1,000 2,000 

CA 
Ultimate Gain (%) 3.8321 2.8257 1.7580 0.8087 0.1762 

t-value 16.01 17.41 15.55 11.67 3.95 

F1 
Ultimate Gain (%) 2.5167 1.9971 1.3342 0.7399 0.3829 

t-value 7.43 8.59 8.48 7.34 5.18 

 

4.7. Chapter Summary 

In this study, a privacy-preserving naïve Bayesian classifier-based collaborative 

filtering scheme is proposed for two parties ending up with arbitrarily partitioned 

binary data. Such scheme can be a solution for e-commerce sites suffering from 

insufficient data for recommendation services. It is both theoretically and 

empirically proved that proposed scheme provides practical balance between the 

conflicting goals of privacy, efficiency, and accuracy. Not only it promotes to the 

accuracy of collaborative filtering service providers, but also it ensures their 
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privacy. Moreover, it demands decent amount of online computation, 

communication, and storage overheads.  
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5. PRIVACY-PRESERVING HYBRID COLLABORATIVE FILTERING 

ON CROSS PARTITIONED DATA 

In this chapter, it is investigated how to offer hybrid CF-based referrals with 

decent accuracy on CPD between two e-commerce sites while maintaining their 

privacy. The proposed schemes should prevent data holders from learning true 

ratings and rated items held by each other while still allowing them to provide 

accurate CF services efficiently. Real data experiments are performed to evaluate 

the proposals in terms of accuracy. The results show that the proposed methods 

are able to provide precise predictions. Moreover, the proposed methods are 

evaluated in terms of privacy and supplementary costs. It is also demonstrated that 

they are secure and online overhead costs due to privacy concerns are 

insignificant. 

5.1. Introduction 

According to the data utilization in online phase, CF algorithms can be 

categorized into two groups: memory- and model-based algorithms. Each group 

of algorithms has their own advantages and disadvantages (Su and Khoshgoftaar, 

2009). Since memory-based algorithms operate on entire data online, for large 

data sets, online performance degrades and scalability problems occur. Accuracy 

and coverage might get worse when data are sparse because they depend on the 

existence of ratings for co-rated items. However, they are easily implemented and 

new user and/or item can be easily and incrementally added. Moreover, accuracy 

is better compared to model-based ones. On the other hand, model-based methods 

generate a model off-line. Thus, their online efficiency is better. Furthermore, 

methods in this type better address sparsity, scalability, and coverage problems. 

Some computations can be done off-line to improve online performance while 

predictions should be generated using memory-based methods. Hybrid schemes 

are proposed to gain the advantages of both memory- and model-based algorithms 

while decreasing the effects of disadvantages mentioned above (Su and 

Khoshgoftaar, 2009). Pennock et al. (2000) experimentally show that the hybrid 

scheme they proposed outperforms both types of schemes in accuracy while 

ensuring scalability. Their proposed method is in the hybrid manner, which 
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realizes some computations off-line to improve online performance while 

generates predictions using memory-based methods.  

In this chapter, it is focused on how to produce high quality referrals on 

hybrid CF approaches efficiently from CPD while ensuring corporate privacy. 

The proposed scheme first estimates a model off-line and then predictions are 

provided based on the model using a memory-based approach. Since accuracy, 

privacy, and online efficiency are conflicting goals, the proposed methods should 

provide balance among them. Intuitively, the key requirement is to obtain 

preferable accuracy gain due to data integration despite accuracy losses due to 

privacy measures. Supplementary costs due to privacy concerns should be small 

and still make it possible to offer loads of referrals to many users efficiently. In 

other words, the proposed schemes must run and respond to each query in 

acceptable time with little online overhead costs. 

Partitioned data-based CF with privacy is becoming popular with increasing 

popularity of e-commerce. Polat and Du (2008) show how to offer top-N 

recommendations based on HPD or VPD without deeply violating data owners’ 

privacy. This study is different from their work. They consider HPD or VPD, 

while here CPD is considered. CF algorithm focused in this study executes on 

numeric ratings, while theirs operate on binary ratings. Moreover, they offer 

sorted list of referrals, while the proposed schemes produce predictions for single 

items. Polat and Du (2005b) discuss how to provide predictions for single items 

based on VPD between two parties while preserving their privacy. The authors 

consider VPD, while this study investigates how to offer predictions with privacy 

based on CPD. Furthermore, they consider all users in the database as neighbors 

and utilize entire users’ data for prediction computations, while it is proposed 

privacy-preserving schemes to select a’s neighbors given a set of n users. Since 

they utilize all users’ data, they are able to conduct some computations off-line. 

Although prediction computations are performed on selected users’ data, the 

parties can still be able to conduct some computations like selecting the best 

neighbors off-line to improve online performance. Yakut and Polat (2010) 

investigate how to produce SVD-based private recommendations on HPD or VPD 

between two data owners. The authors utilize SVD-based CF scheme to produce 
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referrals based on partitioned data between two parties only while protecting their 

privacy. Unlike this study, they also consider VPD or HPD. Kaleli and Polat 

(2007a) investigate how to achieve NBC-based CF tasks on distributed data with 

privacy. The authors utilize binary ratings and NBC-based CF algorithm to 

generate referrals, where the scheme determines whether a will like q or not, 

while this scheme determines how much a will like or dislike q. Unlike their 

schemes, CPD is investigated in this proposal. 

5.2. Hybrid Collaborative Filtering 

CF systems first calculate the similarities between a and each user in D using a 

similarity measure. Users a and u can be thought as two vectors in an m 

dimensional item-space. The similarity between them (wau) can be calculated by 

computing the cosine of the angle between these two vectors, as follows (Sarwar 

et al., 2001): 

 
,),cos(
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uaau
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rrw

⋅
==  (5.1) 

where the · represents the dot-product operation, xr represents the Euclidean 

length of the vector 
xr , which is the square root of the dot product of the vector 

with itself, and 
ar and 

ur  are users a’s and u’s ratings vectors, respectively. To 

select a subset of the users as neighbors of a, Herlocker et al. (1999) propose the 

following scheme, referred to as the best-N: select the best N correlates for a given 

N as neighbors. The prediction for a on item q (paq) can be computed, as follows 

(Herlocker et al., 1999), where uuqnorm vvv
uq

−= , na shows the number of a’s 

neighbors who rated q, uv  is the average of user u’s ratings, and wau is the 

similarity weight between users a and u: 
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5.3. Hybrid Collaborative Filtering on Cross Partitioned Data with Privacy 

Before giving the details of the proposed scheme, the problem that should be 

solved can be briefly defined, as follows: When data collected for CF purposes 

are cross partitioned between two parties, how do such companies offer 

recommendations using hybrid CF algorithms based on CPD without invading 

their corporate privacy to each other? The proposed solution consists of off-line 

model construction and online prediction estimation. Off-line computation 

functions include mean, deviation from mean normalization, and cosine similarity 

for determining similar items. Similarly, during online phase, cosine similarity is 

utilized for estimating user-user similarities. In addition, active users’ neighbors 

are determined. Finally, using a prediction algorithm, a referral is computed. The 

proposed solutions are certainly expected not to conflict predefined principal and 

auxiliary privacy constraints. While searching for a solution to the above-

mentioned problem, there are major challenges that should be considered. The 

first one is providing high quality predictions while preserving confidentiality. 

Second, the proposed scheme must ensure online efficiency. Finally, besides 

protecting individual votes, rated items should also be guarded.    

5.3.1. Off-line Process 

The first task in off-line phase is data normalization using deviation from mean 

method (Herlocker et al., 1999). To do that, the parties need the mean ( uv ) of 

each user u’s ratings for all u = 1, 2,…, n.  Recall that Eq. (2.5), the mean is an 

example of algebraic measures, which can be computed by applying an algebraic 

operation to two or more distributive measures. An important property of 

distributive measures like sum, count, and so on, is that they can be computed by 

partitioning the entire set into smaller subsets, computing the measure for each 

subset, and merging their results. Therefore, the parties are able to compute uv  for 

all u = 1, 2, …, n, as follows in a distributive manner as in Eq. (2.6). 

The parties first compute the corresponding aggregate data (sum and count). 

