

T.C.

ALINBAŞ ÜNİVERSİTESİ

Electrical and Computer Engineering

DIAGNOSIS ON LUNG CANCER USING ARTIFICIAL

NEURAL NETWORK

 Mohammed Khalaf Abdullah

Master Thesis

Asst. Prof. Dr. Sefer Kurnaz

İstanbul 2019

ii

I hereby declare that all information in this document has been obtained and presented in

accordance with academic rules and ethical conduct. I also declare that, as required by these

rules and conduct, I have fully cited and referenced all material and results that are not original

to this work.

Alaa Badr Eysa

DIAGNOSIS ON LUNG CANCER USING ARTIFICIAL

NEURAL NETWORK

by

 Mohammed Khalaf Abdullah

Electrical and Computer Engineering

Submitted to the Graduate School of Science and Engineering

in partial fulfillment of the requirements for the degree of

Master of Science

ALTINBAŞ UNIVERSITY

2019

 iii

DEDICATION

To the one who made me learn how to succeed, to the one who I miss him in the middle of difficult

times, to the one who the life decided to take him before I have enough from his caring, to my

father may he rest in peace. And to the one who my word racing to describe her caring, to the one

who tried her best to teach me, support me, and did the best to make me to what I am now, to the

who I swim in the sea of tenderness that she has to cure my wounds, To my mom who I ask Allah

to give the longest healthy life. To my brother and sisters. To everyone who at least taught me at

least a letter …

I give you this thesis in a form of appreciation and I may ask Allah to accept this work.

 iv

ACKNOWLEDGEMENTS

I wish to express my acknowledgements to my supervisor, Asst. Prof. Dr. Sefer Kurnaz who was

abundantly helpful and offered invaluable support with his sincerity and belief in me.

 v

ABSTRACT

In today’s world, there is a dire need for the appropriate use of technology to diagnose and treat

patients by analyzing medical data. Moreover, data mining is one of the predominant researches

in computer science field. It is a process of extracting valuable information from a huge amount

of dataset. There are many approaches are adopted such as classification, image, regression

analysis and association rule mining. In this paper we’re representing a concentrated study on

classification technique to analyze the performance of data mining where several classification

algorithms were used based on classification accuracy, error rate, average error rate, and standard

Deviation. The main goal of this study is to make an open view on determining the best procedure

for data mining in medical analysis based on performance analysis on lung cancer dataset. There

are some common classification techniques such as linear regression, Decision Trees, Gradient

Boosting Machine (GBM), Support vector machines (SVM), and Custom ensemble. These

approaches are used for the performance of medical classification. In this study, because of the

dynamics that ANN has, we’re going to use ANN for the classification of breast cancer. Which is

probably will make better accuracy, less error, better sensitivity and specificity.

Keywords: Artificial neural network, Backpropagation, Genetic Algorithm, Mean square error,

optimization, classification.

DIAGNOSIS ON LUNG CANCER USING ARTIFICIAL NEURAL

NETWORK

Abdullah, Mohammed Khalaf

 M.Sc., Electrical and Computer Engineering, Altınbaş University,

Supervisor: Asst Prof. Dr. Sefer kurnaz

Date: March 2019

Pages: 51

 vi

ÖZET

Günümüz dünyasında, tıbbi verileri analiz ederek hastaları teşhis etmek ve tedavi etmek için

teknolojinin uygun kullanımına ciddi bir ihtiyaç vardır. Ayrıca, veri madenciliği bilgisayar

bilimleri alanındaki en önemli araştırmalardan biridir. Büyük miktarda veri setinden değerli

bilgileri çıkarma işlemidir. Sınıflandırma, imaj, regresyon analizi ve dernek kuralı madenciliği gibi

birçok yaklaşım benimsenmiştir. Bu yazıda, sınıflandırma doğruluğu, hata oranı, ortalama hata

oranı ve standart Sapma'ya dayanan çeşitli sınıflandırma algoritmalarının kullanıldığı veri

madenciliğinin performansını analiz etmek için sınıflandırma tekniği üzerine yoğunlaşmış bir

çalışmayı temsil ediyoruz. Bu çalışmanın temel amacı, akciğer kanseri veri setindeki performans

analizine dayanarak tıbbi analizde veri madenciliği için en iyi prosedürün belirlenmesi konusunda

açık bir görüş vermektir. Doğrusal regresyon, Karar Ağaçları, Degrade Yükseltme Makinesi

(GBM), Destek vektör makineleri (SVM) ve Özel topluluk gibi bazı yaygın sınıflandırma

teknikleri vardır. Bu yaklaşımlar tıbbi sınıflandırma performansı için kullanılır. Bu çalışmada,

ANN'nin sahip olduğu dinamikler nedeniyle, meme kanserinin sınıflandırılmasında ANN

kullanacağız. Muhtemelen daha iyi doğruluk, daha az hata, daha iyi hassasiyet ve özgüllük

sağlayacaktır.

Anahtar kelimeleri: Yapay sinir ağı, Backpropagation, genetik algoritma, Ortalama kare hatası,

optimazisyon, sınıflandırma.

YAPAY SİNİR AĞINI KULLANARAK AKCİĞER KANSERİNİN TEŞHİSİ

Abdullah, Mohammed Khalaf

 M.Sc., Electrical and Computer Engineering, Altınbaş University,

Danışman: Asst Prof. Dr. Sefer kurnaz

Tarih: March 2019

Sayfalar: 51

 vii

TABLE OF CONTENTS

Pages

ABSTRACT ... vix

ÖZET .. ix

LIST OF TABLES ... ix

LIST OF FIGURES .. x

1. INTRODUCTION ... 1

1.1 PURPOSE AND THESIS IMPORTANCE .. 3

1.2 METAHEURISTIC ALGORITHMS .. 3

1.2.1 Genetic Algorithm (GA) ... 4

2. LITERETURE REVIEW ... 5

3. METHODOLOGY .. 8

3.1 DATA RESOURCE .. 8

3.2 DATA PREPROCESSING ... 9

3.3 ARTIFICIAL NEURAL NETWORKS .. 10

3.3.1 General Properties of Artificial Neural Networks .. 13

3.3.2 Structure of ANN .. 15

3.3.3 Elements of Artificial Neural Networks ... 16

3.3.3.1 Inputs .. 16

3.3.3.2 Weights ... 16

3.3.3.3 Additive Function ... 17

3.3.3.4 Activation Function .. 17

3.3.3.5 Outputs .. 21

3.3.4 Classification of Artificial Neural Networks .. 21

3.3.4.1 Artificial Neural Networks According to Constructions 21

 viii

3.3.4.2 Artificial Neural Networks According to Learning Algorithms 24

3.3.5 Artificial Neural Network’s Output Calculations ... 27

3.4 BACKPROPAGATION .. 27

3.5 GENETIC ALGORITHM ... 30

3.5.1 Binary Strings Genetic Operations ... 33

3.5.1.1 Selection.. 33

3.5.1.2 Crossover .. 33

3.5.2 Mutation .. 35

3.5.3 Examples .. 35

3.5.3.1 Simple Example .. 35

3.5.3.2 A One - Dimensional Oscillating Feature... 37

3.5.3.3 A Two-Dimensional Function .. 38

3.5.4 Genetic Programming ... 39

3.6 TRAINING OF ARTIFICIAL NEURAL NETWORKS .. 40

3.6.1 Training Artificial Neural Networks with Backpropagation. 41

4. IMPLEMENTATION AND RESULTS .. 45

5. CONCLUSION .. 49

5.1 SUGGESTIONS .. 49

REFERENCES .. 50

APPENDIX .. 55

 ix

LIST OF TABLES

Pages

Table 4.1: The Results of Both GA(ANN-BP) and GA ... 47

 x

LIST OF FIGURES

Pages

Figure 3.1: Z-score Formula ... 10

Figure 3.2: General neural network architecture .. 16

Figure 3.3: Single Layer Feed Forward Network ... 22

Figure 3.4: Multilayer Feed Forward Network ... 23

Figure 3.5: Recurrent Network ... 24

Figure 3.6: Backpropagation Training Method .. 29

Figure 3.7: The Principle Structure of a Genetic Algorithm .. 31

Figure 3.8: A graphic representation of selection of roulette wheels with 6 alternatives m. The

numbers within the arcs correspond to the likelihood of selecting the alternative. 34

Figure 3.9: One-point crossover of binary strings .. 34

Figure 4.1: Error graph performance using GA (ANN-BP) ... 46

Figure 4.2: Error graph performance using GA. ... 46

Figure 4.3: Testing performance of GA(ANN-BP) .. 48

 1

1. INTRODUCTION

The neural system is arranged into hidden layers, input and output of the Artificial Neural

Networks (ANNs). The neurons are joined together by a series of synaptic weights. An ANN is a

powerful tool for identifying patterns, predictions and regressions in a variety of problems. The

ANN continually changes its synaptic values during the learning process until sufficient acquired

knowledge (until a certain number of iterations have been achieved or the error value of the target

has been achieved). After completion of the learning or training stage, the ability of the ANN to

generalize the problem with samples other than those employed during the training stage must be

assessed. Finally, during training and testing, it is expected that the ANN will be able to accurately

classify the patterns of a particular problem. In recent years several classic ANN algorithms have

been suggested and developed. However, many of them can stay trapped in nondesirable solutions;

that is, they will be far from the optimum or the best solution. Moreover, most of these algorithms

cannot explore multimodal and noncontinuous surfaces.

Therefore, other kinds of techniques, such as bioinspired algorithms (BIAs), are necessary for

training an ANN. As BIAs are strong optimization tools and can resolve very complicated

optimization problems, they are well accepted by the Artificial Intelligence Community. For a

given problem, BIAs can browse large multimodal and continuous search areas and find the

optimum value for the best solution. BIAs is based on nature’s behavior described as swarm

intelligence. The term [1] defines this concept as being owned by unintelligent agents with limited

individual capacities, but intelligent collective behavior.

There are several studies which use evolutionary and bio - inspired algorithms as a basic way of

training ANN [2]. Metaheuristic methods for training neural networks are based on local search,

population methods, and others such as cooperative coevolutionary models [3]. An excellent work

in which the authors show a comprehensive literature review of evolving ANN algorithms [2]. The

majority of the research reports however focus on the development of synaptic weight, parameters

[4] or the evolution of the numbers of the neurons for hidden layers, but the designer determines

the number of hidden layers previously. Moreover, the researchers do not involve the evolution

of transfer functions, which are an important element of an ANN that determines the output of

each neuron. In [5], for instance, the authors suggested a combining of the Ant Colony

 2

Optimization (ACO) methodology to identify ANN and PSO for weight adjustment. Additional

studies such as the [6] modify the Simulated Annealing (SA) PSO for the acquisition of a set of

synaptic weight and threshold ANNs. In [7], the authors use Evolutionary Programming to obtain

the architecture and weight to solve problems of classification and forecasting. Another example

is [8] where Genetic Programming is used to obtain graphs that represent different topologies. In

[9], the Differential Evolution (DE) algorithm was applied to design an ANN to solve a weather

forecasting problem. In [10], the authors use a PSO algorithm to modify the synaptic weights to

model the relationship between daily rains and runoffs in Malaya. In [11], the authors compare the

back-propagation method versus basic PSO to adjust only the synaptic weights of an ANN for

solving classification problems. In [12], the set of weights are evolved using the Differential

Evolution and basic PSO. The three principal elements of an ANN were simultaneously developed

in other works such as [13]: architecture, transfers and synaptic weights. In [14] the authors solved

the same problem with a differential Evolution (DE) algorithm and suggested a new model with a

PSO (NMPSO) algorithm for the authors. The author has also used [15] to develop the design of

an ANN with two different fitness functions by using an Artificial Bee Colony (ABC) algorithm.

