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ABSTRACT 

In today’s world, there is a dire need for the appropriate use of technology to diagnose and treat 

patients by analyzing medical data. Moreover, data mining is one of the predominant researches 

in computer science field. It is a process of extracting valuable information from a huge amount 

of dataset. There are many approaches are adopted such as classification, image, regression 

analysis and association rule mining. In this paper we’re representing a concentrated study on 

classification technique to analyze the performance of data mining where several classification 

algorithms were used based on classification accuracy, error rate, average error rate, and standard 

Deviation. The main goal of this study is to make an open view on determining the best procedure 

for data mining in medical analysis based on performance analysis on lung cancer dataset. There 

are some common classification techniques such as linear regression, Decision Trees, Gradient 

Boosting Machine (GBM), Support vector machines (SVM), and Custom ensemble. These 

approaches are used for the performance of medical classification. In this study, because of the 

dynamics that ANN has, we’re going to use ANN for the classification of breast cancer. Which is 

probably will make better accuracy, less error, better sensitivity and specificity. 
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ÖZET 

 

Günümüz dünyasında, tıbbi verileri analiz ederek hastaları teşhis etmek ve tedavi etmek için 

teknolojinin uygun kullanımına ciddi bir ihtiyaç vardır. Ayrıca, veri madenciliği bilgisayar 

bilimleri alanındaki en önemli araştırmalardan biridir. Büyük miktarda veri setinden değerli 

bilgileri çıkarma işlemidir. Sınıflandırma, imaj, regresyon analizi ve dernek kuralı madenciliği gibi 

birçok yaklaşım benimsenmiştir. Bu yazıda, sınıflandırma doğruluğu, hata oranı, ortalama hata 

oranı ve standart Sapma'ya dayanan çeşitli sınıflandırma algoritmalarının kullanıldığı veri 

madenciliğinin performansını analiz etmek için sınıflandırma tekniği üzerine yoğunlaşmış bir 

çalışmayı temsil ediyoruz. Bu çalışmanın temel amacı, akciğer kanseri veri setindeki performans 

analizine dayanarak tıbbi analizde veri madenciliği için en iyi prosedürün belirlenmesi konusunda 

açık bir görüş vermektir. Doğrusal regresyon, Karar Ağaçları, Degrade Yükseltme Makinesi 

(GBM), Destek vektör makineleri (SVM) ve Özel topluluk gibi bazı yaygın sınıflandırma 

teknikleri vardır. Bu yaklaşımlar tıbbi sınıflandırma performansı için kullanılır. Bu çalışmada, 

ANN'nin sahip olduğu dinamikler nedeniyle, meme kanserinin sınıflandırılmasında ANN 

kullanacağız. Muhtemelen daha iyi doğruluk, daha az hata, daha iyi hassasiyet ve özgüllük 

sağlayacaktır. 

Anahtar kelimeleri: Yapay sinir ağı, Backpropagation, genetik algoritma, Ortalama kare hatası, 

optimazisyon, sınıflandırma. 
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1. INTRODUCTION 

The neural system is arranged into hidden layers, input and output of the Artificial Neural 

Networks (ANNs). The neurons are joined together by a series of synaptic weights. An ANN is a 

powerful tool for identifying patterns, predictions and regressions in a variety of problems. The 

ANN continually changes its synaptic values during the learning process until sufficient acquired 

knowledge (until a certain number of iterations have been achieved or the error value of the target 

has been achieved). After completion of the learning or training stage, the ability of the ANN to 

generalize the problem with samples other than those employed during the training stage must be 

assessed. Finally, during training and testing, it is expected that the ANN will be able to accurately 

classify the patterns of a particular problem. In recent years several classic ANN algorithms have 

been suggested and developed. However, many of them can stay trapped in nondesirable solutions; 

that is, they will be far from the optimum or the best solution. Moreover, most of these algorithms 

cannot explore multimodal and noncontinuous surfaces. 

Therefore, other kinds of techniques, such as bioinspired algorithms (BIAs), are necessary for 

training an ANN. As BIAs are strong optimization tools and can resolve very complicated 

optimization problems, they are well accepted by the Artificial Intelligence Community. For a 

given problem, BIAs can browse large multimodal and continuous search areas and find the 

optimum value for the best solution. BIAs is based on nature’s behavior described as swarm 

intelligence. The term [1] defines this concept as being owned by unintelligent agents with limited 

individual capacities, but intelligent collective behavior. 

There are several studies which use evolutionary and bio - inspired algorithms as a basic way of 

training ANN [2]. Metaheuristic methods for training neural networks are based on local search, 

population methods, and others such as cooperative coevolutionary models [3]. An excellent work 

in which the authors show a comprehensive literature review of evolving ANN algorithms [2]. The 

majority of the research reports however focus on the development of synaptic weight, parameters 

[4] or the evolution of the numbers of the neurons for hidden layers, but the designer determines 

the number of hidden layers previously.  Moreover, the researchers do not involve the evolution 

of transfer functions, which are an important element of an ANN that determines the output of 

each neuron. In [5], for instance, the authors suggested a combining of the Ant Colony 
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Optimization (ACO) methodology to identify ANN and PSO for weight adjustment. Additional 

studies such as the [6] modify the Simulated Annealing (SA) PSO for the acquisition of a set of 

synaptic weight and threshold ANNs.  In [7], the authors use Evolutionary Programming to obtain 

the architecture and weight to solve problems of classification and forecasting. Another example 

is [8] where Genetic Programming is used to obtain graphs that represent different topologies. In 

[9], the Differential Evolution (DE) algorithm was applied to design an ANN to solve a weather 

forecasting problem. In [10], the authors use a PSO algorithm to modify the synaptic weights to 

model the relationship between daily rains and runoffs in Malaya. In [11], the authors compare the 

back-propagation method versus basic PSO to adjust only the synaptic weights of an ANN for 

solving classification problems. In [12], the set of weights are evolved using the Differential 

Evolution and basic PSO. The three principal elements of an ANN were simultaneously developed 

in other works such as [13]: architecture, transfers and synaptic weights. In [14] the authors solved 

the same problem with a differential Evolution (DE) algorithm and suggested a new model with a 

PSO (NMPSO) algorithm for the authors. The author has also used [15] to develop the design of 

an ANN with two different fitness functions by using an Artificial Bee Colony (ABC) algorithm. 

Therefore in this research work, we proposed a technique that uses PSO for ANN training to 

improve the training and testing performance of existing ANN on the diabetes dataset. 

The chapters in this study focus are: 

1. Chapter 1: The first chapter focuses on this thesis, which explains the idea and the purpose 

of this thesis. That makes a complete review of how this work can be done. 

2. Chapter 2: The second chapter is the literature review of references to this thesis. Their 

results and the algorithms used to classify the dataset by other researchers are thoroughly 

reviewed. 

3. Chapter 3: The third chapter focuses on the methodology for this thesis where the collection 

of data and the general look of ANN, GA and BP are explained. In addition, review a clear 

understanding of the characteristics of these algorithms and the ways they can be 

developed. It also gives a full idea of how GA and BP train an ANN and how these 

algorithms are being developed during their training. The advantages and disadvantages 

for ANN training are also presented by both BP and GA. 
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4. Chapter 4: This chapter provides a clear picture of the results of this study, which shows 

both GA and BP performance in ANN training and compares the results. 

5. Chapter 5: The last chapter is the results and the recommendation that gives an overview 

of the results and summarizes the results from our experiments. 

1.1 PURPOSE AND THESIS IMPORTANCE 

This research aims to present a new optimization algorithm called GA, which will improve ANN's 

training performance. The fitness functions take into consideration the classification error, mean 

square error, validation error, architectural reduction or a combination. This research also explores 

the behaviours, using different parameter values, of three bioinspired algorithms. The best 

parameter values for these algorithms are determined to achieve optimum results during the 

experimentation phase. In addition, a number of statistically valid experiments are generated for 

each selected classification problem using the best configuration. Furthermore, the results of the 

proposed methodology are discussed with regard to the connection number, the neuron numbers 

and the transfer functions selected for each ANN. 

1.2 METAHEURISTIC ALGORITHMS 

A metaheuristic method in computer science and mathematical optimisation is designed to 

identify, create or select heuristic (partially searched algorithms) that can provide a good and 

adequate solution to the optimisation problem, especially if the information is incomplete, or 

imperfect, or if the calculator is limited. For sampling metaheuristics, a number of solutions are 

excessive. Metaheuristics can make few assumptions about the problem of optimization, and can 

therefore be used in a number of problems. 

 

Metaheuristics cannot ensure that some types of problems are found to offer a global optimal 

solution in comparison with optimizing algorithms and iterative methods. Many metaheuristics are 

used to optimize the stochastic to make the solution dependent upon the set of random variables. 

When combined, metaheuristics often find solutions with less computational effort by looking for 

a wide array of feasible solutions than optimization Algorithms. Therefore, they are useful 
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solutions to optimization problems. There have been published a number of books and papers on 

this topic. 

 

The majority of the metaheuristic literature is experimental, describing empirical findings from 

experiments with computer algorithms. However, formal theoretical results, often regarding 

convergence and the possibility of finding the global optimum are also available. Many 

metaheuristic methods have been published with novelty and practical efficiency. Although there 

was high quality research in the field, many publications were of bad quality; vagueness, 

inadequate design, poor experiments and ignorance of previous literature are some of the 

shortcomings. 