They then exchange them and finally compute the final outcomes. However, they 

want to achieve such tasks without deeply jeopardizing their privacy. Note that 

since a can ask predictions from either party, each party should be able to return a 
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prediction to a, based on the distributed computation with the other party. Also 

note that both parties should exchange data during data normalization. Otherwise, 

they might not join the distributed CF process. Therefore, the following privacy-

preserving scheme is proposed in which fake or default ratings are added to data 

holders’ databases to calculate the uv  values in a secure manner: 

1.  Each party j selectively or uniformly randomly chooses a γj value over the 

range (1, 100]. 

2.  Each party j then uniformly randomly generates a random value δj over the 

range (1, γj]. 

3.  The companies selectively or uniformly randomly choose some of their 

unrated items’ cells to fill with fake ratings (vf) based on δj. Note that

f

gf

f

g CC −= , where f

gC  shows the number of ways picking g unordered 

outcomes out of f possibilities. Therefore, if δj < (100-2dj)/2, then the party 

sets δj at the chosen value; otherwise, it sets it at 100- dj - δj, where dj 

shows the density, as percent, of the data that company j holds. The parties 

then selectively or uniformly randomly choose δj percent of their unrated 

items’ cells to fill with vf. 

4.  Each party might decide to use one of the following methods to find  vf in 

each sub-part of D. Note that D might be considered to be split into four 

sub-parts, where each party holds two of them: 

a. Generate vf using the distribution of the ratings residing in that sub-

part. After determining the distribution of the ratings and their 

characteristics in each sub-part, the parties generate vf using that 

distribution. Users’ preferences about many products usually show 

Gaussian distribution with mean (µ) and standard deviation (σ). 

Therefore, the parties compute the mean and the standard deviation 

of the ratings in each sub-part; and generate vf using the 

corresponding values for each sub-part. Note that number of vf 

depends on how many cells to be filled, which are determined 

before. 

b. Rather than using a distribution to generate vf, determine non-

personalized or default ratings (vd) by computing local averages in 
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each sub-part. The parties can utilize one of the following methods 

to find vd in each sub-part: 

i. Local overall mean: Calculate the overall mean of the 

ratings in that sub-part as a non-personalized rating. 

ii. User (row) mean: Compute the mean ratings of each user 

using their ratings in that sub-part as non-personalized 

ratings. 

iii. Item (column) mean: Compute the mean ratings of each 

item using their corresponding ratings in that sub-part as vd. 

5.  After deciding which method to use for determining vf, they generate or 

find them; and fill chosen unrated items’ cells with corresponding vf. 

Besides original databases, the parties end up with filled matrices.  

6.  Since a can ask prediction from A or B, both parties should normalize their 

data using deviation from mean method. Moreover, both of them should 

give aggregate results of its data to the other party; and receive results. 

Therefore, they follow the  following steps to normalize their data, where 

for simplicity, we explain the procedure in terms of A only: 

a. A finds aggregate values (∑ =

uAM

j ujv
1

 and MuA) on filled database for 

all u = 1, 2, …, n; and sends them to B. 

b. After receiving such values, B computes ∑ =

iBM

j ujv
1

 and determines 

MuB values based on its original database. 

c. B now can estimate uv  values for all users using the received 

aggregate data on filled database from A and the aggregate data on 

its original data. It then sends uv  values to A. 

d. A and B compute uujnorm vvv
uj

−=  values of filled and original 

databases, respectively. Therefore, the parties obtain normalized 

values based on deviation from mean method. They then save such 

normalized databases, as shown in Fig. 5.1a. 
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7.  The parties simultaneously follow the same steps, where they switch their 

roles. Therefore, they end up with normalized databases, as shown in Fig. 

5.1b. 

 

(a) 

 

(b) 

Figure 5.1. Masked Normalized Databases (a) Model1 (b) Model2 

 Data holders mask their data by filling some of the unrated item cells with 

non-personalized votes. It is possible to estimate sum values using some secure 

multi-party computation (SMC) protocols. However, it is hard to implement such 

cryptographic protocols compared to the proposed schemes. Such cryptographic 

solutions introduce additional computation costs so that efficiency becomes lower. 

Moreover, in addition to hiding true rating values, cooperating parties want to 

hide the rated and/or unrated items, as well. Filling some of the empty cells helps 

companies conceal their rated items. Finally, adding default ratings into user-item 

matrices increases amount of available ratings, which helps provide more 

dependable predictions and improve coverage. 

 After data normalization, each party ends up with two normalized 

databases; one is based on filled while one is based on original ratings. Since the 

parties collect ratings over time, they update their data; and off-line process is 

repeated per particular time. To prevent data deriving about each other data 

through such continual computations, data holders remove some of the old ratings 

and insert the newer ones. To improve the overall performance of the algorithm 

proposed by Herlocker et al. (1999), it is proposed to utilize hybrid approaches. 

For this purpose, after data normalization, the parties then construct a model off-

line, where the best similar items to each item are found by using cosine similarity 

measure. When a asks predictions from A, the parties work on the model 



 

91 
 

generated from the database (MD1) shown in Fig. 5.1a, which is called Model1. If 

a asks predictions from B, the parties work on the model constructed from the 

database (MD2) shown in Fig. 5.1b, which is called Model2. Then, predictions are 

estimated based on such model using the proposed memory-based algorithm. Two 

items i and j can be thought of as two vectors in an n dimensional item-space 

(Sarwar et al., 2001). As in Eq. (5.1), the similarity between two items (wij), can 

be similarly calculated by computing the cosine of the angle between two vectors. 

The best similar items to each item are then determined based on such similarity 

measures. After choosing such similar items to each item off-line, the model is 

constructed. It is then utilized for prediction computations. Eq. (5.1) can be 

simplified, as follows: 

 
jkikjiij vvrrw ′×′== ∑),cos( , (5.3) 

where ∑ =
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2 . 

 As seen from Eq. (5.5), to select the best similar items, normalized ratings 

are needed. To determine ikv′ and 
jkv′ values, the parties need to compute ∑ =

n
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2  
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n
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1
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where n1 and n2 show the number of users held by A and B, respectively. Similar 

equation can be written for∑ =

n

k jkv
1

2 . A and B need to compute sub-aggregates, 

∑ =

1

1

2n

k ikv  and∑ =

2

1

2n

k ikv , respectively; and exchange them. Since their databases are 

already masked or filled during data normalization, they compute such aggregates 

for all items and exchange them. They then determine ikv′ and 
jkv′ values. Due to 

filled databases, they cannot derive information about each other’s ratings. Now, 

they can estimate wij values, as follows: 

I. For similarities between those items in the left or the right halves, the   

parties can compute wij values, as follows: 
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a. A finds )()(
1

1

1 1 iAK

n

k jkikAK Avv ξξ =′′∑ =
 values for the first item and 

sends them to B, where ξ shows HE function while 
1AK  is A’s 

public key. 

b. B similarly finds )()(
1

2

1 1 iAK

n

k jkikAK Bvv ξξ =′′∑ =
values for the first 

item. 

c. B uses HE and gets )(
1 iiAK BA +ξ values. Note that there are m1 - 

1 such values. 

d. B permutes them using a permutation function fB and sends them 

back to A. After receiving them, A decrypts them and determines 

those satisfying τ, where τ is a threshold value. 

e. It then sends those values satisfying τ to B. Since B knows the fB, 

it determines which items whose similarities with the first item 

satisfy τ.  

f. B informs A. Now, A and B know the items that are among the 

best similar items to the first one. 

g. For the other items, the parties follow the similar steps. 

However, since some of the similarities are already computed, A 

sends bogus data for known similarities and uses different keys 

to encrypt the sub-aggregates. B similarly adds bogus data for 

already computed similarities. 

h. For the items in the right half, the parties follow the same steps; 

however, they switch their roles. 