Therefore in this research work, we proposed a technique that uses PSO for ANN training to

improve the training and testing performance of existing ANN on the diabetes dataset.

The chapters in this study focus are:

1. Chapter 1: The first chapter focuses on this thesis, which explains the idea and the purpose

of this thesis. That makes a complete review of how this work can be done.

2. Chapter 2: The second chapter is the literature review of references to this thesis. Their

results and the algorithms used to classify the dataset by other researchers are thoroughly

reviewed.

3. Chapter 3: The third chapter focuses on the methodology for this thesis where the collection

of data and the general look of ANN, GA and BP are explained. In addition, review a clear

understanding of the characteristics of these algorithms and the ways they can be

developed. It also gives a full idea of how GA and BP train an ANN and how these

algorithms are being developed during their training. The advantages and disadvantages

for ANN training are also presented by both BP and GA.

 3

4. Chapter 4: This chapter provides a clear picture of the results of this study, which shows

both GA and BP performance in ANN training and compares the results.

5. Chapter 5: The last chapter is the results and the recommendation that gives an overview

of the results and summarizes the results from our experiments.

1.1 PURPOSE AND THESIS IMPORTANCE

This research aims to present a new optimization algorithm called GA, which will improve ANN's

training performance. The fitness functions take into consideration the classification error, mean

square error, validation error, architectural reduction or a combination. This research also explores

the behaviours, using different parameter values, of three bioinspired algorithms. The best

parameter values for these algorithms are determined to achieve optimum results during the

experimentation phase. In addition, a number of statistically valid experiments are generated for

each selected classification problem using the best configuration. Furthermore, the results of the

proposed methodology are discussed with regard to the connection number, the neuron numbers

and the transfer functions selected for each ANN.

1.2 METAHEURISTIC ALGORITHMS

A metaheuristic method in computer science and mathematical optimisation is designed to

identify, create or select heuristic (partially searched algorithms) that can provide a good and

adequate solution to the optimisation problem, especially if the information is incomplete, or

imperfect, or if the calculator is limited. For sampling metaheuristics, a number of solutions are

excessive. Metaheuristics can make few assumptions about the problem of optimization, and can

therefore be used in a number of problems.

Metaheuristics cannot ensure that some types of problems are found to offer a global optimal

solution in comparison with optimizing algorithms and iterative methods. Many metaheuristics are

used to optimize the stochastic to make the solution dependent upon the set of random variables.

When combined, metaheuristics often find solutions with less computational effort by looking for

a wide array of feasible solutions than optimization Algorithms. Therefore, they are useful

 4

solutions to optimization problems. There have been published a number of books and papers on

this topic.

The majority of the metaheuristic literature is experimental, describing empirical findings from

experiments with computer algorithms. However, formal theoretical results, often regarding

convergence and the possibility of finding the global optimum are also available. Many

metaheuristic methods have been published with novelty and practical efficiency. Although there

was high quality research in the field, many publications were of bad quality; vagueness,

inadequate design, poor experiments and ignorance of previous literature are some of the

shortcomings.

1.2.1 Genetic Algorithm (GA)

In the late 1960sç, the concept of GA was first introduced to the evolutionary theory by Holland

and its colleagues. In nature, unsuitable and weak species face extinction by natural selection

compared to their environment. The strongest species have more opportunities for reproductive

transmission of their genes into future generations; this process takes time and is gradual. The

species with the right gene combination will be more dominant over the long term. At times,

random changes in the genes may take place during this slow process of evolution. These

unintended variations offer additional benefits through diversification to the natural selection

process. New species evolve from old species, unsuccessful modifications, and natural

combinations automatically eliminate in this never-ending challenge of survival. In GA

terminology, an individual or chromosome solution vector is referred to. These chromosomes

consist of discrete units known as genes. One or more chromosome elements are controlled in each

gene. The initial Holland GA implementation had binary numbers as genes. The latest deployments

provided more representation and encoding of genes. A chromosome is usually the only solution

in the space of the solution. GA works with the population, a set of chromosomes. The population

is usually randomly initialized. As the algorithm runs, people with a higher fitness are

progressively found ; each candidate has a number of properties (genotype) that can be mutated

and therefore better solutions are found.

 5

2. LITERETURE REVIEW

The Artificial Neural Networks (ANNs) are the neural system organized into hidden layers, input

and output. The neurons are joined by a set of synaptic weights. An ANN is a powerful tool used

to identify models, predictions and regressions in a variety of problems. The ANN continually

changes its synaptic values during the learning process until sufficient acquired knowledge (until

a certain number of iterations have been achieved or the error value of the target has been

achieved). After the training stage, the capacity of ANN to generalize the problem must be

evaluated with samples different from those used during the training stage. The problem should be

generalized.

Several classic algorithms to train an ANN have been proposed and developed in the last years.

However, many of them can stay trapped in nondesirable solutions; that is, they will be far from

the optimum or the best solution. Moreover, most of these algorithms cannot explore multimodal

and noncontinuous surfaces. Therefore, other kinds of techniques, such as bioinspired algorithms

(BIAs), are necessary for training an ANN.

As BIAs are powerful optimizing instruments and can solve very complex optimizing issues, they

have a positive support by artificial intelligence. BIAs can explore large multimodal and non -

constant search areas for the best solution near the optimal value for a specific problem. BIAs are

based on the behavior of nature described as the swarm. In [1] this concept is defined as owned by

smart and limited personal agents with smart collective behavior.

There are several works that use evolutionary and bioinspired algorithms to train ANN as another

fundamental form of learning [2]. Metaheuristic methods for training neural networks are based

on local search, population methods, and others such as cooperative coevolutionary models [3].

The authors show a comprehensive literature review of evolutionary algorithms used for the

development of ANN [2]. Most of the research reports are, however, focused exclusively on the

development of synaptic weights, parameters [4] or evolution of the numbers of neurons in hidden

layers. The designer determines the number of hidden layers. Moreover, the researches do not

involve the evolution of transfer functions, which are an important element of an ANN that

determines the output of each neuron.

 6

For example, in [6] the authors suggested a method combining ANN and Particle Swarm

Optimization (PSO) for a specific architecture (connections) to adjust the weight of the synaptical.

Other research, such as [6], has carried out a modified PSO mixture with Simulated Annealing to

obtain a set of ANN and ANN weights. [7] In order to find out the architecture and weights, authors

use evolutionary programming to solve classification problems and forecasting problems. Another

example is [8] where Genetic Programming is used to obtain graphs that represent different

topologies. In [9], the Differential Evolution (DE) algorithm was applied to design an ANN to

solve a weather forecasting problem. In [10], the authors have been adjusting the synaptic weight

by the PSO algorithm to model the daily relations in Malaysia between precipitation and rain. In

[11], the authors compare the back-propagation method versus basic PSO to adjust only the

synaptic weights of an ANN for solving classification problems. In [12], the set of weights are

evolved using the Differential Evolution and basic PSO.

The three main elements of the ANN have evolved simultaneously in other works such as[13]:

architecture, transfer functions and synaptic weights. In [14], the authors solved the same problem

using the Differential Evolution (DE) algorithm. They proposed a new PSO model. Another

example is [15] in which authors develop an ANN design with two different fitness functions using

an Artificial Bee Colony (ABC).

This research has significant contributions in comparison with these last three works. First and

foremost, there are eight fitness functions to address three common problems arising from the

ANN design: accuracy, overriding and reducing ANN. In this respect, fitness functions take

classification error into account, mean square error, validation error, architecture reduction and a

combination of problems that arise while designing the ANN. This research further examines the

behaviour, using different parameter values, of the three bioinspired algorithms. The values of the

best parameter for these algorithms will be determined to achieve the best results during the

experimentation phase. Furthermore, the best configuration for each selected classification

problem is used to create a set of statistically valid tests. In addition, the results obtained by the

proposed methodology are presented and discussed regarding the connection number, the number

of the neuron and the transfer functions selected in the ANN. Another contribution of this research

is related to a new metric that allows comparing efficiently the results provided by an ANN

generated with the proposed methodology. This metric takes into account the recognition rate

 7

obtained during training and testing stages where testing accuracy is more weighted in comparison

to training accuracy. Finally, the results achieved by the three bioinspired algorithms are compared

against those achieved with two classic learning algorithms. The selection of these three biological

- inspiring algorithms is based on the metaphor for a basic PSO technique, because NMPSO is a

relatively new algorithm (in 2009). It is important to compare its performance to other algorithms

that are motivated by the same.

In general, the problem to be resolved can be defined as a set of input patterns, and a set of the

desired patterns, and an ANN is found represented by the function to be determined by so that the

maximum number of neurons is minimized and defined. It is important to note that three fields

(architecture, synaptic weight and transfer functions) form part of the search space.

This research offers a comprehensive study of how the application of bioinspired algorithms can

be automated by an ANN, in particular by applying Basic Particle Swarm Optimization (PSO),

Second-Generation PSO (SGPSO) and New PSO Model (NMPSO). In order to design the ANNs

that are most exact in a particular problem, the proposed methodology evolves at the same time

the architecture, the synaptic weights and the type of transfer functions. Moreover, a comparison

of the Particle Swarm algorithm performance versus classic learning methods (back-propagation

and Levenberg-Marquardt) is presented. In addition, in this research is presented a new way to

select the maximum number of neurons (MNN). The accuracy of the proposed methodology is

tested solving some real and synthetic pattern recognition problems. In this paper, we show the

results obtained with ten classification problems of different complexities.

 8

3. METHODOLOGY

3.1 DATA RESOURCE

Hong and Young used these information to show that even in unprotected environments, the power

of the optimally discriminating aircraft. The KNN method applied in the resulting plane with 77

percent precision. These results are however very partial (see Aeberhard for the second reference

above, or e-mail to stefan' @'coral.cs.jcu.edu.au). The outcome of Aeberhard et al. is:

RDA : 62.5%, KNN 53.1%, Opt. Disc. Plane 59.4%

Three types of lung cancers were described in the data. The authors don't tell you which variables

or where the data was originally used.

Notes:

- For the fifth attribute, the original data 4 values were -1. Having changed these values?

(Unknown). (Unknown). Available in German.

- For the 39 attributes, the original data 1 value was 4. Has this value been modified? (Unknown).

(Unknown).