 

1.2.1 Genetic Algorithm (GA) 

In the late 1960sç, the concept of GA was first introduced to the evolutionary theory by Holland 

and its colleagues. In nature, unsuitable and weak species face extinction by natural selection 

compared to their environment. The strongest species have more opportunities for reproductive 

transmission of their genes into future generations; this process takes time and is gradual. The 

species with the right gene combination will be more dominant over the long term. At times, 

random changes in the genes may take place during this slow process of evolution. These 

unintended variations offer additional benefits through diversification to the natural selection 

process. New species evolve from old species, unsuccessful modifications, and natural 

combinations automatically eliminate in this never-ending challenge of survival. In GA 

terminology, an individual or chromosome solution vector is referred to. These chromosomes 

consist of discrete units known as genes. One or more chromosome elements are controlled in each 

gene. The initial Holland GA implementation had binary numbers as genes. The latest deployments 

provided more representation and encoding of genes. A chromosome is usually the only solution 

in the space of the solution. GA works with the population, a set of chromosomes. The population 

is usually randomly initialized. As the algorithm runs, people with a higher fitness are 

progressively found ; each candidate has a number of properties (genotype) that can be mutated 

and therefore better solutions are found. 
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2. LITERETURE REVIEW 

The Artificial Neural Networks (ANNs) are the neural system organized into hidden layers, input 

and output. The neurons are joined by a set of synaptic weights. An ANN is a powerful tool used 

to identify models, predictions and regressions in a variety of problems. The ANN continually 

changes its synaptic values during the learning process until sufficient acquired knowledge (until 

a certain number of iterations have been achieved or the error value of the target has been 

achieved). After the training stage, the capacity of ANN to generalize the problem must be 

evaluated with samples different from those used during the training stage. The problem should be 

generalized. 

Several classic algorithms to train an ANN have been proposed and developed in the last years. 

However, many of them can stay trapped in nondesirable solutions; that is, they will be far from 

the optimum or the best solution. Moreover, most of these algorithms cannot explore multimodal 

and noncontinuous surfaces. Therefore, other kinds of techniques, such as bioinspired algorithms 

(BIAs), are necessary for training an ANN. 

As BIAs are powerful optimizing instruments and can solve very complex optimizing issues, they 

have a positive support by artificial intelligence. BIAs can explore large multimodal and non - 

constant search areas for the best solution near the optimal value for a specific problem. BIAs are 

based on the behavior of nature described as the swarm. In [1] this concept is defined as owned by 

smart and limited personal agents with smart collective behavior. 

There are several works that use evolutionary and bioinspired algorithms to train ANN as another 

fundamental form of learning [2]. Metaheuristic methods for training neural networks are based 

on local search, population methods, and others such as cooperative coevolutionary models [3]. 

The authors show a comprehensive literature review of evolutionary algorithms used for the 

development of ANN [2]. Most of the research reports are, however, focused exclusively on the 

development of synaptic weights, parameters [4] or evolution of the numbers of neurons in hidden 

layers. The designer determines the number of hidden layers. Moreover, the researches do not 

involve the evolution of transfer functions, which are an important element of an ANN that 

determines the output of each neuron. 
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For example, in [6] the authors suggested a method combining ANN and Particle Swarm 

Optimization (PSO) for a specific architecture (connections) to adjust the weight of the synaptical. 

Other research, such as [6], has carried out a modified PSO mixture with Simulated Annealing to 

obtain a set of ANN and ANN weights. [7] In order to find out the architecture and weights, authors 

use evolutionary programming to solve classification problems and forecasting problems. Another 

example is [8] where Genetic Programming is used to obtain graphs that represent different 

topologies. In [9], the Differential Evolution (DE) algorithm was applied to design an ANN to 

solve a weather forecasting problem. In [10], the authors have been adjusting the synaptic weight 

by the PSO algorithm to model the daily relations in Malaysia between precipitation and rain. In 

[11], the authors compare the back-propagation method versus basic PSO to adjust only the 

synaptic weights of an ANN for solving classification problems. In [12], the set of weights are 

evolved using the Differential Evolution and basic PSO. 

The three main elements of the ANN have evolved simultaneously in other works such as[ 13]: 

architecture, transfer functions and synaptic weights. In [14], the authors solved the same problem 

using the Differential Evolution (DE) algorithm. They proposed a new PSO model. Another 

example is [15] in which authors develop an ANN design with two different fitness functions using 

an Artificial Bee Colony (ABC). 

This research has significant contributions in comparison with these last three works. First and 

foremost, there are eight fitness functions to address three common problems arising from the 

ANN design: accuracy, overriding and reducing ANN. In this respect, fitness functions take 

classification error into account, mean square error, validation error, architecture reduction and a 

combination of problems that arise while designing the ANN. This research further examines the 

behaviour, using different parameter values, of the three bioinspired algorithms. The values of the 

best parameter for these algorithms will be determined to achieve the best results during the 

experimentation phase. Furthermore, the best configuration for each selected classification 

problem is used to create a set of statistically valid tests. In addition, the results obtained by the 

proposed methodology are presented and discussed regarding the connection number, the number 

of the neuron and the transfer functions selected in the ANN. Another contribution of this research 

is related to a new metric that allows comparing efficiently the results provided by an ANN 

generated with the proposed methodology. This metric takes into account the recognition rate 
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obtained during training and testing stages where testing accuracy is more weighted in comparison 

to training accuracy. Finally, the results achieved by the three bioinspired algorithms are compared 

against those achieved with two classic learning algorithms. The selection of these three biological 

- inspiring algorithms is based on the metaphor for a basic PSO technique, because NMPSO is a 

relatively new algorithm (in 2009). It is important to compare its performance to other algorithms 

that are motivated by the same. 

In general, the problem to be resolved can be defined as a set of input patterns, and a set of the 

desired patterns, and an ANN is found represented by the function to be determined by so that the 

maximum number of neurons is minimized and defined. It is important to note that three fields 

(architecture, synaptic weight and transfer functions) form part of the search space. 

This research offers a comprehensive study of how the application of bioinspired algorithms can 

be automated by an ANN, in particular by applying Basic Particle Swarm Optimization (PSO), 

Second-Generation PSO (SGPSO) and New PSO Model (NMPSO). In order to design the ANNs 

that are most exact in a particular problem, the proposed methodology evolves at the same time 

the architecture, the synaptic weights and the type of transfer functions. Moreover, a comparison 

of the Particle Swarm algorithm performance versus classic learning methods (back-propagation 

and Levenberg-Marquardt) is presented. In addition, in this research is presented a new way to 

select the maximum number of neurons (MNN). The accuracy of the proposed methodology is 

tested solving some real and synthetic pattern recognition problems. In this paper, we show the 

results obtained with ten classification problems of different complexities. 
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3. METHODOLOGY 

3.1 DATA RESOURCE 

Hong and Young used these information to show that even in unprotected environments, the power 

of the optimally discriminating aircraft. The KNN method applied in the resulting plane with 77 

percent precision. These results are however very partial (see Aeberhard for the second reference 

above, or e-mail to stefan' @'coral.cs.jcu.edu.au). The outcome of Aeberhard et al. is:    

RDA : 62.5%, KNN 53.1%, Opt. Disc. Plane 59.4%  

Three types of lung cancers were described in the data. The authors don't tell you which variables 

or where the data was originally used. 

Notes:  

- For the fifth attribute, the original data 4 values were -1. Having changed these values? 

(Unknown). (Unknown). Available in German.  

- For the 39 attributes, the original data 1 value was 4. Has this value been modified? (Unknown). 

(Unknown). 

Information of Lung Cancer Data Database are described below: 

• Title: Lung Cancer Data 

• Sources: 

o Original owners: Data was published in :  

▪ Hong, Z.Q. and Yang, J.Y. "Optimal Discriminant Plane for a Small   

Number of Samples and Design Method of Classifier on the Plane",   

Pattern Recognition, Vol. 24, No. 4, pp. 317-324, 1991. 

o Donor of database: Stefan Aeberhard, stefan@coral.cs.jcu.edu.au 

o Date received: May, 1992 

• Number of Instances: 32 

• Number of Attributes: 57 (1 class attribute, 56 predictive)  

• For Each Attribute: (all numeric-valued) 
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❖ attribute 1 is the class label 

❖ All predictive attributes are nominal, taking on integer values 0-3 

• Missing Attribute Values: Attributes 5 and 39 (*) 

• Class Distribution: 3 classes,  

o 9 observations 

o 13     " 

o 10     " 

 

3.2 DATA PREPROCESSING 

The dataset had some missing values which was fix using the tool “IBM SPSS statics 24” and 

using the algorithm Estimation-Maximization (EM) and then processed using z-score for artificial 

neural network training. 

Expectation – maximization algorithm 

Statistics have the effect of finding maximum or maximal post-map (MAP) estimates in statistical 

models, which depend on unnoticed parameters in the model, with expectation–maximization 

(EM) algorithms being an iterative method. The EM iteration alternates between a (E) step that 

produces a function for expectation of the evaluated log-like feature using the current estimate for 

parameters and a (M) step that calculates parameters maximizing the expected log-like feature in 

step E. These parameter estimates are then used to determine the latent variables distribution in 

the next step E. 

Z-Score 

In the middle of a dataset, z is the default number. Technically, however, it is a measured amount 

of standard differences in the population or above. A z-point is a standard distribution curve 

parameter, as well. The range of Z scores varies from-3 standard deviations to-3 standard 

deviations (to go far left with the normal distribution curve) (to the right of the normal 

distribution)-the mean μ is known, and if the z scoring is to be carried out, the standard population 

deviation ̈ is known. 
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Z scores are a way to use "normal" populations to compare test results. There are thousands of 

results and units to be achieved for the test results or surveys. These results, however, often seem 

insignificant. For example, it might be a good piece of information to find someone weighs 150 

pounds but to search for a comprehensive basis of information if some weights are compared to 

the average, especially if some weights are recorded in the kilogram. You can see a z score where 

the average person weighs. 

  

Figure 3.1: Z-score Formula 

Z-Score formula 

If you have several examples, if you want to describe the default deviation (standard error), you 

will use the format z - score. If you have several samples. 