II. For similarities between those items in the different halves, the parties can 

compute wij values, as follows: 

a. For the upper half, the parties perform the followings: 

i. A permutes m1 items and hides each item column vector into 

X - 1 random vectors. In other words, it creates X - 1 random 

vectors for each item vector and hides each true vector into 

them. It then sends the first group of items vectors to B. 

ii. B computes the scalar product between each received vector 

and each column vector in its database. It then finds 
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)( XBK ∑ξ  values for all X, where ∑  shows the scalar product 

of two vectors, KB represents B’s public key. 

iii. A uses OT to get the required results or sub-aggregates for 

that item. A follows the same steps for all items. 

iv. A now has ,),(),( 2111 11
K++ mBKmBK ww ξξ  )( 1mBK wξ  and 

,),(),( 2212 11
K++ mBKmBK ww ξξ  )( 2mBK wξ , …, 

,),(),( 21 1111
K++ mmBKmmBK ww ξξ  )(

1mmBK wξ . 

b. For the lower half, the parties perform the followings: 

i. A permutes m2 items. It hides each item column vector into Y 

- 1 random vectors. In other words, it creates Y - 1 random 

vectors for each item vector and hides each true vector into 

them. It then sends the first group of items vectors to B. 

ii. B computes the scalar product between each received vector 

and each column vector in its database. It then finds )( YBK ∑ξ  

values using HE. 

iii. A uses OT to get the required results or sub-aggregates for 

that item. A follows the same steps for all items. 

iv. A now has the similar values as in the upper half. A now uses 

HE to get the similarity values. 

v. It then creates random numbers 
ijAr  and finds )(

ijAB rξ . It uses 

HE to get )(
ijAijB rw +ξ  values; and sends them to B. 

vi. B decrypts them and sends them back to A. It now can find 

wij values by getting rid of random numbers. It then 

determines those satisfying τ and informs B. 

 Note that A cannot derive data if n > m, because there are n unknowns but 

m equations. It cannot find a unique solution from given equations. If n < m, then 

the parties should follow the following solution: B adds random numbers to 

disguised similarity values by )(
ijij BAij rrwA ++  generated from the range [-τ × 

c%, τ × c%], where c is a security parameter. A then correspondingly adjusts τ. 
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5.3.2. Online Process 

There are three major steps in online phase: Calculating wau values between a and 

each user u for all u = 1, 2, …, n, determining a’s neighbors, and computing paq 

using a’s neighbors’ ratings for q and the corresponding wau values. It determines 

a’s ratings mean vote ( av ). It then normalizes her ratings using deviation from 

mean approach. Finally, it sends her normalized ratings and q to the other party. 

For simplicity, it is assumed that A acts as the MP. In other words, the parties 

work on Model1. When a asks prediction from B, the parties follow the same steps 

by switching their roles, where they work on Model2. The parties answer the 

query securely, as follows: 

  Computing wau values: Note that wau values can be computed using the 

cosine measure in a secure manner. Eq. (5.1) can be simplified, as follows:  

 ∑ ′×′==
k

ukakuaau vvrrw ),cos( , (5.5) 

where k shows the commonly rated items by both a and u; and

∑ =
=′ uM

k ukukuk vvv
1

2 and ∑ =
=′ aM

k akakak vvv
1

2 . Note that Ma and Mu show the 

number of rated items by a and user u, respectively. Suppose that a asks 

prediction from A. Therefore, it acts as the MP. To find wau values, the parties 

need to exchange aggregate data. Due to hybrid distribution, ratings of q are held 

by both parties. Therefore, each party j computes ∑
∈

′×′
jkk

ukak vv values for all users u 

= 1, 2, …, n; sends the aggregate data, of those users whose ratings for q are held 

by the other party, to the other party. For example, suppose that the first n1 users’ 

ratings of q are held by B and the last n2 users’ ratings of q are held by A. In other 

words, q is one of the last m2 items in Fig. 1.1. Then, A sends the corresponding 

similarity weight values or aggregate data for the first n1 users to B, while B sends 

the corresponding similarity weight values for the last n2 users to A. They find 

similarities using cosine measure in a secure manner, as follows:  

a.  A finds akv′  values because it knows a’s ratings, and sends them to B. 

b. To determine ukv′ values, on the other hand, they need to compute 

∑ =

uM

k ukv
1

2  aggregates, where 
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where MA and MB show user u’s rated items held by A and B, 

respectively. The parties need to exchange such sub-aggregates to 

determine ukv′ values. They compute such values based on the filled 

matrices. Note that they masked their original databases using fake 

ratings during data normalization off-line. Therefore, they cannot derive 

information about each other’s data while exchanging such sub-

aggregates. Each party j then computes ∑ =

jM

k ukv
1

2 values for all u = 1, 2, 

…, n. They then exchange them and find ukv′  values. 

c. As explained before, since scalar dot product is a distributive measure, 

the parties can compute wau values using cosine measure, as follows: 

 ∑∑
∈∈

′×′+′×′=
BA kk

ukak

kk

ukakau vvvvw . (5.7) 

  Each party can act as a in multiple scenarios to derive information about 

the other party’s ratings. Therefore, we propose the following privacy-preserving 

scheme to securely calculate wau values. The parties basically insert some fake 

normalized ratings into a’s normalized ratings vector corresponding part like they 

do when normalizing their ratings. Considering the same example mentioned 

above, A fills some of a’s unrated items’ cells among the first m1 items, while B 

fills some of a’s unrated items’ cells among the last m2 items, as follows:  

a. Each party j selectively or uniformly randomly chooses αj over the range 

(1, 100]. 

b. Each party j uniformly randomly generates a random value βj over the 

range (1, αj]. 

c. They selectively or uniformly randomly choose βj percent of a’s unrated 

items’ cells from the corresponding part to fill with fake normalized 

ratings (vfn). 

d.  Each party might decide to use one of the following methods to 

determine vfn: 

i. Generate vfn values using the distribution of a’s normalized ratings. 
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ii. The parties can use default normalized ratings (vdn), which are 

based on non-personalized ratings as vdn: Use item (column), user 

(row), or local overall mean approach to determine them. They 

compute the mean normalized ratings of each item using their 

corresponding values held by that party. 

e. Each party finally fills selectively or uniformly randomly chosen a’s 

corresponding unrated items’ cells with vfn. 

  Note that the parties perform those steps whenever a asks a prediction 

because each party can act as a to derive data. However, the parties can compute 

the item mean values off-line because they already have the required data to find 

them. That improves online performance. After adding vfn into a’s vector, the 

parties can securely compute wau values in a distributed manner. Each party sends 

the required aggregate data to the other party, which holds the ratings of q. The 

party then computes the final wau values by adding aggregate data values. 

  Determining a’s neighbors: In order to determine a’s neighbors using the 

best-N approach, decreasingly sorted order of the wau values are needed. 

Therefore, the parties follow the following steps: 

a. It is assumed that A acts as the MP. The parties exchange the sub-

aggregates needed to find wau values. A and B then compute similarity 

weights between a and the n1 and n2 users, respectively. 

b. B permutes n2 similarity weights using a permutation function (fB) and 

sends them to A. 

c. A does not know the order of similarity weights due to permutation. 

However, for A, the probability of guessing the correct order of such 

weights is 1 out of n2!. A then determines the best-N users as neighbors, 

where N1 and N2 users are selected from the users held by A and B, 

respectively, where N = N1 + N2. A then sends the chosen N2 weights 

back to B who can determine which users are selected as neighbors 

because it knows fB. 

d. The parties now have a’s neighbors; however, they do not know which 

users are selected neighbors by the other party and which neighbors 



 

97 
 

already rated q. Those neighbors’ ratings who rated q are used in 

prediction computation. 

  To further improve privacy or make it more difficult for the parties to learn 

the selected neighbors, the parties can perform the following: After determining 

the best N1 and N2 users among the users they hold, respectively, A and B 

uniformly randomly choose ψA and ψB percents of those users, who are member of 

the best-N users but not rated q, as neighbors, where ψj is an integer between 0 

and dj. Since such users do not rate q, the parties insert default values for q into 

such cells and use their data for prediction computation, as well. 

