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ABSTRACT

3-DIMENSIONAL MOVING LOAD PROBLEMS FOR ELASTIC AND COATED

ELASTIC HALF SPACES

Onur ŞAHİN

Department of Mathematics

Anadolu University, Graduate School of Science, May, 2016

Supervisor: Dr. Barış ERBAŞ

This study deals with 3-dimensional analysis of a point load moving at a constant

speed along the surface of elastic and coated elastic half-spaces. Formulation of the

problems is based on the framework of an asymptotic hyperbolic-elliptic model for

the wave field developed to extract the contribution of surface waves. The validity

of the model is restricted to the range of speeds close to the surface Rayleigh wave

speed for both problems. It is also assumed that for the coated half-space the thick-

ness of the coating is small compared to a typical wavelength of the surface wave.

First, the uncoated elastic half-space problem is considered and both sub and

super-Rayleigh cases are studied. The surface solutions for both cases are obtained

through the fundamental solution of the differential operators. Then these solutions

are restored over the interior of the half-space by the means of Poisson’s formula.

Thus the steady-state near-field solutions are derived in terms of the elementary

functions. Finally numerical computations based on the derived approximate for-

mulae are presented.

In the coated half-space problem the surface solutions are given in integral forms

obtained through the use of integral transforms for sub and super-Rayleigh cases.

Then the integral solutions of the perturbed wave equation describing wave propa-

gation along the surface are derived with their far-field asymptotic expansion using

the uniform stationary phase method. Finally, numerical comparisons of exact and

asymptotic results are presented for both cases.

Keywords: 3-dimensional elasticity, Moving load, Rayleigh wave,

Asymptotic model, Thin coating.
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ÖZET

KAPLAMALI ve KAPLAMASIZ ELASTİK YARI UZAYLAR İÇİN 3-BOYUTLU

HAREKETLİ YÜK PROBLEMİ

Onur ŞAHİN

Matematik Anabilim Dalı

Anadolu Üniversitesi, Fen Bilimleri Enstitüsü, Mayıs, 2016

Danışman: Dr. Barış ERBAŞ

Bu çalışmada kaplamalı ve kaplamasız elastik yarı uzayların yüzeylerinde sabit

bir hızla hareket eden noktasal yükleri 3-boyutlu analizi ele alınmıştır. Problemin

formülasyonu yüzey dalgalarının katkısını ortaya çıkarmak için geliştirilen bir hiper-

bolik-eliptik asimptotik modele dayanmaktadır. Her iki problem için de modelin

geçerliliği Rayleigh dalga hızına yakın hız aralıklarında geçerlidir. Ayrıca kaplamalı

yarı uzay için kaplamanın kalınlığının tipik yüzey dalga boyuna kıyasla küçük olduğu

varsayılmıştır.

İlk olarak kaplamasız elastik yarı uzay problemi ele alınmış ve sub ve süper-

Rayleigh durumları çalışılmıştır. Her iki durum için yüzey çözümleri diferansiyel op-

eratörlerin temel çözümleri yardımıyla elde edilmiştir. Daha sonra bu çözümler Pois-

son formülü yardımıyla yarı uzayın iç bölgesine genişletilmiştir. Böylece kararlı-hal

yakın-alan çözümleri temel fonksiyonlar cinsinden türetilmiştir. Son olarak türetilen

yaklaşık formüllere dayanan sayısal hesaplamalar verilmiştir.

Kaplamalı yarı uzay probleminde sub ve süper-Rayleigh durumları için yüzey

çözümleri integral dönüşümleri kullanılarak integral formda elde edilmiştir. Daha

sonra yüzey boyunca yayılmayı tanımlayan pertürbe edilmiş dalga denkleminin inte-

gral çözümleri düzgün durağan faz metodu kullanılarak uzak alan asimptotik açılım-

ları ile türetilmiştir. Son olarak her iki durum için tam ve asimptotik sonuçlar için

sayısal karşılaştırmalar verilmiştir.

Anahtar Sözcükler: 3-boyutlu elastisite, Hareketli yük, Rayleigh dalgası,

Asimptotik model, İnce kaplama.
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1. INTRODUCTION

The mathematical theory of elasticity is occupied with an attempt to reduce to

calculation the state of strain, or relative displacement, within a solid body which

is subject to the action of an equilibrating system of forces, or is a state of slight

internal relative motion, and with endeavours to obtain results which shall be prac-

tically important in applications to architecture, engineering, and all other useful

arts which the material of construction is solid, see [1].

The first consideration on the elasticity was carried out by Galileo in his work

on the nature of the resistance of solid to rupture. In his work, Galileo endeavoured

to determine the resistance of a beam, one end of which was fixed into a wall, when

it is strained by its own weight or an applied load. This problem is called Galileo’s

problem. After Galileo’s works on the beam attention of the mathematicians was

directed to the Galileo’s problem and several important researches on the elasticity

were brought out by many scientists. But the most important discovery among of

these researches was found out by Hooke in 1678. He stated that the stress imposed

on a body is directly proportional to the strain produced so long as the limit of

elasticity of body is not exceeded. This law is called Hooke’s law, which constructs

the basis of the mathematical theory of elasticity and is the first classical example

of an explanation of elasticity. After the discovery of Hooke’s law Navier’s research

on an elastic solid is to be regarded as the great landmark of the modern theory

of elastic solids. Navier gave the first time the general equation of equilibrium and

vibration of elastic solids in the case when the material was assumed to be isotropic

and equation of equilibrium and vibration contained a single constant. Hence all

questions about the displacement and the small strain of elastic bodies were reduced

to a mathematical calculation. Cauchy introduced the notion of stress and showed

that the stress, which is simply defined as the internal force neighbouring points ex-

ert on each other, can be indicated with the help of six component stresses, and also

with the help of three purely normal tractions. This had brought a new perspective

to mathematical theory of elasticity. He also showed that the state of strain near a

point can be expressed in terms of six components. Cauchy obtained the equations

of motion and equilibrium in terms of the displacements and expressed stress-strain

1



relation for isotropic materials. Cauchy’s equations for motion differ from Navier’s in

one important respect. Navier’s equations contains a single constant to express the

elastic behaviour of a body, while Cauchy’s definition contains two such constants.

If we survey all progress in all the respects mentioned it can observed that there

are also a lot of great scientists that made significant contributions to the elasticity

theory; Euler, Lagrange, Young, Poisson, Lamé to name but a few.

All research on the dynamical aspect of motion in elastic materials showed that

the equations of the general theory of elasticity estimated that there are two kind of

elastic waves which could propagate through an isotropic elastic solid. The first type

of wave, called longitudinal or irrotational wave, is the faster one and propagates

in the same direction as that of wave propagation. The second type of wave, called

transverse or rotational wave, is the slower one and perpendicular to the propagation

direction. These waves are called body waves since they act throughout the whole

body. In 1885, however, Lord Rayleigh [2] considered waves propagating along the

free surface of an isotropic homogeneous infinite elastic solid and investigated a third

type of wave that could propagate along the surface. The velocity of waves of this

type is less than that of either of the other two waves and the motion associated with

the wave shows an exponential decay with distance into the material from the sur-

face. This type of surface wave is now called Rayleigh wave. Rayleigh wave include

both longitudinal and transverse waves and cause motion of the surface particles in

an elliptical path which lies in a plane normal to surface and parallel to the direction

of propagation. After Raleigh’s investigation surface waves became an important

research are in linear elasticity. Another type of surface wave was later found by

Love in 1911 (cf. [3]). This surface wave occurs in solids in which a surface layer of

material is welded to atop of the solids and particle motion arise along a longitudinal

line perpendicular to the direction of propagation. Love waves travel with a lower

velocity than body waves, but faster than a Rayleigh wave. Due to the character of

the surface waves Love waves also decay away from the surface. Yet another kind

of wave propagating in an elastic solid is the Lamb wave which was investigated by

Lamb in 1917 in his work on the wave motion in elastic plates (cf. [4]). Lamb showed

that this kind of wave can be generated in a plate with free boundaries and particle

motion lies in the plane containing the direction of wave propagation. In 20th cen-
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tury similar types of waves were discovered among which are Stoneley waves which

propagate along the boundary of two different elastic media in contact (cf. [5]). If

one of the medium is a liquid then the corresponding wave is called a Scholte wave

(cf. [6]).

Over the decades the surface waves have been investigated due to their applica-

bility to acoustics, seismology, electromagnetism, among others and quite in-depth

studies have been taken up in the last century. One of the important investigation

among these researches on the Rayleigh wave was made by Friedlander [7]. In his

work Friedlander considered the propagation of waves of arbitrary shape over the

surface of a semi infinite elastic solid and showed that such a motion is possible only

when the velocity of propagation is that of Rayleigh waves. Thus he presented a

self similar solution of the homogeneous problem for an elastic half-plane in terms

of arbitrary plane harmonic functions. In a later publication, Chadwick [8] analysed

surface and interfacial waves of arbitrary form in isotropic, elastic media. He first

extended Friedlander’s solution and then demonstrated that this solution may be

expressed in terms of a single plane harmonic function related to each other by

means of a Hilbert transform. He also gave a relation between the wave potentials

that provides a great convenience in obtaining the solution of the investigated prob-

lem when one of the potentials is determined. This relation, given in 2 dimensions,

was then extended to 3 dimensions by Kiselev and Parker in their work: "Omni-

directional Rayleigh, Stoneley and Schölte waves with general time dependence" [9].

Rayleigh wave does not appear explicitly in the general formulations of dynamical

problems of the elasticity theory, which causes certain difficulties in the formulation

of general theory of elastic waves. The significance of the Rayleigh wave on an

elastic plane or space motivates an alternative analysis under more general assump-

tions, which can help to extract the Rayleigh wave contribution. Therefore recent

studies have generally focused on deriving approximate models for Rayleigh waves.

Knowles [10] was concerned with some generalizations of free harmonic Rayleigh

waves and tried to acquire an approximate equation for free harmonic Rayleigh

waves. Kaplunov and Kossovich [11] introduced an asymptotic model of Rayleigh

waves in the far-field zone in elastic half space. This model makes possible to study

dynamical effects associated with a Rayleigh wave field. Then in [12] the methodol-
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ogy of [11] was extended to the Bleustein-Gulyaev surface wave and a 1-dimensional

hyperbolic equation was derived for the surface shear deformation. Kaplunov et

al. [13] reconsidered the problem formulated in [11] and [12] and presented an ex-

plicit model for the Rayleigh and Bleustein-Gulyaev surface waves. The derivations

were based on perturbing in slow time the self-similar solution for homogeneous sur-

face waves given in [7] and [8]. Thus the developed models for the two surface waves

consisted of hyperbolic equation on the surface with elliptic equations in the interior

domain. The formulation in [13] was later generalized to the 3-dimensional linear

isotropic coated elastic half-space taking into account the effect of a thin coating,

see [14]. The developed hyperbolic-elliptic model was also applied to a transient

2-dimensional moving load problem for an elastic half-plane in [15]. The problem

was concerned with a near resonant regime in which the speed of the load is close

to the Rayleigh wave speed.

Moving load problems have been analyzed for more than a century (see [16] and

reference therein). Among the numerous studies that have been published on the

subject, most of the contributions have been carried out within a 2-dimensional

framework and only very few of them have focused on 3-dimensional framework. In

spite of a distinct importance of 2-dimensional moving load problems, various mod-

ern industrial applications, including the development of high-speed train operations,

include 3-dimensional modelling. The mathematical modelling of 3-dimensional

problems in industrial applications motivates to focus on the numerical evaluation

of exact solutions expressed in integral form. Georgiadis and Lykotrafitis [17] de-

veloped an integral transform procedure to obtain fundamental elastodynamic 3-

dimensional solution for moving load over the surface of a half space by using the

Radon transform that has been traditionally used to reduce the 3-dimensional prob-

lems to 2-dimensional ones in linear elasticity. Then the methodology developed

in [17] and the hyperbolic-elliptic model in [13] were utilized for deriving a long

wave model for a coated elastic half-space in [14].

The organization of the thesis is described as follows. After the Introduction

given in Chapter 1, a brief account of the some basic definitions and concepts, fre-

quently used throughout the thesis, are outlined in Chapter 2.

Chapter 3 starts with statement of the 3-dimensional moving load problem for
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an uncoated half-space. The problem is formulated through the hyperbolic-elliptic

model, derived in [13] and [14], and the steady-state equations of the motion on

the surface for the sub and super-Rayleigh cases are presented. A steady-state

analysis over the interior results in simple explicit expressions for the displacement

components in the near-field of the point load steadily moving at a constant speed

close to the Rayleigh wave one. Then a brief discussion of the transient surface

response is given addressing, in particular, the resonant behaviour at the Rayleigh

wave speed. Chapter 3 concludes with the illustrations of numerical results of the

obtained asymptotic formulae and presents the accuracy of the asymptotics by com-

parison with the exact formulation.

In Chapter 4, 3-dimensional moving load problem for a coated half-space is con-

sidered. This chapter starts with statement of the problem, followed by the proposed

asymptotic scaling. The sub and super-Rayleigh cases are analyzed and the solu-

tion for both cases, obtained through the use of integral transforms, are presented

in terms of closed form integrals. Then the far-field asymptotic expansions of the

integrals are obtained by employing approximate integration methods, uniform sta-

tionary phase method in particular. Numerical comparisons of exact and asymptotic

results are presented for both cases and concluding remarks of the coated half-space

problem are given.

Finally, in Chapter 5, conclusions are given and the main results of the thesis

are discussed with suggestions for future work.
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2. BACKGROUND

In this chapter some basic definitions and concepts, which are essential in the

following chapters, are presented.

2.1. Fundamental Solution

Definition 2.1. A multi-index α = (α1, α2, · · · , αn) is a vector whose components

are nonnegative integers. The norm of a multi-index is defined by

|α| = α1 + α2 + · · ·+ αn, (2.1)

and for any vector x = (x1, x2, · · · , xn), multi-index power of a vector is defined as

xα = xα1

1 x
α2

2 · · ·xαn

n . (2.2)

Thus the multi-index power of a derivative operator Dα is defined analogously

Dα =
∂|α|

∂xα1

1 ∂x
α2

2 · · ·∂xαn
n

, (2.3)

where α is a multi-index and x = (x1, x2, · · · , xn) ∈ R
n. This notation is highly

convenient in writing partial differential operators.

Definition 2.2. Suppose that f : X → R
n is a real-valued function whose domain

is an arbitrary set. The support of f is the set of points in X where f is non-zero

suppf = {x ∈X; f(x) 6= 0}.

Definition 2.3. Let D = D(Rn) be the set of infinitely differentiable functions which

have compact support in R
n. The sequence of functions ϕ1, ϕ2, · · · ∈ D converges to

the function ϕ (belonging to D ) if

i. There is a number R > 0 such that suppϕk ⊂ UR = {x ∈ R
n; |x| < R},

ii. For each α = (α1, α2, . . . , αn), D
αϕk ⇒ Dαϕ, k → ∞.
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Evidently D is a linear space and this space is called the space of test functions,

denoted, generally, by D(Rn).

Definition 2.4. Each linear continuous functional over the space of test functions

D is called a generalized function and the set of all generalized functions is denoted

by D
′ = D

′(Rn). The effect of the generalized function f over the test function ϕ is

denoted by (f, ϕ).

Definition 2.5. The sequence of generalized functions f1, f2, · · · ∈ D ′ converges to

f ∈ D ′ if, for any ϕ ∈ D, (fk, ϕ) → (f, ϕ) as k → ∞. This is shown as fk → f as

k → ∞ and called weak convergence.

Definition 2.6. The linear set D
′ with the convergence defined in Definition 1.5 is

known as the space of generalized functions D ′, see [18], [19].

