

T.C.

ISTANBUL ALTINBAS UNIVERSITESI

GRADUATE SCHOOL OF SCIENCES ENGINEERING

INTRUSION DETECTION MODEL BASED ON DATA

MINING AND MACHINE LEARNING

Khalid Abdulwahid Kadhim

Master of Information Technology

Thesis Supervisor

Asst. Prof. Dr. Oğuz Ata

Istanbul (2018)

INTRUSION DETECTION MODEL BASED ON DATA MINING AND

MACHINE LEARNING

by

Khalid Abdulwahid Kadhim KADHIM

Information Technology

Submitted to the Graduate School of Science and Engineering

in partial fulfillment of the requirements for the degree of

Master of Science

ALTINBAŞ UNIVERSITY

2018

iii

iv

I hereby declare that all information in this document has been obtained and presented in

accordance with academic rules and ethical conduct. I also declare that, as required by these

rules and conduct, I have fully cited and referenced all material and results that are not

original to this work.

Khalid Abdulwahid Kadhim KADHIM

 Signature

v

DEDICATION

I would like to dedicate this work to my very first teacher, my mother, my first

supporter and role model, my father and my companion throughout the

journey, my wife. Without you, this dream would never come true and my

brothers and my sisters.

vi

ACKNOWLEDGEMENTS

I would like to express my sincere gratitude to all the instructors that have

taught me more than just science, especially my supervisor, Asst. Prof. Dr.

Oğuz Ata, for all the time, support and guidance provided to me along the

journey to accomplish this work. Thank you all for all the knowledge and

advice that made me overcome all the difficulties that I have faces.

vii

ABSTRACT

INTRUSION DETECTION MODEL BASED ON DATA MINING AND

MACHINE LEARNING

KADHIM, Khalid Abdulwahid Kadhim,

M.S., Information Technology, Altınbaş University

Supervisor: Asst. Prof. Dr. Oğuz Ata

Date: May/2018

Pages: 71

Recently, the use of online services has grown rapidly, which imposes the need to protect

servers that provide these services without affecting the quality of these services.

Traditional network protection techniques are no longer applicable, according to the

development of the intrusion techniques being used by intruders. Thus, more complex

techniques are being used to provide better protection to these networks. Data mining is one

of the machine learning fields that can be used to extract relations between packets

information and the labels given to them. Thus, in this study, three different data mining

classification techniques, which are the Support Vector Machine, Random Forest and Feed-

Forward Neural Networks are evaluated to detect anomalies in the packets incoming to the

network. Then, the type of attack being executed is also detected by these classifiers, in

case an intrusion is detected.

The results show that the feed-forward deep neural network classifier, with only three

hidden layers of 32 neurons each, has the best overall performance with a predictions

accuracy of 99.27% in binary classification with an average prediction time of 0.7 uSec per

each prediction, while the Random forest classifier, with 100 trees in the forest, has scored

an accuracy of 99.60% but consumes an average of 8.54 uSec per each prediction, which is

extremely high time compared to the deep learning model. Moreover, the support vector

machine classifier has scored an accuracy of 98.70% and an average execution time of

218.3 uSec per each prediction.

viii

Moreover, in multi-class classification, the deep learning model with the same hidden

layers has shown the best prediction accuracy and time with 90.82% accuracy and 0.89

uSec average prediction time, while the random forest classifier achieved an accuracy of

only 87.92% consuming an average of 17.28 uSec per prediction and the support vector

machine classifier has a prediction accuracy of 70.43% and consumes an average of 709.65

uSec per prediction. These results show that the feed-forward deep neural network is the

best choice to be employed in an intrusion detection system.

Keywords: Network Security; Intrusion Detection System; Data Mining; Anomaly

Detection.

ix

ÖZET

VERİ MADENCİLİĞİ VE MAKİNE ÖĞRENME TEMELLİ

SALDIRI TESPİT MODELİ

Khalid Abdulwahid Kadhim, KADHIM,

M.S., Bilgi Teknolojisi, Altınbaş Üniversitesi

Danışman: Yrd. Dr. Oğuz Ata

 Tarih: Mayıs / 2018

 Sayfalar: 71

Son zamanlarda, çevrimiçi hizmetlerin kullanımı hızla artmıştır, bu da bu hizmetlerin

kalitesini etkilemeden bu hizmetleri sağlayan sunucuları koruma ihtiyacını doğurmaktadır.

İzinsiz kullanıcıların kullandıkları saldırı tekniklerinin gelişim göstermesinden sonra,

geleneksel ağ koruma teknikleri artık yeterli olmamaktadır. Böylece, ağlarda daha iyi

koruma sağlamak için daha karmaşık teknikler kullanılması gerekmektedir. Veri

madenciliği (Data mining), paket bilgileri ve bunlara verilen etiketler arasındaki ilişkileri

çıkarmak için kullanılabilecek makine öğrenme alanlarından biridir.

Bu yüzden, bu çalışmada, Destek Vektör Makinesi(Support Vector Machine), Rastgele

Orman(Random Forest) ve İleri Beslemeli Sinir Ağları(Feed-forward Neural Networks)

olmak üzere üç farklı veri madenciliği sınıflandırma tekniği, ağa gelen paketlerdeki

anormallikleri tespit etmek için kullanılmaktadır. Ayrıca, yapılan saldırı türü de bir saldırı

tespit edildiğinde bu sınıflandırıcılar tarafından da algılanır.

Sonuçlar, her bir gizli katmanında 32 nöron bulunan İleri Beslemeli Sinir Ağları’nın, her

bir tahmin için ortalama tahmin süresi olarak 0.7 uSec harcayarak %99.27'lik bir tahmin

doğruluğu ile en iyi genel performansa sahip olduğunu göstermektedir. Aynı zamanda 100

ağaçlı Rastgele Orman sınıflandırıcısı, % 99.60'lık bir doğruluk elde ederken, her bir

tahmin başına ortalama 8.54 uSec tüketir ve bu da derin öğrenme modeline kıyasla çok

yüksek bir zamandır. Ayrıca, Destek Vektör Makine sınıflandırıcısı, her bir tahmin için

%98.70'lik bir doğruluk ve 218.3 uSec'lik bir ortalama yürütme süresine sahip olmuştur.

x

Son olarak, Çok Sınıflı Sınıflandırmada, aynı gizli katmanlara sahip derin öğrenme modeli,

en iyi tahmin doğruluğunu ve zamanını % 90.82 doğruluk ve 0.89 uSec ortalama tahmin

süresi ile gösterirken, Rastgele orman sınıflandırıcısı sadece %87.92 başarı oranı ve tahmin

başına ortalama 17.28 uSec ve Destek Vektör Makine sınıflandırıcısı %70.43'lük bir

doğruluk oranı ve tahmin başına ortalama 709,65 uSec tüketmektedir.

Bu sonuçlar, İleri Beslemeli Derin Sinir Ağının bir saldırı tespit sisteminde kullanılacak en

iyi seçim olduğunu göstermektedir.

Anahtar Kelimeler: Ağ Güvenliği; Saldırı tespit sistemi; Veri madenciliği; Anomali

tespiti.

xi

TABLE OF CONTENTS

Pages

ABSTRACT .. vii

LIST OF ABBREVIATIONS ... xiii

LIST OF TABLES .. xiv

LIST OF FIGURES ... xv

1. INTRODUCTION ... 1

1.1 PROBLEM DEFINITION .. 3

1.2 AIM OF THE STUDY ... 4

1.3 THESIS LAYOUT ... 4

2. LITERATURE REVIEW ... 6

3. DATA MINING AND INTRUSION DETECTION SYSTEMS 12

3.1 INTRODUCTION .. 12

3.2 NETWORK DEVICES ... 12

3.3 NETWORK SECURITY .. 13

3.3.1 Intruder .. 14

3.3.2 Intrusion ... 14

3.4 HISTORY OF INTRUSION DETECTION SYSTEMS .. 14

3.5 TYPES OF NETWORK ATTACKS .. 16

3.5.1 Passive Attacks .. 16

3.5.2 Active Attacks ... 16

3.6 MACHINE LEARNING AND DATA MINING ... 18

3.6.1 Unsupervised Machine Learning ... 18

3.6.2 Supervised Machine Learning ... 19

4. METHODOLOGY .. 27

4.1 MODEL ARCHITECTURE ... 27

xii

4.2 DATA PREPROCESSING ... 27

4.2.1 Label Encoding .. 28

4.2.2 One-Hot Encoding ... 29

4.2.3 Data Normalization.. 30

4.3 CLASSIFICATION .. 33

4.3.1 Using Support Vector Machine Classifier ... 34

4.3.2 Using Random Forest Classifier .. 35

4.3.3 Using Deep Learning Classifier .. 35

4.4 PERFORMANCE EVALUATION .. 36

4.5 DATA DESCRIPTION .. 37

5. RESULTS AND DISCUSSION .. 40

5.1 INTRODUCTION .. 40

5.2 EXPERIMENTAL RESULTS ... 40

5.2.1 Support Vector Machine Classifier ... 40

5.2.2 Random Forest Classifier .. 43

5.2.3 Deep Learning Artificial Neural Network Classifier .. 46

5.3 RESULTS SUMMARY AND DISCUSSION ... 50

6. CONCLUSION .. 56

REFERENCES .. 59

xiii

LIST OF ABBREVIATIONS

DoS : Denial of Service

U2R : User to Root

R2L : Remote to Local

IDS : Intrusion Detection System

HIDS : Host Based Intrusion Detection System

NSM : Network Security Monitor

DIDS : Distributed Intrusion Detection System

NADIR : Network Anomaly Detection and Intrusion Reporter

CIDF : Common Intrusion Detection Framework

SVM : Support Vector Machine

RF : Random Forests

FAR : False Alarm Rate

DL : Deep Learning

GPU : Graphical Processing Unit

xiv

LIST OF TABLES

Pages

Table 3.1: Sample weather dataset for decision tree classification. ... 23

Table 4.1: Sample labels and their encoded values. ... 29

Table 4.2: Sample encoded labels and the corresponding one-hot encoded values. 30

Table 5.1: Confusion matrix of binary classification results for the SVM classifier. 40

Table 5.2: Summary of the performance measures for the SVM classifier in binary

classification. .. 41

Table 5.3: Confusion matrix of multi-class classification results for the SVM classifier. 42

Table 5.4: Summary of the performance measures for the SVM classifier in multi-class

classification. .. 42

Table 5.5: Confusion matrix of binary classification results for the Random Forest

classifier. ... 43

Table 5.6: Summary of the performance measures for the Random Forest classifier in

binary classification. ... 44

Table 5.7: Confusion matrix of multi-class classification results for the Random Forest

classifier. ... 45

Table 5.8: Summary of the performance measures for the Random Forest classifier in

multi-class classification. .. 46

Table 5.9: Confusion matrix of binary classification results for the deep artificial neural

network classifier. ... 47

Table 5.10: Summary of the performance measures for the deep artificial neural network

classifier in binary classification. ... 47

Table 5.11: Confusion matrix of multi-class classification results for the artificial neural

network classifier. ... 49

Table 5.12: Summary of the performance measures for the artificial neural network

classifier in multi-class classification. .. 50

Table 5.13: Summary of the experimental results. ... 51

Table 5.14: Summary of the earlier binary classification studies' results. 53

Table 5.15: Summary of the earlier multi-class classification studies' results. 54

xv

LIST OF FIGURES

Pages

Figure 2.1: Sample SVM boundaries for classification.. 8

Figure 2.2: Illustration of Fuzzy membership function. ... 10

Figure 3.1: Possible boundaries that split records in a two-dimensional space. 21

Figure 3.2: Margins around the boundaries that split the domain space. 22

Figure 3.3: Decision tree for the weather sample dataset. .. 24

Figure 3.4: Sample deep learning neural network .. 25

Figure 3.5: Activation functions of neural networks. ... 26

Figure 4.1: Model architecture overview. .. 27

Figure 4.2: Sample attribute’s values; Top: Original values; Button: Normalized Values;

Left: Sample values 1; Middle: Sample values 2; Right: Both attributes’

values. ... 31

Figure 4.3: Hierarchy of the proposed intrusion detection system. .. 34

Figure 5.1: Illustration of the SVM classifier performance in binary classification. 41

Figure 5.2: Illustration of the SVM classifier performance in multi-class classification. 43

Figure 5.3: Illustration of the Random Forest classifier performance in binary

classification. .. 44

Figure 5.4: Illustration of the Random Forest classifier performance in multi-class

classification. .. 46

Figure 5.5: Illustration of the artificial neural network classifier performance in binary

classification. .. 48

Figure 5.6: Illustration of the artificial neural network classifier performance in multi-class

classification. .. 50

Figure 5.7: Illustration of the performance summary for the classifiers evaluated in the

study. .. 52

1

1. INTRODUCTION

Network security is one of the main concern that has been raising recently, according to the

importance of the services being provided over these networks and the development in the

techniques used to attack these networks [1]. Traditional techniques that are used to protect

networks, such as IP and port filtering, are no longer applicable because of this

development, where it has become difficult to distinguish between packets coming from

attack traffic and those coming from normal traffic coming from legitimate users trying to

access the services provided on the network [2]. Thus, it has become important to use more

sophisticated techniques to protect these networks from any intrusion attempts to protect

information stored in the servers in the networks and maintain the quality of the services

provided over these networks.

There are different types of intrusions that have different goals on networks, where some of

these intrusions aim to compromise the security of the information stored on a server, or

being transferred from one point on the network to another, and other intrusions aim to

degrade the quality of the services provided over the network, to affect the reputation of the

facility providing these techniques. To achieve such intrusions, attacks of two main

categories are used, which are the passive and active attacks. In a passive attack, the

intruder does not interact with any of the partner exchanging information, however, the

intruder monitors and analyzes the data flowing in the network in order to extract the

information being exchanged by the communicating hosts. Moreover, active attacks use

techniques that interact with the connections, by sending, receiving or modifying the

information being sent over the connection, in order to gain this information, or access to

services that the intruder is not entitled to gain [3].

Machine learning is widely used in different application, where computers are used to

interact with the environment by extracting the required knowledge from sample inputs in

order to use this knowledge interacting with new inputs, depending on the application that

the machine learning technique is used for. Data mining is one of the most important

machine learning fields, where knowledge is extracted from datasets by investigating

relations among the objects and attributes in the dataset. Data mining techniques extract

knowledge that may be difficult for humans to detect, according to the enormous number of

2

values in the dataset, or because of the complex relation that joins these values, which

makes it impossible to be detected without the aid of data mining techniques [4].

As any other machine learning techniques, data mining techniques are divided into two

main categories, which are the supervised and unsupervised techniques. The data used by

data mining learning techniques must include extra information added by an expert human,

which are known as labels, while the unsupervised data mining techniques require no

additional knowledge to be added to the dataset. Classification techniques are supervised

machine learning techniques that are widely used in different applications, where these

techniques extract the relation between the values the characterize each object and the label

given to that object, so that, this knowledge can be used to predict labels for future

unlabeled objects without the need of human expertise. These predictions can be used to

estimate the behavior of the object depending on the behavior that objects share the same

label [5].

To detect an anomaly in the network traffic incoming to the network, a classifier can be

used to predict the behavior of each packet based on the information of that packet, so that,

a decision can be made whether to allow that packet into the protected network or deny it.

Thus, it is possible to use a classifier to predict the state of the packet depending on the

values extracted from the packet’s information. However, a labeled dataset is required to

train the classifier on detecting such packets, where different dataset are collected from

network traffic that include normal and intrusion packets, so that, these datasets can be used

to train classifiers to detect attack packets in order to filter them out of the network [6].