  Computing paq: paq can be estimated by using the algorithm proposed by 

Herlocker et al. (1999), as follows: Since A knows av , it only needs the following 

value to compute paq: 
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where 
aqaaq Pvp += and uuqnorm vvv

uq
+= . Similarly, since Paq can be computed in 

a distributive manner, it can be written, as follows: 
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where sA and sB shows the number of a’s neighbors who rated q held by A and B, 

respectively; and na =sA + sB. It can be simply written that .BABAaq YYXXP ++=

Note that A does not know
iqnormv , wau, sB values owned by B, and which users 

selected as a’s neighbors held by B. Similarly, B does not know
iqnormv , wau, sA 

values that A holds, and which users selected as a’s neighbors held by A. After 

computing XB and YB values, B sends them to A, which calculates Paq. It then can 

compute paq by de-normalizing Paq; and sends it to a. 
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5.4. Privacy Analysis 

The principal privacy constraint states that the proposed schemes should hide 

actual ratings and rated items residing in data owners’ databases against each 

other. Likewise, auxiliary privacy constraint affirms that no exchanged 

intermediate computation value allows parties inferring information conflicts the 

principal privacy constraint. Collaborating vendors are semi-trusted ones. 

Furthermore, they can also act as a in multiple scenarios to learn the other party’s 

private data. In the proposed scheme, publicly known values are user and item 

IDs, each party’s public key, partial aggregate results like sum and count, and the 

final prediction because each party can act as a. Similarly, confidential data 

include both true rating values and rated items. 

  The proposed solution consists of two major functions, off-line model 

generation and online prediction estimation. The output of off-line phase is a 

model. The parties share the neighbors of each item without exchanging actual 

weights. On the other hand, the output of online phase, called paq, might be known 

by both parties because any party can act as an active user. Off-line phase includes 

protocols like mean, similarity, and neighborhood formation. The output of mean 

protocol is user mean ratings. Similarity weights between any two pairs of items 

are obtained after similarity protocol. Finally, the best items are determined for 

each item during neighborhood formation. Online phase contains three protocols: 

estimating user-user similarities whose output is similarity weights between a and 

each user in D, forming a’s neighborhood whose output is the best N similar users 

to a, and finally estimating paq whose output is the prediction returned to a. In the 

following, we demonstrate that the parties are not able to derive any data during 

both off-line and online phases. More specifically, it is shown that the proposed 

schemes preserve data owners’ privacy during normalization and model 

construction conducted off-line; and computing wau values, determining a’s 

neighbors, and calculating paq, which are performed online.  

  During normalization, the parties estimate user mean values by exchanging 

partial aggregate results computed on filled databases. Thus, they are not able to 

derive information about each other’s private data due to default ratings-based 

randomness and exchanged aggregate data. Even if they know the number of 
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ratings during computing uv  values, they cannot learn true rating values. 

Moreover, they do not know the vd values, because such ratings are estimated 

from data residing in each party’s database. However, the parties can guess the 

rated or unrated items in each other’s databases because they exchange the 

number of ratings involved in mean or normalization protocol. For example, for 

the party A, guessing the correct γi is 1 out of 100. After guessing it, the 

probability of guessing the correct δB values is 1 out of γB. Since A knows nB, it 

can guess the number of filled unrated items’ cells with probability 1 out of (100 

× γB). Then, it can guess the rated items by a single user with the probability of 1 

out of (100 × γB × B

r

m

BC , where Br represents the number of rated items among the 

items B owns by a user and mB shows the number of items held by B. The 

probability for B can be determined similarly. During similarity computations and 

neighborhood formations, privacy is achieved via permutation, randomization, 

HE, and OT protocol. The probability of guessing the correct value from 

perturbed ones is 1 out of (m - 1)!. Similarly, after permutation, column vectors 

are hidden into random vectors. The probability of guessing the true column 

vector from disguised ones is 1 out of X (or Y). The value of X or Y can be 

determined based on how much privacy and off-line performance the parties want. 

Due to HE and OT protocol, which happen to be secure (Even et al., 1985; Naor 

and Pinkas, 1999), the parties cannot derive information about each other data. At 

the end, the parties share the best similar items to each item without revealing 

similarity weights. 

  In online computations, the parties can act as a in multiple scenarios to 

learn data residing in the other party’s database. In such attacks, the party acting 

as an a changes only one rating in its ratings vector to learn the true votes and 

rated and/or unrated items in the other party’s database during wau computations. 

However, to defend themselves against such types of attacks, the parties perturb 

a’s ratings vector, as explained previously. Since a’s vector is masked like the 

parties disguise their databases using default ratings, privacy analysis can be 

similarly done. During similarity estimation, the parties exchange partial 

aggregates computed based on filled data. Without knowing the number of ratings 

involved in such calculations, it is not feasible to determine true ratings from such 
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aggregates. Proposed neighborhood formation protocol for a is also secure. The 

parties are not able to derive data while determining a’s neighbors, because they 

do not exchange anything. First of all, they do not know how many and which 

users are selected by the other party as a’s neighbors. Second, they do not know 

which neighbors have already rated q, because only those neighbors’ data who 

already rated q are used in prediction estimation. Due to the similar reasons, 

proposed paq estimation protocol also does not violate main confidentiality 

constraint. Since one of the parties sends aggregate values to the MP during Paq 

computation; and the MP does not know the values involved in Paq computation 

and which users selected as neighbors held by the other party, it cannot derive 

information about the other party’s data while computing Paq. 

5.5. Supplementary Costs Analysis 

The proposed schemes consist of both off-line and online phases. Unlike online 

costs, off-line costs are not critical for overall performance. Due to privacy 

measures, additional costs are inevitable. However, such extra online costs should 

be small enough to provide predictions efficiently. In the following, the proposed 

schemes are analyzed in terms of supplementary storage, computation, and 

communication (number of communications and amount of transmitted data) 

costs. 

 Off-line phase consists of two major tasks: data normalization and model 

construction. In data normalization, the parties fill their sets with fake ratings and 

estimates user mean votes. Since fake ratings are non-personalized ratings, it takes 

constant time to determine them for each item or user. Thus, due to determining 

fake ratings, computation costs are in the order of O(m) or O(n) for item or user 

default ratings, respectively. Other computations like randomly selecting some 

parameters, empty cells, calculating sum and count values, and filling empty cells 

for normalization are negligible. In off-line process, the parties end up with two 

matrices. Due to them, supplementary storage costs are in the order of O(nm). Due 

to fake or default ratings, there is no additional storage cost, because they can be 

derived. However, each party can determine vf values off-line and saves them to 

improve online performance. In this case, due to vf values, additional storage costs 

are in the order of O(m) or O(n) for item or user default ratings, respectively. To 
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normalize data, the parties communicate with each other. For each matrix, number 

of communications is two only. Thus, total number of communications is four 

only for normalization.  

 Model construction includes estimating similarities between items and 

determining those items satisfying a pre-determined threshold. Given an n × m 

matrix, without privacy concerns, computation costs for calculating similarities 

between m items are in the order of O(m2
n). Those items satisfying the threshold 

are selected as the best similar items. With privacy concerns, the proposed model 

construction scheme includes HE and OT protocol. Other than encryption, 

decryption, HE, and OT, computations like permutation, creating random vectors, 

addition, and so on are negligible. Additional off-line computation costs during 

model creation due to privacy concerns are, as follows: The amounts of 

encryptions and decryptions are in the order of O(m2). Similarly, number of HEs 

is in the order of O(m2). To determine the running times of cryptographic 

algorithms, benchmarks for the CRYPTO++ toolkit from 

http://www.cryptopp.com/ can be used (CRYPTO++, 2009). An experiment is 

performed for testing the computational time spent on estimating the scalar 

product of two vectors using HE. Two randomly selected vectors with varying 

length from MovieLens Million (MLM) data set are used, which is described in 

the following. The vector length is varied from 1 to 1,000 and the corresponding 

computation time for each length value is displayed in Fig. 5.2. As expected, with 

increasing vector length, computation time augments. The computation times are 

not shown when there is no encryption, because even if the vector lengths are 

1,000, the time to find their scalar product is less than 1 microsecond. As seen 

from the figure, encryption significantly affects the computation times needed to 

estimate scalar product of two vectors. Since HE is utilized off-line, such costs are 

not that critical for the overall performance. 
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Figure 5.2. Effects of Encryption on Computation Time Spent on Scalar Product 

  The parties utilize m1 + m2 number of OT. Thus, number of OT employed 

is in the order of O(m). For each OT, one of the parties (the sender) performs 2(X 

+ Y) double exponentiations, while the other party (the receiver) conducts six 

exponentiations (Naor and Pinkas, 1999). An efficient OT protocol proposed by 

Naor and Pinkas (1999) could be achieved with polylogarithmic (in n) 

communication complexity. During model construction, number of 

communications between parties is 5(m+1) except communications due to OT.  