Definition 2.7. Let α be a multi-index and L be an operator with coefficients aα(x)

L(x, D) = L(D) =
m
∑

|α|=0

aα(x)D
α. (2.4)

The generalized function E ∈ D ′ which satisfies the equation

L(D)E = δ(x) (2.5)

in R
n is said to be the fundamental solution of the differential operator L(D).

If E0(x) is an arbitrary solution of the homogeneous equation L(D)E0 = 0, then

the generalized function E (x)+E0(x) is also a fundamental solution of the operator

L(D):

L(D)(E + E0) = L(D)E + L(D)E0 = δ(x).

Therefore the fundamental solution of an operator L(D) is generally not unique. The

main importance of the fundamental solution concept is that it helps to determine

the solution of the non-homogenous differential equations. The following theorem

shows how a solution of the non-homogenous equation can be obtained by using the

fundamental solution.
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Theorem 2.1. Let f ∈ D ′ be such that the convolution of E ∗ f exist in D ′. Then

the solution of L(D)u = f(x) exists in D ′ and is given by the formula

u = E ∗ f. (2.6)

Proof. Since the convolution of E ∗ f exist in D ′, it can be obtained from the

properties of the convolution as

L(D)(E ∗ f) = (L(D)E ) ∗ f = δ ∗ f = f. (2.7)

Therefore the formula u = E ∗ f gives the solution of non-homogenous differential

equation.

In the following chapters we will make frequent use of fundamental solutions of

some certain differential operators which now follows.

2.1.1. Fundamental solution of the wave operator

The first operator we consider is the wave operator (sometimes, called

D’Alembert’s operator) defined by

�a :=
∂2

∂t2
− a2△, (2.8)

where △ is Laplace’s operator given by

△ =
∂2

∂x21
+

∂2

∂x22
+ · · ·+ ∂2

∂x2n
. (2.9)

The fundamental solution of the wave equation

�aEn = δ(x, t), (2.10)

for n = 1, 2, 3 is given, respectively by

E1(x, t) =
1

2a
H(at− |x|), (2.11)
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E2(x, t) =
H(at− |x|)

2πa
√

a2t2 − |x|2
, (2.12)

and

E3(x, t) =
H(t)

2πa
δ(a2t2 − |x|2), (2.13)

where H(x) is the Heaviside function. It is a common practise to write the wave

operator in the form �a = △ − 1
a2

∂2

∂t2
from which it follows that the fundamental

solution of the wave equation for n = 1 becomes

E (x, t) =
a

2
[H(x− at)−H(x+ at)] . (2.14)

2.1.2. Fundamental solution of the Laplace operator

The second operator we will encounter is the Laplace’s operator defined by (2.9).

The fundamental solution of the Laplace equation

△En = δ(x) (2.15)

is given by

En(x) =















1

2π
ln |x| , n = 2

− |x|2−n
(n− 2)ωn

, n > 2,

(2.16)

where ω is the surface of unit sphere in R
n, given with the formula

ωn =
2πn/2

Γ(n/2)
.

2.2. Pseudo-Differential Operators

Pseudo-differential operators one of the interesting operators which play an im-

portant role when a differential operator has not constant but variable coefficients.

Pseudo-differential operators are defined through the symbol of the differential op-

erators considered the definition which we now give:

Definition 2.8. Let α be a multi-index and L(x, D) be a differential operator given

by equation (2.4). Then for any ξ = (ξ1, ξ2, . . . , ξn) ∈ R
n the symbol of L(x, D) is
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defined by

L (x, iξ) =
m
∑

|α|6m
aα(x)(iξ)

α. (2.17)

The principal part of the symbol is

Lp(x, iξ) =

m
∑

|α|=m
aα(x)(iξ)

α. (2.18)

For instance, the symbol of Laplace’s operator is −ξ21 − ξ22, the symbol of the heat

operator is iξ1 + ξ22 and the symbol of the wave operator is −ξ21 + ξ22.

The Fourier inversion formula may be written as

f(x) =
1

(2π)n

∫

f̂(ξ)eix·ξdξ, (2.19)

where

f(ξ) =
1

(2π)n

∫

f̂(ξ)e−ix·ξdx (2.20)

is the Fourier transform of a function on R
n. Differentiation of the inverse Fourier

transform results in

Dαf(x) =
1

(2π)n

∫

(iξ)αf̂(ξ)eix·ξdξ, (2.21)

where Dα = Dα1

1 . . .Dα2

2 , Dj = ∂/∂xj . Hence, if the differential operator L(x, D)

and its symbol are considered it can be obtained from equation (2.21)

L(x, D)f(x) =
1

(2π)n

∫

L(x, iξ)f̂(ξ)eix·ξdξ. (2.22)

Therefore it is seen that the Fourier transform of the differential operator L(x, D)

acting on the function f(x) is equal to the symbol of the operator multiplied by the

Fourier transform of the function f(x), i.e. f̂(ξ).

Definition 2.9. A differential operator L(x, D) on R
n is an operator whose value

on the function f(x) is the function of x:

L(x, D)f(x) =
1

(2π)n

∫

L(x, iξ)f̂(ξ)eix·ξdξ,
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where f̂(ξ) is the Fourier transform of f(x) and L(x, iξ) is the symbol of L(x, D).

If L(x, iξ) is an infinitely differentiable function on R
n × R

n with the property

∣

∣∂αξ ∂
β
xL(x, iξ)

∣

∣ 6 Cα,β(1 + |ξ|)m−|α|

for all x, ξ ∈ R
n, all multi-indices α,β, some constants Cα,β and some real number

m, then L belongs to the symbol class consisting of C∞ functions of slow growth. In

this case the corresponding operator L(x, D) is called a pseudo differential operator

of order m, see [20], [21].

2.3. Poisson’s Formula for the Half Space

Definition 2.10. Let D be a domain in the space R
n having a sufficiently smooth

boundary S. The problem determining the solution of equation

△u = 0, (2.23)

with the boundary condition

lim
x→y

u(x) = ϕ(y), x ∈ D, y ∈ S (2.24)

is called the first boundary value problem or the Dirichlet problem. Here ϕ is a given

real continuous function defined on S. The solution of the Dirichlet problem, u(x),

must be regular in the domain D and continuous in the closed region D
⋃

S.

Let us consider the case when the domain D is a half-space xn > 0. Let x

and ξ be two points belonging to that half-space and let us take the point ξ′ =

(ξ1, ξ2, · · · , ξn−1,−ξn) symmetric with respect to the point ξ about the plane ξn = 0.

If the boundary condition for the half-space xn > 0 is given by

lim
x→y

u(x) = ϕ(y1, y2, · · · , yn−1), xn > 0, yn = 0, (2.25)
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then the solution of the Dirichlet problem for the half-space becomes

u(x) =
Γ(n/2)

πn/2
xn

∫

ξn=0

ϕ(ξ1, ξ2, · · · , ξn−1)
[

n−1
∑

i=1

(ξi − xi)2 + x2n

]n/2
dξ1 dξ2 · · · dξn−1, (2.26)

where Γ(n) is the gamma function. This formula is also called Poisson’s formula,

see [22].

2.4. Helmholtz Decomposition of a Vector Field

In writing the governing equations of motion of elasticity, it is a common practise

represent the displacement field in terms of scalar and vector potentials. This is

achieved through the application of Helmholtz decomposition of a vector.

Theorem 2.2. Let u(x) be piecewise differentiable vector field in a finite open region

V of R3. Then u(x) can be decomposed into sum of gradient of a scalar and curl of

a vector:

u = ∇ϕ+∇×ψ. (2.27)

This theorem is called the Helmholtz decomposition theorem.

Proof. Taking into account the properties of the Dirac delta function, the vector

field u(x) can be represented as

u(x) =

∫

V

u(ξ)δ(x− ξ)dξ. (2.28)

It is also known from the Dirac delta function that

δ(x− ξ) = − 1

4π
∇

2

(

1

|x− ξ|

)

. (2.29)

Therefore equation (2.28) can be represented as

u(x) = − 1

4π
∇

2

∫

V

u(ξ)

|x− ξ|dξ. (2.30)
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On using the identity

∇
2u = ∇ (∇ · u)−∇× (∇× u), (2.31)

equation (2.30) turns into

u = − 1

4π
∇

(

∇ ·
∫

V

u(ξ)

|x− ξ|dξ
)

+
1

4π
∇×

(

∇×
∫

V

u(ξ)

|x− ξ|dξ
)

. (2.32)

Thus the vector field u(x) is decomposed as

u = ∇ϕ+∇×ψ, (2.33)

where

ϕ = − 1

4π
∇ ·

∫

V

u(ξ)

|x− ξ|dξ, (2.34)

and

ψ =
1

4π
∇×

∫

V

u(ξ)

|x− ξ|dξ, (2.35)

see, [23].

This expression may also be written as

u = uL + uT (2.36)

where

uL = − 1

4π
∇

(

∇ ·
∫

V

u(ξ)

|x− ξ|dξ
)

, (2.37)

and

uT =
1

4π
∇×

(

∇×
∫

V

u(ξ)

|x− ξ|dξ
)

. (2.38)

Since the curl of the gradient and the divergence of the curl are always vanish-

ing it can be observed that uL is indeed a non-curling (longitudinal) vector field,

∇ × uL = 0, whereas uT is indeed a non-divergence (transverse) vector field,

∇ · uT = 0. Therefore the Helmholtz decomposition theorem also states that any

well-behaved vector field can be decomposed into the sum of a longitudinal and a

transverse vector field. Another point to be noted about the Helmholtz decomposi-

13



tion theorem is that the decomposition of a vector field given by equation (2.27) is

generally not unique. Since the gradient of any constant and the curl of the gradient

are zero, addition of such functions to ϕ and ψ respectively does not have any effect

on equation (2.27). Thus there will be more than one equation which satisfy the

Helmholtz decomposition. If it is also required that the field be outgoing at infinity,

the uniqueness follows in that the constant and the gradient of the scalar function

become zero. Under this assumption the Helmholtz decomposition of a vector field

is uniquely determined by equation (2.27).

2.5. Equations of Elasticity

Elasticity is a property of solid materials which shows that how the materials

are deformed under the action of applied external forces and resume their original

shape and size after the force is removed. The theory of elasticity is a branch of

continuum mechanics dealing with the elasticity of deformable bodies. This theory

consists of a compatible set of equations which uniquely describe the state of stress,

strain and displacements of each point with in elastic deformable body.

In this section we only mention some basic concepts and definitions of this com-

prehensive theory which will be used in the sequel.

2.5.1. State of stress

Definition 2.11. Let us consider a body oriented by the unit normal n with a

number of forces acting on it. Taking an element with an area ∆An on the body and

let the total force ∆Fn acts on this small area. Then the stress vector or traction is

defined as the limit of the ratio of the force vector to the surface area, i.e.,

lim
∆An→0

∆F n

∆An
=
dFn

dAn
= Tn. (2.39)

In general, the stress vector can have any direction to the surface area ∆An.

The vector Tn may be regarded as the sum of two components that are normal and

tangential to the surface element. Let us focus on an infinitesimal cubic element in

order to find components of the stress vector acting on a particular object in a set of

cartesian coordinates, see Figure 2.1. Here each axes of cartesian coordinates have
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Figure 2.1. Components of stress.

a unit vector ei. As can be seen in Figure 2.1 the traction Ti acts on each face i.

Therefore each traction may be written in terms of its cartesian components in the

form as

Ti = σijej , i, j = 1, 2, 3, (2.40)

where a summation is assumed a repeating indices. Here the coefficients σij are

known as stresses and form a 3 × 3 matrix called the Cauchy stress tensor and

shown as σ;

σ =











σ11 σ12 σ13

σ21 σ22 σ23

σ31 σ32 σ33











. (2.41)

The first subscript i of the components of stress σij refers to normal of the surface on

which Ti acts, and the second subscript j corresponds to direction of the stress Ti.

The component of the stress σii is called the normal stress which is perpendicular

to the surface, and σij (i 6= j) is called the shear stress which is tangential to the

surface. In some references, the normal and the shear stresses are shown as σi and

τij (i 6= j) respectively. However we will make use of the notation σii and σij (i 6= j)

for the normal and shear stress throughout this thesis.

If the traction Tn = (Ti) acts on an arbitrary surface oriented by unit normal

n = (ni) then the traction can be expressed as

Ti = σjinj . (2.42)

Thus the components of the stress vector for a cartesian coordinate or any surface
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oriented by a unit normal n can be expressed in terms of the components of the

Cauchy stress tensor.

2.5.2. State of strain

Definition 2.12. The relative change in the position of points in the body that has

undergone deformation due to external or internal forces is called strain and shown

as ε. The strain, ε, of a material line element is expressed as the change in the

length ∆l per unit of the original length l of the line element;

ε =
∆l

l
. (2.43)

The strain is positive if the object is stretched and negative if the object is com-

pressed. As can be seen from the definition of the strain, unlike stress, strain is a

dimensionless expression.

Strain may also be classified as normal and shear strains. Normal strain mea-

sures changes in length along a specific direction due to an applied force. It is also

called extensional strain or dimensional strain and shown as εii. So ε11 is the rela-

tive elongation or contraction of the length of the material along the x1 axis. Shear

strain measures changes in angle with respect to two specific directions. It is shown

as εij (i 6= j). As an example, ε12 gives the angular change between the x1 and x2

axes. The normal and the shear strains, in literature, are sometimes shown as σi

and γij (i 6= j) respectively. However we will use σii and σij (i 6= j) for the normal

and shear stress respectively.

Let the component of a vector field u(x) be denoted by ui(x1, x2, x3). If the func-

tions ui(x1, · · · , xn) are differentiable then the partial derivatives of the displacement

may be denoted by the indicial notation as ui,j = ∂ui/∂xj . Hence the infinitesimal

strain-displacement relationships can be given with the indicial notation as

εij =
1

2
(ui,j + uj,i) . (2.44)
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2.5.3. Stress-strain relations

The most famous and elementary relation of the material behaviour is Hooke’s

law which states that deformation of the elastic material is proportional to applied

force. This can be expressed mathematically as

F = kx, (2.45)

where F is the force applied to the material and x is the displacement. Since stress

is a force and strain is a displacement, the stresses and strains of the materials are

connected by a linearized relationship that is mathematically similar to Hooke’s law,

and is often referred to by the same name. Therefore in one dimension, the relation

between the stress and strain can be presented as

σ11 = E ε11, (2.46)

where E is called modulus of elasticity or Young’s modulus. In general, Hooke’s

law, relating the stress tensor to the strain, is written in the form of a fourth-order

tensor as

σij = Eijklεkl, (2.47)

where the 81 coefficients Eijkl are called elastic constants. Taking into account

certain material and geometric properties (symmetry, etc) of the elastic medium

as well as symmetry of the stress tensor, the number of elastic constants reduce

to 21. A material exhibiting different properties in different directions is called

anisotropic. In the anisotropic materials these coefficients cannot be reduced any

further. Therefore it will be first assumed that the material is independent from any

directions. In this case number of the elastic constants is reduced to 9 producing an

orthotropic material which has 3 mutually orthogonal planes of elastic symmetry.

Finally for an additional simplification, directional and rotational independence is

assumed. This assumption reduces the number of the constants to 2 producing an

isotropic material which has uniform physical properties in all orientations. Thus

17



the relation between the stress and strain can be written as

σij = λεkkδij + 2µεij, (2.48)

where λ and µ are known as Lamé constants and δij is Kronecker delta. If the

strain-displacement relations given by equation (2.44) are substituted into the above

equality, stress-displacement relations is written as

σij = λuk,kδij + µ (ui,j + uj,i) , (2.49)

see [24]. If these relations are written in an explicit form, we have for i = 1, 2,

j = 1, 2 (i 6= j), and k = 1, 2, 3

σij = µ

(

∂ui
∂xj

+
∂ui
∂xj

)

, σii = (λ+ 2µ)
∂ui
∂xi

+ λ

(

∂uj
∂xj

+
∂u3
∂x3

)

,

σ3i = σi3 = µ

(

∂ui
∂x3

+
∂u3
∂xi

)

, σ33 = λ

(

∂ui
∂xi

+
∂uj
∂xj

)

+ (λ+ 2µ)
∂u3
∂x3

.

