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ABSTRACT 

 

CYBER ATTACK DETECTION IN REMOTE TERMINAL UNITS OF 

SCADA SYSTEM 

 

DAKHEEL, Ali Hasan 

M.S, Electrical and Computer Engineering, Altınbaş University, 

Supervisor: Prof. Dr. Osman Nuri Uçan 

Date: March / 2019 

Pages: 101 

 

Cyber security threats are becoming more and more prominent and the connection links at 

the Internet Service Provider (ISP) are getting faster. These cyber intrusion detection 

networks are not able to cope with the high increase of network security threats, as the 

majority of them are designed to detect specific intrusions that are previously known, or 

trained with intrusion-free traffic. Also, most of them rely on payload inspection, which can 

create a bottleneck in real-time detection. Furthermore, now that frequently every 

communication is done through encrypted messages, it is almost impossible to interpret the 

observed payload. In order to counter these limitations, we propose a Cyber Attack 

Detection  that detects malicious hosts by using flows of RTU in SCADA systems and 

machine learning, that detects a specific observation in a given standard time period. This 

work will therefore present a proposal for a machine learning-based Cyber Attack 

Detection Systems (CADS) capable of detecting malicious hosts without any a priori 

knowledge. The results from this proposed system were validated with a realistic text files 

with malicious data provided by the network operators online. Using SCADA systems, 

unauthorized access to network and switches could be more tightly controlled while 

keeping a human in the loop; that is, human supervision and interaction were, and still are, 

part of SCADA systems. However, technological advances and the maturation of SCADA 

systems has pushed more of the supervisory function onto the computer systems that make 

up modern SCADA systems. In the early development of SCADA systems attention was 
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given to physical security, but virtually no attention was given to electronic or cyber 

security. The systems were obscure and the skills and technology needed to interact with 

the systems and update network security were simply not readily available; security of this 

type is often referred to as security through obscurity. This pattern has continued and today, 

most dedicated SCADA applications have not included built-in security. Unfortunately, 

open protocols, advanced telecommunication networks, cheap computer electronics, and 

unlimited access to even the most obscure information through the World Wide Web have 

made SCADA's security through obscurity up to date. 

 

Keywords: Cyber Attack Detection Systems, Network Flows, Machine Learning, Intrusion 

based systems, Remote Terminal Units. 
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1. INTRODUCTION 

This section will start by providing some background on how traditional Cyber Attack 

detection systems (CADS) operate and which drawbacks they present, followed by a 

proposal to counter such issues. Before moving onto the next chapter, there will also be a 

roadmap to the remainder of the document. 

1.1 PROBLEM STATEMENT 

Observing the present conditions of Cyber Attacks. We aim to extinguish the fire before it 

spreads. Detecting Cyber Attack contents accurately would fulfill our main objective. We 

will use various machine learning approaches to see which performs better for detecting 

Cyber Attack contents. 

Preserving the security of a network is becoming increasingly important nowadays. The 

number of security threats is growing day by day, and the networks‟ security systems must 

be able to keep up with this. Moreover, Internet Service Providers are increasing the 

capacity of their backbone links, now operating in the order of 1 to 10 Gbps. Traditional 

Cyber Attack Detection Systems (CADS) usually operate by using Deep Packet Inspection 

(DPI) methods. This would be feasible for link connections that were rather slow, but now 

it is very difficult to analyze the payload of every packet passing through the routers and be 

able to process them in real-time, without creating a bottleneck. Also, nowadays most of 

the traffic payload is encrypted, which makes this kind of detection even harder. 

There are basically two main approaches when it comes to classifying a CAD systems: 1) 

Signature-based detection; 2) Behavior-based detection. In the former, the system looks for 

a certain sequence of bits in the observed traffic in order to match it with a known 

intrusion. 

1.2 MOTIVATION 

Cyber Attack causes severe depression and sometimes even leads the victim to disrupt 

activities. It increases crime and violence and deteriorates the victim system wholly. But 

it‟s too difficult to track Cyber Attack in the vast online platforms manually and in remote 

terminal units of SCADA systems. So, we are profoundly motivated to detect these vicious 
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crime with an automatic system that enables to monitor the online platforms on a larger 

scale. The outcome will eventually assist the organizations in the maintenance of cyber-

security on large multi-national platform and mostly on industrial level to reduce the risk 

of failure in all electric management system, water management system and gas-pipeline 

system using remote terminal units in SCADA systems which will detect any Cyber 

Attack in future. 

1.3 SCOPE 

Detecting Cyber Attack is always challenging. Several problems has to be faced with the 

dataset, algorithm, building e perfect model, accuracy level of result etc. And gas pipeline 

industry security concerns and terms, policies are volatile. Our purpose is to surpass those 

challenges with a proficient and effective system with the following features: 

 High Detection Rate: Detection rate must be very much high otherwise it will be of no 

use. We are going to build SVM model with the capability of detecting Cyber Attack 

with maximum accuracy level. 

 Reducing unusual Act: As per research, many case studies have been done on the 

impact of Cyber Attack. One of the severe impacts was the rate of teenagers system 

hacked because of being Cyber Attacked. If system can highly be skilled that people 

won‟t attack one at least in fear of being detected, this rate can be reduced. We want to 

build this kind of strong system. 

 False Identification of Cyber Attack: This means if a word is a bully. But still a system 

detecting it as a non-attack one. This happens when the system trains more non-attack 

word than attack. This kind of false positive detection can lessen the possibility of 

detecting real Cyber Attack. So, we will try our best to look into this issue and prevent 

the amount of false positive detection rate. 

 Reduced Performance and computation time: The system has to deal with a vast dataset. 

So, saving real processing time is a big deal and important. We want to build a model 

with optimal performance and processing time. 

 Getting Direct Resultant classes: Some model gives the probability as result. But in gas 

pipeline and related industry, it is very much significant to get the direct result of Cyber 

Attack in gas pipeline to get the desired properties plus attributes of the gas pipeline 
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industry. Probability is sort of ambiguous. So, we are working with SVM which gives 

direct resultant classes.  

1.4 OBJECTIVES 

The main goal of this dissertation is to present a solution that improves these limitations. 

Such solution features a combination of the two major machine learning techniques: 

 Unsupervised Learning 

 Supervised learning 

The difference between these two is that the former does not need ground truth, i.e. it does 

not require any labeling of the data: the machine is able to provide results based on the raw 

data alone; the latter, on the other hand, does require labeling of the data, as the algorithm 

will take as input a set of training data that will teach it to make the right labeling to the 

remainder of the data it will receive from there on. 

With this dissertation, we aim to present a flow-based Cyber Attack Detection System 

CADS that is able to overcome the drawbacks mentioned in Section. This means creating a 

hybrid CADS operating on a flow-level - rather than packet-level, and that is able to detect 

intrusions without a priori knowledge. This is done by combining the two techniques 

mentioned above. By achieving this, we have a system that provides increased autonomy 

and is, in a way, self-learning. 

This approach will allow the detection of the source of the attacks, rather than to identify 

which kind of attack it is, i.e. it detects the devices (be them desktops, laptops, mobile 

phones or compromised servers) that are behaving maliciously. Also, this system focuses 

on detecting volumetric attacks, i.e. it allows to unveil relevant patterns in large scale and 

intensity network attacks, therefore not allowing to discover attacks such as Buffer 

Overflows, SQL Injections, Phishing, Cross Site Scripting, and so on. 

To achieve so, the first step consists in preprocessing the incoming flows, by mining a set 

of features from the raw dataset, therefore eliminating features that are not needed, such as 

its payload. Upon this filtering, the flows will be aggregated in order to give the program a 

wider and more granular view of what is happening, as it will be explained further ahead. 

Having the flows preprocessed and aggregated, the two machine learning techniques that 

were previously mentioned will come into play. For the unsupervised learning, a clustering 
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algorithm will be used, which will group together flows that share similar patterns. Having 

the clusters been generated, there will be a need for an expert intervention, in order to label 

the clusters. This is necessary for the next step, which applies supervised learning, in 

which Support Vector Machines (SVM) will be used. The SVM will then receive the 

labeled flows, and will be able to indicate whether the input flows are perceived by the 

system as being malicious, or benign behavior, therefore highlighting the intrusions 

present in system. 

1.5 THESIS ORGINAZATION 

This thesis describes the research and work developed and it is organized as follows: 

Chapter 1: Aims to explore relevant studies on this field. 

Chapter 2: Provides the backbone structure, requirements and the solution‟s architecture. 

Chapter 3: Describes the implementation of the solution as well as the technologies 

involved in its development. 

Chapter 4: Describes the evaluation tests performed and the corresponding results. 

Chapter 5: Describes the developed work, and result analysis with result evaluation. 

Chapter 6: Summarizes the developed work, as well as conducts the comparison of this 

work with all work done previously. 

Chapter 7: Conclude the thesis as well as future work prediction in this domain. 

 

 

 

 

 

 

 

 

 

 

 



5 

 

2. BACKGROUND 

This section provides an overview of same major contributions in this area. Section 2.2 

provide an insight on some of the existing tools to perform flow analysis. Section 2.3 and 

2.4 proceeds to point out some network monitoring applications that were built in a flow-

based fashion. Section gives a full view of some of the most addressed network intrusions 

and respective works that show how to detect them using a flow-level analysis rather than 

payload inspection. At last, Section 2.5 and 2.6 gives a brief explanation of what RTU in 

SCADA systems and section 2.9 describes a machine learning is and how it can be used to 

achieve our goal. 

2.1 NETWORK FLOWS AND BASIC FLOW TOOLS 

As stated previously, network flows allow a different approach in analyzing, monitoring 

and securing a network. While deep packet inspection allows for signature-based 

approaches, making it easier to detect some kinds of attacks, it is not scalable for high 

speed networks, e.g. Gbit/s [3] - the packets‟ payloads cannot be analyzed in real time, for 

such speeds. Also, nowadays most packets exchanged have their payload encrypted, 

making it even more difficult to inspect, even if it was possible to process that many 

packets in real time. 

In Cisco developed the first network protocol to handle network flows: NetFlow [4]. This 

consists in a built-in software in their routers, and is used to collect and export flow records. 

As the years went by, new versions arrived and were more and more complete. The most 

recent version - NetFlow v - includes integration with protocols such as Multi-Protocol 

Label Switching (MPLS) that were not supported in the previous versions. 

Before we proceed to detail this protocol, first we must explain what a flow is. A flow is 

defined as being a unidirectional sequence of packets, passing through an observation point 

that satisfies a set of common features in a given period of time [7]; in this case, an 

observation point would be a NetFlow-enabled router. These features must be defined a 

priori, in order for the device to perform the matching of features (an example of such 

features will be presented further ahead). 
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Being this technology built-in in network devices, it allows to select, from all the traffic 

passing through that device, what we want really to analyze. For example, by deploying 

this in a border router, all of the traffic going in and out of that network will be filtered by 

NetFlow. 

Upon the reception of an IP packet, the network device looks at that packet‟s fields in order 

to find any matching feature with those previously defined. In case the packet‟s features do 

match, then an entry is created in a data structure called flow cache, for that flow. Note that 

a flow may correspond to several packets, and many different flows can be collected. This 

process is depicted in Figure 2.1. 

As this cache cannot be kept indefinitely, certain policies were defined for its management. 

According to those policies, when one of them is satisfied, the entries belonging to that 

cache will be exported to another device. So, a packet will be exported when: (i) the end of 

a flow is detected; (ii) a flow is inactive (i.e. when, for a given timeout, there are no longer 

packets belonging to a flow); (iii) belonging to a long-lasting flow, the timeout is reached; 

(iv) the device is in need of resources, e.g. internal memory. 

 

 

Figure 2.1: A typical NetFlow architecture 

The device to which the flow records are exported is referred to as the Collector, and is 

physically located in another device. In order to achieve maximum efficiency latency-wise, 

these records are encapsulated in a UDP datagram. However, NetFlow also provides the 

possibility of exporting the data through SCTP (Stream Control Transport Protocol), if we 

want to operate in a congestion-aware environment. 
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However, this technology initially did not have in consideration any security issue - no 

confidentiality, integrity or authentication is guaranteed. This was designed as such due to 

efficiency and scalability issues - the deployment of such technology in large networks 

would not be able to provide real time measures. 

2.2 SCADA SYSTEMS 

Supervisory Control and Data Acquisition (SCADA) came into existence in the mid 1960's 

coinciding with the development of the minicomputer. SCADA provides a means for 

remotely monitoring and controlling many kinds of industrial systems by providing users of 

the system with the ability to remotely control one or more specific devices and to monitor 

the performance of those devices from a central and physically remote location. The IEEE 

std C37.1-1994 [7] defines SCADA to be:  

"A system operating with coded signals over communication channels so as to provide 

control of RTU equipment. The supervisory system may be combined with a data 

acquisition system by adding the use of coded signals over communication channels to 

acquire information about the status of the RTU equipment for display or for recording 

functions." [7]. 

 An excellent example of such a SCADA system is the distribution system used by electric 

utilities, which is one of the oldest and most familiar SCADA systems. In electricity 

distribution SCADA is used to collect information from remote parts of a power 

distribution grid; for example the volts, amps or phase angle of a particular line in a 

substation, and provide it to a central control installation. In addition, SCADA allows an 

operator at the centralized control station to trip breakers at remote substations in response 

to conditions reported by the SCADA system. Other well-known industries that use 

SCADA are the gas and oil utilities and nuclear power production. 

 

 

 

 

 

 



8 

 

 

 

 

 

 

 

 

 

 

                                                             

 

 

 

 

Figure 2.2: Typical Supervisory System using Machine Learning. 

2.2.1 SCADA Components 

There are four main components that make up a SCADA systems: the supervisory system 

or master terminal unit (MTU), remote terminal units (RTU), a communications network, 

and field instruments or devices [8-10]. The exact nature of the different components 

depends greatly on the specific SCADA system and its topology. A typical supervisory 

system is shown in figure 2.2 and each subsystem is explained in detail in the following 

paragraphs. A small SCADA system might consist of only one MTU and one RTU, and is 

referred to as single-master, single-remote [11]. A more common configuration is the 

single-master, multiple-remote system with a single MTU connected to many RTUs. In 

large SCADA systems it possible to have multiple MTUs and hundreds of RTUs [4]. 8 

Master station (MTU) The master station or master terminal unit (MTU) has traditionally 

been located in a control room where human operators interact with the system through a 

user interface (UI). The MTU is responsible for polling remote devices for data, processing 

the data, providing various representations of the data (including alarms) and sending 

operator initiated control signals back to the field devices. In some situations the UI is 

carried out by a separate system called a HMI (human machine interface) system. The HMI 
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system provides an interface between an operator and the MTU, freeing up the MTU from 

providing a UI. In this case the MTU continues to carryout polling and control activities, 

but the high level representation is left to the HMI machine. 

2.2.2 SCADA Architectures 

As computer and network technology have evolved and matured, so have SCADA systems. 

The evolution of SCADA systems is generally broken down into three separate successive 

generations [14-15] monolithic, distributed, and networked. The changing architecture of 

SCADA systems has been a contributing factor to the cyber security issues faced by 

modem SCADA systems.  

 First Generation. 

 Second Generation 

 Third Generation. 

2.2.3 SCADA protocols 

At the heart of SCADA networks are SCADA protocols. These provide the template for 

communication between SCADA components, typically between the MTU and the RTU. 

Early SCADA systems, the first and second generation SCADA architectures discussed 

previously, used proprietary protocols, but in more recent years there has been a move to 

open standards in SCADA protocols. RTUs are connected to MTUs by a variety of 

different communication channels and both the cost and availability of the communication 

channels has affected protocol design [17]. The limited bandwidth of early communication 

channels resulted m a very compact message format, supporting only the most basic 

information needed to achieve RTU to MTU communication. Figure 2.3 shows the 

structure of the basic SCADA message format. The four bit RTU address allows multiple 

RTUs to share a single communication channel, rather than requiring a separate 

communication channel for each 15 RTU. The eight bit function code specifies what 

operation is to be performed by the RTU. The bits following the function code are an 

addressing scheme that indicates the set point, control point, or data on which the operation 

is to be carried out. This address has no special meaning to the RTU, and it is up to the 
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MTU and SCADA software to correctly associate an RTU address with the real world 

value it represents. 