Information of Lung Cancer Data Database are described below:

• Title: Lung Cancer Data

• Sources:

o Original owners: Data was published in :

▪ Hong, Z.Q. and Yang, J.Y. "Optimal Discriminant Plane for a Small

Number of Samples and Design Method of Classifier on the Plane",

Pattern Recognition, Vol. 24, No. 4, pp. 317-324, 1991.

o Donor of database: Stefan Aeberhard, stefan@coral.cs.jcu.edu.au

o Date received: May, 1992

• Number of Instances: 32

• Number of Attributes: 57 (1 class attribute, 56 predictive)

• For Each Attribute: (all numeric-valued)

 9

❖ attribute 1 is the class label

❖ All predictive attributes are nominal, taking on integer values 0-3

• Missing Attribute Values: Attributes 5 and 39 (*)

• Class Distribution: 3 classes,

o 9 observations

o 13 "

o 10 "

3.2 DATA PREPROCESSING

The dataset had some missing values which was fix using the tool “IBM SPSS statics 24” and

using the algorithm Estimation-Maximization (EM) and then processed using z-score for artificial

neural network training.

Expectation – maximization algorithm

Statistics have the effect of finding maximum or maximal post-map (MAP) estimates in statistical

models, which depend on unnoticed parameters in the model, with expectation–maximization

(EM) algorithms being an iterative method. The EM iteration alternates between a (E) step that

produces a function for expectation of the evaluated log-like feature using the current estimate for

parameters and a (M) step that calculates parameters maximizing the expected log-like feature in

step E. These parameter estimates are then used to determine the latent variables distribution in

the next step E.

Z-Score

In the middle of a dataset, z is the default number. Technically, however, it is a measured amount

of standard differences in the population or above. A z-point is a standard distribution curve

parameter, as well. The range of Z scores varies from-3 standard deviations to-3 standard

deviations (to go far left with the normal distribution curve) (to the right of the normal

distribution)-the mean μ is known, and if the z scoring is to be carried out, the standard population

deviation ̈ is known.

 10

Z scores are a way to use "normal" populations to compare test results. There are thousands of

results and units to be achieved for the test results or surveys. These results, however, often seem

insignificant. For example, it might be a good piece of information to find someone weighs 150

pounds but to search for a comprehensive basis of information if some weights are compared to

the average, especially if some weights are recorded in the kilogram. You can see a z score where

the average person weighs.

Figure 3.1: Z-score Formula

Z-Score formula

If you have several examples, if you want to describe the default deviation (standard error), you

will use the format z - score. If you have several samples.

𝐷𝑎𝑡𝑎𝑛𝑒𝑤 =
𝐷𝑎𝑡𝑎𝑜𝑙𝑑−𝑚𝑒𝑎𝑛

𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝑑𝑖𝑣𝑖𝑠𝑖𝑜𝑛
 (3.1)

3.3 ARTIFICIAL NEURAL NETWORKS

The neuron structure in the human brain inspires the Artificial Neural Network. The brain learns

from experiences that go beyond the range of computers and thus adapts. This modeling also

allows solutions to be less technologically developed in order to reduce human involvement.

The implementation of neural networks in computing gives us a key computational advance.

Computers, like complex math and face recognition, do well. However, simple patterns are hard

for computers. Computers cannot analyze, generalize and transform past patterns into future

actions. The advanced neural network study allows people to understand the mechanism of

thoughts, for example.

 11

The study focusses on the' brain storage data as patterns method [17]. For individual faces to

analyze and recognize, some of these patterns are very difficult. This process saves information as

patterns, analyzes patterns and fixes a new computer field for problems. Training and creation of

these networks is involved in the neural network to solve specific problems. We can perform

different techniques such as learning, behaving, forgetting and reacting, etc. through our neural

network.

"All aspects of this processor are known: The human brain is still mysterious to operate accurately.

In particular, the most important element in the human brain is a certain type of cell which does

not appear to regenerate as opposed to the whole body. Since the only portion of the body not

slowly replaced by this type of cell, we are supposed to be able to remember, think and put past

experiences into practice in all our actions. These cells are all known as neurons”. The neural

network as the human brain's neural network offers power through its complex components, its

control mechanisms and its subsystems. Genetics programming and learning are also involved. In

electro-chemical ways, neurons transmit the information between them. Depending on the

classification process used, these neurons are classified into different categories. Current systems

remain incompatible with the human brain. "The most basic elements of this complex and powerful

organization can only replace these artificial neural networks. Neural computing has never

succeeded the developer who is trying to solve problems with the human brain. Neural computing

was never substituted to human brain by the development company which attempts to solve

problems. It's a new way of solving problems and machinery.

Let's see the overview of human neurons. The basic element of the neural network is neuron. The

biological neurons are input and subsequently subject to various non - light operations and then

produce final output. Four nerve cells are typical: dendrites, somas, axons and synapses. It accepts

inputs as the task of dendrites. The input is processed by Soma. Axon-transforms the processed

inputs and synapses— contacts neurons. The biological neurons in structure are not too

straightforward but complex.

Biology improves the understanding of neurons. By understanding the biological brain, network

designers can enhance their systems further. Neural artificial networks (ANN) are computer tools

which have been widely accepted in many different disciplines to model complicated problems in

 12

the real world. ANNs could be defined as structures consisting of strongly linked adaptive elements

called neurons that provide massive computations for the representation of knowledge.

"The principal features of the ANN are the ability to handle inaccurate and inadequate information,

the ability to manage inaccurate information, robustness, failure and failure tolerances, fault and

failure tolerance."

Artificial models possess following characteristics:

1. Nonlinearity makes it more suitable for data

2. Precise prediction for uncertain data and measurement errors due to noise insensitivity.

3. High parallelism means tolerance of hardware failure and quick processing.

4. Learn and adapt to the changing environment, allowing the system to update its internal

architecture.

5. The model can be applied to unlearned data by generalization.

The main goal of ANN - based computing is to develop mathematical algorithms that enable

artificial neural networks to study the processing of information and to gather human brain

knowledge. Patterns based on ANN may provide virtually accurate solutions to specifically

formulated problems and processes that only experimental and field observations understand. “In

a number of applications from modeling, classification, design recognition and multi - variable

data analysis, microbiological ANNs have been applied. The digital image processing interests are

derived from two main applications: improvement for human - the reading of photo information;

and processing of image information for storing, transferring and representing autonome sensor

machine; and defining a two - dynamic function as the image, f(x, y).

“Digital image processing is the processing of digital images via digital computers. A numerous

elements with a specific position and value comprises a digital picture. They are called picture

elements, elements, pixels and skins. An extensive and diversified application for digital image

processing”.

 13

3.3.1 General Properties of Artificial Neural Networks

1. Nonlinear I/O mapping

The analysis of high-dimensional data has an increasing importance due to the growth of

sensor resolution and computer memory capacity. Typical examples are images, speech

signals and multi-sensor data. In the analysis of these signals they are represented in their

entirety or part by part in a sample space. As an example, a single data point may represent

a 16x16 (sub) image. A collection of these images constitutes a cloud of points in a 256-

dimensional space. In most multi-sensor data sets there is a large dependency between the

sensors or between the sensor elements. This is certainly true for nearby image pixels. But

also more fundamentally, it is not to be expected that any physical experiment contains

hundreds of degrees of freedom that are of significant importance. Consequently, multi-

dimensional data sets may be represented by lower dimensional descriptions. There are

various reasons why such representations may be of interest. They may reveal the structure

of the data or the problem, they may be used for relating individual data points to each

other (e.g. finding the most similar one in a database) or they may be used for retrieving

missing data values.

2. Generalization ability

Their capacity to generalize is one of the major advantages of neural networks. This means

that a trained network can classify data from the same class that it never saw. Developers

in real-life applications usually only have a small portion of all possible neural net

generation patterns. The data set should be divided into three parts to achieve the best

generalization:

The training is for the training of neural networks. During training, this data set error is

minimized.

The validation set is used to determine the performance of neural networks in untrained

patterns. A test set to finally monitor a neural net's overall performance. In the minimum

validation error, learning should be stopped. The net generalizes best at this stage. If

learning is not stopped, overtrainings occur, and net performance decreases over all data,

 14

even if the error is still smaller in the training data. The network must finally be checked

for the third dataset, the test set, after the completion of the learning phase. Each n training

cycle, ANNS performs one validation cycle.

3. Fault-tolerance (graceful degradation)

Fault tolerance is the feature that permits the system, when certain components of it fail (or

one or more inside failures), to continue to operate properly. The decline in operating

quality, as opposed to an unnatural system, is proportional to the gravity to which the failure

is causing a total failure if it does not. Fault tolerance is especially sought in high

availability or life-critical systems. When parts of a system break up, features are known

as graceful degradation.

A defect-tolerant design allows a system to operate at a lower level than to fail completely

if some of the system fails. When a system fails. The term is used most often to describe

computer systems designed to continue to operate more or less fully in the event of a partial

failure, with reduced output or with an increased response time. In other words, the entire

system is not stopped due to hardware or software problems. A motor car is designed to

continue to drive in the presence of damage caused by fatigue, corrosion, manufacturing

defects or impacts, when a tire has been punctured or when structural integrity is

maintained. Another example is an automotive vehicle.

The tolerance of failures can be achieved by anticipating special conditions and building a

system to deal with them within the scope of an individual system, and, in general, by trying

to stabilize itself so as to converge the system in a faultless state. Nevertheless some kind

of reproduction is better used when the consequences of an insufficient system are

catastrophic or the costs of making it reliable enough are very high. In each case, the system

must be able to reverse it in safe mode, if a system failure is so catastrophic. The recovery

is like a reversal, but if people are present, it can be a human action.

4. Biological analogy

Analogy is a cognitive process where information or significance is translated to a different

objective or linguistic expression from one particular topic–analogy or source. A less

narrowly defined inference or argument from one specific to another is in comparison to

 15

the analogy of deduction, induction and abduction where at least one premise or conclusion

is general. The word analogy could also refer to the relation of the source and the goal

itself, often but not necessarily similar, as in the concept of biology. The atom model of

Rutherford analogized the atom with the solar system. Analogy plays a major role in

problem solving, including decision-making, discussion, perception, generality,

remembrance, creativeness, invention, prevision, emotions, explanation, conceptualisation

and communication. The analogy was argued as "the cognitive nucleus." In particular, the

analogical language includes, although not metonymous, exemplification, comparatives,

metaphors, like, alligories and parable. It is not methonymous, but it does not contain the

identification of places, objects or persons. As if it were, phrases like, etc. and so on, and

the same term also depends on the analogous understanding of the message by the receiver.

Analogy is important not only in ordinary language and common sense in the fields of

science, philosophy, law and humanity. Analogy is closely linked to concepts of

association, comparative approach, correspondence, mathematical and morphological

equality, homomorphism and iconicity. The concept of conceptual metaphor in the

cognitive linguistics can be the same as the concept of analogy. Analogy also provides a

basis for all comparative arguments and experiments whose findings are conveyed to

objects not examined.

3.3.2 Structure of ANN

The neural network consists of three groups, layers and phases. The phases input, covered and

output.

• The activity or input unit is the raw data that the network receives.

• The cached phase is based on the data entered and the weights of the connection between

the input and the cached units.

• The phase of the output depends on the activity of the cloaks and weights between the

cloaked and output units.

On the basis of the layer activity, different network types exist. A simple network type is called

where the hidden units can build their own input representation. Whenever each hidden unit is

active, the masses of the hidden and input units can be adjusted to allow for a hide unit to choose

 16

what it is. Other architectures such as single and multilayer are also available. In a single layer

each layer is connected to the other. Overall, the network of the single layer includes only entries

and outputs. The inputs are supplied by a number of weights to outputs. In several layers all units

have inputs, hidden and outputs in different layers.