As the classifier makes a prediction for each packet, this prediction must be used to execute

the filtering operation on that packet, where normal packets are allowed to the network,

while attack packets are not. Among all the devices used to connect hosts in a network,

such as switches and routers, firewalls are the network devices responsible for examining

the specifications of each packet to a set of rules, configured in the firewall, in order to

allow or deny the access of that packet into the network. However, as the intrusion

techniques are generating traffic quite similar to that incoming form normal traffic, the use

of static rules configures in the firewalls is no longer applicable, as it is impossible to detect

an anomaly in the network traffic using these rules. Thus, predictions provided by the

classifier are forwarded to the firewall to use these predictions, instead of the static rules, to

3

make the appropriate decision for each packet incoming to the network. Moreover, these

firewalls are also used to analyze the packets to extract required information needed by the

classifier to make these predictions [7].

As the classifiers have different approaches to create models based on the extracted

knowledge that is used to predict classes for these packets, where these approaches do not

affect the accuracy of the predictions provided for the packets only, they affect the time

required to compute each prediction. Moreover, to maintain the quality of the services

provided on the network, it is important to provide rapid predictions, in addition to the

accuracy of these predictions. Thus, the time required by each classifier to predict a label

for a packet is also important to measure, where larger networks have an enormous number

of packets flowing through, which may increase the latency of the network in cases where

classifiers with slower predictions are used in the intrusion detection system. Thus, it is

important to select a classifier that has a balanced performance, with respect to the accuracy

of the predictions and the average time consumed by the classifier to make that prediction

[8].

1.1 PROBLEM DEFINITION

Protecting networks against intrusions is becoming more and more difficult, as the

techniques used to execute these intrusions are developing rapidly, so that, it is becoming

difficult to distinguish packets incoming from legitimate users trying to access services on

the network, and those of attacks used to gain authority by unauthorized users or degrading

the quality of the services provided on that network. Traditional techniques that use static

rules in the firewalls, to filter out any unwanted or suspicious traffic, are becoming

inefficient against such intrusions. Thus, more efficient techniques are required to protect

these networks against such intrusions.

The use of machine learning techniques is growing rapidly, according to the capabilities of

these techniques in detecting relations among input values that may be difficult, or

impossible, for humans to detect, because of the complexity of these relations or the

enormous number of value in the input. Different applications employ these techniques to

interact with external domains, by training these techniques using sample values, so that,

the knowledge extracted during training is used with future inputs. However, the

performance of these techniques is different from each other, and depends on the inputs of

4

the system. Thus, the performance of different machine learning classification techniques

must be tested in order to select the most appropriate classifier that has the ability to

provide accurate and rapid predictions, so that, the security of the network is improved

without affecting the quality of the services provided on that network.

1.2 AIM OF THE STUDY

As the performance of the intrusion detection system is affected by the accuracy of the

predictions provided by the classifier and the time required to provide these predictions, the

aim of this study is to evaluate the performance of different classifiers, so that, the classifier

with the best performance is selected to implement such system. Thus, classifiers with

topologies simpler than other classifiers, proposed in earlier studies, are evaluated in this

study, so that, faster performance is assured while better predictions accuracies are

provided by these classifiers. Using such classifiers, the intrusion detection system can

provide better security for the network without affecting the quality of the services

provided by the network. The classifier with the balanced performance, with high accuracy

and low prediction time, is selected to provide binary predictions for the firewall to allow or

deny packets access to the network, while a multi-class classification is used to predict the

type of intrusion being executed against the network.

1.3 THESIS LAYOUT

The layout of the remainder of this thesis is as follows:

 Chapter two reviews background knowledge and related work.

 Chapter three illustrates the devices used to connect hosts in a network, the security

of networks, types of most recent attacks being executed against such networks and

the machine learning techniques that can be used to detect an anomaly in the

network traffic.

 Chapter four describes the proposed methodology of the proposed system, the

preprocessing techniques that are used to transform the data into a more suitable

form for the classifiers and the performance measures that are used to evaluate the

performance of classifiers.

5

 Chapter five illustrates the experiments conducted to evaluate the performance of

these classifiers, the results of these experiments and discusses these results and

compares them to results from earlier studies.

 Chapter six shows the conclusions of this study.

6

2. LITERATURE REVIEW

The KDD Cup [9] dataset is one of the popular datasets that are used for intrusion analysis

and detection. This dataset consists of 41 attributes that describe each packet in the

network, where each label is labeled as a normal packet or an attack packet. Attacks in this

dataset are divided into four categories, which are Denial of Service (DOS), User to Root

(U2R), Remote to Local (R2L), and Probing attacks. Two major issues exist in this dataset,

the first issue is the enormous number of duplicate records in both the training and testing

parts of the dataset, where about 78% of the training part, and 75% of the testing part,

records have duplicates. These duplicates may result in biased training toward the duplicate

records. The second issue is the difficulty level analysis of the dataset, where even the

simplest classifiers are able to come up with good predictions accuracy for the records in

both the training and testing datasets.

An intrusion detection system (IDS) is proposed by Wei-Chao Lin, et al. [10], which is

based on the k Nearest Neighbors (k-NN) classifier that is trained using the KDD CUP’99

dataset. The accuracy of the proposed method based on the k-NN classifier is 99.89%. The

k-NN classifier is a lazy classifier, which means that no prior training or knowledge

extraction is accomplished until a prediction is required for a new record. When a

prediction is required, the features values of the record being classified are compared to all

the records that are in the training dataset, then, the k most similar records are used to

predict a class for the new record. Although the k-NN classifier may result in accurate

predictions, it consumes, relatively, more time than other types of classifiers for

predictions, as it has to compute the similarity with all the records in the dataset, per each

prediction.

The method proposed by Sakchi Jaiswal, et al. [11] has accelerated the prediction process

by reducing the number of attributes used by the classifier to find the nearest neighbors of

the new record, which would simplify the computations required for that task. The

attributes selected by this method are selected based on the information gain of each

attribute. Information gain is computed based on the information entropy, which is

computed using equation 2.1, where H(X) is the entropy and pi is the probability of a single

attribute. Using the entropy value, information gain is computed using equation 2.2. The

7

overall accuracy of the proposed method is 94.77%, which is less than that presented

earlier, according to the reduced number of attributes.

 () ∑

(2.1)

 () () ()
(2.2)

Another approach is presented by Neha G Relan and Dharmaraj R Patil [12], which

implements an intrusion detection system based on the decision tree classifier. The

accuracy of the proposed system has scored a maximum of 95.09%, using the KDDCUP’99

dataset for both training and testing phases. The decision tree classifier creates sets of

IF/THEN rules that can be applied to the attributes’ values of each record, in order to

predict a class for that record. These sets are generated based on the attributes values of the

records in the training dataset, and the class that each record belongs to, where the sets are

distributed in levels, and the condition to be investigated in the next level is selected

depending on the result of the condition being applied in the current level.

The model proposed by Vrushali D Mane and SN Pawar [13] uses a neural network to

classify the KDDCUP’99 dataset into binary classes, which means that each record is

classified to be either a part of normal traffic or an attack. To simplify the neural network,

required to achieve this task, only 17, out of the original 41, attributes are selected as inputs

to the dataset, and the network includes only one hidden layer with 10 neurons. Moreover,

to reduce the training time required by the network, only 10% of the data is used in the

training process. However, the accuracy of the predictions made by this network has an

accuracy of 98.0%.

John McHugh [14] illustrates the issues in the newer version of the KDD CUP’99 dataset,

which is known as the NSL-KDD CUP’99. This dataset includes the same attacks that are

included in the previous KDD CUP’99 dataset but has fixed the issue of duplicated records.

However, the environment setup is considered to be questionable and more concerns are

raised about the suitability of synthetically generated dataset to be applicable in real-life

applications. Different studies are conducted to propose intrusion detection systems, based

on this dataset.

8

The method proposed by Muhammad Shakil Pervez and Dewan Md Farid [15] uses the

Support Vector Machine (SVM) classifier for intrusion detection purposes based on the

NSL-KDD CUP’99 dataset. The best classification accuracy of the proposed method has

scored 82.37% when all attributes in the dataset are fed to the SVM classifier. The SVM

classifiers creates a multidimensional space, where the number of dimensions in the space

is equal to the number of attributes in the dataset, then, the boundaries that split classes’

records are represented mathematically, so that, when new unlabeled records are required to

be classified, the SVM predicts a class for them depending on their position in the domain

and the concluded boundaries as shown in Figure 2.1.

Figure 2.1: Sample SVM boundaries for classification.

The study proposed by L Dhanabal and SP Shantharajah [16] implements and compares

three intrusion detection systems, each system is based on a different classifier that is

trained using the NSL-KDD dataset. These classifiers are the decision tree classifier, SVM,

and Naïve Bayes. The classification accuracies of these classifiers are 98.88%, 95.2%, and

73.32% sequentially. The Naïve Bayes classifier predicts a class for a record based on the

probabilities computed per each attribute values with respect to the classes existing in the

dataset. These probabilities are then computed based on the new attributes values of the

new record being classified, with respect to every class in the dataset, then, the class with

the highest probability that the record belongs to it is selected as a prediction for the record.

9

Two models, based on neural network classifier, are proposed by Bhupendra Ingre and

Anamika Yadav [17]. One of the models classifies each record into one of the five classes

of the dataset, which include one class for normal packets and four classes for five types of

attacks, while the other model implements binary classification, whether the record is

predicted to be normal or attack, regardless to the type of the attack. A total of 29 attributes

are selected, from the 41 total attributes in the dataset, as inputs to the neural network,

based on their roles in the classification process. The highest accuracy of classifying

records into five classes is 79.9%, while the highest accuracy achieved using binary

classification is 81.2%. The operation of neural networks classifiers is discussed in details

in the next chapter of this study.

A more recent dataset is proposed by Nour Moustafa and Jill Slay [18], which is known as

the UNSW-NB15 dataset. This dataset includes real-life network traffic with both normal

and abnormal packets in a synthetic environment. The packets in this dataset are labeled

into ten classes, one for the packets generated by the normal traffic, and nine attacks that

appear in the traffic. These attacks are the Fuzzers, Analysis, Backdoor, Dos, Exploit,

Generic, Reconnaissance, Shellcode and Worms.

A multi-stage decision tree classifier based intrusion detection system is proposed by

Mustapha Belouch, et al. [19]. This system is trained and tested using both the NSL-KDD

and the UNSW-NB15 dataset. The system consists of two stages, the first stage predicts

whether the packet is a part of a normal traffic, or is an intrusion attempt, then, in case that

the packet is predicted to be an intrusion attempt, the next stage is triggered in order to

predict the type of attack being executed for the intrusion attempt. The classification

accuracy of the proposed method is 88.95% for the UNSW-NB15 dataset, and 89.85% for

the NSL-KDD dataset.

Hossein Gharaee and Hamid Hosseinvand [20] implemented an IDS that combines the

benefits of a genetic algorithm to reduce the number of attributes used for classification,

and the SVM classifier, to extract knowledge from the dataset, and predict classes for the

new packets. The implemented system is tested on both the KDDCUP’99 and UNSW-

NB15 dataset, but, besides the normal class, only six out of the nine attacks that are

included in the UNSW-NB15 dataset. The implemented method has an average accuracy of

99.26% for the KDDCUP’99 dataset, and 93.25% for the UNSW-NB15.

10

Rana Aamir Raza Ashfaq, et al. [21] proposes a semi-supervised learning approach based

on fuzziness to make use of unlabeled data alongside with the labeled ones, to improve the

quality of the data used for classifier’s training. The semi-supervised approach uses

fuzziness vector to cluster labeled and unlabeled data, so that, the labels of the unlabeled

data can be predicted. This reduces the need for domain experts to label all the data in the

dataset, which makes it more convenient to include more data in training by providing

labels to those unlabeled data. The results of this approach are fed to a feed-forward neural

network, with only one hidden layer. The results of this approach show significant

improvement in the classification results, compared to other classifiers, such as the J48,

Naïve Bayes tree, and SVM, where the approach based on semi-supervised learning has

scored an accuracy of 84.12% while the Naïve Bayes tree, J48 and SVM have scored

accuracies of 81.59%, 81.05% and 69.52% when used to classify the NSL-KDD dataset.

Partha Sarathi Bhattacharjee, et al. [22] implements an intrusion detection system based on

Genetic Algorithm that employs Weighted Vectorized Fitness functions with Fuzzy

membership function. The Fuzzy membership function computes the probability of a value

to be in a certain category, instead of login predictions where values are classified to be in a

certain category among many as shown in Figure 2.2. The results of the study show that the

employment of the Fuzzy Vectorized Genetic Algorithm has improved the accuracy of the

classification results up to 99.18% using the NSL-KDD dataset.

Figure 2.2: Illustration of Fuzzy membership function.

11

Moustafa and Slay [23] present an intrusion detection system that employs linear regression

to compute the probability of incoming packets to be a part of normal traffic or of a specific

kind of an attack. Linear regression generates a distribution of probabilities of tuples to be

in a specific class, depending on the corresponding values of the data in the training dataset

that belong to the class. Then, when a new data comes in, the attributes’ values are

projected on the distribution to compute the probability of the incoming data to be in any of

the existing classes. The proposed method is tested using both the UNSW-NB15 and NSL-

KDD dataset. The results show that the implementation has a relatively higher accuracy

than the Expectation-Maximization and Naïve Bayes methods, where the proposed method

has an accuracy of 83% when tested with the UNSW-NB15 and 82.1% with the NSL-KDD,

while the Expectation-Maximization method has an accuracy of 77.2% and 74.4% for the

same datasets, and the Naïve Bayes has 79.5% and 28.9% accuracy for the same datasets.

Rifkie Primartha and Bayu Adhi Tama [24] compares the performance of the Random

Forest (RF) classifier with other classifiers proposed in different studies, such as decision

tree, random tree and multi-layer perceptron. The results show that the random forest

classifier with 800 trees in the forest has a better average performance than the other

classifiers using the KDD’99, NSL-KDD and the UNSW-NB15 network traffic datasets.

The classification accuracy of the random forest classifier with the UNSW-NB15 is 95.5%

with False Alarm Rate (FAR) of 7.22%. False alarm rate is the ratio between the number of

normal packets that are rejected by the classifier to the total number of packets predicted to

be intrusion packets by the classifier.

Malek Al-Zewairi, et al. [25] proposes an intrusion detection system based on feed-forward

deep learning neural network that consists of five hidden layers with ten neurons in each

layer. The deeper the neural network, the more complex features can be detected based on

the input data, while increasing the number of neurons in a layer increases the number of

features that the layer can detect. The performance of the deep learning model is compared

to other classifiers, such as decision tree, logistic regression, Naïve Bayes and neural

network, where the experimental results show that the deep learning model outperforms the

other model tested in the study with 98.99% accuracy.

12

3. DATA MINING AND INTRUSION DETECTION SYSTEMS

3.1 INTRODUCTION

This chapter discusses the basic concepts of the machine learning, especially data mining,

and their applications regarding intrusion detection systems by providing an overview of

networks and their security, intruders and how types on existing intrusions, as well as the

data mining techniques and how they can be employed for intrusion detection.

3.2 NETWORK DEVICES

Regardless of the type of media used to connect network devices to each other, three types

of devices are usually used to implement a network. These devices are the switches, routers

and firewalls. Switches are used to connect devices to the same subnetwork, where all the

devices in that subnetwork communicate with each other directly. Before switches, hubs are

used to connect devices in the same subnetwork, where a packet coming from one device

connected to that hub is reflected on all the ports of the hub, where all the devices on the

subnetwork receive that packet and are expected to neglect it if not directed to them. Thus,

the bandwidth of a hub is shared between all the devices in the network and the security of

the information being exchanged between two devices is in higher risk to be sniffed by

other devices that are on the same subnetwork. However, switches keep a list of devices

connected to each port, so that, when a packet is direct toward one device is reflected on the

corresponding port only, while a packet directed to an unknown host is reflected on all

ports. The entries in the hosts list are created whenever a new device sends information

through the switch, as the switch is able to detect the port that the packet has come from

and the address that sent this packet. This behavior provides more security to the

information being exchanged through the switch as well as dedicated bandwidth per each

port on the switch [26].