  In a prediction process, a sends a message containing her ratings and a 

query to the CF system, which returns a result. Thus, number of communications 

is two only. In the proposed scheme, since the parties communicate with each 

other online, the number of communications is six in total. Due to proposed 

schemes, additional amounts of data to be transferred are, as follows: First, a’s 

ratings are sent to both parties rather than one of them. Second, on average, A and 

B exchange n/2 aggregate values. Finally, one of the parties sends two aggregate 

values to the MP. 

  It is expected that privacy concerns cause extra computation costs. 

Additional costs due to selection of αj and βj, determining a’s unrated items, and 

filling her vector with vfn values online can be considered negligible. However, 

when computing wau values, number of multiplications increases due to inserted vf 

values in each company’s database and vfn  values into a’s vector. Due to inserted 
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vfn values, on average, total number of additional multiplications is (1/2) × αj/2× 

(1/100) × am′ /2 × dj, where dj  shows density rate of the database held by 

company j and am′  represents number of a’s unrated items. Similarly, due to 

inserted vf values, on average, total number of additional multiplications is (γi/2) × 

(1/100) × um′ × dj, where um′  represents number of unrated items in D. Note that dj 

is very low; and αj and γi values are constants less than 100. Note also that 

proposed schemes do not cause any auxiliary computation costs while 

determining a’s neighbors and paq computation. Thus, extra online computation 

costs due to privacy concerns are acceptable; and still make it possible to generate 

predictions efficiently.  

5.6. Prediction Quality Analysis: Experiments 

After examining the proposed schemes in terms of privacy and supplementary 

costs, now the proposed schemes are going to be evaluated in terms of accuracy 

and online performance, as well. To achieve such goal, a variety of experiments 

are performed using two well-known real data sets. It is shown that the proposed 

schemes are secure and theoretically does not introduce significant additional 

costs. There is also need for demonstrating that the proposed schemes are able to 

offer accurate predictions efficiently while privacy measures are in place. 

 When data holders own inadequate data, they are limited to generate 

recommendations for some items. If they agree to collaborate to offer predictions 

on their distributed data when privacy-preserving measures are introduced, they 

are more likely to provide referrals to more items. Therefore, experiments are 

performed to demonstrate how coverage changes through collaboration with 

varying n values. It is also hypothesized that the parties are able to generate more 

truthful recommendations if they decide to collaborate. To verify this, 

experiments are conducted based on split data only and integrated data. It is also 

planned to show how collaboration between two e-commerce sites affects the 

quality of the CF services. Hybrid approaches enhance online performance 

because some works are done off-line. A hybrid approach is utilized, where the 

best similar items to each item are selected. Since a smaller number of items are 

involved in prediction computations, online performance is expected to improve. 
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Moreover, selecting some of the items for generating predictions affects accuracy, 

as well. Trials are conducted to demonstrate the effects of hybrid approach on 

online performance and accuracy.  

  In order to add randomness into data held by each party and active users’ 

data, the parties might use different non-personalized values. In one hand, density 

of the data increases due to filled default values; that might make accuracy better. 

On the other hand, such values might not represent users’ true preferences; that 

may make accuracy worse. To understand the effects of various default values and 

determine the best choice, which gives the most accurate results, a variety of trials 

are run. As explained previously, privacy and accuracy are two clashing goals. 

Due to privacy protection measures applied by the vendors, accuracy is expected 

to be worse. Along the proposal, some privacy parameters like γj and αj are used. 

They are among the factors that might have an effect on accuracy. To show how 

the quality of the predictions changes with varying γj and αj values, different 

experiments are performed. Finally, after determining the optimum values of each 

parameter like N, γj, and αj, a final set of experiments are performed to evaluate 

the overall performance of the proposed schemes.   

 Various experiments are performed using well-known real data sets Jester 

and MLM. The results on these data sets can be generalized. Jester (Gupta et al., 

1999) is a web-based joke recommendation system. MLM was collected by 

GroupLens at the University of Minnesota (GroupLens). MLM contains discrete 

votes while Jester has continuous ratings. The ratings range from -10 to 10 and 1 

to 5 in Jester and MLM, respectively. Although Jester has 100 jokes, MLM has 

3,592 movies. On the other hand, MLM and Jester have 7,463 and 73,421 users, 

respectively. In Jester, almost 44% of the ratings are available. Each user in 

MLM, on the other hand, has rated at least 20 movies. Jester is much denser than 

MLM. Two well-known accuracy metrics, MAE and NMAE, are utilized as in 

Chapter 2 while coverage is also determined using Eq. (2.13). And finally, in 

order to show how online performance varies with hybrid approach, T is defined, 

in seconds, as online time required for generating predictions.   

 Given the whole data sets, it is first determined those users who have rated 

more than 100 and 60 items from MLM and Jester, respectively. Such selected 
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users are then randomly divided into training and test sets. Training and test users 

are randomly chosen from training and test sets, respectively. Number of users 

and/or items selected for training and testing for each set of experiments might be 

diverse because different experiments might need different requirements. After 

selecting test users, five rated items are randomly selected as test items from each 

test user ratings vector. Such rated items’ ratings are withheld, replaced their 

entries with null; and predicted their ratings using the proposed privacy-

preserving scheme. Due to randomness, each experiment is run for 100 times to 

reliably catch the effects of uncertainty. The recommendations are compared 

provided with privacy concerns with the true user-specified ratings. After 

calculating MAE, NMAE, and T values, overall averages are displayed. 

 The details and the outcomes of the experiments performed based on two 

real data sets are explained in the following. 

  Experiment 1-Effects of Collaboration on Coverage and Accuracy: 

Collaboration between two e-commerce sites having limited amount of data 

definitely affects coverage. Insufficient data might result very low coverage. With 

increasing quantity of data, coverage is expected to improve. Therefore, at first, 

experiments are conducted to confirm the effects of partnership on coverage and 

to demonstrate how coverage changes with varying amount of data. For these 

experiments, users are uniformly randomly selected from given data sets. Both 

data sets are utilized while varying n from 100 to 2,000, where such users are 

randomly chosen from given data sets. It is assumed that predictions can be 

generated if qt and rc are at least one and two, respectively, where qt shows the 

number of users who have already rated q; and rc represents the number of 

commonly rated items between a and the user who has rated q. For MLM, the 

outcomes are displayed in Fig. 5.3. Since Jester is denser than MLM, when n is 10 

or bigger, coverage for integrated data is always 100%. However, when n is 10 

and 20, coverage for split data are 89% and 95%, respectively. Although Jester is 

dense, when n is small (less than or equal to 20), the parties are not able to offer 

recommendations for all items using their split data only. Through collaboration, 

however, they can generate predictions for all items. 
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  The experiment results confirm premise that coverage improves when 

vendors offer referrals on CPD. Since MLM is sparse data set, as expected, 

coverage significantly recovers through collaboration. Also note that it develops 

with increasing n values. Due to collaboration and increasing n values, amount of 

ratings available for CF increases; that makes coverage better. Therefore, CF on 

CPD helps online vendors provide recommendations for more items, even if they 

have dense data sets. 

 

Figure 5.3. Coverage with Varying n Values (MLM) 

 To give an idea about how integrating split data affects the quality of the 

referrals, experiments are performed while varying amount of data that each party 

holds. Such experiments are set up using both data sets, where n varying from 100 

to 1,000. Note that data are split between two parties, as shown in Fig. 1.1. 500 

users are used for testing while computing predictions for five rated items for each 

test user. Predictions are first found using the data held by each party only. After 

calculating MAE and NMAE values for each party, then such values are averaged. 

Split data is finally integrated and predictions are computed for the same test set. 