(2.50)

It is also known from Hooke’s law that the relation between the stress and strain

in one dimension can be expressed by equation (2.46). Therefore if equation (2.46)

is substituted into equation (2.48), the following equality is obtained.

σ11 =
µ(3λ+ 2µ)

µ+ λ
εij . (2.51)

This equality gives us Young’s modulus, E, in terms of the Lamé constants as

E =
µ(3λ+ 2µ)

µ+ λ
. (2.52)

Another important elastic coefficient different from aforementioned coefficients is

Poisson’s ratio ν. Poisson’s ratio is the negative ratio of transverse strain to the axial

strain in the direction of the applied load. When a load is applied to a material, the

material tends to expand or contract in the other two directions perpendicular to

the direction of the load. This transverse change will bear a fixed relationship to the

axial strain. The relationship, or ratio, of the transverse strain is called Poisson’s
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ratio. If the subscript 1 corresponds to the axial direction and subscripts 2 and 3

correspond to the transverse directions then Poisson’s ratio can be written as

ν = −ε22
ε11

= −ε33
ε11

=
λ

2(µ+ λ)
. (2.53)

Since λ must remain finite, Poisson’s ratio lies between −1 < ν < 0.5.

2.5.4. Dynamic equations of motion

Let us consider a body occupying a regular region V in space with boundary S.

The surface S is subjected to a distribution of surface traction T and each mass

element of the body may be subjected to a body force per unit mass, f . Then the

system of equations of equilibrium of a homogenous, isotropic, linear elastic body

may be obtained from the principle of linear momentum as

σji,j + ρfi = ρ üi, (2.54)

where ui is the components of the displacement and ρ is the mass density. If the

stress-displacement (2.49) are substituted into equation (2.54), displacement equa-

tions of motion are determined as

µui,jj + (λ+ µ)uj,ji + ρfi = ρ üi. (2.55)

These equations are called Navier equations and they can be expressed in vector

notation as

µ∇2u+ (λ+ µ)∇∇ · u+ ρf = ρ ü. (2.56)

In cartesian coordinates, where the displacements and the body mass are denoted

by u = (u1, u2, u3) and f = (f1, f2, f3) respectively, Navier equations can be written
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in an explicit form as

(λ+ µ)

(

∂2u1
∂x2

+
∂2u2
∂x∂y

+
∂2u3
∂x∂z

)

+ µ∇2u1 + ρf1 = ρ
∂2u1
∂t2

,

(λ+ µ)

(

∂2u2
∂y∂x

+
∂2u2
∂y2

+
∂2u3
∂y∂z

)

+ µ∇2u2 + ρf2 = ρ
∂2u2
∂t2

, (2.57)

(λ+ µ)

(

∂2u1
∂z∂x

+
∂2u2
∂z∂y

+
∂2u3
∂z2

)

+ µ∇2u3 + ρf3 = ρ
∂2u3
∂t2

.

We know from the Helmholtz decomposition of the a vector that any vector can

be written sum of the gradient of a scaler and the curl of a vector. Therefore the

displacement u and the body mass f can be written as

u = ∇ϕ+∇×ψ, (2.58)

and

f = c21∇F + c22∇×G, (2.59)

where ϕ and ψ are scalar and vector potentials and c1 and c2 are longitudinal and

transverse wave speeds given by

c21 =
λ+ 2µ

ρ
and c22 =

µ

ρ
, (2.60)

respectively. Substituting equations (2.58) and (2.59) into equation (2.56) gives the

following non-homogenous wave equations.

∇2ϕ + F =
1

c21
ϕ̈, (2.61)

∇2ψ +G =
1

c22
ψ̈. (2.62)

In the absence of body forces these equations turn to

∇2ϕ =
1

c21
ϕ̈, (2.63)

∇2ψ =
1

c22
ψ̈. (2.64)
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homogenous wave equations, see [25].

2.6. A Brief Account of Asymptotic Analysis

Asymptotic analysis is an important field in applied analysis which is concerned

with the determination of the behaviour of a function or obtaining approximate

analytical solution of problems of differentiation and integration as one of its pa-

rameters becomes either very large or very small. Asymptotic analysis have found

extensive use in obtaining of approximate solutions of some problems which may

not be analytically solved in the areas of, say, fluid mechanics, difference equations,

diffraction theory, number theory, etc.

We now give some basic notations and some useful techniques for finding ap-

proximate solutions of some certain integrals.

Definition 2.13. Let f(z) and g(z) be two functions defined on D. Then we write

f(z) = O (g(z)) , as z → z0 (2.65)

if we can find a constant K > 0 and a neighbourhood U of z0 so that

|f(z)| 6 K |g(z)| , z ∈ D ∩ U. (2.66)

This means that f is bounded in a magnitude by a fixed multiple of g for all z ∈ D∩U .

If f(z) and g(z) are such that, for any given ε > 0 there exists a neighbourhood Uε

of z0 so that

|f(z)| 6 ε |g(z)| , z ∈ D ∩ Uε, (2.67)

we say

f(z) = o (g(z)) , as z → z0. (2.68)

This means that f is smaller in a magnitude than any multiple of g for all z ∈ D∩Uε
close enough to z0.

If f(z)/g(z) tends to unity as z → z0, then we write

f(z) ∼ g(z), as z → z0. (2.69)
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and say that f and g are asymptotically equal.

Definition 2.14. A sequence of function ϕn(z) ∈ D is called an asymptotic sequence

as z → z0 from D if for all n > 0 we have

ϕn+1(z) = o (ϕn(z)) , as z → z0. (2.70)

Then
N
∑

n=0

anϕn(z)

is called an asymptotic expansion or an asymptotic approximation of the function

f(z) if for each N

f(z) =

N
∑

n=0

anϕn(z) + o (ϕn(z)) , as z → z0, (2.71)

where an are constants. Thus it can be written

f(z) ∼
∞
∑

n=0

anϕn(z), as z → z0. (2.72)

2.6.1. Watson’s lemma

Suppose φ(t) is a complex valued, absolutely integrable function on [0, T ]

T
∫

0

|φ(t)| dt <∞.

Suppose also that φ(t) is of the form φ(t) = tσg(t) where σ > −1 and g(t) is a

function which possesses a Taylor expansion around t = 0 with g(0) 6= 0. Then the

exponential integral

F (λ) =

∞
∫

0

e−λtφ(t)dt (2.73)

is finite for all λ > 0 and has the asymptotic expansion

F (λ) ∼
T
∑

n=0

g(n)(0)Γ(σ + n+ 1)

n!λσ+n+1
, as λ→ ∞, (2.74)
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see [26].

2.6.2. Laplace’s method

Laplace’s method considers integrals of the type

F (λ) =

β
∫

α

g(t)eλh(t)dt, (2.75)

where λ is real and positive, g(t) is a real continuous function and h(t), h′(t) and

h′′(t) are real and continuous functions in α 6 t 6 β and the range of the integration

maybe finite or infinite. According the Laplace’s idea the major contribution to these

type of integrals, as λ→ ∞, comes from the neighbourhood of the point in α 6 t 6 β

where h(t) has its maximum value. Therefore if h(t) has its maximum value at a

point γ ∈ (α, β), then h′(t) = 0 and h′′(t) 6= 0 and the asymptotic expansion of the

integral given by (2.75) may be written as

F (λ) ∼ g(γ)

{ −π
2λh′′(γ)

}1/2

eλh(γ), λ→ ∞. (2.76)

If h(t) has its maximum value at one of the end points t = α or t = β, the asymptotic

expansions the take the forms

F (λ) ∼
{ −g(α)
λh′′(α)

}1/2

eλh(α), λ→ ∞, (2.77)

and

F (λ) ∼
{

g(β)

λh′′(β)

}1/2

eλh(β), λ→ ∞. (2.78)

respectively, see [27].

2.6.3. Method of steepest descents

The method of steepest descents is a generalization of Laplace’s method that is

adapted to certain types of exponential integrals of the form

F (λ) =

∫

C

g(z)eλh(z)dz, (2.79)
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where C is some contour in the complex plane, g(z) and h(z), which are independent

of λ, are analytic functions of z in some domain of the complex plane which contains

the contour C, and λ is a real positive parameter. The problem is to find an

asymptotic approximation of F (λ) for large λ. Since h(z) is a complex valued

function it can be written as h(z) = φ + iψ. Therefore imaginary part ψ of h(z)

gives an oscillatory contribution eiλψ to the integrand. This method is basically

based on choosing a contour which reduces the effect of the oscillations so that the

contour passes through the point z = z0 where real part φ of h(z) has its maximum

value on it. This specific contour is called steepest descent path. On the steepest

descent path since there are no oscillations from eiλψ and eλφ has its maximum value

at z0 on the path, the asymptotic expansion of the integral (2.79) can be obtained

from the Laplace’s method as

F (λ) ∼ g(z0)

{ −2π

λh′′(z0)

}1/2

eλh(z0), as λ→ ∞. (2.80)

2.6.4. Method of stationary phase

This is a method for deriving asymptotic expansion of integrals of the form

F (λ) =

b
∫

a

g(t)eiλh(t)dt, (2.81)

where a, b, g(t), h(t) and t are real and λ is a large real parameter. Since the

term eiλh(t) only gives oscillations the aforementioned methods, Watson’s lemma,

Laplace’s method or steepest descent method, cannot be used due to the absence of

exponential decay of the integrands. If λ is large, the rapid oscillations caused by the

factor eiλh(t) will be very dense so there will be cancellations of positive and negative

parts of the oscillation almost everywhere except for some points which make the

function h(t) zero. These points are called stationary points. Therefore it is safe

to assume that the main contribution to the integral comes from a neighbourhood

of the stationary points, or the end points of the integral. This is the basic idea

behind of method of stationary phase. Thus, when the function h(t) has only one

stationary point t0 ∈ (a, b), the asymptotic expansion of the integral F (λ) in (2.81)
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as λ→ ∞ is given by

F (λ) ∼ g(t0)

{

2π

λ |h′′(t0)|

}1/2

ei(λh(t0)±π/4), λ→ ∞, (2.82)

where the positive and negative signs in the exponential correspond h′′(t0) > 0

and h′′(t0) < 0 respectively. When there is more than one stationary point of the

function h(t) the asymptotic expansion of integral (2.81) may be given by summing

of the contributions of the each stationary points.

If h(t) does not have any stationary points in (a, b) then the only contribution

to the integral comes from the end points t = a and t = b as λ → ∞. Thus the

asymptotic expansion of the integral can be obtained as

F (λ) ∼ 1

λ

{

g(b)

ih′(b)
eiλh(b) − g(a)

ih′(a)
eiλh(a)

}

, λ→ ∞. (2.83)

2.7. Asymptotic Model for the Rayleigh Wave

The analysis of 3D moving load problems for uncoated and coated elastic half-

spaces, which is the main subject of this thesis, are based on the hyperbolic-elliptic

asymptotic model developed by Kaplunov et al. [13] and also presented by Dai

et al. in [14]. The model is aimed at obtaining the Rayleigh wave contribution

of the overall dynamic response of the elastic medium ignoring the effects of bulk

waves, and in turn provides a simpler analysis of the considered problems. Since we

generalize this method to 3D problems it is best to give a short account here.

In [13], Kaplunov et al. considered a stationary load problem for an elastic half

plane with the boundary condition at y = 0 given by

σ22(x, 0, t) = −P1(x, t), (2.84)

and investigated solution of the governing equations of the motion

∂2φ

∂x2
+
∂2φ

∂y2
− 1

c21

∂2φ

∂t2
= 0,

∂2ψ

∂x2
+
∂2ψ

∂y2
− 1

c21

∂2ψ

∂t2
= 0, (2.85)
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in dimensionless form given by

φ =
P∗
εµ

(φ0(ξ, y, τ) + εφ1(ξ, y, τ) + · · · ) ,

ψ =
P∗
εµ

(ψ0(ξ, y, τ) + εψ1(ξ, y, τ) + · · · ) ,
(2.86)

where cR is the Rayleigh wave speed, ξ = x− cRt, τ = εt (ε≪ 1) and

P∗ = max
(x,t)

= (P1(x, t)). Substituting of the asymptotic expansions (2.86) into the

equations of the motion and taking into account the leading order terms give the

following elliptic equations in the interior of the half-plane

∂2φ

∂y2
+ k21

∂2φ

∂x2
= 0,

∂2ψ

∂y2
+ k22

∂2ψ

∂x2
= 0.

(2.87)

Applying the same process to the boundary condition results in

∂2φ

∂x2
− 1

c2R

∂2φ

∂t2
= AP1, (2.88)

where

k2i = 1− c2R
c2i
, (i = 1, 2), (2.89)

and A is a material constant given by

A =
k1k2(1 + k22)

2µ [k22(1− k21) + k21(1− k22)− k1k2(1− k42)]
. (2.90)

Besides, the second potential ψ can be found from the boundary condition as

∂ψ

∂x
= − 2

1 + k22

∂φ

∂y
, at y = 0. (2.91)

This equation, which was first introduced by Chadwick [8], shows that the wave

potentials are related to each other by means of a Hilbert transform.

In [14], Dai et al. dealt with the 3D stationary load problem for a linear isotropic

elastic coated half-space. The coating was modelled via the effective boundary

conditions on the surface of the substrate and the effect of the boundary condition
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under the coating was estimated. Then the problem was reduced to a 2D problem

through the Radon transform that has been generally used for reduction of the 3D

to 2D ones in linear elasticity. Thus the problem was reduced in a form where it

was possible to implement to explicit model introduced in [13], which gives two 2D

elliptic equations over the interior and a hyperbolic equation on the surface. As

the asymptotic solution was obtained through the model, by inverting the obtained

equations to the original variables the 3D model, in the end, was expressed through

the 3D elliptic equations in the interior (x3 > h)

∂2φ

∂x23
+ k21△2φ = 0,

∂2ψi
∂x23

+ k22△2ψi = 0, (i = 1, 2)

(2.92)

with 2D hyperbolic equation singularly perturbed by a pseudo-differential operator

on the surface

△2φ− 1

c2R

∂2φ

∂t2
+
bh

k1

∂

∂x3
(△2φ) = AP, at x3 = h, (2.93)

and relation with the potentials

∂ψi
∂x3

=
2

1 + k22

∂φ

∂xi
, (i = 1, 2), at x3 = h, (2.94)

where ψ = (−ψ2, ψ1, 0). Unlike the surface equation of the uncoated half-plane

problem in [13], the surface equation given by (2.93) contains a singular perturbation

in the form of a pseudo-differential operator.

Both models for uncoated and coated half spaces are quite useful to reduce the

2D and 3D vector problems to a scalar problems. Moreover the relation between the

potentials enables to find each of the potentials without lengthy calculations when

one of the potentials is determined.
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3. 3-DIMENSIONAL MOVING LOAD PROBLEM FOR AN ELASTIC

HALF-SPACE

In this chapter we will investigate the 3D dynamic response of an elastic half-

space loaded by a vertical point force moving along a straight line on the surface

of the elastic half-space at a constant speed which is assumed to be close to the

Rayleigh wave speed. This problem will be formulated within the framework of

the asymptotic hyperbolic-elliptic model developed in [13] and [14] and steady state

equations of the motion will be presented through the asymptotic model. Finally

in order to verify the accuracy of the approximate solution, comparisons of the

asymptotic and exact results will be illustrated.