Routers are used to connect subnetworks to each other, so that, devices on different

networks can interchange information among them. Usually, routers have multiple ports,

where each port has a different network configuration and is connected to a different

network. Each port on a network can directly be reached from all the devices in that

subnetwork, and information directed to devices on other networks are sent to the router in

13

order to deliver them to that device. Routers have special tables that contain information

about the reachable networks and how to reach them. This information can be hard-coded

by the network administrator, or dynamically generated by exchanging information

between every two connected routes, telling each other about the networks that they can

reach using Routing Information Protocol (RIP). The only piece of information that routers

are concerned about in a packet is the address of the destination device, which is compared

against the information in routing table in order to decide the next hop, where the packet

should be sent to in order to receive its destination [27].

Firewalls are hardware devices that are connected to a network to monitor and analyze

packets going to or from the network in order to protect any unauthorized type of

communication. Unlike routers, firewalls analyze different parts of the packet, such as the

source address, sources port, destination address and destination port and compare then to a

set of rules in order to decide whether the packet is allowed to pass the firewall of should be

denied. Firewalls are used to manage access to services exist on different networks, as well

as protecting networks by denying packets that are against the rules of the firewall to pass

through. Thus, network protection should always be implemented in the firewalls [28].

3.3 NETWORK SECURITY

Practices and policies that control the operation of a network in order to prevent any

unauthorized access to that network, which intends to misuse the resources on the network,

or attempt to deny services from being accessed by, or from, other networks. An enormous

number of network attacks are executed nowadays using different techniques, which may

target different devices on the network and cause different types of damage [29]. Moreover,

network security may be involved in private networks as well as public networks, where

private networks may be local networks in a business, government or larger interconnected

organizations [30].

The increased demand for online services forces most of the companies and services

providers to catch up these demands, by making any possible online service available for

their clients. This phenomenon has imposed the need to maintain these services in order to

maintain the reputation of the company or organization, where even governmental services

are being provided online. To do so, it is mandatory for these organization to store clients’

information on servers that are reachable from the internet, so that, the requires services are

14

provided to these clients. Thus, these organizations have the obligations of maintaining the

quality of the provided services, and the confidentiality of the clients’ information being

stored on their servers [31].

3.3.1 Intruder

An intruder is a person that has no authority to use specific services, or access certain data,

but attempts to access these services or data using a network connected device, or more,

which can reach the network where the intrusion is intended to be executed [32]. There are

three main types of intruders, which are misfeasor, masquerader, and clandestine user. A

misfeasor is a user on the network, who has access to certain data and services, but attempts

to access information that has no authority to access, while the masquerader is the

unauthorized person who has no access to any of the services or information on the network

and usually attacks from outside the network. Moreover, clandestine users attempt to make

use of the privileges they have over the network devices to acquire information about

clients who are using the system. Such attacks may be executed locally, on the same

network, or from outside the network, using the same privileges they have over the system.

3.3.2 Intrusion

An intrusion is defined as the act of gaining access to a service or data that the intruder does

not have legitimate access to them, or an attempt to affect the quality of the services

provided over this network [33]. These intrusions can be performed using different

approaches, where some intrusions are executed from the same network where the victim

device is located, or from another network, which is also connected to the victim’s network.

Moreover, some intrusions are executed using a single device to perform the attack, while

other techniques use multiple computers to perform the intended intrusion [34].

3.4 HISTORY OF INTRUSION DETECTION SYSTEMS

The seminal paper proposed by [35] is the first known attempt to monitor the packets being

transferred in a certain network in order to analyze them, so that, the normal user behavior

is understood in order to distinguish any other behavior that may be a threat to the network.

That work is considered as the base that launched all other Host-Based Intrusion Detection

Systems (HIDS) to detect and prevent any intrusion attempts to the network. Based on that

15

study, an intrusion detection model is proposed by [36] that analyzes the user behavior on a

governmental mainframe in order to generate a profile for the legitimate users of the

system, then, block users who have different profiles from accessing the mainframe.

In November 1988, the Morris internet worm had been released, which is the first known

intrusive program that has the ability to spread automatically over the internet connection.

That worm has affected the internet, at that time, so bad that it has disabled servers of two

of the major corporations, which are the DEC VAX and Sun-3. The worm has the ability to

infect a single computer multiple time, causing them to go extremely slow by executing

each infection separately, which causes these computers to crash multiple times. This

behavior of the worm is not implemented intentionally, but it is because of a lack of

experience in intrusions, where the code did not check whether the worn exists on the

computer or not before attacking it. Thus, it eventually has attacked the same computer

from other computers, whenever that computer is reachable [37].

Investments in networks security models have gained significant attention after the

intrusion detection system that is proposed by [38], which is known as Network Security

Monitor (NSM) at that time. Massive amount of network traffic information is analyzed in

that method in order to distinguish suspicious behavior of the network users, which is based

on the use of hybrid methods to detect and block malicious users on the network.

Moreover, on the same year, an Automated Security Incident Measurement (ASIM) system

is proposed by the United States Air Force through their Cryptologic Support Center, where

this system is the first known system that implements intrusion detection system using

standalone hardware with a specially implemented software that runs on it.

Evaluation measures for the intrusion detection systems have started to appear in the

literature, where the IDS maintainability, scalability and efficiency are the most common

measures that are used in IDS evaluations. Moreover, these systems are categorized into

two main categories, based on the implementation concepts, which are the Distributed

Intrusion Detection System (DIDS), and the Network Anomaly Detection and Intrusion

Reporter (NADIR). These systems are designed to protect multiple hosts from attacks, by

collecting and analyzing data collected from the network traffic [38].

Ever since, different commercial intrusion detection systems are proposed to protect

networks from network attacks. NetRanger by Cisco, OmniGuard Intruder Alert by Axent,

16

and RealSecure by ISS are examples of the commercial intrusion detection system, which is

based on signatures of the attacks, therefore, they are required to be updated in whenever a

new intrusion type is proposed. Many attempts have been made to come up with a

Common Intrusion Detection Framework (CIDF), which attempt to provide a common

specification language for intrusions, but such framework is difficult to provide, as there

are no IDS that can detect all types of intrusions flawlessly [39].

3.5 TYPES OF NETWORK ATTACKS

Although there is an enormous number of network attacks that already exist and is

dramatically growing, so that, it is quite difficult, if not impossible, to illustrate all of them,

these attacks can be categorized into two main categories, which are the passive and active

attacks. However, these attacks may be similar to each other, with only a few changes that

provide them the ability to go through the existing protection schemes [40]. Thus, in this

section the main categories are illustrated with few of the most popular attacks in each

category.

3.5.1 Passive Attacks

In passive attacks, the intruder monitors and analyze the packets being transferred in the

network, without the knowledge of any of the legitimate partners who are interchanging

these data. By doing so, the intruder gains knowledge of the information being transferred

between two authenticated partners, without having any credentials to access this

information. This type of intrusion is difficult to detect, as the intruder may not leave any

traces that may indicate the existence of a third party monitoring the information being

interchanged [41]. Some of the known passive attacks are the Wiretapping Attack, Traffic

Analysis Attack, and the Release of Message Contents Attack.

3.5.2 Active Attacks

When intruders execute an active attack, they may send, receive, modify, or reply network

messages, in order to gain access to information or services that they have to authority to

access. Some active attacks may gain no access to any information, they only affect the

performance of the services provided by the network, by slowing, or shutting, down these

services. As the intruders in active attacks so interact with the servers, and interchange

17

network traffic with them, this type of attacks is easier to detect, however, it may severely

harm the performance of the network [42]. Some of the active network attacks are:

1. Denial of Service (DoS): These attacks aim to block legitimate users from

accessing the services provided by the network, or, denying access to the

network resources, such as servers and other hardware devices. The main concept

behind this kind of attacks is to flood the network with a lot of information, that

may look like initiated from legitimate users, in order to consume the available

resources on the network, such as the bandwidth or processing power. In such an

attack, intruders do not gain any access to any information, and intend to reduce

the quality of the services provided by these networks.

2. Spoofing Attack: In such attacks, intruders send information pretending to be

someone else, who is a trusted or legitimate user or service provider. For

example, an intruder sends an email to a client from a fake email address

pretending to be the owner of that email address, or, sending network packets to

a server pretending to be a legitimate user who is trying to access information

that the user has the authority to access. In both scenarios, the intruder may gain

access to confidential information, or make use of services that are not intended

to be provided to the intruder.

3. The Man in the Middle Attack: In this kind of attacks, the intruder takes place

in the middle of the communications between two legitimate partners, so that, all

the data being exchanged goes through the intruder before reaching the other

partner. In this case, not only the information is disclosed to the intruder, but the

intruder may also modify, insert or delete some of the messages being exchanged

between these partners.

4. ARP Poisoning Attack: Address Resolution Protocol (ARP) is used in the lower

levels of the Transmission Control Protocol (TCP) to resolve the physical

addresses of the network interfaces that information is targeted to. In this type of

attacks, the intruder replies to all, or a specific, resolve requests as the owner of

the required address, thus, all information that is intended to be sent to that

address are redirected to the intruders, which may reveal this information to the

intruder, or just denies users from accessing the required services, as the sent

messages are not reaching their destinations.

18

5. Buffer Overflow Attack: Network interfaces have buffers that hold the

incoming data before forwarding them to the next step. These buffers are of

limited size, so that, sending too much communication toward that network

interface, faster than the data retrieval capacity of the device, causes these data to

overflow the buffers, which means that the buffer needs to get rid of some of the

existing data in order to fit the incoming ones. This results in losing the

information coming from legitimate users to store data coming from the intruder.

3.6 MACHINE LEARNING AND DATA MINING

Providing computers with the ability to gain knowledge or making decisions with the

external world without any interaction from humans is known as machine learning. In

machine learning the same algorithms may have different outcomes depending on the

inputs of the systems, where these inputs may have never been through the system before

but the system still has the ability to process them. Data mining is one of the machine

learning fields of study that Machine learning techniques can be categorized into two

categories, which are the supervised and unsupervised machine learning [43].

3.6.1 Unsupervised Machine Learning

Unsupervised machine learning is used to extract knowledge from datasets as they are,

where the extracted knowledge represents relations between the attributes values of the

records in the dataset. This type of machine learning required no labeling to the records in

the dataset, as these algorithms tend to find the relations among the records themselves,

depending on the values that characterize each record. Clustering is one of the most popular

unsupervised data mining techniques, where records in the dataset are distributed, into

groups, based on their attributed values. In these groups, each record is more similar to the

other records in that groups than any other records in the other groups. Thus, clustering

generates groups of homogeneous records [44].

Moreover, the number of groups is the main factor that affects the performance of the

clustering process, where a larger number of clusters increases the time required to process

the records in the dataset, without any actual benefits of these extra clusters, while

clustering records into a smaller number of groups generate meaningless clusters. Thus, it is

important to cluster the records into the optimal number of clusters, depending on the

19

distribution of the attributes values in the dataset. This optimal number may be provided by

humans to the clustering algorithm, or by using some optimal number of clusters selection

techniques, wherein these techniques different number of clusters are tested in order to

select the optimal number of cluster for that dataset, depending on specific factor per each

number of clusters selection technique [45].

3.6.2 Supervised Machine Learning

In supervised machine learning, the inputs of the systems are required to be labeled in order

to extract knowledge from these inputs. The relations between the inputs and the labels

given to them are investigated in the supervised machine learning techniques. Classification

is one of the most widely used supervised data mining techniques, where the label given for

each record represents the class that this record belongs to. Then, the classifiers extract the

relations between the attributes’ values that characterize that record, and the class that the

record is labeled to be a member of. This knowledge is then applied to new records that are

not classified in order to predict a class for them. This prediction can assist estimating the

future behavior of that new record, depending on the general characteristics of the records

on that class [46].

For knowledge extraction, classifiers need labeled dataset, so that, this dataset is used to

train the classifier. This dataset is known as the training dataset. However, as the classifiers

are used for predictions, it is not possible to evaluate the performance of the classifier using

unlabeled dataset, while using the same training dataset is not a good method to evaluate

their performance because the classes of these records are known to the classifier during the

training, and this evaluation does not measure the prediction performance. Thus, in order to

provide more accurate measures, the labeled dataset is split into two parts. The first part is

used for the training phase, and the other is used for testing the classifier. Using such

approach, the data used for evaluation is not included in the training, but the actual classes

of the records in that dataset are known, so that, the testing dataset is fed to the classifier

and the classes predicted by the classifier for the records in the testing dataset are compared

to the actual classes that they belong to, in order to produce accurate evaluation measures

[47]. There are different classifiers used for extracting knowledge from a dataset. These

classifiers have different approached of knowledge extraction. However, the classifiers’

performance may vary from one dataset to another, where a certain classifier may have

20

better performance than another when applied on a certain dataset, while the other classifier

may outperform it on another dataset. Thus, it is important to test the performance of more

than one classifier on a dataset, to select the classifier of the best performance. Moreover,

there are classifiers that show a better overall performance than others, such as the Support

Vector Machine (SVM), Random Forests (RF) and Deep Learning (DL) classifiers.

3.6.2.1 Support Vector Machine Classifier

To classify the records in the dataset, the SVM classifier creates a domain space for all the

records in the dataset, where the number of dimensions in the domain space is equal to the

number of attributes in the dataset, and the records are represented as points according to

their attributes’ values. Then, the SVM classifier splits the domains according to the

number of classes in that domain. To achieve this approach, the SVM extract equations for

the boundaries that slip these regions, then, when prediction is required for a new record,

the position of that new record is examined against these boundaries in order to find the

region that the record falls in, hence, a class is predicted for that record [48].

Figure 3.1 shows a simple example of a two-dimensional space with records distributed in

the space and are labeled with two different labels. The figure illustrates the possibility of

finding more than one boundary to split the space into two regions, each region contains

records of one label. Thus, it is important to find the best boundary that splits the regions,

so that, better predictions are provided later.

21

Figure 3.1: Possible boundaries that split records in a two-dimensional space.

In SVM classifier, the confidence of a prediction is computed based on the distance

between the record and the boundaries, where the larger is the distance, the more confident

is the prediction. Thus, to maximize the predictions confidence and reduce the errors,

margins are set around the boundaries set for the space, which represent the minimum

distances between the boundary created and the nearest point of each class. Then, the

classifier optimizes the boundaries by maximizing the margins. Figure 3.2 illustrated the

margins of the boundaries for the above example, where the green line has the farthest

boundaries, therefore, this line is selected for classes predictions of any new records.

22

Figure 3.2: Margins around the boundaries that split the domain space.

3.6.2.2 Random Forests Classifier

Random forests classifier is based on decision trees, where the extracted knowledge from

the training dataset is represented using a set of IF/THEN conditional statements. These

statements are arranged in a tree-like topology, where the root is on the top with one

conditional statement, while the remaining statements are distributed in levels. The decision

of each level decides the direction that the comparison goes to, in the next level. Each

comparison in a certain level may lead to another comparison in the next level or a decision

for the prediction, which are known as leaves [49].

In a Random Forests classifier, the training dataset is slip into batches that are equal to the

number of trees in the forest. Then, different decision trees are generated, one per each data

batch. A tree in the forest may, or may not, be similar to other trees in the forest. This

approach minimizes the dependency of a single attribute value, hence, provide more

flexible and accurate predictions. Depending on one attribute values than other may provide

better accuracy when this attribute value is dominant on the class, however, it lacks the

ability to predict the correct class for less frequent attribute values in that class. Thus, the

Random Forest provide more accurate predictions by depending on multiple paths to

23

predict a class for the incoming record, by providing multiple prediction, one per each tree,

then selecting the dominant class among these predictions. However, this approach requires

more processing time, as multiple predictions are computed per each class in order to find

the most appropriate one [50].

A sample dataset is shown in Table 3.1 for weather condition and the status of a player to

play on that day or not. The decision tree created for that dataset in order to predict the play

status for any new weather conditions, is shown in Figure 3.3.

Table 3.1: Sample weather dataset for decision tree classification.