After computing overall outcomes, the results are computed in order to show how 

collaboration between vendors affects accuracy. Since MAE and NMAE values 

show similar trends, MAEs are shown in Fig. 5.4 and 5.5 for both data sets.  
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Figure 5.4. MAEs with Varying n Values (MLM) 

 

Figure 5.5. MAEs with Varying n Values (Jester) 

 As seen from Fig. 5.4 and 5.5, the quality of the predictions improves with 

collaboration between parties for both data sets. For MLM data set, which is 

sparse, MAE values significantly enhances when data owners integrate their split 

data. However, for Jester, such improvements are very small. This phenomenon 

can be explained the density of Jester. Since it is very dense compared to MLM, 

each party is able to offer accurate and dependable recommendations using their 

own data. As expected, with increasing n values, accuracy improves, as well. 

When there are 100 users, MAE values are 0.8139 and 0.7659 for split and 

integrated data, respectively for MLM. Thus, accuracy improves by 4.80%. For 

the same cases, NMAE values are 0.2034 and 0.1914, respectively. Similarly, 
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MAE enhances from 0.7684 to 0.7290 through collaboration for MLM when n is 

1,000. For Jester, on the other hand, improvements are less than 1% due to data 

integration. When data collected for CF purposes are sparse, combining CPD 

between two parties definitely makes accuracy better. t-test analysis is performed 

with significance level being 0.05 to determine whether the improvements due to 

collaboration are statistically significant or not. For MLM with n being 200, the 

value of t is 27.06, which is greater than the value of t for 0.05 in the t-table. 

Although the improvements are small for Jester compared to MLM, the 

enhancements are still statistically significant. Similarly, for Jester with n being 

100, the value of t is 2.198, which is still greater than the value of t for 0.05 in the 

t-table. 

  Experiment 2-Effects of Hybrid Approach: Trials are performed to 

demonstrate the effects of hybrid method on both performance and accuracy. For 

these experiments, n is fixed and set it at 500 while varying N from 3,592 to 125 

and from 100 to 25 for MLM and Jester, respectively. Again, there are 500 test 

users and five rated items for each active user as test items. In other words, 2,500 

recommendations are generated. First of all, it is demonstrated that how the 

quality of the recommendations and online performance change by applying the 

hybrid approach for Jester data set. Although MAE and NMAE values are 

computed, MAE and T values with varying N values for Jester data set 

demonstrated in Fig. 5.6 and 5.7, respectively. Similarly, trials are conducted to 

show how accuracy and performance vary with different N values for MLM. 

However, since MAE and NMAE show similar tendencies, NMAE are only 

displayed together with T values for MLM in Fig. 5.8 and 5.9. 

  MAE values slightly become worse with decreasing N values for Jester, as 

seen from Fig. 5.6. However, such accuracy losses are insignificant because when 

N values are 100 and 25, corresponding MAE values are 3.4501 and 3.4525, 

respectively. The loss in MAE values due to varying N from 100 to 25 is 0.0024 

only. Unlike MAE, T values improve with decreasing N values according to Fig. 

5.7, as expected. In order to generate 2,500 predictions using Jester, 4.42 seconds 

are spent online when N is 100. On the other hand, when N is 25, 3.85 seconds are 

needed to offer the same number of recommendations. If N is varied from 100 to 
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50, performance gain is 0.33 seconds while accuracy loss is 0.0019 only. For 

Jester, 50 can be determined as the optimum value of N based on accuracy and 

online performance. Without sacrificing on accuracy, online performance 

improves by using the best N items for prediction generation. Since there are 100 

jokes only in Jester, improvements due to selecting the best items are limited. 

 

Figure 5.6. Accuracy with Varying N Values (Jester) 

 

 

Figure 5.7. Performance with Varying N Values (Jester) 

  As seen from Fig. 5.8, NMAE values become worse with decreasing N 

values. Although NMAE values significantly degrade while varying N from 1,000 

to 500 and so on, accuracy almost becomes stable while varying N from 3,592 to 

1,000. The same quality can be achieved using the best 1,000 items instead of 

using the entire items’ ratings. 
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Figure 5.8. Accuracy with Varying N Values (MLM) 

 

Figure 5.9. Performance with Varying N Values (MLM) 

  As expected, online performance improves with decreasing N values 

because amount of data involved in recommendation computations decreases 

according to Fig. 5.9. Since T enhances significantly when N is 1,000 compared to 

N being 3,592 and almost the same accuracy is achieved, 1,000 can be considered 

as the optimum value of N for MLM. For values of N less than 1,000, accuracy 

losses are expected due to the sparsity of MLM. It becomes a challenge to find 

enough commonly rated cells with decreasing N values. That leads to inaccurate 

results. 

  As seen from Fig. 5.6, the outcomes are very close to each other for 

varying N values. This phenomenon can be explained the density and the small 

number of items in Jester. As seen from Fig. 5.8, the outcomes become worse 
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with decreasing N values for MLM. Although NMAE values significantly degrade 

while varying N from 1,000 to 500 and so on, accuracy almost becomes stable 

while varying N from 3,592 to 1,000. The same quality can be achieved using the 

best 1,000 items instead of using the entire items’ ratings. As expected, online 

performance improves with decreasing N values because amount of data involved 

in recommendation computations decreases. Since T enhances significantly when 

N is 1,000 compared to N being 3,592 and almost the same accuracy is achieved, 

1,000 can be considered as the optimum value of N for MLM. For values of N less 

than 1,000, accuracy losses are expected due to the sparsity of MLM. It becomes a 

challenge to find enough commonly rated cells with decreasing N values. That 

leads to inaccurate results. 

  Experiment 3-Effects of Different Non-personalized Values: In order to 

generate fake values, the scheme proposes to use various methods to determine 

non-personalized votes, which are utilized to fill sparse data sets and a’s ratings 

vector. Experiments are first performed for evaluating the effects of default values 

when they are inserted into train sets. Similar tests are applied to give an idea 

about how the results of the proposed scheme changes when a’s ratings vector is 

filled with different non-personalized values. Various trials are conducted using 

both data sets. For both data sets, there are 500 users for training and testing, 

respectively, where γj and αj values are set to 50. Since βj and δj values and 

unrated items’ cells are chosen randomly, such experiments are run for 100 times. 

NMAE values for MLM and Jester are displayed with various methods of 

determining non-personalized ratings in Fig. 5.10 and 5.11, respectively. 

 

Figure 5.10. NMAE vs. Methods of Determining Non-personalized Values (Jester) 
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Figure 5.11. NMAE vs. Methods of Determining Non-personalized Values (MLM) 

  As seen from Fig. 5.10, although all four methods give very similar results 

for Jester, column mean approach achieves the best results for both disguising 

train and a’s data. Without any disguising, NMAE is 0.1727 for Jester for 500 

train users. When train data is disguised with non-personalized ratings generated 

from using column mean approach, NMAE is about 0.1732. Since Jester is a 

dense set, due to train data disguising with non-personalized votes, accuracy 

losses can be considered insignificant. Similarly, when disguising active user’s 

data with non-personalized normalized ratings generated from using column mean 

approach, NMAE is about 0.1725. In this case, accuracy slightly improves. 

However, such improvement is trivial. 

  For MLM, utilizing users’ data distribution to produce non-personalized 

ratings to disguise train data achieves the best results compared to other methods 

as seen from Fig. 5.11. Without any data disguising, NMAE value is 0.1831 for 

MLM for 500 train users. When train data is disguised with non-personalized 

ratings generated from using data distribution approach, NMAE is about 0.1874. 

Although accuracy becomes worse with data perturbation, losses in NMAE values 

due to data masking are very small. Local overall average method gives the best 

results for masking active user’s data for MLM. When a’s data is perturbed with 

non-personalized values generated from using local overall average method, 

NMAE is about 0.1932. Since MLM is a sparse data set compared to Jester, 

accuracy losses due to data masking are larger. However, such losses are very 

small and still make it possible to offer accurate predictions. 
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  Experiment 4-Effects of Varying γj and αj Values: The parties fill some 

of the blank cells in their databases based on γj values. In order to show how this 

affects the results, experiments are performed using both data sets while varying γj 

values. There are 500 users for training and testing, respectively, where the 

method that gives the best results to generate non-personalized values to fill 

unrated items’ cells is selected. As determined in the previous experiments, 

generating such values based on data distribution and column mean methods for 

masking train users’ data for MLM and Jester, respectively achieve the best 

results. Therefore, they are used for data masking. Trials are run for 100 times. 

