

T.C.

ALTINBAŞ UNIVERSITY

Electrical and Computer Engineering

BLOCKCHAIN AS A SOLUTION TO ACCESS

CONTROL IN IOT SYSTEMS

Montdher Abed Almahdi Abedali Alabadi

Master Thesis

Supervisor

Oguz Ata

Istanbul (2019)

BLOCKCHAIN AS A SOLUTION TO ACCESS CONTROL IN IOT

NETWORKS

by

Montdher Abed Almahdi Abedali Alabadi

Electrical and Computer Engineering

Submitted to the Graduate School of Science and Engineering

in partial fulfillment of the requirements for the degree of

Master of Science

ALTINBAŞ UNIVERSITY

2019

iii

This is to certify that we have read this thesis and that in our opinion it is fully adequate, in scope

and quality, as a thesis for the degree of Master of Science.

Asst. Prof. Dr. Oğuz Ata

 Supervisor

Examining Committee Members (first name belongs to the chairperson of the jury and the

second name belongs to supervisor)

Prof. Dr Hasan Hüseyin Balık

Air Force Academy,

 National Defence University __________________

Asst. Prof. Dr. Oğuz Ata

Software Engineering,

 Altinbas University __________________

Prof. Dr. Osman Nuri Uçan

Electrical and Electronic

Engineering, Altinbas

University __________________

I certify that this thesis satisfies all the requirements as a thesis for the degree of Master of

Science.

 iv

I hereby declare that all information in this document has been obtained and presented in

accordance with academic rules and ethical conduct. I also declare that, as required by these

rules and conduct, I have fully cited and referenced all material and results that are not

original to this work.

Montdher Alabadi

 v

DEDICATION

To my parent ,my wife, my brothers and all my dear friends without whom this achievement

could not be completed.

 vi

ACKNOWLEDGEMENTS

I would like to thank my thesis advisor Asst.Prof . Dr Oğuz Ata for his suggestion to work in the

area of Blockchain which was very interesting in additional to his intention during all stages of

this thesis.

 vii

ABSTRACT

BLOCKCHAIN AS A SOLUTION TO ACCESS CONTROL IN IOT

NETWORKS

Alabadi, Montdher Abed Almahdi Abedali

M.S, Electrical and Computer Engineering, Altınbaş University,

Supervisor: Dr. Oguz Ata

Date: 04/2019

Pages: 71

One of the most interesting technologies in our current and future era is Internet of things

(IOT) systems. It has a great impact on our lives. Day by day, the dependence on these

systems is becoming larger, and this dependence may be related directly to human lives, such

as health care system. However, every technology has its security and privacy concerns, and

these concerns become more dangerous when it’s related to human lives. One of these

concerns is the access management that controls who can access the system and how. This

concern becomes more dangerous when taking the limitations of the IOT device into

consideration. In this thesis, we propose a new system architecture for Access Control in IOT

systems using a blockchain system which is domain-based. This system is lightweight by

using cache and a block list concept that is fully controlled by leveraging both the centralized

and decentralized management approaches. Our suggested system is supported by a multi-

scenario implementation backed with evaluation and analysis that show the power of the

blockchain technology to manage access control in IOT systems.

Keywords: Blockchain, Sensor Network Security, Access Control

 viii

TABLE OF CONTENTS

Pages

ABSTRACT ... vii

LIST OF FIGURES .. xii

LIST OF ABBREVIATIONS .. xv

1. INTRODUCTION ... 1

1.1 CONTRIBUTIONS ... 2

1.2 LITERATURE REVIEW .. 3

1.3 METHODOLOGY .. 4

2. INTERNET OF THINGS ... 6

2.1 OVERVIEW .. 6

2.2 IOT ARCHITECTURE .. 7

2.2.1 Physical Devices .. 8

2.2.2 Gateways .. 8

2.2.3 Pre-Processing Services ... 8

2.2.4 Storage Systems ... 10

2.3 IOT CONNECTION TYPES ... 10

2.4 IOT PROTOCOLS .. 11

2.4.1 Application and Messaging layer Protocols ... 12

2.4.2 Network and Transport Layer Protocols .. 14

2.4.3 Physical and Communication Layer Protocols ... 14

2.4.4 Other Protocols... 15

2.5 SECURITY CHALLENGES IN IOT .. 16

2.5.1 Physical Layer .. 16

2.5.2 Network and Transport Layer ... 16

2.5.3 Application Layer ... 17

2.6 IOT AND BLOCKCHAIN .. 18

file:///C:/Users/MONTDHER/Desktop/thesis%20MOntdher.docx%23_Toc5742608

 ix

3. BLOCKCHAIN TECNLOGOY .. 19

3.1 OVERVIEW .. 19

3.2 ARCHITECTURE ... 20

3.3 COMPONENTS OF BLOCKCHAIN ... 20

3.4 BLOCKCHAIN WORKFLOW ... 23

3.5 BLOCKCHAIN IMPLEMENTATION .. 25

3.6 ETHEREUM ... 27

3.6.1 Ethereum Architecture and Core Component .. 27

3.6.1.1 Ethereum accounts .. 27

3.6.1.2 Ethereum virtual machine ... 27

3.6.1.3 Smart contract ... 27

3.6.1.4 Keys .. 28

3.6.1.5 Transaction and messages ... 28

3.6.1.6 Ether .. 28

3.6.1.7 Gas .. 28

3.6.1.8 Solidity .. 29

3.6.2 Ethereum Workflow .. 29

3.7 BLOCKCHAIN LIMITATIONS .. 30

4. DOMAIN-BASED SYSTEM .. 31

4.1 SYSTEM COMPONENTS ... 31

4.1.1 IOT Devices ... 31

4.1.2 Domain Interface .. 32

4.1.3 Domain Agent .. 32

4.1.4 Server .. 32

4.1.5 Miners ... 33

4.1.6 Smart Contract ... 33

4.1.6.1 Local contract ... 33

 x

4.1.6.2 Global contract .. 34

4.2 SYSTEM OPERATION ... 36

4.2.1 Same Domain Access .. 37

4.2.2 Different Domain Access .. 39

4.3 SYSTEM ASSUMPTION .. 41

5. IMPLEMENTATION ... 42

5.1 SYSTEM COMPONENTS IMPLEMENTATION .. 42

5.1.1 Domain Agent .. 42

5.1.2 Domain Interface .. 42

5.1.3 Server .. 42

5.1.4 Smart Contract ... 43

5.1.5 Blockchain Network ... 43

5.2 EXPERIMENT CONFIGURATION ... 43

5.2.1 Hardware and Software Specification .. 43

5.2.2 Ethereum clients Setup ... 45

5.2.2.1 Laptops setup .. 45

5.2.2.2 Raspberry pi setup .. 47

5.2.3 Initiate Private Ethereum Network .. 49

5.2.4 Write and Deploy of Smart Contract... 51

5.4.5 Create of Domain Interfaces ... 56

5.5 RUN THE EXPERIMENT .. 58

6. RESULT AND DISCUSSION ... 59

6.1 RESULT .. 59

6.2 DISCUSSION .. 62

6.2.1 Performance Analysis .. 62

6.2.2 Security Analysis ... 63

6.2.3 System Limitation .. 63

 xi

6.3 CONCLUSION ... 64

6.4 FUTURE WORK .. 65

REFERENCES .. 66

APPENDIX A .. 71

 xii

LIST OF TABLES

Pages

Table 1.1 : Thesis Summary ... 5

Table 3.1 : Consensus Algorithm Summary ... 23

Table 4.1 : Resource List Illustration .. 33

Table 4.2 : Method List Illustration .. 35

Table 5.1 : Hardware Specification of The Experiment ... 44

Table 5.2 : Software Specification of the Experiment .. 44

Table 6.1 : Local Contract 1 Sample Data .. 59

Table 6.2 : Local Contract 2 Sample Data .. 59

Table 6.3 : Global Contract Sample Data ... 59

Table 6.4 : Gas Usage Using Local Contract Only ... 60

Table 6.5 : Gas Usage Using Global Contract .. 60

 xiii

LIST OF FIGURES

Pages

Figure 2.1 : IOT Architecture Diagram .. 9

Figure 2.2 : IOT Connection Types .. 11

Figure 2.3 : IOT Protocols .. 12

Figure 3.1 : Block Structure .. 22

Figure 3.2 : Blockchain Workflow ... 24

Figure 3.3 : Ethereum Workflow .. 30

Figure 4.1 : Domain-Based System Architecture ... 31

Figure 4.2 : Same Domain Access Scenario ... 38

Figure 4.3 : Local Access Algorithm .. 38

Figure 4.4 : Different Domain Access Scenario ... 40

Figure 4.5 : Global Access Algorith ... 40

Figure 5.1 : Genesis File ... 44

Figure 5.2 : Experiment Components Interconnection ... 45

Figure 5.3 : Genesis File Initialization .. 46

Figure 5.4 : Running Geth (Laptop) ... 46

Figure 5.5 : Create New Account (Laptop) .. 47

Figure 5.6 : Genesis File Initialization (Raspberry Pi) ... 48

Figure 5.7 : Running GeTH (Raspberry Pi) .. 49

Figure 5.8 : Create New Account (Raspberry Pi) ... 49

Figure 5.9 : Enode Command Execution .. 50

Figure 5.10 : Project Folder with Enode Configuration ... 50

Figure 5.11 : Static-nodes File .. 51

Figure 5.12 : Remix IDE ... 51

Figure 5.13 : Remix Compiler Options... 52

Figure 5.14 : Add New Contract ... 52

file:///C:/Users/MONTDHER/Desktop/thesis%20MOntdher.docx%23_Toc5742825
file:///C:/Users/MONTDHER/Desktop/thesis%20MOntdher.docx%23_Toc5742826
file:///C:/Users/MONTDHER/Desktop/thesis%20MOntdher.docx%23_Toc5742827
file:///C:/Users/MONTDHER/Desktop/thesis%20MOntdher.docx%23_Toc5742828
file:///C:/Users/MONTDHER/Desktop/thesis%20MOntdher.docx%23_Toc5742830
file:///C:/Users/MONTDHER/Desktop/thesis%20MOntdher.docx%23_Toc5742835
file:///C:/Users/MONTDHER/Desktop/thesis%20MOntdher.docx%23_Toc5742836
file:///C:/Users/MONTDHER/Desktop/thesis%20MOntdher.docx%23_Toc5742837
file:///C:/Users/MONTDHER/Desktop/thesis%20MOntdher.docx%23_Toc5742839
file:///C:/Users/MONTDHER/Desktop/thesis%20MOntdher.docx%23_Toc5742840
file:///C:/Users/MONTDHER/Desktop/thesis%20MOntdher.docx%23_Toc5742843
file:///C:/Users/MONTDHER/Desktop/thesis%20MOntdher.docx%23_Toc5742844

 xiv

Figure 5.15 : Connect to Ethereum Network 1 ... 53

Figure 5.16 : Connect to Ethereum Network 2 ... 53

Figure 5.17 : Connect to Ethereum Network .. 53

Figure 5.18 : Compile the Contract... 54

Figure 5.19 : Mining ... 54

Figure 5.20 : Deploy the Contract ... 55

Figure 5.21 : Get Address of the Contract .. 55

Figure 5.22 : Get the ABI of the Contract .. 56

Figure 5.23 : Monitor Interface ... 57

Figure 5.24 : Request Interface ... 58

Figure 6.1 : Same Domain Access Result ... 60

Figure 6.2 : Access Control Result with Cache List ... 61

Figure 6.3 : Access Control Result with Block List ... 61

file:///C:/Users/MONTDHER/Desktop/thesis%20MOntdher.docx%23_Toc5742846
file:///C:/Users/MONTDHER/Desktop/thesis%20MOntdher.docx%23_Toc5742847
file:///C:/Users/MONTDHER/Desktop/thesis%20MOntdher.docx%23_Toc5742849
file:///C:/Users/MONTDHER/Desktop/thesis%20MOntdher.docx%23_Toc5742851
file:///C:/Users/MONTDHER/Desktop/thesis%20MOntdher.docx%23_Toc5742854

 xv

IOT : Internet of things

P2P : Peer-To-Peer

HTTP : The Hypertext Transfer Protocol

JSON : JavaScript Object Notation

MQTT : Message Queuing Telemetry Transport

SSI : Simple Sensor Interface

Rest : REpresentational State Transfer

AMQP : Advanced Message Queuing Protocol

CoAP : Constrained Application Protocol

XMPP : Extensible Messaging and Presence Protocol

LLAP : Lightweight Local Automation Protocol

IPV6 : Internet Protocol Version 6

6LoWPAN : Low-Power Wireless Personal Area Network

MTU : Maximum transmission unit

RPL : The Routing Protocol for Low-Power and Lossy Networks

DTLS : Datagram Transport Layer

NanoIP : Nano Internet Protocol

BLE : Bluetooth Low-Energy

LTE : Long term evolution protocol

LoRaWAN : Low Power, Wide Area (LPWA) networking protocol

NB-IoT : Narrow-Band IoT

ANT : Ultra-Low-Power (ULP) Wireless Networking Protocol

LwM2M : Lightweight Machine to Machine (LWM2M) protocol

DDOS : Distributed Denial of Service

POs : Proof-Of-Stack Algorithm

LIST OF ABBREVIATIONS

 xvi

PBFT : The Practical Byzantine Fault Tolerance Algorithm

DPoS : Delegated Proof-Of-Stack Algorithm

EOA : Externally Owned Account

EVM : Ethereum Virtual Machine

Wei : Minimum Unit That Used on The Ethereum

UTC : Unix time- temp

API : Application Programming Interface

ABI : The Contract Application Binary Interface

 1

1. INTRODUCTION

Today, there is an unprecedented revolution in digital communication which has created a

huge impact on our society. This has shifted our world into becoming a digital universe.