𝐷𝑎𝑡𝑎𝑛𝑒𝑤 =
𝐷𝑎𝑡𝑎𝑜𝑙𝑑−𝑚𝑒𝑎𝑛

𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝑑𝑖𝑣𝑖𝑠𝑖𝑜𝑛
                                            (3.1) 

3.3 ARTIFICIAL NEURAL NETWORKS 

The neuron structure in the human brain inspires the Artificial Neural Network. The brain learns 

from experiences that go beyond the range of computers and thus adapts. This modeling also 

allows solutions to be less technologically developed in order to reduce human involvement. 

The implementation of neural networks in computing gives us a key computational advance. 

Computers, like complex math and face recognition, do well. However, simple patterns are hard 

for computers. Computers cannot analyze, generalize and transform past patterns into future 

actions. The advanced neural network study allows people to understand the mechanism of 

thoughts, for example. 
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The study focusses on the' brain storage data as patterns method [17]. For individual faces to 

analyze and recognize, some of these patterns are very difficult. This process saves information as 

patterns, analyzes patterns and fixes a new computer field for problems. Training and creation of 

these networks is involved in the neural network to solve specific problems. We can perform 

different techniques such as learning, behaving, forgetting and reacting, etc. through our neural 

network. 

"All aspects of this processor are known: The human brain is still mysterious to operate accurately. 

In particular, the most important element in the human brain is a certain type of cell which does 

not appear to regenerate as opposed to the whole body. Since the only portion of the body not 

slowly replaced by this type of cell, we are supposed to be able to remember, think and put past 

experiences into practice in all our actions. These cells are all known as neurons”. The neural 

network as the human brain's neural network offers power through its complex components, its 

control mechanisms and its subsystems. Genetics programming and learning are also involved. In 

electro-chemical ways, neurons transmit the information between them. Depending on the 

classification process used, these neurons are classified into different categories. Current systems 

remain incompatible with the human brain. "The most basic elements of this complex and powerful 

organization can only replace these artificial neural networks. Neural computing has never 

succeeded the developer who is trying to solve problems with the human brain. Neural computing 

was never substituted to human brain by the development company which attempts to solve 

problems. It's a new way of solving problems and machinery. 

Let's see the overview of human neurons. The basic element of the neural network is neuron. The 

biological neurons are input and subsequently subject to various non - light operations and then 

produce final output. Four nerve cells are typical: dendrites, somas, axons and synapses. It accepts 

inputs as the task of dendrites. The input is processed by Soma. Axon-transforms the processed 

inputs and synapses— contacts neurons. The biological neurons in structure are not too 

straightforward but complex.  

Biology improves the understanding of neurons. By understanding the biological brain, network 

designers can enhance their systems further. Neural artificial networks (ANN) are computer tools 

which have been widely accepted in many different disciplines to model complicated problems in 
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the real world. ANNs could be defined as structures consisting of strongly linked adaptive elements 

called neurons that provide massive computations for the representation of knowledge. 

"The principal features of the ANN are the ability to handle inaccurate and inadequate information, 

the ability to manage inaccurate information, robustness, failure and failure tolerances, fault and 

failure tolerance." 

 

Artificial models possess following characteristics: 

1. Nonlinearity makes it more suitable for data 

2. Precise prediction for uncertain data and measurement errors due to noise insensitivity. 

3. High parallelism means tolerance of hardware failure and quick processing. 

4. Learn and adapt to the changing environment, allowing the system to update its internal 

architecture. 

5. The model can be applied to unlearned data by generalization. 

The main goal of ANN - based computing is to develop mathematical algorithms that enable 

artificial neural networks to study the processing of information and to gather human brain 

knowledge. Patterns based on ANN may provide virtually accurate solutions to specifically 

formulated problems and processes that only experimental and field observations understand. “In 

a number of applications from modeling, classification, design recognition and multi - variable 

data analysis, microbiological ANNs have been applied. The digital image processing interests are 

derived from two main applications: improvement for human - the reading of photo information; 

and processing of image information for storing, transferring and representing autonome sensor 

machine; and defining a two - dynamic function as the image, f(x, y). 

“Digital image processing is the processing of digital images via digital computers. A numerous 

elements with a specific position and value comprises a digital picture. They are called picture 

elements, elements, pixels and skins. An extensive and diversified application for digital image 

processing”. 
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3.3.1 General Properties of Artificial Neural Networks 

1. Nonlinear I/O mapping  

The analysis of high-dimensional data has an increasing importance due to the growth of 

sensor resolution and computer memory capacity. Typical examples are images, speech 

signals and multi-sensor data. In the analysis of these signals they are represented in their 

entirety or part by part in a sample space. As an example, a single data point may represent 

a 16x16 (sub) image. A collection of these images constitutes a cloud of points in a 256-

dimensional space. In most multi-sensor data sets there is a large dependency between the 

sensors or between the sensor elements. This is certainly true for nearby image pixels. But 

also more fundamentally, it is not to be expected that any physical experiment contains 

hundreds of degrees of freedom that are of significant importance. Consequently, multi-

dimensional data sets may be represented by lower dimensional descriptions. There are 

various reasons why such representations may be of interest. They may reveal the structure 

of the data or the problem, they may be used for relating individual data points to each 

other (e.g. finding the most similar one in a database) or they may be used for retrieving 

missing data values. 

 

2. Generalization ability 

Their capacity to generalize is one of the major advantages of neural networks. This means 

that a trained network can classify data from the same class that it never saw. Developers 

in real-life applications usually only have a small portion of all possible neural net 

generation patterns. The data set should be divided into three parts to achieve the best 

generalization: 

The training is for the training of neural networks. During training, this data set error is 

minimized. 

The validation set is used to determine the performance of neural networks in untrained 

patterns. A test set to finally monitor a neural net's overall performance. In the minimum 

validation error, learning should be stopped. The net generalizes best at this stage. If 

learning is not stopped, overtrainings occur, and net performance decreases over all data, 
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even if the error is still smaller in the training data. The network must finally be checked 

for the third dataset, the test set, after the completion of the learning phase. Each n training 

cycle, ANNS performs one validation cycle.  

3. Fault-tolerance (graceful degradation) 

Fault tolerance is the feature that permits the system, when certain components of it fail (or 

one or more inside failures), to continue to operate properly. The decline in operating 

quality, as opposed to an unnatural system, is proportional to the gravity to which the failure 

is causing a total failure if it does not. Fault tolerance is especially sought in high 

availability or life-critical systems. When parts of a system break up, features are known 

as graceful degradation. 

A defect-tolerant design allows a system to operate at a lower level than to fail completely 

if some of the system fails. When a system fails. The term is used most often to describe 

computer systems designed to continue to operate more or less fully in the event of a partial 

failure, with reduced output or with an increased response time. In other words, the entire 

system is not stopped due to hardware or software problems. A motor car is designed to 

continue to drive in the presence of damage caused by fatigue, corrosion, manufacturing 

defects or impacts, when a tire has been punctured or when structural integrity is 

maintained. Another example is an automotive vehicle. 

The tolerance of failures can be achieved by anticipating special conditions and building a 

system to deal with them within the scope of an individual system, and, in general, by trying 

to stabilize itself so as to converge the system in a faultless state. Nevertheless some kind 

of reproduction is better used when the consequences of an insufficient system are 

catastrophic or the costs of making it reliable enough are very high. In each case, the system 

must be able to reverse it in safe mode, if a system failure is so catastrophic. The recovery 

is like a reversal, but if people are present, it can be a human action. 

4. Biological analogy 

Analogy is a cognitive process where information or significance is translated to a different 

objective or linguistic expression from one particular topic–analogy or source. A less 

narrowly defined inference or argument from one specific to another is in comparison to 
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the analogy of deduction, induction and abduction where at least one premise or conclusion 

is general. The word analogy could also refer to the relation of the source and the goal 

itself, often but not necessarily similar, as in the concept of biology. The atom model of 

Rutherford analogized the atom with the solar system. Analogy plays a major role in 

problem solving, including decision-making, discussion, perception, generality, 

remembrance, creativeness, invention, prevision, emotions, explanation, conceptualisation 

and communication. The analogy was argued as "the cognitive nucleus." In particular, the 

analogical language includes, although not metonymous, exemplification, comparatives, 

metaphors, like, alligories and parable. It is not methonymous, but it does not contain the 

identification of places, objects or persons. As if it were, phrases like, etc. and so on, and 

the same term also depends on the analogous understanding of the message by the receiver. 

Analogy is important not only in ordinary language and common sense in the fields of 

science, philosophy, law and humanity. Analogy is closely linked to concepts of 

association, comparative approach, correspondence, mathematical and morphological 

equality, homomorphism and iconicity. The concept of conceptual metaphor in the 

cognitive linguistics can be the same as the concept of analogy. Analogy also provides a 

basis for all comparative arguments and experiments whose findings are conveyed to 

objects not examined. 

3.3.2 Structure of ANN 

The neural network consists of three groups, layers and phases. The phases input, covered and 

output.  

• The activity or input unit is the raw data that the network receives. 

• The cached phase is based on the data entered and the weights of the connection between 

the input and the cached units. 

• The phase of the output depends on the activity of the cloaks and weights between the 

cloaked and output units. 

On the basis of the layer activity, different network types exist. A simple network type is called 

where the hidden units can build their own input representation. Whenever each hidden unit is 

active, the masses of the hidden and input units can be adjusted to allow for a hide unit to choose 
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what it is. Other architectures such as single and multilayer are also available. In a single layer 

each layer is connected to the other. Overall, the network of the single layer includes only entries 

and outputs. The inputs are supplied by a number of weights to outputs. In several layers all units 

have inputs, hidden and outputs in different layers.  

 

Figure 3.2: General neural network architecture [2] 

3.3.3 Elements of Artificial Neural Networks 

3.3.3.1 Inputs 

The data, signal, feature, or outside environment measurements are received from this layer. These 

inputs are generally normalized within the limits of the activation functions. The values of samples 

or patterns. This standardization gives greater numerical accuracy for the network's mathematical 

operations. 