Note that the parties hide active users’ data by filling some of their empty cells 

with default values based on αj values. After assessing how γj values affect the 

outcomes, experiments are performed to evaluate proposed schemes with varying 

αj values because such αj is another factor that might affect accuracy. Experiments 

are conducted using both data sets while varying αj values. There are also 500 

users as train and test users, respectively, where column mean and local overall 

average methods are used to determine default values for filling some of a’s 

unrated items’ cells for Jester and MLM, respectively because they achieve better 

results. Experiments are run for 100 times. After computing overall averages, the 

outcomes displayed for MLM and Jester in Fig. 5.12 and 5.13, respectively. 

 

Figure 5.12. NMAE with Varying γ and α Values (MLM) 
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Figure 5.13. MAE with Varying γ and α Values (Jester) 

  In Fig. 5.12, it is shown how accuracy changes with varying γ and α values 

for MLM data set. When train users’ data are perturbed, NMAE values slightly 

become worse with increasing γ values from 3.125 to 100. The best results are 

obtained when γ is 3.125. Although preciseness becomes worse due to data 

masking, accuracy losses are small, as seen from Fig. 5.12. In case of perturbing 

active users’ data, accuracy slightly enhances with increasing α values. Unlike 

masking train users’ data, α being 100 gives the best results. Unlike MLM, the 

results are very similar all γ and α values for Jester, as seen from Fig. 5.13. This 

phenomenon can be explained due the density of Jester. In order to show the 

minor differences due to varying γ and α values, MAE values are displayed for 

Jester. Although the outcomes are very similar, the best results are obtained when 

γ is 12.5 and α is 3.125. For both data sets, the results are very promising for all 

values of γ and α. The parties can decide their values based on how much 

accuracy and privacy they want.  

  Experiment 5-Overall Performance of the Proposed Schemes: After 

evaluating the effects of various factors separately, finally trials are conducted to 

assess the overall performance of the proposed schemes. In other words, it is 

intended to give an idea about the joint effects of privacy and accuracy parameters 

with varying n values. The obtained results are also compared with the ones based 

on split and integrated data without privacy concerns. Both data sets are used, 

where 500 users are utilized as test users. The values of γj and αj are set at their 
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optimum values that determined in the previous experiments. Those methods are 

used to determine non-personalized values that give the best results to mask 

private data. N is fixed at its optimum values. Such experiments are run for 100 

times. After computing overall averages, MAE values are displayed for both data 

sets in Fig. 5.14 and 5.15. 

 With increasing n values, the quality of recommendations improves for 

MLM data set. Although MAE values for n values less than 200 are worse when 

privacy is protected, PPCF on CPD schemes achieve better results for larger n 

values. As seen from Fig. 5.14, the results for split data are the worst due to the 

insufficient amount of ratings. On the contrary, the outcomes for integrated data 

are the best, as expected. Due to collaboration, accuracy is expected to become 

better. However, if data holders offer predictions on their integrated data while 

preserving their privacy, preciseness becomes worse. For n values larger than or 

equal to 200, the parties are able to offer predictions with decent accuracy using 

the proposed PPCF on CPD schemes when they own sparse data. Those 

companies having insufficient data are able to provide more accurate results when 

they collaborate while preserving their privacy. The improvements are statistically 

significant because for n being 500, the value of t is 15.46, which is still greater 

than the value of t for 0.01 in the t-table.   

 

Figure 5.14. Overall Performance of PPCF on CPD with Varying n Values (MLM) 
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Figure 5.15. Overall Performance of PPCF on CPD with Varying n Values (Jester) 

  According to Fig. 5.15, the similar results are obtained for Jester, as well. 

MAE values become better with increasing n values for all cases for Jester data 

set. Improvements in accuracy become stable after 500 users. As shown in Fig. 

5.15, collaboration between parties improves accuracy. On the other hand, due to 

privacy protection measures, the quality of the predictions slightly becomes 

worse. Compared to the results on split data only, the quality of the referrals on 

integrated data without privacy concerns and the outcomes of proposed privacy-

preserving scheme are better. Therefore, the parties are able to offer more accurate 

referrals based on CPD while preserving their privacy than predictions on split 

data alone. To determine how significant such accuracy gains, t-test is performed. 

When n is 100, the value of t is 1.94, which is still greater than the value of t for 

0.1 in the t-table.  

 The goal of this study is to improve the quality of the recommendations 

generated based on a hybrid scheme by using more ratings via distributed 

configuration while expecting smaller losses in accuracy due to privacy 

preservation. This study mainly focuses on the relative accuracy rather than the 

absolute accuracy. Thus, the experimental results should be examined with the 

light of this fact. Experimental results show that proposed privacy-preserving 

scheme has achieved desired goal.  
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  In the literature, there are various studies comparing different CF 

approaches. Some examples of such works are, as follows: Zhang et al. (2008) 

compare user-based, item-based, and hybrid CF algorithms experimentally. In 

their experimental configuration, they obtain MAEs of 0.7980, 0.7896, and 0.7791 

for user-based, item-based, and hybrid techniques, respectively. According to 

netflixprize.com, the winner algorithm has root mean square error (RMSE) of 

0.8567. The scheme is the improved version of algorithm, combined from the 

matrix factorization and neighborhood methods, proposed by Koren (2008). 

Goldberg et al. (2001) find NMAE of 0.187 for Jester. In the proposed scheme, 

for example, when there are 200 users in MLM, the MAE for split data is about 

0.7943, while it is 0.7455 for combined data. For the same case, if privacy 

concerns are taken into account, the MAE is about 0.7760, as seen from Fig. 5.14. 

Similarly, for proposed scheme the obtained RMSEs are 1.0120, 0.9421, and 

0.9627 for split data, integrated data, and privacy-preserving scheme, respectively. 

As seen from Fig. 5.10, for Jester, NMAE is about 0.173, while proposed 

scheme’s NMAEs of about 0.193 and 0.187 for masking a’s data and train data, 

respectively for MLM. Thus, this scheme is able to offer accurate predictions with 

privacy. Generally speaking, as seen from given t-test results, accuracy gains due 

to collaboration are significant. Although privacy concerns cause accuracy losses, 

accuracy gains due to collaboration outweigh such losses. Thus, the parties are 

able to produce more accurate predictions on integrated data without deeply 

jeopardizing their privacy than the predictions provided on split data only.   

5.7. Chapter Summary 

Distributed data-based computations while protecting data owners’ privacy are 

increasingly becoming popular. Some privacy-preserving schemes are presented 

to provide predictions with decent accuracy on CPD between two companies. At 

first, one of the hybrid data configurations is introduced between two online 

vendors, which is the combination of vertical and horizontal partitioning. Similar 

partitioning called arbitrary partitioning is defined by Jagannathan and Wright 

(2005). Such partitioning can be considered as a combination of numerous 

horizontal and vertical partitioning models. Proposed data partitioning model is 

simpler and special version of arbitrary partitioning, where CPD consists of just a 
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vertical partitioning of only two different horizontal partitioned databases, or vice 

versa. The proposed methods are scrutinized in terms of privacy, too. Such 

schemes prevent the data holders from deriving information about each other’s 

databases. The vendors are not able to learn the exact ratings and the rated items 

held by each other. Due to privacy protection measures, additional costs are 

inevitable. Although off-line costs are not that critical for the success of CF 

systems, the proposed schemes are analyzed in terms of both supplementary off-

line and online costs. Such methods cause negligible extra costs; that makes them 

offer predictions efficiently. To evaluate the proposed schemes in terms of 

accuracy, a variety of experiments are performed using well-known real data sets. 

Obtained results show that they still make it possible to produce precise 

predictions. The results also confirm that integrating data improves both accuracy 

and coverage. Through experimental results, the optimum values of privacy and 

accuracy parameters are determined. Their effects on accuracy are demonstrated. 

The parties can determine the values of such parameters based on how much 

accuracy and privacy they want. Each party can also variably mask their data. To 

sum up, the proposed schemes provide accurate predictions efficiently without 

greatly violating data owners’ privacy.  
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6. CONCLUSIONS AND FUTURE WORK 

In this dissertation, a range of privacy-preserving recommender solutions are 

proposed in novel problem framework caring about arbitrarily partitioned data in 

the context of P3CF. In this chapter, results attained are summarized to conclude 

overall text and future directions are highlighted to draw the attentions of PPDM 

researchers. 