Internet of things (IOT) is one of most technologies that have participated in

accomplishing the impact mentioned above. Simply, IOT devices are the devices which

have remote sensing and/or actuating capabilities and the ability to exchange data with

other connected devices and applications (directly or indirectly). Because of the limited

processing capabilities of IoT devices, it usually leverages externally controlled third

party service providers to do the additional data processing. This will create a huge

number of problems and challenges, one of these concerns is related to access control.

The doubt is how to offer a safe and trusted environment using devices that cause a big

limitation in processing, storage, and ability. Most access control management in the

current systems depends on “Centralized Access Control Systems”. This approach may

run into the need of a specific trusted environment, but when IOT devices need to be fluid

and demand management by various managers, it is unknown what will take place. Even

so, doing away with the central management is not the right procedure because it we lose the

power and advantages of central management [1]. The blockchain in the other hand is a

platform has robust security features, A blockchain is fundamentally decentralized,

distributed, shared, and an immutable database ledger that stores registry of assets and

transactions across a peer-to-peer (P2P) network. It has chained blocks of data that have

been timestamped and validated by miners. A domain-based system is our solution to

handle most of the weaknesses in IOT access control challenges. The solution is

presented as an architecture where IOT devices are located in separate virtual domains

and the interaction between devices will be governed by rules. These connections and

rules are implemented by utilizing the famous decentralized technology “blockchain”.

The integrating between blockchain with IOT allow us to also provide a trustworthy

environment that helps access management in IOT system, that’s because the blockchain

guarantee that the data remains immutable.

 2

 CONTRIBUTIONS

Growth of the IoT must be backed by standard suitable protocols, and operations in order to

reduce the existing limitation [2]. This may lead to huge side effects and concerns that could

trim down the adoption of the IoT. The trustworthiness of IOT data is likewise an important

topic to be wielded. Untrusted nodes or devices can alter information according to their own

interests, so the information they provide might not be completely satisfied. This led us to

search about what it needs to ensure that the information not altered in the stage of its motion.

Recently, Blockchain has been issued a robust technique [2], that can be applied to treat the

problem of privacy, trust, authorization and reliability, because of its ‘distributed ledger, that

can provide trustworthy services to a group of nodes without central government agency.

Even so, doing away with the central management is not the right procedure because it

makes us lose power and advantages of central management [1]. The heavy use of

cryptography, a key characteristic of blockchain networks, provide the security and

privacy behind all the interactions in the network. Smart contracts that reside on the

blockchain allow managing connection in the network with, distributed, heavily

automated workflows. And this our motivation by integrating blockchain with the Internet

of Things (IoT). The means to provide this trustworthiness in IoT network can be

accomplished by using distributed management where the information and its movement

is trusted and affirmed by all its participants that guarantees that the data remains

immutable [3]. This means data verification can make the data secured, beside that

trustworthiness can be accomplished. So, our main contribution in this work is as follows:

1. Using the blockchain technology to design a system architecture, allowing that system to

leverage the advantages of both centralized and decentralized management

approaches.The blockchain is used to provide decentralized management on executing

peer (subject or Access requester) -to-peer (object or access receiver device) connection.

On the other hand, the central server’s function is establishing the role and to give

permission for access between system entities.

 3

2. Using concepts of cache and block lists in smart contract design to reduce the

processing cost “which is gas in Ethereum” [4]. This will make our system lightweight,

which is very suitable for the IOT environment. This is demonstrated in the

implementation part of this dissertation.

3. Use of two types of contract in our system. The first one is the local contract, which is

specific to one domain, second one is the global contract. However, most access requests

are handled by executing local contracts only, other requests will require at most

executing global contracts in addition to the local contract. This approach will efficiently

reduce overall operating cost and complexity in the arrangement.

4. Use of domains in our domain-based architecture makes it suitable for application in

organizations with multiple geographical locations because devices with high trust level

can be together in the same domain and access control will apply by using local contract

only.

 LITERATURE REVIEW

There are many previous works about integrating IOT with blockchain in terms of access

control. In reference [5], the authors suggest a framework that consists of three types of

smart contracts that communicate among each other to provide access management.

However, this approach can lead to some unnecessary complexity because one contract

for each pair of devices (subject-object) as a structure requires high computation

capabilities as deploying many contracts and the communication between many contracts

could consume a lot of gas. In reference [6], access management is achieved by using a

single smart contract, and some managing nodes are responsible for managing several

IOT devices. However, this approach eliminates the advantage of centralized

management. Apart from that, the author does not provide an evaluation of the processes

inside the blockchain. In reference [7], the author suggests using a smart contract into the

voting system. As clear from the results, most of the system functions consume a huge

amount of gas, which can be considered as an unreliable aspect. In reference [8], the

authors provide such a good access control “Fair Access,” which uses a special type of

 4

transaction to demonstrate the system function, but the work depends on Bitcoin, which

is more expensive and less reliable.

 METHODOLOGY

Our methodology to achieve thesis goals or contributions will require working in five

stages , first finding the problem, suggestion or solution, development or implementation

,result evaluation and finally discussion .

Outline the problem can be keyed out from many sources such as from a reference discipline,

our thesis problem is about access control in IOT system. The solution to solve the thesis

problem is by integrating blockchain with IOT, because it’s the way that we can provide

trustworthiness in IOT data through a distributed service trusted by all its participants

which guarantee that the data remains immutable. Development will handle How to use

of blockchain features and collaborate it with current IOT that has limitation in terms of

memory, processing and power system. In our thesis, we will utilize Ethereum

blockchain because its ability to implement smart contracts which is basically a

computerized transaction protocol that executes the functions of the contract [9]. This

solution will be by implementing as an architecture that provide a high level of

reliability, privacy, authentication, and management depending on decentralized

mechanism provided by blockchain platform, this architecture will manage and secure

communication between system entities by enforcing and adopting an access

management algorithm that implement specific policies and access functions. The

proposed architecture will also be examined and valued in the actual environment with

actual devices and network entities, this evaluation will be given by utilizing different

scenarios which simulate the real scenario, all results collected from run time will

compare to an expected result. More specifically A domain-based system is our solution

to handle most of the weaknesses addressed previously. The solution is presented as an

architecture where IOT devices are in separate virtual domains and the interaction

between devices will be governed by rules. These connections and rules are implemented

by utilizing the famous decentralized technology “blockchain. Access management rules

will provide secure, authenticate fully controlled, peer (device) - to- peer (device)

 5

connection. When we talk about control and management we talk about key feature of

decentralized systems, because of “the control and management will be done using IOT

device itself so no server neither "third party" will involve in this process. Creation of

the above architecture will be involve using some blockchain ecosystem, these

ecosystems can allow us to initiate blockchain environment and provide the interfaces

need to communicate with IOT devices. The thesis structure summary is explained in

Table 1.1.

 Table 1.1: Thesis Summary

Chapter Name Aims

1 Introduction
Provide summary about thesis objective and

methodology to handle these objectives.

2 Internet of Things
Provide theoretical background about IOT

technology.

3 Blockchain Technology
Provide theoretical background about

Blockchain platform Explain briefly suggested.

4 Domain-Based System
Define and Explain suggested System

Architecture and included operations.

5 Implementation
 Experiment explanation to implement suggested

system operation under different scenarios

6 Evaluation

Collect the implementation results and discuss it

in term of security and performance and finalize

the thesis with a conclusion and future work.

 6

2. INTERNET OF THINGS

 OVERVIEW

‘Internet of Things (IoT)" is a modern communication platform that envisions a near

future, in which the things that we used it daily will be equipped with microcontrollers,

transceivers for digital communication, and suitable protocol stacks that will make them

able to be interconnected with each other and with the users [10]. It can be seen as a

distributed network of physical objects that can act on their environment and can

communicate with other machines or computers. According to the European Commission

[11], ‘Internet of Things (IoT) represents the shifting towards the digitization of our

world, where things and people are interconnected through communication networks and

report about their status and/or the surrounding environment. Next digital world will

contain a huge thing that provides information and services to the final users through

standard communication protocols and unique addressing schemes [12].The IoT visualizes

a totally connected world, where things are able to communicate measured data and interact

with each other.This makes possible a digital representation of the real world,through which

many smart applications in a variety of industries can be developed. These include: Smart

homes, Weareables, Smartcities, Healthcare, Automotive, Environment, Smart water,

Smartgrid, etc. IoT solutions are being deployed in many areas, optimizing production and

digitizing industries. IoT applications have very specific characteristics, they generate large

volumes of data and require connectivity and power for long periods

The Internet of Things connects the virtual world with the physical world. In the virtual

world, virtualization technique, software defined networks, cloud resource and big data

schemes are developing fast and need to be addressed as enabling technologies for the

Internet of Things. In the physical world, the new wireless technologies for personal,

home area networks, metropolitan and regional area networks, all promise to deliver

better economies of scale in terms of cost, energy and number of connections. Make

“Internet of Things” as enabler to our life requires a specified systems approach, intelligent

processing and sensing development, good connectivity, software and services, along with

an assistant system to interface with the smart of environment applications [13].

 7

 IOT ARCHITECTURE

Different requirement of different IOT networks makes building a general architecture for

it a hard work, because of its complexity and novelty [14]. This hardness has led to a huge

amount of structures for the practical implementation of IoT systems. Moreover,

Structuring of the IoT Architecture is affected by the weakness in widely accepted

Architecture models that can attract investments to promote the deployment of these

technologies. The big step towards creating a unified architecture to the internet of things

system is done In March 2015, the European Commission creates the Alliance for

Internet of Things Innovation (AIOTI) [15]. This alliance allows the intention of the

European Commission to work closely with all different users in different level of the

Internet of Things.The devices in IoT are uniquely identifiable and are mostly characterized

by low power, small memory and limited processing capability. The gateways are deployed to

connect IoT devices to the outside world for remote provision of data and services to IoT

users.

From all the above, we can define IoT is a complex structure of hardware, sensors,

applications and devices that need to be able to communicate with each other in different

ways. This requires shared standards to exchange data across different organizations.

Modern IOT architecture is mainly consists of 4 parts that work together to create

"Internet of Things "environment" as clear in the Figure 2.1 and these parts are:

1. Physical Devices

2. Gateways

3. Pre-processing Services

4. Storage Systems

 8

2.2.1 Physical Devices

The devices which have remote sensing and/or actuating capabilities and the ability to

exchange data with other connected devices and applications (directly or indirectly) [10].

Sensors are the devices that have the ability to transform the information obtained in the

outer world into useful data that can understand by other system component While

actuators, they are the devices are able to change the status of the physical reality [16].

For example, turn on light or pump.

2.2.2 Gateways

Gateways act as connector between physical devices and the storage part of the system.

Devices will connect to a gateway and the gateway then will move all that information to

storage part of the system. The gateways makes communicating paths much shorter in

distance which could positively affect charging or power source life.

Above connection is established by using varying protocols, which translate that data into

a standard protocol that can be sent to the storage part of the system [16]. Gateways can

help with pre-process services minimize overall system requirements. Gateways

sometimes can perform some computation on the gateway itself instead of storage part of

the system which consequently affect system latency Gateways can implement a number

of physical devices connected to the internet which make them the first line of defense.

For that the security must be a high priority for any gateway.

