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ABSTRACT 

IMPROVING RUNOFF PREDICTION BY DATA ASSIMILATION IN HBV 

HYDROLOGICAL MODEL FOR UPPER EUPHRATES BASIN 

Bulut AKKOL 

Department of Civil Engineering 

Anadolu University, Graduate of School of Sciences, July, 2016 

Supervisor: Assoc. Prof. Dr. Aynur ŞENSOY ŞORMAN 

Advancing technology and increasing world population are valid reasons for using 

natural resources effectively. The necessity of efficient water resources management 

highlights the hydrology science. Improvements in modelling and forecasting studies 

contribute to optimal operation of hydraulic structures, decreased risk of flooding and 

drought and increased hydropower generation. 

In this study, Karasu Basin, which is a headwater of Euphrates River, is selected as a    

pilot region. Firstly, HBV hydrological model is calibrated and validated for the years 

2002-2008 and 2009-2013 respectively and daily runoff values are forecasted for 2015. 

Data Assimilation (DA) technique, which is commonly used in atmosphere, meteorology 

and hydrology science in the last decade, is used to improve the forecast results. One of 

the 4-Dimensional variational (4D-VAR) methods, Moving Horizon Estimation (MHE) 

is selected among the variety of data assimilation algorithms. HBV model, which is 

integrated into Delft-FEWS platform, is configured to run with MHE. The model inputs 

and states are assigned as objective function variables utilized in DA application. 

Recently improved satellite technology products of MODIS and MSG-SEVIRI snow 

covered area and SSMI/S snow water equivalent are used in DA after preprocessing. 

Model initial states are updated by DA application and then short and medium range         

(2 to 9 days lead time) runoff forecasting is done for 2009-2013 water years with perfect 

forecast data sets. In addition, during 2015 water year snowmelt period, real time runoff 

forecasting is conducted using Numerical Weather Prediction and data assimilation 

approach. The results show that DA applications provide significant improvement on the 

performance of streamflow forecasts. Moreover, utilization of satellite snow products in 

DA applications increase the consistency of forecasted internal model variables compared 

to the observed snow data.  

Since the study includes up-to-date satellite snow products through a data 

assimilation method in real time forecasting which results in improved lead time runoff 

forecast accuracy, this could be considered as a pioneer application for operational 

hydrology in Turkey. 

 

Keywords: Data Assimilation, HBV Model, Runoff Forecasting, Satellite Snow Product, 

Upper Euphrates Basin 
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ÖZET 

YUKARI FIRAT HAVZASINDA HBV HİDROLOJİK MODELİNDE VERİ 

ASİMİLASYONU İLE AKIM TAHMİNLERİNİN İYİLEŞTİRİLMESİ 

Bulut AKKOL 

İnşaat Mühendisliği Anabilim Dalı 

Anadolu Üniversitesi, Fen Bilimleri Enstitüsü, Temmuz, 2016 

Danışman: Doç. Dr. Aynur ŞENSOY ŞORMAN 

Gelişen teknoloji ve artan dünya nüfusu, doğal kaynakların kullanımının daha 

verimli hale gelmesi için geçerli sebepler oluşturmaktadır. Su kaynaklarının etkin 

yönetimine duyulan ihtiyaç hidroloji biliminin öne çıkması sağlamıştır. Modelleme ve 

tahmin çalışmalarındaki iyileştirmeler su yapılarının optimum işletilmesine, taşkın ve 

kuraklık risklerini azaltmaya ve hidrolektrik enerji üretiminin artmasına katkı 

sağlamaktadır. 

Bu çalışmada, Yukarı Fırat Havzasında bulunan Karasu Havzası pilot bölge 

olarak seçilmiştir. HBV hidrolojik modeli 2002-2008 ve 2009-2013 yılları için sırasıyla 

kalibre edilmiş ve doğrulanmıştır ve günlük akım verileri tahmin edilmiştir. Tahmin 

sisteminin iyileştirilmesi için son on yıldır atmosfer, meteoroloji ve hidroloji alanlarında 

yaygın bir kullanımı olan Veri Assimilasyonu (VA) tekniği kullanılmıştır. Çeşitli veri 

asimilasyonu algoritmaları arasından4-boyutlu değişken (4D-VAR) metotlarından birisi 

olan Moving Horizon Estimation (MHE) yöntemi seçilmiştir. Delft-FEWS platformuna 

uyarlanan HBV modeli, MHE ile beraber çalışacak şekilde düzenlenmiştir. Model 

girdileri ve durum değişkenleri VA’da kullanılan amaş fonksiyonunun değişkenleri 

olarak atanmıştır. Son zamanlarda gelişen uydu teknolojilerinin ürünlerinden MODIS, 

MSG-SEVIRI karla kaplı alan ve SSMI/S kar su eşdeğeri verileri, ön işlemden geçirilerek 

VA uygulamasında kullanılmıştır. Veri asimilasyonu ile başlangıç koşulları 

güncellenerek, 2009-2013 su yılları için mükemmel tahmin veri seti ile kısa ve orta 

dönemli (2 den 9 güne kadar) tahminler yapılmıştır. Ayrıca, 2015 su yılı erime 

döneminde, Sayısal Hava Tahmin verileri kullanılarak ve veri asimilasyonu uygulanarak 

gerçek zamanlı akım tahmini yapılmıştır. Sonuçlara göre, VA tekniği akım tahmini 

çalışmalarında önemli iyileştirmeler sağlamıştır. Ayrıca, uydu ürünlerinin kullanıldığı 

VA çalışmaları, içsel model kar değişkenleri tahminlerinin kar gözlem verilerine 

uyumluluğunu da arttırmıştır. 

Bu çalışma gerçek zamanlı akım tahmininde güncel kar uydu ürünleri kullanılarak 

veri asimilasyonunu içermesi ve ileriye dönük tahmin sonuçlarını iyileştirmesi 

nedenleriyle Türkiye’deki operasyonel hidroloji alanında öncü bir çalışmadır. 

 

Anahtar Kelimeler: Veri Asimilasyonu, HBV, Akım Tahmini, Uydu Kar Ürünleri, 

Yukarı Fırat Havzası  
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1.   INTRODUCTION 

1.1.   General 

Enhancing the efficiency and protecting the natural resources are vital aims for 

human being with regard to increasing human needs. The problems of global warming, 

ecocide, flood and drought highlight the importance of hydrology science with the 

increase in population. Developing technologies in hydrological science not only enables 

more reliable hydrological models to minimize the risk of flooding and drought, but also 

improves operation of reservoir systems efficient. 

Although Turkey is covered by sea in three borders, it is a mountainous country 

according to its mean elevation as 1130 m. The snowmelt runoff is a major contribution 

of streamflow especially in the mountainous eastern part of Turkey, since the precipitation 

commonly falls as snow during winter seasons. Karasu and Murat are the two major 

tributaries of Euphrates River, which is one of the longest and important rivers in 

southwest Asia. Karasu Basin, located at the headwater of Euphrates River in Turkey, is 

selected as a pilot basin for this study. Euphrates Basin is not only important for Turkey 

but also it is a major water resource for the riparian countries before it reaches the Persian 

Gulf. In addition, there are large dam reservoirs located in the downstream of the pilot 

basin. Thus, improving the runoff prediction in this headwater add-value to our capability 

to manage water resources in the sense of flood mitigation and hydropower generation.  

Considering the importance of short and long-term operation of reservoirs 

downstream, modeling and runoff forecasting studies have been carried out for a long 

while; therefore, a pioneer study on data assimilation to improve streamflow forecasts 

using a hydrologic model is the main goal of this study. The critical part before the 

application of a hydrologic model on snow-dominated basins is to get observed and 

forecast data in sufficient quantity and quality. Since both data and models cause 

uncertainties in applications, data assimilation techniques are developed to decrease the 

uncertainty and to improve streamflow forecasts.  

1.2.   Scope of the Study 

Hydrologic model is one of the key elements for a consistent forecast. Since initial 

state conditions play relatively significant roll on the performance of a forecast, if the 

representation of these conditions is not accurate enough, skill of the hydrological model 

would not be high to make true forecasts. Thus, to overcome this problem                           
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Data Assimilation (DA) technique is applied to Karasu Basin to improve initial states and 

lead time forecast performance. 

In literature, variety of hydrologic models is applied according to the 

characteristics of the basins and the data quality. HBV hydrological model integrated in 

the Delft-FEWS platform is used in this study. 

There are several DA techniques defined in literature both for atmospheric and 

hydrological science. Moving Horizon Estimation (MHE), which is a variational four-

dimensional (4D-VAR) DA (including the time component), is selected for this 

application. The study includes DA applications under three experiments. First, direct 

state updating without a new observation, second, state updating with satellite snow 

products, finally, real time forecasting with Numerical Weather Prediction data 

In addition, to improve the originality of this study, Moving Horizon Estimation 

DA is used with an integration of satellite snow products. Main objective is to improve 

the forecast robustness by including observed satellite data into a conceptual model. 

These satellite products are areal snow cover extends of Moderate Resolution Imagining 

Spectroradiometer (MODIS) and Meteosat Second Generation-SEVIRI (H10) 

(http://hsaf.meteoam.it), and snow water equivalent product of Special Sensor Microwave 

Imager/Sounder (SSMI/S) (H13). To understand the effect of DA with and without 

satellite data products on the forecast skills, performance indicators are used in 

comparison of the results against observed snow covered area, snow water equivalent and 

streamflow.  

Since, short-term runoff forecasting studies based on Numerical Weather 

Predictions are limited in Turkey, another scope of the study is to use DA with short-term 

deterministic weather prediction data that is integrated with the hydrological model. 

Therefore, the study attempts to be one of the leading applications in the operational 

hydrology area in Turkey.  

The overall objective is to enhance the operation of large reservoirs located in the 

downstream of Euphrates Basin by improving the real time runoff forecasting skill of a 

conceptual hydrological model. 4D-VAR DA technique, MHE, is applied through the 

selected hydrological model, which is integrated by NWP data for a snow dominated 

mountainous basin by updating the sate conditions using observed in situ and satellite 

snow data. 
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1.3.   Thesis Outline 

Thesis starts with literature research, which consists of four parts. First, the 

previous studies carried out in the pilot basin are defined, and then a brief literature review 

on the satellite snow products used in this study is provided. Finally, a literature search 

on the conceptual hydrological model and DA methods are provided. 

Study area described with all dimensions is given in Chapter 3. Then the data used 

in the hydrological model as input are explained.  

HBV hydrologic model, Delft-FEWS platform, the integration of Delft-FEWS 

and HBV model and data assimilation procedure are explained with details in Chapter 4. 

All the pre-processes are described and the application results are given with the 

necessary assessment and discussions in Chapter 5. 

Chapter 6 is the conclusion of the thesis. Overall evaluation of the study is 

provided and future recommendations are presented for further studies and 

improvements. 
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2.   LITERATURE 

In this chapter of the thesis, first the previous applications in the pilot area are 

highlighted. Then, the literature on satellite products, hydrological modelling and data 

assimilation are reviewed. 

2.1.   Previous Studies in the Pilot Area 

Snow studies and snowmelt modelling is challenging at mountainous regions with 

high elevations. On the other hand, hydrologic applications are based on hydro-

meteorological data. Since the measurement network was generally located only in city 

or suburban centers in Turkey, the first step was to improve the number and quality of 

measuring network especially at mountainous Eastern Anatolia through various projects. 

First Automated Snow-Meteorological Observation Stations were installed with 

NATO SfS and METU Research Fund Projects (Kaya, 1999; Uzunoğlu, 1999; Şensoy, 

2000; Tekeli, 2000; Beşer, 2002). With the help of collected data, first modeling studies 

were carried out. These studies were followed by projects that were supported by 

Government Planning Organization (DPT). Protocols and collaborations were made with 

two major government agencies of General Directorate of State Hydraulic Works (DSI) 

and Turkish State Meteorological Service (TSMS) within the scope of these projects. 

These helped to extend the measurement network and improve the quality of stations with 

additional sensors.  

Committed thesis studies (Şensoy, 2005; Tekeli, 2005; Şorman, 2005) involve not 

only model application but also collecting raw data, real time data transfer, analysis, 

runoff estimates with models. As a results of these studies, conceptual, energy and mass 

balance models were applied. In addition to this, river isotope samples were analyzed in 

Karasu Basin within the scope of Anadolu University Scientific Research Projects. One 

day lead time deterministic forecasts were made with Meso-scale Model Version 5 

(MM5) data at 2012 with a TÜBİTAK project (108Y161). 

The study area is also well known by contribution to satellite technology and their 

validations. Especially many studies on validation of Moderate Resolution Imaging 

Spectroradiometer (MODIS) snow cover area and albedo products (Tekeli et al., 2005a 

and Tekeli et al., 2006) were conducted. Karasu Basin is a pilot basin in Satellite 

Application Facility on Support to Operational Hydrology and Water Management (H-

SAF) which is supported by European Organization for the Exploitation of 
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Meteorological Satellites (EUMETSAT). The new projects in Anadolu University are a 

follow up H-SAF projects, which support improvement and development on this area.  

Diverse BAP Projects aim that cloud filtering method is applied on combined 

satellite images at mountainous Eastern Anatolia Region and the results are validated by 

ground observations. Also snowmelt streamflow is modelled by artificial neural network 

(ANN) at the same region. Snow probability maps for upper and central Euphrates Basin 

is targeted to be used in hydrological modeling. Nevertheless, TÜBİTAK project 

(113Y075) which evolved to COST action ES1404 (http://www.cost.eu/COST_Actions 

/essem/ES1404) operational hydrologic forecast system is aimed to be improved by 

Ensemble Prediction System (EPS) and satellite data at mountainous Euphrates and 

Seyhan Basins.  

Many studies were conducted with Karasu Basin in last decade. Snow Cover Area 

(SCA), which is the 500 m resolution product of MODIS, was compared with ground 

observations (Tekeli et al., 2005b). HBV model with the input data from MM5 was used 

by Şorman et al. (2009) for forecasting streamflow prediction. Albostan et al. (2010) 

investigated seasonal index for low flows at Murat River. At the study of Şen et al. (2011), 

effect of temperature changes at Euphrates and Tigris Basins and early snowmelt on flow 

timing was researched by using central time method. An atmosphere-hydrology model 

with daily time step was improved for Central Euphrates Basin and especially the flood 

of 2004 was investigated. In another application, 4 different scenarios were tested by 

using dynamic water profit model at Euphrates and Tigris Basins (Ohara et al., 2011). 