Outlook Temperature Humidity Windy Play

Sunny Hot High False No

Sunny Hot High True No

Overcast Hot High False Yes

Rainy Mild High False Yes

Rainy Cool Normal False Yes

Rainy Cool Normal True No

Overcast Cool Normal True Yes

Sunny Mild High False No

Sunny Cool Normal False Yes

Rainy Mild Normal False Yes

Sunny Mild Normal True Yes

Overcast Mild High True Yes

Overcast Hot Normal False Yes

Rainy Mild High True No

24

Figure 3.3: Decision tree for the weather sample dataset.

3.6.2.3 Deep Learning Classifier

Huge emphasis on the applications based on neural networks has been shown recently,

according to the good performance of these networks, especially in data classification.

Neural networks are mathematical representations of the way that signals are processed in

the human brain, where neurons in a human brain are connected together in order to create

the neural networks. Some of the neurons are loosely connected to other neurons, while

may be rigidly connected to other, so that, different combinations exist to trigger different

neurons based on their input [51].

A typical neural network consists of many neurons distributed in layers. Each layer may be

an input, output, or hidden layer. The first layer that the inputs are fed to is known as the

input layer, while the layer that generates the required output is known as the output layer.

However, to improve the performance of the neural network, one or more layers are added

in between the input and the output layers. These layers are known as the hidden layers as

they are not visible to the external world. The number of neurons in the input layer is

controlled by the number of inputs to the neural network, i.e. the number of the attributes,

while the number of neurons in the output layer is controlled by the number of outputs

required from the neural network. However, more neurons can result in better results, as

increasing the number of neurons increases the possible combinations to trigger different

25

actions, but it is not possible to add these neurons to the input or output layers. Thus, these

neurons are added in the hidden layers [25] .

Moreover, the more the hidden layers, the more complex features can be examined in order

to reach a more confident decision. However, the larger the number of neurons in the

network, or the number of hidden layers, increases the computational complexity of the

network, which increases the time required to process an input in order to compute the

output. Thus, it is important to start with a smaller network, then, neurons and layers are

added to avoid increasing the complexity without any benefits at the output. When there is

more than one hidden layer in the neural network, such network is known as a deep

learning network, as the features that trigger the neurons in the second hidden layer, and

above, are more complex than those computed at the first hidden layer [53]. A sample deep

learning neural network is shown in Figure 3.4.

Figure 3.4: Sample deep learning neural network

The arrows that connect neurons from one layer to the neurons in the next layer are known

as weights, where the larger the effect of the source neuron on the destination neuron, the

larger is the weight between them. In a fully connected neural network, each neuron in a

certain layer receives the outputs of all neurons in the previous layer, each one multiplied

by the corresponding weight. The neuron, then, sums all these inputs and passes the

summation results into an activation function. Activation functions provide non-linearity to

the output of the neuron, where there are different types of application function, which are

26

illustrated in Figure 3.5. Moreover, to provide further flexibility to the neural network, each

neuron adds a bias value to the inputs that are incoming from the previous layer, which is

also multiplied by a weight value. All the weights of the neural network are initialized

using different random techniques but are updated during the training phase of the neural

network using backpropagation, by measuring the error between the output values and the

required values [54].

Figure 3.5: Activation functions of neural networks.

27

4. METHODOLOGY

4.1 MODEL ARCHITECTURE

As described in section 3.2, firewalls are the network devices that are responsible for

protecting the network devices for attacks, by analyzing the packets going in and out of the

network. Thus, an intrusion detection system should work together with the firewall, so

that, the packet information is retrieved by the firewall and sent to the IDS, then, the IDS

process this information in order to predict a category for that information and pass a

decision to the firewall in order to allow or block that packet. An overview of the model

architecture is shown in Figure 4.1.

Figure 4.1: Model architecture overview.

4.2 DATA PREPROCESSING

Real-life datasets include different types of data, such as nominal, ordinal or numerical

values of different ranges. Moreover, some databases may include some missing values and

wrong values, which are values out of the normal ranges, such as a value of 200 in human

age, or wrong combination of values, such as a record that has male in gender attribute and

Intrusion Detection System

Preprocessin Classification Decision

Switch Firewall

P
ac

k
et

In
fo

rm
at

io
n

Decision

28

yes in the pregnant attribute. These values must be adjusted, so that, it is possible to train

the data mining techniques, as well as providing accurate knowledge to come up with

accurate predictions [55].

4.2.1 Label Encoding

Values in a database may be numerical or discrete values, where discrete values may be

ordinal or nominal value. However, some data mining techniques do not have the ability to

process discrete values, as these techniques include computations based on the input values.

Thus, sometimes it is important to encode the discrete values into numbers, so that, it

becomes possible to process these databases using these classifiers. Ordinal values are the

discrete values that each unique value has a certain position when all unique values of that

attribute are ordered, which means that ordering these values reflects a meaning of these

discrete values. For example, discrete values that represent different age groups may be

ordered in a certain position, where infants are smaller than babies, and babies are closer to

adults than seniors. Moreover, nominal values have no meaningful order, such as the

gender, where it is not possible to tell which nominal value goes where.

Label encoding converts these discrete values into numerical form, where if the values in

that attribute are ordinal values, then they may be assigned with numbers according to their

order and distances between one discrete value and another. Moreover, when the discrete

values are nominal, numerical values can be assigned randomly, or by any selected order,

such as the alphabetic order of the values in the attribute. This preprocess allows processing

these values using classifiers that accept only numerical values, such as the SVM and DL

classifiers [56]. Sample labels and their encoding are shown in Table 4.1.

29

Table 4.1: Sample labels and their encoded values.

Label Encoded Label

B 2

A 1

C 3

B 2

C 3

A 1

4.2.2 One-Hot Encoding

In neural networks, it is not possible to predict a class for an input that can be classified into

one of multiple classes using only one neuron. Thus, the number of neurons in the output

layer is equal to the number of classes in the training dataset, where the neuron

corresponding to the predicted class has the highest value among all other neurons in the

output layer. In order to train the neural network to achieve such behavior, it is important to

convert the labels in the training dataset into the appropriate shape, which should have a

size equal to the number of neurons in the output layer of the neural network. To convert

the labels of the dataset into the required shape, a vector is generated for each record with a

width equal to the number of classes in the training dataset, i.e. the number of neurons in

the output layer. Each class in the database is assigned with a position in that vector, where

the value is set to one for records that belong to that class, while all other values are set to

zero. This produces a vector with only one hot value, which is one, while all the remaining

values are zeros, which is the reason behind naming this technique a one-hot encoding [57].

30

Table 4.2: Sample encoded labels and the corresponding one-hot encoded values.

Encoded Label One-Hot Encoded Values

2 0 1 0

1 1 0 0

3 0 0 1

2 0 1 0

3 0 0 1

1 1 0 0

4.2.3 Data Normalization

Numerical attributes in a single database may have different ranges, where a range is

defined by the minimum and maximum values that appear in the records’ values of that

attribute. The attributes values may fall anywhere between the minimum and the maximum

values of that attribute, which is also to describe and implement in a classifier. However,

when two, or more, numerical values are inputted to a classifier that applies computation on

these inputs, such as the SVM and DL classifiers, it becomes difficult for these classifiers

to extract mathematical representation for the output based on these values. For example, if

one of the input attributes have a range [0,5], while another has a range of [500,1000], then

the record with input values of 2 and 700, respectively, is actually having the same values

compared to the ranges of each attributes, which is 20% of the range. But mathematically it

is difficult for the classifiers to adjust their parameters to adopt these range, which also gets

more complicated when the number of attributes is increased. Thus, data normalization

makes computations much easier and more relative to the classifiers, which produces better

results and simplifies the computation inside the classifiers [58]. For an attribute that has a

maximum value m and minimum value n, then each value o in that attribute is replaced

with a new value v computed using Equation 4.1:

(4.1)

31

Sample attributes’ values are shown in Figure 4.2. This figure illustrated how data

normalization maintains the relativity among the values of the same attribute, however, the

effect of these values is equalized when the values are normalized.

Figure 4.2: Sample attribute’s values; Top: Original values; Bottom: Normalized Values; Left:

Sample values 1; Middle: Sample values 2; Right: Both attributes’ values.

32

The employment of these techniques to preprocess the network traffic dataset for intrusion

detection is shown in Algorithm 4.1.

Algorithm 4.1: Data preprocessing algorithm.

Algorithm: Data Preprocessing

Input: Raw Data

Output: Preprocessed Data

Step1: Read the entire input data.

Step2: Split attributes from labels.

Step3: Remove socket information.

Step4: Replace missing attributes’ values with 0.

Step5: Encode attributes’ categorical data.

Step6: Normalize the values per each attribute.

Step7: Remove white spaces from labels

Step8: Replace missing labels with ‘Normal’.

Step8: One-hot encode label values (for deep learning only).

The socket information includes the source and destination IP addresses and port numbers.

This information is removed to ensure unbiased training toward a specific host or service,

so that, if a new device is added to the network or the IP address of a host is changes, the

classifier still able of detecting the attacks in order to block their traffic. The output data

from the preprocessing phase have no missing values and all the attributes’ values are

numerical with identical ranges, from zero to one. This enables better knowledge extraction

from the dataset using classifiers, as in some classifiers the prediction is made by applying

mathematical operations on the inputs, which makes it difficult to provide accurate

predictions when the values’ ranges among attributes are different. However, data

normalization preserves the relevance among the values in the same attribute, which makes

this formation of data more suitable for the classifiers. Moreover, in neural networks, the

use of one neuron to provide more than one class is quite inaccurate, thus, the labels are

33

encoded using the one-hot encoder, so that, it is possible to use one neuron per each class to

produce more accurate results.

4.3 CLASSIFICATION

Classification uses data mining techniques to examine the relations between the attributes’

values of each tuple and the label given to that tuple. Different classifiers use different

representations of these relations, so that, when new tuples are fed to the classifier, it is

possible to apply the extracted knowledge to predict a label for that tuple depending on the

attributes values that characterize the tuple. These relations are different from one dataset to

another; thus, it is important to train the classifiers using a labeled training dataset [59]. In

an intrusion detection system, classifiers are trained using a labeled dataset, so that, the

classifiers learn the characteristics of packets that belong to an attack traffic, and those of

the normal traffic. Then, this knowledge is used to classify new packets in order to detect

attacks packets in order to block them from passing through the network, in order to protect

that network from external intrusions.

According to the importance of fast decision provided to the firewall, to reduce the time

required to process each packet and maintain the performance of the services provided on

the network, each classifier is used to provide two types of decisions, the first decision uses

binary predictions to instruct the firewall whether to allow the packet to access the network

or deny it. The other decision is the type of attack, in case the first prediction is an attack

packet. An illustration of the hierarchy of the proposed system is shown in Figure 4.3.

34

Figure 4.3: Hierarchy of the proposed intrusion detection system.

4.3.1 Using Support Vector Machine Classifier

The preprocessed data of the network traffic are fed to the SVM classifier that distributes

the tuples in a multi-dimensional space, where the coordinates of these points are the

attributes’ values of the tuples corresponding to that point, as described in section 3.6.2.1.

As the values in the dataset are normalized per each attribute, the values vary from zero to

one. Thus, each axis in the space has a length of one unit that extends from zero to one.

After the distribution of these points, the SVM classifier finds the optimal hyperplanes that

split these points into groups, trying to keep the points of the same label in a sperate group.

However, according to the close attributes’ values of the tuples in different classes, it is

quite difficult to achieve such goal. The attributes’ values are close according to the

methodologies used behind different types of attacks, which attempt to keep the traffic

packets as similar to normal packet as possible using different approaches. Moreover, when

a label is required for a new datum, the SVM classifier projects the corresponding point to

the multi-dimensional space that is split with the hyperplanes concluded during the training

phase of the classifier and examines the position that the point belongs to, in order to

predict a label for that datum. The confidence of the prediction depends on how far the

projected point is from the hyperplanes that split the domain space [60]. Based on these

Local Network

Binary Classification

Firewall

Attack? No

Allow

Yes

Multi-Class Classification

Deny

External Network

Predict Attack Type

35

predictions, a decision is made for each packet, depending on the packet information

received from the firewall. These decisions of whether to allow each of the packets of

accessing the network or denying it. These decisions are forwarded back to the firewall in

order to execute that decision.

4.3.2 Using Random Forest Classifier

As illustrated in section 3.6.2.2, random forest classifier is based on predictions made by

multiple decision trees. Each decision tree is a group of IF/THEN clauses that are

distributed in levels, where the top level consists of one condition and is known as the root

of the tree. These conditions are generated during the training of the classifier, so that,

when a new prediction is required for a new datum, the attributes’ values of that datum are

compared against these rules in order to predict a label for it. Each tree in the forest is

trained using a different set of tuples from the training dataset, so that, different paths are

concluded for each label in order to provide more accurate classification. To classify a

packet, the packet information is sent to the random forest classifier after preprocessing it,

so that the computed values are passed through the forest generated during the training. The

final prediction from the random forest is based on the prediction of all the trees in that

forest, where the dominant label in the predictions is selected as the predicted label for that

packet [61]. Based on that prediction, a decision is made for that packer, whether to allow

or deny access to the network behind the firewall. This decision is sent back to the firewall

for execution.

4.3.3 Using Deep Learning Classifier

The use of more than one hidden layer in neural networks generates what is known as deep

neural networks, where the multiple hidden layers allow the detection of more complex

features by combining features from the previous layer. The number of neurons in the input

layer is equal to the number of attributes that characterize each tuple, while the number of

neurons in the output layer is equal to number of labels in the training dataset. The labels

are one-hot encoded, so that, the label of each tuple consists of more than values, where all

these values are zeros except one of these values is set to one, which corresponds the label

given to that tuple. The output value of each neuron in a layer is computed by passing the

summation of weighted inputs into an activation function as shown in section 3.6.2.3.

36

When tuples are labeled with individual labels, i.e. one label per each tuple, the SoftMax

activation function is used at the output layer, where this activation function uses equation

4.2 to compute the probability σ(z) of the tuple being in a certain class out of K classes.

Using SoftMax activation function, the summation of the probabilities computed at the

output of the neural network is one [62].

 ()

∑

(4.2)

4.4 PERFORMANCE EVALUATION

As there are many data mining algorithms that can be used to classify tuples, and as these

algorithms have different performance on different data, it is important to evaluate their

performance in order to find the best classifier for the IDS. A classifier may outperform

another classifier on a certain dataset, however, the other classifier may outperform that

classifier when used on another dataset. The classifier’s performance may be described by

the accuracy of the predictions provided by the classifier and time taken to predict a class

for a tuple [63]. The accuracy of a classifier is the number of correct prediction to the total

number of predictions made by the classifier. Moreover, in IDS it is important to measure

the rate of normal packets that are blocked by wrong predictions, which is known as the

False Alarm Rate (FAR). Denying legitimate users from accessing degrades the quality of

service provided by the servers on the network, which is against the main aim of the IDS.

To compute the accuracy of a classifier, it is important to use data that are not included in

the training dataset. However, it is also mandatory to use labeled data, so that, the

classifier’s predictions are compared to the actual labels in order to compute the accuracy

of that classifier [64]. For this reason, the dataset is split into two parts, one for the training

purpose and the other is for testing the performance of the classifier, so that, the data used

for testing are labeled data that are not included in the training, for accurate performance

evaluation.

Another important performance measure is the F1 score, which is computed based in the

weighted average of the precision and the recall of each class in the dataset. The F1 score

for a specific class is computed using Equation 4.3, while the overall weighted F1 score is

37

computed using Equation 4.4, where Sc is the support of that class, which is the number of

tuples that belong to that class in the dataset. The recall represents the ratio of the correctly

classified inputs to the total number of inputs that originally belong to that class in the

dataset. Precision, on the other hand, represents the ratio of the correctly classified inputs of

a certain class to the total number of inputs that are predicted by the classifier to be in that

class.