3.1. Statement of the Problem

We consider a linear elastic isotropic half-space occupying the region

−∞ < x1, x2 < ∞, 0 6 x3. The equations of motion in 3D elasticity are given by

(see [23])

(c21 − c22)grad divu+ c22∆u = utt, (3.1)

where ∆ is 3D Laplace operator, u = (u1, u2, u3) is the displacement vector, t is

time, and c1 and c2 are the longitudinal and transverse wave speeds, given by (2.60),

respectively. Here, a vertical point force of amplitude P is applied on the boundary

of the elastic half-space and this force is moving at a constant speed c along the Ox1

axis, see Figure 3.1. Therefore the boundary condition on the surface x3 = 0 may

c

x
1

x
2

x
3

P

Figure 3.1. A load travelling along the surface of the half-space.

28



be written as (cf. eqn. (2.50))

∂u3
∂xi

+
∂ui
∂x3

= 0, (i = 1, 2), (3.2)

(c21 − 2c22)

(

∂u1
∂x1

+
∂u2
∂x2

)

+ c21
∂u3
∂x3

=
P

ρ
δ(x1 − ct)δ(x2), (3.3)

where ρ is the volume density.

Instead of the conventional setup (3.1), (3.2) and (3.3), we start from the 3D

hyperbolic-elliptic approximate formulation given in [13], [14], oriented to extraction

of the Rayleigh wave contribution to the overall dynamic response. Therefore we

have the following elliptic equation in the interior

∂2ϕ

∂x23
+ k21∆2ϕ = 0,

∂2ψi
∂x23

+ k22∆2ψi = 0, (i = 1, 2), (3.4)

and 2D hyperbolic equation along the surface x3 = 0

∆2ϕ− 1

c2R

∂2ϕ

∂t2
= APδ(x1 − ct)δ(x2), (3.5)

along with the relations

∂ϕ

∂xi
=

2

1 + k22

∂ψi
∂x3

, (i = 1, 2), (3.6)

where ∆2 = ∂2/∂x21 + ∂22/∂x
2
2 is the 2D Laplace operator and ki and A are defined

by equations (2.89) and (2.90) respectively.

Throughout this problem we mainly deal with a steady-state limit in which the

type of equation (3.5), rewritten in terms of the moving coordinate λ = x1 − ct,

depends on the load speed c. Thus we get from equation (3.5)

∂2ϕ

∂x22
+

(

1− c2

c2R

)

∂2ϕ

∂λ2
= APδ(λ)δ(x2). (3.7)

Equation (3.7) signifies that the type of the boundary equation, i.e. it being elliptic

or hyperbolic depends on the load speed c being less than or grater than the Rayleigh
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wave speed cR. Introducing the dimensionless parameter

ε =

√

∣

∣

∣

∣

1− c2

c2R

∣

∣

∣

∣

, (3.8)

equation (3.7) reduces to the hyperbolic equation

∂2ϕ

∂x22
− ε2

∂2ϕ

∂λ2
= APδ(λ)δ(x2), (3.9)

in the super-Rayleigh case (c > cR) and to the elliptic equation

∂2ϕ

∂x22
+ ε2

∂2ϕ

∂λ2
= APδ(λ)δ(x2), (3.10)

in the sub-Rayleigh case (c < cR). We thus observe a drastic distinction between the

3D sub and super-Rayleigh cases which is not a feature of the plane strain moving

load problem (cf. [29]). In particular, now we have a Mach cone associated with the

hyperbolic equation (3.9), see Figure 3.2.

λ

x2λ+
εx

2 =
0

λ−
εx2

=
0

Figure 3.2. Mach cone.

The adapted approximation is valid provided that ε ≪ 1, i.e. when the speed

of the load is close to the Rayleigh wave speed. The presence of the small physical

parameter in equations (3.9) and (3.10) motivates a near-field asymptotic analysis.

On introducing scaled variables by

η1 =
λ

ε
, η2 = x2, η3 =

x3
ε
, (3.11)
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we rewrite equations (3.4), (3.9), (3.10) and (3.6), having

∂2ϕ

∂η23
+ k21

∂2ϕ

∂η21
+ ε2k21

∂2ϕ

∂η22
= 0,

∂2ψi
∂η23

+ k22
∂2ψi
∂η21

+ ε2k22
∂2ψi
∂η22

= 0, (i = 1, 2),

(3.12)

in the interior (η3 > 0), along with the boundary conditions on the surface η3 = 0

∂2ϕ

∂η22
− ∂2ϕ

∂η21
=
AP

ε
δ(η1)δ(η2), (3.13)

∂2ϕ

∂η22
+
∂2ϕ

∂η21
=
AP

ε
δ(η1)δ(η2). (3.14)

The relations between the potentials take the form

∂ϕ

∂η1
=

2

1 + k22

∂ψ1

∂η3
,

∂ϕ

∂η2
=

2

ε (1 + k22)

∂ψ2

∂η3
, η3 = 0. (3.15)

The last formulae (3.12)–(3.14) support the assumption of a slow variation of all

the potentials along the variable x2. As a result, at leading order, i.e. ignoring the

terms containing the O(ε) terms, equation (3.12) does not contain the derivatives

with respect to η2.

3.2. Near-Field Steady-State Solution

As mentioned in the previous section the validity of the adapted model depends

on the small physical parameter ε. Since ε is a small parameter, ε2 will be smaller

and it can be neglected in comparison to ε. Therefore we neglect O(ε2) terms in the

elliptic equations for the interior given by (3.12), resulting in

∂2ϕ

∂η23
+ k21

∂2ϕ

∂η21
= 0,

∂2ψi
∂η23

+ k22
∂2ψi
∂η21

= 0, (i = 1, 2). (3.16)

Thus, the original 3D problem is reduced to two plane sub-problems in the variables

(η1, η2) and (η1, η3), respectively, over the surface and the interior.
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3.2.1. Super-Rayleigh case

We will first consider the super-Rayleigh case corresponding to c > cR. Since

the load speed is greater than the Rayleigh wave speed the causality principle,

which states that in front of the load there will not be any contribution of the

potential ϕ, needs to be taken into account (cf. Figure 3.2). This necessitates

to take the fundamental solution of the wave operator defined by (2.14) and the

causality principle solution of equation (3.13) having the following form:

ϕ(η1, η2, 0) =











AP

2ε
[H(η2 − η1)−H(η2 + η1)] , η1 < 0

0, η1 > 0.

(3.17)

The solution of the potential ϕ evaluated on the surface η3 = 0 can be extended into

the interior of the elastic half-space through the application of Poisson’s formula to

the elliptic equation (3.161) (see equation (2.26)). On doing so, we obtain

ϕ(η1, η2, η3) =
1

π

∞
∫

−∞

k1η3
(ξ − η1)2 + k21η

2
3

ϕ(ξ, η2, 0) dξ

=
AP

2πε
k1η3

0
∫

−∞

H(η2 − ξ)−H(η2 + ξ)

(ξ − η1)2 + k21η
2
3

dξ. (3.18)

In order to evaluate (3.18) it is first assumed that η2 > 0. In this case, because of

the definition of the Heaviside function, the integrand can be written as

H(η2 − ξ)−H(η2 + ξ) =











1, ξ ∈ (−∞,−η2)

0, ξ ∈ (−η2, 0).
(3.19)

Hence the integral given by (3.18) takes the form

ϕ(η1, η2, η3) =
AP

2πε
k1η3

−η2
∫

−∞

1

(ξ − η1)2 + k21η
2
3

dξ. (3.20)
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Therefore the solution in the interior for η2 > 0 is found as

ϕ(η1, η2, η3) =
AP

2πε

[

π

2
− arctan

(

η1 + η2
k1η3

)]

. (3.21)

In the case η2 < 0, the integrand of equation (3.18) becomes

H(η2 − ξ)−H(η2 + ξ) =











1, ξ ∈ (−∞, η2)

0, ξ ∈ (η2, 0)

(3.22)

and the integral now takes the form

ϕ(η1, η2, η3) =
AP

2πε
k1η3

η2
∫

−∞

1

(ξ − η1)2 + k21η
2
3

dξ. (3.23)

Thus the solution in the interior for η2 < 0 is obtained as

ϕ(η1, η2, η3) =
AP

2πε

[

π

2
− arctan

(

η1 − η2
k1η3

)]

. (3.24)

As a result, for all values of η2, the solution in the interior is written from equations

(3.21) and (3.24) as

ϕ(η1, η2, η3) =
AP

2πε

[

π

2
− arctan

(

η1 + |η2|
k1η3

)]

. (3.25)

It is clearly seen from (3.25) that there will be a resonance at the Rayleigh wave

speed cR, corresponding to ε = 0. It is worth mentioning that in the 2D case a

similar resonance is associated with a Rayleigh wave pole, see [29].

Let us now try to obtain potentials ψ1 and ψ2. These potentials can be deter-

mined from the solution of the Neumann problem given by equation (3.162) and

(3.15).
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First consider the Neumann problem given by

∂2ψ1

∂η23
+ k22

∂2ψ1

∂η21
= 0,

∂ψ1

∂η3

∣

∣

∣

∣

η3=0

=
(1 + k22)

2

∂ϕ

∂η1

∣

∣

∣

∣

η3=0

(3.26)

=











−1 + k22
2

AP

2ε
[δ(η2 − η1) + δ(η2 + η1)] , η1 < 0

0, η1 > 0

for the potential ψ1. Let χ(η1, η2, η3) = ∂ψ1(η1, η2, η3)/∂η3. Then

ψ1(η1, η2, η3) =

η3
∫

χ(η1, η2, s)ds,

and the Neumann problem becomes

∂2χ

∂η23
+ k22

∂2χ

∂η21
=

∂

∂η3

(

∂2ψ1

∂η23
+ k22

∂2ψ1

∂η21

)

= 0

(3.27)

χ(η1, η2, 0) =
∂ψ1

∂η3

∣

∣

∣

∣

η3=0

=











−AP (1 + k22)

4ε
[δ(η2 − η1) + δ(η2 + η1)] , η1 < 0

0, η1 > 0.

This is the Dirichlet problem for χ(η1, η2, η3) and its solution is given by

χ(η1, η2, η3) = −AP (1 + k22)

4πε
k2η3

0
∫

−∞

δ(η2 − ξ) + δ(η2 + ξ)

(ξ − η1)2 + k22η
2
3

dξ. (3.28)
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Thus, we have

ψ1(η1, η2, η3) = −AP (1 + k22)

4πε
k2

η3
∫

s

0
∫

−∞

δ(η2 − ξ) + δ(η2 + ξ)

(ξ − η21) + k22s
2

dξ ds

= −AP (1 + k22)

4πε
k2

0
∫

−∞

[δ(η2 − ξ) + δ(η2 + ξ)]

η3
∫

s

(ξ − η1)2 + k22s
2
ds dξ

= −AP (1 + k22)

8πεk2







0
∫

−∞

δ(η2 − ξ) ln
(

(ξ − η1)
2 + k22η

2
3

)

dξ +

+

0
∫

−∞

δ(η2 + ξ) ln
(

(ξ − η1)
2 + k22η

2
3

)

dξ







. (3.29)

For η2 > 0 the first integral in (3.29) vanishes due to the definition of the Dirac-delta

function. Therefore,

ψ1(η1, η2, η3) = −AP (1 + k22)

8πεk2
ln
(

(η1 + η2)
2 + k22η

2
3

)

, for η2 > 0. (3.30)

Similarly when η2 < 0 the second integral in equation (3.29) becomes zero. Thus,

ψ1(η1, η2, η3) = −AP (1 + k22)

8πεk2
ln
(

(η1 − η2)
2 + k22η

2
3

)

, for η2 < 0. (3.31)

As a result of equations (3.30) and (3.31), the potential ψ1 is obtained as

ψ1(η1, η2, η3) = −AP (1 + k22)

8πεk2
ln
(

(η1 + |η2|)2 + k22η
2
3

)

. (3.32)

Now let us consider the Neumann problem

∂2ψ2

∂η23
+ k22

∂2ψ2

∂η21
= 0,

∂ψ2

∂η3

∣

∣

∣

∣

η3=0

=
ε (1 + k22)

2

∂ϕ

∂η2

∣

∣

∣

∣

η3=0

(3.33)

=











ε (1 + k22)

2

AP

2ε
[δ(η2 − η1)− δ(η2 + η1)] , η1 < 0

0, η1 > 0
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for the potential ψ2. Let us introduce, again, an auxiliary function ω as

ω(η1, η2, η3) =
∂ψ2(η1, η2, η3)

∂η3

such that

ψ2(η1, η2, η3) =

η3
∫

ω(η1, η2, s)ds.

The Neumann problem thus reduces to the following Dirichlet problem.

∂2ω

∂η23
+ k22

∂2χ

∂η21
=

∂

∂η3

(

∂2ψ2

∂η23
+ k22

∂2ψ2

∂η21

)

= 0, (3.34)

ω(η1, η2, 0) =
∂ψ2

∂η3

∣

∣

∣

∣

η3=0

=











ε (1 + k22)

2

AP

2ε
[δ(η2 − η1)− δ(η2 + η1)] , η1 < 0

0, η1 > 0.

(3.35)

The solution of the Dirichlet problem (3.34)–(3.35) is again obtained by using Pois-

son’s formula as

ω(η1, η2, η3) =
AP (1 + k22)

4π
k2η3

0
∫

−∞

δ(η2 − ξ)− δ(η2 + ξ)

(ξ − η1)2 + k22η
2
3

dξ. (3.36)

Thus, we have

ψ2(η1, η2, η3) =
AP (1 + k22)

4π
k2

η3
∫

s

0
∫

−∞

δ(η2 − ξ)− δ(η2 + ξ)

(ξ − η21) + k22s
2

dξ ds

=
AP (1 + k22)

4π
k2

0
∫

−∞

[δ(η2 − ξ)− δ(η2 + ξ)]

η3
∫

s

(ξ − η1)2 + k22s
2
ds dξ

=
AP (1 + k22)

8πk2







0
∫

−∞

δ(η2 − ξ) ln
(

(ξ − η1)
2 + k22η

2
3

)

dξ −

−
0
∫

−∞

δ(η2 + ξ) ln
(

(ξ − η1)
2 + k22η

2
3

)

dξ







. (3.37)
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The potential ψ2 is readily obtained for η2 > 0 and η2 < 0 as

ψ2(η1, η2, η3) = −AP (1 + k22)

8πk2
ln
(

k22η
2
3 + (η1 + η2)

2
)

, for η2 > 0, (3.38)

and

ψ2(η1, η2, η3) =
AP (1 + k22)

8πk2
ln
(

k22η
2
3 + (η1 − η2)

2
)

, for η2 < 0 (3.39)

which may be combined into a single equation

ψ2(η1, η2, η3) = −AP (1 + k22) sgn(η2)

8πk2
ln
(

(η1 + |η2|)2 + k22η
2
3

)

. (3.40)

It is known from the Helmholtz decomposition of a vector field that a vector can

be decomposed as the sum of the gradient of a scalar potential ϕ and the curl of a

vector potential ψ. The components of the displacement field, namely u1, u2 and

u3 may therefore be written in terms of ϕ and ψ as

u1 =
∂ϕ

∂x1
− ∂ψ1

∂x3
, u2 =

∂ϕ

∂x2
− ∂ψ2

∂x3
, u3 =

∂ϕ

∂x3
+
∂ψ1

∂x2
+
∂ψ1

∂x2
. (3.41)

In the new variables (3.11), the displacement components reduce to

u1 =
1

ε

(

∂ϕ

∂η1
− ∂ψ1

∂η3

)

, u2 =
∂ϕ

∂η2
− 1

ε

∂ψ2

∂η3
, u3 =

1

ε

(

∂ϕ

∂η3
+
∂ψ1

∂η1

)

+
∂ψ2

∂η2
. (3.42)
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Substitution of the formulae (3.25), (3.32) and (3.40) into the expressions (3.42)

results in

u1 =
1

ε2
APη3
2π

[

1 + k22
2

k2
k22η

2
3 + (η1 + |η2|)2

− k1
k21η

2
3 + (η1 + |η2|)2

]

, (3.43)

u2 =
1

ε

APη3 sgn(η2)

2π

[

1 + k22
2

k2
k22η

2
3 + (η1 + |η2|)2

− k1
k21η

2
3 + (η1 + |η2|)2

]

, (3.44)

u3 = −AP (1 + k22)

4πk2

η1 + |η2|
k22η

2
3 + (η1 + |η2|)2

− 1

ε2
AP

2π

[

1 + k22
2k2

η1 + |η2|
k22η

2
3 + (η1 + |η2|)2

− k1
η1 + |η2|

k21η
2
3 + (η1 + |η2|)2

]

. (3.45)

It is easily seen from the expressions (3.43)–(3.45) that the displacement u2 is

asymptotically negligible in comparison with u1 and u3 since ε ≪ 1, namely u2 ∼
ε[u1, u3]. The last formulae also indicate discontinuities along the lines η2 = ±η1
on the surface η3 = 0. It is worth mentioning that the discontinuities only occur

behind the load, η1 < 0, due to the causality principle. The reason is that in the

super-Rayleigh case since the load speed is greater than the speed of the Rayleigh

wave, no contribution comes from the potentials in front of the load, see Figure 3.2.