Şensoy and Uysal (2012) conducted forecast studies with numerical weather forecast data 

(MM5) for one-day lead time at Karasu Basin. Also in the same study, snow depletion 

curves (SDC) were created by MODIS satellite images and 4 different methods were 

developed to forecast SDCs. After all, Snowmelt Runoff Model (SRM) was used to 

forecast streamflow for one-day lead time. 

2.2.   Satellite Snow Products 

With improving technology in satellite instruments and their computational 

process algorithm, the ability to obtain data from space is increasing both quantitatively 

and qualitatively. This abundance of satellite products are created by different institutes 

and initiatives. One of the well-known snow cover product is produced by Moderate 

Resolution Imaging Spectroradiometer (MODIS). The main objective for this satellite 
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product is enhancing to understand the Earth dynamics and processes on lower 

atmosphere. This knowledge plays a fundamental roll on considering the actual states of 

Snow cover area (SCA). Another initiative is the EUMETSAT H-SAF project generating 

products related with precipitation, soil moisture and snow. One of the main goals of this 

project is the development and validation of these new products and their evaluation in 

operational use. Snow recognition product of MSG-SEVIRI (H10) and Snow Water 

Equivalent (SWE) product of SSMI/S (H13) are the two main snow products produced 

in this project. 

SCA is an important hydrological input for simulating and forecasting the amount 

of water from snowmelt. The importance of SCA was further accentuated with the studies 

performed by various researchers to develop and apply runoff models (WMO, 1986; 

WMO, 1992; Etchevers et al., 2002). Regional to global scale satellite-derived estimation 

of snow cover area became available daily. Remotely sensed SCA information has been 

used successfully in snowmelt and runoff models; the runoff prediction studies 

incorporate SCA as a major and sensitive input into operational models that relate snow 

distributions to snowmelt runoff generation or as a means of updating hydrologic model 

snowpack simulations and checking the internal validity of snowmelt runoff model 

(Tekeli et al., 2005a; Andreadis and Lettenmaier, 2006; Clark et al., 2006; Dressler et al., 

2006; Kolberg and Gottschalk, 2006; Kolberg et al., 2006; Udnaeset al., 2007; Parajka 

and Blöschl, 2008, Şorman et al. 2009, Immerzeel et al., 2009, Tahir et al.,2011, Şensoy 

and Uysal, 2012, Kult et al., 2014, Cornwell et al., 2016). Remotely sensed snow water 

equivalent (SWE) has also been used in hydrological modelling (Derksen et al., 2003; 

Andreadis and Lettenmaier, 2006; Pulliainen, 2006; Hall and Riggs, 2007; Dong et al., 

2007; Molotch, 2009; Clark et al., 2011; Bavera et al., 2012; Dziubanski and Franz, 2016). 

Snow detection product, MSG-SEVIRI (H10), with VIS/IR radiometer is a rather 

new product with some validation studies and/or usage in operational hydrology. 

Validation results of H10 snow product are provided in (Sürer and Akyürek, 2012; 

Çoskun, 2016). In addition, the evaluation of the H10 into a hydrologic model has been 

tested by Şensoy et al., (2014). 

Among the variety of satellites, MODIS (Moderate Resolution Imaging 

Spectroradiometer), with visible/near-IR satellite sensors of Terra and Aqua, provides 

already compiled Snow Cover Area (SCA) products since early 2000s. Numerous global 
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and regional studies have been conducted on validation of MODIS snow data to identify 

snow mapping accuracy (Maurer et al. 2003; Tekeli et al. 2005a; Riggs et al., 2006; Hall 

and Riggs, 2007; Parajka and Blöschl, 2008; Wang et al. 2009; Huang et al., 2011; 

Raleigh et al., 2013; Arsenault et al., 2014; Crawford, 2015). MODIS data have been 

successfully applied in snowmelt modeling (Parajka and Blöschl, 2008; Li and Williams, 

2008; Şensoy and Uysal, 2012; Franz and Karsten, 2013; Day, 2013; Duethmann et al., 

2014; He et al., 2014; Finger et al., 2015) or in hydro-climatological and topographic 

research of snow cover variations (Singh et al., 2003; Wang and Xie, 2009; Tong et al., 

2009; Jain et al., 2010; Forsythe et al., 2012; Tang et.al., 2013; Gescoin, 2015; Cornwell 

et al., 2016). Moreover, various researchers attempted to apply different algorithms to 

eliminate cloud coverage of MODIS products (Parajka and Blöschl, 2008; Gafurov and 

Bárdossy, 2009; Parajka et al., 2010; Gao, et al., 2010; Da Ronco and De Michele, 2013; 

Krajčí et al., 2014; Morriss et al., 2016). 

H13 product (Snow Water Equivalent by MicroWave radiometry) is based on the 

SSMI/S being flown on EOS-Aqua. There is no abundance of study related with SSMI/S 

(H13), but SWE product are generated by using different algorithm from satellite product 

(Şorman and Beşer, 2013), some property analysis (Struzik, 2014) and a hydrological 

implementation (Montero et al., 2016) has been studied. 

2.3   Hydrological Modelling and Forecasting 

The complex hydrological modeling was represented by computers using simply 

mathematical equations in the 1960s by Crawford and Linsley (1966) with The Stanford 

Watershed Model. World Meteorological Organization (WMO) made comparison of 

different hydrological models in 1975 (WMO, 1975), comparison of snow models in 1986 

(WMO, 1986) and comparison of real-time models in 1992 (WMO, 1992). There is no 

such model whose sound is better than the others, because each model has its own 

powerful sides. Thus, selection of a model is varying with basin features, purpose of usage 

and input data. 

Temperature index method is very commonly used in conceptual hydrological 

models to predict snowmelt. This method is recommended by WMO to determine 

streamflow prediction at the mountainous region (WMO, 1986). SRM (Martinec, 1975; 

Martinec et al., 1998) and HBV (Bergström, 1976; SMHI, 1996) are used for forecasting 

streamflow especially at mountainous regions via temperature index method. In this 
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study, HBV hydrologic model is selected considering the heritage of its applications in 

the pilot basin for the last decade. Therefore, the literature review will be given on this 

model. 

Johansson et al. (2001) made a streamflow prediction as giving 5 days 

precipitation and temperature data to the HBV, which is calibrated with runoff and 

observations of SCA, at Sweden at a mountainous region in the scope of HydAlp project. 

It is determined that more accurate streamflow predictions results were handled in the 

short-term forecast. At the project of Jónsdóttir and Þórarinsson (2004), forecast data 

were used as input into HBV model. They made an inference that using numerical weather 

forecasting data (MM5) was helpful for planning water resources. At another similar 

study, numerical weather forecasting data (MM5) was used as input into HBV model in 

Germany by Kunstmann and Stadler (2005). 

Brown et al. (2008) mentioned that due to insufficient hydro meteorological data 

at the upper level of basin, verification of the model can only be done with discharge data; 

yet snow covered area (SCA) could be another data to determine the performance of the 

model. In addition, hydrological simulations were more accurate by using both SCA and 

discharge of the basin. Şorman et al. (2009) also made a similar study including multi-

purpose calibration, which has two objectives snow cover area by MODIS and discharge 

data, moreover MM5 forecast data were used at the streamflow prediction. 

Modelling of periodical snow potential was made at upper Euphrates basin by 

using SRM model by Gözel (2011). In the study by Yamankurt (2010), cloud filtering 

was applied on MODIS products and the SCA results were compared with the output of 

HBV model. 

Flood forecasting and modelling came into prominence at Europe especially after 

the flood in 2002. In this scope, flood forecasting, including snowmelt, was made for 57 

basins where the elevation range is varying between 200-3800 m using HBV model at 

Austria and South Germany by Nester et al. (2012). Zelelew and Alfredsen (2013) 

focused on calibration period on conceptual hydrological models and they made a 

sensitivity analysis for 15 model parameters with the methods of “Sobol’s variance-based 

sensitivity analysis (VBSA)” and “Generalized sensitivity analysis (GSA)” 

HBV hydrologic model is used in several different studies including sensitivity 

and uncertainty analysis (Abebe et al., 2010; Zelelew and Alfredsen, 2013; Fan et al., 
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2015), data assimilation for flood forecasting purpose in fully distributed HBV model 

(Weerts et al., 2010; Rakovec et al., 2012) and DA for forecasting in HBV model (Lü et 

al., 2015; Montero et al., 2016). 

2.4   Data Assimilation 

Scientists try to understand the complexity of Earth with theoretical equations and 

experiment over the beginning of human life. The information of these researches and 

studies accumulated to the human knowledge century by century. Solving the secret of 

nature is one of the main aim for human being. Weather or climate could be the most 

important element of nature. 

Data assimilation is an analysis technique in which the observed information is 

accumulated into the model state by taking advantage of consistency constraints with laws 

of time evolution and physical properties (Bouttier and Courtier, 1999). 

Ideally, a system that optimally combines snow information from both remote 

sensing and modelling predictions and at the same time accounts for the limitations of 

each should provide estimates that are superior to those derived from either models or 

remote sensing alone (McLaughlin, 1995). Data Assimilation techniques helps to 

integrate these information. 

The first numerical attempt to comprehend the weather forecasting relies on the 

beginning of 20th century. Lewis Fry Richardson, who was an English mathematician, 

meteorologist and pioneered modern mathematical technique of weather forecasting, used 

modified Bjerkenes’s primitive equations to produce 6-hour forecast for the state of 

atmosphere at two points in central Europe by hand calculations (Kalnay, 2003). 

Gandin (1963), who took a step forward on improvement of data assimilation, 

introduced one of the first and robust data assimilation techniques called optimal 

interpolation. This technique is well known by filling blanks in sparse time series data. 

In literature, Charney et al. (1969) first recommended merging current and past 

data in an explicit dynamical model, by using model’s prognostic equations to provide 

time continuity and dynamic coupling amongst the fields. Data assimilation method was 

further improved from this approach.  

Meteorologists have elementarily used the data assimilation techniques to 

improve operational weather forecasting for many years (Daley, 1991). In Oceanography, 
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Data assimilation can take important role for enhancing ocean dynamic predictions 

(Bennett and Thorburn, 1992). 

Cumulative knowledge on data assimilation at oceanography and meteorology let 

the kick off the data assimilation applications in the area of hydrology. Kostov and 

Jackson (1993) have inferred that if the hydrological model is convenient to take remote 

sensing data as input, both hydrological model output and proper remote sensing data can 

be used to keep simulation results on track through data assimilation. 

Soil moisture is one of the key element of Earth science and it has an important 

effect on data assimilation in the history of hydrology science. Thermal infrared derived 

near surface soil moisture content was assimilated whenever the data were available; the 

results of annual runoff values are improved by DA approach (Ottlé and Vidal-Madjar, 

1994). 

Screen-level measurement of relative humidity and temperature was examined in 

terms of improving estimation of land surface flux by (Bouttier et al., 1993; Viterbo and 

Beljaars, 1995). 

The recent development is now related on several different disciplines with 

sophisticated methods and equations. The algorithms become exceedingly specific from 

simple rule-based to advanced smoothing. The implementation of these algorithms 

consist of the one, two, three and four dimensional variational algorithms (1D, 2D, 3D, 

and 4D-VAR, e.g., Seo et al., 2003, 2009; Valstar et al., 2004), extended or ensemble 

Kalman Filtering (EKF,EnKF)(Moradkhani et al., 2005b; Clark and Slater, 2006;Weerts 

and El Serafy, 2006; Shamir et al., 2010), particular filtering (Weerts and El Serafy, 2006; 

Matgen et al., 2010; Moradkhani et al, 2012), hybrid EnKF or 4D-VAR approaches 

(Zhang et al., 2009), and other Bayesian approaches (Reggiani and Weerts, 2008; Todini, 

2008; Reggiani et al., 2009).  

In-situ observation is the oldest technique to get the information of any type of 

data directly from point measurements. Many of the hydrological applications assimilated 

these observations (e.g. discharge, soil moisture and snowpack) into a model to enhance 

forecasting of streamflow and other variables of model outputs (Seo et al., 2003, 2009; 

Vrugt et al., 2005; Weerts and El Serafy, 2006; Clark et al., 2008; Komma et al., 2008; 

Moradkhani and Sorooshian, 2009; Thirel et al., 2010). 
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With developing satellite technology, plenty of data from satellites are available 

to be used in hydrological applications. These products as soil moisture (Pauwels et al., 

2001; De Lannoy et al., 2007; Yirdaw et al., 2008; Crow and Ryu, 2009; Kumar et al., 

2009; Brocca et al., 2010; Peters-Lidard et al., 2011; Liu et al., 2012), and snow cover 

area and/or snow water equivalent (Rodell and Houser, 2004; Lee et al., 2005; Andreadis 

and Lettenmaier, 2006; Zaitchik et al., 2008; Durand et al., 2008; Kolberg and Gottschalk, 

2010; Kuchment et al., 2010; DeChant and Moradkhani, 2011; De Lannoy et al., 2012) 

are taking into account for data assimilation as input to force. 

The hydrological model aiming to use DA can vary from physically based land 

surface models (Albergel et al., 2008; Nagarajan et al., 2011), to distributed hydrologic 

models (Clark et al., 2008; Rakovec et al., 2012) and conceptual rainfall-runoff models 

(Aubert et al., 2003; Seo et al., 2003, 2009; Moradkhani et al., 2005a, b; Weerts and El 

Serafy, 2006).  

While the major DA applications are related with hydrological model state 

updating, some researches apply DA on model state and model parameter simultaneously 

(Moradkhani et al., 2005b; Vrugt et al., 2005; Franssen and Kinzelbach, 2008; Lü et al., 

2010; Leisenring and Moradkhani, 2011; Nie et al., 2011; Vrugt et al., 2013; Corato et 

al., 2014; Schumacher et al.,2016). 

One of the DA technique Moving Horizon Estimation (MHE) using 4DVAR is 

known by the help of Model Prediction Control applications (Allgöwer et al., 1999). 

Then, comparison of MHE with different DA methods is studied by Haseltine and 

Rawlings (2005). In hydrology, Montero et al. (2016) use the MHE to evaluate satellite 

products within the DA procedure.  