Figure 3.2: General neural network architecture [2]

3.3.3 Elements of Artificial Neural Networks

3.3.3.1 Inputs

The data, signal, feature, or outside environment measurements are received from this layer. These

inputs are generally normalized within the limits of the activation functions. The values of samples

or patterns. This standardization gives greater numerical accuracy for the network's mathematical

operations.

3.3.3.2 Weights

The links between neurons are assigned to the number "weights" or "parameters" in artificial neural

networks. These weights change as new data are fed into the neural net. So "learns the neural net.

The weights in an artificial neural network are an estimation of the combined multiple processes

in biological neurons. Myelination is important, but not important. Myelination. Weights can be

 17

positive or negative in artificial neural networks. Weight: weight is comparable to an increased

combination of dendrites between neurons, numbers of synapses between dendrites, density of

postsynaptic terminal neurotransmitter receptors, as well as increased formation and fusion of

neurotransmitters of the vesicles and of the pre-synaptic terminals.

Positive weights: The positive weights of the synapses releasing excitation neurotransmitters (i.e.

glutamate) are analogous to the pre - synaptic terminals. The receiving cell will increase its

likelihood of activation.

Negative weights: Negative weights are similar to those of the neurotransmitter synapse (i.e.

GABA). The receiving cell is less likely to fire a potential action.

Myelination: Myelination increases the distance between the action potential and the axon. If the

axon is not myelinated, the membrane voltage potential decreases far closer to the cell body. A

garden hose is analogous. If the axon does not myelinize, the garden pants are leaking, and a lower

water pressure (which cares for waves of water pressure, the potential action) leads to the end of

the pants.

3.3.3.3 Additive Function

An additive function is an arithmetic f(n) function in a positive integer that the product function is

the sum of its functions when a and b are copressed. F(a) + f(b) holds a completely additive

function even when they arenot co-prime to all positive integral parts a or b if f(b) holds f(a)+ f(b).

In this sense also, analogy with fully multiplicative functions is used with complete additive.

F(1)=0 if f is a full additive feature. Each fully additive function is an additive, but not the other

way around.

3.3.3.4 Activation Function

The threshold or transfer feature is also known as activation functions. The activating functions

have been used to transform neuron activation levels into output signals. Numerous activation

functions are available in the neural network. Identity function, step function, part linear function

and sigmoid function are various function types.

 18

a. Identity activation function:

The activation function of identity is also referred to as "liner activation." The Network Activation

function can be shown easily to fit a line regression model of the form if the ID is used in the

network 𝑌𝑖 = 𝐵0 + 𝐵1 + ⋯ + 𝐵𝑘𝐵𝑘 where 𝑥1, 𝑥2, … … … , 𝑥𝑘 are the k network inputs, 𝑌𝑖 is the i-

th network output 𝐵1 , 𝐵2 , … … . . , 𝐵𝑘 are the coefficients in the regression equation. Consequently,

a neural network with identity activation used in all its sensors is uncommon to be found.

b. Sigmoid activation function:

Nonlinearity in the model is used in the artificial neural network sigmoid functions. The result of

a linear combination of its input signals is calculated by a network neuroelement using a signmoid

function. The sigmoid function makes an interface between the product and itself easier and more

popular in the Neural Network.

 𝜑(𝑣) =
1

1+exp(−𝑎𝑣)
 (3.2)

Sigmoid function results are generally used in learning algorithms. The Sigmoid graph is shaped

as' S'. This function is defined as an expanding function which is commonly used for neural

artificial network development. Sigmoid is a function that strictly increases, and shows a balance

between linear and nonlinear functions.

One - polar – is the sigmoid function.

c. Step function:

This is a unipolar threshold, known as.

𝜑(𝑣) = {
1 𝑖𝑓 𝑣 ≥ 0
0 𝑖𝑓 𝑣 > 0

} (3.3)

The neuron K output with a threshold is

𝑦(𝑘) = {
1 𝑖𝑓 𝑣𝑘 ≥ 0
0 𝑖𝑓 𝑣𝑘 > 0

} (3.4)

 19

𝑣𝑘 𝑖𝑠 𝑡ℎ𝑒 𝑖𝑛𝑑𝑢𝑐𝑒𝑑 𝑙𝑜𝑐𝑎𝑙 𝑓𝑖𝑒𝑙𝑑 𝑜𝑓 𝑡ℎ𝑒 𝑛𝑒𝑢𝑟𝑜𝑛

𝑣𝑘 = ∑ 𝑊𝑘𝑗 𝑋𝑗
𝑚
𝑗=1 + 𝑏𝑘 (3.5)

When the neuron output is 1 when the local neuron field induced is not - negative, the neuron

output is 0.

d. Piece Wise Linear Function

It can be defined as a unipolar function

𝜑(𝑣) = {

1 , 𝑣 ≥ +1/2

𝑣 , +
1

2
 > 𝑣 > −1/2

0 , 𝑣 ≤ −1/2

} (3.6)

When it is expected that the amplification factor is within the linear area

1. The specific circumstances of linear functions are

• If the linear operating area is maintained without saturation, a linear combiner is

produced.

• If the linear region's amplification factor is infinitely large, it reduces to a threshold

feature.

e. Learning Rules in neural network

There are many different types of study rules in the neural network, usually divided into 3

categories.

• Supervised Learning

• Unsupervised Learning

a. Supervised Learning

Training sets are available for supervised learning. This type of rule includes a set of examples

with proper network behavior. The inputs are given as a training in controlled learning and the

 20

expected results are achieved. Parameters in this type of study are adjusted step by step by error

signal; parameters are adjusted step by step by step by error signal.

A number of examples (trainings set) together with correct network conduct are provided for the

learning rule.

{𝑥1, 𝑑1}, {𝑥2, 𝑑2}, … … … , {𝑥𝑛, 𝑑𝑛} (3.7)

The network input is xn in this case and dn is the required destination input. The output is generated

by input. In order to make network outputs more exact, the Study rule is employed to change

network biases and weights.

We commit ourselves with supervised learning to give the system the desired answer (d) when the

entry is implemented. The distance between the real response and the desired response is used to

correct the network parameter externally. For example, the error can be used to change weighing

in the study of input patterns or circumstances where the answer to the error is recognised. For the

learning mode, the training set, several input and output patterns are needed.

b. Unsupervised learning

In unexpected learning, self-organized learning is also known. Objective output is not available in

uncontrolled learning. In that case, only network input changes weights and biases. For pattern

reorganization, unattended study grouping is used. The answer required is not known in unattended

learning, therefore explicit error information cannot be utilized for improving network behaviour.

Information of this type is not available to correct the wrong answers so that learning has to be

done based on observations of marginalized or unknown responses to the data.

The algorithms in unchecked learning use redundant row data, which have no etiquette for class

membership or associations. In order to identify its parameters in this way, the network needs to

detect any existing patterns, properties, regulations, etc. Unattended study means learning without

the teacher because it is not necessary for the teacher to participate, but the teacher must set

objectives. Feedback on neural networks is important as well. Feedback is called progressive

learning, which for uncontrolled learning is very important.

 21

3.3.3.5 Outputs

This layer contains also neurons that generate and display the final neural network outputs at the

previous layers. Thus the artificial neural networks ' principal architectures can be divided, taking

into consideration the connection and the structure of the neuronal disposition. The following are

possible:

(i) Single-layer feedforward network,

(ii) Multilayer feedforward networks,

(iii) Recurrent networks and

(iv) Mesh networks.

3.3.4 Classification of Artificial Neural Networks

3.3.4.1 Artificial Neural Networks According to Constructions

A. Single Layer Feed Forward Network

A neural network with a source node projecting the neural output level, but not one single feed or

an acyclic network. The single layer refers to the calculation node output layer in one network

layer Figure 3.2.

 22

Figure 3.3: Single Layer Feed Forward Network [2]

B. Multilayer Feed Forward Network

The system consists of at least one cache layer known as clad neurons or clad unit hubs. The ability

of clad neurons is to work between external information and system output and to get separate

insights on a higher demand. In the system input layer, the source hubs provide the information

flag for the neurons in the second layer. The third layer of inputs are the second layer of output

signals, and so on. The general reaction of the system to the actuation design provided by sources

in the main layer of the info is neuron output motions in the system yield level.

 23

Figure 3.4: Multilayer Feed Forward Network [2]

Short feeding network characterization:

1. In general, activation is provided via ' hidden layers ' from input to output but many other

architectures exist.

2. Static input - output mappings are implemented by mathematics.

3. Most popular algorithm for backpropagation supervised training:

4. Has proved useful in many practical applications as approximations of nonlinear functions

and as a classification model.

C. Recurrent Network

The repetitive system in the figure is known as a forward neural system of something like the input

circle, which includes at least one shrouded layer. 2.3.2. The first time. Critics could be your own

critique, i.e. if your own information returns to neuronal yield. The use of unit deferring

components, which leads to a unique conduct, has sometimes been criticised, since the neural

system has non-direct units.

 24

Figure 3.5: Recurrent Network [2]

Other network types are available ; Delta - bar - delta, hop field, quantifying vectors,

counterpropagation, probabilist, hamming, memory boltzman, spatium - temporal patent, adaptive

resonance, auto - order, recirculation etc.

The cyclic path of synaptic connections is a recurring neural network.. Basic characteristics:

1. Recurring are all biological neural networks

2. They implement dynamic systems mathematically

3. Various types of algorithms, no clear winner, are known

4. In general, theoretical and practical problems have prevented practical applications up to now.

3.3.4.2 Artificial Neural Networks According to Learning Algorithms

If a network is structured for a particular application, it will be ready for formation. At start and

beginning of training, initial weights are selected randomly. Two approaches are available;

controlled and unattended.

 25

A. Supervised Training

The inputs and outputs are provided for supervised training. The data is processed by the

network and the results are compared with the results. The system spreads errors to adjust

network weights. This process takes place time and again when weight is constantly

changed. The same data set is processed many times during networking training, as the

weight of connections is always improved. The data set for the training is referred to as the

"training set."

Sometimes a network can never learn. This can take place as there are no specific

information in the input data to produce the required output. Networks also do not converge

when there are not enough data to enable complete learning. In order to retain part of the

data as a test, there should ideally be sufficient data. Multiple nodes in many layered

networks can store data. To monitor the network, the supervised training must retain data

for the system to test after training of a system, to determine whether the system simply

saves its data.

Then, if a network cannot simply solve the problem, the designer must examine inputs and

outputs, number of layers, numeric elements per layer, layer connections, transfer and

training capabilities and also initial weights. The training rules govern another part of the

creativity of the designer. Many laws (algorithms) are used in the training session to make

the required weight adjustment feedback. The most common method is back-propagation.

It is a conscious analysis and not only a technique to prevent overtraining of the network.

General statistical trends in the data are the initial setup of the artificial neural network. It

then' learns' about other aspects of the data which are generally falsified.

The weights can be frozen upon request, if finally the system is properly trained and no

further training is necessary. This network can then be converted on certain systems into

hardware. During production, other systems do not lock in, but continue learning.

