

T.C.

ALTINBAŞ UNIVERSITY

Electrical and Computer Engineering

PATTERN-BASED BEHAVIORAL BIOMETRIC

AUTHENTICATION USING ARTIFICIAL NEURAL

NETWORKS

Ali Saad Hussein ALNASER

Master Thesis

Supervisor

Prof. Dr. Osman N. UÇAN

Istanbul (2019)

PATTERN-BASED BEHAVIORAL BIOMETRIC AUTHENTICATION USING

ARTIFICIAL NEURAL NETWORKS

by

Ali Saad Hussein ALNASER

Electrical and Computer Engineering

Submitted to the Graduate School of Science and Engineering

in partial fulfillment of the requirements for the degree of

Master of Science

ALTINBAŞ UNIVERSITY

2019

iii

This is to certify that I have read this thesis and that in my opinion it is fully adequate, in

scope and quality, as a thesis for the degree of Master of Science.

Asst. Prof. Dr. Osman N. UÇAN

Supervisor

Examining Committee Members

Academic Title Name SURNAME Faculty, University

Academic Title Name SURNAME Faculty, University

Academic Title Name SURNAME Faculty, University

I certify that this thesis satisfies all the requirements as a thesis for the degree of

..............................

 Academic Title Name SURNAME

Head of Department

Academic Title Name SURNAME

Director

Approval Date of Graduate School of

Science and Engineering: ____/____/____

iv

I hereby declare that all information in this document has been obtained and presented in

accordance with academic rules and ethical conduct. I also declare that, as required by these

rules and conduct, I have fully cited and referenced all material and results that are not

original to this work.

Ali Saad Hussein ALNASER

v

DEDICATION

I am dedicating this thesis to my friends and family who mean so much to me. I want to

thank everyone who has helped me to achieve and continued to support me throughout. I

am very grateful and appreciative of all you. To my parents who have shown me endless

love and courage to further my future. To my sister Dania, who has given me strength with

love to be the role model towards her future. To my beloved sister Haneen, who is no

longer with us but always in our hearts. I will always love you and miss you dearly, hoping

to make you proud. To her beautiful son Ayad. Every possibility is achievable with hard

work, focus, and support. I am very thankful from my heart to every one of you.

vi

ACKNOWLEDGMENTS

I would like to express my sincere gratitude Prof. Dr. Osman Nuri UCAN for all the

knowledge and support he provided during my study for the Master Degree and throughout

the work to complete this thesis. You have made my dream come true.

vii

ABSTRACT

PATTERN-BASED BEHAVIORAL BIOMETRIC AUTHENTICATION USING

ARTIFICIAL NEURAL NETWORKS

Ali Saad Hussein ALNASER,

M.Sc., Electrical and Computer Engineering, Altınbaş University

Supervisor: Prof. Dr. Osman N. UÇAN

Date: April/2019

Pages: 58

The use of smart devices to collect and store sensitive and private information has been

increasing exponentially in recent years, according to the rapid progress in the electronics

industry and the digital era. Different protection schemes are being proposed to protect

these data from being revealed to unauthorized users that may gain physical access to the

device. Some of these schemes have become obsolete, according to their sensitivity toward

simple attacks or the development in the attacking strategies adopted by the intruders. Thus,

more attention is being applied to the use of biometric features to recognize and

authenticate users, according to the difficulty of replicating such features. However, the

collection and storage of physiological biometric features can pose threats to the privacy of

the users, which is the main reason behind not favoring such authentication schemes. A

more privacy-conserving alternative has been widely employed in authentication schemes,

which relies on behavioral features instead of the physiological. The collection and storage

of behavioral biometric do not pose threats toward the privacy of the user, hence, users can

adopt such schemes without worrying about their privacy. However, the robustness of the

behavioral biometrics is lower than physiological, which imposes limitations to the

performance of such schemes. Thus, in this study, Artificial Neural Networks (ANNs) are

employed to handle variations in the behavioral biometrics and produce more robust

descriptors per each user. The proposed method is designed to collect behavioral biometrics

during the drawing of the graphical secret pattern that is widely used to protect smart

devices with touch-sensitive screens. The generated fixed-size descriptor contains 128

viii

values that describe the unique way each user draws a pattern, so that, even when the same

pattern is used, different descriptors are generated for different users. Then, by measuring

the Euclidean distance between the descriptor stored as a template and the one collected

from the attempt, the user can be recognized and authenticated if the distance is lower than

a threshold value. A Convolutional Neural Network (CNN), Long- Short-Term Memory

(LSTM) and Gated Recurrent Unit (GRU) neural networks are evaluated for the proposed

system. The results show that the descriptors generated by the GRU neural network have

produced the highest performance of the proposed system, with only 6.91% Equal Error

Rate (EER).