2.2.3 Pre-processing Services

They are services that used to filter, pre-process, aggregate or score IoT data. It uses the

power and flexibility that can provided by the storage part of the system to run complex

analytics on those data beside support decisions and actions [16]. Beside that these

services could apply additional processing before moving the data to storage part of the

system [17]. These services could install near to the physical device or in other places

depending on the prior plan.

 9

 Figure 2.1: IOT Architecture Diagram

 10

2.2.4 Storage Systems

IoT data usually coming from physical devices. Most of the IoT data (structured or

unstructured) will prepare to perform analytics functions to generate insights [16]. This

process requires high capacity storage capabilities, high-speed storage, and memory

processing technologies. IoT data are generally small, but due to this fact, it can quickly

add petabytes of data. An object storage is recommended for the storage of IoT as it can

accommodate an increasing number of data files into storage devices. Cloud service

providers are suitable as a storage due to this feature.

 IOT CONNECTION TYPES

According to previous section we can define connection types that occur inside IOT

environment depend on the source and destination of data as shown in Figure 2.2 and

These types are:

1. Device-to-Device: here both of source and destination are IOT device, this connection

occurs directly between devices without involving third parties. This connection is limited

in processing and usually unsecured because of nature of these devices [18].

2. Device- Gateway: this connection is the most frequently occurred in IOT network, this

connection type is the way for move IOT data between networks using the internet.

Nature of gateways and its suitable capabilities allow establishing required security

mechanisms in this connection type [18].

3. Gateway - Other Systems: third types of IOT connections is occurring between

gateways and pre-processing systems or directly between storage system and gateways.

This connection requires more attention and processing capabilities because it could

include using specific protocols, handling some security issues or mange synchronization

between source and destination [18].

 11

 Figure 2.2: IOT Connection Types

4. System-System: this connection occurs where the source is storage system and

destination are pre-processing system or vice versa. This connection required high

attention in term of data recovery and availability because it could deal with different

application and services inside each system [18].

 IOT PROTOCOLS

The limited capabilities of the IOT in term of processing, memory and power made use of

existing protocols inappropriate, and this reason why there is modified protocols and new

protocols to work within an IOT environment [2]. IOT depend on in a layered architecture

like what is existed in computer networks, which allow creating protocols to work in the

specified layer. A protocol in layered approach is shown in Figure 2.3. This layer

structure gives IOT the reliability in the management and control of moving data between

system component. So, we will explain each protocol in term of the layer that it works

within it.

 12

 Figure 2.3: IOT Protocols

2.4.1 Application and Messaging layer Protocols

1. HTTP: protocol that is common to use for distributed information systems. HTTP is

structured as a text that depend on logical links among nodes containing text [13]. HTTP

is the way to exchange logical links (hypertext). HTTP can consider as a request-

response protocol in the central management, computing model (client -server model).

The client starts the work by sending an HTTP request message to the server. The server,

where the files and data are stored, returns a response message to the client contains

information that requested by the client.

2. JSON: it is the way that IOT data can be exchanged between a variety of computer

languages. It is not just a protocol, but also can consider as an encoding format. JSON

enables structured data to be implemented as a text format that can be sent to the

destination [19]. JSON is usually used as complementary to work with other IoT

protocols that do their process of data structure serialization such as HTTP/Rest, MQTT.

For serializing and de-serializing structured data sent on their network, JSON

encoder/decoder must be used.

 13

3. SSI: (Simple Sensor Interface) this protocol makes is very easy to execute data transfer

between computers and IOT devices [13].

4. Rest: (REpresentational State Transfer) is an architectural style for developing web

services. REST is good for many applications because of its simplicity and because it can

be built upon existing systems and HTTP in order to achieve its advantages. Beside all this

REST is a reliable platform because of the fact the REST-based applications can be

developed using any language [13]. Finally, REST can be considered as diffusion platform

this because there are a variety of REST- based frameworks for helping developers in

both server and client side.

5. AMQP: (Advanced Message Queuing Protocol) this protocol provides many features

to the sent message such as orientation, queuing, routing, reliability and security [13, 18].

6. MQTT: (Message Queue Telemetry Transport) is a lightweight protocol for exchanging

IOT data between IOT devices and other IOT network systems. The protocol includes

three components: subscriber, publisher and broker. The publisher job as a pool of data

that’s will send a letter to subscribers [13, 18]. The broker checks publishers and

subscribers, in term of security mainly.

7. CoAP:(Constrained Application Protocol)"CoAP is a protocol that is common to use in

limited capabilities’ internet devices. Cap is designed to easily translate to HTTP to be

understandable in the web. CoAP has many features such as minimizing the complexity of

mapping with HTTP, reduce header overhead, Support for the identifying of resources

provided by known CoAP services [18, 20].

8. XMPP: (Extensible Messaging and Presence Protocol) a protocol designed for

connecting devices to other system components .XMPP uses the XML as a text format.

XMPP offers an easy way to identifying a device. XMPP cannot be considered as a fast

processing protocol. Also, XMPP very optimal in addressing, security, and scalability

which is very suitable consumer- oriented IoT applications [21].

 14

9. LLAP: (lightweight local automation protocol) it is a simply a short message that is

sent between specific devices (smart devices) using normal text [13].

2.4.2 Network and Transport Layer Protocols

1. IPV6: it is a network Layer protocol; its function is to provide end-to-end datagram

transmission across multiple IP networks and provide packet-switched inter-networking

[13].

2. 6LoWPAN: (low-power wireless personal area network) its modified version IPv6

protocol, this is because the fact that the size of the maximum transmission unit (MTU)

used by the IEEE 802.15.4 standard is small, it allows each IoT is uniquely identified by

an IPv6 network address [22].

3. RPL: The Routing Protocol for Low-Power and Lossy Networks (RPL) is used to

support 6LoWPAN environments. It operates connection with type point-to- point beside

communication between multi-points and single point [23].

4. DTLS: (Datagram Transport Layer) It is the protocol that is used to secure datagram

protocols. The protocol allows client/server applications to communicate in a way that is

designed to prevent fake, tampering of messages [2].

5. NanoIP: (nano Internet Protocol): this is the protocol that provides networking services

into embedded and sensor devices with minimal overheads [13].

2.4.3 Physical and Communication Layer Protocols

1. ZigBee: is a low-power, low data-rate wireless network protocol. ZigBee is mostly used in

industrial part. ZigBee make, it is possible for IOT devices to work securely on any

network [18].

2. BLE: (Bluetooth Low-Energy) it’s also called Bluetooth Smart. This protocol is

invented to deal with the IoT, because it is scalable and flexible to all needs in this area.

Beside its ability to reduce power consumption [18].

 15

3. Wi-Fi: this protocol allows the network to establish radio wireless networking of

devices. It has many features such as fast data transfer large amounts of data processing.

4. LTE: (Long term evolution): it is the protocol that is integrated into the existing cellular

infrastructure for 2G and 3G. LTE nature makes it ideal for IoT applications. Besides that,

the LTE guarantee high level of security in addition to scalable traffic management

capabilities [24] [18].

5. LoRaWAN: it a communication protocol between gateways and the end devices in

networks of battery-operated things beside support varying data rates [18].

6. NB-IoT: (Narrow-Band IoT) it is the protocol that standardized by the 3GPP standards

body. This protocol supports indoor coverage while using LTE spectrum [2].

7. ANT: it is a wireless protocol that enables device operating in the 2.4 GHz to

communicate between each other by control the connection according to specific standard

rules [13].

2.4.4 Other Protocols

1. LwM2M: (LightweightM2M): it is a device management protocol designed for IOT

devices and the requirement of machine-to-machine (M2M) environment. With LwM2M,

OMA. The LwM2M protocol, used mainly in remote management of M2M devices. It

has allowed operating by Constrained Application Protocol (CoAP) [2].

2. PKI: (public key infrastructure): it is security procedure which is used to implement a

high level of authentication, data encryption and digital signatures. Current PKI

technologies are difficult to use in resource-constrained devices, instead its run only in

the gateways. This protocol depends on in another technique to do the functions related

to IOT devices which called "X.509" [25].

 16

 SECURITY CHALLENGES IN IOT

Most researchers use a layered-based approach to describe the connection process

between IOT devices, to describe this process, they made the whole connection process

fall into three main layers which are application layer, network and transport layer and

physical layer [2].

Above layered approach makes it easy to analyze security and privacy issue in each layer

and trying to find a proper solution. Before we forward in our thesis, we must understand

these challenges.

2.5.1 Physical Layer

1. Insecure Initialization: it’s necessary to take care of configuration of whole network device

to ensure that the system will work without violating privacy and disruption of network

services [26].

2. Low-level Sybil and Spoofing Attacks: The Sybil attacks which usually occur in a wireless

communication network is some node with unreal identity trying to affect the network

dynamic [27].

3. Insecure Physical Interface: there are many factors can collect together, so they can enforce

big problem to proper functioning of devices in IOT [28].

2.5.2 Network and Transport Layer

1. Replay or Duplication Attacks: A reconstruction of the packet fragment fields in the

6LOWPAN layer may result in depletion of resources, buffer overflows and rebooting of

the devices [22].

2. Privacy Violation on Cloud-Based IOT: cloud-based systems have its security and privacy

challenges, this thing also affects cloud-based- IOT systems [29].

3. Session Establishment and Resumption: denial of service can use normal network session

functions to enforce its attacks and occupy system resources [30].

 17

4. Insecure Neighbor Discovery: The usage of neighbor discovery packets without proper

verification may severe implications along with denial-of service [31].

5. RPL Routing Attack: The IPV6 Routing Protocol for Low-Power and Lossy Networks

(RPL) is vulnerable to several attacks, these attacks will directly affect dynamic and

processing and routing decision on the network. This attack has many details and types

such as a Hello flood attack, Version Attack, Rank Attack and many other [32].

6. Sinkhole and Wormhole Attacks: its special type of RPL attacks, in sinkhole attacks, the

attacker node responds to the routing requests which made this node a main routing

point, using that it can do the malicious activity on the network [23].

7. Authentication and Secure Communication: Any loophole in security at the network layer

or large overhead of securing communication may expose the network too many

vulnerabilities [33].

8. Transport Level End-to-End Security: any threat in the end-to-end data delivery can

cause some alteration of data exchanged between nodes [20].

9. The Selective Forwarding Attack: specially designed to disturb the routing path on the

network, the DOS attack also could be launched where the malicious node forward the

packets [23].

2.5.3 Application Layer

1. Middleware Security: The IOT middleware designed to render communication among

heterogeneous, so if there is a threat in provision or mapping process this will make full

system at risk [21].

2. Insecure Interfaces: For accessing IOT services, the interfaces used through web,

mobile, and cloud are vulnerable to different attacks which may severely affect the data

privacy [28].

 18

3. Insecure Software/Firmware: insecure software/firmware can damage system entities, so

software such as JSON, XML and other must code securely [2, 28].

4. DDOS (Distributed Denial of Service): It some types of attacks that target internet-based

services. This attack usually uses a simple service discovery protocol (SSDP) to attack

IOT devices which use this protocol, this simply aims to overload resource of targeted

device resources which made it at high risk of fault, also this attack is difficult to

discover before run time and to discover the source of these attacks [34].

5. CoAP Security with Internet: application layer messaging protocols supported by

CoAP is highly subjected to attacks because of different formatting and protocols

involved in this layer, this attack can use weakness in privacy and authentication [35].

 IOT AND BLOCKCHAIN

The fact that blockchain is robust and operates in a trustless environment, makes it very

difficult to alternate its data could be a magnificent solution in IOT security in general. The

common mechanism to use IoT on blockchains, is by considering each IoT device as a

blockchain node. Since the use of consensus algorithms in blockchains enable it to operate in

a trustless environment, this will eliminate completely need to trust existence between

devices.

This fact faces another fact which is that IoT devices are limited in storage to be able store

a copy of blockchain, depending on their capacity, it is possible to either use them as

lightweight clients, or have a higher capacity device as their blockchain representative node.

.

 19

3. BLOCKCHAIN TECNLOGOY

 OVERVIEW

Sensitivity of data in the economic field was a big headache for most financial

organizations with questions such as how can they secure transactions and how can they

provide trust in the financial environment?

In 2008, Nakamato presented a concept called the blockchain to the world and its

application “bitcoin” [36]. A bitcoin is just a virtual currency that can be transferred and

maintained without third parties such as banks. In general, a bitcoin blockchain has been

the underlying platform and technology of many of today’s most popular

cryptocurrencies. But what is the blockchain? A blockchain is fundamentally a de-

centralized, distributed, shared, and an immutable database ledger that stores a registry of

assets and transactions across a peer-to-peer (P2P) network [37]. It has chained blocks of

data that have been time- stamped and validated by miners. The blockchain database is

fully available to all network nodes, so each node has a copy of the whole database since

the first transaction’s block contain several successful transactions, and these blocks are

connected to form chains.