This study is the first step for integrating a prototype of the data assimilation test 

bed with selected available components according to the specified pilot area. Moreover, 

this generic test bed involves the satellite products used through DA procedure to improve 

the forecast performance. The preliminary results of this thesis study are presented in 

Montero et al. (2016) 
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3.   STUDY AREA & DATA 

3.1.   Study Area 

Turkish geographical regions are divided into seven sub regions, and one of them 

is Eastern Anatolia Region, which is 21% of Turkey with respect to the surface area as 

164,000 km2. Even it has a large area; the population is relatively low because of tough 

winter conditions. Several important streams, with the names Euphrates, Tigris, Aras and 

Kura are located in this region. 

Mesopotamia region, home to several civilizations, owns Euphrates and Tigris 

Rivers, which play vital role for irrigation and energy production. These two rivers with 

their significant potential flow rate have a unique importance for Turkey. Euphrates has 

major tributaries as Murat, Karasu, Peri and Munzur. On the other hand, Tigris’s major 

tributaries are Batman, Botan, Habur and Greater Zap.  

Euphrates, which is the longest river in the Southern West Asia, has potential flow 

of 35.6 billion m3/month. Its total length is 2700 km and 1236 km of it is in the border of 

Turkey (Aytemiz and Kodaman, 2006). Keban, Karakaya, Atatürk, Birecik and Karkamış 

are outstanding large reservoirs located on Euphrates River. These dams have a huge 

storage capacity, so water resources management is relatively important in these regions. 

Upper Euphrates (Karasu) Basin, which is a headwater of Euphrates River Basin, 

has been selected for this study. The main reason for this selection is that Karasu Basin is 

one of the important highly snow dominant basin at Upper Euphrates River. Even though 

it is a prominent basin, it can be described as data scarce region according to the 

observation network. Moreover, important cities in Karasu Basin assist to reach the 

stations and support the data accessibility. Furthermore, the heritage of previous projects 

and existing infrastructure encourages the studies in this region and basin.  



 

13 

 

 

Figure 3.1. Outlet and river network of Karasu Basin. 

Karasu Basin is located between 39o 50’ N latitude and 40o 20’ E longitude (Figure 

3.1). Its area is 10,275 km2 and its elevational range is between 1125 m to 3500 m. Its 

mean elevation is 1983 m and its mean slope is 20%. In addition, according to the land 

use maps, it consists of pasture (35%), agricultural area (31.5%), bare ground (27.5%) 

and water (1%). 

Outlet of Karasu basin is controlled by a streamflow station (E21A019 – Kemah) 

which is operated by General Directorate of State Hydraulic Works. Long-term stream 

flow measurement shows that 60-70% of total yearly flow arises during spring and early 

summer (Kaya, 1999; Tekeli, 2005). 
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Figure 3.2. Hydrograph of Karasu Basin for different years. 

2006, 2011 and 2015 water years, which are representing calibration, validation 

and forecasting periods respectively, are shown in Figure 3.2 with the sample 

hydrographs of Karasu Basin. As it could be interpreted from Figure 3.2, snowmelt runoff 

generally starts at the beginning of March and ends in July in that period. 

In order to understand the characteristic properties of Karasu Basin, Geographical 

Information System (GIS) techniques have been used. To get the information by using 

GIS, Digital Elevation Model (DEM) was downloaded from Shuttle Radar Topography 

Mission (SRTM) at “http://srtm.csi.cgiar.org/SELECTION/inputCoord.asp” website, 

which generates high resolution digital topographic database. Because of the location of 

Karasu Basin, four tiles have been selected to download, and then all four was merged to 

create the watershed where the spatial resolution is 90 m. 

With the help of ArcGIS 10.4 program (http://www.esri.com/software/arcgis), 

area, elevation zones, aspect and slope of the basin are calculated and visualized as a map. 

Area is a physical variable for nearly any hydrologic model as well as HBV hydrologic 

model, so firstly the area of Karasu Basin has been calculated. Then elevation zones are 

created as equal percentage areas. In this study, Karasu has been divided into 10 equal 

area, the reasons for this is the representation of the basin more precisely in calculations 
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and sound calculations of Snow Covered Area (SCA) of the basin. Because SCA is 

derived from SWE, a smooth SCA curve can be generated with a number of elevation 

zones. Moreover, this semi-distributed modelling approach uses the computational 

advantage of fully distributed applications. Nonetheless, it is not as course as lump model.  

After Karasu Basin is divided into 10 zones, each representing 10% of the area, 

elevation ranges and mean elevation values are provided in Table 3.1. Figure 3.3 shows 

the elevational zone map. According to hypsometric elevation curve, the mean elevation 

of Karasu Basin is found as 1983 meters (Figure 3.4). 

The values in Table 3.1 are used in HBV model to configure zonal characteristics. 

Understanding the contribution of each zone and respective output of discharge, SCA, 

SWE and soil moisture (SM) is also possible. 

Table 3.1. Elevation range of Karasu Basin. 

Zone 
Elevation Range  

[m a.s.l.] 

Area 

 [km2] 

Area  

[%] 

Mean Elevation 

 [m] 

Zone1 1125-1485 1027.5 10 1315 

Zone2 1486-1678 1027.5 10 1587 

Zone3 1679-1781 1027.5 10 1740 

Zone4 1782-1873 1027.5 10 1827 

Zone5 1874-1981 1027.5 10 1926 

Zone6 1982-2103 1027.5 10 2041 

Zone7 2104-2218 1027.5 10 2159 

Zone8 2219-2346 1027.5 10 2281 

Zone9 2347-2537 1027.5 10 2434 

Zone10 2538-3500 1027.5 10 2733 
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Figure 3.3. Elevation zones of Karasu Basin. 

 

Figure 3.4. Hypsometric curve of Karasu Basin. 
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After downloading and processing the data archived in 

http://www.eea.europa.eu/data-and-maps/data/corine-land-cover-2006-raster-3 web site, 

Figure 3.5 is prepared for land cover. The majority of total area consists of agricultural, 

grassland and little or no vegetation. Relatively small amount of urban area, which 

includes Erzurum and Erzincan cities, is not so effective on hydrological modelling since 

it constitutes only 2% of impervious area. With the minor contribution of forest area 

(3.61%), the whole area of Karasu Basin is considered as bare ground. 

 

Figure 3.5. Land use map of Karasu Basin 

Source: http://www.eea.europa.eu/ 
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Figure 3.6. Aspect map of Karasu Basin. 

When digital elevation map is analyzed, there is nearly on equal distribution in 

terms of aspect ratio within the basin (Figure 3.6). According to the Figure 3.6, north and 

south percentage of aspect is almost same. It could be inferred that the effect of aspect is 

almost equal for all of the edges in Karasu Basin.  
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Figure 3.7. Slope map of Karasu Basin. 

Slope map of Karasu Basin is created with meter/100 meter property of ArcGIS 

tool (Figure 3.7). The terrain includes nearly level area for cities of Erzurum and Erzincan. 

On the other hand, the majority of the area could be classified as strong slope. According 

to the slope map, the average slope of Karasu Basin is calculated as 20%. As it is clear in 

Figure 3.7, the border of Karasu Basin is generally marked with very steep slope.  

3.2.   Hydro-meteorological Data 

Hydrology science and applications consist of management, assessment and 

forecasting of water quality and quantity. Not only historical hydro-meteorological data 

but also real time data are collected, stored and analyzed. The records of data are used to 

prevent flood, drought and water pollution by management of water resources. Because 

of these vital tasks, collecting accurate, reliable and actual data is a very important prior 

condition (WMO, 1999). Data acquisition process is applied by responsible institutions 

and these data are uploaded and updated in a database to be used by researches in 

industrial countries. In addition, databases are capable of data access, reporting statistical 

analysis, model calibration and preparing model input. Turkish State Meteorological 

Service (TSMS) and General Directorate of State Hydraulic Works (DSI) are in charge 
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of data acquisition and data storage in Turkey. Since there is not any common database 

that is created by different institutions, transferring and accessing data is not an easy 

process in Turkey (Yamankurt, 2010). Collecting and transferring hydro-meteorological 

data that is especially related with snow is difficult and expensive due to harsh 

topographic and climate conditions at high altitudes. Furthermore, manual data collection 

at highly mountainous regions is very difficult on winter seasons. Consequently, 

knowledge of climate conditions at the region, which is mostly rippled, must be well-

know. 

Detailed climate observations are restricted at mountainous regions and generally 

most of the data are collected at low-elevations which are not that rippled (Marks et.al. 

1992). Temperature and precipitation are the basic inputs for a hydrological model. Most 

of these data are measured at a point. To utilize these point observations, temporal and 

spatial distribution methods are needed.  

Seventeen of meteorological stations are selected to be used in this study both 

inside or near outside of Karasu Basin (Figure 3.8). While fifteen stations from selected 

ones have both precipitation and temperature records, two of them have only temperature 

records. 

  

Figure 3.8. AWOS stations in and around Karasu Basin. 
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Figure 3.9 shows the total annual total precipitation over Turkey, besides Figure 

3.10 demonstrates total annual precipitation for Erzurum (1860 m). The average 

precipitation values, between 1981 and 2015, are 574 mm and 579.6 mm for Turkey and 

Erzurum respectively. These data are provided by Turkish State Meteorological Service 

on http://www.mgm.gov.tr/veridegerlendirme/yillik-toplam-yagis-verileri.aspx website. 

 

Figure 3.9. Total annual precipitation over Turkey. 
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Figure 3.10. Total annual precipitation for Erzurum (1860 m). 

For Karasu Basin, precipitation generally falls as snow between the months of 

December & March, whereas it falls as rain at the rest of the months. Monthly total 

precipitation values are shown in Figure 3.11 for Erzurum Automated Weather 

Observation Stations (AWOS) for the whole study years between 2001 and 2015. The 

years included in these statistics are 1981-2015, 1981-2015 and 2001-2015 for Turkey, 

Erzurum (1860 m) and Erzurum AWOS (1758 m) stations respectively. 
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Figure 3.11. Monthly mean precipitation for Erzurum AWOS (1758 m). 

Figure 3.12 indicates the comparison of temperature data for Turkey and Erzurum 

AWOS (1758 m) stations. Generally low temperature records are observed in the Eastern 

part of Turkey, especially in autumn and winter seasons. As it is clear from the Figure 

3.12, the recorded monthly average temperature values for Turkey are higher than 

Erzurum. 
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Figure 3.12. Comparison of monthly average temperature for Turkey and Erzurum 

AWOS 

All meteorological data used in hydrologic modelling are point observations. 

These point measurements are distributed over the catchment to obtain areal average 

values and corresponding values for elevation zones. Several methods are being used for 

distribution of point observations to area. A few of them can be listed as; arithmetic mean, 

Thiessen polygon, isohyetal method, Inverse Distance Weighted (IDW), lapse rate and 

Kriging method. Detrended Kriging (DK) is selected in this study for the distribution of 

both precipitation and temperature measurements. The powerful side of this technique is 

that it can utilize topographical information of the given DEM (Garen et al., 1994). The 

main motivation of this algorithm is calculating mean areal inputs from point 

measurement especially in mountainous regions. The implicit assumption of this 

technique is that hydro-meteorological data and elevation have a homogenous 

relationship with ignoring the effect of slope, aspect and orographic regimes. The 

interface of the program is illustrated in Figure 3.13.  
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Figure 3.13. The interface of DK program 

3.3.   Satellite Snow Data  

In order to increase the robustness of snowmelt forecasting, snow coverage and 

snow water equivalent are important variables for water resource management. While 

studying in a mountainous region, understanding variability of snow cover and melt could 

be prevented due to data limitations. In situ snowpack measurements are sparsely 

distributed relative to snowpack heterogeneity leaving much of the hydrologic cycle 

under sampled in both time and space (Bates et al., 2006). Nevertheless, accessibility 

constrains getting rainfall/snowfall and meteorological data especially in highest area of 

the basin in most mountainous regions (Boudhar, 2009). Hereat remote sensing 

observations are getting popular for monitoring snow properties. 

When conventional in situ snow measurements and satellite data are compared, 

satellite data are especially well adapted to monitor snow covered surface over continuous 
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space-time scales. A wide range of instruments are available for measuring and observing 

snow cover; a variety of space borne sensors with various spectral, spatial and temporal 

resolutions meet the needs of climatologists and hydrologists. 

In this study, snow products of H-SAF project, MSG-SEVIRI (H10) and SSMI/S 

(H13), and MODIS are used. MSG-SEVIRI (H10) and MODIS snow products are used 

to determine snow covered area (SCA) and SSMI/S (H13) product is dedicated to find 

snow water equivalent (SWE). They are provided as observed inputs to update the model 

states for data assimilation in this thesis.  

The European Organization for the Exploitation of Meteorological Satellites 

(EUMETSAT) has several dedicated programs for processing satellite data. Each of these 

SAFs provides products and services on an operational basis. The main purpose of the 

“EUMETSAT Satellite Application Facility on Support to Operational Hydrology and 

Water Management”, H-SAF, is to provide new satellite derived products from existing 

and future satellites with sufficient time and space resolution to satisfy the needs of 

operational hydrology and to perform independent validation of the usefulness of the new 

products for fighting against floods, landslides, avalanches and evaluating water 

resources. The currently available and operational H-SAF products include information 

about precipitation, snow and soil moisture conditions (http://hsaf.meteoam.it/). 

The H-SAF was established by the EUMETSAT Council on 3 July 2005 and its 

Development Phase was in between 2005-2010. The SAF is now in its second Continuous 

Development and Operations Phase (CDOP2) which started on 2012 and will end on 

2017. In this phase, the vision is to develop or complement interface products for 

assimilating existing hydrological models, developing tools which will allow models to 

accept soil moisture and/or snow cover products that have been developed in the 

framework of H-SAF project. In this study, the use of these new satellite products in 

hydrological modeling with variational data assimilation approach is presented. 

Snow recognition product (H10) by VIS/IR radiometry is based on multi-channel 

analysis of Spinning Enhanced Visible and Infrared Imager (SEVIRI) instrument on 

board the second generation of Meteosat (MSG) satellites. A key feature of this imaging 

instrument is its continuous imaging of the Earth in 12 spectral channels with a baseline 

repeat cycle of 15 min (Aminou, 2002). The observing cycle (15 min) enables continuous 
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monitoring of the cloud situation, in order to collect as many cloud free pixels as possible, 

multi-temporal analysis over the hours of illumination is performed. The imaging 

sampling is performed at 3 km intervals at the sub-satellite point for standard channels 

however; the output product is sampled at 0.05 degrees intervals (~ 5 km) over Europe 

(Figure 3.14). The product for mountainous areas and flat/forested have been operational 

from late 2007 and 2009, respectively (http://hsaf.meteoam.it/documents/PUM/ 

SAF_HSAF_PUM-10_1_1.pdf). 