B. Unsupervised or Adaptive Training

Uncontrolled (learning) is the other kind of training. The network has inputs but not desired

outputs in this kind of way. The system must then determine its own functions in order to

 26

group the input data. Often this is termed autonomy or adaptation. These networks do not

adjust their weight using external influences. Their performance is instead monitored

internally. The networks seek the regularity or trends of the input signal and adjust it to the

network functions. Although the network still needs to be able to provide information on

how to organize itself without knowing whether or not this is right. These data are

incorporated into the network's topology and study rules. The cooperation between the

processing element clusters may be emphasized by an unchecked learning algorithm. The

clusters would work together under such a scheme. If any external input activated a node

within the cluster, it could increase the whole activity of the cluster. Furthermore, it can

inhibit the whole cluster if external input to the cluster nodes has been decreased.

Competition between processing elements could also provide a learning basis. Competitive

cluster training could enhance the response of particular groups to special incentives. In

that sense, these groups would be linked and a special appropriate response would be

provided. The weight of the winning processing element is normally only updated when

the learning contest is effective. Unattended learning is not well understood at the present

time and a lot of research is in progress.

C. LEARNING LAWS (ALGORITHMS)

There are many common uses for learning laws. The majority are a variation of ' Hebb's

rule ' which is the best - known and oldest.

Hebb's Rule: In the Compatibility Organization, Donald Hebb introduced this. The

fundamental rule of thumb is that the weight should be strengthened if the neuron comes

from another nerve and both neurons are very active (the same sign).

Hopfield Law: Increase connectivity weight by the study rate and when both active and

inactive the desired outcomes and inputs.

The Delta Rule: The idea is that the strengths of the input connections can constantly be

modified so that the difference of the desired output to the actual output of the element is

reduced (delta).

 27

The Gradient Descent Rule: This is similar to the Delta rule because the transfer function

derivative is still used to change the delta bug prior to the application of connection

weights. However, a proportional additional constant associated with the learning rate

accompanies the final weight - based change factor.

Kohonen's Law: This allows processing parts to acquire or update their weight. The

strongest item is declared the winner and its competitors can be inhibited and its neighbours

excited. Only the winner can adjust his weight and only the winner plus neighbors can

adjust it.

3.3.5 Artificial Neural Network’s Output Calculations

Sensitivity, septicity and accuracy are preferred statistics for determining the performance of a

classifier. Susceptibility is the estimation rate for patients with epileptic diseases, speciality is the

estimation speed for healthy people and accuracy is true. Equality. These statistical numbers are

calculated using (36), (37) and (38).

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
 (3.8)

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =
𝑇𝑁

𝑇𝑁+𝐹𝑃
 (3.9)

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝐹𝑃+𝑇𝑁+𝐹𝑁
 (3.10)

In the above equations, the number of TP - diagnosed epilleptic patients, the total number of normal

epileptic patients, for whose epileptic disease was diagnosed, and the total number of normal

epileptic patients, for which FN was diagnosed.

3.4 BACKPROPAGATION

Backpropagation is a method used to compute the gradient required in artificial neural networks

for the calculation of network weights. Backpropagation means "retroactive error propagation" as

an error is calculated at the output and reversed across all layers of the network. It is frequently

used to train deep neural networks.

 28

Discharge is a common application of the Delta rule in multi - layer feed systems that permits

iterating gradients to be measured using the chain rule for each layer. It is closely linked to

Newton's Gauss algorithm and forms part of the ongoing research on the neural background.

The reverse propagation is a special case for an automatic differentiation technique. In learning,

backpropagation is commonly used to adjust the weight of neurons through the gradient downward

optimization algorithm to calculate the degree of loss function.

Consider, for example, the network for one training case: (1), 1,0 and therefore x1 and x2 inputs

are 1 and 1. The result is parabolic, when y output is tracked against the error E on the vertical axis

of the horizontal axis. The y output which reduces the E-error is the lowest parable. In a single

training case, the minimum affects the horizontal axis, which means the error is zero and the

network can produce an output y exactly matching the desired output t. In order to optimize the

search for least errors, this reduces the problem of mapping inputs to outputs.

𝑦 = 𝑥1𝑤1 + 𝑥2𝑤2

where x1 and x2 weights are linked to the input unit connection with the output unit. The error

therefore depends on the input weights of the neuron that must ultimately be changed over the

network to enable learning. The result is a parabolic bowl with a separate horizontal axis, with

each weight having a vertical axis fault. The same tract would require an elliptical paraboloid k+1

for a neuron with k weights.

Any complex system can be simply abstracted or at least dissected into its fundamental

abstract components. The accumulation of multiple simple layers creates complexity. This

post is intended to explain how neural networks work with the most straightforward

abstraction. We try to reduce the mechanism of machine learning in NN to its fundamental

abstract components. In contrast to other posts explaining neural networks, we try to use

as few mathematical equations and code as possible and focus exclusively on the abstract

concepts. A supervised neural network, at the highest and simplest abstract representation,

can be presented as a black box with 2 methods learn and predict as following:

 29

Figure 3.6: Backpropagation Training Method [24]

Learning as a problem of optimisation

It helps us first of all to understand the link between the actual neuron output and the exact output

of a specific training example in order to obtain a mathematical derivation of the back propagation

algorithm. The neural network has 2 inputs, a output unit and no hidden unit. Each neuron uses a

linear output [note 1] as opposed to most neural networks, which is the weighted amount. At first,

before training, weights are altered. In this instance, the neuron will learn from examples consisting

of the tuples x1, x2, t where x1 and x2 are the network inputs and t is the correct output (network

output should be produced when these inputs are trained). The first network calculates a y output

which can differ from t (random weights) when x1 and x2 is specified. Squared error measurement

is a common method for measuring differences between the expected t and the current y output:

𝐸 = (𝑡 − 𝑦)2 (3.11)

where E is an error or discrepancy.

Consider the network for one training case, for instance: (1), 1,0 and therefore x1 and x2 inputs

are 1 and 1. The result is a parabolic when the y output on the vertical axis of the horizontal axis

is tracked against the E error. The y output that minimizes the E error is the minimal parabola. The

minimum also affects the horizontal axis in a single training case, which means the error is zero

and that the network can produce an output y that exactly matches the desired output t. This reduces

the problem of mapping inputs to outputs in order to optimize the search for the least error.

The neuron output depends, however, on the sum of all the inputs weighted:

 30

𝑦 = 𝑥1𝑤1 + 𝑥2𝑤2 (3.12)

where the weights of x1 and x2 are connected to the output unit by the input unit connection. The

error depends therefore on the incoming weights of the neuron, which must be changed over the

network ultimately in order to allow learning. The result is a parabelet bowl with a separate

horizontal axis and a vertical axis fault with each weight. For the same tract, an elliptical paraboloid

k+1 dimensions would be required for a neuron with k weights.

3.5 GENETIC ALGORITHM

The genetic algorithm biological metaphor is the evolution of species by the survival of the fittest,

as Charles Darwin described. A new individual is produced by the crossover of genetic information

of two parents in a population of animals or plants. The DNA stores the genetic data for the

individual's construction. The genome of human DNA comprises 46 chromosome, four strings,

abbreviated A, T, G and C. One of twenty amino acids, or a' start protein building' or' stopp protein

building ' signal, is translated into three bases. A total of about 3 billion nucleotides are present.

These can be structured into genes that contain information about the individual's construction in

one or more parts. The vast majority of genes –the "junk" genes –are not being used, however, and

only 3% of all genes contain meaningful information. Genetic data, the genome itself, are called

the individual's genotype. The result is called a phénotype. The individual. The same genotype

could lead to various phenotypes. This is clearly illustrated by the Twins. The process of natural

evolution is simulated by a genetic algorithm. It aims at optimizing a number of parameters. The

original idea includes the genetic information, called a parameter string, or a individual, in a bit

string of a fixed length. An allle is called a possible value of a bit. A range of different encoding

techniques are used in this thesis, but the fundamental principles also apply. A possible solution to

this problem is provided by each parameter string. It includes information about building a neural

network for the GANN issue. The fitness value is the quality of the solution. Crossover, selection

and mutation are the fundamental GA operators. The main structure of a genetic algorithm is

shown in Figure 1. It begins with the random generation of an early group of people, the original

population.

 31

Figure 3.7: The Principle Structure of a Genetic Algorithm [7]

Evaluate and classify individuals. Since the number of persons is constant in each population, an

old person, generally the one with the worst fitness value, must be discarded for each new

individual. Two basic operators are available to create new people: mutation and intersection.

Mutation is simpler. A few bits of the parameter string are rotated at random during mutation.

Mutation may apply to offspring created by crossover or randomly to any person in the population

as an independent operator.

1. Crossover

Crossover simulates a child's or two parents ' sexual generation. This is done by taking parts of

one parent's bit string and the other parent and combining both parts of the child. The crossover

consists of three main types: one, two and uniform. Figure 1.4 shows one-point crossover. At the

same point, the two parent bit strings are cut. So one part of each parent can generate the child.

Notice not moving the parts. The random cutting point is also independent of the true significance

of the bits. One bit string parameter can be encoded in more than one bit, with the encoding cut to

a new value, different than the two parents, during the crossover.

2. Selection

The choice of people for crossover and mutation is prejudicial to good people. The chance of a

selected person is based on the relative fitness of the classical roulette wheel population.

 32

3. Mutation

In real evolution, by misrepresentation or other gene deformations e.g. gamma radiation, the

genetic material can randomly modify itself. Mutations can be performed with a certain probability

in genetic algorithms as random deformations of the strings. It is positive that genetic diversity is

maintained and the local maxima avoided.

4. Sampling

From the first and the next generation, this process calculates. We can indicate the following

substantial differences in comparison with conventional continuous optimization methods, such as

Newton or the descent gradient:

1. GA manipulates coded versions of the problem parameters, i.e. search room S instead of

X itself instead of parameters themselves.

2. While looking for nearly all conventional methods, GAs are always working on a whole

population of items (cords). The force of genetic algorithms is greatly enhanced. The

chance to reach the best level in the world has been improved and the risk of being caught

in a fixed region is reduced vice versa.

3. No additional information about objective value of function like derivatives is used by

normal genetic algorithms. It can therefore be used in the event of continuous or discreet

optimization problems. Only a valuable decoding function should be specified.

4. Deterministic transitional operators are applied by GAs while conventional continuous

optimisation methods. In particular, there are some random components of how a new

generation is determined from the current one (examples are shown later).

 33

3.5.1 Binary Strings Genetic Operations

3.5.1.1 Selection

The solution algorithm is chosen by preferred fitness people rather than fitness fitness people. It

may be a decisive task, but it has random components in most implementations. The following

version is very popular now, where the chances of selecting a certain person are proportional to

their health, (We will give a theory explaining the good properties later). A random function

experiment can be considered:

P[bj, t is selected] =
f(b𝑗,𝑡)

∑ f(b𝑘,𝑡)𝑚
𝑘=1

 (3.13)

Of course, only when all fitness values are good is this formula meaningful. Unless this is the case,

in the simplest case the transformation 5 - 0 · does not decrease. (In the simplest case the shift

should be applied). The likelihood can be expressed

P[bj, t is selected] =
𝜑(f(b𝑗,𝑡))

∑ 𝜑(f(b𝑘,𝑡))𝑚
𝑘=1

 (3.14)

By random test, a generalized Roulette Game, to some degree we can force the property (2.1) to

be met. The slotes are not as wide in this roulette game, i.e. the various results can take place with

different probabilities. The graphic indication of how this wheel game works is provided by Figure

2.1.