(4.3)

∑

(4.4)

4.5 DATA DESCRIPTION

The generation of the UNSW-NB15 dataset utilizes the IXIA PerfectStorm tool to collect a

combination of normal and attack packets on the network. The traffic information is

captured using Pcap files by a tcpdump tool, where 100 GB of raw traffic is collected. The

dataset consists of 49 attributed that are collected by the parallel execution of Argus and

Bro-IDS techniques, in addition to other twelve procedures. These attributes can be

categorized into the following six categories:

1. Flow Attributes: This category includes the attributes that characterize and identify

the connections established in the network, such as client to server and server to

client connections.

2. Basic Attributes: This category includes the attributes that describe the

connections, regarding the specifications of the protocol used for the

communications.

3. Content Attributes: In this group, the attributes of the transmission control

protocol, internet protocol, and some hypertext transfer protocol information are

stored.

4. Time Attributes: This group holds timing information, such as packets’ start and

end time, packets’ arrival time, and TCP protocol’s round-trip time.

38

5. Additional Attributes: This category includes few extra attributes that are

collected for protocols’ service protection and summary attributes that summarize

the flow of the most recent 100 connections, based on the time sequence.

6. Label Attributes: Two attributes in the dataset hold labels of each record. The first

attribute holds the type of the packet, to be a normal packet, or of a specific type of

attacks, while the other attributed includes one of two values, one value represents

normal traffic and the other represents attacks.

In addition to the normal packets, the UNSW-NB15 dataset includes nine types of attacks.

These attacks are:

1. Analysis: Includes different attacks, which abuse the services provided by the

webserver using the legitimate ports that these services are provided through.

Examples are spam emails and HTML files scripts.

2. Backdoor: These attacks authenticate unauthorized remote host by bypassing the

server’s authentication. The access in this type of attacks is not achieved using a

different point of entry than that dedicated for the legitimate users to authenticate.

3. DoS: This attack aims to keep the server as busy as possible in order to deny the

legitimate users of accessing the intended services, as the resources of the server are

consumed by the services requests being sent by the attackers.

4. Exploit: This type of attacks makes use of glitches, vulnerabilities or bugs on the

server to execute a series of commands to cause unexpected behavior by the host of

the server under attack.

5. Fuzzers: The intruders, in this attack, send massive amount of random data to the

server, in an attempt to discover any loopholes in the network or the operating

systems of the servers, as well as the applications that provide the intended services.

6. Generic: In this attack, the intruders attempt to attack every black-cipher by

causing collisions by using a hash function, regardless of the clock-cipher’s

configurations.

7. Reconnaissance: Information is gathered about the network and the computers in

the network, so that, the attacker gains the ability to evade the security controls of

the network.

8. Shellcode: A slight piece of code is injected into the server starting from a shell,

this code is then used to control the attacked computer.

39

9. Worm: In this attack, the attacker uses some transportation media, usually the

network, to replicate itself on other devices. The aim of attacks in this category may

be different, however, the method used to spread these attacks defines this category.

40

5. RESULTS AND DISCUSSION

5.1 INTRODUCTION

In order to evaluate the performance of the classifiers used for intrusion detection, these

classifiers are tested using the UNSW-NB15 dataset. These experiments are conducted

using Python programming language [65] using a computer with Intel® Core™ i7-4500HQ

CPU running at 1.80GHz with a memory of 16GB and 4GB of memory in the Graphical

Processing Unit (GPU) running windows 10© operating system.

5.2 EXPERIMENTAL RESULTS

The proposed system is tested using three classifiers, which are the SVM, Random Forest

and feed-forward deep learning classifier. Each packet is classified using the binary

classification first, where packets predicted as attacks are classified using the multi-class

classifier, in order to predict the type of attack that the packet belongs to. The predictions of

the binary classification are used to make a decision per each packet, whether to allow

access to the network, or deny it. The evaluation is performed using five folds cross-

validation for both binary and multi-class classification for the UNSW-NB15 network

traffic dataset.

5.2.1 Support Vector Machine Classifier

The performance of the SVM classifier in an intrusion detection system is tested to provide

binary and multi-class predictions. Table 5.1 shows the confusion matrix of the

classification results. The time required by the SVM classifier to predict a class per each

packet is 218.27 uSec.

Table 5.1: Confusion matrix of binary classification results for the SVM classifier.

Predicted

Attack Normal

Actual
Attack 319892 1391

Normal 31700 2187064

41

The summary of the performance measures for the SVM classifier is shown in Table 5.2,

where the accuracy of the predictions provided by this classifier in binary classification is

98.70%. These measures are also illustrated in Figure 5.1.

Table 5.2: Summary of the performance measures for the SVM classifier in binary classification.

Precision Recall F1-Score Accuracy Support

Attack 0.9098 0.9957 0.9508 0.9957 321283

Normal 0.9994 0.9857 0.9925 0.9857 2218764

Avg/Total 0.9880 0.9870 0.9872 0.9870 2540047

Figure 5.1: Illustration of the SVM classifier performance in binary classification.

The attack packets are extracted from the training dataset per each fold and as used to train

a multi-class SVM classifier, so that, the packets that are predicted as attacks by the binary

classifier are fed to the multi-class classifier in order to predict the type of the attack. The

confusion matrix of the multi-class classification results is shown in Table 5.3.

0.86

0.88

0.9

0.92

0.94

0.96

0.98

1

Precision Recall F1-Score Accuracy

Attack Normal Avg/Total

42

Table 5.3: Confusion matrix of multi-class classification results for the SVM classifier.

Predicted

 Analysis Backdoors DoS Exploits Fuzzers Generic Reconnaissance Shellcode Worms

A
ct

u
a
l

Analysis 2090 0 0 511 38 16 0 0 0

Backdoors 2109 0 0 76 67 20 24 0 0

DoS 13194 0 13 2413 298 129 45 0 0

Exploits 21414 0 1 20787 1407 179 86 0 0

Fuzzers 9468 0 0 313 13925 150 69 0 0

Generic 3061 0 1 1920 430 209969 23 0 0

Normal 8323 0 3 4714 18435 97 128 0 0

Reconnaissance 11743 0 2 370 886 104 856 0 0

Shellcode 1274 0 0 1 152 0 84 0 0

Worms 91 0 0 44 10 28 1 0 0

The performance measures of the SVM classifier when used in multi-class classification are

summarized in Table 5.4 and illustrated visually in Figure 5.2. The accuracy of the

predictions provided by the SVM classifier is 70.43%, while the average time required to

classify each packet is 709.65 uSec.

Table 5.4: Summary of the performance measures for the SVM classifier in multi-class

classification.

Precision Recall F1-Score Accuracy Support

Analysis 0.0287 0.7872 0.0554 0.7872 2655

Backdoors 0 0 0 0 2296

DoS 0.65 0.0008 0.0016 0.0008 16092

Exploits 0.6673 0.4738 0.5542 0.4738 43874

Fuzzers 0.3906 0.582 0.4675 0.582 23925

Generic 0.9966 0.9748 0.9855 0.9748 215404

Normal 0 0 0 0 31700

Reconnaissance 0.6505 0.0613 0.1121 0.0613 13961

Shellcode 0 0 0 0 1511

Worms 0 0 0 0 174

Avg/Total 0.7762 0.7043 0.7097 0.7043 351592

43

Figure 5.2: Illustration of the SVM classifier performance in multi-class classification.

5.2.2 Random Forest Classifier

In this experiment, the performance of the Random Forest classifier in an intrusion

detection system is tested. First, the classifier provides a binary classification for the

packets, in order to allow or deny them, then, the attack packets are classified in order to

predict the type of attack being executed. Both classifiers use 100 trees in the forest, where

each tree provides a prediction and the dominant class predicted by these trees is selected as

the predicted class by the forest. The binary classification results are summarized in the

confusion matrix shown in Table 5.5.

Table 5.5: Confusion matrix of binary classification results for the Random Forest classifier.

Predicted

Attack Normal

Actual
Attack 316041 5242

Normal 4966 2213798

The performance measures of the Random Forest classifier are shown in Table 5.6. and

illustrated in Figure 5.3, where the accuracy of the classifier in binary classification is

99.60% and each packet required an average of 8.54 uSec.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Precision Recall F1-Score Accuracy

44

Table 5.6: Summary of the performance measures for the Random Forest classifier in binary

classification.

Precision Recall F1-Score Accuracy Support

Attack 0.9845 0.9837 0.9841 0.9837 321283

Normal 0.9976 0.9978 0.9977 0.9978 2218764

Avg/Total 0.9960 0.9960 0.9960 0.9960 2540047

Figure 5.3: Illustration of the Random Forest classifier performance in binary classification.

The packets predicted by the binary classifier to be attack packets are classified by the

multi-class classifier to predict the type of attack that each packet is a part of. The training

dataset of the multiclass classifier is the part of the entire dataset that includes actual attack

packets. The confusion matrix of the binary classification results is shown in Table 5.7.

0.975

0.98

0.985

0.99

0.995

1

Precision Recall F1-Score Accuracy

Attack Normal Avg/Total

45

Table 5.7: Confusion matrix of multi-class classification results for the Random Forest classifier.

Predicted

 Analysis Backdoors DoS Exploits Fuzzers Generic Reconnaissance Shellcode Worms

A
ct

u
a
l

Analysis 311 3 549 1327 229 25 1 0 0

Backdoors 3 225 551 1280 238 7 10 15 0

DoS 6 7 4121 11447 378 113 89 142 2

Exploits 9 22 5442 36399 1108 291 715 158 17

Fuzzers 7 15 586 2178 16801 39 24 100 0

Generic 26 20 653 1933 162 212560 18 72 3

Normal 22 7 31 649 4098 20 32 106 1

Reconnaissance 1 8 731 2417 39 12 10752 14 0

Shellcode 0 0 20 190 178 23 10 1035 0

Worms 0 0 2 119 8 8 0 3 34

The performance measures of the Random Forest classifier, when used to predict the type

of the attack that a packet comes from, are shown in Table 5.8. The classification accuracy

of the multi-classification for the Random Forest classifier is 87.92% and the average time

required to predict an attack type for each packet is 17.28 uSec. Figure 5.4 illustrates the

performance of the Random Forest classifier visually.

46

Table 5.8: Summary of the performance measures for the Random Forest classifier in multi-class

classification.

Precision Recall F1-Score Accuracy Support

Analysis 0.8078 0.1272 0.2198 0.1272 2445

Backdoors 0.7329 0.0966 0.1707 0.0966 2329

DoS 0.3248 0.2527 0.2843 0.2527 16305

Exploits 0.6282 0.8242 0.713 0.8242 44161

Fuzzers 0.723 0.8507 0.7816 0.8507 19750

Generic 0.9975 0.9866 0.992 0.9866 215447

Normal 0 0 0 0 4966

Reconnaissance 0.9228 0.7694 0.8392 0.7694 13974

Shellcode 0.6292 0.7109 0.6675 0.7109 1456

Worms 0.5965 0.1954 0.2944 0.1954 174

Avg/Total 0.8717 0.8792 0.869 0.8792 321007

Figure 5.4: Illustration of the Random Forest classifier performance in multi-class classification.

5.2.3 Deep Learning Artificial Neural Network Classifier

A simple, yet effective, deep artificial neural network is implemented to classify the

packets into two classes, in binary classification. The packets classified as attacks are

forwarded to another deep artificial neural network to predict the type of attack that the

packet belongs to. The model implemented for binary classification consists of five layers,

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Precision Recall F1-Score Accuracy

47

which are one input layer with 43 neurons, three hidden layers with 128,64 and 32 neurons

sequentially, while the output layer has one neuron, where a prediction of one for normal

packets and zero for the attack ones. The neuron in the output layer has a sigmoid

activation function, which is the function normally used with binary classification, while all

neurons in the other layers use ReLU activation function. The confusion matrix shown in

Table 5.9 summarizes the classification results of the deep feed-forward artificial neural

network used in binary classification.

Table 5.9: Confusion matrix of binary classification results for the deep artificial neural network

classifier.

Predicted

Attack Normal

Actual
Attack 311220 10063

Normal 8593 2210171

The performance of the deep feed-forward artificial neural network in binary classification

is illustrated by the measure in Table 5.10 and visually in Figure 5.5. The measures show

that the accuracy of the binary predictions of this classifier is 99.27%. The average time

required by the classifier to produce a prediction for each packet is 0.70 uSec.

Table 5.10: Summary of the performance measures for the deep artificial neural network classifier

in binary classification.

Precision Recall F1-Score Accuracy Support

Attack 0.9731 0.9687 0.9709 0.9687 321283

Normal 0.9955 0.9961 0.9958 0.9961 2218764

Avg/Total 0.9926 0.9927 0.9926 0.9927 2540047

48

Figure 5.5: Illustration of the artificial neural network classifier performance in binary

classification.

Packets predicted to by the binary classifier as attack packets are fed to another deep feed-

forward neural network that predicts the type of the attack that the packet comes from.

Beside the output layer, the multi-class network is identical to the one used in binary

classification, where the output layer consists of ten neurons with softmax activation

function, which is the activation function normally used for multi-class predictions. The

results are summarized in the confusion matrix shown in Table 5.11.

0.955

0.96

0.965

0.97

0.975

0.98

0.985

0.99

0.995

1

Precision Recall F1-Score Accuracy

Attack Normal Avg/Total

49

Table 5.11: Confusion matrix of multi-class classification results for the artificial neural network

classifier.

Predicted

 Analysis Backdoors DoS Exploits Fuzzers Generic Reconnaissance Shellcode Worms

A
ct

u
a
l

Analysis 2119 0 0 113 6 20 0 0 0

Backdoors 2075 39 9 151 19 7 8 7 0

DoS 662 5 12574 2513 171 185 73 68 0

Exploits 654 3 148 41562 691 449 412 111 3

Fuzzers 3116 0 9 335 11846 25 182 60 0

Generic 2222 3 67 919 220 211930 37 26 2

Normal 830 1 10 1081 6186 26 381 77 1

Reconnaissance 2395 5 19 1362 181 13 9731 14 0

Shellcode 401 0 1 120 156 13 140 640 0

Worms 12 0 1 123 10 5 0 0 22

The performance measures of the multi-class results are shown in Table 5.12 and

illustrated, visually, in Figure 5.6. The accuracy of the prediction in this experiment is

90.82% and the average time per each prediction is 0.89 uSec.

50

Table 5.12: Summary of the performance measures for the artificial neural network classifier in

multi-class classification.

Precision Recall F1-Score Accuracy Support

Analysis 0.1463 0.9384 0.2531 0.9384 2258

Backdoors 0.6964 0.0168 0.0329 0.0168 2315

DoS 0.9794 0.7737 0.8645 0.7737 16251

Exploits 0.8609 0.9439 0.9005 0.9439 44033

Fuzzers 0.6079 0.7607 0.6758 0.7607 15573

Generic 0.9965 0.9838 0.9901 0.9838 215426

Normal 0 0 0 0 8593

Reconnaissance 0.8875 0.7093 0.7884 0.7093 13720

Shellcode 0.6381 0.4351 0.5174 0.4351 1471

Worms 0.7857 0.1272 0.2189 0.1272 173

Avg/Total 0.9167 0.9082 0.9061 0.9082 319813

Figure 5.6: Illustration of the artificial neural network classifier performance in multi-class

classification.

5.3 RESULTS SUMMARY AND DISCUSSION

The summary of the performance evaluation results is shown in Table 5.13. The results

show that the Random Forest classifier has the highest accuracy among the tested

classifiers in binary classification, while the SVM has the least. Moreover, the difference

between the Deep Learning neural network and the Random Forest is marginal, regarding

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Precision Recall F1-Score Accuracy

51

the accuracy of the binary predictions made by these classifiers, with 99.60% for the

Random Forest and 99.27% for the deep learning model, which shows that the Random

Forests classifier is only 0.33% more accurate. Moreover, the false alarm rate of the

Random Forest classifier, which is 0.24%, is only 0.21% less than that of the Deep

Learning neural network classifier, which is 0.45%. However, the average time taken by

the Random Forest classifier to predict a class for a tuple is 8.54 uSec, which is relatively

high compared to that taken by the Deep Learning neural network classifier, which is 0.7

uSec. Thus, the Deep Learning neural network classifier is 1220% faster than the Random

Forest classifier. Figure 5.7 also illustrates the summary of the classifiers’ performance

through all the experiments conducted during the study. For better illustration, the values

are normalized per each category, according to the maximum value in that category.