The snow cover retrieval algorithms of flat and mountainous regions are different 

for the product. The products are merged by blending the information on flat/forest and 

mountainous areas at the end. The area is defined to be mountainous based on the mean 

altitude and standard deviation of the slope within 5 km × 5 km pixels (Lahtinen et al., 

2009). A detailed description of the MSG-SEVIRI snow algorithm is presented in the 

Algorithm Theoretical Basis Document (http://hsaf.meteoam.it/documents/ATDD/ 

SAF_HSAF_ATBD-10_1_1.pdf). 

Snow cover maps using MSG-SEVIRI data have been produced for each 15 

minutes cycle between 8:00-15:45 UTC that makes 32 individual images a day. The 

product is an output of image classification processing. All individual 15 minute images 

acquired during a day are subjected to a series of thresholding tests based on spectral 

signatures and temporal stability criteria. Daily snow cover map is obtained from the 

snow cover maps of each individual 15 minutes image by accepting pixels having at least 

4 snow hits among 32 images during a day. Finally, a daily thematic map has been 

produced which is consisting of 4 different classes: snow, land, cloud and unclassified. 
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Figure 3.14. View of MSG-SEVIRI (H10) product at 31-12-2012. 

Snow Water Equivalent product (H13) is generated from SSMI/S radiometer. 

Earlier version of the product by MW radiometry was fundamentally based on the AMSR-

E microwave radiometer being flown on EOS-Aqua. Due to the failure of AMSR-E 

happened on October 2011, SSM/I and SSMIS flown on the DMSP satellites are used 

since that date. For mountainous areas SWE is derived using radiometer data only and for 

flat areas SWE is an assimilation of ground based snow depth observations and satellite 

data.   

H-SAF product SSMI/S (H13) is delivered in a grid that has resolution of 0.25 

degrees. At Earth’s equator this corresponds roughly to 25 km. A detailed description of 

the model and its performance is given by Pulliainen et al. (1999). For more information, 

please refer to the Products User Manual, PUM-13 and Algorithm Theoretical 

Development Document, ATDD-13 (http://hsaf.meteoam.it/documents/PUM/ 

SAF_HSAF_PUM-13_1_0.pdf). 

The horizontal resolution descends from the instrument Instantaneous Field of 

View (IFOV), and other factors. For MW conical scanners the IFOV is constant, but 

depends on the frequency channels utilized for building the product. Thick snow requires 

lower frequencies with higher penetration that implies coarser resolution. In practice, the 

current algorithm utilizes the two frequencies 18.7 and 36.5 GHz, thus the resolution is 

that one of AMSR-E at 18.7 GHz, i.e. ~ 20 km. Sampling also is made at ~ 20 km intervals 

(0.25°). The global coverage is provided for observing cycle of every 24 h (Figure 3.15).  
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Figure 3.15. View of SSMI/S (H13) product at 26-03-2012. 

The accuracy of satellite-derived products is provided by the convolution of 

several measurement features (random error, bias, sensitivity, precision, etc.) and it 

descends from the strength of the physical principle linking the satellite observation to 

the natural process determining the parameter. The validation activity is a continuous 

process for MSG-SEVIRI (H10) and SSMI/S (H13) products since 2009. 

Moderate Resolution Imaging Spectroradiometer (MODIS) employs a cross-track 

scan mirror collecting optics and a set of individual detector elements to provide an 

imagery of the Earth’s surface and clouds in 36 discrete, narrow spectral bands from 

approximately 0.4 to 14.4 μm (Barnes et al., 1998). There are two onboard satellites that 

Terra, which lunched end of 1999, and Aqua, which deployed mid of 2002. Terra and 

Aqua image the Earth at 10:30 a.m. and 01:30 p.m. (local time) respectively. These two 

different overpass time allow satellites to obtain more clear views of the surface by 

increasing the chance to get rid of cloud coverage within 3 hours (Hall and Riggs, 2007). 

The spatial resolution of MODIS is 500 m and the temporal resolution is daily. 

The data are ordered free of charge from the Earth Observation System Data and 

Information System (EOSDIS) located at the NASA (reverb.echo.nasa.gov). The raw data 

format is HDF (Hierarchical Data Format). Raw MODIS product is illustrated in Figure 

3.16. 
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The accuracy of MODIS is tested with several different studies. The main 

disadvantage of MODIS is could coverage. Parajka and Blöschl (2008) applied spatial 

and temporal filter to reduce the cloud coverage on MODIS images. The results show that 

the average 63% cloud coverage reduces to 4% while the accuracies decrease 95.5% to 

92.1%. Çoşkun (2016) uses the more sophisticated algorithm to reduce the cloud coverage 

with similar principles to Parajka and Blöschl (2008). The algorithm eliminates 70.77% 

cloud coverage for Terra satellite product, while the accuracy rate decreases from 98.42% 

to 93.56%. 

 

Figure 3.16. View of MODIS snow cover product at 31-12-2012. 

 

  



 

31 

 

4.   METHODOLOGY 

4.1.   Hydrological Modelling 

Complex natural dynamics are tried to be solved by human being from past to 

present. The positive science handles this complexity by converting this complicated 

nature to a more intelligible form. At that point, hydrological models that are part of 

modelling technology help to get through the problems.  

Hydrological models vary by types as physically based, conceptual and 

deterministic models. In addition, lumped, semi-distributed and distributed models 

separate hydrological models with respect to spatial property. Lumped models take a river 

basin as a complete single component. In distributed models, a basin is divided grid by 

grid and calculations are done within a cell then summed up. Semi-distributed models 

take water catchments as sub-basins or subunits so these models are in between the 

lumped and distributed models. Each of them has several advantages and disadvantages, 

so it depends on data, basin, available software and purpose of the study to select a proper 

spatial distribution. 

The HBV (Hydrologiska Byrans Vattenbalansavdelning) model, which is selected 

for this study, is a semi-distributed conceptual rainfall-runoff model designed in 1976 by 

Swedish Meteorological and Hydrological Institute (Bergström, 1976). The inputs for the 

HBV model consist of daily total precipitation, daily average temperature and estimates 

of daily total potential evaporation. In addition to the inputs, a parameter set is needed to 

represent the characteristics of a basin in runoff calculations (Figure 4.1). 

 

Figure 4.1. General flow chart of HBV model. 
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The essential properties of hydrological models are; 

 It must be understandable by user 

 It must be suitable with the data that are dealing with 

 It must have parameters suitable with the scope of physical basis 

HBV hydrological modelling is a well known conceptual model and it has been 

applied in more than 90 countries all around the world with different scales (Bergström 

and Lindström, 2015). HBV model could be described as semi-distributed (since it is 

capable to work with elevation zones) conceptual model. At this point, elevation-area 

distribution and land use of the basin gain importance. HBV model is introduced by 

routines in Figure 4.2 

 

Figure 4.2. Schematization of HBV model 

 Source: http://schj.home.xs4all.nl/html/ 
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4.1.1.   Precipitation routine 

Daily total precipitation gets into HBV model through the snow routine. First 

comparison is tested by air temperature (Ta). if the average daily air temperature is below 

the user defined temperature threshold (TT), precipitation falls as snow, else it falls as 

rain. If it falls as rain, it directly ends up in the free water reservoir (SW); else it sums up 

with dry snow component (SD). In the box of dry snow (SD), the two components of it 

can interact as the free water can refreeze (Qr) and snow can melt (Qm) depend on the air 

temperature. This equation could be defined as: 

𝑄𝑚  =  𝑐𝑓𝑚𝑎𝑥(𝑇𝑎 −  𝑇𝑇); 𝑇𝑎  >  𝑇𝑇                                                                    (4.1) 

𝑄𝑟  =  𝑐𝑓𝑚𝑎𝑥 ∗  𝑐𝑓𝑟(𝑇𝑇 −  𝑇𝑎);  𝑇𝑎  <  𝑇𝑇                                                          (4.2) 

Both degree-day factor (cfmax) and refreezing factor (cfr) are user-defined model 

parameters. Water holding capacity (WHC) limits SW and if SW exceeds WHC then 

excess SW is available as Qin to infiltration. This can be described as follows: 

𝑄𝑖𝑛  =  max {(𝑆𝑊 − 𝑊𝐻𝐶 ∗ 𝑆𝐷);  0.0}                                                                            (4.3) 

After all Qin is calculated, it passes through the interception storage box. 

Maximum interception storage (LIC) controls this box. The available storage is filled with 

water coming from precipitation routine. if this box is not empty, evaporation occurs then 

the rest of the Qin is convenient to get through soil routine. 

4.1.2.   Soil routine 

Qin is input of soil routine to determine the direct and infiltrated amount of water. 

Field capacity (FC) and soil moisture (SM) values take important role to calculate direct 

runoff (Sdr) in this box: 

𝑆𝑑𝑟  =  max {(𝑆𝑀 +  𝑄𝑖𝑛 −  𝐹𝐶);  0.0}                                                                   (4.4) 

After calculating direct runoff, the amount of water that stuck in the soil is named 

as infiltrated water (Inet) and it describe as: 

𝐼𝑛𝑒𝑡  =  𝑄𝑖𝑛 −  𝑆𝑑𝑟                                                                                                     (4.5) 

Part of the infiltrating water (Inet), will runoff through the soil layer through 

seepage (SP) into the lower zone. The amount of seepage is closely related to the amount 
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of soil moisture, SM: as the latter increases, the amount of seepage also increases. The 

power relation below describes this: 

𝑆𝑃 =  (𝑆𝑀/𝐹𝐶)β ∗  𝐼𝑛𝑒𝑡                                                                                         (4.6) 

β is an empirically based parameter, the value of which is higher than 1.0. If the 

β value is getting high, according to the equation, the absorption capacity of the soil is 

getting higher. Some of the SM will evaporate depending on the potential evaporation Ep 

and the amount of water available in the soil: 

𝐸𝑎  =  (
𝑆𝑀

𝑇𝑚
) ∗ 𝐸𝑝;  𝑆𝑀 <  𝑇𝐸                                                                                     (4.7) 

𝐸𝑎 =  𝐸𝑝;  𝑆𝑀 ≥  𝑇𝐸                                                                                                (4.8) 

The Ea is the actual evaporation; TE is a user-defined threshold above which the 

actual evaporation is equal to the potential evaporation Ep. The TE is defined as LP* FC. 

4.1.3.   Runoff response routine 

Runoff response routine consist of two linear reservoir called as lower zone and 

upper zone. Lower zone represents slow runoff yet upper zone represents quick runoff 

and interflow.  

This box is active when the direct runoff (Sdr) and seepage (SP) get in the response 

routine. If the direct runoff cannot exceed percolation value, which is percolation (PERC) 

from upper to lower response box, both direct runoff and seepage end up within lower 

zone box. The upper and lower zones equations are: 

𝛥𝑉𝑙𝑧  =  min {𝑃𝐸𝑅𝐶; (𝑆𝑑𝑟  +  𝑆𝑃)}                                                                        (4.9) 

𝛥𝑉𝑢𝑧 =  max {0.0; (𝑆𝑑𝑟 +  𝑆𝑃 −  𝑃𝐸𝑅𝐶)}                                                            (4.10) 

Where Vlz and Vuz is the content of the lower and upper zones respectively and Δ 

stands for increase of. Capillary flow (𝑄𝑐𝑓) from the upper zone to the soil moisture 

reservoir is modeled according to: 

𝑄𝑐𝑓  =  𝑐𝑓𝑙𝑢𝑥 ∗ ((𝐹𝑐 −  𝑆𝑀)/𝐹𝑐))                                                                        (4.11) 

The lower zone is a linear reservoir, which means the rate of slow runoff, Qlz, 

which leaves this zone during one time step equals: 

𝑄𝑙𝑧 =  𝐾𝑙𝑧 ∗ 𝑉𝑙𝑧                                                                                                       (4.12) 
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Even though upper zone is a linear reservoir, it is more complicated than lower 

zone. Because of the fact that upper zone has two kind of inner zones which are interflow 

(Qi) and quick flow (Qq). If the total water content of the upper zone, Vuz, is lower than a 

threshold UZ1, the upper zone only generates interflow. On the other hand, if Vuz exceeds 

UZ1, part of the upper zone water will runoff as quick flow: 

𝑄𝑖 =  𝐾𝑖 ∗  min {𝑈𝑍1; 𝑉𝑢𝑧  }                                                                                     (4.13) 

𝑄𝑞  =  𝐾 ∗ 𝑈𝑍(1+𝑎𝑙𝑝ℎ𝑎)                                                                                        (4.14) 

Total runoff rate Q consists of the three-runoff components: 

𝑄 =  𝑄𝑞   +  𝑄𝑖  + 𝑄𝑙𝑧                                                                                                (4.15) 

The runoff behavior in the runoff routine is controlled by two threshold values 

Tm and UZ1 and three reservoir parameters Klz, Ki and Kq. In order for the differences in 

delay times of three runoff components to be represented, the parameters have to meet 

the following requirement: 

𝐾𝑙𝑧  <  𝐾𝑖 <  𝐾𝑞                                                                                                                (4.16) 

ECORR, RFCF and SFCF are the correction coefficients of evaporation, rainfall 

and snowfall, respectively. Moreover, ETF is a temperature correction that is used 

calculating actual evaporation. CFR is refreezing factor in the snow routine. TTI is the 

interval for smoothing the transition of rain and snow.  
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Table 4.1. Parameters of HBV model and default interval of their values. 

Parameter Unit 

Interval 

of the 

Values 

Meaning of the Parameter 

ECORR ---- 0.8-2.0 Evaporation Correction 

ALPHA ---- 0.0-0.3 
Recession coefficient in Q=k . 