 

 

 

 

 

 

 

 

Figure 2.3: Typical SCADA protocol message format, adapted from [17]. 

2.3 SCADA CYBER SECURITY THREATS AND VULNERABILITIES 

The primary cyber based threat to SCADA systems is that an unauthorized person or agent 

will access the SCADA system and interfere with its operation. "Entry into the substation 

[RTU] via different lines or other industrial based networks for the manipulation or 

disturbance of electronic devices. These devices include digital relays, fault recorders, 

equipment diagnostic packages, automation equipment, computers, PIC, and 

communication interfaces." [20]. 16 Typical attack scenarios like those described in [21-22] 

center around an attacker making changes to control settings, physical device parameters, 

or sending control commands directly to field devices. These attacks would result in a 

malfunctioning of the SCADA system which might cause a disruption in service, or 

possibly environmental damage or loss of human life. These threats might be carried out by 

a number of potential threat agents, including hostile nation states, industrial spies, 

disgruntled employees, and malicious hackers.  

2.4 DIFFERENCE BETWEEN SCADA AND TRADITIONAL IT 

Though SCADA systems are increasingly adopting technologies from traditional IT 

environments, SCADA and traditional IT systems are very different in several ways. One 

of the most important differences is how security is prioritized. In traditional IT systems, 

security engineers usually consider confidentiality the most important followed by integrity 

and then availability. However, as discussed by Miller in [30], for control systems 
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availability is most important, followed by integrity and then confidentiality. For example, 

when you switch on a light, it needs to come on; when you pick up the phone there should 

be a dial tone. This is availability; it is what we expect from the systems and services that 

make use of SCADA. Moreover, down time for the services that SCADA systems operate 

can run into the millions of dollars per hour [30], making availability of paramount 

importance. 

SCADA systems and other control system also tend to have very different performance 

needs from traditional IT systems. Delaying the delivery of information even for a 

relatively brief moment is not acceptable in SCADA systems, though they often do not 

require a high degree of throughput. However, IT systems typically do require a high 

throughput but are much more tolerant of delays or jitter. In addition, many SCADA 

systems may have much greater resource constraints than would be found in traditional IT 

systems. This lack of computing resources along with performance constraints can make it 

difficult or impossible to apply standard security technologies. 

2.5 SCADA RESEARCH CHALLENGES AND CURRENT RESEARCH 

Over the past several years‟ industry groups and academics have begun to work towards 

addressing the SCADA security issue. This can be seen in the increasing number of 

publications related to SCADA security identifies three research challenges in the field of 

SCADA security. Solutions to these challenges must take into consideration the unique 

demands of SCADA systems. 

 One of the primary security tools is encryption, and there are several articles which present 

SCADA security solutions that deal with encryption. Leading the way in SCADA and 

encryption, particularly for legacy systems is the AGA 12 working group established in 

2001 by the American Gas Association (AGA). The working group was to recommend 

solutions to that would help protect gas utility SCADA equipment from Cyber Attack. The 

group determined that unprotected serial based communication channels posed the greatest 

threat. In response to this threat AGA has developed a serial SCADA protection protocol 

(SSPP) which is implemented by a separate device called SCADA Cryptographic Modules 

(SCM); these are installed on either end of a communication channel [5-13]. Figure shows 
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the proposed architecture of using two SCMs to provide encrypted communications 

between an MTU (SCADA Host) and an RTU. 

2.6 RTU CONSTRAINTS 

The previous sections have described and identified additional criteria on which access 

control decision should be based, and defined three types of constraints to add to the RTU 

access control model that reflect these additional access control factors. The final RTU 

access control model can be defined. It incorporates the constraints, and unites together the 

different access control factors. The factors identified in section 2.5 can be incorporated 

into the RTU access control model using constraints. Recall from chapter two that there are 

several different possible types of constraints that the model might choose to express. 

Separation of duty constraints have been among the most popular, but chapter two 

identified seven different types or categories of constraints [44]. The RTU access control 

model can support access control decisions based on the factors identified in section 2.5 by 

using exogenous constraints. Exogenous constraints are constraints whose attributes are not 

a part of the core RBAC model, and were defined in chapter two. The constraints will affect 

the relations in the model, specifically the UA and PA relations. Since these attributes will 

change during the runtime execution of the RTU, they are dynamic constraints. We 

incorporate into the model three types of constraints, role activation constraints, permission 

activation constraints, and point type constraints.  

Instead, it assumed that the exporters (and also collectors) are deployed within a private, 

restricted and controlled network, rather than a public network, in which anyone could sniff 

these records, or even forge them. 

Apart from NetFlow in RTU, many other vendors have their own implementation for flow 

collection and exporting. Examples of such implementations are NetFlow-lite, sFlow, 

NetStream, etc. 

Due to the heterogeneous nature of these technologies from each of the vendors existing in 

this market, the Internet Engineering Task Force (IETF) joined forces to create a standard 

in flow collection and exportation, thus allowing for the clients to easily deploy their flow-

based applications. This protocol was given the name RTU (Remote Terminal Units) 

[21].As previously stated, packets which share common properties are grouped in flows, 
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and in the IPFIX terminology they are referred to as flow keys and these can be, for 

example, a tuple such as: 

(IP_source, IP_destination, port_source, port_destination, typeOfService) 

In NetFlow, the flow exportation was done by encapsulating the records into UDP or SCTP 

datagrams. RTU provides, in addition to these protocols, the option of exporting flow 

records through TCP. Also, it fills the security gap in Cisco‟s implementation: RTU 

provides both confidentiality, integrity, and authentication. These three properties are 

guaranteed by using secure channels - either through TLS (Transport Layer Security), if the 

records are exported through TCP, or through DTLS (Datagram Transport Layer Security) 

if the records are to be exported through UDP or SCTP datagrams. Furthermore, X. 

Certificates are also used, in order to reinforce the latter property.  

Then, they used a simple single queuing model in order to study to effects on the flow 

monitoring application. This queue operates in a FIFO fashion, and each job represents a 

flow packet, which, in its turn, only RTU carries the number of normal and attack flow 

records. They point out to the fact that if such a system is not sufficiently well dimensioned, 

such an attack could easily overload it: if the service rate µ is much smaller than the arrival 

rate λ, the systems is easily flooded. Furthermore, they showed that the effective rate of 

processed flows is a function of the rate arrival rate of attack records, and not only the 

normal ones. This means that during an attack, the normal flow traffic is also affected, 

which means that, for our case, the development of a CADS, it might be interesting to also 

analyze the "normal" traffic in order to detect suspicious activity.  

2.7 CYBER ATTACK DETECTION BASED ON NETWORK FLOWS 

Nowadays, there are a vast variety of network attacks. From simple port or network scans 

to complex botnet infrastructures, there are numerous types of different attacks, both in 

type, in scale or severity of impact. However, as the variety of the attacks is indeed 

enormous, we cannot focus on the detection of all of them. Moreover, a flow-based 

intrusion detection approach is not able to detect all kinds of attacks, as it relies on the 

inspection of header information. Logic attacks such as Buffer Overflows or SQL injections 

can only be detected by inspecting the payload of the packets in the network, which 

represents a major limitation if one is to use an exclusively flow-based CADS. 
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With the help of some of the technologies and tools referred in Section 2.6, we present 

some approaches on the detection of these attacks, namely Port Scans, Denial of Service, 

Worms and Botnets. 

2.7.1 Flow-based Network Monitoring 

Amongst many other applications, such as the monitoring of applications, hosts, security, 

account and billing, the analysis of network flows has been widely deployed for network 

monitoring. In this subsection we refer some of the existing work done in this area [18], 

presented a flow-based network monitoring system called FACT - Flow-based Approach 

for Connectivity Tracking. Their goal was to deliver a monitoring system focused on 

remote hosts and networks, and to check if they are reachable from inside their (network 

operators) network or a costumer‟s network, and to trigger an alarm in case there are any 

kinds of connectivity problems. Such problems could be for example an unusually high 

number of outgoing connections from the inside of the network to remote host (which could 

indicate an ongoing port scan). 

2.7.2 Port Scanning 

A port scan is defined as the act of consistently probing a target host (which may be either a 

single machine or an entire network - network scan), by sending a large amount of 

generally small packets. 

Although not being considered an attack, it is generally the first step of almost every 

network attack (such is the case in DoS/DDoS, worms and botnets), thus being its detection 

a crucial step for a NIDS. As the attacker sends a great number of packets, even though 

these may be very small, it will produce many flows, therefore making it possible to rely on 

flow-based approach to detect it, as it can be very easily addressed [16]. Divides this attack 

in three distinct categories: 

 Horizontal scan, in which a single host scans multiple ports in a single machine. 

 Vertical scan, in which a single host scans one single port in multiple machines. 

 Block scan, a combination of the two scans above - a single host scanning multiple 

ports in multiple machines. 
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Whatever category the attack falls in, this may create an anomaly in the normal network 

traffic pattern, and many kinds of different flows can be observed. 

Most of these attacks are investigated by observing a flow characteristic that registers the 

most significant difference when compared to normal traffic: the unusually high number of 

incoming and outgoing connections in a host. This is due to the fact that the attacker, or 

attackers, probe many different ports and machines, therefore generating an anomalous 

amount of new flows. 

A type of attack that falls into this category is the brute-force SSH network attack [15]. 

This is a particularly interesting attack in this field of study. The attack consists in three 

phases (that will be explained better further ahead): it begins by consistently scanning a 

certain number of victims, until a running port is found; then, it attempts to login in those 

victims through a brute-force dictionary attack; once it gains access, the attacker can do 

whatever he wants with the victim, and also to others that might belong to the same 

network. Therefore, SSH attacks can be potential harmful not only to the host individually, 

but also to the network it is connected. 

However, the detection of these attacks, as they rely mainly on scanning, can be address by 

performing an analysis of the network traffic at a flow-level. [19] 

Their solution was based on the observation made by [14-16]. They observed that the 

behavior of the attacks over time, in terms of flows, follows a pattern of evolution, and it 

can be identified in three distinct phases, as described below: 

 Scanning phase, in which the attacker performs a port scan for a certain IP address 

block. 

 Brute-force phase, in which the attackers tries to login to a certain number of hosts, by 

means of a dictionary attack - various combinations of usernames and passwords 

 Die-off phase, in which after successfully login into the victim host, the traffic volume 

is drastically reduced, leaving only residual traffic 

By tracking these three phases in a flow pattern, this attack can easily be identified. 

Moreover [22], also proposed a solution to detect this intrusion by, once again, observing 

flow-based traffic patterns. This approach will be explained in more detail in the next 

section. 
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2.7.3 Denial of Service 

A Denial of Service (DoS), is the attempt of an attacker to make a certain server, firewall, 

or even a whole network unable to reply, by flooding it with several requests and thus 

draining all of its resources. In a DoS attack there is generally one single attacker. This has 

some limitation to the attacker, such as the fact that it may not scale when targeting a big 

number of victims, or even the fact if one single attacker is producing all the traffic, it is 

easier to detect, due to the large anomalous volume of traffic. Another kind of DoS attacks 

is the Distributed Denial of Service, in which now there as various sources that are 

producing this large volume of traffic, thus making it more difficult to detect, as the traffic is 

now more evenly distributed and hidden (this was already discussed in Section 2.6). 

According to Peng et al. [23] and Kim et al. [24], there can be various types of 

DoS/DDoS attacks: 

 SYN flood - this attack aims to explore the vulnerability in the three-way handshake, 

the connection establishment procedure in the TCP protocol. As depicted in Figure 2.1, 

to establish a TCP session, the one initiating the connection (the client) will send a 

packet with an activate SYN flag, to which the entity on the other end (the server) 

replies with a SYN/ACK flagged packet 

 ICMP flood - this attack is labeled as a bandwidth attack, as its goal is to congest the 

communication channels in a network. When a broadcast message in sent, there will be 

as many packets being sent in the network as the number of connected hosts; by 

sending multiple broadcast messages, the bandwidth can easily be depleted 

 Smurf - this attack consists in sending an ICMP Echo Request packet whose destination 

source is the broadcast address of a network. Also, the source address is external to the 

compromised network and is propagated with the use of intermediates (who can also be 

victims in this attack) 

 Fraggle - this attack is performed like the Smurf attacks, except now the UDP protocol 

is used, instead of ICMP 

 Ping of Death - this attack consists in sending multiple (e.g. thousands per second) 

spoofed pings with an abnormally large size 
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 Land - this attack is performed by sending packets whose .This way, the victim 

continuously reply to themselves, resulting in a Local Area Network Denial (hence the 

name of the attack) 

 Ping Pong - this attack consists in sending packets whose both destination and source 

ports are reflecting ports, which are used for services such as echo, in UDP 

Apart from these, nowadays there are more variations of the Distributed Denial of Service, 

namely the DDoS HTTP Flood and the DDoS DNS Amplification attacks. The former, 

such as the SYN Flood attack, makes use of a vulnerability in the protocol used. Located in 

the network‟s Layer (the Application Layer), the attacker send an HTTP request to the 

server. 

 

Figure 2.4: TCP Three-way handshake 

It may be a POST or GET message, aiming to make the server reply with messages having 

the maximum resources possible, in order to drain its resources, e.g. by sending requests of 

downloads of very large files. If this attack is well coordinated, by sending these multiple 

request from multiple different users, the server will exhaust its resources, not being able to 

respond to legitimate requests. The latter makes explore a vulnerability in the Domain 

Name System (DNS) protocol behavior. The attacker perpetrates his attacks by sending a 

spoofed Source IP address - being this address the IP address of the victim - to various 

DNS servers, and the query contains an Internet domain that has many different DNS 

records for the same name. This way, the DNS servers will all respond these multiple 

records to the victim, therefore flooding it with a large volume of traffic. However, for the 

best of our efforts, no literature was found where these attacks were detected using flow-

based approaches. 
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An interesting work presented a system for detecting abnormal traffic in a network, using a 

flow-based approach, extracting the traditional -tuple from the flow extractor [25]. The 

authors define the term abnormal as traffic that induces a malicious purpose, as is the case 

of the traffic generated by DoS/DDoS, worms or even scanning. Moreover, this work is 

particularly interesting as they focus their effort on detecting DoS/DDoS attacks, as we will 

be describing below. 

Whenever one of these two modules detects an attack, an alarm is triggered, indicating the 

network manager that an attack might be occurring, very much like a signature-based NIDS 

would operate. The first module is in charge of inspecting the fields of the gathered flow 

headers. This allows the detection of some flooding attacks that possess specific values, e.g. 

having Broadcast as the IP destination address. Table presents an extensive list of such 

values that will be validated and the respective attack that they might point out to. When 

validating the protocol fields, the detection is pretty straightforward, needing only to 

inspect the corresponding. 

 

Table 2.1: Summary of fields in flow headers that can trigger attacks [22]. 

Protocol Fields Attack 

ICMP 

Echo Request + Destination IP = Broadcast Smurf 

Large Flow size or Packet Count Ping of Death 

 Large Packet Count and Flow Size ICMP Flooding 

TCP 

 

 

Source IP address = Destination IP address 

Or 

Source Port = Destination Port Land 

Large Packet Count and Flow Size TCP Flooding 

UDP 

 

 

Destination/Source Port = Reflecting Port Ping-Pong 

Destination IP address = Broadcast 

And 

Destination Port = Reflecting Port 

Fraggle 

 

Large Packet Count and Flow Size UDP Flooding 
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Fields and check is they match or not, leading to a possible trigger. However, when 

referring to the packet count and flow size, the term large is rather ambiguous, as they 

depend on the volume of traffic at the time, and the kind of traffic that is being produced. 

And so, to address this, this value is obtained by calculating a percentile threshold of the 

observed values. 

During a scan, an attacker makes a great amount of connection attempts, therefore 

generating many flows in which the packet count is small (approximately bytes). If this 

scanning falls in the category of port scanning, the attacker will sweep a great amount of 

ports in the target host, therefore generating traffic in which the destination IP address is 

constant. However, if it is a network scanning, the attacker will make many connections 

with many different destination IP addresses, searching for a service availability in one of 

them. 