 Generally, blockchain technology is the best implementation of decentralization

Systems that provide additional features such as accountability and security. This

platform can improve efficiency and reduce the costs significantly. Blockchain has many

magnificent characteristics [38] such as:

1. Cryptography: blockchain is robust because of that all transactions are validated using

complex computations and cryptographic proof among involved parties.

2. Immutability: blockchain data cannot be changed or deleted

3. Provenance: in blockchain we can track the origin of every transaction that have been

registered.

4. Decentralization: each node in the blockchain network has access to the whole distributed

database, this done by using a consensus algorithm.

 20

5. Anonymity: each node in the blockchain network has a generated address, not user

identity. This keeps users’ anonymity, especially in a public blockchain structure

6. Transparency: the blockchain system cannot be faulted, because it requires high

computing power to alter the blockchain network completely.

 ARCHITECTURE

Blockchain architecture can be divided into three categories according to the nature of

operations that internally occurred, permissions and how the network is structured [38],

these categories are as follows:

1. Public Blockchain: All records available to the public and anyone could involve in the

agreement process, so the efficiency is low, but it is completely decentralized.

2. Private Blockchain: This type is controlled by a group of users. Has feature of high

privacy beside increase in the efficiency, but it is considered as central system.

3. Consortium Blockchain: This type of system is controlled by preliminary assigned users,

in this type the efficiency and privacy are high, but it could be considered as semi-central

system.

 COMPONENTS OF BLOCKCHAIN

1. Nodes :It is the clients connected to the Blockchain system, and they are an essential

part of the system. They are the key in processing of internal blockchain operation such

as routing, mining, storing the blockchain data and serving as a wallet. All nodes are

involved in verification and spreading of transactions and are responsible for discovering

and control the connection with their peers. The node must store a copy of the blockchain,

which is full data about all the transactions that have been happening since network starts

and this feature is reason for make blockchain as decentralized systems because of

eliminating the need of having a centralized server to store the data above [39]. Usually

Nodes work as Miners, which verify and validate all the transactions made by all the

network clients. All miners are nodes, but all nodes are not necessarily miners.

2. Blocks are one or more transaction that’s created after mining processes in additional

 21

to some other information. Blockchain is simply an ordered and timestamped linked list

of blocks, that store all information about the transactions that have been occurring since

the start of the system. Each of these blocks is linked to the previous one, i.e. Its

parent, through a unique hash. These hashes are provided using the SHA256 hashing

algorithm [38]. That’s mean that the header of each block has a reference to its parent’s

hash. This linking continues all the way up to the first block in the blockchain, also

known as the genesis block. The genesis block is the start of the blockchain. It is like the

“settings” for your blockchain [40]. Details of block fields are shown in Figure 3.1.

3. Mining :It is the process of validation and verification of transactions. Mining is the

way that the miner can get rewarded if he solves the next block in the blockchain. The

process is starting after calculating the difficulty level of the blockchain. All the full

nodes connected to the blockchain network recalculate this difficulty level after a certain

amount of time [38]. After that miner downloads full blockchain copy and constructs a

Merkle tree out of it, Merkle tree is used to connect transactions to blocks. Finally, the

process of forming a block, a miner decides the number of transactions that will be

included in the block, this could depend on in another factor depending on in blockchain

implementation type, for Example in Bitcoin the factor is the maximum block size, while

in Ethereum it is a maximum gas limit.

4. Consensus Algorithm: A consensus algorithm is a process in computer science used to

achieve agreement on a single data value among distributed processing or systems [41].

Thus, the importance of consensus mechanisms in blockchain is to simplify, secure

updating of a process or a state, in accordance with certain state transition rules, where a

distributed set has the right to perform the state transitions. There are many consensus

algorithms used by the Blockchain network [41]. the most common is the proof of work,

Other common consensus algorithms include the practical Byzantine fault tolerance

Algorithm (PBFT), the proof-of-stack algorithm (POs), and the delegated proof-of-stack

algorithm (DPoS), the difference between them is shown in table 3.1.

 22

 Figure 3.1: Block Structure

 23

 Table 3.1: Consensus Algorithm Summary

Algorithm Abstract Pros Cons

Proof of

work[14]

Ensure that the mining

block is one and only

version

1. Popular

1. Require high

computation resources

 2. Slow

Practical

Byzantine fault

tolerance

algorithm[14]

Two nodes can

communicate safely

across a network

1. High throughput
1. Unreliable in

achieving a consensus

across a distributed

network of devices
2. Cost efficient

Proof-of-

stack[14]

Blocks are created by

validator staking their

tokens compete on

which blocks are valid

1. Energy efficient No cons noticed

Delegated

proof-of-

stack[14]

Maintaining irrefutable

agreement on the truth

across the network,

validating transactions

and acting as a form of

digital democracy

1. No need to wait

until a certain

number of interested

nodes has verified a

transaction before it

can be confirmed

1. Less secure

 BLOCKCHAIN WORKFLOW

To understanding of how a blockchain works, it must know how a blockchain is working

step by step Figure 3.2. Every client in blockchain can act as an entry point for several

different blockchain users into the network [42]. In this section let us assume that each

user transacts on the network via their own node. This workflow steps are as follows:

1. First the client interacts with the blockchain via a pair of private/public keys. They use

their private key to sign their own transactions, and they are addressable on the network

via their public key. This signed transaction is sent by the given client to its one-hop

peers.

 24

2. Second The neighboring peers check this incoming transaction validity before

publishing it, invalid’s transactions are discarded, and valid transaction is published to the

entire network.

3. Valid transactions are ordered and packaged into a timestamped block, this done by

using the mining process. Winner miner broadcasts this block back to the network. The

winner miner here is chosen to depend on the consensus mechanism that the network

implement.

4. All blockchain nodes check the validity of creating block first by checking if it contains

valid transactions and the references via hash previous block on their chain is correct.

The above mechanism contains some functions that must be processed and implemented

by a network node to enforce the concept of “blockchain” and these functions are:

1. Routing: controls the propagation of block and transaction.

2. Storage: each node must keep copies of blockchain (except for light node).

3. Wallet service: manages security mechanism that allows nodes to operate with digital

currency such as “bitcoin”.

Figure 3.2: Blockchain Workflow

Figure 3.2: Blockchain Workflow

 25

4. Mining: it is th process of creating new blocks after solving complex mathematical

functions or what is called “consensus algorithms”.

 BLOCKCHAIN IMPLEMENTATION

A Blockchain great technology that can strongly affect many industries. The number of

platforms big and in constant change which make it impossible to explain all of them, in

this part define the most popular and most suitable for IoT domains.

Bitcoin is the first blockchain platform [36]. It provides a mechanism to manage

transactions in a fast, cheap and reliable way, which can be integrated into the

applications that need secured platform for paying. In IoT domain, autonomous devices

can use Bitcoins to perform micro-payments. Bitcoin have a scripting language that

allows to establish the rules, but it's weak in comparison with other smart contract

platforms. The big revolution was in the invention of a new platform called Ethereum.

Ethereum made the potential user space endless for the blockchain. The Ethereum

blockchain was launched and opened for use to the public in July 2015 [43]. Ethereum

uses a concept called the smart contract [9]. The smart contract is a program coded with a

specific programming language called solidity [44]. This program controls how the

transaction operates between nodes, so it would be executed whenever there is a

transaction. It has a specific address that can be initiated by calling it.

Another platform is Hyperledger [45], which is an open-source platform on which various

projects related to block chain have been developed. Hyperledger provide different objects

and services for consensus and membership. One of the best features of Hyperledger is the

application developer where Distributed application can be coded using general purpose

languages. IoT devices can supply data to the blockchain through the IBM Watson IoT

Platform, which have many services and features that provide data analysis and filtering

[39].

 26

The Multichain platform that is usually used in the creation of private blockchain

architecture. Multichain depend on an API that extends the core of the original Bitcoin

API with new functionality, allowing the management of all blockchain processes [45].

Litecoin is technically identical to Bitcoin, but with faster transaction validation times

and improved storage efficiency This feature made the requirements of Litecoin processing

in clients are lower, so it is more suitable for IoT [39]. Comparison between different types

of blockchain implementation is summarized in Table 3.2.

Table 3.2: Comparison Between Blockchain Platforms

Platform Pros Cons

Bitcoin

1.decentralized
1. Mining needs high

computation resources

2. Open network
2. The transaction is confirmed

in minutes, which is too much

3. Alternative to regular money
3. No smart contract

4. Bitcoin price is high

Ethereum

1.use smart contract 1. Ether price is high

2. Creation of DApps

2. Mining time is high

3. Supported languages- python, go, c++

4. Overhead is less than bitcoin

5. Alternative to regular money

Hyperledger

1. Open-source enterprise-scale

blockchain framework
1. Not a public block chain

2. Has smart contracts
2.complete immutability is not

possible 3. Has database services

4. High scalability and fast transactions

Multichain

1. Native multi-currency support
1. No scripting languages, so

no smart contract

2. Fast, quick in deployments
2. Source code for multichain

is public 3. Supported languages- python, c#,

JavaScript, PHP, Ruby

Litecoin
1. Efficient in storage management 1. Block-release timing is very

high 2. High transaction rate

 27

 ETHEREUM

In this thesis, we utilize Ethereum blockchain because of its ability to implement smart

contracts, which is a computerized transaction protocol that executes the functions of the

contract [9].

It Is an open and free blockchain platform. Using this platform, the user can simply deploy

his own smart contract, which is used to build what is called decentralized application.

Ethereum is a network of connected nodes most of which have a copy of the blockchain

full node and others called light nodes which only store headers of blocks of the

blockchain. The Ethereum blockchain was launched and opened for use to the public in

July 2015.

3.6.1 Ethereum Architecture and Core Component

3.6.1.1 Ethereum accounts

Ethereum usually has two types of accounts. The first one is called the externally owned

account EOA, which is owned and controlled by the user. Each EOA has its own ether

balance. Each account has its own address, so it can send and receive transactions to and

from other accounts [9]. The second one is the contract account, which is controlled by

the code of the smart contract, and has its own address, too.

3.6.1.2 Ethereum virtual machine

It is an environment running on the Ethereum node. It provides an isolated space to run

the smart contract code [9].

3.6.1.3 Smart contract

It is a specific code located in the blockchain, which has its own address. Once the

smart contract is written, compiled and deployed in the network, it gets its own address.

Any transaction will not be done until the execution of the related smart contract.

 28

 The execution of smart contract is done by calling it by its address. Execution of smart

contracts can be considered as a part of the verification of a successful transaction [5].

3.6.1.4 Keys

The Ethereum account has two types of key. The first one is the private key, which is

used to send transactions from your account to another account. This key is dedicated to

the user to control his account and must not be shared with others. The public key is used

to generate an actual cryptocurrency address. This address serves as a user account

identifier to which funds can be paid into [4].

3.6.1.5 Transaction and messages

Transactions are messages that are sent from an EOA to another EOA or to a contact

address. It is already included in the block when created, while messages are sent just

between the contracts and no EOA is involved; the messages are not included in the

blocks [9].

3.6.1.6 Ether

It Is the currency used in the Ethereum platform, like bitcoin. Ether is the prize or rewards

of winner miners. There is another unit that used to be as a base of the Ethereum called

“Wei”, (1 ether equal to 10^18) [4].

3.6.1.7 Gas

It Is a term used to define digital fuel for performing work or operating on the Ethereum

blockchain network. All transactions spend a specific amount of gas and gas is charged

from the transaction sender to the miners. The gas is the concept used to define work

difficulties, so it is proportional to work that is needed to execute a transaction and proof

of work [4].

 29

3.6.1.8 Solidity

Solidity is the most popular programming language used to write smart contract. It is a

high- level language which, when compiled, gets converted to EVM (Ethereum Virtual

Machine) byte code [44].

3.6.2 Ethereum Workflow

Every Ethereum client is connected to other clients or nodes to form an Ethereum

blockchain network. A full node publishes transactions and blocks to the network and

receives other transactions and blocks from it as explained in above in section of

blockchain workflow.

The Ethereum blockchain differ from Bitcoin because of existing of smart contract [46].

A smart contract is a code that compiled from a high-level language like Solidity, this

smart contract code is stored in the form of bytecode on the blockchain. This smart

contract is executed by calling its address which it was gotten after deploying, the

execution environment here is a VM or Virtual Machine. Virtual Machine allows

transitions from one state to another, this transition mechanism may include accessing

transaction-related accounts, computing operations, and updating/writing the state of the

virtual machine. Whatever is executed on the virtual machine will alter its state. After

completion and execution of transactions that will include in the block, the current state

will be stored in what will become the next block.