3.5.1.2 Crossover

When parents mix up their gametes, the genetic materials of both parents are mixed as they appear

in the real world. As a result, certain genes are generated by one parent and the other parents.

Chromosomes are generally divided and combined randomly.

 34

Figure 3.8: A graphic representation of selection of roulette wheels with 6 alternatives m. The numbers

within the arcs correspond to the likelihood of selecting the alternative.

This is known as the crossover mechanism. It is an excellent tool for the introduction of new

genetic resources and for preserving genetic diversity, but also for providing better children or

good parents. Several studies have found that crossover is why species sexually adapted to

reproduce faster than those that asexually replicate. Crossover is primarily gene exchange for both

parents ' chromosomes. You can achieve this by randomly selecting two strings and in the simplest

case, changing the two tails. In figure 2.2 this process is called a crossover with one point below.

Figure 3.9: One-point crossover of binary strings

 35

One - point crossover for Gas that operates on binary strings is a simple and common method.

Additional methods of crossover can be useful or even necessary for other problems or different

coding.

N-point crossover: N breaking points are randomly selected instead of just one. Each section is

exchanged. Two crossover points are especially important for this class.

Segmented crossover: This is similar to N - point crossroads, as the breaking points differ.

Uniform crossover: It is randomly decided whether the positions are exchanged for each position.

Shuffle crossover: The first two parents receive a randomly selected permutation, then the

shuffled parents receive the N point cross, and then the shuffled kids return the other way round.

3.5.2 Mutation

Mutation — a random deformation of an individual's genetic data by radioactivity or other

environmental influences is the ultimate part of our genetic algorithm. The probability of a

mutation of a certain gene for all genes is nearly equal. In real reproduction Pm should of course

be quite low to prevent the GA from acting like random searches chaotically. Again, it is coding

and the problem itself that are the choice of the correct mutation method, similar to a crossover.

Single bit reversal: One bit is randomly rejected with probability Pm.

Bitwise inversion: The entire string with prob pm is gradually inverted.

Random selection: The string is replaced by an altered selected one with the probability

Pm.

3.5.3 Examples

3.5.3.1 Simple Example

Take into account the problem of finding the maximum global function:

 36

𝑓1: {0, … , 31} → 𝑅

𝑥 → 𝑥2 (3.15)

Of course, it is obvious but it is possible to calculate some steps alone in order to obtain insight

into genetic algorithms by the simplicity of this problem.

Of courses, a good string space along with the relevant coding and decryption scheme will

naturally be the first step in the checklist. In order to do GA work, this is necessary. In this example,

S >{ 0, 1}5, where a value of{ 0 is close to hand, can be considered. The binary representation of

31} is coded. A string is decoded as a consequence

𝑐(𝑠) = ∑ 𝑠[4 − 𝑖]. 2𝑖4
𝑖=0 (3.16)

Assume that with a population size of m = 4 we have Algorithm 2, 5 as it is with a crossover

likelihood of Pc = 1 and Pm mutation likelihood = 0,001. When we randomly calculate the first

generation with a consistent distribution over {0, 1}5, in the first step we obtain the following:

Individual No. String (genotype) x value (phenotype) f(x) = x2 Pselecti
𝑓𝑖

∑ 𝑓𝑖

1 0 1 1 0 1 13 169 0.14

2 1 1 0 0 0 24 576 0.49

3 0 1 0 0 0 8 64 0.06

4 1 0 0 1 1 19 361 0.31

The fitness value is 1170, where the average is 293 and the maximum is 576. It can easily be

calculated. The last column shows that proportional selecting favors people with high fitness

conditions (as No. 2) compared to those with low fitness (as No. 3).

 37

Set of selected

individuals

Crossover site

(random)

New population X value F(x)

X2

0 1 1 0 |1 4 0 1 1 0 0 12 144

1 1 0 0 | 0 4 1 1 0 0 1 25 625

1 1 | 0 0 0 2 1 1 0 1 1 27 729

1 0 | 0 1 1 2 1 0 0 0 0 16 256

Thus we obtain an average of 439 and a maximum of 729 fitness values from the new generation

of 1754. This very basic example shows how selection favors qualified people and how cross-over

between two parents can create a baby even better than the two parents. The reader is left to follow

this example as an exercise.

3.5.3.2 A One - Dimensional Oscillating Feature

Now we want to know how much the function can achieve globally

𝑓2 ∶ [−1, 1] → 𝑅 (3.17)

𝑥 → 1 + 𝑒−𝑥2
. cos(36𝑥) (3.18)

The function can be seen from the plots in Figure 2.3 and has a global maximum of 0 and numerous

local maximums. Firstly, the search space [−1, 1] must be discretized in order to work with binary

strings. A uniform grid of 2n points is common practice and grid points are listed then and the

binary representation of the index is employed as a codification.

The algorithm reaches the global high point after 52 generations, with an average of 52x 6= 312

fitness evaluations, and the search area's total size is 216= 65536. At least in this example, we can

conclude that the GA is definitely better than the random search or the comprehensive method

which scans the entire search area dumbly. Take 011111111111111 to find out more about the

 38

coding / decoding scheme. The number of the integer is 32767. Decoding function rates are

computed

−1 + 32767 .
1−(−1)

65535
= −1 + 0.9999847 = −0.0000153 (3.19)

3.5.3.3 A Two-Dimensional Function

In this example we find that the GA definitely is much faster than a big or random algorithm for

research. The problem comes with a smooth f3, which results can be achieved using a standard

method by changing the initial values. The maximum global (0, 0) is obviously circled by the

minimum ring and in this example has a radius of 𝜋/2. The global maximum is likely to converge

when this is an original value, but only for example when BFGS is used (Broyden Fletcher

Goldfarb Shanno, an efficient Quasy - Newton method for continuous uncontrolled optimization

of functions [10]). The chance of the corresponding neighborhood value is the maximum when the

initial value is assumed randomly by [−10, 10].

(
𝜋

2
)

2
. 𝜋

10 .10
=

𝜋3

400
= 0.0775 (3.20)

Consequently, until an initial value is reached, the expected test number is 1/0.0775/13. The BFGS

method with line search required the right global optimum during test implementation of the BFGS

method for 15 tests (random initial values). For these computations, the total time for SGI O2

(MIPS R5000/180SC) was 5 milliseconds. As mentioned above, it took 1.5 seconds for the genetic

algorithm to be compared to the global optimum.

This example demonstrates that GAs are not necessarily quick. In addition, in many cases the

methods involved in derivatives are much slower than conventional ones. The next example,

however, dramatically demonstrates that even fluid functions in conventional optimization

techniques are difficult to implement.

 39

3.5.4 Genetic Programming

In their daily practice, mathematicians and computer scientists only search for programs that

correctly solve the problems. You usually attempt to design such programs based on your

knowledge, underlying principles, mathematical models, intuition and so on. The questions of

Koza look somehow utopian and provocative. However, his answers are remarkable and worthy

of further discussion here. The basic idea is simple but appealing–the problem of automatic

program induction should involve genetic algorithms. All we need to do is change all the genetic

techniques that we have talked about so far. Random initiation, connection and mutation are

involved. We need nothing new to choose and sample, because these processes are independent

from the display of the data.

Of course, that sounds great. However, the question arises as to whether this type of genetic

programming (GP) is working. Koza starts with a rather vague hypothesis in his remarkable

monograph [30].

The Paradigm of genetic programming: Provided that we have a resolvable problem, a

definition for a suitable programme, a sufficient number of representative test examples, WWa

genetic algorithm can determine which (approximately) program solves the problem and provides

us with sufficient representative test examples. It appears to be a question of faith. This hypothesis

has not been demonstrated by anyone so far and it is doubtful whether this is ever possible. Rather

than providing evidence, Koza has developed many well - chosen examples which empirically

highlight his hypothesis. The successful solutions with GP include:

• Control of the process (inverted pendulum bang bang control)

• Logistics (simple robotic control, problems with stacking)

• Automatic scheduling (pseudo - random number generators, ANN design)

• Game strategies (Poker, Tic Tac Toe)

• Inverse kinematics

• Classification

 40

• Symbolic computation:

o Sequence induction (Fibonacci sequence, etc.)

o Symbolic regression

o Solve equations (functional, differential and integral equation power series - based

solutions)

o Symbolic differences and integrity

o Trigonometric identity discovery automatically

A brief introduction to genetic programming has been given in this chapter. We will focus on the

basic methodological problems and will omit detailed examples.

3.6 TRAINING OF ARTIFICIAL NEURAL NETWORKS

The neural biological computing systems that make up animal brains are artificial neural networks

or connecting systems. Such systems learn tasks by following examples, usually without task-

specific programming (a step towards improvements in performance). You can learn how to

identify images that contain the Cats and use the results to identify the Cats in the other images

through the analysis of flames that manually mark "cat" or "no-cat." They don't know cats, for

example, fur, tails, whiskers and cat - like faces. Rather, from the learning material they are

processing they develop their own set of relevant features. An ANN is based on an artificial

neuronal collection which is linked with the unit or node (analogous to biological neurons in the

animal brain). Any link between artificial neurons (similar to a synapse) can signal them. The

artificial neuron receiving the signal can proceed and signal the connected artificial neurons.

In the common ANN implementation, the signal is an actual value in the relation between artificial

neurons, and the output is calculated by a nonlinear input sum function from each artificial neuron.

Artificial neurons and connections usually weigh in accordance with learning. The weight

increases or lowers the signal strength of the connection. An artificial neuron threshold can only

be present if the aggregate signal crosses this threshold. Artificial neurons are usually arranged in

 41

layers. Inputs can be converted into different types by different layers. Signals travel from the first

layer to the last layer (output), maybe several times after the layers have been passed through.

The original objective of the ANN approach was to solve problems like the human brain. The

focus was over time on matching specific mental skills that lead to biodiversity. Different tasks

such as computer vision, speech recognition, machine translation, social network filtering, video

games and playboards and medical diagnosis are performed using ANNs. This section shows a

training process that optimizes ANN performance through BP and GA algorithms.

3.6.1 Training Artificial Neural Networks with Backpropagation.

The method of gradient descent includes the derivatives of the squared error function with respect

to the weight of the network. This is usually done in return. The squared error function takes the

following:

𝐸 =
1

2
(𝑡 − 𝑦)2 (3.21)

where

E is the error squared,

t is the target output for a sample training, and

y is the current output of neuron output.

The 1/2 factor in the exponent is distinguished. Then the term is increased by an arbitrary learning

rate. Whether a continuous coefficient is implemented now is not important.

For each neuron j, its output oj is defined as

 42

𝑜𝑗 = 𝜑(𝑛𝑒𝑡𝑗) = 𝜑(∑ 𝑤𝑘𝑗𝑜𝑘
𝑛
𝑘−1) (3.22)

The netj input for the neuron is the weighted sum of previous neuron outputs. The ok of the input

layer is simply a xk input in the network. If the neuron is in the first layer after the input layer. The

input units in the neuron are numbered by n. The wkj variable shows the weight from the neuronal

to the j.