3.2.2. Sub-Rayleigh case

Let us now consider the sub-Rayleigh case. Similar to the consideration of super-

Rayleigh case, we start by solving the boundary equation (3.14). On using the

fundamental solution of Laplace operator (see (2.16)), we get from (3.14)

ϕ(η1, η2, 0) =
AP

4πε
ln
(

η21 + η22
)

. (3.46)

The solution in the interior is expressed via the Poisson formula, taking the form

ϕ(η1, η2, η3) =
1

π

∞
∫

−∞

k1η3
(ξ − η1)2 + k21η

2
3

ϕ(ξ, η2, 0) dξ

=
AP

4π2ε
k1η3

∞
∫

−∞

ln (ξ2 + η22)

(ξ − η1)2 + k21η
2
3

dξ. (3.47)
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In order to evaluate the integral (3.47) we will employ the residue calculus. To this

end let us define a complex valued function f(z) as

f(z) =
ln(z + iη2)

(z − η1)2 + k21η
2
3

,

and consider the following integral

∫

C

f(z)dz,

where C is a contour in the complex plane whose choice will depend on the location

of the branch cut of the function f(z). The function f(z) has a branch point at

z = −iη2 and therefore the value of the integral will depend on the sign of η2.

First consider η2 > 0. In this case C must be a closed contour consisting of

the interval [−R,R] and the semicircle in the upper half plane, CR, so that the

integral converges, see Figure 3.3. The brach point z = −iη2 of f(z), in this case,

is on the negative imaginary axis and also f(z) has two poles at z1 = η1 + k1η3 and

z2 = η1 − k1η3. The branch cut does not lie in the region bounded by the contour

C and only the pole z1 is inside the region bounded by the contour C. The integral

may then be computed using the residue theorem:

−R R

CR

b z1 = η1 + ik1η3

−iη2

Branch Cut

Figure 3.3. Semicircular contour C for η2 > 0.
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∫

C

f(z)dz =

R
∫

−R

f(ξ)dξ +

∫

CR

f(z)dz = 2πi res(f(z), z1). (3.48)

The residue of f(z) at the pole z1 is

res(f(z), z1) = lim
z→z1

(z − z1)f(z) =
1

2ik1η3
ln(η1 + i(k1η3 + η2)),

and the integral over CR is zero as R→ ∞ since

∣

∣

∣

∣

∣

∣

∫

CR

f(z)dz

∣

∣

∣

∣

∣

∣

6

∫

CR

|f(z)|dz ≤ πR
lnR

R2 − k21η
2
3

→ 0, as R→ ∞.

As a result we obtain from equation (3.48)

∞
∫

−∞

ln (ξ + iη2)

(ξ − η1)2 + k21η
2
3

dξ =
π

k1η3
ln(η1 + i(k1η3 + η2)), (3.49)

from which we deduce that

∞
∫

−∞

1/2 ln (ξ2 + η22) + i arg (ξ + iη2)

(ξ − η1)2 + k21η
2
3

dξ =
π

k1η3

[

1

2
ln(η21 + (k1η3 + η2)

2)+

+i arg (η1 + i(k1η3 + η2))] . (3.50)

Finally the sought for integral is found as

∞
∫

−∞

ln (ξ2 + η22)

(ξ − η1)2 + k21η
2
3

dξ =
π

k1η3
ln(η21 + (k1η3 + η2)

2). (3.51)

Going back to equation (3.47) we may now write the potential ϕ in the interior for

η2 > 0 as

ϕ(η1, η2, η3, ) =
AP

4πε
ln(η21 + (k1η3 + η2)

2). (3.52)

Now consider η2 < 0. In this case, in order to make the integral convergent we

choose a closed contour C ′ consisting of the interval [−R,R] and the semicircle in

the lower half plane, CR, see Figure 3.4. Hence the branch cut is outside the closed

contour C ′ and only the pole z2 is in the region bounded by the closed contour C ′.

40



Employing once again the residue theorem we write

−R R

CR

b z2 = η1 − ik1η3

−iη2

Branch Cut

Figure 3.4. Semicircular contour C′ for η2 < 0.

∫

C

f(z)dz =

R
∫

−R

f(ξ)dξ +

∫

−CR

f(z)dz = −2πi res(f(z), z2). (3.53)

The residue of f(z) at z2 is easily evaluated as

res(f(z), z2) = lim
z→z2

f(z) = − 1

2ik1η3
ln(η1 − i(k1η3 − η2)).

We conclude from equation (3.53), as R→ ∞, that

∞
∫

−∞

ln (ξ + iη2)

(ξ − η1)2 + k21η
2
3

dξ =
π

k1η3
ln(η1 − i(k1η3 − η2)). (3.54)

Hence ∞
∫

−∞

ln (ξ2 + η22)

(ξ − η1)2 + k21η
2
3

dξ =
π

k1η3
ln(η21 + (k1η3 − η2)

2). (3.55)

The solution ϕ in the interior for η2 < 0 may, therefore, be written as

ϕ(η1, η2, η3) =
AP

4πε
ln(η21 + (k1η3 − η2)

2). (3.56)
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Consequently the solution of ϕ for all η2 now follows from equations (3.52) and

(3.56) given by

ϕ(η1, η2, η3) =
AP

4πε
ln(η21 + (k1η3 + |η2|)2). (3.57)

We should now check whether the solution ϕ is continuous at η2 = 0. Taking

η2 = 0 in the integral given by equation (3.47) we get

∞
∫

−∞

ln (ξ2)

(ξ − η1)2 + k21η
2
3

dξ =

0
∫

−∞

ln (ξ2)

(ξ − η1)2 + k21η
2
3

dξ +

∞
∫

0

ln (ξ2)

(ξ − η1)2 + k21η
2
3

dξ

=

∞
∫

0

ln (ξ2)

(ξ + η1)2 + k21η
2
3

dξ +

∞
∫

0

ln (ξ2)

(ξ − η1)2 + k21η
2
3

dξ (3.58)

which can again be evaluated with the help of the residue calculus.

Let us consider the first integral on the right hand side of in equation (3.58) and

define a complex valued function g(z) as

g(z) =
ln2 (z)

(z + η1)2 + k21η
2
3

which has a branch point at z = 0, and the simple poles at z1 = −η1 + ik1η3 and

z1 = −η1−ik1η3. The branch cut of g(z) is chosen as the positive real axis, therefore

we consider the contour Cr,R consisting of the circle Cr, |z| = r, and CR, |z| = R,

and the segments L1 and L2 respectively, see Figure 3.5. Since R is so large and r

is so small that two poles of g(z) lie inside Cr,R.
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CR

Cr

r

RL1

L2

b

b

z1

z2

θ

θ

Figure 3.5. Keyhole contour with the poles −η1 + ik1η3 and −η1 − ik1η3.

By the residue theorem

∫

Cr,R

g(z)dz =

∫

L1

g(ξ)dξ +

∫

CR

g(z)dz +

∫

L2

g(ξ)dξ +

∫

Cr

g(z)dz = 2πi

2
∑

k=1

res(g(z), zk).

(3.59)

The integrals along Cr and CR tend to zero as r → 0 and R → ∞ since

rmax
z∈Cr

|g(z)| → 0 as r → 0 and Rmax
z∈CR

|g(z)| → 0 as R → ∞ (see [30]). On the

upper line, L1, the argument of z = x + i0 is zero and on the lower line, L2, the

argument of z = x− i0 is 2π. Thus

On L1 : ln2(z) = (ln(x+ i0) + i arg(x+ i0))2 = (ln(x))2,

= ln2(x)

and

On L2 : ln2(z) = (ln(x− i0) + i arg(x− i0))2 = (ln(x) + i2π)2.

= ln2(x) + 4iπ ln(x)− 4π2

The residue of g(z) at the poles z1 and z2 are

res(g(z), z1) =
ln2(z1)

2(z1 + η1)
=

ln2(z1)

2ik1η3
=

1

2ik1η3
[ln(ρ) + i(π − θ)]2 ,
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and

res(g(z), z2) =
ln2(z2)

2(z2 + η1)
=

ln2(z1)

−2ik1η3
= − 1

2ik1η3
[ln(ρ) + i(π + θ)]2 ,

where ρ =
√

η21 + k21η
2
3 and θ = arctan (η1/k1η3). Consequently we obtain from

equation (3.59)

∫

Cr,R

g(z)dz =

R
∫

r

ln2(ξ)

(ξ + η1)2 + k21η
2
3

dξ +

r
∫

R

ln2(ξ) + 4iπ ln(x)− 4π2

(ξ + η1)2 + k21η
2
3

dξ

=
2πi

2ik1η3

{

[ln(ρ) + i(π − θ)]2 − [ln(ρ) + i(π + θ)]2
}

.

If we go over to the limit as r → 0 and R → ∞, we obtain

∞
∫

0

ln2(ξ)

(ξ + η1)2 + k21η
2
3

dξ −
∞
∫

0

ln2(ξ) + 4iπ ln(ξ)− 4π2

(ξ + η1)2 + k21η
2
3

dξ =
π

k1η3
4θ (π − i ln(ρ))

− 4iπ

∞
∫

0

ln(ξ)

(ξ + η1)2 + k21η
2
3

dξ + 4π2

∞
∫

0

1

(ξ + η1)2 + k21η
2
3

dξ = −4iπθ ln(ρ)

k1η3
+

4π2θ

k1η3
,

from which we deduce that

∞
∫

0

ln(ξ)

(ξ + η1)2 − k21η
2
3

dξ =
θ

k1η3
ln(ρ). (3.60)

Let us now consider the second integral in equation (3.58) and again define a

complex valued function h(z) as

h(z) =
ln2 (z)

(z − η1)2 + k21η
2
3

.

Since the brach cut of the logarithmic function again lies on the positive real axis

we consider the same closed contour Cr,R as in the previous integral. In this case

the poles of the function h(z), which are z3 = η1 + ik1η3 and z4 = η1 − ik1η3, are

different from the poles of the function g(z) but it does not have a great affect in

the calculation of the integral since there will be only changes in the argument of
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the poles (see Figure 3.6). Employing the residue theorem, integral over the Cr,R is

written as

∫

Cr,R

h(z)dz =

∫

L1

h(ξ)dξ +

∫

CR

h(z)dz+

+

∫

L2

h(ξ)dξ +

∫

Cr

h(z)dz = 2πi

4
∑

k=3

res(h(z), zk). (3.61)

CR

Cr

r

RL1

L2

b

b

z3

z4

θ

θ

Figure 3.6. Keyhole contour with the poles η1 + ik1η3 and η1 − ik1η3.

The integrals along Cr and CR again tend to zero as r → 0 and R → ∞ similar to

the previous calculation of the first integral in (3.58). At the same time on the upper

line, L1, since the argument of z = x+ i0 is zero ln2(z) = (ln(x))2 and on the lower

line, L2, since the argument of z = x − i0 is 2π ln2(z) = ln2(x) + 4iπ ln(x) − 4π2.

The residue of h(z) at he poles z3 and z4 are

res(h(z), z3) =
ln2(z3)

2(z3 − η1)
=

ln2(z3)

2ik1η3
=

1

2ik1η3
[ln(ρ) + iθ]2 ,

and

res(h(z), z4) =
ln2(z4)

2(z4 − η1)
=

ln2(z4)

−2ik1η3
= − 1

2ik1η3
[ln(ρ) + i(2π − θ)]2 ,
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where ρ =
√

η21 + k21η
2
3 and θ = arctan (η1/k1η3). As a result we get from equation

(3.61)

∫

Cr,R

h(z)dz =

R
∫

r

ln2(ξ)

(ξ − η1)2 + k21η
2
3

dξ +

r
∫

R

ln2(ξ) + 4iπ ln(x)− 4π2

(ξ − η1)2 + k21η
2
3

dξ

=
2πi

2ik1η3

{

[ln(ρ) + iθ]2 − [ln(ρ) + i(2π − θ)]2
}

.

Taking into account the limit as r → 0 and R → ∞, we obtain

∞
∫

0

ln2(ξ)

(ξ − η1)2 + k21η
2
3

dξ −
∞
∫

0

ln2(ξ) + 4iπ ln(ξ)− 4π2

(ξ − η1)2 + k21η
2
3

dξ =
π

k1η3
4(θ − π) (−π + i ln(ρ)) ,

− 4iπ

∞
∫

0

ln(ξ)

(ξ − η1)2 + k21η
2
3

dξ + 4π2

∞
∫

0

1

(ξ − η1)2 + k21η
2
3

dξ =
π

k1η3
4(θ − π) (−π + i ln(ρ)) ,

which gives
∞
∫

0

ln(ξ)

(ξ + η1)2 − k21η
2
3

dξ =
π − θ

k1η3
ln(ρ). (3.62)

Combining equations (3.47), (3.58), (3.60) and (3.62), the potential ϕ at η2 = 0 is

obtained as

ϕ(η1, 0, η3) =
AP

4π2ε
k1η3

[

θ

k1η3
ln(ρ) +

π − θ

k1η3
ln(ρ)

]

=
AP

4πε
ln(η21 + k21η

2
3). (3.63)

These results show that the obtained solution for the interior is continuous every-

where but is not differentiable in η2 along the plane η2 = 0 which is a result of

neglecting O(ε2) terms in equation (3.121).

The potentials ψ1 and ψ2, similar to the super-Rayleigh case, may be determined

from the solution of the Neumann problem (3.16) and (3.15). However here we only

present the expressions of the potentials without dwelling into the lengthy but the

straightforward calculations. Therefore ψ1 and ψ2 for the sub-Rayleigh case are
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given by

ψ1(η1, η2, η3) =
AP (1 + k22)

4πεk2
arctan

(

k2η3 + |η2|
η1

)

, (3.64)

and

ψ2(η1, η2, η3) =
AP (1 + k22) sgn(η2)

8πk2
ln
(

η21 + (k2η3 + |η2|)2
)

. (3.65)

respectively. Thus all potentials for the sub-Rayleigh case are determined and the

displacements can be written from equation (3.42) as

u1 =
1

ε2
AP

2π

[

η1
η21 + (k1η3 + |η2|)2

− 1 + k22
2

η1
η21 + (k2η3 + |η2|)2

]

, (3.66)

u2 =
1

ε

AP sgn(η2)

2π

[

k1η3 + |η2|
η21 + (k1η3 + |η2|)2

− 1 + k22
2

k2η3 + |η2|
η21 + (k2η3 + |η2|)2

]

, (3.67)

u3 = −AP (1 + k22)

4πk2

k2η3 + |η2|
η21 + (k2η3 + |η2|)2

+

+
1

ε2
AP

2π

[

k1
k1η3 + |η2|

η21 + (k1η3 + |η2|)2
− 1 + k22

2k2

k2η3 + |η2|
η21 + (k2η3 + |η2|)2

]

. (3.68)

It can be seen from the last expressions that the asymptotically secondary displace-

ment u2 has a discontinuity at η2 = 0 because of the presence of sgn(η2) in (3.67).