The need for a second detection module derives from the fact that some attacks (and 

consequently, their patterns) cannot be detected only by inspecting the flow headers fields 

and analyzing flows individually. In order to detect these, they need the traffic information 

capable of identifying patterns in it, and this can be achieved by aggregating related flows. 

From these aggregations, it is now possible to detect both flooding and scanning attacks 

(not only port scans, but also network scans), by checking the information sent and received 

from a host).  

Another approach for detecting DoS attacks was done using D sketches. Not only this 

detects such attacks (their main focus relies on TCP SYN flooding detection), but also can 

cope with the detection of the various types of port scans [16-18]. A sketch is hash table 

used to quickly store information, mainly counting the occurrences of a given event. When 

this concept first came up, these hash tables had only one dimension, but the work 

presented by [22-24] introduces the use of a two-dimensional table. With this data structure 

it is possible to Characterized the observed traffic, in order to draw some conclusions, 

which in this case is the detection of port scans and DoS attacks. 

As it was just mentioned, this system is able to detect both port scans (which is also 

extensible to detect most of large-scale worm propagations) and TCP SYN flooding 

attacks, using sketches as a base for statistical intrusion detection. To achieve so each of the 

network routers (may be either edge or backbone routers) are configured to record network 

traffic into sketches. From the multiple created sketches (one for each router), they 
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summarize all of them into one aggregated sketch, therefore allowing to distinguish from 

many different attacks observed. Then, they apply time series algorithms on these in order 

to obtain a forecast sketch, which will be used for the change detection. By subtracting this 

forecast sketch to the current one (i.e. in the present time), it is obtained a forecast error, 

which, if sufficiently large, indicates that there is an anomaly. By reversing the sketches, 

they obtain the key characteristics of the recorded flows, allowing to mitigate the attacks. In 

case of the values recorded trespass a certain defined threshold, the system triggers an 

alarm, indicating an attack. 

2.7.4 Worms 

A worm consists on a harmful software that, unlike the well-known case of a virus, has the 

capability to autonomously explore software vulnerabilities, thus making it capable of 

replicating itself throughout a network. 

This specific attack is usually divided in two distinct phases: (i) a scanning phase, in which 

the worms probes several machines in order to find a vulnerability and then proceed to 

spread the infection; (ii) the transfer phase, in which the worm proceeds to send the harmful 

code and infect the victim. As the first phase is a well know case (as described above, in the 

port scanning phase), the discovery of the scan can be crucial in identifying the attacker. 

Due to the fact that most of the network traffic relies on secure connections, and therefore 

the payload of traveling packets in most of the times is encrypted (e.g. TCP traffic), a major 

emphasis is given to the detection of the first phase, as is would be very difficult to detect 

malicious content of packets in a flow-based analysis. 

In that research, only four protocols were considered: 

 HTTP, identified by observing a connection in which one of the peers uses port (either 

destination or source); this represents the majority of the traffic observed 

 SMTP, identified by observing connections where one of the peers uses port ; this is the 

second most active protocol producing traffic in the network 

 FTP, which can be identified by observing the usage of port by one of the entities in a 

connection 
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 Oracle, identified when one of the peers is using port. As this protocol requires a login 

and password to authenticate an user, it is expected that users connected to a smaller 

number of servers 

In order to construct the graph, flow records were extracted from NetFlow-enabled routers, 

in a large intercontinental network. These records were collected throughout a period of 

days. As stated by the authors, many worm detection systems on the detection of an 

unusual high number of frequent  connections between peers, and track them by inspecting 

connection evidences such as half-open TCP connections. So, to avoid this issue, the 

attackers can use hit lists, which consists in a list of previously identified servers. Using 

this, they need not to contact random servers across the network and can focus on these 

known ones, making it harder for the systems to detect this scanning phase. 

The detection model consists in the hypothesis that an attacker that contacts different 

servers through a hit list will affect the graph in two ways. The system will raise an alarm 

whenever one of two conditions are verified: 

 The total size of the graph is bigger than its mean value in the observation period π 

along with its standard deviation over time. 

 The largest component size is bigger than its mean value in the observation period π 

along with its standard deviation over time 

2.7.5 Botnets 

A botnet is a network of infected hosts (referred to as bots) that is controlled by an entity 

that is referred to as master or bot-master. The master controls its bots through a Command 

and Control C&C - infrastructure, and uses them as a third party to launch attacks and 

intrusions in the network, such as Spam, Phishing, DDoS and Identity Theft. This C&C 

infrastructure could either be an IRC (Internet Relay Chat) channel, or an HTTP server. 

However, by identifying it, most of the problem is solved [19]. 

Botnets are considered to the date as one of the biggest security threats, and the most 

difficult to detect, as the bot-master is not easy to identify, and requires a long period of 

observation. 

When a computer is infected (note that this study refers only to Windows operating 

systems), the botnet begins by generating a .txt or .data file in the system directory. Also it 
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injects its code into other processes in order to hide its presence, and disables any anti-virus 

software and task manager, if needed, and may open one or more ports for further 

communication, establishing connections with bot-master or peers in order to launch its 

attacks. This run-time behavior is transformed into a behavior vector, consisting of-

features.  

All together are intrinsic to a botnet behavior. As the network analyzer is able to gather 

network-level information, the in-host analyzer need to focus on aspects cannot be 

observed externally, and also features that can, and so the network stack features. The 

suspicion-level generator uses a Support Vector Machine, a supervised machine learning 

algorithm to quantify the suspicion level. The training data fed to the system consists in 

both benign and malicious behavior profiles. Based on this training process, a hyper-plane 

is created, which will correspond the classification. When a new behavior vector arrives, 

the Support Vector Machine will compute its distance from the hyper-plane, and decide 

whether to classify it as a benign or a malicious behavior. 

After all this data is extracted both from the network analyzer and the in-host analyzer, the 

correlation engine performs a last analysis to check if a botnet is or not present. When a 

group of hosts are clustered, the respective host analyzers are requested the suspicion-level 

together with some network statistic. There are two possible outcomes from this step: 

 The network statistics sent from the in-host analyzer may differ from those observed by 

the network analyzer, implying that the host if sending falsified data, therefore 

triggering immediately an alarm.  

 If the results are consistent from both analysis, then the suspicion-level and clustering 

quality must be analyzed by the co-relator. This is done by a function with two 

parameters. The first is the suspicion-level, which itself is a quantitative measure. The 

second is the distance between the hosts presented in the same cluster, which is 

computed by a simple Euclidean Distance. 

With these two modules, the authors managed to track, from real-world data, different kinks 

of botnets, achieving low false-positive and false-negative rates. However, it is made clear 

that flow-based CADS alone are not able to detect Botnets, as it is still necessary to gather 

information that is not provided by network flows. 
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2.8 SECURITY HARDENING RTU’S 

SCADA systems in general. The traditional IT security approach of soft on the outside 

(peripheral systems) and hard in the middle (servers) is not appropriate for SCADA 

systems. In SCADA installations the peripheral devices, such as RTU, must be security 

hardened as well. The focus of this dissertation is to identify and develop hardening 

techniques for RTUs and to develop a security hardened RTU. As discussed in the previous 

chapter, in the past, these devices faced primarily physical threats, but today they are 

increasingly network enabled and network accessible. Security hardening these devices is a 

major challenge facing the development of secure SCADA systems. Two security 

hardening approaches are explored in this dissertation, an RTU role based access control 

model and a reduced kernel OS. Previous work on both role based access control 

constraints and minimal kernels for operating systems was presented in chapter two. This 

chapter introduces the architecture for a security hardened RTU. 

2.9 CYBER ATTACK DETECTION BASED ON MACHINE LEARNING 

An increasing trend in CADS is the use of machine learning techniques [25-27].  

This knowledge may be refined and improved at each iteration, by learning from previous 

experiences and observations. Such method has been used in an enormous number of 

different applications, in many different fields of science, such as natural language 

processing, speech recognition, bioinformatics, spam detection, network intrusion, among 

many others. 

Machine learning algorithms can be divided into two major fields: 

 Supervised learning 

 Unsupervised learning 

The first one relies on a labeled training dataset. The data consists in an extensive list of 

input data that aims to train the system, making correspondences between keywords and 

their meaning or interpretation that is expected to the system. After this training phase, the 

system is ready to classify data based on the training set it was trained to. Examples of this 

method are the algorithms k-nearest neighbor and Support Vector Machine. While 

Supervised methods relies initially on the introduction of training data, Unsupervised 

methods only receives as input a feature vector without any kind of labeling, and is used to 
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means such as discovering similar groups within a data set. Clustering is an example of this 

kind of learning. 

In the field of Network Cyber Attack, machine learning has been able to classify network 

traffic and identify both anomalous patterns and potentially harmful machines. When it 

comes to embed this technology in an Intrusion Detection Systems, generally this is the 

strategy adopted: 

 Anomaly-based detection (or behavior-based), in which normal traffic patterns are 

differentiated from anomalous ones. It focuses its attention on finding patterns that 

would not be expected from the machine‟s behavior. Unlike misuse-based CADS, these 

patterns are unknown to the system. 

These two make up the classical approaches, being that machine learning is applied to the 

anomaly-based approach, rather than the misuse-based one. However, there are some 

variants to these, as we will now be discussing. Eskin et al. were one of the first to address 

unsupervised learning in intrusion detection systems [23]. They present a new technique, 

which they entitle Unsupervised Anomaly Detection. This technique allows to train the 

system with a dataset of completely unlabeled data, providing the chance of detecting 

unknown attacks to the network, which would not be possible when training the system 

with labeled data - in this case, the system is only able to recognize those labeled 

intrusions; and also, the manual classification of data can be very hard and tiresome. All 

summed up, the authors considered a total of features. Also, the dataset was filtered, so that 

there would only exist a percentage of to 87 % of attacks vs. to 77% normal traffic 

instances [27]. This is done because of the need of the system to learn to distinguish 

intrusion instances from the normal ones, and the original dataset was composed mainly of 

intrusions. 

Their solution was based on two assumptions: 

 The number of normal instances greatly outnumbers from the number of intrusions. 

 The intrusions themselves are qualitatively different from the normal instances. 

These two assumptions are extremely important, as these will be the foundation for the 

intrusion detection approach. 

The system clusters the collected data through an algorithm that computes a distance-based 

metric. However, because of the different distributions that each feature vector may have, 

these have to be normalized in order to apply the same metric to all of the vectors. After 
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computing the clustering algorithm, these new clusters can now be classified as being 

normal traffic instances or an intrusion [44]. The first assumption implies that small clusters 

correspond to the intrusion instances, as opposed to the bigger clusters that represent 

normal instances; the second assumption implies that normal and intrusion instances will 

not be under the same clusters because of their qualitative differences. 

In order to measure the performance of the system, they used the following metrics: 

 Detection rate, which represents that ratio of intrusions detected by the system, by the 

intrusions present in the dataset 

 False positives, which is the ratio of the total number of intrusions that were incorrectly 

detected by the system, by the total number of normal instances (as defined by the 

author [41]) 

In this solution, there is an inevitable trade off between these two indicators, as one scales 

with the other. However, they managed to obtain a fairly reasonable ratio of detection rate 

and false positives. 

This thesis presents mainly two advantages to the traditional Cyber Attack detection 

systems. The first, is that it does not require any kind of manual classification, and the 

second is that the system is capable of detect intrusion that were previously unknown. 

Similar to this work, and more recently, a system that goes by the name of UNIDS which is 

able to detect unknown attacks without requiring any labeling, signatures or training. In 

order to understand the results obtained, they always rely on the assumption, just like the 

previously stated work, that the vast majority of the observed traffic is considered normal, 

rather than anomalous. 

Each of the aggregated flows is described by xi ∈ R
m
, a set of m traffic features, such as the 

number of sources or destination ports, and a component of X ∈ R
m×n

, the complete matrix 

of all the features, being n the number of aggregated flows. The previously mentioned 

clustering algorithm will be performed the feature space X. First, an algorithm called Sub-

Space Clustering will be applied to create N data partitions X i out of X, by selecting k 

features from the complete set of m features. From these partitions, another clustering 

algorithm called Density-Based Clustering will be applied to each one of them, generating 

partitions Pi. Apart from the partitions, there will also be generated the previously 

mentioned outliers, which will later on be ranked in order to find classify the anomalies. To 

this, they use the concept of Evidence Accumulation, which uses the clustering results of 
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the multiple partitions, and produces similarity measures that are able to better reflect their 

groupings. 

Based on the fact that machine learning methods achieve better results when classifying 

inliers than when classifying outliers, the training set consisted only in malicious data, 

rather than benign data. This way, the inliers will be the malicious data, for which the 

training algorithms will achieve better results. The first step in their system was, upon the 

receiving of a flow stream, the processing of data. 

In this step, they filter the flows from the dataset in order to achieve a feasible value that 

would not overload the learning process. Then, they needed to tune the OC-SVM. To do so, 

they needed to achieve the best trade off between the parameters v and γ which will 

determine the fraction of outliers in the set and the width of the RBF (Radial Basis Kernel) 

- that was added to the algorithm, respectively. Also, in this step, the most valuable features 

will be selected. This optimization was done first in a coarse grained fashion, to determine 

the best feature subset and the best trade off between the two parameters; and then, in a 

finer grained fashion, that would further explore the relation between the two parameters to 

achieve better results.  

With this setup, they managed to achieve 87% false alarm rate, and a miss rate of only 6%, 

approximately [39]. This shows that this approach might be interesting to consider to our 

solution, as the results obtained were extremely good. 
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3. METHODOLOGY 

This section provides an overview of implementation and preview of methodology in this 

area. Section 3.2 provide an insight on some of the tools and approaches. Section 3.3 and 

3.4 proceeds to point out some network monitoring applications in this thesis. 

3.1 CYBER ATTACK DETECTION APPROACH 

In this section we describe a flow-based Cyber Attack Detection Systems CADS (capable 

of detecting unknown network attacking hosts. Moreover, this chapter provides a 

description of the new ideas introduced and to be further implemented. 

. The inability to react to an unknown pattern, given a real-world dataset, i.e. containing both 

clean and malicious traffic 

. The slow processing and analysis of the traffic payload, as well as the inability to interpret 

its content 

The first drawback may be countered by using an unsupervised machine learning 

algorithm, and the second is tackled by performing the analysis at a flow-level.  

3.2 APPROACH OVERVIEW 

Figure 3.1, provides an overview of the structure of the system, as it will now be explained, 

following the workflow. 

This filtering will consist of removing unnecessary features from the flows, e.g. its payload 

content and date (as the flows are organized in such way that each flow is stored in a file 

whose name has information regarding the latter). Therefore, apart from the traditional -

tuples, three more features will be extracted (more details in Section 3.2), as depicted by 

step in the figure. 
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Figure 3.1: An overview of the Cyber Attack detection approach using supervised classification. 

 

The extracted tuples will be fed to a detecting algorithm (step), which separates the whole 

traffic into groups of hosts that share a common pattern. We will take into account the 

assumptions that the majority of the observed traffic is benign rather than malicious, as 

well as that malicious traffic is qualitatively different from the regular, normal traffic, when 

analyzing the data. Upon the clustering of the data, a manual intervention takes place. This 

manual intervention is performed on the outlier clusters produced by the algorithm, in 

order to better perceive and analyze the characteristics of this traffic, ultimately leading to 

the production of a labeled dataset that will serve as training for the next step. Once the 

flows are properly classified, they are then passed on to the next step. 

Step corresponds to a supervised learning module. In this module, the system runs a 

supervised learning algorithm that is trained with the labeled data produced by the former 

step, and will proceed to classify the traffic that was perceived as being outlier by the 

clustering algorithm. Upon this classification, the system should be able to correctly 

identify the observed malicious traffic, thus allowing the detection of the malicious hosts. 

This process is to be performed on a daily basis. If the analysis period was smaller, some 

attacks would not be possible to detect, as some of them last for long periods of t ime; if it 

was longer than a day, the obtained values would become noisy, as the flows are 
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aggregated, some IP addresses may be reused from one day to another, therefore achieving 

very high feature values, misleading us to think that it is indeed an attack. 