β is non - linear and distinctive with the activation funktion. The logistic function is a commonly

used activation feature:

𝜑(𝑧) =
1

1+𝑒−𝑧 (3.23)

which has a convenient derivative of:

𝑑𝜑

𝑑𝑎
= 𝜑(𝑎)(1 − 𝜑(𝑎)) (3.24)

Identifying the error derivative

Twice by the chain rule is calculated the partial derivation of an error in relation to a wij:

𝜗𝐸

𝜗𝑤𝑖𝑗
=

𝜗𝐸

𝜗𝑜𝑗

𝜗𝑜𝑗

𝜗𝑛𝑒𝑡𝑗

𝜗𝑛𝑒𝑡𝑗

𝜗𝑤𝑖𝑗
 (3.25)

In the last right side factor of the foregoing wix depends only one term in the sum neth

𝜗𝐸

𝜗𝑛𝑒𝑡𝑗
=

𝜗

𝜗𝑤𝑖𝑗
𝜑(∑ 𝑤𝑘𝑗𝑜𝑘

𝑛
𝑘−1) =

𝜗

𝜗𝑤𝑖𝑗
𝑤𝑖𝑗𝑜𝑖 = 𝑜𝑖 (3.26)

When the first layer of the neuron after the input layer is, oi is only XI.

With respect to the input, only the active function parameters are a derivative of neuron j output

(if logistics function is used):

𝜗𝑜𝑗

𝜗𝑛𝑒𝑡𝑗
=

𝜗

𝜗𝑛𝑒𝑡𝑗
𝜑(𝜗𝑛𝑒𝑡𝑗) = 𝜑(𝜗𝑛𝑒𝑡𝑗)(1 − 𝜑(𝜗𝑛𝑒𝑡𝑗)) (3.27)

That is why a differentiated activation function is required for back propagation. (The activation

function of ReLU, which cannot be differentiated by 0, is very popular in the recent past, for

instance in AlexNet)

 43

The first factor to evaluate is simple, because then oj = y and if the neuron is in the output layer.

𝜗𝐸

𝜗𝑜𝑗
=

𝜗𝐸

𝜗𝑦
=

𝜗

𝜗𝑦

1

2
(𝑡 − 𝑦)2 = 𝑦 − 𝑡 (3.28)

But if j is within an arbitrary inner network layer, it is less obvious to determine derivative E with

respect to the oj.

𝜗𝐸(𝑜𝑗)

𝜗𝑜𝑗
=

𝜗𝐸(𝑛𝑒𝑡1,𝑛𝑒𝑡2… 𝑛𝑒𝑡𝑢)

𝜗𝑜𝑗
 (3.29)

Taking into account E as a function where all neurons are inputs (L=1, 2 ... u)

𝜗𝐸

𝜗𝑜𝑗
= ∑

𝜗𝐸

𝜗𝑛𝑒𝑡𝑗

𝜗𝑛𝑒𝑡𝑗

𝜗𝑜𝑗
𝜕∈𝐿 = ∑

𝜗𝐸

𝜗𝑜𝑗

𝜗𝑜𝑗

𝜗𝑛𝑒𝑡𝑗
𝑤𝑗𝜕𝜕∈𝐿 (3.30)

Thus, if all derivatives are known with respect to oj — that which is closer to the neuron output

— the derivative with regards to oj can be calculated. Combining everything:

𝜗𝐸

𝜗𝑤𝑖𝑗
= 𝜕𝑗𝑜𝑖 (3.31)

In 1960 Henry J. Kelley and 1961 Arthur E. Bryson derived the basics of continuous back-

propagation from control theory. They have used dynamic programming principles. A simple

derivation based only on the chain rule was published in 1962 by Stuart Dreyfus. This is a multi -

phase method used to optimize dynamic systems by Bryson and Ho in 1969.

In the beginning of the 1960's, background propagation was derived by a number of researchers

and launched by Seppo Linnainmaa as early as 1970, for instance Arthur E. Bryson and Yu-Chi

Ho, among the researchers of the 1960s. After a careful analysis in his PhD dissertation in 1974,

the first person to propose use for neural networks in the United States was Paul Werbos. The prize

for work of David E. Rumelhart was awarded in 1986 to Geoffen E. Hinton, Ronald J. Williams

& James McClelland.

The general automated differentiation (AD) method of discernible connected networks for nestled

differentiating functions was issued by Linnainmaa in 1970. This is the backbone that even with

sparsely networked networks is efficient. Backpropagation was used in 1973 by Dreyfus to adapt

controller parameters in proportion with error gradients. Werbos noted the potential to apply this

 44

principle to neural artificial networks in 1974, and in its current application on neural networks

employed the Linnainmaa AD Method in 1982.

In 1986, Rumelhart, Hinton and Williams proved that the process could produce useful internal

images of inbound data in hidden layers in neural networks. Wan was the first winner in 1993 of

an international competition for pattern recognition. In the 2000s it was disadvantageous, but it

came back in 2010 with cheap, high-performance computer systems based on GPUs. In particular,

research was conducted into linguistic structures, where connectivity models could explain a

number of first language and second language learning phenomes using this algorithm.

 45

4. IMPLEMENTATION AND RESULTS

This chapter presents the extensive simulation results for methods investigated in this project is

Genetic Algorithm optimized structured Artificial Neural Network trained by Backpropagation

GA (ANN-BP) by using research data source (Lung Cancer Dataset). We implemented the ANN

using GA algorithm to optimize the parameters of ANN to train and test this research’s dataset

using BP in order to measure the different performance parameters.

Comparative Results

We used the 70 % training and 30 % testing scenario with varying number neurons of the hidden

layer is 20 GA (ANN-BP).

Diabetes Dataset Results

First we present the individual for GA (ANN-BP) using Lung Cancer dataset. We used 5 neurons

the hidden layer. Figure 1 and 2 are showing the fitness or Root Mean Squared Error (RMSE) or

error outcomes by using the existing GA (ANN-BP) approach for 100 iterations for GA and 200

for backpropagation.

Figure 1 contains the error calculation process for 100 iterations GA for parameters and 200

iterations for artificial neural network training with 5 neurons in the hidden layer. Figure 2 contains

the prediction and the classification of artificial neural network compared with the targets attribute

in the dataset.

 46

Figure 4.1: Error graph performance using GA (ANN-BP)

Figure 4.2: Error graph performance using GA.

 47

Table 4.1: The Results of Both GA(ANN-BP) and GA

 GA(ANN-BP) GA

Training Error (Fitness/RMSE) 0.1067 0.13050075872534137

Training Accuracy 89.33% 86.949924127465863

Testing Error(Fitness/RMSE) 0.08726 0.14110091743119256

Testing Accuracy 91.274% 85.889908256880744

Training Sensitivity 0.950079 0.912047

Training Specificity 0.883084 0.837574032

Testing Sensitivity 0.949879 0.892587

Testing Specificity 0.908452 0.84256799

Table 4.1 contains the results for the method according to Figure 4.1 and Figure 4.2 which show

the training error and accuracy, testing error and accuracy (using RMSE as a fitness function) and

both the specificity and sensitivity for training and testing.

 48

Figure 4.3: Testing performance of GA(ANN-BP)

 49

5. CONCLUSION

The comparative results showing that using the advantages novel BP algorithm with GA parameter

modification we can able to optimize the performance of ANN training and testing to solve the

real time problems. From these experiments, we observed that the fitness functions that generated

the ANN with the best weighted recognition rate were those that used the classification error. The

modified BP was compared in terms of the accuracy, error rate, sensitivity rate, specificity rate

and accuracy rate for both training and testing perspective with other researchers. The modified

BP algorithm achieved the greate performance. The transfer functions that more often were

selected for each algorithm were: the Gaussian functions for the basic BP algorithm; the sinusoidal

function for modified BP algorithm. In general, the ANNs designed with the proposed

methodology were very promising. The proposed methodology automatically designs the ANN

based on determining the set connections, the number of neurons in hidden layers, the adjustment

of the synaptic weights, the selection of bias, and transfer function for each neuron.

5.1 SUGGESTIONS

In this research work, we perform the ANN training using modified BP algorithm using the

research datasets. For future suggestions we want to perform below points:

- The current evaluation is based on single class problems for classification, however under

the real time scenario this will not be the case always. So we suggest evaluating the

performance of proposed model using multi-class datasets.

Second point is, the consideration of more real time will be the interesting future direction for this

research work.

 50

REFERENCES

[1] G. Beni and J. Wang, “Swarm intelligence in cellular robotic systems,” in Robots and

Biological Systems: Towards a New Bionics? vol. 102 of NATO ASI Series, pp. 703–712,

Springer, Berlin, Germany, 1993.

[2] X. Yao, “Evolving artificial neural networks,” Proceedings of the IEEE, vol. 87, no. 9, pp.

1423–1447, 1999.

[3] E. Alba and R. Martí, Metaheuristic Procedures for Training Neural Networks, Operations

Research/Computer Science Interfaces Series, Springer, New York, NY, USA, 2006.

[4] J. Yu, L. Xi, and S. Wang, “An improved particle swarm optimization for evolving

feedforward artificial neural networks,” Neural Processing Letters, vol. 26, no. 3, pp. 217–231,

2007.

[5] M. Conforth and Y. Meng, “Toward evolving neural networks using bio-inspired algorithms,”

in IC-AI, H. R. Arabnia and Y. Mun, Eds., pp. 413–419, CSREA Press, 2008.

[6] Y. Da and G. Xiurun, “An improved PSO-based ANN with simulated annealing technique,”

Neurocomputing, vol. 63, pp. 527–533, 2005.

[7] X. Yao and Y. Liu, “A new evolutionary system for evolving artificial neural networks,” IEEE

Transactions on Neural Networks, vol. 8, no. 3, pp. 694–713, 1997.

[8] D. Rivero and D. Periscal, “Evolving graphs for ann development and simplification,” in

Encyclopedia of Artificial Intelligence, J. R. Rabuñal, J. Dorado, and A. Pazos, Eds., pp. 618–

624, IGI Global, 2009.

[9] H. M. Abdul-Kader, “Neural networks training based on differential evolution algorithm

compared with other architectures for weather forecasting34,” International Journal of

Computer Science and Network Security, vol. 9, no. 3, pp. 92–99, 2009.

[10] K. K. Kuok, S. Harun, and S. M. Shamsuddin, “Particle swarm optimization feedforward

neural network for modeling runoff,” International Journal of Environmental Science and

Technology, vol. 7, no. 1, pp. 67–78, 2010.

 51

[11] B. A. Garro, H. Sossa, and R. A. Vázquez, “Back-propagation vs particle swarm

optimization algorithm: which algorithm is better to adjust the synaptic weights of a feed-

forward ANN?” International Journal of Artificial Intelligence, vol. 7, no. 11, pp. 208–218,

2011.

[12] B. Garro, H. Sossa, and R. Vazquez, “Evolving neural networks: a comparison between

differential evolution and particle swarm optimization,” in Advances in Swarm Intelligence,

Y. Tan, Y. Shi, Y. Chai, and G. Wang, Eds., vol. 6728 of Lecture Notes in Computer Science,

pp. 447–454, Springer, Berlin, Germany, 2011.

[13] B. A. Garro, H. Sossa, and R. A. Vazquez, “Design of artificial neural networks using a

modified particle swarm optimization algorithm,” in Proceedings of the International Joint

Conference on Neural Networks (IJCNN '09), pp. 938–945, IEEE, Atlanta, Ga, USA, June

2009.