This originates from the aforementioned discontinuity of the derivative ∂ϕ/∂η2 (cf.

expressions for displacements (3.42)).

3.3. Investigation of the Accuracy of the Asymptotic Solutions

In the previous section, the original 3D problem was reduced to two plane prob-

lems by neglecting O(ε2) terms in the elliptic equations for the interior. Then the

approximate solutions were presented for the plane sub-problems by solving 2D

Dirichlet problems. We will now investigate the accuracy of the approximate solu-

tions obtained by neglecting O(ε2) terms. To this end we will compare the solution

of the 3D the boundary value problem, keeping O(ε2) terms, with the approximate

solution (3.57). We will carry out the investigation only for the sub-Rayleigh case.

A similar procedure may be applied straightforwardly to the super-Rayleigh case.

If O(ε2) is not neglected in equation (3.121), we have a 3D boundary value prob-
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lem (3.12)1, (3.14) we reproduce here

∂2ϕ

∂η23
+ k21

∂2ϕ

∂η21
+ ε2k21

∂2ϕ

∂η22
= 0,

(3.69)
∂2ϕ

∂η22
+
∂2ϕ

∂η21
=
AP

ε
δ(η1)δ(η2).

On introducing scaled variables

η1 = k1σ, η2 = εk1ν

equations (3.69) are written as

∂2ϕ

∂η23
+
∂2ϕ

∂σ2
+
∂2ϕ

∂ν2
= 0,

(3.70)
∂2ϕ

∂ν2
+ ε2

∂2ϕ

∂σ2
= APδ(σ)δ(ν).

In order to reduce (3.702) to a standard elliptic equation, we again make a change

of variable as σ = εγ. Thus equation (3.702) takes the form

∂2ϕ

∂ν2
+
∂2ϕ

∂γ2
=
AP

ε
δ(γ)δ(ν), (3.71)

whose solution is given by means of the fundamental solution of the Laplace operator

as

ϕ(γ, ν, η3) =
AP

4πε
ln
(

γ2 + ν2
)

. (3.72)

Therefore in variables (σ, ν) the boundary solution becomes

ϕ(σ, ν, η3) =
AP

4πε
ln

(

σ2

ε2
+ ν2

)

. (3.73)
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Hence, the solution of the Rayleigh wave field over the interior can be written with

the help of the boundary solution (3.73) and Posisson’s formula as

ϕ(η1, η2, η3) =
1

2π

∞
∫

−∞

∞
∫

−∞

η3 ϕ(ξ1, ξ2, 0)

[(ξ1 − σ)2 + (ξ2 − ν)2 + η23]
3

2

dξ1 dξ2

=
APη3
8π2ε

∞
∫

−∞

∞
∫

−∞

log (ξ21/ε
2 + ξ22)

[

(

ξ1 − η1
k1

)2

+
(

ξ2 − η2
εk1

)2

+ η23

]
3

2

dξ1 dξ2. (3.74)

Let us now compare the approximation (3.57) and the solution of the 3D bound-

ary value problem (3.74). Since the components of the displacement can be expressed

in terms of the one wave potentials since the wave potentials are related each other

with a relation given in (3.15) we only consider the derivative of (3.74). Hence nu-

merical values of derivative χ = 4πε
AP

∂ϕ
∂η2

are shown in Figure 3.7.
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Figure 3.7. Comparison of the derivatives of full and asymptotic solutions (3.57) and (3.74) in
the sub-Rayleigh case, for ν = 0.25, η1 = η3 = 1 and (a) ε = 0.1, (b) ε = 0.01.

It may clearly be seen from Figure 3.7 that for ε ≪ 1 the full solution corre-

sponding to the derivative of (3.74) just smoothes the jump at η2 = 0 arising when

differentiating (3.74) with respect to η2. It can also be seen that when the load

speed is closer the Rayleigh wave speed, corresponding to smaller values of ε, the

approximate solution becomes more accurate.
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3.4. Transient Surface Motion

In Section 2.2 solutions of the considered problem were investigated when the

speed of the load is close the Rayleigh wave speed, corresponding to ε≪ 1. Thus in

the near-field the steady-state solutions were obtained for the sub and super-Rayleigh

cases respectively. As can be seen from the obtained solutions, (3.43)–(3.45) and

(3.66)–(3.68), there would be a resonance at ε = 0, corresponding to the Rayleigh

wave speed being equal to load speed, i.e. cR = c. This resonance for c = cR

motivates a transient analysis of the 3D moving load problem. Therefore in this

section we focus on finding the solution of surface equation (3.5). The fundamental

solution of the 2D wave equation is written from equation (2.12) as

F(x1, x2, t) = −
c
R
H
(

c
R
t−
√

x21 + x22

)

2π
√

c2
R
t2 − x21 − x22

. (3.75)

Then the solution of equation (3.5) may be expressed as a convolution, i.e.

ϕ(x1, x2, 0, t) =

t
∫

0

F(x1 − ct, x2, t− τ)d τ

= −APcR
2π

t
∫

0

H
(

c
R
(t− τ)−

√

(x1 − cτ)2 + x22

)

√

c2
R
(t− τ)2 − (x1 − cτ)2 − x22

dτ, (3.76)

or equivalently,

ϕ(λ, x2, 0, t) = −APcR
2π

t
∫

0

H(c
R
s−

√

(λ+ cs)2 + x22)
√

(c2
R
− c2)s2 − 2scλ− λ2 − x22

ds, (3.77)

where λ = x1 − ct and s = t− τ .

First consider the resonant regime c = cR. In this case argument of the square

root function may be positive when λ < 0 and similarly the argument of the Heavi-

side function is positive when t > −λ
2 + x22
2cRλ

. Under these assumptions the integral
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in (3.77) takes the following form

ϕ(λ, x2, 0, t) = −APcR
2π

t
∫

−λ2+x2
2

2cRλ

1
√

−2scRλ− λ2 − x22
ds, (3.78)

from which we deduce that

ϕ(λ, x2, 0, t) =
AP

2πλ

√

−λ2 − 2cRtλ− x22. (3.79)

Taking the limit as t→ ∞ we get

ϕ(λ, x2, 0, t) ∼ C
√
t, C =

AP

π

√

− cR
2λ
. (3.80)

Thus, there is no steady-state limit as t → ∞ for a load moving with the Rayleigh

wave speed. In this case the solution grows in time as
√
t whereas the solution of

the related plane strain problem demonstrates a linear growth in time, see [15].

In the sub-Rayleigh case the argument of the Heaviside function is positive i.e.,

that the Heaviside function is different from zero when

s > p +
√

p2 + r and s < p−
√

p2 + r, (3.81)

where

p =
λc

c2R − c2
and r =

λ2 + x22
c2R − c2

. (3.82)

Since λ < 0, s will be positive only for the first inequality. Thus we have

ϕ(λ, x2, 0, t) = −APcR
2π

t
∫

p+
√
p2+r

1
√

(c2
R
− c2)s2 − 2scλ− λ2 − x22

ds

=
AP

2πε
ln

√

λ2c2 + (c2R − c2) (λ2 + x22)

(c2R − c2) t− λc+
√

c2R − c2
√

(c2R − c2) t2 − 2λct− λ2 − x22
,

(3.83)

where

t >
λc+

√

λ2c2 + (c2R − c2) (λ2 + x22)

c2R − c2
. (3.84)
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It follows from (3.83) that as t→ ∞

ϕ(λ, x2, 0) ∼
AP

2πε

[

ln

√

λ2

ε2
+ x22 − ln

(

2
√

c2R − c2 t

)

]

. (3.85)

As might be expected, the first term in R. H. S. of (3.85) coincides with the steady-

state solution (3.46). The extra time-dependent logarithmic term is homogenous

over the surface and as a consequence, does not affect the displacement. A similar

procedure may be applied to the integral (3.77) in the super-Rayleigh case and it is

expect that the integral (3.77) takes the value (3.17) at steady-state limit.

3.5. Numerical Results of the Uncoated Half-Space

In this section numerical values of the steady state solution (3.43)-(3.45) and

(3.66)-(3.68) are illustrated. The frequency equation of surface waves is expressed

by

c2R
c22

{

(

cR
c2

)6

− 8

(

cR
c2

)4

+ (24− 16k−2)

(

cR
c2

)2

− 16(1− k−2)

}

= 0, (3.86)

where k2 = 2(1−ν)/(1−2ν), see [25]. Equation (3.86) is reduced to a cubic equation

in (cR/c2)
2 the roots of which may be real or complex and depend on the Poisson

ratio ν. However any complex values of (cR/c2)2 will not acceptable in the general

theory of vibrations of stable systems and also (cR/c2)
2 must be less than 1, see [2].

If we set ν = 0.25 the suitable root of equation (3.86) will be 2−2/
√
3 corresponding

to cR = 0.9194c2.

The principal displacements displayed in the figures to follow are normalized as

Ui(η1, η2, η3) =
2π

AP
ui(η1, η2, η3), i = 1, 3

Let us first consider the super-Rayleigh case. In this case, since c > cR and

cR = 0.9194c2, we set the speed of the load c = 0.924c2, and therefore ε = 0.1.

Figure (3.8) shows the variation of the vertical displacement U3 along the tra-

jectory of the load depending on depth. As expected, it is observed that there is

a decay away from the surface, which is a characteristic of the Rayleigh wave field.
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In other words, Figure 3.8 shows that the effect of the surface wave disappears as

the depth increases along the x3-axis. A singular behaviour under a point force

(ηk = 0, k = 1, 2, 3) is clearly seen in Figure 3.8 a. Figure 3.8 b indicates surface

discontinuity at η1 = −η2 = −1, η3 = 0. Because of the causality principle the effect

of the Rayleigh wave field only occurs in the contour of the Mach cone behind of

the load η1 < 0 (cf. Figure 3.2). Therefore in Figure 3.8 b there is no disturbance in

front of the load corresponding to η1 > 0.
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Figure 3.8. The scaled displacement U3 vs. η1 in the super-Rayleigh case for (a) η2 = 0,
(b) η2 = 1.
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Figure 3.9. The scaled displacement U3 vs. η2 in the super-Rayleigh case for η1 = −1.

53



The variation of the displacement U3 along the other horizontal variable η2 is

depicted in Figure 3.9 for several values of the depth variable η3 and η1 = −1. Once

again surface discontinuities similar to that in Figure 3.8 b are observed. However,

here we have two surface discontinuities η2 = ±η1 = ±1 due to structure of the

displacement component u3, see equation (3.45).

The next Figure, Figure 3.10, shows the behaviour of the principal in-plane dis-

placement U1. In this case, as in Figure 3.8, there are surface discontinuities at

η1 = 0 and η1 = −1 respectively. It can again be observed that due to the causality

principle there are no disturbances in front of the load.
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Figure 3.10. The scaled displacement U1 vs. η1 in the super-Rayleigh case for (a) η2 = 0,
(b) η2 = −1.

Let us now consider the sub-Rayleigh case. In this case the speed of the load is

c = 0.9148c2 which corresponds to c < cR and again to ε = 0.1.

Figure 3.11 shows a typical variation of the vertical displacement along the hor-

izontal variable η2 at a given depth. The approximate formula (3.68) dictates a

non-harmonic behaviour near the surface which may be seen through the curves for

η3 = 0, 1, 3 and 5.
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Figure 3.11. The scaled displacement U3 vs. η2 in the sub-Rayleigh case for η1 = 1.
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4. 3-DIMENSIONAL MOVING LOAD PROBLEM FOR A COATED

ELASTIC HALF-SPACE

In this chapter the near-resonant regimes of a moving load in a 3D problem

for a coated elastic half-space is considered. First, the statement of the problem is

presented and then the problem is reduced to the steady-state regime by proposing

two asymptotic scalings. The solutions of the reduced problems may be expressed

through integral transforms. The evaluation of the obtained integrals are subject

to asymptotic analysis in the far-field using the stationary phase method. Finally,

numerical comparisons of exact and asymptotic results are presented for both cases.

4.1. Statement of the Problem and Scaling

Consider the 3D elastodynamic response of a linearly isotropic half-space (−∞ <

x1, x2 <∞, 0 6 x3) coated by a thin layer (−∞ < x1, x2 <∞, −h 6 x3 6 0) under

the action of a concentrated vertical force of magnitude P moving at a constant

speed c along the line x2 = 0 on the surface x3 = −h, see Figure 4.1.

①✶

�✷

①✸

✵

✁❤

❝

P

Figure 4.1. Coated half-space under a moving load.

The approximate hyperbolic-elliptic formulation will again be employed for the

Rayleigh wave field. As a result of this approximation, analogous to the uncoated

problem, we obtain the same elliptic equations given by (3.4) in the interior of the

elastic half-space, which are

∂2ϕ

∂x23
+ k21∆2ϕ = 0,

∂2ψi
∂x23

+ k22∆2ψi = 0, (i = 1, 2).
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Due to the coating, however, boundary equation along the surface x3 = 0 is now

governed by the singularly perturbed hyperbolic equation

∆2ϕ− 1

c2R

∂2ϕ

∂t2
− bh

√

−∆2∆2ϕ = APδ(x1 − ct)δ(x2), (4.1)

where b is a constant depending on the material parameters of the half-space and

coating, A is defined by (2.90) and
√
−∆2 is a pseudo-differential operator, for more

details see [20], [21] and [14]. It is also worth mentioning that the parameter b in

the proposed model may take both positive and negative values corresponding to

the local minimum and maximum of the phase speed equal to Rayleigh wave speed,

see [31], and also [14]. Therefore the sign of b is crucial for the type of the surface

behaviour.

The approximate solution of the Rayleigh wave field for the coated elastic half-

space can be obtained in a similar way to the uncoated problem from the solution

of the sub-problems including 2D boundary value problems given by (3.4) and (4.1).

Then the obtained solution may be extended over the interior of the half space by

employing the Poisson formula. But here instead of this procedure, we will only

deal with tangential displacements along the plane x3 = 0. Using the displacement

components introduced in (3.421)

u1 =
∂ϕ

∂x1
− ∂ψ1

∂x3
, u2 =

∂ϕ

∂x2
− ∂ψ2

∂x3
,

and the relations between the potentials on the surface x3 = 0

∂ϕ

∂xi
=

2

1 + k22

∂ψi
∂x3

, i = 1, 2,

we obtain the expressions of the tangential displacements as

ui =
c2R
2c22

∂ϕ

∂xi
, i = 1, 2. (4.2)

In investigating the solution of equation (4.1) we restrict ourselves to the steady

state regime. On introducing the moving coordinate λ = x1 − ct, we get from
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equation (4.1) for the sub-Rayleigh case

∂2ϕ

∂x22
− ε2

∂2ϕ

∂λ2
− bh

√

−
(

∂2

∂x22
+

∂2

∂λ2

) (

∂2ϕ

∂x22
+
∂2ϕ

∂λ2

)

= APδ (λ) δ (x2) , (4.3)

and the super-Rayleigh case

∂2ϕ

∂x22
+ ε2

∂2ϕ

∂λ2
− bh

√

−
(

∂2

∂x22
+

∂2

∂λ2

) (

∂2ϕ

∂x22
+
∂2ϕ

∂λ2

)

= APδ (λ) δ (x2) , (4.4)

where ε is defined as in equation (3.8):

ε =

√

∣

∣

∣

∣

1− c2

c2R

∣

∣

∣

∣

.