The above mechanism or workflow is including some internal operation, the most

important one is Merkle tree structure and mining [47]. In each Ethereum’s block, three

Merkle roots are actually stored first one is a Merkle root of the Merkle tree of all

transactions, second one is a Merkle root for receipts, last one is a Merkle root in the state

of the virtual machine. Mining in Ethereum is little different from other platforms, it is

starting by package all transactions from the transaction MemPool, executes smart

contract on the EVM if it's required, creates Merkle tree structures and finally runs

ETHash proof-of-work algorithm. The summary of Ethereum workflow is shown in

figure 3.3.

 30

 BLOCKCHAIN LIMITATIONS

1. Platform Size: network day by day become bigger and bigger, however, this network Must

be resistant to bad actors such as attacks and must still grow stronger .

2. Scalability: All transactions have to be stored for validating the transaction, this generates

a big problem for example, with the Bitcoin block chain produce nearly 7 transactions per

second, which not suitable to fulfil the requirement of processing millions of transactions in a

real-time fashion.

3. Privacy: block chain cannot guarantee the transaction privacy since the values of all

transactions and balances for each public key are publicly visible .

4. 51% Attack : it means that nodes with over 51% computing power could control the

blockchain and all the transactions.

Figure 3.3: Ethereum Workflow

Figure 3.3: Ethereum Workflow

 31

4. DOMAIN-BASED SYSTEM

A domain-based system is our solution to handle most of the issues and concerns that

exist in current IOT access management system. The solution is presented as an

architecture where IOT devices are in separate virtual domains and the interaction

between devices will be governed by rules .Domain-based system is constructed based on

two platform IOT network and blockchain technology ,this integrating require some

middleware systems to handle the interfaces and data type conversion between two

platforms as shown in Figure 4.1. The rules are implemented by utilizing the famous

decentralized technology “blockchain.”

 SYSTEM COMPONENTS

4.1.1 IOT Devices

They are the devices that can perform the function of sensing and/or actuating and

exchange data with other connected devices and applications. IOT devices can have one

or more resources depending on the technology and functions of that device. For this

reason, we build our system to deal with resources, not with the devices. Each resource in

our system has a unique identifier called “Resource ID”. This is the most important

requirement in our system. This ID can be generated using many technologies such as

IOT cryptography solutions.

Figure 4.1 : Domain-Based System Architecture

 32

 This approach is very reliable and scalable because it does not matter how many

resources there are in each device. These devices will be in different domains according

to a prior plan addressed by the system owner and executed by the server using the smart

contract. However, this device will not be apart from the blockchain network because of

the limitations in these devices.

4.1.2 Domain Interface

It is a part of the system that works as the middleware between IOT devices’ environment

and the blockchain network. This part will cause the system to override the problem of

limitation in IOT devices. The domain interface takes data from the IOT device as an

asynchronous message format by using a request- response based model protocol, which

is called “CoAP”. Then, it translates it to the JSON format. After that, exchange of the

data with the blockchain takes place using the RPC [48] port opened by the domain agent.

The process towards IOT devices from the blockchain is vice versa.

4.1.3 Domain Agent

The domain agent works as a coordinator for a specific domain in the blockchain. It

listens to all the requests from that domain and returns access results. The domain agent

has a normal account in the blockchain that usually works in light mode [39] . This

account has an address that implements all domain devices of the system into the

blockchain, so any domain can exchange the data with any other domain using this

address.

4.1.4 Server

The server implements the centralized aspect of our system. It is responsible for choosing

domain agents and devices that are managed by this agent. This is done using the smart

contract. A server is a normal node in the blockchain that deploys the smart contract on

the network. By using this smart contract, the server will manage and control the whole

system it be a device with suitable specifications to be a full node inside the blockchain.

That is because the server can do the mining function besides creating smart contracts.

 33

4.1.5 Miners

Miners are computers with good processing capabilities. Miners are the guarantee to

enforce the robustness of the blockchain in our network because they verify transactions

“Access requests” in our system. Those miners compete to add blocks, which contain a

finite number of transactions to the blockchain. Another important thing is that the

miner is providing the system with storage capabilities. All contracts of the system with

their lists and functions are stored in the blockchain.

4.1.6 Smart Contract

This is the most important part in the system. It implements a decentralized aspect of the

system. Smart contracts in our system manage access control according to specific rules

and permissions. This access management is executed directly between subject and object

resources, so the server or any third party will not be involved. The smart contract is

created and deployed in the network by using a server. Once it is deployed, the contract

gets its address that can be initiated by calling it. In our system, we choose to create two

types of contracts, which are explained below:

4.1.6.1 Local contract

For each given domain in our system, there is one local contract. That means it is

responsible for managing several devices located at that domain. The local contracts in

our system must store a list of domain resources identified by their IDs, so accessing

resources on the same domain requires executing the code in the local contract only. This

will reduce gas usage and shift our system to be lightweight. The resource list in the local

contract contains some information about each resource as shown in table 4.1.

 Table 4.1: Resource List Illustration

Resource ID Resource name Permission Agent Address

155666 “Temp” “Allow” “0xxxxxxxxxx. ”

198956 “Press” “Deny” “0xxxxxxxxxx. ”

 34

The main function of the local contract is the local access control function. The local

contract has other functions that manage resources related to the given domain, such as

deleting or updating or adding a resource to the contract, and most of these functions can

only be called by the server. These functions are:

1. Register Resource: this function is used to Add new resources to the system in local

contract and can called only by the server

2. Delete Resource: this function is used to Delete resource from the system and can called

only by the server.

3. Fetch Resource: this function is used to getting information on specific resource and

called only by the server.

4. Update Resource Permission: this function is used to Update information on specific

resource and can call by server.

5. Check Resource: this function is used to Check existence of specific resource in the

system and can call by server and domain Agent.

6. Change Agent: this function is used for Change domain agent of specific local contract

and can call by the Server.

7. Local Access Control: this function Accept subject and object resource IDs as

parameters and apply access control algorithms either by using local contract only or

using local contract and global contract together and finally return the result of the

domain agent, it can call by domain agent.

8. Delete local Contract: this function is used to Delete the contract for the system and

can call by server.

4.1.6.2 Global contract

This contract is responsible for managing access control between two resources located in

different domains. To do that, this contract stores a list of methods that include permission

and rules related to two resources, as shown in Table 4.2.

 35

 Table 4.2 :Method List Illustration

ID Resource

name

Resource

permission

 Object

Agent

Address

Subject

Agent

Address

Limit Positive

Count

Negative

Count

Status

1 “Temp” “Allow” “0x. . . .

. . . .”

“0x.

. . ”

5 0 0 TRUE

2 “Press” “Deny” “0x.

. . . “

“0x.

. . ”

4 0 0 FALSE

Each method manages access between a subject agent in one domain and an object

resource in another domain. All subject resources are implemented by a domain agent to

reduce the number of methods in the system, which will efficiently decrease the gas

needed. Besides the method list in the global contract, there are two other lists. The first

one is the cache list, and the second is the block list. The cache list contains methods

that are frequently executed, and their access result is positive, while the block list

contains methods that frequently called, and the access result is negative. We add a limit

numbers as a field for each method in the method list. These fields are used to control

whether the method should be in the cache or the block list, as we will see in the

system operation section.

A global contract is executed after the failure of a subject local contract to verify access

request, so the domain agent would not need to know anything about the global contract.

The main function in the global contract is the global access control function, which

checks permission and manages the methods in cache and block lists according to a

global access control algorithm. There are many functions in the global control to manage

the method list, the block list and the cache list, these functions are:

1. Register Method: this function is used to Add access method between specific domain

agent and specific resource locate in another domain and save it in the global contract and

can call by server.

2. Delete Method: this function is used to Delete access method from global contract and

can call by server.

3. Get Method: this function is used to getting information about specific access control

methods and can call by server.

 36

4. Update Method: this function is used to Update information about specific access

control methods and can call by server.

5. Activate Method: this function is used to Change the status of deactivated access

control method to true and make it active and can call by server.

6. Deactivate Method: this function is used to Change the status of specific access control

method to false and make it deactivate and can call by server.

7. Add to Cache: this function is used to Add specific access control method to cache list,

and it's called by Global access control function in global contract.

8. Add To block: this function is used to Add specific access control method to block list

and it's called by Global access control function in global contract.

9. Trigger Block List: this function is used to Refresh the status of specific access control

method to check if the block time is ending and the remove it from block list and it's

called by Global access control function in global contract.

10. Global Access Control: This function takes the control from local contract and it takes

subject agent address and object resource ID as a parameter and apply global access

control algorithms and then return the result to the caller local contract, this function is

called by local contracts.

11. Delete from Cache: this function is used to Delete specific access control method from

the cache, and it called by Global access control function in global contract.

12. Delete Global Contract: this function is used to Delete specific access control method

from the cache, and it can call by server.

 SYSTEM OPERATION

Domain-based access control system is initialized after the server deploys the unique

global contract. Then, it deploys the local contract for each domain in the system. The

priority of deploying the global contract before the local contract happens because each

local contract must know the address of the global contract. Once the local contracts are

deployed, system entities can communicate with the local contracts using domain

 37

interfaces. However, to add some transparency in our system The domain interfaces do

not need to know the address of the global contract.

Our system operation related to access control is started after the domain interface

receives an access request, which contain (Subject resource ID/Object resource ID),

usually this request is received as a CoAP message format. Thus, the domain interface

converts this message format to something accepted and understood by the blockchain

which is JSON format. The JSON request format is then sent to the blockchain by using a

listening port in the domain agent. The agent at that moment will send a transaction

containing an access request to the local contract address. This transaction will be

verified and then included in the next mining block. The access control operation of our

system is built-on using the smart contract as we mentioned before. However, the

mechanism of handling the request above depends on the domains of both subject and

object resources. Because of that, there are two scenarios for the operation of our system,

which are:

4.2.1 Same Domain Access

This type of access control is managed by the local contract in our system as shown in

Figure 4.2. The local access control function in the local contract accepts (Subject resource

ID, Object resource ID) as a parameter. After that, a local access algorithm which shown

in Figure 4.3 will be applied to these parameters to calculate the Access result. Local

Contract Algorithm Apply three conditions which in consequence provide three levels of

privacy and security check.

If the above conditions are satisfied, the result will return to the domain agent, and if

the first condition is not satisfied, which checks whether the function called is from the

pre-established domain agent, the request will be rejected immediately without having it

forwarded to another procedure, while the failure of the other two conditions will transfer

the execution of the global contract. After execution of the global contract, the local

contract gets the result from the global contract and returns it to the domain agent.

 38

Figure 4.3: Local Access Algorithm

Figure 4.2 :Same Domain Access Scenario

 39

4.2.2 Different Domain Access

Failure of one of the last two conditions in the local access control method causes the local

contract to send a message to the global contract as shown in Figure 4.4. The message is

the way that contracts can exchange data between each other. This scenario of the access

control Different Domain is managed using a global access control function in the global

contract. This function uses smart algorithms which are shown in Figure 4.5 to handle

access control. This smartness is enforced by using the concept of cache and block lists.

The cache list and the block list make our system work in a dynamic way to handle

access request changes depending on the history of similar access requests. As we

mentioned in our contribution, our system has the feature of being lightweight. This is

satisfied by using this dynamic approach. In more detail, we design our code to check

the cache list and the block list before forwarding it to the other check procedures.

Reducing the number of executing line codes will affect gas consumption [4].

The global access function uses the methods list to define the rules and permissions for

access of specific subject agents into specific object resources. The global contract has a

function called (trigger block list) that refreshes the block list before checking the block

list in search if there is any function that must be removed from the list. This check

happens according to the time of blocking. We define specific mathematic functions

(4.1)to calculate the block time, which is as follows:

 T = T _block + 100 second (4.1)

Where T is the total block time and (T_block) is the time at the start of the blocking. Time

in Ethereum is performed using a Unix time- temp [49], which is for example (01/22/2019

@ 11:40am (UTC)) equal to (1548157205). After completion of the execution of the

global contract, the result is sent to the local contract of the Subject. The final stage in our

system sends the result to the domain interface of the object and subject resources

 40

Figure 4.5: Global Access Algorithm

Figure 4.4 :Different Domain Access Scenario

 41

 SYSTEM ASSUMPTION

1. Each resource in the system has a unique ID. This provides scalability and big

addressing space. In addition, numbers are used instead of the resource name as a key in a

smart contract code in order to reduce gas usage and to make the code much simpler.