The first step - filtering and feature extraction - will be crucial for the performance of the 

whole system, as it will be the input for the rest of it. If these features are carefully chosen, 

the system may be able to produce good results, performing an accurate clustering of data; 

if not, the clustering result might be completely inconclusive, thereby impairing the 

remaining modules.     

Furthermore, the decision of using aggregated flows rather than simply analyzing 

individual flows, was due to the observation made in the intrusion detection community 

[14,21-23] that aggregated flows provide a more precise analysis, e.g. in the case of 

detecting DDoS. If some attacks were to be analyzed using individual flows, it would be 

much harder to detect them. The choice of using the source and destination IP addresses as 

aggregation keys was inspired by [34] that used them to distinguish groups of -to-N and N-

to- anomalies. 

The unsupervised clustering algorithm will be applied on these aggregated features, which 

will proceed to form various large groups of hosts, and some outliers. According to the 

previously mentioned assumption, these outliers may represent an attack, although this 

may not always be the case. Such outliers could also represent, for instance, some 

applications that are less frequently used, or even a machine whose characteristics are not 

very common, therefore producing flow features that are different from regular traffic that 

is found in bigger clusters. So, it is of utmost importance to analyze them, in order to 

differentiate the actual attacks from these benign outlier traffic patterns [28]. In a first run 

of the system, the supervised learning module has not yet any knowledge at all, and so 

there is a need for a manual intervention that will classify and label these outliers. This 

manual classification will serve as input to the supervised learning algorithm that, over 

time, will come more and more capable of classifying on its own. In the following runs, 

there may not be a need for manual intervention if the classification produced by this 

learning algorithm is feasible (which is to be validated with ground truth, as will be 

discussed in the next section); else, an expert must classify this traffic manually and feed 

the algorithm once again. The supervised learning algorithm that we will be using is the 

SVM.  
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3.3 SECURITY HARDENED RTU FOR DETECTION 

Chapter two presented the security threats and vulnerabilities that currently face SCADA 

systems in general. The traditional IT security approach of soft on the outside (peripheral 

systems) and hard in the middle (servers) is not appropriate for SCADA systems. In 

SCADA installations the peripheral devices, such as RTU, must be security hardened as 

well. The focus of this dissertation is to identify and develop hardening techniques for 

RTUs and to develop a security hardened RTU. As discussed in the previous chapter, in the 

past, these devices faced primarily physical threats, but today they are increasingly network 

enabled and network accessible. Security hardening these devices is a major challenge 

facing the development of secure SCADA systems. Two security hardening approaches are 

explored in this dissertation, an RTU role based access control model and a reduced kernel 

OS. Previous work on both role based access control constraints and minimal kernels for 

operating systems was presented in chapter two. This chapter introduces the architecture 

for a security hardened RTU. The RTU role based access control model is presented in 

detail in chapter four and the minimal kernels for RTU. 

Before considering specific RTU threats it is important to define, from a security 

perspective, the security perimeter of an RTU. This approach parallels the definition of a 

physical security perimeter that is a standard approach in securing physical places. SCADA 

systems are large distributed systems, and in developing a layered approach to security for 

them it is important to identify security boundaries for different components. 

For field devices, the security boundary, or electronic perimeter, is defined to be the point 

at which the device makes contact with the SCADA network. For example, if the RTU 

connects to the SCADA network using Ethernet, then the electronic perimeter is the 

Ethernet controller card. It is important to establish such a perimeter; if the perimeter were 

too encompassing, the RTU‟s security perimeter would include components over which it 

has no control. 

3.3.1 RTU Security Vulnerabilities 

Vulnerabilities in RTUs can occur at many different layers. The highest and most abstract 

layer is the protocol layer. Protocols are abstract descriptions, and must be implemented, 

typically in software. Below the protocol layer is the software application layer which will 
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implement interfaces to the SCADA network, particularly SCADA protocols, but this also 

applies to other protocols that might be used now or in the future. 

It is rare today that software applications are written to run at the hardware level. Instead 

software usually makes use of libraries, and other applications to achieve its goals. This 

creates yet another layer of shared software libraries and binaries, which is often referred to 

as middleware.  

As mentioned in chapter two, initial SCADA protocols did not include security features, 

which resulted in vulnerabilities to message modification, spoofing, and sniffing attacks. 

The protocol vulnerabilities are really outside the RTU security perimeter, at least in their 

specification, but it is important to mention them, and keep them in mind in considering 

lower layers. One reason for keeping these in mind is the principle of easiest penetration 

[13]. If an RTU supports an insecure SCADA protocol that can easily be attacked and used 

to control or damage the connected physical processes, it will be impossible for a lower 

level prevention mechanism to protect the RTU since it has no way of differentiating 

between authentic and un-authentic SCADA communications. 

Two excellent solutions to address the shortcomings in SCADA protocols have been 

presented in the literature review in chapter two [29-31]. Both solution, response approach 

adequately address the vulnerabilities in SCADA protocols. 

3.4 FEATURE EXTRACTION 

In order to obtain an overall improvement on the system‟s performance, we use parallel 

processing of the data, thus reducing the computational processing time. 

To achieve so, the system implements a Map Reduce algorithm. Map Reduce, which was 

first introduced by Google [35], is a Big Data programming paradigm whose goal is to 

provide maximum scalability, in order to process massive amounts of data. It achieves so 

by dividing the task in two parts: the Mapper and the Reducer phases. The Mapper phase 

takes as input a set of data blocks and divides it into <key,value> pairs, as specified by the 

programmer; the Reducer phase receives as input the output generated by the former phase, 

and combines key pairs with the same keys, performing some operation to their respective 

values. Figure 3.2 depicts the basic workflow of the algorithm. 

As it was previously mentioned, the flows are aggregated, which means that all the flows 

that have the same IP address (Destination and Source addresses for destination and source 
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aggregations, respectively) will be merged into one. This is when the Map Reduce 

algorithm will be applied. The mapper nodes will, for every entry in the data, extract the 

Source and 

 

 

Figure 3.2: Map Reduce Algorithm Overview 

Destination IP addresses, Source and Destination ports, number of sent packets, which 

protocol was used, TCP flag (if any), number of exchanged bytes and its duration. Each of 

these values will be sent individually to the reducer (i.e., for every entry, records will be 

sent), being the key a string in the following form: Source/Destination, feature, IP-Address, 

and the value will be the correspondent value of the feature in question. For example, in 

order to aggregate the number of bytes of a certain Source IP destination, the Mapper 

would produce a tuple, where would be one of the key IP addresses, and the number of 

bytes sent in that flow. The reducer nodes, on the other hand, will receive these records, 

and sum the value of all the records that have the same key.  

The Map Reduce algorithm calculates the values (these sums) of a set of features, and 

produces some more feature that derive from these. These results are presented in Table 

5.1. The Aggregation Key feature is obtained simply by creating a new tuple for each 

different IP address, both for source and destination. When the reducer receives tuples with 

an Aggregation Key that already has been seen before, it will generate the results described 

in Table 5.1. 
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3.4.1 Data Normalization 

This step is again crucial. As we will be working solely with numerical data, we need to 

keep every value in one common scale. Moreover, there are some features that are not 

expressed in a numerical manner, such as the IP addresses of the IP‟s associated country. 

In these cases, these features are mapped to numerical values, which can be reversed to 

text. 

   
      ( )

   ( )    ( )
    ∈ [   ]                                                (3,1) 

There is also a summation for all the times that a SYN flag is sent, and in the end of the 

processing, this value is divided by the total number of packets for that key, resulting in the 

feature SYN-Rate, and the same applies to ICMP-Rate, where the total number of times the 

Internet Control Message Protocol (ICMP) protocol is used is divided by the total number 

of packets. From the last features, the first were generated based on online databases, 

whose goal is to identify known threats, while the last one was fetched from a Python IP 

tracker module. 

3.5 DETECTION THROUGH CLUSTERING 

As stated in the previous section, machine learning algorithms can be divided roughly in 

two categories – supervised and unsupervised learning. 

The idea behind clustering is to group different instances of a data into k distinct groups, 

i.e. clusters, according to their characteristics. For instance, applying a clustering algorithm 

to a dataset of network traffic would generate k clusters, where one would be representative 

of regular DNS traffic, another one would be simple SMTP traffic, and so on. This is done 

by feeding a set of vectors to the algorithm, which will then proceed to obtain groups of 

elements for that set of vector. The previously mentioned data normalization was 

performed specifically for this step. Depending on the algorithm used, the value of k may 

or may not be chosen automatically. For example, the DBSCAN algorithm [36] does not 

need a predefined value for the number of clusters; on the contrary, K-Means requires it. 

Two different clustering algorithms have been used throughout this work: 

 K-Means 

 Mini Batch K-Means 



34 

 

3.5.1   K-Means Clustering 

This algorithm starts by receiving a set of vectors X = (x1, ..., xn), xn ∈ R
d
, where d is the 

number of features. Based on the k predefined number of clusters, K-Means initializes a set 

of k random centroids (cluster centers) centroids, C = (c1, ..., ck), ck ∈ R
d
. The first step is, 

for each point xi in the dataset, it will compute its nearest centroid, using an Euclidean 

Distance (ED), which is computed using d(a, b) = P
d
i=1(ai − bi)2. This step is followed by 

another iteration, this time for each and every centroid. Each centroid will be updated so 

that its coordinates are the result of the mean value of all points belonging to that cluster. 

The algorithm will come to an end when the variations in the new centroid position are no 

longer significant, i.e. when ci > ξ. Such behavior is described in algorithmically in 

Algorithm. 

Although K-Means was proven to be an efficient algorithm, and widely implemented [36], 

it may not always be the best fit for every dataset. Its complexity grows with the number of 

clusters k, the number of dimensions d and the number of instances of the dataset, n. As 

stated by [33], briefly, its complexity grows as this: 

 The time needed to assign the first round of points to its centroids is O(n ∗ d ∗ k) 

 Computing time of each centroid is O(n ∗ d) 

 And, at last, the time spent in calculating the error function is O(n ∗ d) as well 

So we see here that the computation time grows almost as we increase the dataset and its 

dimension. 

3.5.2   Mini Batch K-Means 

In order to overcome the computational cost of the K-Means algorithm when applied to 

large datasets, a new algorithm was proposed by Sculley et al. Mini Batch K-Mean [34].  

While K-Means is applied to all of the instances of the dataset at once, Mini Batch K-

Means takes randomly chosen smaller batches, and performs its computation from these 

smaller batches. For each of these batches, a cluster is assigned to each instance. Instead of 

using the mean of the values for each instance of the cluster, it uses a gradient descent 

update, which also speeds up the computational time. In addition to what the previous 

algorithm received as input, Mini Batch K-Means also requires the maximum number of 

iterations and the size of the batches. 
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Although this technique can be much faster than the standard K-Means algorithm, it 

produces slightly different results. For this reason, both techniques were tested and 

compared, in order to analyze which one was the best fit for our purpose. 

3.6   SUPERVISED CLASSIFICATION 

The malicious flows, i.e. the flows that correspond to intrusions, will be placed in the 

clusters with smaller size. Once the clusters are generated, each one of them will be 

manually inspected, in order to identify if they are malicious. In order to obtain a coarse 

grained overview of each cluster‟s content, each feature of each cluster will be described 

by its mean value and standard deviation. This way, it is possible to have an idea of each 

cluster‟s behavior. Of course, this is only a preliminary method to indicate each cluster‟s 

feature distribution. Then, we focus on the clusters with smaller size and higher feature 

values, and proceed to label one of the flows that they contain. Each of these labeled flows 

is then fed to the SVM, will learn from these examples. 

Supervised learning problems can be divided into two different categories. 1) Regression, 

and, 2) Classification. The former produces outputs for R, while the latter produces outputs 

for N. Since our goal is to detect malicious hosts, we want our outputs to be discrete 

values, identifying if one is or is not malicious, we fall therefore under the second category.  

Having the data separated into different groups according to their respective behavior and 

being properly labeled, from the last module, we have now gathered the necessary 

conditions to apply such a technique. For the purpose of this work, we chose to apply a 

SVM. This decision was due to the fact that this algorithm is proved to behave well when it 

comes to intrusion detection [36-39]. 

3.6.1   Support Vector Machine 

The goal of the SVM algorithm is to find an optimal hyper-plane for patterns that are 

linearly separable. A hyper-plane can be defined as Euclidean space that has one less 

dimension than the space provided for the problem, e.g. for a -dimensional space, the 

hyper-plane would simply be a line. The optimal hyperspace is that which maximizes the 

margins between itself and the vectors provided, i.e. the classes that will be used for 

classification. The SVM receives as input n × f training vectors X = (x1, x2, ..., xf ) , where 

f is the number of features in the dataset, and a n × 1 vector, which will be the 
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corresponding class for each of the input X vectors. It will produce as output a set of 

weights w, whose linear combination will predict the value of y, for each X provided from 

now on. 

For the purpose of this work, the SVM will have two class, namely and – a binary output. 

For each input flow, it will label it as if the flow is benign, or as if the flow is malicious. 

The reason why there is only one class is that the goal of this work is not to classify, but to 

identify attacks, and therefore there is no need to differentiate them. Our aim is to identify 

malicious hosts, regardless of the type of attack they conduct, and therefore the SVM 

output will identify each flow as being malicious or benign. 

3.6.2   Random Forest 

Features are obtained simply by summing all the features values in each flow, that is, for 

each flow the random forest algorithm will produce a sum of all the different IP addresses 

contacted, all the different Source Ports and Destination Ports, number of packets and 

number of bytes, respectively using the random forest. There are also features that will 

count the occurrences of contacting ports, or, and , i.e. The RF algorithm receives as input 

n × f +1 training vectors X = (x1, x2, ..., xf+1 ) , where f is the number of features in the 

dataset, and a n × 2 vector, which will be the corresponding class for each of the input X 

vectors.  

By dividing the total number of packets by the total duration of the Aggregation Key, we 

obtain the Pkt-Rate. As we mentioned earlier, one of the features that composes a flow is 

what TCP flag is being sent, if any using random forest algorithm.  

There is also a summation for all the times that a SYN flag is sent to random forest 

distinctive algorithm, and in the end of the processing, this value is divided by the total 

number of packets for that key, resulting in the feature SYN-Rate, and the same applies to 

ICMP-Rate, where the total number of times the Internet Control Message Protocol 

(ICMP) protocol is used is divided by the total number of packets. From the last features, 

the first were generated based on online databases, whose goal is to identify known threats, 

while the last one was fetched from a Python IP tracker module. The Precision and 

accuracy is also measured and attained using random forest approach. 
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Figure 3.3: Random Forest Algorithm used for classification of Cyber Attack. 

In the feature selection phase the algorithm will proceed to receive as input the outputs 

produced by the train data and process them in order to produce the features that are 

described in figure 3.3. Once these features are computed, the final output of the program 

will be written in two files: 

One containing the data per set, including the file where each of the flows is located; 

another where the file is excluded and the IP addresses and the Location Codes are 

converted to a numerical format, in order to be able to perform some mathematical 

operations to the data, which will be necessary for remainder of the program. 
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4. SOLUTION 

This section will describe the implementation of the CADS. All of the following modules 

were developed in Python, as it has a wide open source community, with a number of 

machine learning libraries available, already optimized for the purpose of this work. 

As the supervised learning and the classification modules are the sections that require the 

more interaction with the user, a terminal interface was developed in order to facilitate 

such tasks. The interface for the unsupervised learning module features a menu that allows 

the user to: 1. Obtain a brief description of the data (Text or Data file); 2. Plot graphics to 

aid in the choice of the number of groups; 3. Generate and visualize the group; 4. Analyze 

each of the generated group; 5. Interactively visualize the generated group; 6. Access a data 

to validate the attacks, if possible; 7. Plot two features, one against the other; 8. Alternate 

between data files; 9. Change machine learning algorithm. As for the supervised learning 

module, the interface features a menu that allows to: 10. Predict values for a given data 11. 