Table 5.13: Summary of the experimental results.

Accuracy (%) F1 Score (%)
FA

R

(%)

Prediction Time (uSec)

Binar

y

Multi

-

Class

Averag

e

Binar

y

Multi

-

Class

Averag

e

Binar

y

Multi

-

Class

Averag

e

SV

M
98.70 70.43 84.57 98.72 70.43 84.58 0.06 218.27

709.6

5
463.96

RF 99.60 87.92 93.76 99.60 86.90 93.25 0.24 8.54 17.28 12.91

DL 99.27 90.82 95.05 99.26 90.61 94.94 0.45 0.70 0.89 0.80

52

Figure 5.7: Illustration of the performance summary for the classifiers evaluated in the study.

Table 5.14 summarizes the results from earlier studies that use binary classification to

detect intrusion packets from normal, where different techniques are tested using the

UNSW-NB15 networks traffic dataset. The comparison shows that the proposed method

has a better performance than those in the earlier studies. The table shows the techniques

used in the proposed IDS systems as well as the methods evaluated in this study, where the

comparison shows that the Deep Learning neural network and the Random Forest

classifiers have outperformed the techniques proposed in earlier studies for binary

classification, where the highest accuracy achieved in the earlier studies is achieved by

Malek Al-Zewairi, et al.[25], which is 98.99%.

0

10

20
30

40

50

60

70

80

90
100

B
in

ar
y

M
u

lt
i-

C
la

ss

A
ve

ra
ge

B
in

ar
y

M
u

lt
i-

C
la

ss

A
ve

ra
ge

B
in

ar
y

M
u

lt
i-

C
la

ss

A
ve

ra
ge

Accuracy (%) F1 Score (%) FAR (%) Execution Time (uSec)

%

SVM RF DL

53

Table 5.14: Summary of the earlier binary classification studies' results.

Study Technique Accuracy (%)

Mustapha Belouch, et al. [19]

Decision Tree 86.13

Artificial Neural Network 86.31

Naïve Bayes 80.04

Random Tree 86.59

RepTree 87.80

Nour Mustafa and Jill Slay

[23]

Expectation-Maximization 77.20

Linear Regression 83.00

Naïve Bayes 79.50

Primartha and Tama [24]
Random Forest 95.5

Multilayer Perceptron 83.50

Malek Al-Zewairi, et al. [25] Deep Learning 98.99

This Study

SVM 98.70

Random Forest 99.60

Deep Learning 99.27

Moreover, Table 5.15 summarizes the earlier studies that use multi-class classification to

predict the type of intrusion that the network is being attacked with and the results of the

methods tested in this study. The results show that the Random Forest and Deep Learning

classifiers have outperformed other classifiers used for multi-class classification is earlier

studies. Although the method proposed in Gharaee and Hosseinvand [20] have a higher

accuracy than the methods tested in this study, their method classifies attacks into only

seven classes, instead of using all the classes in the dataset. However, the earlier studies

that use all the classed in the dataset to classify the attacks has less accuracy measures than

those evaluates in this study, where the highest multi-class classification accuracy is

achieved by the ReTree method proposed by Mustapha Belouch, et al. [19], with an

54

accuracy of 79.20%, while the Random Forest and Deep Learning methods evaluated in

this study have scored accuracies of 87.92% and 90.82%, respectively.

Table 5.15: Summary of the earlier multi-class classification studies' results.

Study Technique Accuracy (%)

Mustapha Belouch, et al. [19]

Artificial Neural

Network
78.14

Naïve Bayes 73.86

Random Tree 76.21

RepTree 79.20

Gharaee and Hosseinvand

[20]
Genetic + SVM

1
 93.25

This Study

SVM 70.43

Random Forest 87.92

Deep Learning 90.82

The results of the tested methods shows high performance compared to those tested by

Nour Mustafa and Jill Slay [23], where the proposed hybrid method uses linear regression

to compute the probability of incoming packets to be a part of normal traffic or of a specific

kind of an attack, which has an accuracy of 83% when tested with the UNSW-NB15

network traffic dataset. The linear regression hybrid method is also compared to two other

methods, which are the Expectation-Maximization and Naïve Bayes classifiers, and has

shown relatively higher performance, where the Expectation-Maximization has scored an

accuracy of 77.20% and the Naïve Bayes has scored 79.50% accuracy when tested on the

same dataset.

1
 Tuples are classified into only seven classes, one normal and six attack types.

55

Moreover, the performance of the Random Forest classifier in this study has outperformed

the performance of the same classifier tested by Rifke Primartha and Bayu Adhi Tama [24],

which uses a random forest classifier with 800 decision trees and has scored an accuracy of

95.5% and FAR of 7.22%. This comparison illustrates the importance of data

preprocessing, where the results are improved despite the fact the implemented model has

only 100 decision trees in the Random Forest.

The performance of the Deep Learning neural network classifier has also shown relatively

better performance than the model implemented by Malek Al-Zewairi, et al. [25], which

has five hidden layers and has achieved a prediction accuracy of 98.99%, where the Deep

Learning neural network classifier in this study has scored an accuracy of 99.27% in the

binary classification, using only three hidden layers. Al-Zewairi et al. have also compared

the Deep Learning neural network classifier to many other classifiers, where all other

classifiers have shown less prediction accuracy than the Deep Learning model.

56

6. CONCLUSION

The rapid growth of internet usage to access different services provided online has emerged

the need to protect the servers that provide these services from any attempts to compromise

the quality of the services provided by these servers and the security of the information

stored on them. The evolution of the techniques used by the intruders to attack these servers

are getting more complicated, so that, it is becoming more and more difficult to distinguish

packet coming from normal traffic or attacks. Thus, machine learning techniques are

employed in the implementation of intrusion detection systems that have the ability to

detect the anomaly in the network traffic and deny access to such traffic.

Classification techniques are supervised machine learning techniques that investigate the

relations between the values that characterize an object and the label given to that object.

These relations are, then, used to predict labels for new objects in order to estimate their

future behavior depending on the label predict for each object and the general behavior of

objects that have similar behavior. Moreover, there are many classification techniques that

have different approaches in extracting these relations and creating models that represent

the extracted knowledge, to be used for predictions. Thus, different classifiers may have

different performance depending on the dataset used to train them and it is important to

evaluate the performance of the classifiers in order to select the one with the best

performance when used with the required dataset.

As the classifiers are used to provide predictions, and it is important to evaluate their

performances, labeled data is required to evaluate the performance of the classifier by

comparing the predictions made by the classifier for that dataset to the actual labels of the

object in that dataset. Splitting the dataset into training and testing data may result in biased

evaluation, where that split may be suitable for one classifier rather than the other. Thus,

cross-validation is used to provide more realistic performance measure, where the dataset is

divided into bins and the classifier is used to iterate through all these bins. Per each

iteration, one of the bins is used as the testing dataset, while the remaining bins are used for

training. By the end of the iterations, the average performance measures are used to

describe the performance of the classifier.

57

Many network traffic data are collected to generate databases that can be used to train

classifiers to be used in intrusion detection systems. However, most of these datasets have

drawbacks that restrict their use to train classifiers to be used in such system. Moreover, the

UNSW-NB15 dataset is a recent dataset that has packet information for different types of

network traffic. Some of these packets are of normal traffic, while other are of intrusion

packets. Nine types of intrusions are included in this dataset in addition to the normal traffic

packets. Thus, this dataset is most appropriate dataset for that purpose.

In this study, the performance of three classifiers, which are the Support Vector Machine,

Random Forest and Feed-Forward Deep Neural Network, to be used in an intrusion

detection system is evaluated using the UNSW-NB15 network traffic dataset and five-fold

cross-validation. The proposed intrusion detection system uses a classifier for two

purposes. First, the classifier is used to provide binary predictions for the packets in the

dataset, where each packet is classified to be a normal or an attack packet. A decision is

made based on this prediction whether to grant the packet access to the network or deny.

Then, if the packet is predicted to be an attack, the type of the intrusion being executed

against the server is predicted using a multi-class classifier.

In binary classification, the Random forest classifier has scored the highest performance

measures, with 99.60% predictions accuracy, while the SVM and deep learning classifiers

have scored 98.7% and 99.27%, respectively. However, as these predictions are used to

grand, or deny, access to the network, it is important to provide faster decisions to reduce

the network latency and maintain the quality of the services provided on the network,

where the deep learning classifier has consumed significantly less time to provide

predictions for the incoming traffic, which only an average of 0.7 uSec per each prediction,

while the Random Forest and SVM classifier have consumed an average of 8.54 and 218.3

uSec, respectively. Thus, as the deep learning classifier has a marginal difference in

accuracy and significant difference in time consumption, it is recommended to be used in

the intrusion detection system.

Moreover, in intrusion type detection , the deep learning multi-class classifier have shown

the highest predictions accuracy with 90.82%, compared to the Random Forest, which has

scored 87.92%, and the SVM classifier that scored 70.43% accuracy. The deep learning has

also provided faster predictions with an average of only 0.89 uSec per each packet, while

58

the Random Forest has consumed 17.28 uSec and the SVM classifier has consumed 709.65

uSec. Thus, the deep learning classifier has shown the best performance regarding attack

type prediction in both accuracy and speed of prediction.

In future work, techniques to embed the deep learning classifier in the firewall hardware are

tested, so that, a standalone device can be used to filter out intrusion packets without the

need of external computers, to increase the efficiency and reduce power consumption.

59

REFERENCES

[1] D. Acemoglu, A. Malekian, and A. Ozdaglar, "Network security and contagion,"

Journal of Economic Theory, vol. 166, pp. 536-585, 2016.

[2] D. Yu, Y. Jin, Y. Zhang, and X. Zheng, "A survey on security issues in services

communication of Microservices‐enabled fog applications," Concurrency and

Computation: Practice and Experience, p. e4436.

[3] S. Henningsen, S. Dietzel, and B. Scheuermann, "Challenges of Misbehavior

Detection in Industrial Wireless Networks," in Ad Hoc Networks, ed: Springer,

2018, pp. 37-46.

[4] V. C. Storey and I.-Y. Song, "Big data technologies and Management: What

conceptual modeling can do," Data & Knowledge Engineering, vol. 108, pp. 50-67,

2017.

[5] I. H. Witten, E. Frank, M. A. Hall, and C. J. Pal, Data Mining: Practical machine

learning tools and techniques: Morgan Kaufmann, 2016.

[6] M. Ahmed, A. N. Mahmood, and J. Hu, "A survey of network anomaly detection

techniques," Journal of Network and Computer Applications, vol. 60, pp. 19-31,

2016.

[7] N. Pandeeswari and G. Kumar, "Anomaly detection system in cloud environment

using fuzzy clustering based ANN," Mobile Networks and Applications, vol. 21, pp.

494-505, 2016.

[8] G. P. Gupta and M. Kulariya, "A framework for fast and efficient cyber security

network intrusion detection using apache spark," Procedia Computer Science, vol.

93, pp. 824-831, 2016.

[9] K. Cup, "Dataset," available at the following website http://kdd. ics. uci.

edu/databases/kddcup99/kddcup99. html, vol. 72, 1999.

[10] W.-C. Lin, S.-W. Ke, and C.-F. Tsai, "CANN: An intrusion detection system based

on combining cluster centers and nearest neighbors," Knowledge-based systems,

vol. 78, pp. 13-21, 2015.

[11] S. Jaiswal, K. Saxena, A. Mishra, and S. K. Sahu, "A KNN-ACO approach for

intrusion detection using KDDCUP'99 dataset," in Computing for Sustainable

Global Development (INDIACom), 2016 3rd International Conference on, 2016, pp.

628-633.

http://kdd/

60

[12] N. G. Relan and D. R. Patil, "Implementation of network intrusion detection system

using variant of decision tree algorithm," in Nascent Technologies in the

Engineering Field (ICNTE), 2015 International Conference on, 2015, pp. 1-5.

[13] V. D. Mane and S. Pawar, "Anomaly based ids using backpropagation neural

network," International Journal of Computer Applications, vol. 136, 2016.

[14] J. McHugh, "Testing intrusion detection systems: a critique of the 1998 and 1999

darpa intrusion detection system evaluations as performed by lincoln laboratory,"

ACM Transactions on Information and System Security (TISSEC), vol. 3, pp. 262-

294, 2000.

[15] M. S. Pervez and D. M. Farid, "Feature selection and intrusion classification in

NSL-KDD cup 99 dataset employing SVMs," in Software, Knowledge, Information

Management and Applications (SKIMA), 2014 8th International Conference on,

2014, pp. 1-6.

[16] L. Dhanabal and S. Shantharajah, "A study on NSL-KDD dataset for intrusion

detection system based on classification algorithms," International Journal of

Advanced Research in Computer and Communication Engineering, vol. 4, pp. 446-

452, 2015.

[17] B. Ingre and A. Yadav, "Performance analysis of NSL-KDD dataset using ANN," in

Signal Processing And Communication Engineering Systems (SPACES), 2015

International Conference on, 2015, pp. 92-96.

[18] N. Moustafa and J. Slay, "UNSW-NB15: a comprehensive data set for network

intrusion detection systems (UNSW-NB15 network data set)," in Military

Communications and Information Systems Conference (MilCIS), 2015, 2015, pp. 1-

6.

[19] M. Belouch, S. El Hadaj, and M. Idhammad, "A Two-Stage Classifier Approach

using RepTree Algorithm for Network Intrusion Detection," INTERNATIONAL

JOURNAL OF ADVANCED COMPUTER SCIENCE AND APPLICATIONS, vol. 8,

pp. 389-394, 2017.

[20] H. Gharaee and H. Hosseinvand, "A new feature selection IDS based on genetic

algorithm and SVM," in Telecommunications (IST), 2016 8th International

Symposium on, 2016, pp. 139-144.

[21] R. A. R. Ashfaq, X.-Z. Wang, J. Z. Huang, H. Abbas, and Y.-L. He, "Fuzziness

based semi-supervised learning approach for intrusion detection system,"

Information Sciences, vol. 378, pp. 484-497, 2017.

61

[22] P. S. Bhattacharjee, A. K. M. Fujail, and S. A. Begum, "Intrusion detection system

for NSL-KDD data set using vectorised fitness function in genetic algorithm," Adv.

Comput. Sci. Technol., vol. 10, pp. 235-246, 2017.

[23] N. Moustafa and J. Slay, "A hybrid feature selection for network intrusion detection

systems: Central points," arXiv preprint arXiv:1707.05505, 2017.

[24] R. Primartha and B. A. Tama, "Anomaly detection using random forest: A

performance revisited," in Data and Software Engineering (ICoDSE), 2017

International Conference on, 2017, pp. 1-6.

[25] M. Al-Zewairi, S. Almajali, and A. Awajan, "Experimental Evaluation of a Multi-

layer Feed-Forward Artificial Neural Network Classifier for Network Intrusion

Detection System," in 2017 International Conference on New Trends in Computing

Sciences (ICTCS), 2017, pp. 167-172.

[26] I. U. Din, S. Mahooz, and M. Adnan, "Performance evaluation of different Ethernet

LANs connected by Switches and Hubs," European Journal of Scientific Research,

vol. 37, pp. 461-470, 2009.

[27] A. E. Retana, A. C. Lindem III, and R. White, "Dynamically configuring and

verifying routing information of broadcast networks using link state protocols in a

computer network," ed: Google Patents, 2015.

[28] K. Gould and A. Danforth, "Method to block unauthorized network traffic in a cable

data network," ed: Google Patents, 2016.

[29] S. Khan, A. Gani, A. W. A. Wahab, M. Shiraz, and I. Ahmad, "Network forensics:

Review, taxonomy, and open challenges," Journal of Network and Computer

Applications, vol. 66, pp. 214-235, 2016.