2. The server is secured through the system for a lifetime. However, it is not

recommended that the server is fault tolerant because the access control operation of the

system is managed by the blockchain and smart contract, so if the server stops for a while,

this will not affect the system operation.

3. Each IOT device belongs to one domain at least, so the dependence on the prior plan

by the system administrator prefer to put frequently connected IOT device in the same

domains. This will reduce access control processes because it may lead to the use of the

local contract only.

 42

5. IMPLEMENTATION

 SYSTEM COMPONENTS IMPLEMENTATION

5.1.1 Domain Agent

We use Raspberry Pi 3 as a domain agent, this helps us to enforce the access issue

explained in our system scenarios. Using Raspberry Pi and its processing capabilities

allows us to run a domain interface. As we mentioned previously, the main function of the

domain agent (raspberry pi) is to be a part of the blockchain network and implement

domains in the blockchain. For that, we install GeTH client on it [50]. Then, we run

GETH in light mode [39] for the domain agent to be able to accept requests from the

domain interface and process it to the blockchain network using the GeTH client.

5.1.2 Domain Interface

The function of the domain interface is to interact with both the IOT environment and the

blockchain network. Our domain interface is simply a JavaScript API [51] that accepts

access Requests and then processes it to blockchain. Our JavaScript API uses web3.js

library [52] to interact with the blockchain. In our system, we use HTTP and WebSocket

providers [53] to get the GeTH client run on the domain agent. Each Domain runs two

types of the JavaScript API. The first one is to request access and seeing the result of a

request, that’s means its run on the subject side, and a second one just to receive access

result in the object side.

5.1.3 Server

First, the server must run the blockchain, so we would install the GeTH client on it

again, but in this case, the server will run in full node to help the network in the mining

process. Then, the remix will connect to the blockchain using this GeTH client. This

connection allows the server to directly control the smart contract of the system.

 43

5.1.4 Smart Contract

The smart contract in our experiment is created and deployed using the server. We assume

that we have two domains in our system. This makes the implementation able to cover the

system scenarios.For that, we create two local contacts, one for each domain, and create

the global contract that has some methods that handle all access possibilities between the

resources in these two domains. Our smart contract builds depending on the algorithms

Explained in the previous section of this thesis.

5.1.5 Blockchain Network

For simplicity, we use a private Ethereum blockchain network in our experiment [9]. The

main part of this network is the genesis.json file [54], which must be the same in all

network clients. However, we use another laptop besides the server to work as a miner in

our system. This allows us to partially simulate the mining mechanism in the real

blockchain network. Our experiment starts by creating smart contracts and deploying it

using remix IDE [55] run on the server. While doing that, the server and the other laptop

are in mining status. After the deployment, the smart contract is included in the

blockchain as a part of the last block, and they get their addresses. We use the addresses

of the local contract and its ABI [56] to design a domain interface for each domain.

 EXPERIMENT CONFIGURATION

5.2.1 Hardware and Software Specification

In Tables 5.1 & 5.2, we summarize most hardware and software specification of this

experiment. This experiment consists of 2 laptops on of them work as a server and

miners and the other laptop is just used for mining support, beside that we used two

Raspberry Pi devices to implement 2 domains in this experiment. All mentioned 4

devices must run blockchain which is Ethereum in our system, to transfer these devices

into Ethereum we choose GeTH client, which is "go programming language"

implementation of the Ethereum [50].The goal of installing GeTH client is to create a

private Ethereum network, this private network can simulate the real Ethereum network

and it usually used for test and development. The most important thing in setting of the

 44

private Ethereum network is the genesis. json file [54], this file must be the same exact in

all clients. Genesis. json file is the setting for the network and define many things.

 Table 5.1: Hardware Specification of The Experiment

Device
Number of

items
Operating system Processor

Dell laptop 1 Windows 10 Intel Cor i7

Lenovo laptop 1 Windows 10 Intel Cor I5

Switch 1 D-Link UI -

Raspberry Pi 3 Model

B+
2

Debian Linux (Raspbian

Stretch with desktop)

1.4GHz, 64-bit

Quad-core

(Arm 7)
 Table 5.2 :Software Specification of the Experiment

Ethereum implementation GeTH client (v1.7.0-stable)

Smart contract development environment Remix (Compiler version 0.4.25)

Smart contract interconnection Web3 library (version 1.0.0)

Network difficulty 20

Gas limit 5000000

Provider between web3 and blockchain WebSocket, and http

JavaScript environment Npm 6.4.1

Our experiment genesis file is like the figure 5.1 .and its parameter is explained in the

APPENDIX A .

Figure 5.1: Genesis File

The interconnection between the software components of the Experiment is shown in

Figure 5.2.

 45

 Figure 5.2: Experiment Components Interconnection

5.2.2 Ethereum clients Setup

5.2.2.1 Laptops setup

As we mentioned before both of laptops must run Ethereum client and this can be done

by using GeTH. Installing Ethereum implementation was done using the following steps:

1. Download and install GeTH for windows from [57], in this experiment we use version

(v1. 7.0-stable).

2. Create Data Directory (in this experiment, it is "C:\PC1NEW" for server Laptop and

"C:\PC2NEW" for the second laptop) .

3. Save the Genesis. json file in above directories and should be the same.

 46

4. Run PowerShell with administrator privileges.

5. Run the following commands in both of laptops with care of changing directory field:

• GeTH –datadir “C:\PC1NEW“ init “C:\PC1NEW\genesis.json”

The result should be the same as in the Figure 5.3 This command will initiate Ethereum

 With this genesis file.

 Figure 5.3 :Genesis File Initialization

6. Run the following commands in both of laptops with again care of changing directory

field and identity field to be "pc2":

• GeTH –identity PC1 –rpc –rpccorsdomain "*" –datadir "C:\PC1NEW" –port 30303 –

nodiscover –rpcapi "db,eth,net,web3" –networkid 55 –ws –wsorigins "*" console

The Explanation of above command can be found in the [58]. The result should the same

as in the Figure 5.4.

Figure 5.4: Running Geth (Laptop)

 47

7. Now we can create a new account in both of laptops using the following command

• personal.newAccount()

8. After that, enter the password for this Account and press Enter. The result should be

as in Figure 5.5. Now the GeTH client is installed with one account in both of laptops.

5.2.2.2 Raspberry pi setup

Install GeTH in Raspberry Pi is little different because of the Raspberry Pi use Linux -

based operating system, so the first step is installing stable version of the Raspbian

operating system which is " Raspbian Stretch with desktop " in this Experiment. Install of

both of two raspberry devices will be the same except for directories and identity, GeTH

can be installed using the following steps:

1. Run Terminal and check the last update installed software to be with the latest versions

using the following commands:

• sudo apt,-get update sudo apt-get dist-upgrade

2. Install the packaged dependencies using the following command:

• sudo apt-get install git golang libgmp3-dev

3. Create an Experiment's directory using the following commands:

• mkdir src

• cd src

4. Inside above directory creates another folder to store Genesis. json file:

• mkdir ETHER3NEW

Figure 5.5 :Create New Account (Laptop)

 48

• cd ETHER3NEW

For the second Raspberry Pi its “ETHER4NEW”.

5. Now it’s time to install GeTH using the following commands:

• git clone -b release/1.7 https://github.com/ethereum/go-ethereum.git

• cd go-ethereum

• make

• sudo cp build/bin/GeTH/usr/local/bin/

6. Run the following commands in both of raspberries with care of changing directory

field:

• GeTH –datadir /home/pi/src/ETHER3NEW init

/home/pi/src/ETHER3NEW/genesis.json”

The result should be the same as in the Figure 5.6, this command will initiate Ethereum with

this genesis file.

7 . Run the following commands in both of laptops with again care of changing directory

field and identity field to be "ETHER4NEW" in the second Pi:

• GeTH –identity PC1 –rpc –rpccorsdomain "*" –datadir /home/pi/src/ETHER3NEW

– port 30303 –nodiscover –rpcapi "db,eth,net,web3" –networkid 55 –ws –wsorigins "*" –

syncmode light console

The result should the same as in the Figure 5.7, the important thing here that we run

Raspberry Pi with light mode as we mentioned in the previous chapter.

Figure 5.6 :Genesis File Initialization (Raspberry Pi)

 49

 Figure 5.7: Running GeTH (Raspberry Pi)

8. Now we can create a new account in both of two devices using the following

command:

• personal.newAccount()

9. After that, enter the password for this Account and press Enter, the result Should same

as exist in Figure 5.8.

In this stage all the 4 experiment devices have been installed with GeTH client and each

one has its own account.

5.2.3 Initiate Private Ethereum Network

At this point all the devices are run Ethereum, but they can’t know each other, so to

connect these devices to form the private blockchain network we must do the following

steps:

1. Ensure that the system time is the same on all 4 devices.

2. Set the IP address of each device, in this experiment we use LAN for simplicity (for

laptop1 was "192.168.1.100" /laptop 2 "192.168.1.200" / pi 1 "192.168.1.110"

/pi2 "192.168.1.210").

Figure 5.8 :Create New Account (Raspberry Pi)

 50

3. To establish the connection, we will use a technique called "Enode" [59]. An enode is

a way to describe an Ethereum node in the form of a URI, separated from the host by an

@ sign. to get the enode information of each node we must run the following command in

each device:

• admin.nodeInfo.enode

the result should be the same as in the Figure 5.9.

4. Now we collect enode information of 4 devices and put them in one json file and

modify the IP and port fields in coordinating with information of each node, the resulted

file should contain data similar the data in the blow file data

5. Rename Above file to be " static-nodes. json" and saves it in the same folder that

contain Genesis. json file in each of devices same as shown in the Figure 5.10 and 5.11.

 Figure 5.10 :Project Folder with Enode Configuration

Figure 5.9 :Enode Command Execution

 51

 Figure 5.11 :Static-nodes File

5.2.4 Write and Deploy of Smart Contract

the system part responsible for creating and deploying of smart contract in Domain-

Based system is the server .in this experiment one of two laptops will play a role of

server, writing and deploying smart contract was done by follow the following step:

1. Run the network be repeating steps (5 & 6 in laptops setup / 6 & 7 in raspberries setup)

2. Open the IDE of coding the smart contract which is Remix using following URL:

• http://remix.ethereum.org/#optimize=false&version=soljsonv0.4.25+commit.59dbf8

f1.js

The opened page should be like Figure 5.12.

Figure 5.12: Remix IDE

http://remix.ethereum.org/#optimize=false&version=soljsonv0.4.25+co

 52

3. On server laptop run the following command to unlock an account that will deploy the

contract by executing following command in GeTH command line opened previously:

• personal.unlockAccount(eth.accounts[account index], "password", time)

 In this experiment index is [0], password "1234" which set by the time of creating

accounts, time is "300000 "seconds. Back to remix IDE, In the right choose the compiler

version for the solidity code (0.4.25 in this experiment) as in Figure 5.13.

4. In the left corner click in the button add new contract as in Figure 5.14.

 Figure 5.14 :Add New Contract

Figure 5.13: Remix Compiler Options

 53

5. Connect remix with the installed ethereum by clicking on the run tab in upper right of

screen then choose "Web3 provider" as in Figure 5.15.

6. Pop-up will appear as in figure 5.16. press OK.

7. Another pop-up will appear request confirmation same as in Figure 5.17 (because we

don’t change default setting), press OK.

 Figure 5.17 :Connect to Ethereum Network

Figure 5.15 :Connect to Ethereum Network 1

Figure 5.16: Connect to Ethereum Network 2

 54

8. Back to code space and write the contracts code, contracts used in this experiment are

in [60] which are two local contract and one Global Contract.

9. Before deploying we must compile the code to check if there are any errors as in

Figure 5.18.

10. In both of two laptops we run the following command:

• miner.start()

The result should the same as in the Figure 5.19.

 Figure 5.19: Mining

Figure 5.18 :Compile the Contract

 55

11. Deploying contract is done by clicking the deploy button in run tab as in shown in the

Figure 5.20.

12. After seconds the result of deploying will appear and Contract address can be gotten

using the icon shown in Figure 5.21.

 Figure 5.21 :Get Address of the Contract

Figure 5.20: Deploy the Contract

 56

13. Stop mining process by executing the following command:

• miner .stop()

Other contracts are deployed in the same way explained above. After deploying we must

save contract address and get the ABI of that contract to be used in the design of each

Domain Interface, this ABI can copy from a compiler tab menu in Remix page as in

Figure 5.22.