Train the system. With these interfaces, it was much simpler to analyze and interpret the 

results obtained in this section thus allowing to properly classify the observed traffic, as it 

allows for an easier interaction between the user and the data. The remainder of the system 

does not feature a terminal interface, but it does have scripts that automate the processes, as 

it did not require so much interaction as the former modules, it can be made automatically. 

4.1   MAP REDUCE 

As it operates in a distributed fashion, it can take advantage of a group of computers, using 

its computational power to achieve a higher speed during the data processing. To support 

the parallel data processing, Hadoop implements Google‟s Map Reduce algorithm [44]. 

This model operates on a virtual environment called Hadoop Distributed File System 

(HDFS), which has both Mapper and Reducer nodes. This model can be divided in two 

main steps: Mapping and Reducing. First and foremost, the input data is split in equal sized 

blocks (MB by default), and each of these blocks is fed to a Mapper node. Each of these 

nodes divides the received chunks into <key,value> pairs, that will then be sent across the 

network to the Reducer nodes. Before proceeding to execute the algorithm, a filtering to 

the dataset is performed, maintaining only the following features: 
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 Source Internet Protocol (IP) address 

 Destination IP address 

 Source Port 

 Destination Port 

 Number of packets sent 

 Protocol used 

 Which TCP flag was sent, if any 

 Number of bytes sent 

 Duration of the flow 

Having the data filtered, the system proceeds to execute the Map Reduce algorithm. This 

consists in two distinct parts, as the name suggests: the Mapping and the Reducing phases. 

The goal of the former is to aggregate values by a specific key; the goal of the latter is to 

perform some sort of operation on the aggregated keys generated by the Mapping phase. In 

our case, the aggregation keys will be both Source IP and Destination IP. However, for 

each of these keys, a number of operations on each feature must be performed. Therefore, 

the Mapper consists in two functions: 

 Source Features 

 Destination Features 

Both will produce <key,value> pairs for each one of the features mentioned above. Apart 

from these, the mapper will also produce some more features: 

 A counter for the number of times the port was used for SVM 

 A counter for the number of times the port was used for Random Forest  

 A counter for the number of times the port   was used k-NN 

These ports relate to the protocols HTTP, IRC, SMTP and SSH, respectively. The goal 

here is to count the occurrences of each one, whilst preserving the aggregation key. For the 

Source IP as aggregation key, the mapper will produce the following outputs: 

<"S,bytes,sip,file",#Bytes> 

<"S,dstIP,sip,file",DstIP> 

<"S,dstPort,sip,file",DstPort> 

<"S,duration,sip,file",Duration> 

<"S,packets,sip,file",#Packets> 
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<"S,protocol,sip,file",Protocol+Flag> 

<"S,srcPort,sip,file",SrcPort> 

<"S,HTTPPort,sip,file",Yes/No> 

<"S,IRCPort,sip,file",Yes/no> 

<"S,SSHPort,sip,file",Yes/No> 

The outputs produced are analogous the the destination function, also present in the 

Mapper phase, simply replacing the ‟S‟ key by ‟D‟, and ‟sip‟ by ‟dip‟. 

In the Reducer phase the algorithm will proceed to receive as input the outputs produced 

by the Mapper and process them in order to produce the features. Once these features are 

computed, the final output of the program will be written in two files: 

One containing the data per set, including the file where each of the flows is located; 

another where the file is excluded and the IP addresses and the Location Codes are 

converted to a numerical format, in order to be able to perform some mathematical 

operations to the data, which will be necessary for remainder of the program. 

4.2   MODEL 1 

Having the data filtered, the system proceeds to execute the machine learning algorithms. 

This consists in two distinct parts, as the name suggests: the machine phase and the 

learning phases. The goal of the former is to aggregate values by a specific key; the goal of 

the latter is to perform some sort of operation on the aggregated keys generated by the 

Machine phase. In our case, the aggregation keys will be both Source IP and Destination 

IP. However, for each of these keys, a number of operations on each feature must be 

performed. The libraries are import and data is loaded based on different algorithms of 

machine learning. 
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Figure 4.1: Model 1 depicts the whole distinctive algorithms used for detecting and analyzing the 

type of attack. 

4.3   MODEL 2 

 

 

 

 

 

 

 

 

 

 

Figure 4.2: Training model for the labeled and unlabeled test for predicting the unusual Cyber 
Attack or intrusion from external network. 
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4.4   UNSUPERVISED LEARNING 

For the third step of Figure 4.3, the user must run the unsupervised learning module. Once 

the flows are aggregated, the unsupervised learning module may take place, in order to 

cluster the flows. 

 

Figure 4.3: Terminal user interface for the unsupervised learning module 

This module presents a interface to the user, which consists in a group of task implemented 

in the CADS (see Figure 4.2): 

 Obtain a statistical description of the data. 

 Obtain a representation of the optimal number of the clusters for the data presented. 

 Generate the clusters and visualize them (either in R
2
 or R

n
). 

 Obtain a statistical description of each cluster. 

 Launch an interactive representation of the clusters, to aid visualization. 

 Validate attacks in the data, from data. 

 Generate a graphic which maps just features 

 Alternate between data (source or destination) 

 Alternate between grouping algorithms (SVM, Random Forest and k-NN) 

The first option provides the user with a brief description of the data being analyzed, 

featuring the number of entries of the dataset, and, for each feature, it also presents its 

minimum and maximum value, and also the mean value and standard deviation. This way, 

we get a simple overview of the data, statistically. The fourth option presents, for each 
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cluster and features, its mean value and standard deviation. As for the fifth option, window 

is opened in the browser, that allows to choose which cluster to analyze, and provides an 

interactive visualization of the dataset it contains, as seen in Figure 5.1. 

4.5   ENCRYPTION METHOD IN CADS 

As it was discussed in Section 5.3, both SVM and Random forest algorithms require a 

number k groups to be specified. Upon the receiving of the data, we do not know exactly 

into how many groups we want to divide our data. However, there are some techniques that 

give us a hint of what the value of k should be. Such is the case of the Encryption Method 

(see Figure 5.4). These clustering algorithms converge when the variation of the distance 

between the data points and the clusters centers start converging to section 5.2. With this in 

mind, the Encryption Method starts by computing the error function that is used as a 

stopping criterion in the algorithm, known as: 

Within Sum of Squares (WSS), which is mathematically defined as such: 

     ∑   ∈      (    )
  

                                           (4.1) 

This equation will produce values for k in a specified range, which will be provided by the 

user. By plotting this values against its respective k value, we obtain a graphic that will be 

decreasing with the increase of k. The optimal value of the WSS would be same, but this 

value is only obtained when the number of k clusters is equal to the number of entries in 

the dataset, which would mean that each data point would be in its own clusters, and this 

process would provide us no information at all.  

Instead, the Encryption Method tells us that the best value of k is when the slope of the 

WSS has a sudden break. Apart from the WSS, the Encryption Method also plots a metric 

called Percentage of Variance Explained (PoVE) for each value of k. This metrics reflects 

the ratio of the Between Sum of Squares (BSS) and Total Sum of Squares (TSS), which 

will indicate an optimal k when it suffers an abrupt change and encrypting the files for 

example text file and data files. 
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Figure 4.4: Encryption model based on Lock value in text and data files for detecting the Cyber 

Attack or intrusion in the Network. 

Although this method provides us with some more insight than what we previously had, 

this is a heuristic method, which may be statistically correct, but may not fit our dataset 

with maximum precision. With this in mind, this tool is used only to give a hint of where a 

correct k value might be. After plotting the graphic, we still have to try several runs with 

values around the suggested k. Accord to the Encryption Method, the optimal k would be – 

in Figure 4.4 we see that the biggest slope is found where the x-axis is equal to –, which is 

not correct. Ultimately, the finding the optimal number of clusters cannot be an automated 

method, as human intervention is always necessary, due to the fact that the number of 

groups will always be dependent on our type of data, and the purpose of clustering. 

However, we do know that the value lies nearby , as shown be the Encryption Method, and 

after several runs with different values for k, we found that k = 10 is a number of clusters 
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that successfully and coherently divides the different datasets of various sizes. Also, if we 

analyze Figure 5.4, we see that around the value of the values start to stabilize, and its 

variation is close for encrypting the text and data files. 

4.6   GENERATING THE CLUSTERS  

This task corresponds to the third option prompted in the interface – Generate the clusters 

and visualize them. When the data is described in more than three dimensions, it becomes a 

difficult task to represent it visually. For this reason, a -Dimensional representation of the 

dataset is also provided. Instead of dropping several features until only two are left, the 

dataset is rearranged such that there are now two features that describe the original ones. 

This process is called dimensionality reduction, and may be achieved through Principal 

Component Analysis [42]. PCA is a Factual technique that is used to identify hidden 

patterns in the data, by identify a number of uncorrelated features smaller than the original 

dataset. These smaller number of features are called the Principal Components. This 

method is able to reduce the number of features in a dataset by computing its eigenvectors 

and respective eigenvalues from a correlation matrix. This allows to retrieve the 

information that best describes the correlation between features, therefore synthesize the 

information into a smaller number of features. 

As for plotting the dataset in its original dimension, a technique called Parallel Coordinates 

was used [43]. With this technique, the x-axis is divided into f sections, being f the number 

of features, while the y-axis is maintained as if in a normal projection. This technique 

provides a visual aid for better understanding of our data, as the data can now be fully 

plotted in its entirety, therefore allow to easily identify which features have significantly 

higher values than others. Such representation is depicted in Figure 4.4. 

Upon the creation of the clusters, a file for each one of them will be generated, in order to 

further analyze them in depth. All of the data that is generated in this module is stored in a 

dataset, in order to maintain a persistent storage of the data. With the dataset, it is possible 

to trace-back all the information regarding the flows of gas and detecting the Cyber Attack. 

This is necessary, given that the data handled by the algorithm is strictly numerical, and the 

raw data contains textual information as well, namely the file where the flow is contained, 

the aggregation and also the location of the flow (i.e. its Respective Gas Pipeline Flow). 
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4.7   SUPERVISED LEARNING 

For the fourth step of the figure, the user must run the supervised learning module, which is 

described below. 

In order to generate the hyper-plane that divides the data into different classes (in our case, 

the classes are either), the SVM algorithm uses kernel functions, which allow to divide it in 

linearly or non-linearly separable classes. A kernel function is a similarity function, i.e. a 

function that describes how similar two inputs are between each other. These kernel 

functions can be either Linear or Random Forest (RF). While the former is simply a linear 

combination of weights and is used for linearly separable datasets and requires no 

additional inputs, the latter will decided which is the optimal hyper-plane using either a 

Polynomial or Gaussian approximation. Also, this latter function requires an additional 

parameter γ, which will determine the width of the function. The system was tested using 

both Linear and RF kernel functions, and when using a linear function the machine was 

able to produce more accurate results. 

The results of the SVM are stored persistently, in a file. This way there is no need to train 

the system every-time we want to use the SVM. The system starts by verifying if this file 

exists, and, if not, it trains itself with the data from the first day of the analysis period – if 

the system is to be evaluated in a period of one week, it the SVM is trained with the first 

day of the week. Upon this training it is possible (see Figure 4.2) 

In the first case, the system will present the user the flows (if any) that were labeled as 

malicious, for that day. These flows are identified, once again, by their unique ID, thus 

making it possible to trace-back it back to its IP address stored in the database mentioned 

in Section 4.6.  
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Figure 4.5: The optimality of machine learing in RTU of SCADA system to help detect the Cyber 

Attack in the Industrial control system, but this value is only obtained when the number of k 
clusters is equal to the number of entries in the dataset, which would mean that each data point 

would be in its own clusters based on dataset. 

For the second case, more knowledge will be added to the SVM. This new data that will 

train the system must first be merged with the data that was already present, and then the 

system is trained with this new set of data. With this feature, it is possible to refine the 

results generated, as it allows to give new insight to the SVM [58]. This means that, as we 

add more data to the system, it will have a better understanding of it, and will allow for it 

to detect malicious intent more accurately according to our analysis. For example, if in a 

first analysis some sort of malicious activity was not detected, and the system as trained 

with this data, it may not detect intrusions that follow that mislabeled pattern [62-65]; but if 

later on we perceive that activity as malicious, it is possible to train the system once again 

with this new information. This process therefore allows to refine the SVM accuracy 

throughout the analysis period. 
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5. RESULTS 

This section will display the results of the CADS. All of the following modules were 

developed in Python, as it has a wide open source community, with a number of machine 

learning libraries available, already optimized for the purpose of this work based on 

implementation parts. 

5.1 CLASSIFICATION 

Now the classification part comes. We used „scikit-learn‟ to import classification 

algorithms. We classified our dataset from “Tommy Morris Dataset for Industrial Control 

System (ICS)” of Gas Pipeline System with many classifiers like SVM, Random Forest 

and k-NN. Some of the classifiers were quite efficient but some other were not up-to the 

mark. The Recall and Accuracy are represented in the result analysis part below. 

5.2 RESULT ANALYSIS 

K-NN: We examined K-NN classifier with different values of K. But 2-nearest neighbors 

earned the best result among them. We also set the weight of the algorithm according to the 

distance between two points. The leaf size was restricted to 30. Setting all these 

parameters, we got an accuracy of 87.37%. 

RANDOM FOREST: This classifier worked with less efficiency for our corpus. We set 

the criterion of the algorithm to „entropy‟ and got the result of 85.50% accuracy.  

SVM: SVM is one of the best fitted classifier in our work. There are several kernels used 

in SVM but we implemented „k-NN‟ and „RF‟. Linear SVM gained an accuracy of 86.04% 

setting the gamma value of the algorithm to 10, SVM with RF kernel gave us the best 

result of 85.50% accuracy. 

5.3 EVALUATION  

A file for each one of them will be generated, in order to further analyze them in depth. All 

of the data that is generated in this module is stored in a Gas Pipeline dataset, in order to 

maintain a persistent storage of the data. With the database, it is possible to trace-back all 

the information regarding the flows. This is necessary, given that the data handled by the 
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algorithm is strictly numerical, and the raw data contains textual information as well, 

namely the file where the flow is contained, the aggregation and also the location of the 

flow. 

 

Figure 5.1: The Pipeline PSI clusters is in y-axis and the Delta Pipeline represented on x-axis with 

time factor cluster on z-axis of detection graph. The Dataset is dividing into four clusters for 
detection of attack. 

This latter function requires an additional parameter of Data-length and Function Code of 

data in which amount of variables were provided in dataset, which will determine the width 

of the function. The system was tested using both Linear and RF kernel functions, and 

when using a linear function the machine was able to produce more accurate results.  
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Figure 5.2: The CRC of dataset is represented through the clusters of distribution and for all the 

algorithms of supervised learning SVM, k-NN and Random Forest. 

 

A kernel function is a similarity function, i.e. a function that describes how similar two 

inputs are between each other.  

 

Figure 5.3: The accuracy and precision of all three supervised learning algorithm for detecting the 
Cyber Attack in remote terminal units of SCADA system. 
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Table 5.1: The precision and accuracy of all three algorithms extracted from the dataset of gas 

pipeline in remote terminal units of SCADA system. 

        SVM          k-NN          RF 

Detection 

Accuracy 

Detection 

Precision 

Detection 

Accuracy 

Detection 

Precision 

Detection 

Accuracy 

Detection 

Precision 

86.04% 94.04% 87.37% 83.90% 85.50% 75.89% 

 

Figure 5.4: The prediction of attack carried out on the autonomous system of gas pipeline depends 

on the ration of pipeline PSI both in delta and non-delta pipe line PSI and exhibiting  the attack 

prediction that whether there is an attack or not based on the clusters of dataset. 

Factual technique that is used to identify hidden patterns in the dataset of gas pipeline 

system, by identify a number of uncorrelated features smaller than the original dataset. 

These smaller number of features are called the Principal Components. This method is able 

to reduce the number of features in a dataset by computing its eigenvectors and respective 

eigenvalues from a correlation matrix to detect the Cyber Attack carried out in the services 

of supervised system. This allows to retrieve the information that best describes the 

correlation between features, therefore synthesize the information into a smaller number of 

features. 
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6. DISCUSSION 

This section will discuss the results of the CADS with other CADS already in existence. 