3.3.3.2 Weights 

The links between neurons are assigned to the number "weights" or "parameters" in artificial neural 

networks. These weights change as new data are fed into the neural net. So "learns the neural net.  

The weights in an artificial neural network are an estimation of the combined multiple processes 

in biological neurons. Myelination is important, but not important. Myelination. Weights can be 
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positive or negative in artificial neural networks. Weight: weight is comparable to an increased 

combination of dendrites between neurons, numbers of synapses between dendrites, density of 

postsynaptic terminal neurotransmitter receptors, as well as increased formation and fusion of 

neurotransmitters of the vesicles and of the pre-synaptic terminals. 

Positive weights: The positive weights of the synapses releasing excitation neurotransmitters (i.e. 

glutamate) are analogous to the pre - synaptic terminals. The receiving cell will increase its 

likelihood of activation. 

Negative weights: Negative weights are similar to those of the neurotransmitter synapse (i.e. 

GABA). The receiving cell is less likely to fire a potential action.  

Myelination: Myelination increases the distance between the action potential and the axon. If the 

axon is not myelinated, the membrane voltage potential decreases far closer to the cell body. A 

garden hose is analogous. If the axon does not myelinize, the garden pants are leaking, and a lower 

water pressure (which cares for waves of water pressure, the potential action) leads to the end of 

the pants. 

3.3.3.3 Additive Function 

An additive function is an arithmetic f(n) function in a positive integer that the product function is 

the sum of its functions when a and b are copressed. F(a) + f(b) holds a completely additive 

function even when they arenot co-prime to all positive integral parts a or b if f(b) holds f(a)+ f(b). 

In this sense also, analogy with fully multiplicative functions is used with complete additive. 

F(1)=0 if f is a full additive feature. Each fully additive function is an additive, but not the other 

way around. 

3.3.3.4 Activation Function 

The threshold or transfer feature is also known as activation functions. The activating functions 

have been used to transform neuron activation levels into output signals. Numerous activation 

functions are available in the neural network. Identity function, step function, part linear function 

and sigmoid function are various function types.  
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a. Identity activation function: 

The activation function of identity is also referred to as "liner activation." The Network Activation 

function can be shown easily to fit a line regression model of the form if the ID is used in the 

network 𝑌𝑖 =  𝐵0 +  𝐵1 + ⋯ + 𝐵𝑘𝐵𝑘 where 𝑥1, 𝑥2, … … … , 𝑥𝑘 are the k network inputs, 𝑌𝑖 is the i-

th network output 𝐵1 , 𝐵2 , … … . . , 𝐵𝑘 are the coefficients in the regression equation. Consequently, 

a neural network with identity activation used in all its sensors is uncommon to be found. 

b. Sigmoid activation function: 

Nonlinearity in the model is used in the artificial neural network sigmoid functions. The result of 

a linear combination of its input signals is calculated by a network neuroelement using a signmoid 

function. The sigmoid function makes an interface between the product and itself easier and more 

popular in the Neural Network. 

 𝜑(𝑣) =  
1

1+exp(−𝑎𝑣)
                                                      (3.2) 

Sigmoid function results are generally used in learning algorithms. The Sigmoid graph is shaped 

as' S'. This function is defined as an expanding function which is commonly used for neural 

artificial network development. Sigmoid is a function that strictly increases, and shows a balance 

between linear and nonlinear functions. 

One - polar – is the sigmoid function. 

 

c. Step function:  

This is a unipolar threshold, known as. 

𝜑(𝑣) = {
1 𝑖𝑓 𝑣 ≥ 0
0 𝑖𝑓 𝑣 > 0

}                                                  (3.3) 

The neuron K output with a threshold is 

𝑦(𝑘) = {
1 𝑖𝑓 𝑣𝑘  ≥ 0
0 𝑖𝑓 𝑣𝑘  > 0

}                                                 (3.4) 
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𝑣𝑘 𝑖𝑠 𝑡ℎ𝑒 𝑖𝑛𝑑𝑢𝑐𝑒𝑑 𝑙𝑜𝑐𝑎𝑙 𝑓𝑖𝑒𝑙𝑑 𝑜𝑓 𝑡ℎ𝑒 𝑛𝑒𝑢𝑟𝑜𝑛 

𝑣𝑘 =  ∑ 𝑊𝑘𝑗  𝑋𝑗
𝑚
𝑗=1 +  𝑏𝑘                                           (3.5) 

When the neuron output is 1 when the local neuron field induced is not - negative, the neuron 

output is 0. 

 

d. Piece Wise Linear Function 

It can be defined as a unipolar function 

𝜑(𝑣) = {

1 ,         𝑣 ≥  +1/2

𝑣 , +
1

2
 >   𝑣 >  −1/2

0 ,          𝑣 ≤  −1/2

}                                           (3.6) 

When it is expected that the amplification factor is within the linear area  

1. The specific circumstances of linear functions are  

• If the linear operating area is maintained without saturation, a linear combiner is 

produced. 

• If the linear region's amplification factor is infinitely large, it reduces to a threshold 

feature. 

 

e. Learning Rules in neural network 

There are many different types of study rules in the neural network, usually divided into 3 

categories. 

• Supervised Learning 

• Unsupervised Learning 

 

a. Supervised Learning 

Training sets are available for supervised learning. This type of rule includes a set of examples 

with proper network behavior. The inputs are given as a training in controlled learning and the 
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expected results are achieved. Parameters in this type of study are adjusted step by step by error 

signal; parameters are adjusted step by step by step by error signal. 

A number of examples (trainings set) together with correct network conduct are provided for the 

learning rule. 

{𝑥1, 𝑑1}, {𝑥2, 𝑑2}, … … … , {𝑥𝑛, 𝑑𝑛}                                           (3.7) 

The network input is xn in this case and dn is the required destination input. The output is generated 

by input. In order to make network outputs more exact, the Study rule is employed to change 

network biases and weights.  

We commit ourselves with supervised learning to give the system the desired answer (d) when the 

entry is implemented. The distance between the real response and the desired response is used to 

correct the network parameter externally. For example, the error can be used to change weighing 

in the study of input patterns or circumstances where the answer to the error is recognised. For the 

learning mode, the training set, several input and output patterns are needed. 

b. Unsupervised learning 

In unexpected learning, self-organized learning is also known. Objective output is not available in 

uncontrolled learning. In that case, only network input changes weights and biases. For pattern 

reorganization, unattended study grouping is used. The answer required is not known in unattended 

learning, therefore explicit error information cannot be utilized for improving network behaviour. 

Information of this type is not available to correct the wrong answers so that learning has to be 

done based on observations of marginalized or unknown responses to the data. 

The algorithms in unchecked learning use redundant row data, which have no etiquette for class 

membership or associations. In order to identify its parameters in this way, the network needs to 

detect any existing patterns, properties, regulations, etc. Unattended study means learning without 

the teacher because it is not necessary for the teacher to participate, but the teacher must set 

objectives. Feedback on neural networks is important as well. Feedback is called progressive 

learning, which for uncontrolled learning is very important. 
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3.3.3.5 Outputs 

This layer contains also neurons that generate and display the final neural network outputs at the 

previous layers. Thus the artificial neural networks ' principal architectures can be divided, taking 

into consideration the connection and the structure of the neuronal disposition. The following are 

possible: 

(i) Single-layer feedforward network,  

(ii) Multilayer feedforward networks,  

(iii) Recurrent networks and  

(iv) Mesh networks. 

3.3.4 Classification of Artificial Neural Networks 

3.3.4.1 Artificial Neural Networks According to Constructions 

A. Single Layer Feed Forward Network 

A neural network with a source node projecting the neural output level, but not one single feed or 

an acyclic network. The single layer refers to the calculation node output layer in one network 

layer Figure 3.2. 
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Figure 3.3: Single Layer Feed Forward Network [2] 

 

B. Multilayer Feed Forward Network 

The system consists of at least one cache layer known as clad neurons or clad unit hubs. The ability 

of clad neurons is to work between external information and system output and to get separate 

insights on a higher demand. In the system input layer, the source hubs provide the information 

flag for the neurons in the second layer. The third layer of inputs are the second layer of output 

signals, and so on. The general reaction of the system to the actuation design provided by sources 

in the main layer of the info is neuron output motions in the system yield level. 
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Figure 3.4: Multilayer Feed Forward Network [2] 

Short feeding network characterization: 

1. In general, activation is provided via ' hidden layers ' from input to output but many other 

architectures exist. 

2. Static input - output mappings are implemented by mathematics. 

3. Most popular algorithm for backpropagation supervised training: 

4. Has proved useful in many practical applications as approximations of nonlinear functions 

and as a classification model. 

 

 

C. Recurrent Network 

The repetitive system in the figure is known as a forward neural system of something like the input 

circle, which includes at least one shrouded layer. 2.3.2. The first time. Critics could be your own 

critique, i.e. if your own information returns to neuronal yield. The use of unit deferring 

components, which leads to a unique conduct, has sometimes been criticised, since the neural 

system has non-direct units. 
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Figure 3.5: Recurrent Network [2] 

Other network types are available ; Delta - bar - delta, hop field, quantifying vectors, 

counterpropagation, probabilist, hamming, memory boltzman, spatium - temporal patent, adaptive 

resonance, auto - order, recirculation etc. 

The cyclic path of synaptic connections is a recurring neural network.. Basic characteristics: 

1. Recurring are all biological neural networks 

2. They implement dynamic systems mathematically 

3. Various types of algorithms, no clear winner, are known 

4. In general, theoretical and practical problems have prevented practical applications up to now. 

3.3.4.2 Artificial Neural Networks According to Learning Algorithms 

If a network is structured for a particular application, it will be ready for formation. At start and 

beginning of training, initial weights are selected randomly. Two approaches are available; 

controlled and unattended. 
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A. Supervised Training 

The inputs and outputs are provided for supervised training. The data is processed by the 

network and the results are compared with the results. The system spreads errors to adjust 

network weights. This process takes place time and again when weight is constantly 

changed. The same data set is processed many times during networking training, as the 

weight of connections is always improved. The data set for the training is referred to as the 

"training set." 