[30] J. M. Kizza, Guide to computer network security: Springer, 2017.

[31] R. Dabestani, A. Shahin, and M. Saljoughian, "Evaluation and prioritization of

service quality dimensions based on gap analysis with analytic network process,"

International journal of quality & reliability management, vol. 34, pp. 530-548,

2017.

[32] T. P. Fries, "Classification of Network Traffic Using Fuzzy Clustering for Network

Security," in Industrial Conference on Data Mining, 2017, pp. 278-285.

[33] A. Sahasrabuddhe, S. Naikade, A. Ramaswamy, B. Sadliwala, and P. Futane,

"Survey on Intrusion Detection System using Data Mining Techniques," 2017.

62

[34] H. M. Song, H. R. Kim, and H. K. Kim, "Intrusion detection system based on the

analysis of time intervals of CAN messages for in-vehicle network," in Information

Networking (ICOIN), 2016 International Conference on, 2016, pp. 63-68.

[35] J. P. Anderson, "Computer security threat monitoring and surveillance," Technical

Report, James P. Anderson Company, 1980.

[36] D. E. Denning, "An intrusion-detection model," IEEE Transactions on software

engineering, pp. 222-232, 1987.

[37] H. Orman, "The Morris worm: A fifteen-year perspective," IEEE Security &

Privacy, vol. 99, pp. 35-43, 2003.

[38] L. T. Heberlein, G. V. Dias, K. N. Levitt, B. Mukherjee, J. Wood, and D. Wolber,

"A network security monitor," in Research in Security and Privacy, 1990.

Proceedings., 1990 IEEE Computer Society Symposium on, 1990, pp. 296-304.

[39] D. Dasgupta, "Immunity-based intrusion detection system: a general framework," in

Proc. of the 22nd NISSC, 1999, pp. 147-160.

[40] M. Hayashi, M. Owari, G. Kato, and N. Cai, "Secrecy and robustness for active

attack in secure network coding," in Information Theory (ISIT), 2017 IEEE

International Symposium on, 2017, pp. 1172-1176.

[41] P. Sengar and N. Bhardwaj, "A Survey on Security and Various Attacks in Wireless

Sensor Network," International Journal of Computer Sciences and Engineering,

vol. 5, pp. 78-84, 2017.

[42] S. Latha and S. J. Prakash, "A survey on network attacks and Intrusion detection

systems," in Advanced Computing and Communication Systems (ICACCS), 2017

4th International Conference on, 2017, pp. 1-7.

[43] E. M. Tzanakou, Supervised and unsupervised pattern recognition: feature

extraction and computational intelligence: CRC Press, 2017.

[44] S. Liu and M. d'Aquin, "Unsupervised learning for understanding student

achievement in a distance learning setting," in Global Engineering Education

Conference (EDUCON), 2017 IEEE, 2017, pp. 1373-1377.

[45] E. Hancer and D. Karaboga, "A comprehensive survey of traditional, merge-split

and evolutionary approaches proposed for determination of cluster number," Swarm

and Evolutionary Computation, vol. 32, pp. 49-67, 2017.

63

[46] S. Suthaharan, "Big data classification: Problems and challenges in network

intrusion prediction with machine learning," ACM SIGMETRICS Performance

Evaluation Review, vol. 41, pp. 70-73, 2014.

[47] A. Bifet, G. de Francisci Morales, J. Read, G. Holmes, and B. Pfahringer, "Efficient

online evaluation of big data stream classifiers," in Proceedings of the 21th ACM

SIGKDD international conference on knowledge discovery and data mining, 2015,

pp. 59-68.

[48] S. Suthaharan, "Support vector machine," in Machine learning models and

algorithms for big data classification, ed: Springer, 2016, pp. 207-235.

[49] R. Lior, Data mining with decision trees: theory and applications vol. 81: World

scientific, 2014.

[50] H.-R. Zhang and F. Min, "Three-way recommender systems based on random

forests," Knowledge-Based Systems, vol. 91, pp. 275-286, 2016.

[51] R. J. Schalkoff, Artificial neural networks vol. 1: McGraw-Hill New York, 1997.

[52] M. Valipour, "Optimization of neural networks for precipitation analysis in a humid

region to detect drought and wet year alarms," Meteorological Applications, vol. 23,

pp. 91-100, 2016.

[53] Y. LeCun, Y. Bengio, and G. Hinton, "Deep learning," nature, vol. 521, p. 436,

2015.

[54] X.-W. Chen and X. Lin, "Big data deep learning: challenges and perspectives,"

IEEE access, vol. 2, pp. 514-525, 2014.

[55] M. Tiwari and R. Dixit, Data Mining Principles, Process Model and Applications:

Educreation Publishing, 2017.

[56] M. Savva, N. Kong, A. Chhajta, L. Fei-Fei, M. Agrawala, and J. Heer, "Revision:

Automated classification, analysis and redesign of chart images," in Proceedings of

the 24th annual ACM symposium on User interface software and technology, 2011,

pp. 393-402.

[57] A. van den Oord, N. Kalchbrenner, L. Espeholt, O. Vinyals, and A. Graves,

"Conditional image generation with pixelcnn decoders," in Advances in Neural

Information Processing Systems, 2016, pp. 4790-4798.

[58] J. Quackenbush, "Microarray data normalization and transformation," Nature

genetics, vol. 32, p. 496, 2002.

64

[59] S. Agrawal and J. Agrawal, "Survey on anomaly detection using data mining

techniques," Procedia Computer Science, vol. 60, pp. 708-713, 2015.

[60] S. Dugad, V. Puliyadi, H. Palod, N. Johnson, S. Rajput, and S. Johnny, "Ship

intrusion detection security system using image processing & SVM," in Nascent

Technologies in Engineering (ICNTE), 2017 International Conference on, 2017, pp.

1-7.

[61] A. Mellor, S. Boukir, A. Haywood, and S. Jones, "Exploring issues of training data

imbalance and mislabelling on random forest performance for large area land cover

classification using the ensemble margin," ISPRS Journal of Photogrammetry and

Remote Sensing, vol. 105, pp. 155-168, 2015.

[62] Z. Yuan, J. Li, Z. Li, C. Ding, A. Ren, B. Yuan, et al., "Softmax Regression Design

for Stochastic Computing Based Deep Convolutional Neural Networks," in

Proceedings of the on Great Lakes Symposium on VLSI 2017, 2017, pp. 467-470.

[63] J. A. Sáez, J. Luengo, and F. Herrera, "Evaluating the classifier behavior with noisy

data considering performance and robustness: The Equalized Loss of Accuracy

measure," Neurocomputing, vol. 176, pp. 26-35, 2016.

[64] H. Lu, R. Setiono, and H. Liu, "Neurorule: A connectionist approach to data

mining," arXiv preprint arXiv:1701.01358, 2017.

[65] M. F. Sanner, "Python: a programming language for software integration and

development," J Mol Graph Model, vol. 17, pp. 57-61, 1999.

65

APPENDIX-A

SAMPLE OF THE INPUT DATASET

dstip dsport proto state dur sbytes dbytes sttl dttl sloss dloss service Sload Dload

149.171.126.6 53 udp CON 0.001055 132 164 31 29 0 0 dns 500473.938 621800.938

149.171.126.9 1024 udp CON 0.036133 528 304 31 29 0 0 - 87676.0859 50480.1719

149.171.126.7 53 udp CON 0.001119 146 178 31 29 0 0 dns 521894.531 636282.375

149.171.126.5 53 udp CON 0.001209 132 164 31 29 0 0 dns 436724.563 542597.188

149.171.126.0 53 udp CON 0.001169 146 178 31 29 0 0 dns 499572.25 609067.563

149.171.126.9 111 udp CON 0.078339 568 312 31 29 0 0 - 43503.2344 23896.1426

149.171.126.4 53 udp CON 0.001134 132 164 31 29 0 0 dns 465608.469 578483.25

10.40.182.3 0 arp INT 0 46 0 0 0 0 0 - 0 0

149.171.126.6 53 udp CON 0.001126 146 178 31 29 0 0 dns 518650.094 632326.813

149.171.126.4 53 udp CON 0.001167 132 164 31 29 0 0 dns 452442.156 562125.063

10.40.170.2 0 arp INT 0 46 0 0 0 0 0 - 0 0

10.40.170.2 0 arp INT 0 46 0 0 0 0 0 - 0 0

10.40.182.3 0 arp INT 0 46 0 0 0 0 0 - 0 0

149.171.126.5 53 udp CON 0.001093 132 164 31 29 0 0 dns 483074.094 600182.938

149.171.126.9 41049 udp CON 0.001851 528 304 31 29 0 0 - 1711507.25 985413.313

149.171.126.6 44307 udp CON 0.001749 528 304 31 29 0 0 - 1811320.75 1042881.63

149.171.126.4 53 udp CON 0.001128 132 164 31 29 0 0 dns 468085.125 581560.313

149.171.126.9 111 udp CON 0.005153 568 312 31 29 0 0 - 661362.313 363283.531

149.171.126.6 111 udp CON 0.004898 568 312 31 29 0 0 - 695794.188 382196.813

149.171.126.5 53 udp CON 0.001111 132 164 31 29 0 0 dns 475247.531 590459.063

149.171.126.18 32780 udp INT 0.000021 728 0 254 0 0 0 - 138666672 0

149.171.126.16 80 tcp FIN 0.240139 918 25552 62 252 2 10 http 28050.4219 815794.188

149.171.126.16 80 tcp FIN 2.39039 1362 268 254 252 6 1 http 4233.61914 749.668518

149.171.126.9 53 udp CON 0.001101 132 164 31 29 0 0 dns 479564.031 595822

149.171.126.8 53 udp CON 0.001082 132 164 31 29 0 0 dns 487985.219 606284.688

149.171.126.2 53 udp CON 0.001122 132 164 31 29 0 0 dns 470588.219 584670.188

149.171.126.6 53 udp CON 0.001141 146 178 31 29 0 0 dns 511831.75 624014.063

149.171.126.1 53 udp CON 0.001164 146 178 31 29 0 0 dns 501718.219 611683.813

149.171.126.9 53 udp CON 0.001127 132 164 31 29 0 0 dns 468500.469 582076.313

149.171.126.4 53 udp CON 0.001073 132 164 31 29 0 0 dns 492078.281 611370

149.171.126.9 53 udp CON 0.001196 146 178 31 29 0 0 dns 488294.313 595317.688

149.171.126.1 53 udp CON 0.001101 132 164 31 29 0 0 dns 479564.031 595822

149.171.126.6 53 udp CON 0.001058 146 178 31 29 0 0 dns 551984.875 672967.875

149.171.126.8 53 udp CON 0.0011 132 164 31 29 0 0 dns 480000 596363.625

149.171.126.0 53 udp CON 0.001126 146 178 31 29 0 0 dns 518650.094 632326.813

149.171.126.8 53 udp CON 0.001017 146 178 31 29 0 0 dns 574238 700098.375

149.171.126.7 53 udp CON 0.001094 132 164 31 29 0 0 dns 482632.563 599634.375

149.171.126.8 53 udp CON 0.001092 132 164 31 29 0 0 dns 483516.469 600732.563

149.171.126.1 53 udp CON 0.001082 132 164 31 29 0 0 dns 487985.219 606284.688

149.171.126.16 5555 tcp FIN 0.17519 8168 268 254 252 4 1 - 346366.813 10228.8945

149.171.126.10 80 tcp FIN 0.1906 844 268 254 252 2 1 http 31899.2676 9401.88867

149.171.126.4 53 udp CON 0.001089 132 164 31 29 0 0 dns 484848.469 602387.5

149.171.126.1 53 udp CON 0.001126 132 164 31 29 0 0 dns 468916.531 582593.25

149.171.126.1 23202 udp CON 0.001859 528 304 31 29 0 0 - 1704142 981172.688

149.171.126.9 53 udp CON 0.001152 132 164 31 29 0 0 dns 458333.313 569444.438

149.171.126.1 111 udp CON 0.004996 568 312 31 29 0 0 - 682145.75 374699.781

149.171.126.5 53 udp CON 0.001044 146 178 31 29 0 0 dns 559386.938 681992.313

149.171.126.3 53 udp CON 0.001089 132 164 31 29 0 0 dns 484848.469 602387.5

149.171.126.6 53 udp CON 0.001122 146 178 31 29 0 0 dns 520499.094 634581.063

149.171.126.2 53 udp CON 0.001201 130 162 31 29 0 0 dns 432972.531 539550.375

149.171.126.4 53 udp CON 0.001079 132 164 31 29 0 0 dns 489342 607970.375

149.171.126.3 38340 udp CON 0.001864 528 304 31 29 0 0 - 1699570.88 978540.75

149.171.126.3 111 udp CON 0.0051 568 312 31 29 0 0 - 668235.25 367058.813

149.171.126.8 53 udp CON 0.001123 132 164 31 29 0 0 dns 470169.156 584149.563

149.171.126.7 53 udp CON 0.001112 132 164 31 29 0 0 dns 474820.156 589928.063

149.171.126.5 53 udp CON 0.001066 132 164 31 29 0 0 dns 495309.594 615384.625

149.171.126.5 53 udp CON 0.001108 130 162 31 29 0 0 dns 469314.063 584837.5

149.171.126.15 80 tcp FIN 0.177449 1214 268 254 252 2 1 http 49276.1289 10098.6758

149.171.126.14 3000 tcp FIN 0.19491 844 268 254 252 2 1 - 31193.8828 9193.98633

149.171.126.8 55173 udp CON 0.011205 528 304 31 29 0 0 - 282730.938 162784.469

149.171.126.2 53 udp CON 0.001091 130 162 31 29 0 0 dns 476626.938 593950.5

149.171.126.5 53 udp CON 0.001091 130 162 31 29 0 0 dns 476626.938 593950.5

149.171.126.7 53 udp CON 0.001135 132 164 31 29 0 0 dns 465198.219 577973.563

149.171.126.1 53 udp CON 0.001105 132 164 31 29 0 0 dns 477828.031 593665.125

149.171.126.1 53 udp CON 0.001087 146 178 31 29 0 0 dns 537258.5 655013.813

149.171.126.8 111 udp CON 0.040337 568 312 31 29 0 0 - 84488.1875 46409.0039

149.171.126.2 32859 udp CON 0.0314 520 304 31 29 0 0 - 99363.0625 58089.1758

149.171.126.2 111 udp CON 0.060192 568 304 31 29 0 0 - 56618.8203 30303.0293

66

Spkts Dpkts swin dwin stcpb dtcpb smeansz dmeansz trans_depth res_bdy_len Sjit Djit