All of the following modules were developed in Python, as it has a wide open source 

community, with a number of machine learning packages available, already optimized for 

the purpose of this work based on implementation parts. 

The attacks that were perpetrated in a big scale were correctly detected and distinguished 

from the regular traffic, as the system detected both DoS and a portion of DDoS attacks. 

Place was a Distributed Denial of Service (DDoS) IRC Botnet attack, which is a botnet that 

takes control of its bots through IRC C&C servers, and uses them as a third party to induce 

DDoS attacks. On this day, the system was only able to correctly identify one malicious 

flow (only when manually analyzing the cluster, this SVM was not able to detect it), as the 

rest of them were not discovered [51-54]. The remainder of the malicious flows were able 

to mask themselves among clusters that did not have high feature values, therefore making 

them indistinguishable, especially having this clusters a very high number of entries. 

Moreover, although this attack was an IRC Botnet, the values for the number of IRC 

communications remained undetectable, once again proving that the majority of the attacks 

was able to mask themselves. At last, Thursday, just as Saturday, had a Brute-Force SSH 

attack in the remote terminal units of SCADA systems [55-60], which as correctly 

identified. However, in this day, the system led was to think that there were also two other 

clusters that also corresponded to an attack, and in fact they were not [64]. 

The tables shown in this evaluation were all for the source aggregation shown, as it was 

found that the flow direction of all the attacks was either Local to Remote (L R) or Local to 

Local (L L). This way, all the attacks are identifiable by tracking the Source IP addresses, 

and not the destination IP addresses, since we aim to find the malicious hosts; by analyzing 

the destination aggregation key, in this case, we would find the victims of the attacks, 

rather than the attackers, which is not the goal of this work. A general view of the system‟s 

detection results can be seen in Table 6.1. 

The reason that some attack were not identified, is that this system‟s focus is on large 

volumetric attacks, i.e. attacks that occur in large volumes, that exhaust the bandwidth of a 

network, and with feature values that tend to inflate [59]. In the case of the DDoS attack, 
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the system was only able to identify the one host that had the largest attack volume, as the 

rest of the host were producing a silent attack, that the system was not able to detect. 

6.1 DATA ANALYSIS 

For a set of reasons, we were not able to analyze real data corresponding to several days. 

The real data was obtained in the scenario of Figure 5.1 and 5.2 and corresponds to part of 

data collected for detecting the Cyber Attack. We collected around GB of data, which 

corresponded to around million flows in the Gas Pipeline System of Industries. 

Unlike the ICS dataset, this real data is not labelled, i.e., there is no ground truth on 

existing attacks. Therefore, we have analyzed both source and destination keys. Moreover, 

the number of groups generated for each of the aggregation keys was instead of the ICS 

dataset. The reason for this was that the volume of the data was much than immensely 

bigger than the previously analyzed data, and so the number of clusters could have not 

been the same [62]. After running the system with several different values, we found that 

groups was a good value for the number of groups. 

For both source and destination aggregation keys, the grouping was performed with the 

SVM and Random Forest algorithms. We can see that although the SVM algorithm has a 

bigger computational complexity and slower performance, it provides more detail on the 

data. It allows to unveil patterns that were hidden when using Random Forest, and so we 

will focus our analysis on the clusters generated by the SVM algorithm. 

When looking at the destination aggregation key clustering content (Table 6.1), we see that 

groups 8,13,21,27 and are those whose features are the most alarming. Therefore, this may 

also correspond to infected hosts that are being used as a third party for attacks, but 

contacting its bot-master through a C&C server other than an IRC, or they could be victims 

of an attacker who is using spoofed IP addresses to use them as a third party. 

 

Table 6.1: Data analysis results using summarizes the information regarding the intrusions detected 

throughout this analysis for the feature numbers. 

Groups # Aggregation Key Highlighted Features Type of Attack 

      8 Source 2,4,6,9,13,17 Spam / DoS 

      9 Destination 2,4 ,5 DoS 
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     13 Source 9 Brute-Force SSH 

     14 Destination 2,5,11 Network Scan 

     21 Source 8,11 Botnet Communication 

     23 Destination 2,4,6,13 Web Application Probing 

     27 Source 2,3,5,7,12,14 DDoS IRC Botnet 

     29 Destination 2,4,5,9,14 DDoS Botnet 

 

6.2 RELATED WORK 

Paper [24] being the first to detect Cyber Attack in text as per their literature review. They 

have approached through text mining and lexicon based technique. At first they have gone 

through some case studies. Then they surveyed on this issue like how much aware people 

are about Cyber Attack and so on. In their survey they found that girls (45%) are having 

more experience on Cyber Attack than of boys (28%). For applying methodologies, they 

used data set of tweet conversation in text or data files. At first they develop a corpus of 

tweet conversations. In text mining approach, firstly they applied preprocessing techniques. 

Then they used it to train and test classifier that can detect Cyber Attack. In lexicon based 

approach, firstly they developed an English lexicon with attacking words. Then the corpus 

of tweet conversation got checked with the lexicon. If they found number of attacking 

words beyond some threshold, it could label as Cyber Attack. In the paper, basically they 

have discussed the challenge of Cyber Attack in modern world after surveying and studied 

several cases and showed up two methods to detect Cyber Attack. But they didn‟t 

implement the methods yet. So, how the results will be with these methods are ambiguous. 

Besides, the corpus of lexicon on English language still doesn‟t exist. It must be developed 

first. The methods also can detect words as Cyber Attack which was not meant to say as 

Cyber Attack. 

Research paper [23] thinks of an exploration on arrangement of Cyber related remarks and 

assaults on gas pipeline industry. They drew nearer with the system, Support Vector 

Machine which is made with R dialect. As information, they have picked remarks from 

records of malaysian famous people in the wake of studying that individuals get assaulted 

in gas pipeline industry increasingly (42%) than different gas pipeline industry. All the 
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more decisively they utilized records of two clients who are Indonesian. 1053 remarks and 

assaults were taken as preparing records and 34 as test reports. For actualizing the strategy, 

right off the bat, they made a report term network with R so as to shape SVM demonstrate. 

When the development of SVM finished, they utilized it to foresee remark and assault 

whether it is Cyber Attack or not. They indicated a remark by inscriptions - 1 on the off 

chance that it was Cyber Attack and 1 in the event that it was not Cyber Attack. At long 

last they got exactness level of 79.412% as result utilizing SVM. They didn't utilize any 

part of SVM and in paper [31] SVM with poly bit demonstrates a superior precision then 

this current papers' outcome (99.41%).SO, utilizing portion may give better exactness. 

Paper [27] worked on application of machine learning to detect and recognize the potential 

attack in the terminal units of autonomous chemical units which are intruding and 

attacking. Actually, it looked into the machine learning algorithms and compared which 

one is better. Their experiment includes algorithm Multinomial Naïve Bayes (MNB), 

Random Forest (RF) and Support Vector Machine (SVM). The kernels of SVM used are 

linear, Radial Bias Function (RBF), Polynomial and Sigmoid and achieved 78.55% of total 

accuracy as in comparison with our model and work. 
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7. CONCLUSION 

Furthermore, the solution was designed in a way that it allowed for the detection of large 

volumetric attacks, attacks that would produce very high feature values, so that the hosts 

producing such traffic, were easily distinguished from the remainder of the traffic, and 

producing patterns that allowed us to detect such an intrusion in the RTU of SCADA 

systems and its protocols. However, as shown, this approach allows us only to detect a 

small portion of the attacks that may be going through a network, as many of them are done 

almost silently, making this approach infeasible. Still, the attacks that were perpetrated in a 

big scale were correctly detected and distinguished from the regular traffic, as the system 

detected both DoS and a portion of DDoS attacks, Brute-Force SSH attacks, and was also 

able to detect part of an intrusion from the inside of a network. When analyzing the data, 

although we do not have ground truth to perform a validation of the system‟s performance, 

the CADS was able to unveil some interesting pattern using the remote terminal units RTU 

in SCADA systems usually using the machine learning algorithms (SVM, K-NN and RF) 

for detecting the Cyber Attack and precision of detection. Even with the great amount of 

data, it was able to isolate a small number of flows that presented alarming patterns, 

ultimately led to identifying them as being malicious. In this data, the system was able to 

locate a machine producing major amounts of traffic, leading us to believe that it was either 

a major spammer or perpetrating a DoS attack, small DoS attacks, a few network scans, and 

identify the perpetrators of these attacks, thus accomplishing our goal of detecting 

malicious hosts. Still, it does not allow to identify every network intrusion event, as some of 

them are performed with low intensity, thus being able to evade the system. 

For our thesis work, to detect Cyber Attack in the gas pipeline industry specially using the 

balanced approaches of supervised machine learning algorithms, we chose a quite balanced 

data that had reasonable amount of data; cleaned and preprocessed it. We used model to fit 

and transform our data into machine recognizable form to detect and recognize the effect of 

appearing attack in future. Extracted the best features by using suitable methods. Split the 

data and applied various supervised machine learning classifying algorithms such as 

Support Vector Machine, Logistic, K-Nearest Neighbor and Random Forest to detect 

performance. We tweaked and experimented with our data and model to achieve best 

accuracy possible. Eventually, we got the best result using Support Vector Machine using 
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kernel for detecting the Cyber Attacks in the giant gas pipeline industry based on 

introductory technology of SCADA system. 

7.1 FUTURE WORK 

Now, we are only detecting whether it‟s Cyber Attack or not in remote terminal units of 

SCADA system using machine learning algorithms for detecting the Cyber Attack. Our 

accuracy is quite satisfactory but we will try more data manipulation, preprocessing and 

also hybrid classifying classifiers to increase the accuracy if possible. We might even try 

using different approach for detecting Cyber Attack if needed.  
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APPENDIX A 

PREPROCESSING 

 
# @Author:  Ali Hasan Dakheel 

# @Project: Cyber Attack Detection in remote terminal units of 

SCADA using ML. 

 

import nltk 

from nltk.stem import WordNetLemmatizer 

import re 

import itertools 

import html.parser 

import sys 

 

lemmatizer = WordNetLemmatizer() 

 

re_http = r'https?.*?( |$)' 

re_at = r'@.*?( |$)' 

re_number = r'[0-9]+[.]?' 

re_space = r'\s+' 

re_remove_punctuation = r'[^a-zA-Z ]' 

re_hash= r'#.*?( |$)' 

 

apostrophe_lookup = {"'s": ' is', "'re": " are", "'d" :" would", 

"'ll":" will", "'ad": " had", "'t":" it", "'m": " am", "'ve":" 

have", "won't":"will not" ,"shan't":"shall not", "n't":" not"} 

 

def lemmatizing(sent): 

    l = [] 

    for i in sent.split(): 

        l.append(lemmatizer.lemmatize(i)) 

    return l 

 

file = open('Dataset/Gas_Pipeline_Dataset.csv', 'r') 

 

## training Y transfer list ## 

## according to "training_attack_types.txt" ## 

classlist=['guess_passwd.', 'nmap.', 'loadmodule.', 'rootkit.', 

'warezclient.', 'smurf.', 'portsweep.', 'neptune.', 'normal.', 

'spy.', 'ftp_write.', 'phf.', 'pod.', 'teardrop.', 

'buffer_overflow.', 'land.', 'imap.', 'warezmaster.', 'perl.', 

'multihop.', 'back.', 'ipsweep.', 'satan.'] 

 

''' 

ynew=['r2l', 'probe', 'u2r', 'u2r', 'r2l', 'dos', 'probe', 'dos', 

'normal', 'r2l', 'r2l', 'r2l', 'dos', 'dos', 'u2r', 'dos', 'r2l', 

'r2l', 'u2r', 'r2l', 'dos', 'probe', 'probe'] 

output=['dos','u2r','r2l','probe','normal'] 

''' 
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## First, train normal and abnormal ## 

ynew=['abnormal', 'abnormal', 'abnormal', 'abnormal', 'abnormal', 

'abnormal', 'abnormal', 'abnormal', 'normal', 'abnormal', 

'abnormal', 'abnormal', 'abnormal', 'abnormal', 'abnormal', 

'abnormal', 'abnormal', 'abnormal', 'abnormal', 'abnormal', 

'abnormal', 'abnormal', 'abnormal'] 

output=['abnormal','normal'] 

 

def basic_cleaning(string): 

    sent = html.parser.unescape(string) 

    sent = re.sub( re_http, "", sent ) 

    sent = re.sub( re_at, "", sent ) 

    sent = re.sub( re_number, "", sent ) 

    sent = re.sub( re_space, " ", sent ) 

    sent = re.sub(re_remove_punctuation, " ", sent) 

    sent = ''.join( ''.join( s )[:2] for _, s in 

itertools.groupby(sent)) 

    for a in apostrophe_lookup.keys(): 

        if a in sent: 

            sent= sent.replace(a, apostrophe_lookup[a]) 

 

    words = sent.split() 

    new = [] 

    for x in words: 

        if x.startswith('#'): 

            x  = x.replace("#","") 

            x_ = " ".join( re.findall( '[A-Z][^A-Z]*', x ) ) 

            if x_: 

                x = x_ 

            x = x.split( " " ) 

            for ww in x: 

                new.append(ww) 

        else: 

            new.append(x) 

    sent = " ".join(new) 

    return sent.lower().strip() 

 

def preprocessing_stage1(string): 

    sent=basic_cleaning(string) 

    sent = lemmatizing(sent) 

    return sent 

 

def preprocessing_for_pos_tags(features): 

    tweet_tags = [] 

    for t in features: 

        tags_words = nltk.pos_tag( nltk.word_tokenize( t ) ) 

        tags = [x[1] for x in tags_words] 

        tag_str = " ".join( tags ) 

        tweet_tags.append( tag_str ) 

 

    return tweet_tags 

     

def preprocessing_stage2(string): 
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    sentence = re.sub( re_http, "URLHERE", string ) 

    sentence = re.sub( re_at, "MENTIONHERE", sentence ) 

    sentence = re.sub( re_hash, "HASHTAGHERE", sentence ) 

    sentence = re.sub( re_number, "", sentence ) 

    sentence = re.sub( re_space, " ", sentence ) 

    sentence = re.sub( re_remove_punctuation, " ", sentence ) 

    return sentence.lower() 

file.close() 
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APPENDIX B 

RANDOM FOREST ALGORITHM 

 
# @Author:  Ali Hasan Dakheel 

# @Project: Cyber Attack Detection in remote terminal units of 

SCADA using ML. 

from __future__ import absolute_import 

from __future__ import unicode_literals 

from __future__ import division 

 

import numpy as np 

import scipy.sparse as sp 

from sklearn.ensemble.forest import BaseForest 

from sklearn.tree import DecisionTreeClassifier 

from sklearn.utils import check_random_state, check_array 

from sklearn.preprocessing import OneHotEncoder 

 

 

def bootstrap_sample_column(X, n_samples=None, random_state=1234): 

 

    random_state = check_random_state(random_state) 

    if n_samples is None: 

        n_samples = X.shape[0] 

 

    return random_state.choice(X, size=n_samples, replace=True) 

 

 

def uniform_sample_column(X, n_samples=None, random_state=1234): 

    """uniform_sample_column 

    Sample a column uniformly between its minimum and maximum 

value. 

    Parameters 

    ---------- 

    X : np.ndarray (n_samples,) 

        Column to sample. 

    n_samples : int 

        Number of samples to generate. If `None` then generate 

        a bootstrap of size of `X`. 

    random_state : int 

        Seed to the random number generator. 

    Returns 

    ------- 

    np.ndarray (n_samples,): 

        Uniformly sampled column. 

    """ 

    random_state = check_random_state(random_state) 

    if n_samples is None: 

        n_samples = X.shape[0] 

 

    min_X, max_X = np.min(X), np.max(X) 
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    return random_state.uniform(min_X, max_X, size=n_samples) 

 

 

def generate_synthetic_features(X, method='bootstrap', 

random_state=1234): 

    """generate_synthetic_features 

    Generate a synthetic dataset based on the empirical 

distribution 

    of `X`. 