UZ(alfa+1) formula 

BETA ---- 1.0-3.0 
Exponent in Formula for 

drainage from soil 

CFLUX mm/day oC 0.2-0.8 

Maximum capillary flow from 

upper box to soil moisture 

routine 

CFMAX mm/day oC 0.3-4.0 Degree-day factor 

CFR ---- 0.02-0.1 
Refreezing factor in the snow 

routine 

FC mm 50-250 Field capacity 

LP ---- 0.2-0.9 Limit for potential evaporation  

PERC mm/day 0.4-6.0 
Percolation capacity from 

upper to lower box 

RFCF ---- 0.8-1.3 Rainfall correction factor 

SFCF ---- 0.7-1.3 Snowfall correction factor 

TT oC -2.0-2.0 
Threshold temprature (rain or 

snow ) 

TTI oC 0.0-3.0 
Total lenght of a temprature 

interval 

CWH % 0.01-0.1 
Water holding capacity of 

snow 

TM oC -2.0-2.0 Temperature for melting 

ETF ----- 0.0-0.012 Temperature correction factor 

K 1/day 0.02-0.4 Recession coefficient 

K1 1/day 0.001-0.1 
Recession coefficient for lower 

box 

LIC ----- 0.0-2.0 Maximum interception storage 

Source: Schwanenberg (2012). 
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4.2.   Flood Early Warning System (Delft-FEWS) 

Disasters, like floods and droughts, are natural events that human being can never 

totally avoid. Even investments to areas that are prone to floods and droughts are getting 

increasing, the potential loss of life and property do not decrease with the same 

acceleration. 

Conventional measures are aiming to get rid of the risk and mainly focus on high 

capital investments in physical infrastructure, such as reservoirs, levees and other river 

engineering works. However, the risk is not fully eliminated. Hence, warning and event 

management are required to minimize the risk of damage caused by hydrological events. 

 

Figure 4.3. Workflow of flood risk management. 

Hydrometeorological observation (detection) provides the information based on 

which warning can be issued. The warnings should be sufficiently reliable and be 

provided in time to allow a proper response by the responsible authorities. By the time, 

forecasting data can give additional information about the coming event. Responses can 

be evaluated with respect to the impact on the society. Thus, hydrological forecasting 

enables early warning. Figure 4.3 shows the workflow of flood risk management that the 

basic elements are clarified.  

Within the scope of this information, one of the initiatives in Europe has been the 

development of the European Flood Forecasting System (EFFS), based upon WL | Delft 

Hydraulics’ Delft-FEWS flood forecasting platform (Verwey, 2006). Its development 

took place over the period 2000-2003 with the objective of providing a flood forecasting 

platform that could be applied at European scale.  
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Following the completion of the EFFS in 2003, further developments were taken 

up in the Delft-FEWS flood forecasting platform as part of the assignments given by 

various forecasting agencies in Europe. Objective of this further investment with first UK 

Environment Agency (EA) contract was the development of the UK National Flood 

Forecasting System (NFFS) as a generic open platform for England and Wales. After with 

getting in contract with various country and communities, the scale of the project was 

extended and its application areas are now all around the world. 

Mainly, the philosophy of the Delft-FEWS is to provide an open shell system for 

managing the forecasting process and encouraging participations with related topic of 

hydrometeorological data, meteorological forecasting and simulation models from all 

over the world (https://publicwiki.deltares.nl/display/FEWSDOC/Home). The Delft-

FEWS programs abilities could be listed as: 

 Handling with wide range of data to import into the system. These data could 

be in format of ASCII, XML, GRIB, CSV, etc. 

 Data validation, serial and spatial interpolation of incoming data 

 Data interpolation tools like regression function, Kriging, Thiessen Polygon 

and Inverse Distance Weighted (IDW) 

 Options with gap-filling 

 Data transformation to prepare the required inputs for forecasting or 

simulation module 

 Using external hydrological and hydraulic forecasting models (with the 

capability of highly configurable nature) 

 Updating the state of the models by using some embedded modules 

 Well-organized visualization interface to create maps, graphs and images of 

the satellite data 

 Dissemination of forecast through maps and HTML-formatted reports that 

allow broadcasting forecasting results to relevant authorities and public 

through channels such as intranet and internet (Verwey, 2006). 
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4.3.   Integration of Delft-FEWS and HBV 

As it is mentioned in Chapter 4.2, Delft-FEWS is a program that enables to 

integrate several model upon a platform. Flexibility advantage of FEWS accompanies 

complexity of integration scripts. For this reason, this part contains several sub-xml 

folders to describe and assign external files to FEWS. 

Real-Time Control Tools (RTC-Tools) program is an open source, modular 

toolbox dedicated to the simulation of real-time control and decision support of hydraulic 

structure (https://oss.deltares.nl/documents/102774/467082/rtc-tools_UserManual.pdf). 

In addition to these features, RTC-Tools enable to build hydrological model. HBV 

hydrological model is programmed in RTC-Tools with all model equations by C++ Script 

Language (https://oss.deltares.nl/web/rtc-tools). Even executable files in RTC-Tools 

allow the users to run the model in a folder-based manner; the integration system is 

needed for long-time forecasting period to work in daily time step. DeltaShell software 

helps to integrate the external models (RTC-Tools program) into Delft-FEWS platform 

with its strong and flexible script features (https://oss.deltares.nl/web/delta-shell).  

After this integration is completed, FEWS needs a general module adaptor tool to 

communicate data in FEWS and external module. Figure 4.4 shows the workflow of 

general module adaptor (https://oss.deltares.nl/web/delft-fews/model-adapters). 

According to the figure, stages of this process can be expressed in three steps. 

1. Delft-FEWS feeds the external model by suppling data, which could be time 

series, parameter info or state information, in PI-XML. 

2. Then the model runs without any user interaction. 

3. The outputs of the model (States, stages, time series data, etc.) are converted back 

to the Delft-FEWS in a format of PI-XML. 

In the first step of this process, FEWS allows manipulating data like interpolation. 

This interpolation property is used to fill the missing values that are not provided by user. 

After appropriate data are supplied to model, the outputs can easily be visualized in 

FEWS.  
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Figure 4.4. Schematic interaction between the General Adapter and an external module 

in FEWS. 

Source: https://oss.deltares.nl/web/delft-fews/model-adapters. 

4.4.   Data Assimilation (DA) 

Data Assimilation could be defined in papers and books on several ways. Couple 

of descriptions may be listed below. 

DA is an analysis technique that observed information is gather into the model 

state by making use of consistency limits by taking into consideration of law of time 

evolution and physical attributes (Bouttier and Courtier, 1999). 

DA is a technique, which enhance forecasting ability of a model. Model 

background states are blended with observed information in the DA process (Ren et al., 

2014). 

Therefore, (DA) is a technique that allows combined observation data into a 

model states to improve initial condition for forecasting period at the beginning of the 

forecast day. 

Over the last couple of decades, improvement of data assimilation techniques 

expands the application area of DA. Some of them could be listed below. 

Hydrology, meteorology and oceanography are the first area of using DA, since; 

the chaotic dynamics of these areas carry lots of uncertainty by themselves. To overcome 
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the uncertainties and improving initial condition for forecasting time, DA is a key 

procedure to concern (Ghil et al., 1991). 

 Chemical modelling could be challenging to estimating model parameters for a 

certain process. DA helps to eliminate uncertainty and give a best parameter set for it 

(http://www.techbriefs.com/component/content/article/458). 

Space technology is another branch of DA applications. Recent development 

opens a gate to DA procedure that can be used in estimating climate at another planet for 

instance Mars (http://badc.nerc.ac.uk/home/). 

Final area of application of DA is petroleum searches for uncertainty assessment 

of performance prediction of wells in oil reservoir (Shirangi, 2014). In addition, DA is a 

critical technique to improve decision parameters for oil recovery (Shirangi and 

Durlofsky, 2015). 

4.4.1.   Purpose of Data Assimilation 

Even there are plenty of remote sensing observation, their spatial and temporal 

coverage are not adequate for many applications. Improvements for this area could be 

significant, but coverage could not be totally coherent for now and future. To overcome 

this problem, DA is needed to interpolate and extrapolate the data (McLaughlin, 2002). 

Remote sensing instruments are capable of observing electromagnetic features of 

Earth system. This observation technique is limited, because of gathering information 

from Earth system that is monitored by penetrated electromagnetic radiation at 

microwave, infrared or visible frequencies. Generally, the thin layer of Earth can be 

observed because of the instrument properties. However, for accurate initialization, state 

of deeper mass and heat transfer must be known. DA can distribute remote sensing 

information to all model variables that are related with the observations. 

The temporal and spatial resolution of remote sensing observations could be 

variable from application to application. For instance, Moderate Resolution Imaging 

Spectroradiometer (MODIS) has 500 m spatial resolution that is too fine for global 

climate change applications. On the other hand, Snow Water Equivalent (SSMI/S (H13)) 

product of H-SAF project is produced at a resolution of around 25 km 

(http://hsaf.meteoam.it/snow.php?tab=4). This kind of a resolution is course for regional 

weather models for applications. DA technique is capable of aggregating and 

http://www.techbriefs.com/component/content/article/458
http://badc.nerc.ac.uk/home/
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downscaling the remote sensing observations that is combined with the product of the 

model. 

Over the last couple of decades, availability of remote sensing data increased in 

terms of numerical weather predictions. Nonetheless, some products of satellite are 

almost same properties that consist of altitude, sensors, synchronous of satellite. This 

resemblance does not mean that the value of them is similar, due to the error factor of it. 

At that point, DA procedure helps to merge potentially redundant or conflicted satellite 

data and gives a single best estimation. 

Geophysical models, whose basic principles are mass, momentum and energy 

conservation, are ranging from global atmosphere-ocean models to hydrological models. 

However, unaided remote sensing data are not so constrained. Additional information 

could arise while model is forced by physical boundaries at data assimilation procedure. 

These by-products are independent from remote sensing data (Reichle, 2008). 

The need for effective data assimilation on hydrologic modelling is becoming 

important for flood forecasting purpose. DA improves the initial state condition at the 

beginning of forecasting by taking consideration of observation. The main idea behind is 

to achieve more consistency between the measurements and corresponding simulated 

results. 

4.4.2.   Methods of Data Assimilation 

Including ongoing studies, several different kind of DA methods are used in 

meteorology, oceanography and hydrology. Most DA techniques that are used in 

hydrology can be classified as sequential DA or variational DA. Sequential technique, 

which is a general name of the various Kalman Filter, solves the system analytically. 

Kalman Filter estimates the best fit with including true state and model estimate, and 

between the true state and the observation. Linear Kalman gain matrix is the key 

component of equation of the optimal value that is explicitly determined by the 

measurement uncertainties and the description of model. Since these methods are easy to 

implement, there are several studies available and they are published in reviews, papers 

and books. In addition, Kalman Filter has modified versions to improve the solution as 

Extended Kalman Filter (EKF) and Ensemble Kalman Filter (EnKF). The former aims to 

solve the optimization problem by linearized equation for the error covariance 
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propagation. On the other hand, EKF requires a tangent-linear model that helps the system 

understand inner dynamics of nonlinear hydrologic model. The latter are designed to 

decrease the number of degrees of freedom to a controllable level. The EnKF is a Monte-

Carlo approach with KF that considers an ensemble of model states to obtain the model 

uncertainties by perturbing the forcing variables. EnKF can handle the nonlinear 

problems by accounting for a wider range of model errors and relatively flexible for 

implementation, but computational efficiency depends on the ensemble size.  

Variational DA depends on numerical approximation and optimization algorithm, 

which solve the matrix to find the best or optimal solution by a pre-defined objective 

function. Variational methods need to use an adjoint model to understand the sensitivity 

of variable that is used in model equations. Adjoint model could be described briefly as 

that it is a powerful tool for many studies that require an estimate on the sensitivity of 

model output with respect to input. Data assimilation, parameter estimation, stability 

analysis, and synoptic studies are some application fields then after sensitivity of model 

are produced directly and efficiently (Errico, 1997) Adjoint model links the variables and 

the output by derivational way of normal simulation. Defining the function of this method 

is the most challenging part of variational DA. 

Variational approach, which is also called as representer-based approach, mainly 

tries to minimize objective function or cost function. The objective function penalizes the 

distance between model output and its corresponding observation value. On the contrary 

to sequential technique, variational technique does not rely on propagating the covariance 

matrix from one time step to next. The effects of simultaneously updating model states, 

forcing, and propagating in the model within the assimilation window is implicitly 

considered by variational approach. Flexibility of method is created with this feature of 

objective function, which allows using different variables at the same time with a long 

assimilation period (Seo et al., 2009). The challenging part of variational method can be 

overcame by an automatic adjoint code generated. With managing challenging part of 

variational methods by automatic adjoint code generator and its flexibility, this approach 

is robust and reliable. 

The dimensions of variational DA are classified as 1D, 2D, 3D and 4D. With the 

increasing dimensions, the complexity of the DA structure is getting complicated. 4D-
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VAR involves all dimensions with time element, so that it seeks the completely operating 

window while it runs objective functions.  

4.4.3.   Moving Horizon Estimation (MHE) 

At operational forecasting systems, variational techniques are applied with batch-

processing manner over the assimilation time window. Thus, state estimation does not 

rely on the previous assimilation run for the same window. Moving Horizon Estimation 

(MHE) can deal with this moving window by taking each windows separately (Rawlings, 

2013). 

It strictly follows an implementation according to: 

 kkkk udxfx ,,1    (4.17) 

 kkkk vdxgy ,,    (4.18) 

where dyx ,,  are the state, output and external forcing vectors, respectively, vu,  are noise 

terms,    gf ,  are functions representing arbitrary linear or nonlinear components of 

the HBV model and k is the time step index.  

Based on equations (4.17)-(4.18) above, Moving Horizon Estimation (MHE) is 

formulated (Rawlings, 2013) for a forecast time Tk = 0 over an assimilation period k = [-

N + 1, 0] of N ≥ 1 time steps by an optimization problem according to: 
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       subject to
                                                                              (4.20) 

where J is the objective function to be minimized, kx̂ ,
kŷ  are observations of the state and 

the dependent variable vectors, respectively,  is a suitable norm penalizing the 

deviation between observed and simulated quantities and the introduction of noise by the 

data assimilation procedure, 
yxvuw ,,,
are weighting coefficients to define the trade-off 

between different penalties. More detailed information about the formulation of cost 

function in MHE can be found in Rawlings (2013). Furthermore, the noise terms are 
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bounded by inequality constraints. For the sake of simplicity, our formulation considers 

constant lower and upper bounds only. 

The key to the efficient solution of the optimization problems above, in particular 

in operational applications with runtime restrictions, is the computation of the derivatives 

of the objective function    vudvudJ ,,   to enable the application of gradient-based 

optimizers such as IPOPT (Wächterand and Biegler, 2005). Since numerical 

differentiation is a computational load for larger optimization problems and introduces 

truncation errors, we rely on adjoint modelling based on algorithmic differentiation in 

reverse mode (Griewank and Walther, 2008) to trace back first-order derivatives 

backwards in time through the simulation model. 