The adapted model is oriented to the analysis of a near-resonant response dominated

by the Rayleigh wave contribution and is valid provided that ε ≪ 1, see [15], [28].

It also assumes that the thickness of the coating h is small compared to a typical

wavelength. The presence of two small parameters, namely ε and h, in equations

(4.3) and (4.4) leads to two different types of degeneration; at ε = 0 and at h = 0,

corresponding to the critical speed of the load coinciding with the Rayleigh wave

speed, and an uncoated half-space, respectively. This observation motivates the

scaling

λ =
ξbh

ε2
, x2 =

ηbh

ε3
, (4.5)

which defines an elongated domain over the (x2h
−1, λh−1) plane, see Figure 4.2.

Utilizing the scaling (4.5), equations (4.4) and (4.3) become

∂2ϕ

∂η2
− ∂2ϕ

∂ξ2
−
√

−
(

∂2

∂ξ2
+ ε2

∂2

∂η2

) (

∂2ϕ

∂ξ2
+ ε2

∂2ϕ

∂η2

)

=
AP

ε
δ (ξ) δ (η) , (4.6)

and

∂2ϕ

∂η2
+
∂2ϕ

∂ξ2
−
√

−
(

∂2

∂ξ2
+ ε2

∂2

∂η2

) (

∂2ϕ

∂ξ2
+ ε2

∂2ϕ

∂η2

)

=
AP

ε
δ (ξ) δ (η) , (4.7)
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Figure 4.2. Asymptotic scaling.

respectively. Since ε is a small physical parameter, O (ε2) terms can be neglected.

Neglecting O (ε2) terms in equations (4.6) and (4.7) we obtain

∂2ϕ

∂η2
− ∂2ϕ

∂ξ2
−
√

− ∂2

∂ξ2
∂2ϕ

∂ξ2
=
AP

ε
δ (ξ) δ (η) , (4.8)

∂2ϕ

∂η2
+
∂2ϕ

∂ξ2
−
√

− ∂2

∂ξ2
∂2ϕ

∂ξ2
=
AP

ε
δ (ξ) δ (η) , (4.9)

respectively.

4.2. Solution of the Problem

In this section we will obtain the solutions of the boundary equations (4.8) and

(4.9), corresponding to sub and super-Rayleigh cases, respectively. The tangential

displacements along the plane x3 = 0 will then be expressed through the obtained

solutions.

4.2.1. Super-Rayleigh case

Boundary equation (4.8) along the plane x3 = 0 for the coated half-space, due to

the inclusion of a term governed by a pseudo-differential operator, cannot be solved

by means of the fundamental solution which was employed in Chapter 2. Therefore

integral transform methods will be employed in order to obtain the solution of
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equation (4.8). Hence, let us first apply the Fourier transform to equation (4.8)

in the variable ξ. We know from Section 1.2 that the Fourier transform of the

differential operator L(x, D) acting on the function f(x) is equal to the symbol of

the operator multiplied by f̂(ξ), the Fourier transform of f(x). Since the symbol of
√

−∂2/∂ξ2 is |k| the Fourier transform of equation (4.8) results in

d2ϕF

dη2
+ k2(1 + |k|)ϕF =

AP

ε
δ(η), (4.10)

where

ϕF (k, η, 0) =

∞
∫

−∞

ϕ (ξ, η, 0) e−ikξdξ. (4.11)

On applying two sided Laplace transform to (4.10) gives

ϕFL =
AP

ε

1

s2 + k2(1 + |k|) , (4.12)

where

ϕFL (k, η, 0) =

∞
∫

−∞

ϕF (k, η, 0) e−sηdη. (4.13)

Taking into account the symmetry of the problem in the variable η, the inverse

Laplace transform of equation (4.12),which can be evaluated through the residue

calculus, may ben expressed as

ϕF =
AP

ε

sin
(

|k|
√

1 + |k||η|
)

|k|
√

1 + |k|
. (4.14)

Then the related inverse Fourier transform of equation (4.14) is written in integral

form as

ϕ(ξ, η, 0) =
AP

2πε

∞
∫

−∞

sin
(

|k|
√

1 + |k| |η|
)

k
√
1 + k

eikξdk. (4.15)
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Since the integrand of (4.15) is even, we may rewrite it as

ϕ(ξ, η, 0) =
AP

πε

∞
∫

0

sin
(

k
√
1 + k |η|

)

cos (k|ξ|)
k
√
1 + k

dk

=
AP

2πε

∞
∫

0

sin
(

k
√
1 + k |η|+ k|ξ|

)

+ sin
(

k
√
1 + k |η| − k|ξ|

)

k
√
1 + k

dk

=
AP

2πε
Im







∞
∫

0

ei(k
√
1+k |η|+k|ξ|) + ei(k

√
1+k |η|−k|ξ|)

k
√
1 + k

dk







. (4.16)

The tangential displacements given by (4.2) along the surface x3 = 0 may now be

expressed through the integral (4.16). Since the analysis is rather similar for both

displacements we only deal with the horizontal displacement u1 which can be written

in the new variable as

u1 =
ε2c2R
2bhc22

∂ϕ

∂ξ
. (4.17)

Therefore u1 is written from equation (4.16) as

u1(ξ, η, 0) =
AP c2R ε sgn(ξ)

4πbhc22

2
∑

n=1

In(ξ, η), (4.18)

where

In = (−1)n+1

∞
∫

0

cos (|ξ|hn(k))
g(k)

dk = (−1)n+1Re

∞
∫

0

ei|ξ|hn(k)

g(k)
dk, n = 1, 2 (4.19)

and

g(k) =
√
1 + k, hn(k) = k [g(k)µ− (−1)n] , µ =

∣

∣

∣

∣

η

ξ

∣

∣

∣

∣

. (4.20)

Calculation of integrals (4.19) in the conventional methods is quite difficult even

almost impossible. Therefore we will investigate the far-field asymptotic behaviour

of the oscillating integrals (4.19) as |ξ| ≫ 1, assuming µ ∼ 1. In other words we

try to obtain an asymptotic expansion of the integral for large values of ξ. To this

end, we make use of stationary phase method which gives an asymptotic expansion

of integrals when the integrand has stationary points in the interval of the integral,

see Section 1.6.4.
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We first investigate the asymptotic behaviour of I1 where h1(k) is defined in

equation (4.20). The stationary points of h1(k) can be determined by its derivative,

i.e.

h′1(k) = µ
√
1 + k +

kµ

2
√
1 + k

+ 1 = 0.

This equation can be put in an appropriate form by changing the variable ρ2 = 1+k,

giving

3µρ2 + 2ρ− µ = 0,

whose roots are

ρ1 =
−1 +

√

1 + 3µ2

3µ
and ρ2 =

−1 −
√

1 + 3µ2

3µ
. (4.21)

Because of the definition of ρ these new roots must be greater than one so that they

can be a stationary point of I1. The second root ρ2, since µ =
∣

∣

∣

η
ξ

∣

∣

∣
> 0, is negative

and outside of the integration domain. Therefore ρ2 is not a stationary point for the

integral I1. Similarly since ρ1 must be greater than one, we can write

ρ1 =
−1 +

√

1 + 3µ2

3µ
> 1.

It can be obtained from the last inequality that 2µ2+2µ < 0. However, since µ > 0

this inequality cannot be satisfied. Therefore ρ1 cannot be a stationary point of the

investigated integral. Thus I1 does not have any stationary points.

Let us now investigate the stationary points of the second integral I2 where h2(k)

is given by (4.20). The stationary points can be obtained by

h′2(k) = µ
√
1 + k +

kµ

2
√
1 + k

− 1 = 0.

Changing the variable as ρ2 = 1 + k gives

3µρ2 − 2ρ− µ = 0,
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the roots of which are given by

ρ3 =
1 +

√

1 + 3µ2

3µ
, and ρ4 =

1−
√

1 + 3µ2

3µ
. (4.22)

Since µ > 0, the second root ρ4 is less than unity and is not be a stationary point

of the integral I2. As for the first root ρ3, requiring ρ3 > 1, we have

ρ3 =
1 +

√

1 + 3µ2

3µ
> 1,

which gives 2µ2 − 2µ < 0. Therefore we see that I2 has a stationary point when

0 < µ < 1 which is given by

k∗ =
2(1− 3µ2 +

√

1 + 3µ2)

9µ2
. (4.23)

There are two points to be noted. First, since the first integral I1 does not have

a stationary point whereas the second integral I2 has a one, the effect of the first

integral is asymptotically negligible compared to the second integral I2 which is

dominated by the contribution of the stationary point of h2(k). In order to obtain

an approximate formulation for u1 it is sufficient to find the asymptotic expansion

of I2. Second, at the contour of the Mach cone µ = 1 (|ξ| = |η|) the stationary

point k∗ = 0 coincides with the lower limit of the integral I2. It is also known that

an integral has two different order of asymptotic expansions when the stationary

point is inside or at the boundary of the integration domain. Therefore we have to

apply the uniform stationary phase method in order to obtain a uniform asymptotic

expansion for I2 (see [32]).

Let us now expand h2(k) in a Taylor series about k∗ of order 2 in order to get

the uniform asymptotic expansion of I2. Since k∗ is a stationary point of h2(k),

h′2(k∗) = 0. Therefore the Taylor expansion of h2(k) is written as

h2(k) = h2(k∗) +
h′′2(k∗)

2
(k − k∗)

2.
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Hence, if we apply the uniform stationary phase method and take the leading order

term, we have

I2 ∼ Re







ei|ξ|h2(k∗)

g(k∗)

∞
∫

0

e
1

2
i|ξ|h′′2 (k∗)(k−k∗)2dk







, (4.24)

where

h∗ = h2(k∗) =
2
(

1− 3µ2 +
√

1 + 3µ2
)(

√

1 + 3µ2 − 2
)

27µ2
, (4.25)

h′′∗ = h′′2(k∗) =
9µ2

(

1 + 3µ2 +
√

1 + 3µ2
)

2
(

1 +
√

1 + 3µ2
) , (4.26)

and

g∗ = g(k∗) =
1 +

√

3µ2 + 1

3µ
. (4.27)

Introducing the variable u
√

|ξ|h
′′
∗
2
(k − k∗) = u

the asymptotic expression of I2 given by (4.24) may be written as

I2 ∼ Re















ei|ξ|h∗

g∗

√

2

|ξ|h′′∗

∞
∫

−k∗
√

|ξ|h′′∗
2

eiu
2

du















∼ Re

{

ei|ξ|h∗

g∗

√

2

|ξ|h′′∗

[

√

π

8
− C

(

−k∗
√

|ξ|h′′∗
2

)

+

+i

(

√

π

8
− S

(

−k∗
√

|ξ|h′′∗
2

))]}

, (4.28)

where S(x) and C(x) are the Fresnel functions, defined by

S(x) =

x
∫

0

sin
(

t2
)

dt, C(t) =

x
∫

0

cos
(

t2
)

dt, (4.29)
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see [33]. Taking the real part of (4.28) we obtain the asymptotic expansion of I2 as

I2 ∼
1

g∗

√

2

|ξ|h′′∗

{

cos (|ξ|h∗)
[

√

π

8
− C

(

−k∗
√

|ξ|h′′∗
2

)]

−

− sin (|ξ|h∗)
[

√

π

8
− S

(

−k∗
√

|ξ|h′′∗
2

)]}

. (4.30)

The resulting displacement u1 is then given by

u1 ∼
AP εc2Rsgn(ξ)
4πbhc22g∗

√

2

h′′∗

1

|ξ|1/2 F (|ξ|, µ), (4.31)

where

F (|ξ|, µ) = cos (|ξ|h∗)
[

π

8
− C

(

−k∗
√

|ξ|h′′∗
2

)]

−

− sin (|ξ|h∗)
[

π

8
− S

(

−k∗
√

|ξ|h′′∗
2

)]

. (4.32)

The interpretation of the formulae in this section written in terms of |ξ| and |η|
relies on the implementation of the causality principle. In the absence of a coating,

when h = 0, equation (4.8) degenerates to the wave equation. When the half-space

is coated on its surface it is logical to deal with the Mach cones behind the load

only, i.e. at b > 0 for ξ > 0 and b < 0 for ξ < 0, as follows from scaling (4.5), see

Figure 4.3.

❜ ❃ ✵❜ ❁ ✵

✵ ✘

✑

Figure 4.3. Mach cone in coated half-space.
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The full solution of the associated original problem in 3D elasticity will con-

tain the contribution of the faster compression and shear waves ignored within the

framework of the adapted specialized formulation (cf. Section 3.1). As a result, the

question of taking into consideration both Mach cones (behind and in front of the

load) may be raised. To a certain extend, this may be relevant to the phenomenon

of a head shear wave propagating faster that a cylindrical shear wave in case of the

plane Lamb problem (cf. [34]).

Another interesting feature is concerned with the dispersive nature of the ana-

lyzed surface wave governed by a singularly perturbed wave equation. In this case,

due to causality, we seemingly have to require the decay of the solution outside the

interior of the Mach cones predicted by the related degenerate non-dispersive equa-

tion. The asymptotic behaviours of the Fresnel functions in equation (4.32) at the

large imaginary values of the argument show that the function (4.32) is exponentially

small at µ− 1 ≫ |ξ|−1.

4.2.2. Sub-Rayleigh case

In this section, we will obtain an asymptotic solution of the longitudinal dis-

placement u1 in the sub-Rayleigh case. To this end, we will employ the integral

transforms to obtain the solution of the boundary equation (4.9) as was done in

the previous section. Taking, first, the Fourier transform of equation (4.9) in the

variable ξ, we get
d2ϕF

dη2
− k2(1− |k|)φF =

AP

ε
δ(η), (4.33)

where Fourier transform is defined by (4.11). Applying the two-sided Laplace trans-

form defined by (4.13) to equation (4.33) results in

ϕFL =
AP

ε

1

s2 − k2(1− |k|) . (4.34)

Taking into account the structure of the investigated problem, it is a fact that

the solution of equation (4.34) must be symmetric in η and vanishes as η → ∞.
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Therefore the inverse Laplace transform of (4.34) may be written as

ϕF (k, η, 0) =







































−AP
ε

e−|k|
√

1−|k||η|

2|k|
√

1− |k|
, |k| < 1;

AP

ε

sin
(

|k|
√

|k| − 1|η|
)

|k|
√

|k| − 1
, |k| > 1.