Sometimes a network can never learn. This can take place as there are no specific 

information in the input data to produce the required output. Networks also do not converge 

when there are not enough data to enable complete learning. In order to retain part of the 

data as a test, there should ideally be sufficient data. Multiple nodes in many layered 

networks can store data. To monitor the network, the supervised training must retain data 

for the system to test after training of a system, to determine whether the system simply 

saves its data. 

Then, if a network cannot simply solve the problem, the designer must examine inputs and 

outputs, number of layers, numeric elements per layer, layer connections, transfer and 

training capabilities and also initial weights. The training rules govern another part of the 

creativity of the designer. Many laws (algorithms) are used in the training session to make 

the required weight adjustment feedback. The most common method is back-propagation. 

It is a conscious analysis and not only a technique to prevent overtraining of the network. 

General statistical trends in the data are the initial setup of the artificial neural network. It 

then' learns' about other aspects of the data which are generally falsified. 

The weights can be frozen upon request, if finally the system is properly trained and no 

further training is necessary. This network can then be converted on certain systems into 

hardware. During production, other systems do not lock in, but continue learning. 

 

B. Unsupervised or Adaptive Training 

Uncontrolled (learning) is the other kind of training. The network has inputs but not desired 

outputs in this kind of way. The system must then determine its own functions in order to 
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group the input data. Often this is termed autonomy or adaptation. These networks do not 

adjust their weight using external influences. Their performance is instead monitored 

internally. The networks seek the regularity or trends of the input signal and adjust it to the 

network functions. Although the network still needs to be able to provide information on 

how to organize itself without knowing whether or not this is right. These data are 

incorporated into the network's topology and study rules. The cooperation between the 

processing element clusters may be emphasized by an unchecked learning algorithm. The 

clusters would work together under such a scheme. If any external input activated a node 

within the cluster, it could increase the whole activity of the cluster. Furthermore, it can 

inhibit the whole cluster if external input to the cluster nodes has been decreased. 

Competition between processing elements could also provide a learning basis. Competitive 

cluster training could enhance the response of particular groups to special incentives. In 

that sense, these groups would be linked and a special appropriate response would be 

provided. The weight of the winning processing element is normally only updated when 

the learning contest is effective. Unattended learning is not well understood at the present 

time and a lot of research is in progress. 

 

C. LEARNING LAWS (ALGORITHMS) 

There are many common uses for learning laws. The majority are a variation of ' Hebb's 

rule ' which is the best - known and oldest. 

Hebb's Rule: In the Compatibility Organization, Donald Hebb introduced this. The 

fundamental rule of thumb is that the weight should be strengthened if the neuron comes 

from another nerve and both neurons are very active (the same sign). 

Hopfield Law: Increase connectivity weight by the study rate and when both active and 

inactive the desired outcomes and inputs. 

The Delta Rule: The idea is that the strengths of the input connections can constantly be 

modified so that the difference of the desired output to the actual output of the element is 

reduced (delta). 
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The Gradient Descent Rule: This is similar to the Delta rule because the transfer function 

derivative is still used to change the delta bug prior to the application of connection 

weights. However, a proportional additional constant associated with the learning rate 

accompanies the final weight - based change factor. 

Kohonen's Law: This allows processing parts to acquire or update their weight. The 

strongest item is declared the winner and its competitors can be inhibited and its neighbours 

excited. Only the winner can adjust his weight and only the winner plus neighbors can 

adjust it. 

3.3.5 Artificial Neural Network’s Output Calculations 

Sensitivity, septicity and accuracy are preferred statistics for determining the performance of a 

classifier. Susceptibility is the estimation rate for patients with epileptic diseases, speciality is the 

estimation speed for healthy people and accuracy is true. Equality. These statistical numbers are 

calculated using (36), (37) and (38).  

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =  
𝑇𝑃

𝑇𝑃+𝐹𝑁
                                                  (3.8) 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =  
𝑇𝑁

𝑇𝑁+𝐹𝑃
                                                  (3.9) 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝐹𝑃+𝑇𝑁+𝐹𝑁
                                           (3.10) 

In the above equations, the number of TP - diagnosed epilleptic patients, the total number of normal 

epileptic patients, for whose epileptic disease was diagnosed, and the total number of normal 

epileptic patients, for which FN was diagnosed. 

 

3.4 BACKPROPAGATION 

Backpropagation is a method used to compute the gradient required in artificial neural networks 

for the calculation of network weights. Backpropagation means "retroactive error propagation" as 

an error is calculated at the output and reversed across all layers of the network. It is frequently 

used to train deep neural networks. 
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Discharge is a common application of the Delta rule in multi - layer feed systems that permits 

iterating gradients to be measured using the chain rule for each layer. It is closely linked to 

Newton's Gauss algorithm and forms part of the ongoing research on the neural background. 

The reverse propagation is a special case for an automatic differentiation technique. In learning, 

backpropagation is commonly used to adjust the weight of neurons through the gradient downward 

optimization algorithm to calculate the degree of loss function. 

Consider, for example, the network for one training case: (1), 1,0 and therefore x1 and x2 inputs 

are 1 and 1. The result is parabolic, when y output is tracked against the error E on the vertical axis 

of the horizontal axis. The y output which reduces the E-error is the lowest parable. In a single 

training case, the minimum affects the horizontal axis, which means the error is zero and the 

network can produce an output y exactly matching the desired output t. In order to optimize the 

search for least errors, this reduces the problem of mapping inputs to outputs. 

𝑦 = 𝑥1𝑤1 + 𝑥2𝑤2 

where x1 and x2 weights are linked to the input unit connection with the output unit. The error 

therefore depends on the input weights of the neuron that must ultimately be changed over the 

network to enable learning. The result is a parabolic bowl with a separate horizontal axis, with 

each weight having a vertical axis fault. The same tract would require an elliptical paraboloid k+1 

for a neuron with k weights. 

Any complex system can be simply abstracted or at least dissected into its fundamental 

abstract components. The accumulation of multiple simple layers creates complexity. This 

post is intended to explain how neural networks work with the most straightforward 

abstraction. We try to reduce the mechanism of machine learning in NN to its fundamental 

abstract components. In contrast to other posts explaining neural networks, we try to use 

as few mathematical equations and code as possible and focus exclusively on the abstract 

concepts. A supervised neural network, at the highest and simplest abstract representation, 

can be presented as a black box with 2 methods learn and predict as following: 

 



 29 

 

Figure 3.6: Backpropagation Training Method [24] 

 

Learning as a problem of optimisation 

It helps us first of all to understand the link between the actual neuron output and the exact output 

of a specific training example in order to obtain a mathematical derivation of the back propagation 

algorithm. The neural network has 2 inputs, a output unit and no hidden unit. Each neuron uses a 

linear output [note 1] as opposed to most neural networks, which is the weighted amount. At first, 

before training, weights are altered. In this instance, the neuron will learn from examples consisting 

of the tuples x1, x2, t where x1 and x2 are the network inputs and t is the correct output (network 

output should be produced when these inputs are trained). The first network calculates a y output 

which can differ from t (random weights) when x1 and x2 is specified. Squared error measurement 

is a common method for measuring differences between the expected t and the current y output: 

𝐸 = (𝑡 − 𝑦)2                                                       (3.11) 

where E is an error or discrepancy. 

Consider the network for one training case, for instance: (1), 1,0 and therefore x1 and x2 inputs 

are 1 and 1. The result is a parabolic when the y output on the vertical axis of the horizontal axis 

is tracked against the E error. The y output that minimizes the E error is the minimal parabola. The 

minimum also affects the horizontal axis in a single training case, which means the error is zero 

and that the network can produce an output y that exactly matches the desired output t. This reduces 

the problem of mapping inputs to outputs in order to optimize the search for the least error. 

The neuron output depends, however, on the sum of all the inputs weighted: 
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𝑦 = 𝑥1𝑤1 + 𝑥2𝑤2                                                  (3.12) 

where the weights of x1 and x2 are connected to the output unit by the input unit connection. The 

error depends therefore on the incoming weights of the neuron, which must be changed over the 

network ultimately in order to allow learning. The result is a parabelet bowl with a separate 

horizontal axis and a vertical axis fault with each weight. For the same tract, an elliptical paraboloid 

k+1 dimensions would be required for a neuron with k weights. 

3.5 GENETIC ALGORITHM 

The genetic algorithm biological metaphor is the evolution of species by the survival of the fittest, 

as Charles Darwin described. A new individual is produced by the crossover of genetic information 

of two parents in a population of animals or plants. The DNA stores the genetic data for the 

individual's construction. The genome of human DNA comprises 46 chromosome, four strings, 

abbreviated A, T, G and C. One of twenty amino acids, or a' start protein building' or' stopp protein 

building ' signal, is translated into three bases. A total of about 3 billion nucleotides are present. 

These can be structured into genes that contain information about the individual's construction in 

one or more parts. The vast majority of genes –the "junk" genes –are not being used, however, and 

only 3% of all genes contain meaningful information. Genetic data, the genome itself, are called 

the individual's genotype. The result is called a phénotype. The individual. The same genotype 

could lead to various phenotypes. This is clearly illustrated by the Twins. The process of natural 

evolution is simulated by a genetic algorithm. It aims at optimizing a number of parameters. The 

original idea includes the genetic information, called a parameter string, or a individual, in a bit 

string of a fixed length. An allle is called a possible value of a bit. A range of different encoding 

techniques are used in this thesis, but the fundamental principles also apply. A possible solution to 

this problem is provided by each parameter string. It includes information about building a neural 

network for the GANN issue. The fitness value is the quality of the solution. Crossover, selection 

and mutation are the fundamental GA operators. The main structure of a genetic algorithm is 

shown in Figure 1. It begins with the random generation of an early group of people, the original 

population. 
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Figure 3.7: The Principle Structure of a Genetic Algorithm [7] 

Evaluate and classify individuals. Since the number of persons is constant in each population, an 

old person, generally the one with the worst fitness value, must be discarded for each new 

individual. Two basic operators are available to create new people: mutation and intersection. 