    Parameters 

    ---------- 

    X : np.ndarray (n_samples, n_features) 

        Dataset whose empirical distribution is used to generate 

the 

        synthetic dataset. 

    method : str {'bootstrap', 'uniform'} 

        Method to use to generate the synthetic dataset. 

`bootstrap` 

        samples each column with replacement. `uniform` generates 

        a new column uniformly sampled between the minimum and 

        maximum value of each column. 

    random_state : int 

        Seed to the random number generator. 

    Returns 

    ------- 

    synth_X : np.ndarray (n_samples, n_features) 

        The synthetic dataset. 

    """ 

    random_state = check_random_state(random_state) 

    n_features = int(X.shape[1]) 

    synth_X = np.empty_like(X) 

    for column in xrange(n_features): 

        if method == 'bootstrap': 

            synth_X[:, column] = bootstrap_sample_column( 

                X[:, column], random_state=random_state) 

        elif method == 'uniform': 

            synth_X[:, column] = uniform_sample_column( 

                X[:, column], random_state=random_state) 

        else: 

            raise ValueError('method must be either `bootstrap` or 

`uniform`.') 

 

    return synth_X 

 

 

def generate_discriminative_dataset(X, method='bootstrap', 

random_state=1234): 

    """generate_discriminative_dataset. 

    Generate a synthetic dataset based on the empirical 

distribution 

    of `X`. A target column will be returned that is 0 if the row 

is 

    from the real distribution, and 1 if the row is synthetic. The 
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    number of synthetic rows generated is equal to the number of 

rows 

    in the original dataset. 

    Parameters 

    ---------- 

    X : np.ndarray (n_samples, n_features) 

        Dataset whose empirical distribution is used to generate 

the 

        synthetic dataset. 

    method : str {'bootstrap', 'uniform'} 

        Method to use to generate the synthetic dataset. 

`bootstrap` 

        samples each column with replacement. `uniform` generates 

        a new column uniformly sampled between the minimum and 

        maximum value of each column. 

    random_state : int 

        Seed to the random number generator. 

    Returns 

    ------- 

    X_ : np.ndarray (2 * n_samples, n_features) 

        Feature array for the synthetic dataset. The rows 

        are randomly shuffled, so synthetic and actual samples 

should 

        be intermixed. 

    y_ : np.ndarray (2 * n_samples) 

        Target column indicating whether the row is from the 

actual 

        dataset (0) or synthetic (1). 

    """ 

    random_state = check_random_state(random_state) 

    n_samples = int(X.shape[0]) 

 

    synth_X = generate_synthetic_features( 

        X, method=method, random_state=random_state) 

    X_ = np.vstack((X, synth_X)) 

    y_ = np.concatenate((np.ones(n_samples), np.zeros(n_samples))) 

 

    permutation_indices = 

random_state.permutation(np.arange(X_.shape[0])) 

    X_ = X_[permutation_indices, :] 

    y_ = y_[permutation_indices] 

 

    return X_, y_ 

 

 

class RandomForestEmbedding(BaseForest): 

    """Very similar to sklearn's RandomTreesEmbedding; 

    however, the forest is trained as a discriminator. 

    """ 

    def __init__(self, 

                 n_estimators=10, 

                 criterion='gini', 

                 max_depth=5, 
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                 min_samples_split=2, 

                 min_samples_leaf=1, 

                 min_weight_fraction_leaf=0., 

                 max_features='auto', 

                 max_leaf_nodes=None, 

                 bootstrap=True, 

                 sparse_output=True, 

                 n_jobs=1, 

                 random_state=None, 

                 verbose=0, 

                 warm_start=False): 

        super(RandomForestEmbedding, self).__init__( 

                base_estimator=DecisionTreeClassifier(), 

                n_estimators=n_estimators, 

                estimator_params=("criterion", "max_depth", 

"min_samples_split", 

                                  "min_samples_leaf", 

"min_weight_fraction_leaf", 

                                  "max_features", 

"max_leaf_nodes", 

                                  "random_state"), 

                bootstrap=bootstrap, 

                oob_score=False, 

                n_jobs=n_jobs, 

                random_state=random_state, 

                verbose=verbose, 

                warm_start=warm_start) 

 

        self.criterion = criterion 

        self.max_depth = max_depth 

        self.min_samples_split = min_samples_split 

        self.min_samples_leaf = min_samples_leaf 

        self.min_weight_fraction_leaf = min_weight_fraction_leaf 

        self.max_features = max_features 

        self.max_leaf_nodes = max_leaf_nodes 

        self.sparse_output = sparse_output 

 

    def _set_oob_score(self, X, y): 

        raise NotImplementedError("OOB score not supported in tree 

embedding") 

 

    def fit(self, X, y=None, sample_weight=None): 

        self.fit_transform(X, y, sample_weight=sample_weight) 

        return self 

 

    def fit_transform(self, X, y=None, sample_weight=None): 

        X = check_array(X, accept_sparse=['csc'], ensure_2d=False) 

 

        if sp.issparse(X): 

            # Pre-sort indices to avoid that each individual tree 

of the 

            # ensemble sorts the indices. 

            X.sort_indices() 
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        X_, y_ = generate_discriminative_dataset(X) 

 

        super(RandomForestEmbedding, self).fit(X_, y_, 

                                               

sample_weight=sample_weight) 

 

        self.one_hot_encoder_ = OneHotEncoder(sparse=True) 

        if self.sparse_output: 

            return 

self.one_hot_encoder_.fit_transform(self.apply(X)) 

        return self.apply(X) 

 

    def transform(self, X): 

        if self.sparse_output: 

            return 

self.one_hot_encoder_.fit_transform(self.apply(X)) 

        return self.apply(X) 
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APPENDIX C 

(SVM) SUPPORT VECTOR MACHINE ALGORITHM 
 

# @Author:  Ali Hasan Dakheel 

# @Project: Cyber Attack Detection in remote terminal units of 

SCADA using ML. 

import sys 

import numpy as np 

import argparse 

from collections import Counter 

from scipy.sparse import csr_matrix 

from sklearn.svm import LinearSVC 

from sklearn.metrics import accuracy_score 

 

def tokenize(sentence, grams): 

    words = sentence.split() 

    tokens = [] 

    for gram in grams: 

        for i in range(len(words) - gram + 1): 

            tokens += ["_*_".join(words[i:i + gram])] 

    return tokens 

 

def build_counters(filepath, grams, text_row, class_row): 

    """Reads text from a TSV file column creating an ngram count 

    Args: 

        filepath, the tsv filepath 

        grams, the n grams to use 

        text_row, row in the tsv file where the text is stored 

        class_row, row in the tsv file where the class is stored 

    """ 

    counters = {} 

 

    with open(filepath) as tsvfile: 

        n = 0 

        for line in tsvfile: 

            row = line.split('\t') 

            try: 

                c = int(row[class_row]) 

            except: 

                print(n) 

                print (class_row) 

                print (row[class_row]) 

                print (filepath) 

                sys.exit(0) 

            n = n + 1 

            # Select class counter 

            if c not in counters: 

                # we don't have a counter for this class 

                counters[c] = Counter() 

            counter = counters[c] 
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            # update counter 

            counter.update(tokenize(row[text_row], grams)) 

 

    return counters 

 

def compute_ratios(counters, alpha=1.0): 

    """Computes the log-likelihood ratios for each class 

    """ 

    ratios = dict() 

 

    # create a vocabulary - a list of all ngrams 

    all_ngrams = set() 

    for counter in counters.values(): 

        all_ngrams.update(counter.keys()) 

    all_ngrams = list(all_ngrams) 

    v = len(all_ngrams)  # the ngram vocabulary size 

 

    # a standard NLP dictionay (ngram -> index map) use to update 

the 

    # one-hot vector p 

    dic = dict((t, i) for i, t in enumerate(all_ngrams)) 

 

    """ 

    # for each class we calculate a ratio (r_c) 

    for c in counters.keys(): 

        p_c = np.full(v, alpha) 

        counter = counters[c] 

        for t in all_ngrams: 

            p_c[dic[t]] += counter[t] 

        # normalize (l1 norm) 

        p_c /= np.linalg.norm(p_c, ord=1)  # = p_c / sum(p_c) 

        ratios[c] = np.log(p_c / (1 - p_c)) 

    """ 

 

    # sum ngram counts for all classes with alpha smoothing 

    # 2* because one gets subtracted when q_c is calculate by 

subtracting p_c 

    sum_counts = np.full(v, 2*alpha) 

    for c in counters: 

        counter = counters[c] 

        for t in all_ngrams: 

            sum_counts[dic[t]] += counter[t] 

 

    # calculate r_c for each class 

    for c in counters: 

        counter = counters[c] 

        p_c = np.full(v, alpha)     # initialize p_c with alpha 

(smoothing) 

 

        # add the ngram counts 

        for t in all_ngrams: 

            p_c[dic[t]] += counter[t] 
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        # initialize q_c 

        q_c = sum_counts - p_c 

 

        # normalize (l1 norm) 

        p_c /= np.linalg.norm(p_c, ord=1)  # = p_c / sum(p_c) 

        q_c /= np.linalg.norm(q_c, ord=1) 

 

        # p_c = log(p/|p|) 

        p_c = np.log(p_c) 

        # q_c = log(not_p/|not_p|) 

        q_c = np.log(q_c) 

 

        # Subtract log(not_p/|not_p| 

        ratios[c] = p_c - q_c 

 

    return dic, ratios, v 

 

 

def count_lines(data_file): 

    """Counts the number of lines in a file 

    """ 

    lines = 0 

    with open(data_file) as f: 

        for line in f: 

            lines += 1 

    return lines 

 

 

def load_data(data_path, text_row, class_row, dic, v, ratios, 

grams): 

    """Create Train or Test matrix and Ground Truth Array 

    """ 

    n_samples = count_lines(data_path) 

    # n_r = len(ratios) 

    classes = ratios.keys() 

    Y_real = np.zeros(n_samples, dtype=np.int64) 

 

    # One X (sample) matrix and binary Y (truth) per class 

    X = dict() 

    Y = dict() 

    data = dict() 

    indptr = [0] 

    indices = [] 

    for c in classes: 

        Y[c] = np.zeros(n_samples, dtype=np.int64) 

        data[c] = [] 

 

    with open(data_path) as tsvfile: 

        n = 0 

        for line in tsvfile: 

            row = line.split('\t') 

            try: 
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                t = int(row[class_row]) 

            except: 

                print (n) 

                print (class_row) 

                print (data_path) 

                sys.exit(0) 

 

            for c in classes: 

                Y[c][n] = int(c == t) 

            Y_real[n] = t 

 

            ngrams = tokenize(row[text_row], grams) 

            for g in ngrams: 

                if g in dic: 

                    index = dic[g] 

                    indices.append(index) 

                    for c in classes: 

                        # X[c][n][idx] = ratios[c][idx] 

                        data[c].append(ratios[c][index]) 

            indptr.append(len(indices)) 

 

            n += 1 

 

    for c in classes: 

        X[c] = csr_matrix((data[c], indices, indptr), 

shape=(n_samples, v), 

                          dtype=np.float32) 

 

    return X, Y, Y_real 

 

 

def save_counters(counters, filepath): 

    """Writes counters to files: ngram \t count \n 

    """ 

    for cl in counters: 

        cpath = filepath + '.' + str(cl) 

        counter = counters[cl] 

 

        with open(cpath, 'w') as fout: 

            for ngram, count in counter.most_common(): 

                count = str(count) 

                fout.write(ngram + '\t' + count + '\n') 

    sys.exit(0) 

 

 

def main(train, test, text_row, class_row, ngram, 

debug_counters=None): 

    print('Building computing ratios') 

    ngram = [int(i) for i in ngram] 

    counters = build_counters(train, ngram, text_row, class_row) 

 

    if(debug_counters): 

        save_counters(counters, debug_counters) 
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    dic, ratios, v = compute_ratios(counters) 

    classes = ratios.keys() 

    print (v) 

 

    print('Loading Data') 

    Xs_train, Ys_train, y_train = load_data(train, text_row, 

class_row, 

                                            dic, v, ratios, ngram) 

    Xs_test, Ys_test, y_true = load_data(test, text_row, 

class_row, 

                                         dic, v, ratios, ngram) 

 

    print('Training Classifiers') 

    print('classes in train: %d' % len(set(y_train))) 

    print('classes in test: %d' % len(set(y_true))) 

 

    svms = dict() 

    for c in classes: 

        svms[c] = LinearSVC() 

        svms[c].fit(Xs_train[c], Ys_train[c]) 

 

    print('Testing') 

    preds = dict() 

    for c in classes: 

        preds[c] = svms[c].decision_function(Xs_test[c]) 

 

    # not calculate the argmax 

    pred = np.zeros(len(y_true)) 

    for idx in range(0, len(y_true)): 

        max_score = float('-inf') 

        for c in classes: 

            if preds[c][idx] > max_score: 

                max_score = preds[c][idx] 

                pred[idx] = c 

 

    # finally the scores 

    acc_svm = accuracy_score(y_true, pred) 

    print('SVM: %f' % (acc_svm,)) 
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APPENDIX D 

(KNN) K-NEAREST NEIGHBORS ALGORITHM 
 

# @Author:  Ali Hasan Dakheel 

# @Project: Cyber Attack Detection in remote terminal units of 

SCADA using ML. 

from collections import defaultdict 

import sys 

from numpy import * 

 

 

class kNN(object): 

 

    def __init__(self, dataset, k, feature): 

        """Create a new nearest neighbor classifier. 

        dataset - a list of data points. Each data point is an (x, 

y) pair, 

                  where x is the input and y is the label. 

        k - the number of neighbors to search for.""" 

        # Note how we don't have to do any initialization! 

        # Once we have a dataset, we can immediately get 

predictions on new values. 

        self.dataset = dataset 

        self.k = k 

        self.feature = feature 

 

    def distance(self, p1, p2): 

        # print shape(p1), shape(p2) 

        # print type(p1), type(p2) 

        if self.feature == 'input_space': 

            return self.euclidean_distance(p1, p2) 

            # return self.euclidean_distance(p1, p2) 

        elif self.feature == 'fds': 

            return self.fds_distance(p1, p2) 

 

    def fds_distance(self, p1, p2): 

        ''' Fourier descriptors Euklidean distance ''' 

        p1 = p1 / p1[1] 

        p2 = p2 / p2[1] 

        p1_abs = absolute(p1) 

        p2_abs = absolute(p2) 

        # print shape(p1_abs) 

        # sys.stdin.read(1) 

        dist = linalg.norm(p1_abs - p2_abs)  # Euklidean distance 

        return dist 

 

    def euclidean_distance(self, img1, img2): 

        # Since we're using NumPy arrays, all our operations are 

automatically vectorized. 

        distance = sum((img1[:][:] - img2[:][:]) ** 2) 
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        #        print distance 

        #        print shape(distance) 

        return distance 

 

    def L3(self, img1, img2): 

        # Since we're using NumPy arrays, all our operations are 

automatically vectorized. 

        distance = (sum((img1[:][:] - img2[:][:]) ** 3) ** (1 / 

3)) 

        #        print distance 

        #        print shape(distance) 

        return distance 

 

    def get_majority(self, votes): 

        '''For convenience, we're going to use a defaultdict. 

          This is just a dictionary where values are initialized 

to zero 

          if they don't exist. ''' 

        counter = defaultdict(int) 

        for vote in votes: 

            # If this weren't a defaultdict, this would error on 

new vote values. 

            counter[vote] += 1 

 

        # Find out who was the majority. 

        majority_count = max(counter.values()) 

        for key, value in counter.items(): 

            if value == majority_count: 

                return key 

 

    def predict(neighbours, k): 

        top_k = [Counter(x[:k]) for x in neighbours] 

        predicted_labels = [x.most_common(1)[0][0] for x in top_k] 

 

        return predicted_labels 

 

    # -------------------------------------------------------- 

 

    """ 

    Finds the optimal value of k using cross validation. 