The main purpose of selecting MHE is to enable a shifting window on data 

assimilation procedure. This helps to consider that each time step is independent from the 

next one. Moreover, since MHE is a variational method and using adjoint model, the inner 

changes directly affects the objective function by adding penalty value. Montero et al. 

(2016) tested this approach on HBV hydrologic model in forecasting by assimilating 

several inputs and states. Also, this approach can be compared by other well-known DA 

techniques like Kalman Filter, in the next phase of the study. 

4.5.   Ensemble Verification System (EVS) 

After getting results from the hydrological model, the testing procedure is the key 

element to assess the performance of model whether it is consistent with ground 

observation or not. According to the calibration and validation of model, the forecasting 

period must be compatible with observation. 

 Ensemble Verification System (EVS) helps to evaluate systematic forecasting 

files with an observation file. In this study, EVS version 5.4 was selected to calculate the 

lead time performance criteria. This version and several different versions of EVS could 

be downloaded from the http://amazon.nws.noaa.gov/ohd/evs/evs.html web site.  

EVS’s background is written in JAVA code and its interface is shown in Figure 

4.5. “ASCII”, “XML” and “NetCDF4” are acceptable as input format. In each time step 

of forecasting period (Figure 4.6), FEWS gives the results of forecast in “XML” file 

format where date, location and parameter are already written for addressing in EVS 

(Figure 4.7). Firstly, EVS sorts data before generating the code for performance. 
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According to data pairs, which are created with matching the forecast and its 

corresponding observation, EVS calculates the lead time performance.  

EVS have several different options to assess the performance tools; 

notwithstanding, only performance criteria of Root Mean Square Error was selected and 

used in this study. 

Root Mean Square Error, shortly called RMSE, provides the square root of Mean 

Square Error (MSE), which measures the average square error of the forecasts. It gives 

the results in same units with measurements, thus comparing the outputs are likely more 

deductive. The equation is: 

𝑅𝑀𝑆𝐸 = √
1

𝑛
∑ [(𝑥𝑖 − 𝑦𝑖 )2]𝑛

𝑘=0

2
                                                             (4.21) 

Where RMSE is Root Mean Square Error, n is the number of pairs and xi and yi 

are observation and forecast, respectively.  

Figure 4.5. Interface of EVS program. 
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Figure 4.6. File format and order as EVS input format. 

 

Figure 4.7. File view for importing values in EVS. 
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5.   DATA ASSIMILATION & MODELLING 

5.1.   Pre-Processing of Snow Products 

Even though the raw data are validated before being used in operational 

hydrology, pre-processing of satellite products is needed according to the purpose of 

usage. Pre-processing involves filling missing data, manual elimination of unreliable 

and/or doubtful data, combining two similar data, etc. In this chapter, several pre-

processing techniques applied to raw H10, H13 and MODIS satellite products are 

explained briefly. 

5.1.1.   MSG-SEVIRI (H10) snow covered area 

H10 is one of the new generation satellite products whose features are introduced 

in Chapter 3 in detail. Shortly, this product is giving snow covered area with a certain 

spatial and temporal resolution. H10 products are archived in a database platform at 

“hsaf.meteoam.it” as a HSAF data feeder. After accessing the platform, downloading 

option is available to get the data. 

The file extension of H10 products is H5, which is a kind of Hierarchical Data 

Format (HDF). This type of format allows storing and organizing huge amount of data. 

Then, to convert the format of the data to a FEWS readable format, MATLAB code is 

generated. This code mainly converts H5 format to ASCII (American Standard Code for 

Information Interchange). 

FEWS has import module to deal with variety of data type. ASCII format import 

module is one of the easiest and fastest import option in FEWS. Once the configuration 

of import module is done, FEWS is just transferring the external data into FEWS-

database. 

A sample of configuration files is illustrated in Figure 5.1 and Figure 5.2. Import 

module configuration is needed for assigning a folder to make imports. Moreover, it helps 

to introduce the data type, data format and its related location to the system. Later is the 

workflow, which is a trigger file to start the import module. 
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Figure 5.1. Import module for H10. 

 

Figure 5.2. Workflow to start H10 import module. 

When FEWS recognizes the H10 data, the rest of the process can be easily done. 

Initial step is to clip the product with reference to Karasu Basin. The original and clipped 

images are shown in Figure 5.3a and Figure 5.3b.  
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Figure 5.3 (a). MSG-SEVIRI (H10) original image. 

 

Figure 5.3 (b). Clipped MSG-SEVIRI (H10) product with reference to Karasu Basin. 

The next step is to get the number of pixels of snow, land and cloud in Karasu 

Basin for each single day. If twenty-five percentage or more of Karasu Basin is covered 

by cloud, that day is omitted due to intense cloud coverage. This process is applied for 

each day and finally, the time-series of H10 product values over the whole catchment are 

handled. A discrete output time series is obtained due to cloudy days. Therefore, to make 

the time series in a continuous manner, the interpolation process, which is filling the gaps 

by linear interpolation, is used and shown in Figure 5.4. 
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Figure 5.4. SCA values derived from H10. 

5.1.2.   SSMI/S (H13) snow water equivalent 

Some of the steps for processing of H13 (Snow Water Equivalent (SWE) Product) 

are identical with H10. Data are acquired from “hsaf.meteoam.it”. After downloading the 

H13 products, they can be directly imported into FEWS. The format is grib2 and FEWS 

modules are compatible with this format. Therefore, it is simpler than H10 to transfer the 

data into FEWS and process them. 

Processing part is relatively fast because the spatial resolution of H13 data is 25 

km * 25 km which is a rather course resolution and easy to manipulate. Therefore, after 

data are visualized in FEWS they are clipped with regard to Karasu Basin. Then, the result 

of the process gives a daily time series data that involves average snow water equivalent 

(SWE) of Karasu Basin. 
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Figure 5.5. SWE values derived from H13. 

After clipping the data, according to H13 time series for Karasu Basin, manual 

filtering process is applied. By this process, the date that contains no data, partial coverage 

or outlier values have been omitted to clear fluctuations in the time series. By the way, 

beginning and end of the snow period, H13 products could not clearly observe the SWE 

because of the shallow and wet snow conditions. Therefore, counting H13 products have 

to be considered carefully with respect to all these items (Figure 5.5). 

5.1.3. MODIS snow covered area 

Terra and Aqua daily images, which are handled from optical MODIS satellite, 

are affected from cloud, so the images do not recognize the land surface that is covered 

with cloud. In order to use the snow covered area product in hydrologic model 

applications, the products’ cloud coverage must be low enough. Therefore, cloud filtering 

process on SCA products come into prominence throughout the water year (Yamankurt, 

2010).  

MODIS satellite data are acquired twice a day, MODIS/Terra in the morning and 

MODIS/Aqua 3 hours later in the afternoon. Combining Terra and Aqua images is the 

first step of filtering. This process gives more clear view due to cloud positions are 

changing in each time step. Then, the temporal filtering is applied to the combined 

imagery by going back in time of 3 (MODIS CM-3), 5 (MODIS CM-5) and 7 (MODIS 
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CM-7) days respectively. The cloudy grid cells are exchanged with land or snow if it is 

different from cloud at previous days. In elevation filter, it is assumed that there is a snow 

line, which is a threshold for snow and land according to the elevation (MODIS CM-7E). 

These elevations vary during the season and they are defined by the user. The range 

between snow and land line is called transition zone where cloudy cells may remain. 

Spatial filter changes the value of a cloud cell based on the situation of peripheral cells 

(MODIS CM-7ES). Finally, the seasonal filter clears all the remaining cloud uncertainty 

assuming the cloudy cells are snow in a snow season and land during the off-

season(MODIS CM-7ESA) (Çoskun, 2016). All the process is illustrated as workflow in 

Figure 5.6. 

 

Figure 5.6. Flowchart of filtering daily MODIS data  

Source: Çoşkun (2016). 
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5.2. Calibration and Validation of HBV Model in Karasu Basin 

Karasu Basin with elevations ranging between 1125 m to 3500 m is divided into 

ten equal area elevation zones of approximately 1025 km2. The main purpose of this 

division is to model the basin with same areal contribution. To provide daily average 

temperature and daily total precipitation data into each zone, the output of DK values are 

used as areal averages. 

Since HBV model is a conceptual model, parameter set, which lets to convert 

hydrological process to mathematical equations, needs to be adjusted. This process called 

as calibration. Then, another data set is used to make a validation of model parameters. 

After the model is completely configured into FEWS, inputs for HBV model is 

supplied to MATLAB function for calibration. During this calibration process, fmincon 

(Find minimum of constrained nonlinear multivariable function) which is an optimization 

tool in MATLAB, is used (http://www.mathworks.com/help/optim/ug/fmincon.html). 

The requirements of this process are an integrated model with MATLAB and a proper 

optimization function for the model. Former requirement, integrated model with 

MATLAB, is already been solved by RTC-Tools program. On the other hand, later 

necessity, proper optimization, is selected and adjusted by user with respect to desired 

parameter to be optimized. 

Performance criteria of Bias, Root Mean Square Error (RMSE), Volume Error 

(VE), correlation coefficient (R2) and Nash Sutcliffe Efficiency (NSE) are selected to 

evaluate the performance of the model. Formulation of Bias, RMSE, VE, R2 and NSE are 

given in 5.1, 5.2, 5.3, 5.4 and 5.5, respectively. Table 5.1 shows the value range, unit and 

the assessment of performance indicators.  

𝐵𝑖𝑎𝑠 =  ∑ (𝑄𝑜 − 𝑄𝑠)𝑇
𝑡=1           (5.1) 

𝑅𝑀𝑆𝐸 = √∑ (𝑄𝑜−𝑄𝑠)2𝑇
𝑡=1

𝑇
          (5.2) 

𝑉𝐸 = 100 −
∑ (𝑄𝑠

𝑡+𝑄𝑠
𝑡−1)𝑇

𝑡=2

∑ (𝑄𝑜
𝑡 +𝑄𝑜

𝑡−1)𝑇
𝑡=2

          (5.3) 

𝑅2 =
∑ (𝑄𝑜−𝑄𝑜)(𝑄𝑠−�̅�𝑠)𝑇

𝑡=1

√∑ (𝑄𝑜−𝑄𝑜)2(𝑄𝑠−𝑄𝑠)2𝑇
𝑡=1

          (5.4) 
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𝑁𝑆𝐸 = 1 −  
∑ (𝑄𝑜

𝑡−𝑄𝑚
𝑡 )2𝑇

𝑡=1

∑ (𝑄𝑜
𝑡 −𝑄𝑜)2𝑇

𝑡=1
          (5.5) 

Table 5.1. Performance indicators and their assessment. 

  
Value Range Assessment 

Unit 
Minimum Maximum Best Others 

BIAS  -∞  +∞ 0 
 >0, overestimate 

(m3/s) 
<0, underestimate  

RMSE 0   +∞ 0   (m3/s) 

VE   -∞  +∞ 100 
 >100, overestimate 

- 
<100, underestimate  

R2 -1 1 1 
=0, not correlated 

- 
= -1, negative correlated 

NSE   -∞ 1 1   - 

 

The calibration period is selected as 2001-2008 water years. The parameter set is 

determined by optimization as given in Table 5.2. In addition, time series values of 

modelled runoff are sketched with respect to the streamflow observations during 

calibration period in Figure 5.7. Performance criterion of NSE is 0.85 for this period 

(Table 5.3). The rising and falling limbs of simulated hydrograph are generally coherent 

with observations during the calibration period. Moreover, the body of the observed 

hydrograph is comprehended by simulated hydrograph. Underestimation of relatively 

higher peak flows in years of 2008, 2009 and 2010 slightly reduces the performance of 

the model during the calibration period.  

Table 5.2. Calibrated model parameters of HBV. 

PARAMETERS VALUES  PARAMETERS VALUES 

ECORR 1.09  BETA 1.18 

RFCF 1.1  CFLUX 0.3 

SFCF 0.74  ETF 0.025 

TT 2.255  FC 131 

TTI 1.47  LP 0.477 

CFMAX 1.874  ALPHA 0.0367 

CFR 0.098  K 0.0434 

CWH 0.0065  K1 0.0024 

TM -0.101  PERC 1.125 

   LIC 0.379 

 



 

56 

 

 

Figure 5.7. Observed and modelled runoff of Karasu Basin, calibration period. 

Table 5.3. Performance statistics for the calibration period. 

KARASU-HBV Calibration 

2001-2008 

BIAS 

(m3/s) 

RMSE 

(m3/s) 

VE 

(%) 

R2 

(-) 

NSE 

(-) 

-1.45 32.46 98.29 0.85 0.85 

 

Validation period is selected as 2009-2013 water years. Figure 5.8 shows the 

comparison of observed streamflow versus validated streamflows. NSE performance is 

0.74 during the validation period, which is slightly lower than that of calibration period 

(Table 5.4). Even though relatively lower peak flows are observed during this period, the 

simulated hydrograph are not consistent with the streamflow observation in water years 

2011-2013. VE performance of 86.85% shows underestimation in the model results due 

to the poor performance in recession part.  
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Figure 5.8. Observed and modelled runoff of Karasu Basin, validation period. 

Table 5.4. Performance statistics for the validation period. 

KARASU-HBV Validation 

2009-2013 

BIAS 

(m3/s) 

RMSE 

(m3/s) 

VE 

(%) 

R2 

(-) 

NSE 

(-) 

-10.45 33.76 86.85 0.75 0.72 

 

5.3.   Data Assimilation Configuration 

After the calibration and validation of the HBV hydrological model, the next step 

is DA application using both FEWS and RTC-Tools programs. Objective function and its 

corresponding forcing variables are changed for each different combination of DA 

process. 

Understanding the objective function term is a key element in order to evaluate 

the results for this study. Thus, Table 5.5 shows each model inputs, states and outputs of 

HBV model contribution to the objective function. 
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Table 5.5. Terms in the objective function. 