Mutation is simpler. A few bits of the parameter string are rotated at random during mutation. 

Mutation may apply to offspring created by crossover or randomly to any person in the population 

as an independent operator. 

1. Crossover 

Crossover simulates a child's or two parents ' sexual generation. This is done by taking parts of 

one parent's bit string and the other parent and combining both parts of the child. The crossover 

consists of three main types: one, two and uniform. Figure 1.4 shows one-point crossover. At the 

same point, the two parent bit strings are cut. So one part of each parent can generate the child. 

Notice not moving the parts. The random cutting point is also independent of the true significance 

of the bits. One bit string parameter can be encoded in more than one bit, with the encoding cut to 

a new value, different than the two parents, during the crossover. 

 

2. Selection  

The choice of people for crossover and mutation is prejudicial to good people. The chance of a 

selected person is based on the relative fitness of the classical roulette wheel population. 
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3. Mutation 

In real evolution, by misrepresentation or other gene deformations e.g. gamma radiation, the 

genetic material can randomly modify itself. Mutations can be performed with a certain probability 

in genetic algorithms as random deformations of the strings. It is positive that genetic diversity is 

maintained and the local maxima avoided. 

 

4. Sampling 

From the first and the next generation, this process calculates. We can indicate the following 

substantial differences in comparison with conventional continuous optimization methods, such as 

Newton or the descent gradient: 

1. GA manipulates coded versions of the problem parameters, i.e. search room S instead of 

X itself instead of parameters themselves. 

2. While looking for nearly all conventional methods, GAs are always working on a whole 

population of items (cords). The force of genetic algorithms is greatly enhanced. The 

chance to reach the best level in the world has been improved and the risk of being caught 

in a fixed region is reduced vice versa. 

3. No additional information about objective value of function like derivatives is used by 

normal genetic algorithms. It can therefore be used in the event of continuous or discreet 

optimization problems. Only a valuable decoding function should be specified. 

4. Deterministic transitional operators are applied by GAs while conventional continuous 

optimisation methods. In particular, there are some random components of how a new 

generation is determined from the current one (examples are shown later).   
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3.5.1 Binary Strings Genetic Operations 

3.5.1.1 Selection 

The solution algorithm is chosen by preferred fitness people rather than fitness fitness people. It 

may be a decisive task, but it has random components in most implementations. The following 

version is very popular now, where the chances of selecting a certain person are proportional to 

their health, (We will give a theory explaining the good properties later). A random function 

experiment can be considered: 

P[bj, t is selected] =
f(b𝑗,𝑡)

∑ f(b𝑘,𝑡)𝑚
𝑘=1

                                           (3.13) 

Of course, only when all fitness values are good is this formula meaningful. Unless this is the case, 

in the simplest case the transformation 5 - 0 · does not decrease. (In the simplest case the shift 

should be applied). The likelihood can be expressed 

P[bj, t is selected] =  
𝜑(f(b𝑗,𝑡))

∑ 𝜑(f(b𝑘,𝑡))𝑚
𝑘=1

                                      (3.14) 

By random test, a generalized Roulette Game, to some degree we can force the property (2.1) to 

be met. The slotes are not as wide in this roulette game, i.e. the various results can take place with 

different probabilities. The graphic indication of how this wheel game works is provided by Figure 

2.1. 

 

3.5.1.2 Crossover 

When parents mix up their gametes, the genetic materials of both parents are mixed as they appear 

in the real world. As a result, certain genes are generated by one parent and the other parents. 

Chromosomes are generally divided and combined randomly. 
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Figure 3.8: A graphic representation of selection of roulette wheels with 6 alternatives m. The numbers 

within the arcs correspond to the likelihood of selecting the alternative. 

This is known as the crossover mechanism. It is an excellent tool for the introduction of new 

genetic resources and for preserving genetic diversity, but also for providing better children or 

good parents. Several studies have found that crossover is why species sexually adapted to 

reproduce faster than those that asexually replicate. Crossover is primarily gene exchange for both 

parents ' chromosomes. You can achieve this by randomly selecting two strings and in the simplest 

case, changing the two tails. In figure 2.2 this process is called a crossover with one point below. 

 

Figure 3.9: One-point crossover of binary strings 
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One - point crossover for Gas that operates on binary strings is a simple and common method. 

Additional methods of crossover can be useful or even necessary for other problems or different 

coding. 

N-point crossover: N breaking points are randomly selected instead of just one. Each section is 

exchanged. Two crossover points are especially important for this class. 

Segmented crossover: This is similar to N - point crossroads, as the breaking points differ. 

Uniform crossover: It is randomly decided whether the positions are exchanged for each position. 

Shuffle crossover: The first two parents receive a randomly selected permutation, then the 

shuffled parents receive the N point cross, and then the shuffled kids return the other way round. 

3.5.2 Mutation 

Mutation — a random deformation of an individual's genetic data by radioactivity or other 

environmental influences is the ultimate part of our genetic algorithm. The probability of a 

mutation of a certain gene for all genes is nearly equal. In real reproduction Pm should of course 

be quite low to prevent the GA from acting like random searches chaotically. Again, it is coding 

and the problem itself that are the choice of the correct mutation method, similar to a crossover. 

Single bit reversal: One bit is randomly rejected with probability Pm. 

Bitwise inversion: The entire string with prob pm is gradually inverted.  

Random selection: The string is replaced by an altered selected one with the probability 

Pm. 

 

3.5.3 Examples 

3.5.3.1 Simple Example 

Take into account the problem of finding the maximum global function: 
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𝑓1: {0, … , 31} → 𝑅 

𝑥 → 𝑥2                                                     (3.15) 

Of course, it is obvious but it is possible to calculate some steps alone in order to obtain insight 

into genetic algorithms by the simplicity of this problem. 

Of courses, a good string space along with the relevant coding and decryption scheme will 

naturally be the first step in the checklist. In order to do GA work, this is necessary. In this example, 

S >{ 0, 1}5, where a value of{ 0 is close to hand, can be considered. The binary representation of 

31} is coded. A string is decoded as a consequence 

𝑐(𝑠) = ∑ 𝑠[4 − 𝑖]. 2𝑖4
𝑖=0                                            (3.16) 

Assume that with a population size of m = 4 we have Algorithm 2, 5 as it is with a crossover 

likelihood of Pc = 1 and Pm mutation likelihood = 0,001. When we randomly calculate the first 

generation with a consistent distribution over {0, 1}5, in the first step we obtain the following: 

Individual No. String (genotype) x value (phenotype) f(x) = x2 Pselecti  
𝑓𝑖

∑ 𝑓𝑖
 

1 0 1 1 0 1 13 169 0.14 

2 1 1 0 0 0 24 576 0.49 

3 0 1 0 0 0 8 64 0.06 

4 1 0 0 1 1 19 361 0.31 

 

The fitness value is 1170, where the average is 293 and the maximum is 576. It can easily be 

calculated. The last column shows that proportional selecting favors people with high fitness 

conditions (as No. 2) compared to those with low fitness (as No. 3). 
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Set of selected 

individuals 

Crossover site 

(random) 

New population X value F(x) 

X2 

0 1 1 0 |1 4 0 1 1 0 0 12 144 

1 1 0 0 | 0 4 1 1 0 0 1 25 625 

1 1 | 0 0 0 2 1 1 0 1 1 27 729 

1 0 | 0 1 1 2 1 0 0 0 0 16 256 

 

Thus we obtain an average of 439 and a maximum of 729 fitness values from the new generation 

of 1754. This very basic example shows how selection favors qualified people and how cross-over 

between two parents can create a baby even better than the two parents. The reader is left to follow 

this example as an exercise. 

 

3.5.3.2 A One - Dimensional Oscillating Feature 

Now we want to know how much the function can achieve globally 

𝑓2 ∶ [−1, 1]  →   𝑅                                                        (3.17) 

𝑥 →   1 +  𝑒−𝑥2
. cos(36𝑥)                                                (3.18) 

The function can be seen from the plots in Figure 2.3 and has a global maximum of 0 and numerous 

local maximums. Firstly, the search space [−1, 1] must be discretized in order to work with binary 

strings. A uniform grid of 2n points is common practice and grid points are listed then and the 

binary representation of the index is employed as a codification. 

The algorithm reaches the global high point after 52 generations, with an average of 52x 6= 312 

fitness evaluations, and the search area's total size is 216= 65536. At least in this example, we can 

conclude that the GA is definitely better than the random search or the comprehensive method 

which scans the entire search area dumbly. Take 011111111111111 to find out more about the 



 38 

coding / decoding scheme. The number of the integer is 32767. Decoding function rates are 

computed 

−1 + 32767 .
1−(−1)

65535
=  −1 + 0.9999847 =  −0.0000153                      (3.19) 

3.5.3.3 A Two-Dimensional Function 

In this example we find that the GA definitely is much faster than a big or random algorithm for 

research. The problem comes with a smooth f3, which results can be achieved using a standard 

method by changing the initial values. The maximum global (0, 0) is obviously circled by the 

minimum ring and in this example has a radius of 𝜋/2. The global maximum is likely to converge 

when this is an original value, but only for example when BFGS is used (Broyden Fletcher 

Goldfarb Shanno, an efficient Quasy - Newton method for continuous uncontrolled optimization 

of functions [10]). The chance of the corresponding neighborhood value is the maximum when the 

initial value is assumed randomly by [−10, 10]. 