(4.35)

The inverse Fourier transform of equation (4.35) may be written in the usual manner,

however due to the singularities of the integrand, we will write the inverse transform

in three parts giving

ϕ(ξ, η, 0) =
AP

2πε







−1
∫

−∞

sin
(

−k
√
−k − 1 |η|

)

−k
√
−k − 1

eikξdk −
1
∫

−1

e−|k|
√

1−|k| |η|

|k|
√

1− |k|
eikξdk+

+

∞
∫

1

sin
(

k
√
k − 1 |η|

)

k
√
k − 1

eikξdk







=
AP

2πε







∞
∫

1

sin
(

k
√
k − 1 |η|

)

k
√
k − 1

e−ikξdk − 2

1
∫

0

e−k
√
1−k |η|

k
√
1− k

cos(kξ)dk+

+

∞
∫

1

sin
(

k
√
k − 1 |η|

)

k
√
k − 1

eikξdk







=
AP

2πε







∞
∫

1

sin
(

k
√
k − 1 |η|

)

k
√
k − 1

(

eikξ+e−ikξ
)

dk−2

1
∫

0

e−k
√
1−k |η|

k
√
1− k

cos(kξ)dk







=
AP

πε







∞
∫

1

sin
(

k
√
k − 1 |η|

)

k
√
k − 1

cos(k|ξ|)dk−
1
∫

0

e−k
√
1−k |η|

k
√
1− k

cos(kξ)dk







. (4.36)

Thus, the longitudinal displacement u1 along the plane x3 = 0 can be expressed by

u1(ξ, η, 0) =
APεc2R sgn(ξ)

2πc22bh





1
∫

0

e−k
√
1−k|ξ|µ

√
1− k

sin (k|ξ|)dk−

−
∞
∫

1

sin
(

k
√
k − 1|ξ|µ

)

√
k − 1

sin (k|ξ|) dk



 . (4.37)
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Let us investigate asymptotic expansion (|ξ| ≫ 1) of the integral (4.37). We begin

with the first integral in equation (4.37). Changing the variable k to r =
√
1− k,

the integral takes the form

1
∫

0

e−k
√
1−k µ|ξ|

√
1− k

sin(kξ)dk = 2

1
∫

0

e|η|(r
2−1)r sin((1− r2)|ξ|)dr. (4.38)

Riemann-Lebesgue lemma dictates that the integral (4.38) approaches zero as

ξ → ∞, since the integrand is a product of an integrable function, even differ-

entiable with respect to the variable r, and a rapidly oscillating sine term. This

approach is as fast as the order of the derivative and therefore faster than any power

of 1/|ξ|.
As for the second integral of (4.37), we need to apply the stationary phase

method. If the integrand has stationary points then the leading term of the asymp-

totic expansion will behave like 1/|ξ|1/2. We begin by writing the second integral of

(4.37) in the form

∞
∫

1

sin
(

k
√
k − 1|ξ|µ

)

√
k − 1

sin (k|ξ|) dk =
1

2
Re







∞
∫

1

ei|ξ|(k
√
k−1µ−k)

√
k − 1

dk−

−
∞
∫

1

ei|ξ|(k
√
k−1µ+k)

√
k − 1

dk







, (4.39)

where µ is again defined as µ =
∣

∣

∣

η
ξ

∣

∣

∣
. Changing variable k to t =

√
k − 1, the integrals

in equation (4.39) become

∞
∫

1

sin
(

k
√
k − 1|ξ|µ

)

√
k − 1

sin (k|ξ|)dk =

= Re







∞
∫

0

ei|ξ|(t
2+1)(tµ−1)dt−

∞
∫

0

ei|ξ|(t
2+1)(tµ+1)dt







. (4.40)

We write

p1(t) = (t2 + 1)(tµ− 1), p2(t) = (t2 − 1)(tµ+ 1), (4.41)
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which correspond to the exponents of the first and second integrands on the right

hand side of equation (4.40). The stationary points of the first integral in equation

(4.40) are then found through the solutions of the following equation

p′1(t) = 3µt2 − 2t+ µ = 0

as

t1 =
1 +

√

1− 3µ2

3µ
, t2 =

1−
√

1− 3µ2

3µ
. (4.42)

In this case the roots are inside the integration domain for 0 < µ < 1√
3
. Similarly the

stationary points of the second integral in (4.40) can be obtained from the solution

of the equation

p′2(t) = 3µt2 + 2t+ µ = 0

as

t3 =
−1 +

√

1− 3µ2

3µ
, t4 =

−1−
√

1− 3µ2

3µ
. (4.43)

These roots will not be in the domain of integration for any values of µ. Therefore

the second integral does not have any stationary points.

Since asymptotic contribution of the first integral in (4.37) comes from the end

points of the integral and only the first part of the second integral given in (4.40)

has a stationary point, the leading order term of the asymptotic behaviour of the

longitudinal displacement u1 arises from the stationary point of the first integral

in (4.40). Here the point to be noted is that these two roots coincide along the

line µ = 1√
3

(|ξ| =
√
3|η|). This again motivates us to make use of the uniform

stationary phase method. According to the uniform stationary phase method when

two stationary points coincide in the domain of integration the integral is converted

to Airy type integral and the asymptotic expansion of the integral can be obtained

by using the asymptotic expansion of the Airy function which is defined as

Ai(z) =
1

π

∞
∫

0

cos

(

t3

3
+ zt

)

dt =
1

2π
Re

∞
∫

−∞

ei(t
3/3+zt)dt, (4.44)
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(see [33]). The first integral in (4.40) may be written as

∞
∫

0

ei|ξ|(t
2+1)(tµ−1)dt =

∞
∫

0

ei|ξ|µ(t
3− 1

µ
t2+t− 1

µ)dt. (4.45)

The argument of the exponential function may be organized as

t3 − 1

µ
t2 + t− 1

µ
=

(

t− 1

3µ

)3

− t

3µ2
+

1

27µ3
+ t− 1

µ

=

(

t− 1

3µ

)3

+ t− t

3µ2
− 1

3µ
+

1

9µ3
− 2

27µ3
− 2

3µ

=

(

t− 1

3µ

)3

+ t

(

1− 1

3µ2

)

− 1

3µ

(

1− 1

3µ2

)

− 2

3

(

1

µ
− 1

9µ3

)

=

(

t− 1

3µ

)3

+

(

1− 1

3µ2

)(

t− 1

3µ

)

− 2

3

(

1

µ
− 1

9µ3

)

hence it can be obtained from (4.40) that

∞
∫

1

sin
(

k
√
k − 1|ξ|µ

)

√
k − 1

sin (k|ξ|) dk ∼ Re

∞
∫

0

e
i|ξ|µ

[

(t− 1

3µ)
3
+α(t− 1

3µ)+β
]

dt

= Re







ei|ξ|µβ
∞
∫

0

e
i|ξ|µ

[

(t− 1

3µ)
3
+α(t− 1

3µ)
]

dt







,

(4.46)

where

α =
3µ2 − 1

3µ2
, β = −2(9µ2 + 1)

27µ3
. (4.47)

Now changing the variable as

|ξ|µ
(

t− 1

3µ

)3

=
z3

3
,
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(4.46) takes the form

∞
∫

1

sin
(

k
√
k − 1|ξ|µ

)

√
k − 1

sin (k|ξ|)dk ∼ Re



















ei|ξ|β

3
√

3|ξ|µ

∞
∫

−
3
√

3|ξ|µ

3µ

e
i

(

z3

3
+

α|ξ|µ
3
√

3|ξ|µ
z

)

dz



















∼ cos(|ξ|µ β)
3
√

3|ξ|µ

∞
∫

−∞

cos

(

z3

3
+ γz

)

dz − sin(|ξ|µ β)
3
√

3|ξ|µ

∞
∫

−∞

sin

(

z3

3
+ γz

)

dz, (4.48)

where

γ =
α|ξ|µ
3
√

3|ξ|µ
=

3µ2 − 1

(3µ)4/3
|ξ|2/3. (4.49)

Here the second integral in (4.48) will be zero since sin
(

z3

3
+ γz

)

is an odd function

with respect to z. Thus, taking into account the asymptotic expansion of the Airy

function the asymptotic expansion of the investigated integral may be written from

equation (4.48) as

∞
∫

1

sin
(

k
√
k − 1|ξ|µ

)

√
k − 1

sin (k|ξ|) dk ∼ 2π
3
√

3|ξ|µ
cos(|ξ|µβ)Ai (γ) . (4.50)

Hence, substitution of formula (4.50) into (4.37) results in the far-field asymptotic

expansion for the longitudinal displacement u1 as

u1 ∼ −AP ε c
2
R sgn(ξ)

c22 b h
3
√

3|ξ|µ
cos (|ξ|µβ)Ai (γ) . (4.51)

4.3. Numerical Results for the Coated Half-Space

We now investigate the accuracy of the asymptotic solutions of the longitudinal

displacement u1 along the plane x3 = 0, which are expressed by equations (4.31)

and (4.51) for the super and sub-Rayleigh cases respectively. To this end, we will

compare numerically the approximate and exact solutions. A numerical integration

scheme will be employed to obtain the numerics for the exact solution.

In the super-Rayleigh case, the longitudinal displacement u1 will be scaled as

U1 =
4πbhc22
APc2Rε

u1, (4.52)
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and we present numerical illustrations of the scaled displacement, which contain

longitudinal and transverse cross-sections of the profiles, respectively. On these

plots, the results of the numerical integration of equation (4.18) are depicted by solid

lines with the dotted line corresponding to the asymptotic approximation (4.31).

The first figure, Figure 4.4, shows the dependence of U1 on the transverse variable

|η|, where the calculations are performed for the value of |ξ| = 5. The second figure,

Figure 4.5, depicts the variation of U1 on |ξ| for |η| = 5.

We clearly see, from Figures 4.4 and 4.5, that dispersive effect of the coating

smoothes out the discontinuities appearing along the lines |ξ| = |η| in the uncoated

half-space problem (see Section 2.4). The oscillations occur within the Mach cone,

decaying away from it. The periods of the oscillations diminish on both graphs as

µ→ 0, due to h∗ → ∞, as may be noticed from equation (4.25).

The asymptotic formula (4.31) provides a surprisingly accurate approximation of

the solution (4.18), which is applicable even at not very large values of the parameter

|ξ|, used on Figures 4.4 and 4.5. This is due to the argument of the Fresnel functions

−k∗
√

|ξ|h′′∗
2

∼ |ξ|1/2µ−1 in equation (4.32), therefore we actually operate with a larger

parameter |ξ|µ−2.
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Figure 4.4. Profile of the super-Rayleigh displacement U1 at |ξ| = 5.

In order to provide a better overview of the investigated wave phenomena, we

present a 3D illustration of a part of the scaled displacement profile, corresponding

to the exact integral in equation (4.18) (cf. 4.6).

72



-1

-0.5

0

0.5

1

2 4 6 8 10 12 14

exact      
asymptotic 

U1

|ξ|

Figure 4.5. Profile of the super-Rayleigh displacement U1 at |η| = 5.

U1

ξ

η

Figure 4.6. A 3D profile of the longitudinal super-Rayleigh displacement U1.

In the sub-Rayleigh case, similarly, we present scaled longitudinal displacement

as

U1 =
bhc22
APc2Rε

u1, (4.53)

and comparisons of the scaled exact solution, equation (4.37), and far-field asymp-

totic approximation, equation (4.51), are illustrated. In the illustrations the solid

and dotted lines correspond to the exact and asymptotic solutions respectively.

The calculations for Figure 4.7 are performed for a fixed value of |η| = 5 and in

Figure 4.8 a perpendicular cross-section at |ξ| = 10 are depicted. It may be observed

from Figures 4.7 and 4.8 that even though there is no Mach cone in the sub-Rayleigh

case, there is still a region of oscillations associated with µ < 1√
3
. The period of
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the oscillations decreases as µ → 0. In the region µ > 1√
3

the profile demonstrates

exponential decay.

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

2 4 6 8 10 12 14 16 18 20

exact      
asymptotic 

U1

|ξ|

Figure 4.7. Transverse cross-section of the sub-Rayleigh displacement profile U1 at |η| = 5.
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Figure 4.8. Longitudinal cross-section of the sub-Rayleigh displacement profile U1 at |ξ| = 10.
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Concluding this section, we present a 3D numerical illustration of the scaled

displacement U1 defined in equation (4.53) over the region −10 6 ξ 6 10, 0 6 ξ 6 5,

see Figure 4.9.

U1

ξ

η

Figure 4.9. A 3D profile of the longitudinal sub-Rayleigh displacement U1.
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5. CONCLUSIONS

This thesis is mainly concerned about the dynamical effects associated with the

Rayleigh wave, in particular the stationary and resonance effects of moving loads

on elastic and coated elastic half-spaces. The problems tackled make use of an

asymptotic model, described in Chapter 2, aimed at deriving only the surface wave

contributions on linear elastic solids, with a potential of extending its applicability

to bodies with more complicated geometries and physical properties. The method

relies on a certain scaling depending on the load speed as well as relating the wave

potentials on the surface of the elastic solid so as to reduce the dimension of the

problem. Such a relation among the potentials was first derived by Chadwick in

his well known work on surface and interfacial waves (see, [8]). Two problems are

therefore considered employing the mentioned method.

In Chapter 3, a 3D mathematical model of the dynamical effects of a load moving

on the surface of a linear, isotropic elastic half-space is considered. The problem

is reduced to a hyperbolic equation on the surface and two elliptic equations in

the interior of the elastic half-space due to the application of the aforementioned

asymptotic model. An approximate solution is then obtained, to the best of author’s

knowledge, for the first time in terms of elementary functions. The accuracy of the

solution depends on the scaling, i.e. the small parameter of the problem defined in

terms of the difference between the load speed and the Rayleigh one, signifying a

near-field solution. The asymptotic model also reveals important advantages for the

Rayleigh wave. The simple explicit formulae for transient displacement, derived via

the asymptotic model, provide simpler analysis of the problem for given loads and

stresses. The formulations for the displacement make available a better interpreta-

tion of the surface wave and also show that the considered problem has not much in

common with its 2D counterpart. First of all, the 3D treatment reveals a clear dis-

tinction between the sub and super-Rayleigh cases which is not a feature of a more

traditional plane strain problem. As an example the discontinuities along a straight

line on the surface characteristic of the 3D super-Rayleigh case are discussed. It is

remarkable that in the super-Rayleigh case these discontinuities appear only behind

of the load because of the causality principle. At the end of Chapter 3 the transient
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surface motion is tackled. Asymptotic consideration of the transient surface motion

enables one to determine the rate of growth in time at the resonant Rayleigh wave

speed. It is shown that there is an extra time-dependent logarithmic term in the

surface solution which is homogenous over the surface and as a consequence, does

not affect the displacement.

Chapter 4 examines the dynamics of a coated half-space under the action of a

point load moving steadily along the surface of the half-space. The reduction of the

3D mathematical model to a pair of 2D plane problems is achieved, again, through

the use of the small parameter of the previous Chapter. The model enables the

simplification of all the derivations significantly, due to ignoring the contribution of

compression and shear bulk waves. In addition, the considered model provides a

more straightforward qualitative insight, including, for example, discussion of the

causality principle in the application to a dispersive wave. The asymptotic model,

again, reveals two different kind of surface equations depending on the relation bet-

ween the load and Rayleigh wave speeds. Scaling, taking into consideration the

degeneration characteristics of the near-resonant regimes and the small thickness of

the coating, is considered. Unlike the uncoated half-space, however, certain diffi-

culties arises due to the thin coating resulting in a pseudo-differential equation on

the surface. The presence of the pseudo-differential operator prevents obtaining the

solution in terms of simple functions. Therefore the solutions of the 2D scaled equa-

tions governing the surface motion are derived for both sub and super-Rayleigh cases

in terms of integrals which require the techniques of asymptotic integration such as

the method of stationary phase, etc. The associated wave field over the interior,

similar the uncoated case, can be relatively easily restored by solving analytically or

numerically the standard boundary value problems for pseudo-static elliptic equa-

tions. Thus the results obtained for the surface motion are expressed through the

Airy function and Fresnel integrals. These integral representations can be useful

for investigating the transition regions along the surface. For the super-Rayleigh

case such a region is associated with the contour of the Mach cone. As might be

expected, the presence of the coating results in smoothing of the singularities arising

in the corresponding problem for the uncoated half-space.

The proposed approach may be generalized to media with more sophisticated
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properties incorporating the effects of pre-stress, anisotropy, layered structure, vis-

cosity as well as mixed problems for travelling stamps and cracks. There is also an

obvious potential for a further insight into transient dynamics exploiting a key role

of the Rayleigh wave in modelling of a scalar wave equation specified on the surface.

In particular, there is a possibility for studying the accelerating sources similar to

what has been recently done in acoustics, see [35]. The derived model for the coated

half-space may, also, be extended to linear surface waves in case of anisotropic and

pre-stress coatings.
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