Type Variable 
Objective Function Term 

Noise Observation 

Model Inputs 
Precipitation (P) 𝑤𝑝 (𝑃𝑘(1 − 𝑃𝑓

𝑘))
2

  

Temperature (T) 𝑤𝑇(𝑇𝑘 − 𝑇𝑢𝑝
𝑘 )

2
  

Model States 

Soil Moisture (SM) 𝑤𝑆𝑀 (𝑆𝑆𝑀
𝑘 − 𝑆𝑆𝑀𝑢𝑝

𝑘 )
2

  

Upper Zone 

Storage(UZ) 
𝑤𝑈𝑍 (𝑆𝑈𝑍

𝑘 − 𝑆𝑈𝑍𝑢𝑝
𝑘 )

2

  

Lower Zone     

Storage (LZ) 
𝑤𝐿𝑍 (𝑆𝐿𝑍

𝑘 − 𝑆𝐿𝑍𝑢𝑝
𝑘 )

2

  

Model Outputs 

Snow Water 

Equivalent (SWE) 
 𝑤∆𝑆𝑊𝐸(�̂�𝑆𝑊𝐸

𝑘 − 𝑆𝑆𝑊𝐸
𝑘 )

2
 

Snow Cover Area 

(SCA) 
 𝑤∆𝑆𝐶𝐴(�̂�𝑆𝐶𝐴

𝑘 − 𝑆𝑆𝐶𝐴
𝑘 )

2
 

Streamflow (Q)  𝑤∆𝑄(�̂�𝑘 − 𝑄𝑘)
2
 

 

In Table 5.5, “w” expresses the weighting factors, “k” is the time step, the values 

with “^”symbol represent observations whether ground or satellite, “Δ” indicates the 

difference between observation and simulated variable, Pf is precipitation factor, which 

gets in the equation as multiplier, deviations after changing the value to improve forecast 

(updating) are represented as 𝑇𝑢𝑝, 𝑆𝑀𝑢𝑝, 𝑈𝑍𝑢𝑝 and 𝐿𝑍𝑢𝑝 which are temperature and 

model states of soil moisture, upper zone and lower zone respectively. As it is mentioned 

in Chapter 4.1.1, “u” and “v” variables, which are control variables for optimization, in 

equation 4.19 – 4.20 are substituted for noise factors of 𝑃𝑓,𝑇𝑢𝑝, 𝑆𝑀𝑢𝑝, 𝑈𝑍𝑢𝑝 and 𝐿𝑍𝑢𝑝.  

In this study, temperature and precipitation, as model input, and soil moisture, 

upper zone and lower zone, as model states, are updated one by one or with combination 

to get a better agreement between observed and simulated streamflow, SCA and SWE. 

At this point, weighting factors are significant to determine which agreement is more vital 

for the user. This means that if the observation is reliable then the weighting factor could 

be higher which gives more penalty than the others do in an objective function. 

In Table 5.5, SCA and SWE are displayed as an output of HBV model, not a 

model state. This is because these variables rely on model states indirectly. Namely, SWE 
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is sum of model states of Snow Pack (SP) and Water Holding Capacity (WHC) and SCA 

linearly related with SWE by using a transformation of lookup table inside the HBV 

model. 

5.4.   Number of Iteration in DA Procedure 

Data assimilation procedure is one of the modules in RTC-Tools program. It has 

several options to be set by user even they can directly be taken as default values. Some 

of these options have significant impact on getting the optimal solution in DA procedure. 

In this section, the iteration number of DA is discussed.  

The optimal solution is considered as the solution giving best results in a fast and 

reliable way. This test is run in the computer applying DA procedure, so the speed and 

corresponding time value could be change with properties of the computer. The role of 

the number of iteration to determine the optimal solution is tested by considering 

precipitation since precipitation is one of the major input variables in any hydrological 

modelling. To change the precipitation in each time step during DA, a multiplier in 

between 0.7 and 1.3 is used to minimize the penalty function according to the discharge 

agreement. 

2015 water year is selected for this case study to determine optimum number of 

iterations. Four different iteration numbers have been assigned in RTC-Tools, which are 

200, 400, 600 and 800. Performance criteria are defined as the speed and penalty function 

rate (robustness). The penalty function is shown in Equation 5.6. According to Equation 

5.6 the unit of the penalty function is (m3/s)2. 

J = 𝑚𝑖𝑛 ∑ 𝑤∆𝑄(�̂�
𝑘

− 𝑄𝑘)
20

𝑘=−𝑁+1
                  (5.6) 

According to Table 5.6, first elimination can be made with respect to the speed 

for each number of iteration. Therefore, iteration number of 800 is omitted since the 

objective function rate is almost same with 600 where the difference in speed is 20 

second. The same reason can be used to omit 600 while comparing it to the 400. While 

the penalty values are almost close to each other, the speed is 50 percent more than 400. 
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Table 5.6. Number of iterations and their properties. 

Iteration Number Penalty Speed (millisecond) 

200 120436.1 20060.00 

400 115840.4 39520.00 

600 113795.5 57665.00 

800 113769.2 73705.00 

 

 

Figure 5.9. Objective function value versus iteration number. 

The rest 200 and 400 number of iteration can be compared according to the Figure 

5.9. After the DA procedure finding the result in 200th step, it tries to find more optimal 

solution with searching the whole period. After fitting in body of simulated discharge to 

streamflow observation by changing the precipitation, DA procedure makes some minor 

changes to get the best solution from DA. To make sure to select the number of iteration 

as 400, observation versus assimilation results are evaluated and it is observed that 400th 

step gives better results than 200th step for the peak and the recession part of the 

streamflow observation. Therefore, 400th iteration is selected for the rest of the study in 

terms of penalty value and in return for its computational speed.  
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5.5.   Results and Assessments 

According to the model structure, the results of the DA procedure are displayed, 

explained and interpreted in this section. To improve the streamflow forecasting, the 

model states, model inputs and external snow covered area and snow water equivalent 

data are used in DA procedure. In the first DA experiment mainly model states are 

evaluated, on the other hand, in the second DA experiment impact of satellite snow 

products (H10, MODIS and H13) are assessed both in terms of observed streamflow, 

SCA and SWE. 

In this part of the study, not only DA application is categorized into two groups 

according to their data type, but also these two groups are divided into several sub-groups 

in itself. Since there are several common criteria in these model applications, they are 

described first. 

In each of the DA experiment, an objective function is used to minimize the 

penalty of discharge. Namely, consistency in observed and simulated discharge is the 

main goal to get a better agreement. The lead time interval is selected as nine days 

considering a short and medium range forecasting. The DA application period is selected 

as the same with the validation period between the water years of 2009-2013. The 

assessment is based on this period and graphs of lead time performances comprise the 

dates specified. 

Optimization variables and bound constraints are used to update the model by 

forcing precipitation, temperature as HBV model input and soil moisture, upper zone and 

lower zone as HBV model states. Table 5.7 shows the optimization variables with their 

corresponding range of constraints. 

As it is mentioned earlier, precipitation factor contributes the updating procedure 

as a multiplier whereas all the other optimization variables are included as plus/minus 

addition.  
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Table 5.7. Optimization variables with their bound constraints. 

Optimization Variable Bound Constraints 

Precipitation Factor 0.7≤ 𝑃𝑓
𝑘 ≤1.3 

Temperature -2.0 oC≤ 𝑇𝑢𝑝
𝑘  ≤2.0 oC 

Soil Moisture Update -5.0 mm≤ 𝑆𝑀𝑢𝑝
𝑘  ≤5.0 mm 

Upper Zone Update -5.0 mm≤ 𝑈𝑍𝑢𝑝
𝑘  ≤5.0 mm 

Lower Zone Update -5.0 mm≤ 𝐿𝑍𝑢𝑝
𝑘  ≤5.0 mm 

  

5.5.1.   First experiment 

The first experiment in DA application includes model inputs and model states 

with a certain bound constraints (Table 5.7) by trying to get a better agreement on only 

discharge time series. Thus, all the optimization variables are allowed to be changed by 

the optimizer with a given range one by one, except “P_T” trial. P_T trial is created to 

optimize two variables, precipitation factor and temperature at the same time. The reason 

is that, Karasu River runoff is dominated by snowmelt runoff, which is strongly affected 

by both precipitation and temperature during the melting period. Even if temperature trial 

can be used in DA solely, it can only affect the model when the model starts to fill in and 

out the snowpack box. However, it would not increase or decrease the total volume of 

mass without a change in precipitation. 

The lead time performance of DA application for model states and model inputs 

are illustrated with a performance indicator of RMSE in Figure 5.10. According to the 

figure, HBV model state of Upper Zone (UZ) causes a significant improvement in model 

performance with DA rather than the other input or state variables. This is because; state 

of UZ directly controls the quick flow in HBV. In this circumstance, the initial state of 

forecasting period is getting closer to observed discharge. 

In addition, Lower Zone (LZ) has a good contribution to improve the results. The 

task for LZ box in HBV is related with low flows in simulation. Hereby, while the initial 

condition of forecasting is improved by LZ, it gives a better result in low flows. 

Soil Moisture (SM), being another DA state, improves forecasting, but not as 

much as UZ and LZ. The reason is that, SM is indirectly linked with outflow in HBV. 

Hence it controls the soil box and the changes in SM responds slowly. 
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When the precipitation (P) and precipitation-temperature (P_T) trials are 

considered, P_T give reasonably higher performance than P. As it is mentioned before, 

temperature input has an important effect on snow in snow-accumulation and snow-

depletion periods. Even if the changes in temperature are very small, it directly affects 

the amount of precipitation as rain or snow at that time. In addition, updating precipitation 

input has a benefit to catch the observed streamflow since the observed precipitation could 

be underestimated due to measurement errors. Hence, contribution of precipitation in DA 

as multiplier gives an extra benefit while a more precise initial condition is created. 

All the DA applications showed that when the lead time increases the agreement 

between observation and modeled streamflow is diverging day by day. This is an expected 

result, due to the increased uncertainties in both model structure and model inputs. 

Figure 5.11 displays the first lead time forecast results of updated states and inputs 

of HBV model in 2011 water year in Karasu Basin. This graph gives an idea on which 

updated states or inputs exposed the forecasting at which direction. It is clear that, all of 

the updated model states and model inputs are better than the simulation.  Updating UZ 

provides more improvement on forecasting than the others. This is because; UZ can 

directly control the quick flow, which is effective on the high flow period of hydrograph. 

Furthermore, updating P_T gives a reasonable result according to the other component of 

experiments. This indicates that true water volume balance with the form of snow and/or 

rain improves the results positively.  
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Figure 5.10. Lead time performance of DA on discharge using state variables. 

 

Figure 5.11. First lead time runoff values using DA, 2011 water year. 
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5.5.2.   Second experiment 

This test mainly focused on how the observed satellite snow products, which are 

H10, MODIS and H13, act on DA to improve the simulated discharge and corresponding 

internal variables. Since these snow data are not an input or states of HBV model, it is 

not possible to change SCA or SWE directly in the model. Therefore, these products 

would be a term in the objective function consisting of discharge, SCA and/or SWE. 

While objective function is searching the optimal solution, the optimization variables are 

selected as both precipitation factor and temperature. The reason for this decision is that 

SCA and SWE is linked with precipitation and temperature indirectly, so if one of them 

is chosen, even if the results are getting better, in terms of discharge agreement this would 

not mean that it would make the forecast better in sense of internal variables SCA and 

SWE.  

The following two experiments are related with H10 and MODIS as Snow 

Covered Area and SWE as Snow Water Equivalent.  

5.5.2.1.   DA application including SCA (H10 and MODIS) 

In this part of the study, the objective function was extended with observed SCA 

by comparing them with simulated SCA. Thus, the new objective function would become 

as Equation 5.7 and Equation 5.8, for MODIS and H10 respectively.  

𝐽 = 𝑤𝑝 (𝑃𝑘(1 − 𝑃𝑓
𝑘))

2
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MODIS snow product data are used after the cloud filtering process. In the first 

trials, different weighting factors (𝑤∆𝑀𝑂𝐷𝐼𝑆) are given to SCA in DA applications. The 

agreement in both the observed and modelled discharge and SCA is evaluated in the 

performance analysis concerning root mean square error (RMSE) (Figure 5.12 and Figure 

5.13). The performance of weighting factor is opposite to each other in consistency of 

discharge and SCA, since an improvement in one of them causes a trade off in the other 

one. Taking discharge as the basis, the weighting factor of “1” is selected. 
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Figure 5.12. Lead time performance of DA on discharge using MODIS. 

 

Figure 5.13. Lead time performance of DA on SCA using MODIS. 
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H10 snow product is assessed with two different options in this process. First, a 

discrete time series data is used by eliminating images having a cloud cover higher than 

25%. Second, a continuous time series dataset is produced by interpolation. The discrete 

dataset is processed by using the transformation of interpolation. The interpolation is 

based on linear integration and weighting factor is applied on interpolated time series as 

one (W1). Figure 5.14 shows the results of these options in terms of both runoff and SCA. 

Besides, Figure 5.15 demonstrates the changes in SCA for the whole application period. 

The results in Figure 5.15 are evaluated by comparing the assimilated SCA with observed 

SCA of MODIS since its high accuracy rate is proven (Çoşkun, 2016). 

According to the results that are illustrated in Figure 5.14 and Figure 5.15, 

H10_Int is selected to be used in the analysis. This is because, while the discharge output 

is almost the same, H10_Int gives a better result in terms of SCA agreement. In addition, 

H10_Int has a continuous dataset so there is a flexibility to compare results with MODIS 

products. 

 

Figure 5.14. Lead time performance of DA on discharge using H10. 
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Figure 5.15. Lead time performance of DA on SCA using H10. 

DA results with MODIS, H10_Int and P_T are illustrated in Figure 5.16 and 

Figure 5.17, together. As it is clear from graphs, all of them give relatively similar results 

on increasing error with the lead time. When MODIS and H10_Int are compared with 

P_T, DA with H10_Int provides slightly better results in sense of both observed discharge 

and snow covered area (Figure 5.16 and Figure 5.17). Table 5.8 and Table 5.9 indicate 

that H10_Int improves runoff forecasting by decreasing RMSE from 33.75 m3/s to 18.83 

m3/s and SCA forecasting by decreasing RMSE from 11.49% to 9.5 % according to the 

first lead time. Even though P_T improves the runoff forecasting better than the others do 

since the variables directly affect the mass balance and states of the model, its 

performance is not good as the others in SCA forecasting. In addition, it is physically 

more meaningful to add independent observation of snow with satellites in the objective 

function through DA than perturbation of precipitation and temperature alone. 