Figure 5.22 :Get the ABI of the Contract

5.4.5 Create of Domain Interfaces

At this point we have private ethereum network, and we also deployed the contracts in the

network in addition to that we know the address and ABI of each contract.

It’s time to define the way that smart contract can handle access requests from outside,

ethereum use Web3 library [52] to be as middleware between external request and

ethereum smart contract. Previously in system architecture explanation domain interface

is specific to one domain, and because of that each domain is implemented by one

domain agent (Raspberry pi) so we install this domain interface in both of raspberries

only.

In this experiment we create two types of domain interfaces first one for handling access

request and the other one to monitor received access request. The design of domain

interfaces of this experiment is done by doing the following steps:

 57

1. Install node.js platform in both of raspberries [61].

2. Open a terminal and processed to project directory, then Initialize the project using the

following command:

• npm init

3. Install web 3 library by executing the following command:

• npm install web3@1.0.0- beta.35 –save

4. Using any text editor open a new file and start writing the code of each request and

monitor interfaces, this code will contain information about how to connect with Ethereum

contract and for that we use Web socket connection, for calling smart contract we used ABI

that we get when deploying the contract, interfaces used in this experiment in [60].

5. Save the file as an html file, in the project directory of both of two devices.

6. Run both of interfaces, so one of the devices will be implement request side and the other

as a receiver or monitor, the result should be same as exist in Figure 5.23 and 5.24 .

Figure 5.23: Monitor Interface

mailto:web3@1.0.0-
mailto:eb3@1.0.0-

 58

 Figure 5.24: Request Interface

 RUN THE EXPERIMENT

Running the experiment is done by following the following steps:

1. Repeating steps (5 & 6 in laptops setup / 6 & 7 in raspberries setup).

2. Executing the following command in GeTH command line opened previously

• personal.unlockAccount(eth.accounts[account index], "password", time)

in this experiment index is [0], password "1234" which set by the time of creating account,

time is "300000 "seconds.

3. In both of two laptops we run the following command:

• miner.start()

4. Run both of two interfaces , send the request and watch the result in both of two

interfaces.

 59

6. RESULT AND DISCUSSION

 RESULT

To test the above system implementation, we add some sample data into the system by

using a server, Sample data in tables 6.1,6.2 and 6.3. These sample data allow us to

evaluate our system under different scenarios. Figure 5.21 and Figure 5.22 shows the

result on the subject and object by using a domain interface. The experiment proves the

efficiency of our system to handle the access control. This was clear from gas usage as

shown in Tables 6.4 and 6.5.

 Table 6.1: Local Contract 1 Sample Data

Id
Resource

Name

Resource

Permission
Domain Agent Address

1 “TEMP” “ALLOW” 0x26f6bf76726ef87ab3b329e3fb242d90045c029d

2 “GAS” “DENY” 0x26f6bf76726ef87ab3b329e3fb242d90045c029d

 Table 6.2: Local Contract 2 Sample Data

Id
Resource

Name

Resource

Permission
Domain Agent Address

3 “LIGHT” “ALLOW” 0x3c8195d260fac96419030c322372020158b7948a

4 “PRES” “DENY” 0x3c8195d260fac96419030c322372020158b7948a

 Table 6.3 :Global Contract Sample Data

Method

number
Id

Resource

name

Resource

permission

Domain Agent

Address

Subject Domain

Agent Address
Limit

1 3 “LIGHT” “ALLOW”

0x3c8195d260fac

96419030c32237

2020158b7948a

0x26f6bf76726ef

87ab3b329e3fb2

42d90045c029d

3

2 4 “PRESS” “DENY”

0x3c8195d260fac

96419030c32237

2020158b7948a

0x26f6bf76726ef

87ab3b329e3fb2

42d90045c029d

4

3 2 “GAS” “DENY”

0x26f6bf76726ef

87ab3b329e3fb2

42d90045c029d

0x3c8195d260fac

96419030c32237

2020158b7948a

5

4 1 “TEMP” “ALLOW”

0x26f6bf76726ef

87ab3b329e3fb2

42d90045c029d

0x3c8195d260fac

96419030c32237

2020158b7948a

3

 60

 Table 6.4: Gas Usage Using Local Contract Only

Subject

Resource ID

Object

Resource ID

Gas

usage 1

Gas usage

2

Gas

usage 3

Gas

usage 4

Gas

usage 5

2 1 29943 29943 29943 29943 29943

1 2 26137 26138 26138 26138 26138

 Table 6.5: Gas Usage Using Global Contract

Method

number
Limit

Gas

usage 1

Gas

usage 2

Gas

usage 3

Gas

usage 4

Gas

usage 5

Gas

usage 6

Gas

usage 7

1 3 75272 60034 70197 30337 30337 30337 30337

2 4 75540 60302 60302 107322 31229 31229 31229

3 5 75540 60302 60302 60302 107322 31229 31229

4 3 75272 60034 70857 30337 30337 30337 30337

To make the evaluation process clearer, we compare our experiment results with the

transaction base gas usage [4] in which the minimum amount that any transaction in

Ethereum blockchain can consume is (21000). Experiment gas consumption result is

shown in Figure 6.1, Figure 6.2, Figure 6.3.

 Figure 6.1: Same Domain Access Result

 61

 Figure 6.2: Access Control Result with Cache List

Figure 6.3: Access Control Result with Block List

 62

 DISCUSSION

6.2.1 Performance Analysis

Analysis of our domain-based system is done by checking and testing its behavior in

response to different access requests. We choose these access requests to implement

different situations.

First, we evaluate our system If both subject and object resources are in the same domain

and the result is shown in Figure 6.1, we make this request 7 times and the gas consumed

will be about (26137) which is not much greater than the base gas usage of Ethereum

This gas usage is low because it is required to execute the domain local contract only.

That proves our idea for creating domains for each group of devices, and it will be better

for future use if the system administrator puts devices that have frequent access and data

exchange between them in the same domain.

The second situation in our evaluation is to show the effectiveness of using the cache list

in our system as shown in Figure 6.2. We choose the limit to be 3 in this method, and we

also perform7 requests for this method. In the first request, the gas used was about

(75272), and it was reduced a little in the second request. However, in the third request it

rises slightly,This is because of the executions “add to cache function” in the global

contract. The effect of using the cache is clear starting from the fourth request, which

shows that the gas consumed is reduced about (60%) to be about (30337), so this proves

our contribution in terms of lightweight.

The last situation that we check it is to verify the effect of the block list in our system as

shown in Figure 6.3. We choose a method that has permission of “deny” and the limit is

4, and the request access was performed 7 times. In the first 3 requests, the gas used was

about (75540–60302). In the fourth request, the gas usage increased to about 107322.

That was because of the execution of “Add to block method.” Starting from the fifth

request, the gas usage dropped to about 31229. That was because the method then was in

the block list, and there was no need to execute other procedures in the global access

control algorithm.

 63

Integrating block chains with IOT provides many solutions, and in terms of security, the

blockchain can provide the IOT environment with many facilities, such as identity,

address space, integrity and reliability. Integrating the blockchain could also reduce

complexity in the IOT protocol, such as simplifying the complexity of DTLS and TLS

protocol needed to secure HTTP and MQTT CoAP protocols.

6.2.2 Security Analysis

Our system ensures that the data in the blockchain is immutable and can track every

change that may occur to it, but the blockchain cannot handle problems related to the IOT

devices themselves, such as data corruption, device failure and Sybil attacks [27].

IOT devices have a great chance to be hacked because of their limitation. However, many

procedures can be adapted along with our system to override the concerns mentioned.

These procedures could be firmware updates using identification techniques such as PKI

and using modified hardware such as Filament [62].

Using the blockchain in our system eliminates the problem of “single point of failure "

[63], so in our implementation, if a server fails, the mechanism of access control will not

be affected because it is managed by the blockchain smart contract.

The denial of service problem is controlled in the blockchain by using gas limitation [39].

This provides our system with another level of security. Therefore, we made transactions

for every request to handle this problem because for example, if we use a query with the

blockchain, there is a great chance of encountering DOS attacks.

6.2.3 System Limitation

1. Storage Challenges: The blockchain has scalability problems because the chain is

growing day by day [37] , so integration with the IOT made this problem more complex

because of the IOT limitations. However, in our system, we try to override this problem

by making the agent work in light mode, where storage space is miners

 64

We also design our code to store only the necessary information about resources. For

example, the cache list must not store more than one method for each Subject agent.

2. Ether Cost: At the time of writing this paper ether’s price was $115.92 [64]. The cost

of the system increases with the increase in the number of devices Each transaction in the

system consumes gas, which is ether in another way. The lightweight feature in our system

makes the gas consumption very low. This has a serious effect on the process. In addition,

the communications between contracts occurs in a scenario where two resources in

different domains do not charge each other. Another approach that we adapt to reduce gas

consumption is the access relationship of the methods in the global contract, which we

choose to be between the agent of one domain and a specific resource on the other hand,

where the agent here can implement several resources and consequently one method will

implement several methods.

3. Time: Mining and transaction times are one of the biggest concerns in the blockchain

development [39], usually it is between 10–20 seconds, which is very high in operation

related to the computer science field. This time has a great influence on the robustness

and power of the blockchain. A few solutions to this problem can be applied. One of

them, which we use in our implementation, is to tune the blockchain parameter to reduce

the time. This solution might not work in the real-world blockchain.

 CONCLUSION

In this thesis, we present a system architecture as a solution to the access control problem

in the IOT environment. This system manages access control by using both centralized

and decentralized management approaches. Using these approaches made our system

override the limitations present in IOT devices. Domain-based system integrate

blockchain with IOT to control access inside IOT networks. This thesis shows how the

blockchain can be used as a decentralized aspect in any system while the server

implements the centralized management aspect of this system.

 65

Handling access control in our thesis is enforced by using an Ethereum smart contract. The

smart contract can be used to store the rules and permissions that manage access requests.

The domain- based system is the system where IOT devices are in multiple domains, and

each domain is controlled by one local contract in the blockchain, and the connection

between the devices and the blockchain is maintained by using the domain interface and the

domain agent. In addition, there is a global contract that manages access requests between

different domains.

To validate our work, we provide an implementation in different scenarios that our system

can face in a real-life application. The analysis of the implementation result proves that the

domain-based system could be magnificent and a lightweight solution for access control in

IOT systems. Besides that, using the concept of cache and block lists was very effective in

order to reduce the gas needed to execute access requests in the system.

Blockchain is promising technology and our thesis proves that it can be very suitable

solution to access control in IOT system.

 FUTURE WORK

Integrating IOT with Blockchain is a hot topic now, there is a great opportunity to go

forward in this area. In the context of the thesis topic and suggested system, there are many

aspects need to be searched more especially what is related to blockchain challenges related

to the storage, cost and time. Domain-based system can be a base for another good system, it

can develop and adopted as a magnificent solution for access control in healthcare systems

or smart cities.

Develop the system algorithms and add many custom access control rules could the right

step for making Domain-Based system more suitable for many applications that need good

access control mechanism. Future development of suggested solution must search in IOT

part of the system, because this thesis focused on the processes inside blockchain part itself.

This could make this solution part of complete End-to-End platform for managing IOT

networks

 66

REFERENCES

[1] L. R.S. Schuff, D., “CENTRALIZATION VS. DECENTRALIZATION OF

APPLICATION SOFTWARE,” COMMUNI- CATIONS OF THE ACM, vol. 44, 2001.

[2] M. A. Khan and K. Salah, “IoT security: Review, blockchain solutions, and open

challenges,” Future Generation Computer Systems, vol. 82, pp. 395–411, 2018. [Online].

Available: 10.1016/j.future.2017.11.022

[3] A. Bahga and V. K. Madisetti, “Blockchain Platform for Industrial Internet of Things,”

Journal of Software Engineering and Applications, vol. 09, no. 10, pp. 533–546, 2016.

[Online]. Available: 10.4236/jsea.2016.910036

[4] “Ethereum, "Design Rationale".” [Online]. Available:

https://github.com/ethereum/wiki/wiki/Design-Rationale

[5] Y. Zhang, S. Kasahara, Y. Shen, X. Jiang, and J. Wan, “Smart Contract-Based Access

Control for the Internet of Things,” IEEE Internet of Things Journal, pp. 1–11, 2018.

[Online]. Available: 10.1109/JIOT.2018.2847705

[6] O. Novo, “Blockchain Meets IoT: An Architecture for Scalable Access Management in

IoT,” IEEE Internet of Things Journal, vol. 5, no. 2, pp. 1184–1195, 2018. [Online].

Available: 10.1109/JIOT.2018.2812239

[7] A. Ramachandran and M. Kantarcioglu, “Using Blockchain and smart contracts for secure

data provenance management,” vol. 8, 2017.