2 2 0 0 0 0 66 82 0 0 0 0

4 4 0 0 0 0 132 76 0 0 9.89101 10.682733

2 2 0 0 0 0 73 89 0 0 0 0

2 2 0 0 0 0 66 82 0 0 0 0

2 2 0 0 0 0 73 89 0 0 0 0

4 4 0 0 0 0 142 78 0 0 29.682221 34.37034

2 2 0 0 0 0 66 82 0 0 0 0

1 0 0 0 0 0 46 0 0 0 0 0

2 2 0 0 0 0 73 89 0 0 0 0

2 2 0 0 0 0 66 82 0 0 0 0

1 0 0 0 0 0 46 0 0 0 0 0

1 0 0 0 0 0 46 0 0 0 0 0

1 0 0 0 0 0 46 0 0 0 0 0

2 2 0 0 0 0 66 82 0 0 0 0

4 4 0 0 0 0 132 76 0 0 0.656903 0.328339

4 4 0 0 0 0 132 76 0 0 0.640403 0.280968

2 2 0 0 0 0 66 82 0 0 0 0

4 4 0 0 0 0 142 78 0 0 1.890104 1.610554

4 4 0 0 0 0 142 78 0 0 1.780739 1.549507

2 2 0 0 0 0 66 82 0 0 0 0

2 0 0 0 0 0 364 0 0 0 0 0

12 24 255 255 1708297952 1939490744 77 1065 1 12026 1170.48167 1144.38336

14 6 255 255 3897219059 2466816006 97 45 1 0 18786.7114 941.724938

2 2 0 0 0 0 66 82 0 0 0 0

2 2 0 0 0 0 66 82 0 0 0 0

2 2 0 0 0 0 66 82 0 0 0 0

2 2 0 0 0 0 73 89 0 0 0 0

2 2 0 0 0 0 73 89 0 0 0 0

2 2 0 0 0 0 66 82 0 0 0 0

2 2 0 0 0 0 66 82 0 0 0 0

2 2 0 0 0 0 73 89 0 0 0 0

2 2 0 0 0 0 66 82 0 0 0 0

2 2 0 0 0 0 73 89 0 0 0 0

2 2 0 0 0 0 66 82 0 0 0 0

2 2 0 0 0 0 73 89 0 0 0 0

2 2 0 0 0 0 73 89 0 0 0 0

2 2 0 0 0 0 66 82 0 0 0 0

2 2 0 0 0 0 66 82 0 0 0 0

2 2 0 0 0 0 66 82 0 0 0 0

14 6 255 255 2505143795 3592239707 583 45 0 0 774.788316 47.765387

10 6 255 255 3006332195 1452987536 84 45 1 0 996.632407 59.532129

2 2 0 0 0 0 66 82 0 0 0 0

2 2 0 0 0 0 66 82 0 0 0 0

4 4 0 0 0 0 132 76 0 0 0.662323 0.337295

2 2 0 0 0 0 66 82 0 0 0 0

4 4 0 0 0 0 142 78 0 0 1.838719 1.588406

2 2 0 0 0 0 73 89 0 0 0 0

2 2 0 0 0 0 66 82 0 0 0 0

2 2 0 0 0 0 73 89 0 0 0 0

2 2 0 0 0 0 65 81 0 0 0 0

2 2 0 0 0 0 66 82 0 0 0 0

4 4 0 0 0 0 132 76 0 0 0.661617 0.338476

4 4 0 0 0 0 142 78 0 0 1.869125 1.620926

2 2 0 0 0 0 66 82 0 0 0 0

2 2 0 0 0 0 66 82 0 0 0 0

2 2 0 0 0 0 66 82 0 0 0 0

2 2 0 0 0 0 65 81 0 0 0 0

10 6 255 255 366102997 2277661750 121 45 1 0 1020.23676 62.002961

10 6 255 255 257622786 1677629526 84 45 0 0 1071.49701 61.076766

4 4 0 0 0 0 132 76 0 0 0.625554 4.74233

2 2 0 0 0 0 65 81 0 0 0 0

2 2 0 0 0 0 65 81 0 0 0 0

2 2 0 0 0 0 66 82 0 0 0 0

2 2 0 0 0 0 66 82 0 0 0 0

2 2 0 0 0 0 73 89 0 0 0 0

4 4 0 0 0 0 142 78 0 0 11.786999 18.234869

4 4 0 0 0 0 130 76 0 0 7.678237 10.358879

4 4 0 0 0 0 142 76 0 0 21.212496 27.670975

67

Stime Ltime Sintpkt Dintpkt tcprtt synack ackdat
is_sm_ips_por

ts ct_state_ttl ct_flw_http_mthd

1421927414 1421927414 0.017 0.013 0 0 0 0 0 0

1421927414 1421927414 7.005 7.564333 0 0 0 0 0 0

1421927414 1421927414 0.017 0.013 0 0 0 0 0 0

1421927414 1421927414 0.043 0.014 0 0 0 0 0 0

1421927414 1421927414 0.005 0.003 0 0 0 0 0 0

1421927414 1421927414 21.003 24.315 0 0 0 0 0 0

1421927414 1421927414 0.017 0.013 0 0 0 0 0 0

1421927415 1421927415 0 0 0 0 0 1 2 0

1421927415 1421927415 0.018 0.013 0 0 0 0 0 0

1421927415 1421927415 0.018 0.013 0 0 0 0 0 0

1421927415 1421927415 0 0 0 0 0 1 2 0

1421927415 1421927415 0 0 0 0 0 1 2 0

1421927415 1421927415 0 0 0 0 0 1 2 0

1421927415 1421927415 0.018 0.013 0 0 0 0 0 0

1421927415 1421927415 0.471 0.237667 0 0 0 0 0 0

1421927415 1421927415 0.458333 0.203667 0 0 0 0 0 0

1421927415 1421927415 0.017 0.015 0 0 0 0 0 0

1421927415 1421927415 1.348 1.149333 0 0 0 0 0 0

1421927415 1421927415 1.269667 1.103667 0 0 0 0 0 0

1421927415 1421927415 0.018 0.013 0 0 0 0 0 0

1421927415 1421927415 0.021 0 0 0 0 0 2 0

1421927416 1421927416 21.830818 9.570304 0.051475 0.006528 0.044947 0 1 1

1421927414 1421927416

183.57930

3

474.25940

6 0.066088 0.017959 0.048129 0 1 1

1421927416 1421927416 0.017 0.012 0 0 0 0 0 0

1421927416 1421927416 0.011 0.009 0 0 0 0 0 0

1421927416 1421927416 0.018 0.014 0 0 0 0 0 0

1421927416 1421927416 0.017 0.015 0 0 0 0 0 0

1421927416 1421927416 0.018 0.013 0 0 0 0 0 0

1421927416 1421927416 0.017 0.015 0 0 0 0 0 0

1421927416 1421927416 0.011 0.008 0 0 0 0 0 0

1421927416 1421927416 0.017 0.015 0 0 0 0 0 0

1421927416 1421927416 0.017 0.013 0 0 0 0 0 0

1421927417 1421927417 0.017 0.013 0 0 0 0 0 0

1421927417 1421927417 0.018 0.013 0 0 0 0 0 0

1421927417 1421927417 0.011 0.008 0 0 0 0 0 0

1421927417 1421927417 0.011 0.012 0 0 0 0 0 0

1421927417 1421927417 0.011 0.009 0 0 0 0 0 0

1421927417 1421927417 0.017 0.012 0 0 0 0 0 0

1421927417 1421927417 0.017 0.012 0 0 0 0 0 0

1421927417 1421927417 11.837692 33.287 0.054878 0.008744 0.046134 0 1 0

1421927418 1421927418 18.573778 36.845602 0.050675 0.006354 0.044321 0 1 1

1421927418 1421927418 0.011 0.009 0 0 0 0 0 0

1421927418 1421927418 0.017 0.012 0 0 0 0 0 0

1421927418 1421927418 0.475333 0.244 0 0 0 0 0 0

1421927418 1421927418 0.011 0.009 0 0 0 0 0 0

1421927418 1421927418 1.312667 1.137667 0 0 0 0 0 0

1421927418 1421927418 0.018 0.011 0 0 0 0 0 0

1421927418 1421927418 0.018 0.013 0 0 0 0 0 0

1421927418 1421927418 0.017 0.012 0 0 0 0 0 0

1421927418 1421927418 0.019 0.016 0 0 0 0 0 0

1421927419 1421927419 0.011 0.008 0 0 0 0 0 0

1421927419 1421927419 0.474333 0.244333 0 0 0 0 0 0

1421927419 1421927419 1.332667 1.156667 0 0 0 0 0 0

1421927419 1421927419 0.012 0.008 0 0 0 0 0 0

1421927419 1421927419 0.018 0.016 0 0 0 0 0 0

1421927419 1421927419 0.011 0.008 0 0 0 0 0 0

1421927419 1421927419 0.017 0.012 0 0 0 0 0 0

1421927419 1421927419 19.203667 34.071199 0.05198 0.007076 0.044904 0 1 1

1421927420 1421927420 19.932667 37.800801 0.050128 0.005888 0.04424 0 1 0

1421927420 1421927420 0.449333 3.361333 0 0 0 0 0 0

1421927420 1421927420 0.011 0.008 0 0 0 0 0 0

1421927420 1421927420 0.011 0.008 0 0 0 0 0 0

1421927420 1421927420 0.011 0.008 0 0 0 0 0 0

1421927420 1421927420 0.011 0.008 0 0 0 0 0 0

1421927420 1421927420 0.011 0.008 0 0 0 0 0 0

1421927420 1421927420 8.349667 12.905 0 0 0 0 0 0

1421927420 1421927420 5.437333 7.331333 0 0 0 0 0 0

1421927420 1421927420 15.011 19.576334 0 0 0 0 0 0

68

is_ftp_login ct_ftp_cmd ct_srv_src ct_srv_dst ct_dst_ltm ct_src_ ltm ct_src_dport_ltm ct_dst_sport_ltm ct_dst_src_ltm attack_cat Label

0 0 3 7 1 3 1 1 1

0

0 0 2 4 2 3 1 1 2

0

0 0 12 8 1 2 2 1 1

0

0 0 6 9 1 1 1 1 1

0

0 0 7 9 1 1 1 1 1

0

0 0 2 4 2 3 1 1 2

0

0 0 12 7 1 2 2 1 1

0

0 0 2 2 2 2 2 2 2

0

0 0 6 7 3 1 1 1 1

0

0 0 6 7 2 1 1 1 1

0

0 0 2 2 2 2 2 2 2

0

0 0 2 2 2 2 2 2 2

0

0 0 2 2 2 2 2 2 2

0

0 0 6 9 2 5 1 1 1

0

0 0 8 4 2 5 1 1 2

0

0 0 8 2 3 5 1 1 2

0

0 0 7 7 2 1 1 1 1

0

0 0 8 4 2 5 2 1 2

0

0 0 8 2 3 5 2 1 2

0

0 0 5 9 2 1 1 1 1

0

0 0 1 1 1 1 1 1 1 Exploits 1

0 0 3 2 2 1 1 1 1 Exploits 1

0 0 5 2 2 1 1 1 1 Reconnaissance 1

0 0 7 4 3 1 1 1 1

0

0 0 7 6 1 1 1 1 1

0

0 0 8 3 1 2 2 1 1

0

0 0 5 7 1 1 1 1 1

0

0 0 3 8 2 1 1 1 1

0

0 0 6 4 3 1 1 1 1

0

0 0 6 7 1 1 1 1 1

0

0 0 8 4 3 2 2 1 1

0

0 0 6 8 2 1 1 1 1

0

0 0 6 7 1 2 2 1 1

0

0 0 6 6 3 2 2 1 1

0

0 0 8 9 1 1 1 1 1

0

0 0 5 6 3 2 2 1 1

0

0 0 5 8 1 2 2 1 1

0

0 0 3 6 3 1 1 1 1

0

0 0 7 8 1 1 1 1 1

0

0 0 1 1 1 1 1 1 1 Exploits 1

0 0 3 1 1 1 1 1 1 Exploits 1

0 0 7 7 1 4 2 1 1

0

0 0 8 8 3 1 1 1 1

0

0 0 5 3 3 4 1 1 2

0

0 0 6 4 1 1 1 1 1

0

0 0 5 3 3 4 1 1 2

0

0 0 7 9 1 4 2 1 1

0

0 0 7 4 1 1 1 1 1

0

0 0 5 7 1 1 1 1 1

0

0 0 12 3 1 1 1 1 1

0

0 0 12 7 1 2 2 1 1

0

0 0 8 2 2 3 1 1 2

0

0 0 8 2 2 3 1 1 2

0

0 0 7 6 1 1 1 1 1

0

0 0 6 8 1 1 1 1 1

0

0 0 6 9 2 3 1 1 1

0

0 0 12 9 2 2 2 1 1

0

0 0 5 2 1 1 1 1 1 DoS 1

0 0 1 1 1 1 1 1 1 Generic 1

0 0 8 2 2 2 1 1 2

0

0 0 8 3 3 2 2 1 1

0

0 0 5 9 2 1 1 1 1

0

0 0 7 8 1 1 1 1 1

0

0 0 7 8 2 1 1 1 1

0

0 0 8 8 2 2 2 1 1

0

0 0 8 2 2 2 1 1 2

0

0 0 2 2 3 3 1 1 2

0

0 0 2 2 3 3 1 1 2

0

69

APPENDIX-B

DEEP LEARNING PYTHON CODE

from keras.models import Sequential

from keras.layers import Dense, Dropout

from sklearn import metrics

from sklearn.model_selection import StratifiedKFold

from sklearn.preprocessing import OneHotEncoder

import numpy as np

import time

TD=np.load('ED_Crop_Intif_MV_Norm.npy')

TL=np.load('EDLabels.npy')

OHE=OneHotEncoder(sparse=False).fit(TL.reshape(-1,1))

kfolds=StratifiedKFold(n_splits=5,shuffle=True)

c=1

epochs=100

BMA=[]

BPRD=np.empty((0,1))

BACT=np.empty((0,1))

BPRT=[]

MCMA=[]

MCPRD=np.empty((0,10))

MCACT=np.empty((0,10))

MCPRT=[]

OD=np.empty((0,43))

OL=np.empty((0,1))

for train,test in kfolds.split(TD,TL):

 print('Step: ',c)

 c=c+1

 TrD=TD[train]

 TrL=TL[train]

 TrBL=(TrL==6).astype(int)

 TsD=TD[test]

 TsL=TL[test]

70

 TsBL=(TsL==6).astype(int)

 BACT=np.vstack((BACT,TsBL.reshape(-1,1)))

 OD=np.vstack((OD,TrD))

 Bmodel = Sequential()

 Bmodel.add(Dense(128,input_dim=43,activation='relu',use_bias=True))

 Bmodel.add(Dropout(0.5))

 Bmodel.add(Dense(64,activation='relu',use_bias=True))

 Bmodel.add(Dropout(0.2))

 Bmodel.add(Dense(32,activation='relu',use_bias=True))

 Bmodel.add(Dropout(0.2))

 Bmodel.add(Dense(1,activation='sigmoid',use_bias=True))

 Bmodel.compile(loss='binary_crossentropy', optimizer='adam', metrics=['accuracy'])

 Bmodel.fit(TrD,TrBL,epochs=2*epochs, batch_size=100000,verbose=2)

 st=time.time()

 TsY = Bmodel.predict(TsD, batch_size=100000)

 pt=time.time()-st

 BPRT.append(pt)

 Bpred = (TsY>0.5).astype(int)

 OL=np.vstack((OL,TsL.reshape(-1,1)[Bpred==0].reshape(-1,1)))

 BMA.append(metrics.accuracy_score(TsBL,Bpred))

 BPRD=np.vstack((BPRD,Bpred))

 MCTrD=TrD[TrL!=6]

 MCTrL=OHE.transform(TrL[TrL!=6].reshape(-1,1))

 MCTsD=TsD[(Bpred==0).reshape(-1),:]

 MCTsL=OHE.transform(TsL[(Bpred==0).reshape(-1)].reshape(-1,1))

 MCACT=np.vstack((MCACT,MCTsL))

 MCmodel = Sequential()

 MCmodel.add(Dense(128,input_dim=43,activation='relu',use_bias=True))

 Bmodel.add(Dropout(0.2))

 MCmodel.add(Dense(64,activation='relu',use_bias=True))

 Bmodel.add(Dropout(0.2))

 MCmodel.add(Dense(32,activation='relu',use_bias=True))

 Bmodel.add(Dropout(0.2))

 MCmodel.add(Dense(10,activation='softmax',use_bias=True))

71

 MCmodel.compile(loss='categorical_crossentropy',optimizer='adam',

metrics=['categorical_accuracy'])

 MCmodel.fit(MCTrD,MCTrL,epochs=5*epochs,batch_size=100000,verbose=2)

 st=time.time()

 MCY=MCmodel.predict(MCTsD,batch_size=100000)

 pred=(MCY>0.5).astype(int)

 pt=time.time()-st

 MCPRT.append(pt)

 MCMA.append(metrics.accuracy_score(MCTsL,pred))

 MCPRD=np.vstack((MCPRD,pred))

metrics.accuracy_score(MCACT,MCPRD)

metrics.accuracy_score(BACT,BPRD)