In addition, the time-series discharge forecasting with first lead-time value is 

sketched with streamflow observations (Figure 5.18). It could obviously be seen that all 

selected DA applications improve the runoff forecasting compared to simulation at low 
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and high flows in the whole period. Model performance is increasing at the recession 

period that starts from mid of May and extends until the end of June.  

Figure 5.19 shows observed and modelled SCA as a result of DA application with 

MODIS, H10 and P_T for 2011 water year.  

Table 5.8. RMSE according to discharge for forecasting period. 

RMSE in discharge (m3/s) for the 1st lead time 

P_T MODIS H10_Int SIM 

18.58 20.34 18.83 33.75 

 

Table 5.9. RMSE according to SCA for forecasting period. 

RMSE in SCA (%) for the 1st lead time 

P_T MODIS H10_Int SIM 

10.67 8.83 9.50 11.49 

 

 

Figure 5.16. Lead time performance of DA on discharge using snow products and P_T. 
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Figure 5.17. Lead time performance of DA on SCA using snow products and P_T. 

 

Figure 5.18. First lead time runoff values using DA based on SCA, 2011 water year. 
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Figure 5.19. First lead time SCA values using DA based on SCA, 2011 water year. 

5.5.2.2   DA application including SWE 

Snow Water Equivalent (SWE) is an important variable in snow modelling studies 

and also it is one of the HBV model output which is a summation of snow pack (SP) and 

water content (WC). Therefore, it is allowed to perform DA procedure on this variable. 

The objective function to include SWE observation into DA could be written as Equation 

5.9.  
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𝑘))
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𝑘 )

2
+ 𝑤∆𝑆𝑊𝐸(�̂�𝑆𝑊𝐸

𝑘
− 𝑆𝐻13

𝑘 )
2

+ 𝑤∆𝑄(�̂�
𝑘

− 𝑄𝑘)
2

          (5.9) 

When Equation 5.9 is taken into account, depending on observed and simulated 

SWE and discharge, DA procedure would be run by using precipitation and temperature 

as optimization variables.  

After pre-processing of H13 products, it is seen that a number of data is missing 

due to the physical limitations explained in section 5.1.3. Therefore, rather limited 

number of data is used in DA with both raw and interpolated time series of SWE in DA 

procedure. Figure 5.20 shows the lead time performance of SWE product in runoff 

forecasting with respect to DA of P_T and original simulation. The results of DA with 
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P_T and SWE clearly improve the forecasting performance by decreasing RMSE with 

15-20 m3/s. Among the optimization scenarios, P_T gives slightly better results with a 

small difference. Moreover, H13 (not interpolated) and H13_Int (interpolated) give nearly 

identical results. The comparison of observed and simulated discharges for the first lead 

time for DA of H13_Int and P_T are illustrated in Figure 5.21. The graph indicates that 

the performance of H13_Int and P_T are better than the simulation, while result of P_T 

is slightly better than H13_Int. 

On the other hand, Figure 5.22 demonstrates the time series of simulated and 

observed SWE as a result of DA by P_T and H13_Int. It could be inferred from Figure 

5.22 that H13 observation is generally above simulation and optimized time series. The 

description of SWE product indicates average error of 40 mm (http://hsaf.meteoam.it/ 

documents/ATDD/SAF_HSAF_ATBD-13_1_0.pdf), so while SWE products are 

included the DA procedure most of the time it increases the total amount of snow by using 

optimization variables. The tradeoff between discharge and SWE is founded to be 

reasonable. 

 

Figure 5.20. Lead time performance of DA on discharge using H13_Int and P_T. 
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Figure 5.21. First lead time runoff values using DA based on SWE, 2011 water year 

 

Figure 5.22. First lead time SWE values as a result of SWE based DA, 2011 water year. 



 

74 

 

5.5.3.   Real-Time DA application 

Real-time runoff forecasting is essential in the need to operate hydraulic structures 

such as reservoirs effectively. To achieve this aim a performance assessment is done for 

2015 water year and runoffs are forecasted with HBV hydrologic model with and without 

DA application. 

The availability of products plays a critical role on DA application for organizing 

the objective function in terms of penalty. Therefore, the selected SCA products of H10 

and MODIS are taken into account in this part of the study, whereas H13 could not be 

used in this period due to unavailability of the product. By the time, two types of 

meteorological data are used in real time DA applications. The observed precipitation and 

temperature are used in the first part of the study as perfect forecast data. Then one of the 

numerical weather prediction models, Weather Research and Forecasting (WRF) model 

data is used with two day lead time total daily precipitation and daily average temperature 

data. 

5.5.3.1.   Real-Time DA application with observed data 

Objective function is set as Equation 5.7 and Equation 5.8. In addition, P_T is also 

taken into account to compare the results (Figure 5.23). Runoff forecast performance is 

high in this year with low RMSE in the lead times. The results are slightly different from 

the previous ones, DA application improves the lead time accuracy for the first 5 days 

after on in 6th and 7th lead time, the error starts to increase. The reasons for this situation 

might be explained as; the updated initial conditions are changing the mass balance of 

forecasting period by model states values. Thus, even the initial conditions are well 

representing the observed streamflow at the beginning of the forecast, the interior model 

states are not good enough for medium range forecasting. Figure 5.24 shows the lead time 

accuracy of forecasted SCA with observed SCA of MODIS. According to the results, 

when H10 and MODIS data are taken into account in DA, objective function gives better 

agreement with the observed ones with respect to SIM and P_T. This shows that this 

situation is a trade off between discharge and snow covered area values. Generally, the 

performance of the lead time is increasing in one of them while the other one is 

decreasing. First lead time values of DA application results in terms of runoff are sketched 

in Figure 5.25. It is clear that all DA application results are better than that of SIM. In the 

accumulation period of snow, the agreement between observed SCA (by MODIS) and 
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simulated SCA with DA (MODIS and H10) are relatively consistent as shown in Figure 

5.26. On the other hand, during the melting period an overestimation in SCA by the model 

is observed. 

 

Figure 5.23. Performance analysis of DA on discharge, 2015 water year. 
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Figure 5.24. Performance analysis of DA on SCA, 2015 water year. 

 

Figure 5.25. Comparison of discharge in Karasu Basin for 2015 water year. 
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Figure 5.26. Comparison of SCA in Karasu Basin for 2015 water year. 

5.5.3.2   Real-Time DA application with WRF  

WRF Model, which is a Numerical Weather Prediction model, is designed for 

both operational forecasting and atmospheric research to meet the next generation needs 

on meteorology and operational hydrology. It has two dynamical cores, which are 

combined with data assimilation system and a software architecture facilitating parallel 

computational and system extensibility. The data could be retrieved from 

http://www2.mmm.ucar.edu/wrf/users/download/free_data.html website with 

registration.  

In this study, daily total precipitation and daily average temperature data of WRF 

are used with two day lead times in a period from March to end of June in 2015 for 

operational forecasting. The daily retrieved data are processed with FEWS and prepared 

to be used in HBV hydrologic model. Updated initial states are created by not only with 

simulation itself, but also with DA applications then after forecasting are made with the 

data from WRF.  

Figure 5.27 shows the time series of DA versus observed streamflow at first lead 

time only for the snowmelt period. The agreement between DA application results and 
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observed streamflow are relatively better than forecast of SIM. This improvement occurs 

at recession and after the second peak of the hydrograph.  

 

Figure 5.27. Comparison of discharge in Karasu Basin with WRF data for  

2015 water year. 

Since the forecasting period is only the snowmelt period, the comparison of SCA 

only shows the recession part of the SCA. In Figure 5.28, when snow products (H10 and 

MODIS) are taken into account, the time series is getting closer to the MODIS (Satellite).  

Table 5.10 and Table 5.11 show the accuracy of forecasted SCA and discharge 

with respect to processed MODIS data and observed streamflow, respectively. DA 

applications force the P_T variable to improve initial states at the first lead time for 

streamflow prediction. On the other hand, only P_T based DA application affects the 

model slightly negative with respect to the SCA forecasts.  
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Figure 5.28. Comparison of SCA in Karasu Basin with WRF data for 2015 water year. 

Table 5.10. Lead time performance of DA using WRF with respect to discharge. 

Lead Time 

(hour) 

WRF_H10_Int 

(m3/s) 

WRF_MODIS 

(m3/s) 

WRF_P_T 

(m3/s) 

SIM WRF 

(m3/s) 

SIM observed data 

(m3/s) 

00 22.26 23.25 21.15 28.32 29.81 

 

Table 5.11. Lead time performance of DA using WRF with respect to SCA. 

Lead Time 

(hour) 

WRF_H10_Int 

(%) 

WRF_MODIS 

(%) 

WRF_P_T 

(%) 

SIM WRF  

(%) 

SIM observed data 

(%) 

00 16.27 15.79 19.09 17.36 17.15 
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6. CONCLUSION 

Accurate runoff forecasting especially at high flow period is crucial at 

mountainous regions, since it has strong effect on foreseeing future streamflow conditions 

and making decisions on reservoir operations. Runoff forecasting is enabled using 

hydrological models. A well-known hydrological model, HBV, is applied in this study, 

after calibration and validation processes. Initial conditions, which are the initial state 

variables before the start of forecasting, plays significant roll on the accurate runoff 

forecasting. To increase this accuracy, data assimilation approach, which is becoming 

more popular for hydrological applications in the last decade, is utilized to update and 

improve the initial states with and without the help of satellite snow products. To our 

knowledge, Data Assimilation using satellite products within HBV hydrological model is 

the first application in Turkey. 

One of the 4D-variational algorithms, Moving Horizon Estimation, is selected for 

this study. The main advantage of the method is that it sees the whole forecasting window 

by rewriting the equations of the objective function separately, to get the optimal solution 

in each time step. In addition, since variational methods enable to take the gradient for 

each time step by the help of an adjoint model, satellite products are easily used with 

different weighting factors. 

Satellite products are chosen in two categories as snow covered area (SCA) and 

snow water equivalent (SWE). Areal snow cover extent from both Moderate Resolution 

Imagining Spectroradiometer (MODIS) and Meteosat Second Generation-SEVIRI (H10) 

and snow water equivalent product of Special Sensor Microwave Imager/Sounder 

(SSMI/S) (H13) is exploited for this study. Since SWE and SCA are outputs of HBV 

hydrologic model, the observed satellite products are used to evaluate the performance of 

data assimilation.  

Karasu Basin, one of the headwaters of Euphrates Basin, is selected as a pilot area 

to apply hydrologic modeling and DA in order to increase the accuracy of forecasting. 

The mean elevation value of 1983 m indicates that the catchment is in the category of 

mountainous region. Approximately 2/3 of total annual flow comes during spring and 

early summer months due to both rain and snowmelt creating high flows. 

The study period is selected as 2001-2015 water years; data of 2001-2008 water 

years are used to calibrate the model and that of 2009-2013 water years are used to 
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validate the model by performance indicators. Melting period of 2015 water year (March-

June) is chosen for real time forecasting. According to the statistical analysis of mean 

annual runoff, 2014 water year is a low flow outlier year for Karasu Basin, so it is used 

neither in validation nor in forecasting.  

After the HBV hydrologic model is set up in Delft-FEWS platform, first, 

calibration and validation analysis are performed. Promising results with Nash Sutcliffe 

Efficiency of 0.85 and 0.72 are obtained for the calibration and validation periods, 

respectively.  

MHE method coupled with HBV hydrologic model is applied with a lead time of 

192 hours (8 days) at 24 hour time steps for the validation period in Karasu Basin, after 

analyzing the optimum number of iterations. As a first step, DA is applied only for model 

states; results give better performance than that of simulation without DA and upper zone 

(UZ) states give the best result with a decreased RMSE from 34.5 m3/s to 12.4 m3/s at 

the first lead time. The main reason is that UZ controls the quick flow of HBV, and when 

DA is allowed to change this state, it increases the consistency of modelled and simulated 

runoff by improving the initial state especially in high flow period. 

Second experiment is directly related with the usage of satellite products through 

DA. After processing the data and assigning proper weighting factors, SCA is selected as 

the first data set. MHE is applied with adding the difference between observed and 

modelled SCA into the objective function with a penalty term. DA procedure is run with 

disturbing precipitation and temperature according to the penalty function that is violated 

by two terms, observed streamflow and observed SCA. In all DA applications, the 

agreement between observed and simulated streamflow increases especially at the first 

lead time. As time progress, the lead time accuracy decreases and approaches to the 

accuracy of without DA application. The results show that when SCA products are used 

in the objective function, they help to increase the agreement between observed and 

simulated SCA with a rate of 2-3 %. Even though forecast accuracy between observed 

and simulated streamflow by disturbing only precipitation and temperature (P_T) 

variables give slightly better agreement in observed and simulated streamflow and SCA, 

the DA application with SCA increases the internal validity of the model with high 

consistency in observed and modelled SCA. In addition, since it uses an independent 

measure of snow data, it is physically more meaningful. In the second experiment, H13 
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snow water equivalent product is used with the same approach in DA. The results show 

that this helps the simulated SWE to approach to the observed SWE dramatically. 

Moreover, the effect on streamflow forecast is assumed to be reasonable according to 

without DA case. 

The real time forecasting experiment is carried out with DA during 2015 water 

year using observed streamflow, H10 and MODIS data. DA is applied in two steps: firstly, 

observed precipitation and temperature data are used as perfect forecasts including SCA 

in the objective function. In the second step, Numerical Weather Prediction (NWP) data 

is utilized in real-time runoff forecasting again taking SCA into account within the 

objective function. The real time forecasting experiment is run with Numerical Weather 

Prediction (NWP) data of Weather Research and Forecast (WRF) model for two day lead 

time between March to June of 2015 water year. According to the results, DA application 

using observed SCA increases the accuracy of streamflow forecasts for the first lead time. 

In this study, streamflow forecast is improved by the data assimilation technique 

when introducing the satellite products into the model. Even though the results of each 

experiment give a different aspect of DA, it is obvious that DA procedure is one of the 

significant techniques to improve forecasting. The flexibility of different DA techniques 

in modeling provides opportunities for integrating them with various models, data and 

algorithms. Therefore, this study could be a milestone for further operational studies in 

real time reservoir operations in Turkey. 

This study can lead to usage of different DA applications in hydrologic modelling 

for improving the lead time forecast accuracy in Turkey. DA algorithms can be applied 

with various other satellite products and NWP data in the future studies. Moreover, other 

state variables like soil moisture besides snow data can be used in the objective function 

of DA to increase internal model validity with independent observation datasets. 
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