(
𝜋

2
)

2
.  𝜋

10 .10
=  

𝜋3

400
= 0.0775                                                 (3.20) 

Consequently, until an initial value is reached, the expected test number is 1/0.0775/13. The BFGS 

method with line search required the right global optimum during test implementation of the BFGS 

method for 15 tests (random initial values). For these computations, the total time for SGI O2 

(MIPS R5000/180SC) was 5 milliseconds. As mentioned above, it took 1.5 seconds for the genetic 

algorithm to be compared to the global optimum.  

This example demonstrates that GAs are not necessarily quick. In addition, in many cases the 

methods involved in derivatives are much slower than conventional ones. The next example, 

however, dramatically demonstrates that even fluid functions in conventional optimization 

techniques are difficult to implement. 
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3.5.4 Genetic Programming 

In their daily practice, mathematicians and computer scientists only search for programs that 

correctly solve the problems. You usually attempt to design such programs based on your 

knowledge, underlying principles, mathematical models, intuition and so on. The questions of 

Koza look somehow utopian and provocative. However, his answers are remarkable and worthy 

of further discussion here. The basic idea is simple but appealing–the problem of automatic 

program induction should involve genetic algorithms. All we need to do is change all the genetic 

techniques that we have talked about so far. Random initiation, connection and mutation are 

involved. We need nothing new to choose and sample, because these processes are independent 

from the display of the data. 

Of course, that sounds great. However, the question arises as to whether this type of genetic 

programming (GP) is working. Koza starts with a rather vague hypothesis in his remarkable 

monograph [30]. 

The Paradigm of genetic programming: Provided that we have a resolvable problem, a 

definition for a suitable programme, a sufficient number of representative test examples, WWa 

genetic algorithm can determine which (approximately) program solves the problem and provides 

us with sufficient representative test examples. It appears to be a question of faith. This hypothesis 

has not been demonstrated by anyone so far and it is doubtful whether this is ever possible. Rather 

than providing evidence, Koza has developed many well - chosen examples which empirically 

highlight his hypothesis. The successful solutions with GP include: 

• Control of the process (inverted pendulum bang bang control) 

• Logistics (simple robotic control, problems with stacking) 

• Automatic scheduling (pseudo - random number generators, ANN design) 

• Game strategies (Poker, Tic Tac Toe) 

• Inverse kinematics 

• Classification 
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• Symbolic computation: 

o Sequence induction (Fibonacci sequence, etc.) 

o Symbolic regression 

o Solve equations (functional, differential and integral equation power series - based 

solutions) 

o Symbolic differences and integrity 

o Trigonometric identity discovery automatically 

A brief introduction to genetic programming has been given in this chapter. We will focus on the 

basic methodological problems and will omit detailed examples. 

 

3.6 TRAINING OF ARTIFICIAL NEURAL NETWORKS 

The neural biological computing systems that make up animal brains are artificial neural networks 

or connecting systems. Such systems learn tasks by following examples, usually without task-

specific programming (a step towards improvements in performance). You can learn how to 

identify images that contain the Cats and use the results to identify the Cats in the other images 

through the analysis of flames that manually mark "cat" or "no-cat." They don't know cats, for 

example, fur, tails, whiskers and cat - like faces. Rather, from the learning material they are 

processing they develop their own set of relevant features. An ANN is based on an artificial 

neuronal collection which is linked with the unit or node (analogous to biological neurons in the 

animal brain). Any link between artificial neurons (similar to a synapse) can signal them. The 

artificial neuron receiving the signal can proceed and signal the connected artificial neurons. 

In the common ANN implementation, the signal is an actual value in the relation between artificial 

neurons, and the output is calculated by a nonlinear input sum function from each artificial neuron. 

Artificial neurons and connections usually weigh in accordance with learning. The weight 

increases or lowers the signal strength of the connection. An artificial neuron threshold can only 

be present if the aggregate signal crosses this threshold. Artificial neurons are usually arranged in 
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layers. Inputs can be converted into different types by different layers. Signals travel from the first 

layer to the last layer (output), maybe several times after the layers have been passed through. 

The original objective of the ANN approach was to solve problems like the human brain. The 

focus was over time on matching specific mental skills that lead to biodiversity. Different tasks 

such as computer vision, speech recognition, machine translation, social network filtering, video 

games and playboards and medical diagnosis are performed using ANNs. This section shows a 

training process that optimizes ANN performance through BP and GA algorithms. 

 

3.6.1 Training Artificial Neural Networks with Backpropagation. 

The method of gradient descent includes the derivatives of the squared error function with respect 

to the weight of the network. This is usually done in return. The squared error function takes the 

following:  

𝐸 =
1

2
(𝑡 − 𝑦)2                                                        (3.21) 

where 

E is the error squared, 

t is the target output for a sample training, and 

y is the current output of neuron output. 

 

The 1/2 factor in the exponent is distinguished. Then the term is increased by an arbitrary learning 

rate. Whether a continuous coefficient is implemented now is not important. 

 

 

For each neuron j, its output oj is defined as 
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𝑜𝑗 = 𝜑(𝑛𝑒𝑡𝑗) = 𝜑(∑ 𝑤𝑘𝑗𝑜𝑘
𝑛
𝑘−1 )                                           (3.22) 

The netj input for the neuron is the weighted sum of previous neuron outputs. The ok of the input 

layer is simply a xk input in the network. If the neuron is in the first layer after the input layer. The 

input units in the neuron are numbered by n. The wkj variable shows the weight from the neuronal 

to the j. 

β is non - linear and distinctive with the activation funktion. The logistic function is a commonly 

used activation feature: 

𝜑(𝑧) =
1

1+𝑒−𝑧                                                          (3.23) 

which has a convenient derivative of: 

𝑑𝜑

𝑑𝑎
= 𝜑(𝑎)(1 − 𝜑(𝑎))                                                  (3.24) 

Identifying the error derivative 

Twice by the chain rule is calculated the partial derivation of an error in relation to a wij: 

𝜗𝐸

𝜗𝑤𝑖𝑗
=

𝜗𝐸

𝜗𝑜𝑗

𝜗𝑜𝑗

𝜗𝑛𝑒𝑡𝑗

𝜗𝑛𝑒𝑡𝑗

𝜗𝑤𝑖𝑗
                                                   (3.25) 

In the last right side factor of the foregoing wix depends only one term in the sum neth 

𝜗𝐸

𝜗𝑛𝑒𝑡𝑗
=

𝜗

𝜗𝑤𝑖𝑗
𝜑(∑ 𝑤𝑘𝑗𝑜𝑘

𝑛
𝑘−1 ) =  

𝜗

𝜗𝑤𝑖𝑗
𝑤𝑖𝑗𝑜𝑖 = 𝑜𝑖                              (3.26) 

When the first layer of the neuron after the input layer is, oi is only XI. 

With respect to the input, only the active function parameters are a derivative of neuron j output 

(if logistics function is used): 

𝜗𝑜𝑗

𝜗𝑛𝑒𝑡𝑗
=

𝜗

𝜗𝑛𝑒𝑡𝑗
𝜑(𝜗𝑛𝑒𝑡𝑗) =  𝜑(𝜗𝑛𝑒𝑡𝑗)(1 − 𝜑(𝜗𝑛𝑒𝑡𝑗))                          (3.27) 

That is why a differentiated activation function is required for back propagation. (The activation 

function of ReLU, which cannot be differentiated by 0, is very popular in the recent past, for 

instance in AlexNet) 
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The first factor to evaluate is simple, because then oj = y and if the neuron is in the output layer. 

𝜗𝐸

𝜗𝑜𝑗
=

𝜗𝐸

𝜗𝑦
=

𝜗

𝜗𝑦

1

2
(𝑡 − 𝑦)2 =  𝑦 − 𝑡                                           (3.28) 

But if j is within an arbitrary inner network layer, it is less obvious to determine derivative E with 

respect to the oj. 

𝜗𝐸(𝑜𝑗)

𝜗𝑜𝑗
=

𝜗𝐸(𝑛𝑒𝑡1,𝑛𝑒𝑡2… 𝑛𝑒𝑡𝑢)

𝜗𝑜𝑗
                                                (3.29) 

Taking into account E as a function where all neurons are inputs (L=1, 2 ... u) 

𝜗𝐸

𝜗𝑜𝑗
= ∑

𝜗𝐸

𝜗𝑛𝑒𝑡𝑗

𝜗𝑛𝑒𝑡𝑗

𝜗𝑜𝑗
𝜕∈𝐿 = ∑

𝜗𝐸

𝜗𝑜𝑗

𝜗𝑜𝑗

𝜗𝑛𝑒𝑡𝑗
𝑤𝑗𝜕𝜕∈𝐿                                 (3.30) 

Thus, if all derivatives are known with respect to oj — that which is closer to the neuron output 

— the derivative with regards to oj can be calculated. Combining everything: 

𝜗𝐸

𝜗𝑤𝑖𝑗
= 𝜕𝑗𝑜𝑖                                                         (3.31) 

In 1960 Henry J. Kelley and 1961 Arthur E. Bryson derived the basics of continuous back-

propagation from control theory. They have used dynamic programming principles. A simple 

derivation based only on the chain rule was published in 1962 by Stuart Dreyfus. This is a multi - 

phase method used to optimize dynamic systems by Bryson and Ho in 1969. 

In the beginning of the 1960's, background propagation was derived by a number of researchers 

and launched by Seppo Linnainmaa as early as 1970, for instance Arthur E. Bryson and Yu-Chi 

Ho, among the researchers of the 1960s. After a careful analysis in his PhD dissertation in 1974, 

the first person to propose use for neural networks in the United States was Paul Werbos. The prize 

for work of David E. Rumelhart was awarded in 1986 to Geoffen E. Hinton, Ronald J. Williams 

& James McClelland. 