[8] A. Ouaddah, A. A. Elkalam, and A. A. Ouahman, “FairAccess: a new Blockchain-based

access control framework for the Internet of Things,” Security and Communication

Networks, vol. 9, no. 18, pp. 5943–5964, 2016. [Online]. Available: 10.1002/sec.1748

[9] “The Ethereum network.” [Online]. Available: http://ethdocs.org/en/latest/network

[10] A. B. M, “Internet of Things: A Hands-On Approach,” 2014.

[11] “Research & Innovation in Internet of Things.” [Online]. Available:

https://ec.europa.eu/digital-single-market/en/research- innovation-IOT

[12] R. V. M. J. Rivera, “Forecast: Internet of Things — Endpoints and Associated,” 2016.

[13] “IoT Standards and Protocols.” [Online]. Available: https://www.postscapes.com/internet-

of-things-protocols/.

http://ethdocs.org/en/latest/network
http://www.postscapes.com/internet-of-things-protocols/
http://www.postscapes.com/internet-of-things-protocols/
http://www.postscapes.com/internet-of-things-protocols/

 67

[14] S. Lawson, “Why Internet of Things ’standards’ got more confusing in 2014.” [Online].

Available: https: //www.pcworld.com/article/2863572/iot-groups-are-like-an-orchestra-

tuning-up-the-music-starts-in-2016.html

[15] “ALLIANCE FOR INTERNET OF THINGS INNOVATION Smart Mobility.” [Online].

Available: https://aioti.eu/

[16] P. Stokes, “4 Stages of IoT architecture explained in simple words.” [Online]. Available:

https://medium.com/ datadriveninvestor/4-stages-of-iot-architecture-explained-in-simple-

words-b2ea8b4f777f

[17] A. Reale, “A guide to Edge IoT analytics.” [Online]. Available:

https://www.ibm.com/blogs/internet-of-things/edge-iot- analytics/

[18] “Internet of Things (IoT) Protocols and Connectivity Options: An Overview.” [Online].

Available: https: //www.sam-solutions.com/blog/internet-of-things-iot-protocols-and-

connectivity-options-an-overview/

[19] “JSON C/C++ Library for IoT Communication.” [Online]. Available:

https://realtimelogic.com/products/json/

[20] O. G.-M. M. Kirsche M. Brachmann, “Security for practical CoAP applications: Issues and

solution approaches,” 0th GI/ITG KuVS Fachgespraech Sensornetze (FGSN 2011), 2011.

[21] P. B. A. L. R. T. M.A. Spirito D. Conzon, T. Bolognesi, “The VIRTUS middleware: An

XMPP based architecture for secure IoT communications,” 21st International Conference

on Computer Communications and Networks, ICCCN, pp. 1–6, 2012.

[22] undefined H. Kim, “Protection against packet fragmentation attacks at 6LoWPAN

adaptation layer,” 2008 International Conference on Convergence and Hybrid Information

Technology, pp. 796–801, 2008.

[23] K. P. K. Weekly, “Evaluating sinkhole defense techniques in RPL networks,” 20th IEEE

International Conference on Network Protocols (ICNP), ICNP ’12, IEEE Computer

Society, Washington, DC, USA, pp. 1–6, 2012.

[24] K. Tassin, LTE and the Internet of Things, Sequans Communications, 2014 [Online].

available :http://www.3gpp.org/news-events/3gpp-news/1607-iot).

[25] “X.509 certificate.” [Online]. Available:

https://searchsecurity.techtarget.com/definition/X509-certificate.

http://www.pcworld.com/article/2863572/iot-groups-are-like-an-orchestra-tuning-up-the-music-starts-in-2016.html
http://www.pcworld.com/article/2863572/iot-groups-are-like-an-orchestra-tuning-up-the-music-starts-in-2016.html
http://www.pcworld.com/article/2863572/iot-groups-are-like-an-orchestra-tuning-up-the-music-starts-in-2016.html
http://www.ibm.com/blogs/internet-of-things/edge-iot-
http://www.ibm.com/blogs/internet-of-things/edge-iot-
http://www.sam-solutions.com/blog/internet-of-things-iot-protocols-and-connectivity-options-an-overview/
http://www.sam-solutions.com/blog/internet-of-things-iot-protocols-and-connectivity-options-an-overview/
http://www.sam-solutions.com/blog/internet-of-things-iot-protocols-and-connectivity-options-an-overview/
https://searchsecurity.techtarget.com/definition/X509-certificate

 68

[26] Y. Z. T. Wood W. Xu, W. Trappe, “The feasibility of launching and detecting jamming

attacks in wireless networks,” Proceedings of the 6th ACM International Symposium on

Mobile Ad Hoc Networking and Computing, MobiHoc ’05, ACM, New York, NY, USA,

pp. 46–57, 2005.

[27] W. L. X. G., “Channel-Based Detection of Sybil Attacks in Wireless Networks,” IEEE

Transactions on Information Forensics and Security, vol. 4, no. 3, 2009.

[28] “OWASP, Top IoT Vulnerabilities.” [Online]. Available:

https://www.owasp.org/index.php/Top_IoT_Vulnerabilitie

[29] X. D. A.V. Vasilakos J. Zhou, Z. Cao, “Security and privacy for cloud-based IoT:

Challenges,” IEEE Commun. Mag, vol. 55, no. 1, pp. 26–33, 2017.

[30] N. Park and N. Kang, “Mutual authentication scheme in secure internet of things

technology for comfortable lifestyle,” Sensors, vol. 6, no. 1, 2016.

[31] K.-H. K. H.F. Ahmed R. Riaz, “Security analysis survey and framework design for IP

connected LoWPANs,” International Symposium on Autonomous Decentralized Systems,

pp. 1–6, 2009.

[32] T. H. L. Buttyan A. Dvir, “VeRA - version number and rank authentication in RPL,” IEEE

Eighth International Conference on Mobile Ad-Hoc and Sensor Systems, pp. 709–714,

2011.

[33] J. Granjal, E. Monteiro, and J. S. Silva, “Network-layer security for the Internet of

Things using TinyOS and BLIP,” Int. J. Commun. Syst, vol. 27, no. 10, pp. 1938–1963,

2014. [Online]. Available: http://dx.doi.org/10.1002/dac.2444

[34] F. J. Ryba, M. Orlinski, M. Wählisch, C. Rossow, and T. C. Schmidt, “Amplification and

DRDoS Attack Defense - A Survey and New Perspectives,” 2015.

[35] M. Brachmann, O. Garcia-Morchon, and M. Kirsche, “Security for practical CoAP

applications: Issues and solution approaches,” in 10th GI/ITG KuVS Fachgespraech

Sensornetze.

[36] Nakamoto, “Bitcoin: A Peer-to-Peer Electronic Cash System.” [Online]. Available:

https://bitcoin.org/en/bitcoin-paper.

[37] Z. Xie, H. Dai, X. Chen, and H. Wang, “Blockchain challenges and opportunities: a

survey,” International Journal of Web and Grid Services, vol. 14, no. 4.

http://www.owasp.org/index.php/Top_IoT_Vulnerabilitie
http://www.owasp.org/index.php/Top_IoT_Vulnerabilitie
http://dx.doi.org/10.1002/dac.2444
https://bitcoin.org/en/bitcoin-paper

 69

[38] A. Lastovetska, “Blockchain Architecture Basics: Components, Structure, Benefits &

Creation,” 2019. [Online]. Available: https://mlsdev.com/blog/156-how-to-build-your-

own-blockchain-architecture

[39] A. Reyna, C. Martín, J. Chen, E. Soler, and M. Díaz, “On blockchain and its

integration with IoT. Challenges and opportunities,” Future Generation Computer

Systems, vol. 88, pp. 173–190, 2018. [Online]. Available:

https://doi.org/10.1016/j.future.2018.05.046

[40] B. ARVANAGHI, “Explaining the Genesis Block in Ethereum.” [Online]. Available:

https://arvanaghi.com/blog/ explaining-the-genesis-block-in-ethereum/

[41] G.-T. Nguyen and K. Kim, “A Survey about Consensus Algorithms Used in Blockchain,” J

Inf Process Syst, vol. 14, no. 1, pp. 101–128, 2018. [Online]. Available:

https://doi.org/10.3745/JIPS.01.0024

[42] K. Christidis, M. Devetsikiotis, and K. Christidis, “SPECIAL SECTION ON THE

PLETHORA OF RESEARCH IN INTERNET OF THINGS (IoT) Blockchains and

Smart Contracts for the Internet of Things,” vol. 4, 2016. [Online]. Available:

10.1109/ACCESS.2016.2566339

[43] “A Next-Generation Smart Contract and Decentralized Application Platform.” [Online].

Available: :https://github.com/ ethereum/wiki/wiki/White-Paper

[44] “Solidity.” [Online]. Available: https://solidity.readthedocs.io/en/v0.5.3

[45] Z. Hintzman, “Comparing Blockchain Implementations.” A Technical Paper prepared for

SCTE/ISBE [Online]. Available: https://www.nctatechnicalpapers.com/Paper/2017/2017-

comparing-blockchain-implementations/download.

[46] F. Gadaleta, “This is how Ethereum works.” [Online]. Available:

https://medium.com/fitchain/this-is-how-ethereum- works-60f37abd5ef5

[47] V. Buterin, “Merkling in Ethereum.” [Online]. Available:

https://blog.ethereum.org/2015/11/15/merkling-in-ethereum/

[48] “R.P.C. JSON.” [Online]. Available: https://github.com/ethereum/wiki/wiki/JSON-RPC.

[49] “What is the Unix time stamp?” [Online]. Available:

https://www.unixtimestamp.com/index.php.

https://github.com/ethereum/wiki/wiki/JSON-RPC
http://www.unixtimestamp.com/index.php

 70

[50] “GeTH.” [Online]. Available: https://github.com/ethereum/go-ethereum/wiki/GeTH.

[51] “JavaScript API.” [Online]. Available: https://github.com/ethereum/wiki/wiki/JavaScript-

API#web3ethfilter

[52] “web3.js - Ethereum JavaScript API.” [Online]. Available:

https://web3js.readthedocs.io/en/1.0/

[53] “WebSocketClient.” [Online]. Available

https://github.com/theturtle32/WebSocketNode/blob/master/docs/WebSocketClient.md#con

nectrequesturl-requestedprotocols-origin-headers-requestoptions

[54] B. ARVANAGHI, “Explaining the Genesis Block in Ethereum.” [Online]. Available:

https://arvanaghi.com/blog/ explaining-the-genesis-block-in-ethereum/

[55] “Remix, Ethereum-IDE.” [Online]. Available: https://remix.readthedocs.io/en/latest/

[56] “Contract ABI Specification.” [Online]. Available:

https://solidity.readthedocs.io/en/develop/abi-spec.html

[57] “Download GeTH.” [Online]. Available: https://GeTH.ethereum.org/downloads/

[58] “Command Line Options.” [Online]. Available: https://github.com/ethereum/go-

ethereum/wiki/Command-Line-Options

[59] S. Gueiros, “The GeTH’s saga: setting up Ethereum private network on windows.”

[Online]. Available: https://medium.com/ @solangegueiros/https-medium-com-

solangegueiros-setting-up-ethereum-private-network-on-windows-a72ec59f2198

[60] “montdher10/Domain_based-system.” [Online]. Available:

https://github.com/montdher10/Domain_based-system

[61] “Node.js.” [Online]. Available: https://nodejs.org/en/download/

[62] “Filament.” [Online]. Available: https://filament.com/ .

[63] R. . Mauri, “Three features of blockchain that help prevent fraud.” [Online]. Available:

https://www.ibm.com/blogs/ blockchain/2017/09/three-features-of-blockchain .

[64] “Ethereum Price.” [Online]. Available: https://www.coindesk.com/price/ethereum

https://www.ibm.com/blogs/
http://www.coindesk.com/price/ethereum

 71

APPENDIX A

GENSIS FILE EXPLANATION

1. Config: this work as the main setting to describe the blockchain network,

it must not be between (0-3) because this value used in real networks.

2. ChainId: This value is a unique value for running the private network.

3. HomesteadBlock: this value is always 0 for private networks, in real

network it could be hold another value.

4. Eip155Block & Eip158Block: these values are used in hard-forking, for

private network its 0.

5. Difficulty: this value is used as a scalar of the mining Target, which can be

calculated from the previous block’s difficulty level and the timestamp.

6. GasLimit: this value is used to limit of Gas expenditure per block.

7. Alloc & Balance: list of pre-filled Accounts.