    The value of k with minimum error is the optimal one 

    """ 

 

    def find_k(neighbours, real_validation_labels, 

similarity_measure): 

        k_values = [] 

        error_values = [] 

 

        real_validation_labels = list(real_validation_labels) 

 

        """ 

        Its a convention to start from k = 1 to k = sqrt(N) where 

N is the size of training data 



79 

 

        """ 

        for k in range(math.ceil(math.sqrt(training_size))): 

            k += 1 

 

            predicted_labels = predict(neighbours, k) 

 

            # check accuracy 

            acc = accuracy_score(real_validation_labels, 

predicted_labels) 

 

            k_values.append(k) 

            error_values.append(1 - acc) 

 

        if similarity_measure == 1: 

            s = "Cosine Similarity" 

        else: 

            s = "Euclidean Distance" 

 

        k = k_values[np.argmin(error_values)] 

 

        """ Plotting the Validation Error Curve """ 

 

        plt.ylabel('Validation Error', fontsize=14) 

        plt.xlabel('K', fontsize=14) 

        plt.title("Validation Error Curve using %s" % s, 

fontsize=16, color='green') 

        plt.plot(k_values, error_values, 'bo--') 

        figure = plt.gcf()  # get current figure 

        figure.set_size_inches(13, 7) 

 

        plt.savefig("Validation Error Curve using %s.png" % s, 

dpi=300) 

        plt.clf() 

 

        """ 

        The value of K which gave minimum validation error is the 

optimal value of k 

        """ 

        return k_values[np.argmin(error_values)] 

    def classify(self, point): 

        # We have to copy the data set list, because once we've 

located the best 

        # candidate from it, we don't want to see that candidate 

again, so we'll delete it. 

        candidates = self.dataset[:] 

 

        # Loop until we've gotten all the neighbors we want. 

        neighbors = [] 

        while len(neighbors) < self.k: 

            # Compute distances to every candidate. 

            distances = [self.distance(x[0], point) for x in 

candidates]  # list of arrays INSTEAD of list of floats 

            # print distances, type(distances) 
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            # sys.stdin.read(1) 

            # Find the minimum distance neighbor. 

            best_distance = min(distances) 

            index = distances.index(best_distance) 

            neighbors.append(candidates[index]) 

 

            # Remove the neighbor from the candidates list. 

            del candidates[index] 

 

        # Predict by averaging the closets k elements. 

        prediction = self.get_majority([value[1] for value in 

neighbors]) 

        return prediction 
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APPENDIX E 

DATASET TRAINER 
 

# @Author:  Ali Hasan Dakheel 

# @Project: Cyber Attack Detection in remote terminal units of 

SCADA using ML. 

import argparse 

import cv2 

import numpy as np 

import os 

 

from os.path import isfile, join 

from scipy.io import loadmat, savemat 

from math import floor 

from datetime import datetime 

from random import shuffle, choice 

 

LOWEST_ALLOWED_CHAR = 33 

HIGHEST_ALLOWED_CHAR = 126 

MAX_ROTATION = 5 

STEP = 1 

TARGET_IMAGES = 1000 

ADDITIONAL = [40, 41, 42, 43, 45, 58, 61] 

class Dataset: 

    def __init__(self, batch_size=32): 

        self._train_labels = list() 

        self._test_labels = list() 

 

        self.batch_size = batch_size 

        self._load_dataset() 

 

    def _load_dataset(self): 

        self.data = loadmat('Dataset/Gas_Pipeline_Dataset.csv') 

 

    def _append_to_dataset(self, test_data=False): 

        if test_data: 

            test_data = self.data['dataset'][0][0][1][0][0] 

            self.data['dataset'][0][0][1][0][0][0] = 

np.append(test_data[0], self._test, axis=0) 

            self.data['dataset'][0][0][1][0][0][1] = 

np.append(test_data[1], self._test_labels, axis=0) 

 

            self._test_labels = list() 

 

        else: 

            train_data = self.data['dataset'][0][0][0][0][0] 

            self.data['dataset'][0][0][0][0][0][0] = 

np.append(train_data[0], self._train, axis=0) 

            self.data['dataset'][0][0][0][0][0][1] = 

np.append(train_data[1], self._train_labels, axis=0) 



82 

 

 

            self._train_labels = list() 

            self._train = list() 

 

    def add_image(self, image, label, test_data=False): 

        if len(image) != 

len(self.data['dataset'][0][0][0][0][0][0][0]): 

            raise Exception("Data should be an array of length 

784") 

 

        reverse_mapping = {kv[1:][0]:kv[0] for kv in 

self.data['dataset'][0][0][2]} 

        m_label = reverse_mapping.get(ord(label)) 

 

        if m_label is None: 

            raise Exception("The dataset doesn't have a mapping 

for {}".format(label)) 

 

        if test_data: 

            self._test_images.append(image) 

            self._test_labels.append([m_label]) 

        else: 

            self._train_images.append(image) 

            self._train_labels.append([m_label]) 

 

        if len(self._test_images) >= self.batch_size or 

len(self._train_images) >= self.batch_size: 

            self._append_to_dataset(test_data) 

 

    def save(self, do_compression=True): 

        if len(self._test_images) > 0: 

            self._append_to_dataset(test_data=True) 

 

        if len(self._train_images) > 0: 

            self._append_to_dataset() 

 

        file_name = 

'dataset/Gas_Pipeline_Dataset.csv'.format(str(datetime.now()).repl

ace(' ', '-').replace(':', '-')) 

        savemat(file_name=file_name, mdict=self.data, 

do_compression=do_compression) 

 

    def add_images_from_files(self, images, label, test_data): 

        for img in images: 

            self.add_image(img, label, test_data) 

 

def gray_scale(img): 

    img = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) 

    return img 

 

def normalize(img): 

    img = np.reshape(img, 28 * 28) 

    img = img.astype('float32') 
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    return img 

 

def rotate_image(img, angle): 

    # Calculate center, the pivot point of rotation 

    (height, width) = img.shape[:2] 

    center = (width // 2, height // 2) 

 

    # Rotate 

    rot_matrix = cv2.getRotationMatrix2D(center, angle, 1.0) 

    img = cv2.warpAffine(img, rot_matrix, (width, height), 

flags=cv2.INTER_CUBIC, borderMode=cv2.BORDER_REPLICATE) 

    return img 

 

def can_shift(img, i, j): 

    shift = True 

 

    if i == -1: 

        shift = not np.any(img[0, :]) 

    elif i == 1: 

        shift = not np.any(img[27, :]) 

 

    if j == -1 and shift: 

        return not np.any(img[:, [0]]) 

    elif j == 1 and shift: 

        return not np.any(img[:, [27]]) 

    return shift 

 

def shift(img, i, j): 

    top, bottom, left, right = 0, 0, 0, 0 

 

    if i == -1: 

        img = img[1:, :] 

        bottom = 1 

    elif i == 1: 

        img = img[:27, :] 

        top = 1 

 

    if j == -1: 

        img = img[:, 1:] 

        right = 1 

    elif j == 1 and shift: 

        img = img[:, :27] 

        left = 1 

 

    return cv2.copyMakeBorder(img, top, bottom, left, right, 

cv2.BORDER_CONSTANT, value=[0, 0, 0]) 

 

def shift_image(img): 

    images = list() 

    for i in range(-1, 2): 

        for j in range(-1, 2): 

            if can_shift(img, i, j): 

                shifted = shift(img, i, j) 
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                images.append(normalize(shifted)) 

    return images 

 

def extend_image_set(images, count): 

    extra = list() 

    while len(images) + len(extra) < count: 

        extra.append(choice(images)) 

    images.extend(extra) 

    return images 

 

def arguments(): 

    parser = argparse.ArgumentParser() 

 

    args, unknown = parser.parse_known_args() 

 

    # for i in range(LOWEST_ALLOWED_CHAR, HIGHEST_ALLOWED_CHAR + 

1): 

    for i in ADDITIONAL: 

        directory = 

'Dataset/Gas_Pipeline_Dataset.csv'.format(images_path, i) 

        if os.path.exists(directory): 

            files = [f for f in os.listdir(directory) if 

isfile(join(directory, f)) and f != ".DS_Store"] 

            images = list() 

 

            for file in files: 

                file_path = '{}/{}'.format(directory, file) 

                img = cv2.imread(file_path) 

                img = gray_scale(img) 

 

                for angle in range(-MAX_ROTATION, MAX_ROTATION + 

STEP, STEP): 

                    rotated = rotate_image(img, angle) 

                    images.extend(shift_image(rotated)) 

 

            shuffle(images) 

            training_count = floor(len(images) * 0.8) 

 

            print('Dataset for Gas-Pipeline has been trained: {}, 

Set Length: {}'.format(chr(i), len(images))) 

            training_set = 

extend_image_set(images[:training_count], round(min_images * 0.8)) 

            testing_set = 

extend_image_set(images[training_count:],  round(min_images * 

0.2)) 

 

            dataset.add_images_from_files(training_set, chr(i), 

False) 

            dataset.add_images_from_files(testing_set, chr(i), 

True) 

 

    dataset.save() 
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APPENDIX F 

CYBER DETECTION SYSTEM 
 

# @Author:  Ali Hasan Dakheel 

# @Project: Cyber Attack Detection in remote terminal units of 

SCADA using ML. 

import matplotlib.pyplot as plt 

import numpy as np 

import pandas as pd 

import seaborn 

import preprocessing 

import RF_Algo 

import SVM_Algo 

import KNN_Algo 

from sklearn.metrics import confusion_matrix 

from mpl_toolkits.mplot3d import axes3d 

 

def autolabel(rects,ax): 

    """ 

    Attach a text label above each bar displaying its height 

    """ 

    for rect in rects: 

        height = rect.get_height() 

        ax.text(rect.get_x() + rect.get_width()/2., 

1.005*height,'%d' % int(height),ha='center', va='bottom') 

 

def autolabel2(rects,ax,category): 

    """ 

    Attach a text label above each bar displaying its height 

    """ 

    i=0 

    for rect in rects: 

        height = rect.get_height() 

        ax.text(rect.get_x() + rect.get_width()/2., 

1.005*height,'%s' % category[i],ha='center', va='bottom') 

        i+=1 

 

def compare_three_classifiers(accuracies,precisions): 

 

    n= 3; 

    ind= np.arange(n) 

    width= 0.25 

 

    fig, ax= plt.subplots() 

    rects1= ax.bar(ind, accuracies,width,color='g') 

    rects2= ax.bar(ind+width, precisions,width, color='b') 

 

    ax.set_title('Comparison of Accuracy and Precision') 

    ax.set_xticks(ind + width / 2) 
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    ax.set_xticklabels(('RandomForest','SVM','k-Nearest 

Neighbour')) 

    ax.legend((rects1[0], rects2[0]), ('Accuracy', 'Precision')) 

    plt.show() 

     

 

def 

confusion_matrix_voted_classifier(y_test,y_pred,list_of_labels): 

    confusion_matrix = confusion_matrix(y_test,y_pred) 

    matrix_proportions = np.zeros((3,3)) 

    for i in range(0,3): 

        matrix_proportions[i,:] = 

confusion_matrix[i,:]/float(confusion_matrix[i,:].sum()) 

 

    names=list_of_labels 

    confusion_df = pd.DataFrame(matrix_proportions, 

index=names,columns=names) 

    plt.figure(figsize=(5,5)) 

    seaborn.heatmap(confusion_df,annot=True,annot_kws={"size": 

12},cmap='gist_gray_r',cbar=False, square=True,fmt='.2f') 

    plt.ylabel(r'True categories',fontsize=14) 

    plt.xlabel(r'Predicted categories',fontsize=14) 

    plt.tick_params(labelsize=12) 

 

    plt.show() 

 

def sample_ploting(sum_tfidf,num_words,FKRA,target,list_labels): 

    x1=[] 

    y1=[] 

    z1=[] 

    x2=[] 

    y2=[] 

    z2=[] 

    x3=[] 

    y3=[] 

    z3=[] 

 

    for i in range(len(target)): 

        if target[i]== 0: 

            x1.append(sum_tfidf[i]) 

            y1.append(num_words[i]) 

            z1.append(FKRA[i]) 

 

        elif target[i]== 1: 

            x2.append(sum_tfidf[i]) 

            y2.append(num_words[i]) 

            z2.append(FKRA[i]) 

 

        else: 

            x3.append(sum_tfidf[i]) 

            y3.append(num_words[i]) 

            z3.append(FKRA[i]) 
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    fig= plt.figure() 

    ax1=fig.add_subplot(111,projection='3d') 

 

    ax1.scatter(x1,y1,z1,c='r',s=50,label=list_labels[0]) 

    ax1.scatter(x2,y2,z2,c='g',s=60, 

marker="*",label=list_labels[1]) 

    ax1.scatter(x3,y3,z3,c='b',s=50, 

marker="^",label=list_labels[2]) 

 

    def preprocessing_stage1(string): 

        sent = basic_cleaning(string) 

        sent = lemmatizing(sent) 

        return sent 

 

    def preprocessing_for_pos_tags(features): 

        tweet_tags = [] 

        for t in features: 

            tags_words = nltk.pos_tag(nltk.word_tokenize(t)) 

            tags = [x[1] for x in tags_words] 

            tag_str = " ".join(tags) 

            tweet_tags.append(tag_str) 

 

        return tweet_tags 

    ax1.set_xlabel('Time Factor') 

    ax1.set_ylabel('Delta Pipeline PSI') 

    ax1.set_zlabel('Pipeline PSI') 

    ax1.legend() 

    plt.show() 

def corpus_distribution(num_of_each_labels,tuple_of_label_name): 

 

    n= 3; 

    ind= np.arange(n) 

    width= 0.25 

    fig, ax= plt.subplots() 

    rects1= ax.bar(ind,num_of_each_labels ,width,color='g') 

 

    ax.set_title('CRC Distribution') 

    ax.set_xticks(ind) 

    ax.set_xticklabels(tuple_of_label_name) 

    autolabel(rects1,ax) 

    plt.show() 

    def classify(self, point): 

        # We have to copy the data set list, because once we've 

located the best 

        # candidate from it, we don't want to see that candidate 

again, so we'll delete it. 

        candidates = self.dataset[:] 

 

        # Loop until we've gotten all the neighbors we want. 

        neighbors = [] 

        while len(neighbors) < self.k: 

            # Compute distances to every candidate. 
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            distances = [self.distance(x[0], point) for x in 

candidates]  # list of arrays INSTEAD of list of floats 

            # print distances, type(distances) 

            # sys.stdin.read(1) 

            # Find the minimum distance neighbor. 

            best_distance = min(distances) 

            index = distances.index(best_distance) 

            neighbors.append(candidates[index]) 

 

            # Remove the neighbor from the candidates list. 

            del candidates[index] 

 

        # Predict by averaging the closets k elements. 

        prediction = self.get_majority([value[1] for value in 

neighbors]) 

        return prediction 

 

def show_predictions(confidence,category): 

    n= len(confidence); 

    ind= np.arange(n) 

    width= 0.25 

    l=[] 

    for i in range(len(confidence)): 

        l.append(i+1) 

         

    fig, ax= plt.subplots() 

    rects1= ax.bar(ind,confidence,width,color='r') 

    ax.set_title('Prediction of Attack') 

    ax.set_xticks(ind) 

    ax.set_xticklabels(tuple(l)) 

    autolabel2(rects1,ax,category) 

    plt.show() 

 

target=[0,1,2,1] 

sum_tfidf=[3.4,5.6,4.2,4.7] 

num_words=[5,6,7,5] 

FKRA=[3.4,6.7,8.4,9.5] 

list_labels=['Bad (Attacking)','Intermidiate','Good (None)'] 

 

sample_ploting(sum_tfidf,num_words,FKRA,target,list_labels) 

 

num_of_each_labels=[23,45,67] 

tuple_of_label_name=('SVM','RF','K-NN') 

 

corpus_distribution(num_of_each_labels,tuple_of_label_name) 

 

accuracies=[85.3,87.4,86.3] 

precisions=[76,84,94] 

 

compare_three_classifiers(accuracies,precisions) 

 

confidence=[90,85,87,89] 

category=["Good","Good","Intermidiate","Bad"] 
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show_predictions(confidence,category) 
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