[14] B. Garro, H. Sossa, and R. Vazquez, “Design of artificial neural networks using differential

evolution algorithm,” in Neural Information Processing. Models and Applications, K. Wong,

B. Mendis, and A. Bouzerdoum, Eds., vol. 6444 of Lecture Notes in Computer Science, pp.

201–208, Springer, Berlin, Germany, 2010.

[15] B. A. Garro, H. Sossa, and R. A. Vazquez, “Artificial neural network synthesis by means

of artificial bee colony (abc) algorithm,” in Proceedings of the IEEE Congress on Evolutionary

Computation (CEC '11), pp. 331–338, IEEE, New Orleans, La, USA, June 2011.

[16] R. C. Eberhart, Y. Shi, and J. Kennedy, Swarm Intelligence, The Morgan Kaufmann Series

in Evolutionary Computation, Morgan Kaufmann, Boston, Mass, USA, 1st edition, 2001.

[17] M. Chen, “Second generation particle swarm optimization,” in Proceedings of the IEEE

Congress on Evolutionary Computation (CEC '08), pp. 90–96, Hong Kong, June 2008.

[18] Y. Shi and R. C. Eberhart, “Empirical study of particle swarm optimization,” in

Proceedings of the Congress on Evolutionary Computation (CEC '99), vol. 3, IEEE,

Washington, DC, USA, July 1999.

 52

[19] M. Løvberg, T. K. Rasmussen, and T. Krink, “Hybrid particle swarm optimizer with

breeding and subpopulations,” in Proceedings of the Genetic and Evolutionary Computation

Conference (GECCO '01), pp. 469–476, Morgan Kaufmann, San Francisco, Calif, USA, July

2001.

[20] N. Higashi and H. Iba, “Particle swarm optimization with Gaussian mutation,” in

Proceedings of the IEEE Swarm Intelligence Symposium (SIS '03), pp. 72–79, IEEE, April

2003.

[21] S. Mohais, R. Mohais, C. Ward, and C. Posthoff, “Earthquake classifying neural networks

trained with random dynamic neighborhood PSOs,” in Proceedings of the 9th Annual Genetic

and Evolutionary Computation Conference (GECCO '07), pp. 110–117, ACM, New York, NY,

USA, July 2007

[22] D. E. Rumelhart, G. E. Hinton, and R. J. Williams, “Learning internal representations by

error propagation,” in Parallel Distributed Processing: Explorations in the Microstructure of

Cognition, Vol. 1, D. E. Rumelhart, J. L. McClelland, and PDP Research Group, Eds., pp. 318–

362, MIT Press, Cambridge, Mass, USA, 1986.

[23] J. A. Anderson, An Introduction to Neural Networks, The MIT Press, 1995.

[24] P. J. Werbos, “Backpropagation through time: what it does and how to do it,” Proceedings

of the IEEE, vol. 78, no. 10, pp. 1550–1560, 1990.

[25] D. N. A. Asuncion, UCI machine learning repository, 2007.

[26] R. A. V. E. De Los Monteros and J. H. Sossa Azuela, “A new associative model with

dynamical synapses,” Neural Processing Letters, vol. 28, no. 3, pp. 189–207, 2008.

[27] B. A. Garro and R. A. Vázquez, “Designing Artificial Neural Networks Using Particle

Swarm Optimization Algorithms,” Computational Intelligence and Neuroscience, 2015.

[28] V. G. Gudise and G. K. Venayagamoorthy, “Comparison of particle swarm optimization

and backpropagation as training algorithms for neural networks,” in Proceedings of the 2003

IEEE Swarm Intelligence Symposium. SIS’03 (Cat. No.03EX706), 2003, pp. 110–117.

 53

[29] “Pima Indians Diabetes Database.” [Online]. Available:

https://www.kaggle.com/uciml/pima-indians-diabetes-database. [Accessed: 20-Dec-2018].

[30] BAGLEY, J. D. The Behavior of Adaptive Systems Which Employ Genetic and

Correlative Algorithms. PhD thesis, University of Michigan, Ann Arbor, 1967.

[31] BAUER, P., BODENHOFER, U., AND KLEMENT, E. P. A fuzzy algorithm for pixel

classification based on the discrepancy norm. In Proc. 5th IEEE Int. Conf. on Fuzzy Systems

(New Orleans, September 1996), vol. III, pp. 2007–2012.

[32] BODENHOFER, U. Tuning of fuzzy systems using genetic algorithms. Master’s thesis,

Johannes Kepler Universit¨at Linz, March 1996.

[33] BODENHOFER, U., AND BAUER, P. A formal model of interpretability of linguistic

variables. In Interpretability Issues in Fuzzy Modeling, J. Casillas, O. Cord´on, F. Herrera, and

L. Magdalena, Eds., vol. 128 of Studies in Fuzziness and Soft Computing. Springer, Berlin,

2003, pp. 524–545.

[34] BODENHOFER, U., AND HERRERA, F. Ten lectures on genetic fuzzy systems. In

Preprints of the International Summer School: Advanced Control—Fuzzy, Neural, Genetic, R.

Mesiar, Ed. Slovak Technical University, Bratislava, 1997, pp. 1–69.

[35] BODENHOFER, U., AND KLEMENT, E. P. Genetic optimization of fuzzy classification

systems — a case study. In Computational Intelligence in Theory and Practice, B. Reusch and

K.-H. Temme, Eds., Advances in Soft Computing. Physica-Verlag, Heidelberg, 2001, pp. 183–

200.

[36] BONARINI, A. ELF: Learning incomplete fuzzy rule sets for an autonomous robot. In

Proc. EUFIT’93 (1993), vol. I, pp. 69–75. 121 122 BIBLIOGRAPHY

[37] BONARINI, A. Evolutionary learning of fuzzy rules: Competition and cooperation. In

Fuzzy Modeling: Paradigms and Practice, W. Pedrycz, Ed. Kluwer Academic Publishers,

Dordrecht, 1996, pp. 265–283.

[38] BONARINI, A. Anytime learning and adaptation of hierarchical fuzzy logic behaviors.

Adaptive Behavior 5 (1997), 281–315.

 54

[39] BULIRSCH, R., AND STOER, J. Introduction to Numerical Analysis. Springer, Berlin,

1980.

 55

APPENDIX

-*- coding: utf-8 -*-

"""

Created on We Jan 23 15:22:03 2019

@author: Mohammed Khalaf Abdullah

"""

Back-Propagation Neural Networks supported by Genetic algorithm for parameter optimization

Written in Python. See http://www.python.org/

import math

import random

import string

import csv

import numpy as np

import pandas as pd

import matplotlib.pyplot as plt

random.seed(0)

 56

calculate a random number where: a <= rand < b

def rand(a, b):

 return (b-a)*random.random() + a

Make a matrix (we could use NumPy to speed this up)

def makeMatrix(I, J, fill=0.0):

 m = []

 for i in range(I):

 m.append([fill]*J)

 return m

our sigmoid function, tanh is a little nicer than the standard 1/(1+e^-x)

def sigmoid(x):

 return math.tanh(x)

derivative of our sigmoid function, in terms of the output (i.e. y)

def dsigmoid(y):

 return 1.0 - y**2

class NN:

 57

 def __init__(self, ni, nh, no):

 # number of input, hidden, and output nodes

 self.ni = ni + 1 # +1 for bias node

 self.nh = nh

 self.no = no

 # activations for nodes

 self.ai = [1.0]*self.ni

 self.ah = [1.0]*self.nh

 self.ao = [1.0]*self.no

 # create weights

 self.wi = makeMatrix(self.ni, self.nh)

 self.wo = makeMatrix(self.nh, self.no)

 # set them to random vaules

 for i in range(self.ni):

 for j in range(self.nh):

 self.wi[i][j] = rand(-0.2, 0.2)

 for j in range(self.nh):

 for k in range(self.no):

 self.wo[j][k] = rand(-2.0, 2.0)

 58

 # last change in weights for momentum

 self.ci = makeMatrix(self.ni, self.nh)

 self.co = makeMatrix(self.nh, self.no)

 def update(self, inputs):

 if len(inputs) != self.ni-1:

 raise ValueError('wrong number of inputs')

 # input activations

 for i in range(self.ni-1):

 #self.ai[i] = sigmoid(inputs[i])

 self.ai[i] = inputs[i]

 # hidden activations

 for j in range(self.nh):

 sum = 0.0

 for i in range(self.ni):

 sum = sum + self.ai[i] * self.wi[i][j]

 self.ah[j] = sigmoid(sum)

 59

 # output activations

 for k in range(self.no):

 sum = 0.0

 for j in range(self.nh):

 sum = sum + self.ah[j] * self.wo[j][k]

 self.ao[k] = sigmoid(sum)

 return self.ao[:]

 def backPropagate(self, targets, N, M):

 if len(targets) != self.no:

 raise ValueError('wrong number of target values')

 # calculate error terms for output

 output_deltas = [0.0] * self.no

 for k in range(self.no):

 error = targets[k]-self.ao[k]

 output_deltas[k] = dsigmoid(self.ao[k]) * error

 # calculate error terms for hidden

 hidden_deltas = [0.0] * self.nh

 60

 for j in range(self.nh):

 error = 0.0

 for k in range(self.no):

 error = error + output_deltas[k]*self.wo[j][k]

 hidden_deltas[j] = dsigmoid(self.ah[j]) * error

 # update output weights

 for j in range(self.nh):

 for k in range(self.no):

 change = output_deltas[k]*self.ah[j]

 self.wo[j][k] = self.wo[j][k] + N*change + M*self.co[j][k]

 self.co[j][k] = change

 #print N*change, M*self.co[j][k]

 # update input weights

 for i in range(self.ni):

 for j in range(self.nh):

 change = hidden_deltas[j]*self.ai[i]

 self.wi[i][j] = self.wi[i][j] + N*change + M*self.ci[i][j]

 self.ci[i][j] = change

 61

 # calculate error

 error = 0.0

 for k in range(len(targets)):

 error = error + 0.5*(targets[k]-self.ao[k])**2

 return error

 def test(self, patterns):

 for p in patterns:

 print(p[0], '->', self.update(p[0]))

 def weights(self):

 print('Input weights:')

 for i in range(self.ni):

 print(self.wi[i])

 print()

 print('Output weights:')

 for j in range(self.nh):

 print(self.wo[j])

 def train(self, patterns, iterations=10000, N=0.5, M=0.1):

 # N: learning rate

 # M: momentum factor

 62

 Err=[0] * iterations;

 for i in range(iterations):

 error = 0.0

 for p in patterns:

 inputs = p[0]

 targets = p[1]

 self.update(inputs)

 error = error + self.backPropagate(targets, N, M)

 Err[i] = error;

 if i % 100 == 0:

 print('error %-.5f' % error)

 if i==iterations-1:

 plt.plot(Err)

def demo():

 # Teach network XOR function

 reader=pd.read_excel('bc.xlsx')

 newreader=np.matrix(reader)

 pat = newreader.tolist()

 # create a network with two input, two hidden, and one output nodes

 63

 n = NN(3, 2, 1)

 # train it with some patterns

 n.train(pat)

 # test it

 n.test(pat)

 print(pat)

 print(newreader)

if __name__ == '__main__':

 demo()