6.1. Results  

In general perspective, this study investigates the problem of “how two parties 

provide CF services on arbitrarily partitioned data between them with 

guaranteeing corporate privacy” and some solutions are presented to respond the 

research problems listed in Section 1.5. To be satisfactory in terms of efficacy, the 

proposed solutions should provide pleasing accuracy and coverage, be efficient 

especially in terms of online response time, and ensure corporate privacy. First of 

all, it is empirically demonstrated that all the proposed schemes promises 

accuracy improvements due to contribution of collaborating parties’ data even if 

there are accuracy losses arisen from privacy-preserving process. Accuracy 

improvements due to collaboration outweigh the losses due to privacy concerns. 

Such improvements are justified as statistically significant via t-test analysis, too. 

Additionally, the proposed schemes contribute to the coverage of the 

recommender systems. Secondly, the proposed schemes are theoretically analyzed 

in terms of supplementary off-line and online costs. Off-line costs are not that 

critical for the overall success of the CF systems and the off-line tasks can be 

done in decent time. The schemes bring out conceivable online overheads due to 

privacy concerns. About efficiency of off-line process, the proposed computations 

can be performed in plausible time. Finally, the proposed schemes are analyzed in 

terms of privacy and it is shown that the parties can offer predictions on arbitrarily 

partitioned data without jeopardizing corporate privacy. 

 First of all, this dissertation introduces the first P3CF solutions on APD in 

state-of-the-art with three original research works. Using offered solution in the 

first of such works (Yakut and Polat, 2012a), two e-commerce parties can provide 

item-based CF services on APD with corporate privacy. In the second work, 
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estimating trust-based referrals on APD is also investigated in the context of P3CF 

and a solution is proposed in this variant. The third study focuses on how to 

produce referrals on arbitrarily partitioned binary data and NBC-based solution is 

offered in this variant. As a specific case of APD, CPD is introduced and a 

solution is offered to produce referrals using hybrid CF algorithm on CPD (Yakut 

and Polat, 2012b). Certainly, this is the first P3CF solution on CPD. 

 To compare the proposed item- and trust-based schemes in terms of the 

prediction quality, experimental findings with respect to varying number of users 

on MLP are displayed in Table 6.1. Note that the values corresponding to the 

proposed trust-based CF method is taken for βj = 20. According to Table 6.1, with 

respect to increasing number of users, accuracy gain increases for the proposed 

item-based algorithm while such gain decreases for the trust-based method. 

Considering accuracy values, 

• For n being 125, 250 and 500; trust-based method outperforms item-based 

scheme while their accuracy values are the closest for n = 500. 

• When n = 943, item-based scheme gives better prediction quality than trust-

based one. 

 According to above observations, it can be said that the trust-based proposal 

can be preferred when there are few users while the item-based scheme promotes 

the prediction quality in case of availability of so many user rating profiles.  

Table 6.1. Prediction Quality on Numerical APD (MLP) 

 

 To evaluate accuracy yields with respect to APD and CPD, empirical 

outcomes obtained for item-based CF on APD and hybrid CF on CPD with 

respect to varying number of users on MLM. The outcomes are displayed in Table 

6.2. According to Table 6.2., gain tendencies are generally similar and accuracy 

n  125 250 500 943 

Item-based 

CF 

 

Split 0.8013 0.7901 0.7769 0.762 

Proposed 0.8030 0.7766 0.7564 0.738 

Gain (%) -2.12 1.71 2.64 3.15 

Trust-based 

CF 

 

Split 0.8196 0.7935 0.7730 0.7631 

Proposed 0.7757 0.7596 0.7516 0.7470 

Gain (%) 5.36 4.27 2.78 2.12 
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improves with increasing number of users. For the smallest n values, the proposed 

schemes fail to promote accuracy even it is valid for item-based CF for n = 250. 

For n being 250 or 500, CPD-based proposal outperforms APD-based one in 

terms of accuracy. However, the best accuracy results are observed via the item-

based CF on APD for n = 1,000.  

Table 6.2. Prediction Quality: APD vs. CPD (MLM) 

n 

Item-based CF on APD Hybrid CF on CPD 

125 250 500 1,000 100 200 500 1,000 

Split 0.7919 0.7798 0.7625 0.7464 0.8139 0.7943 0.7765 0.7685 

Proposed 0.7946 0.7883 0.7507 0.7221 0.8194 0.7761 0.7479 0.7421 

Gain (%) -0.34 -1.09 1.55 3.26 -0.67 2.30 3.68 3.43 

 

6.2. Future Work 

Via this study, arbitrarily partitioned data is placed in P3CF literature. As future 

research directions in this variant, the following issues can be considered. Data 

might be arbitrarily distributed among more than two parties. It should be studied 

how to offer accurate predictions efficiently when ratings are arbitrarily 

distributed among multiple parties while preserving their privacy. To offer a 

solution for such e-commerce companies, the proposed schemes can be extended 

to multi-party schemes. However, some modifications are needed; and such 

modifications and their consequences can be investigated as a future work. 

 One important issue that should be addressed is data overlapping. Along 

the study, it is assumed that ratings are shared in mutually exclusive manner. Even 

with this assumption, the focused problems are still challenging because the 

solutions should achieve privacy, accuracy, and performance at the same time. 

However, in real life scenarios, overlapping ratings are inevitable. It is a proper 

research task to scrutinize how to handle such overlapping and to show 

performance changes with different amounts of overlapping data. The effects of 

overlapping ratings on secrecy and accuracy should also be examined. 

Furthermore, new approaches can be invented for data masking so that the parties 

can avoid having cells with double ratings. In order to improve the overall 

performance, some aggregate values can be disclosed. It should be scrutinized 
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whether this can be possible or not; and if so, how this affects the overall 

performance. 

 The parties are assumed as semi-honest in the defined problem framework, 

but in the PPDM literature there are works operating with malicious participants. 

Semi-honest is quite realistic in many situations while malicious model-based 

studies concern preventing any malicious behavior done by participants of process 

by utilizing more expensive cryptographic techniques (Kantarcioglu and Kardes, 

2008). It is in place future work to investigate P3CF on arbitrarily partitioned data 

in malicious model settings. 

 It is still an interesting topic to investigate how to provide predictions using 

pure model- or memory-based CF algorithms based on CPD with corporate 

privacy. It can be studied how to apply methods and protocols proposed in this 

study to such algorithms. Moreover, a study can be conducted looking for whether 

it is possible to offer referrals based on binary ratings, which are cross partitioned 

between two parties while preserving corporate privacy. Furthermore, there are 

some CF proposals (Mild and Reutterer, 2001; Lee et al., 2005) on market basket 

data consisting of transacted items only. It can be congruous research direction to 

investigate P3CF on arbitrarily partitioned market basket data. 

 Some future works can be also revealed about topics sideward to studies in 

this dissertation. It is assumed that user and item IDs are publicly known. More 

studies can be conducted to improve the proposed schemes in such a way that 

such IDs are protected, as well. It can also be studied how to tackle the 

cumbersome of encryptions performed during online phase. In order to enhance 

the online efficiency of the proposed schemes, parallel computing-based, 

application-oriented hardware, and some other techniques can be applied to these 

schemes. Such proposals and implementations can constitute a range of future 

studies, too.  

Finally, considered partitioning configurations with additional probable 

partitioning configurations can be applied to realize various data mining tasks. For 

example, although privacy-preserving schemes to achieve clustering, back-

propagation neural network learning, and decision tree tasks based on APD have 

been proposed (Jagannathan and Wright, 2005; Han and Ng, 2007; Prasad and 



 

123 
 

Rangan, 2007; Bansal et al., 2010), how to perform classification, association rule 

mining, and regression analysis on APD while preserving confidentiality is still an 

open question. For example, in this study, NBC-based CF on arbitrarily 

partitioned binary data is investigated; similarly, NBC can be performed on 

classification tasks using categorical data. One more research topic can be “how 

classification tasks can be realized on arbitrarily partitioned categorical data using 

naïve Bayesian classifier.” 
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