The general automated differentiation (AD) method of discernible connected networks for nestled 

differentiating functions was issued by Linnainmaa in 1970. This is the backbone that even with 

sparsely networked networks is efficient. Backpropagation was used in 1973 by Dreyfus to adapt 

controller parameters in proportion with error gradients. Werbos noted the potential to apply this 
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principle to neural artificial networks in 1974, and in its current application on neural networks 

employed the Linnainmaa AD Method in 1982. 

In 1986, Rumelhart, Hinton and Williams proved that the process could produce useful internal 

images of inbound data in hidden layers in neural networks. Wan was the first winner in 1993 of 

an international competition for pattern recognition. In the 2000s it was disadvantageous, but it 

came back in 2010 with cheap, high-performance computer systems based on GPUs. In particular, 

research was conducted into linguistic structures, where connectivity models could explain a 

number of first language and second language learning phenomes using this algorithm. 
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4. IMPLEMENTATION AND RESULTS 

This chapter presents the extensive simulation results for methods investigated in this project is 

Genetic Algorithm optimized structured Artificial Neural Network trained by Backpropagation 

GA (ANN-BP) by using research data source (Lung Cancer Dataset). We implemented the ANN 

using GA algorithm to optimize the parameters of ANN to train and test this research’s dataset 

using BP in order to measure the different performance parameters. 

Comparative Results 

We used the 70 % training and 30 % testing scenario with varying number neurons of the hidden 

layer is 20 GA (ANN-BP). 

Diabetes Dataset Results 

First we present the individual for GA (ANN-BP) using Lung Cancer dataset. We used 5 neurons 

the hidden layer. Figure 1 and 2 are showing the fitness or Root Mean Squared Error (RMSE) or 

error outcomes by using the existing GA (ANN-BP) approach for 100 iterations for GA and 200 

for backpropagation. 

Figure 1 contains the error calculation process for 100 iterations GA for parameters and 200 

iterations for artificial neural network training with 5 neurons in the hidden layer. Figure 2 contains 

the prediction and the classification of artificial neural network compared with the targets attribute 

in the dataset. 
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Figure 4.1: Error graph performance using GA (ANN-BP) 

 

Figure 4.2: Error graph performance using GA. 
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Table 4.1: The Results of Both GA(ANN-BP) and GA 

 GA(ANN-BP) GA 

Training Error (Fitness/RMSE) 0.1067 0.13050075872534137 

Training Accuracy 89.33% 86.949924127465863 

Testing Error(Fitness/RMSE) 0.08726 0.14110091743119256 

Testing Accuracy 91.274% 85.889908256880744 

Training Sensitivity 0.950079 0.912047 

Training Specificity 0.883084 0.837574032 

Testing Sensitivity 0.949879 0.892587 

Testing Specificity 0.908452 0.84256799 

 

Table 4.1 contains the results for the method according to Figure 4.1 and Figure 4.2 which show 

the training error and accuracy, testing error and accuracy (using RMSE as a fitness function) and 

both the specificity and sensitivity for training and testing. 
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Figure 4.3: Testing performance of GA(ANN-BP) 
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5. CONCLUSION 

The comparative results showing that using the advantages novel BP algorithm with GA parameter 

modification we can able to optimize the performance of ANN training and testing to solve the 

real time problems. From these experiments, we observed that the fitness functions that generated 

the ANN with the best weighted recognition rate were those that used the classification error. The 

modified BP was compared in terms of the accuracy, error rate, sensitivity rate, specificity rate 

and accuracy rate for both training and testing perspective with other researchers. The modified 

BP algorithm achieved the greate performance. The transfer functions that more often were 

selected for each algorithm were: the Gaussian functions for the basic BP algorithm; the sinusoidal 

function for modified BP algorithm. In general, the ANNs designed with the proposed 

methodology were very promising. The proposed methodology automatically designs the ANN 

based on determining the set connections, the number of neurons in hidden layers, the adjustment 

of the synaptic weights, the selection of bias, and transfer function for each neuron. 

 

5.1 SUGGESTIONS 

In this research work, we perform the ANN training using modified BP algorithm using the 

research datasets. For future suggestions we want to perform below points: 

- The current evaluation is based on single class problems for classification, however under 

the real time scenario this will not be the case always. So we suggest evaluating the 

performance of proposed model using multi-class datasets. 

Second point is, the consideration of more real time will be the interesting future direction for this 

research work. 
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APPENDIX 

# -*- coding: utf-8 -*- 

""" 

Created on We Jan 23 15:22:03 2019 

@author: Mohammed Khalaf Abdullah 

""" 

 

# Back-Propagation Neural Networks supported by Genetic algorithm for parameter optimization 

#  

# Written in Python.  See http://www.python.org/ 

 

import math 

import random 

import string 

import csv 

import numpy as np 

import pandas as pd 

import matplotlib.pyplot as plt 

 

 

random.seed(0) 
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# calculate a random number where:  a <= rand < b 

def rand(a, b): 

    return (b-a)*random.random() + a 

 

# Make a matrix (we could use NumPy to speed this up) 

def makeMatrix(I, J, fill=0.0): 

    m = [] 

    for i in range(I): 

        m.append([fill]*J) 

    return m 

 

# our sigmoid function, tanh is a little nicer than the standard 1/(1+e^-x) 

def sigmoid(x): 

    return math.tanh(x) 

 

# derivative of our sigmoid function, in terms of the output (i.e. y) 

def dsigmoid(y): 

    return 1.0 - y**2 

 

class NN: 
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    def __init__(self, ni, nh, no): 

        # number of input, hidden, and output nodes 

        self.ni = ni + 1 # +1 for bias node 

        self.nh = nh 

        self.no = no 

 

        # activations for nodes 

        self.ai = [1.0]*self.ni 

        self.ah = [1.0]*self.nh 

        self.ao = [1.0]*self.no 

         

        # create weights 

        self.wi = makeMatrix(self.ni, self.nh) 

        self.wo = makeMatrix(self.nh, self.no) 

        # set them to random vaules 

        for i in range(self.ni): 

            for j in range(self.nh): 

                self.wi[i][j] = rand(-0.2, 0.2) 

        for j in range(self.nh): 

            for k in range(self.no): 

                self.wo[j][k] = rand(-2.0, 2.0) 
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        # last change in weights for momentum    

        self.ci = makeMatrix(self.ni, self.nh) 

        self.co = makeMatrix(self.nh, self.no) 

 

    def update(self, inputs): 

        if len(inputs) != self.ni-1: 

            raise ValueError('wrong number of inputs') 

 

        # input activations 

        for i in range(self.ni-1): 

            #self.ai[i] = sigmoid(inputs[i]) 

            self.ai[i] = inputs[i] 

 

        # hidden activations 

        for j in range(self.nh): 

            sum = 0.0 

            for i in range(self.ni): 

                sum = sum + self.ai[i] * self.wi[i][j] 

            self.ah[j] = sigmoid(sum) 
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        # output activations 

        for k in range(self.no): 

            sum = 0.0 

            for j in range(self.nh): 

                sum = sum + self.ah[j] * self.wo[j][k] 

            self.ao[k] = sigmoid(sum) 

 

        return self.ao[:] 

 

    def backPropagate(self, targets, N, M): 

        if len(targets) != self.no: 

            raise ValueError('wrong number of target values') 

 

        # calculate error terms for output 

        output_deltas = [0.0] * self.no 

        for k in range(self.no): 

            error = targets[k]-self.ao[k] 

            output_deltas[k] = dsigmoid(self.ao[k]) * error 

 

        # calculate error terms for hidden 

        hidden_deltas = [0.0] * self.nh 
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        for j in range(self.nh): 

            error = 0.0 

            for k in range(self.no): 

                error = error + output_deltas[k]*self.wo[j][k] 

            hidden_deltas[j] = dsigmoid(self.ah[j]) * error 

 

        # update output weights 

        for j in range(self.nh): 

            for k in range(self.no): 

                change = output_deltas[k]*self.ah[j] 

                self.wo[j][k] = self.wo[j][k] + N*change + M*self.co[j][k] 

                self.co[j][k] = change 

                #print N*change, M*self.co[j][k] 

 

        # update input weights 

        for i in range(self.ni): 

            for j in range(self.nh): 

                change = hidden_deltas[j]*self.ai[i] 

                self.wi[i][j] = self.wi[i][j] + N*change + M*self.ci[i][j] 

                self.ci[i][j] = change 
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        # calculate error 

        error = 0.0 

        for k in range(len(targets)): 

            error = error + 0.5*(targets[k]-self.ao[k])**2 

        return error 

    def test(self, patterns): 

        for p in patterns: 

            print(p[0], '->', self.update(p[0])) 

 

    def weights(self): 

        print('Input weights:') 

        for i in range(self.ni): 

            print(self.wi[i]) 

        print() 

        print('Output weights:') 

        for j in range(self.nh): 

            print(self.wo[j]) 

 

    def train(self, patterns, iterations=10000, N=0.5, M=0.1): 

        # N: learning rate 

        # M: momentum factor 
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        Err=[0] * iterations; 

        for i in range(iterations): 

            error = 0.0 

            for p in patterns: 

                inputs = p[0] 

                targets = p[1] 

                self.update(inputs) 

                error = error + self.backPropagate(targets, N, M) 

                Err[i] = error; 

            if i % 100 == 0: 

                print('error %-.5f' % error) 

            if i==iterations-1: 

                plt.plot(Err) 

 

def demo(): 

    # Teach network XOR function 

    reader=pd.read_excel('bc.xlsx') 

    newreader=np.matrix(reader) 

    pat = newreader.tolist() 

 

    # create a network with two input, two hidden, and one output nodes 
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    n = NN(3, 2, 1) 

    # train it with some patterns 

    n.train(pat) 

    # test it 

    n.test(pat) 

    print(pat) 

    print(newreader) 

 

if __name__ == '__main__': 

    demo() 