Keywords: Security; Biometric Authentication; Behavioral Biometrics; Artificial Neural

Networks.

ix

TABLE OF CONTENTS

sPage

ABSTRACT ... vi

LIST OF TABLES ... xiv

LIST OF FIGURES .. xi

LIST OF ABBREVIATIONS .. xii

1. INTRODUCTION .. 1

1.1 PROBLEM DEFINITION .. 3

1.2 AIM OF THE THESIS ... 3

1.3 THESIS LAYOUT ... 4

2. LITERATURE REVIEW .. 5

2.1 USERS AUTHENTICATION ... 5

2.1.1 Graphical Pattern-Based Authentication ... 6

2.1.2 Behavioral Biometric Authentication.. 7

2.2 ARTIFICIAL NEURAL NETWORKs .. 8

2.2.1 Convolutional Neural Network (CNN) ... 10

2.2.2 Recurrent Neural Networks ... 11

2.3 PERFORMANCE EVALUATION OF THE AUTHNETICATION

SYSTEMS .. 14

3. METHODOLOGY ... 16

3.1 CHARACTERISTICS OF THE REQUIRED DESCRIPTOR 16

3.2 NEURAL NETWORK IMPLEMENTATION FOR THE DESCRIPTOR

GENERATION .. 17

3.3 DESCRIPTORS GENERATION AND MATCHING 18

x

3.4 DATA PREPROCESSING .. 19

3.4.1 Preprocessing the Data for the CNN ... 20

3.4.2 Preprocessing the Data for the RNN ... 21

4. EXPERIMENTAL RESULTS ... 22

4.1 DATA COLLECTION ... 23

4.2 CNN’s PERFORMANCE EVALUATION ... 25

4.3 LSTM’S PERFORMANCE EVALUATION .. 27

4.4 GRU’S PERFORMANCE EVALUATION ... 30

5. DISCUSSION .. 34

6. CONCLUSION ... 37

REFERENCES ... 39

xi

LIST OF TABLES

Pages

Table 5.1: Summary of the performance for the evaluated neural networks. 34

Table 5.2: Performance comparison to the state-of-the-art method in the literature. 36

xii

LIST OF FIGURES

Pages

Figure 2.1: Layout of the pattern inputting interface [20]. ... 7

Figure 2.2: Illustration of the computations inside an artificial neuron [22]. 8

Figure 2.3: Outputs of the Sigmoid, Hyperbolic Tangent and ReLU activation functions. . 10

Figure 2.4: Output of Max-Pooling filter. .. 11

Figure 2.5: Computations in an RNN neuron. .. 12

Figure 2.6: Illustration of the data flow in an LSTM neural network [39]........................... 13

Figure 2.7: Gated Recurrent Unit. .. 14

Figure 2.8: ROC curve and Equal Error Rate. .. 15

Figure 3.1: Topology of the trained neural network. .. 18

Figure 3.2: Descriptor generation neural network. ... 19

Figure 3.3: Data Preprocessing Algorithm for the CNN. ... 21

Figure 3.4: Data Preprocessing Algorithm for the RNN. ... 22

Figure 4.1: GUI of the implemented data logging Android application. 24

Figure 4.2: The patterns used for data logging from volunteers. ... 24

Figure 4.3: Topology of the trained CNN. ... 25

Figure 4.4: Accuracy and loss versus training epochs for the CNN..................................... 26

Figure 4.5: Distribution of distances measured from the CNN descriptors. 26

Figure 4.6: ROC curve of the predictions made depending on the descriptors of the CNN.27

Figure 4.7: Topology of the trained LSTM neural network. .. 28

Figure 4.8: Accuracy and loss versus training epochs for the LSTM neural network. 28

Figure 4.9: Distribution of distances measured from the LSTM descriptors. 29

Figure 4.10: ROC curve of the predictions made depending on the descriptors of the LSTM

neural network. .. 30

Figure 4.11: Topology of the trained LSTM neural network. .. 31

Figure 4.12: Accuracy and loss versus training epochs for the LSTM neural network. 31

Figure 4.13: Distribution of distances measured from the GRU descriptors. 32

xiii

Figure 4.14: ROC curve of the predictions made depending on the descriptors of the LSTM

neural network. .. 33

Figure 5.1: Training accuracies and EERs of the evaluated neural networks. 35

xiv

LIST OF ABBREVIATIONS

RFID : Radio Frequency Identifier

PIN : Personal Identification Number

EER : Equal Error Rate

FAR : False Acceptance Rate

FRR : False Rejection Rate

ANN : Artificial Neural Network

CE : Cross Entropy

ReLU : Rectified Linear Unit

CNN : Convolutional Neural Network

RNN : Recurrent Neural Network

LST : Long- Short-Term Memory

GRU : Gated Recurrent Unit

ROC : Receiver Operating Characteristic

DTW : Dynamic Time Warping

DL : Deep Learning

ML : Machine Learning

GPU : Graphical Processing Unit

GUI : Graphical User Interface

1

1. INTRODUCTION

The use of smart devices of different types has been growing exponentially in recent years,

according to the proposal of the digital era. Several private and sensitive information is

being stored and communicated, digitally, using these devices, according to the wide range

of applications they are being used to access [1-3]. Accordingly, concerns about the

security of such information are being the concern of many researchers, so that, any

unauthorized access is denied and the information is protected. However, attacking

techniques are also developing rapidly, which allows attackers to gain access to these

devices. Thus, more complicated authentication methods are being proposed and employed

to protect these devices [4, 5].

The aim of using an authentication method is to distinguish intruders and deny their access

to the information on the device, even when they gain physical access to it. In other words,

only the legitimate user is allowed to access such information. Thus, an input is required

from the user to be used to recognize legibility and make the appropriate decision. Such

input can be a predefined secret, textual or graphical, an identifying object, such as tokens

and Radio Frequency Identifier (RFID), or using biometric features, which can be

physiological or behavioral [6, 7]. However, shoulder surfing attack, which occurs when an

intruder spies on the legitimate user during the authentication process to gain the secret

used for authentication, is one of the simple attacks that can be executed against secret-

based methods. Moreover, the use of easy-to-remember secrets is a tendency among users,

hence, such secrets become easy to predict. Thus, secret-based authentication has become

obsolete and rarely used to protect any sensitive information or systems [8].

Additionally, authentication systems that rely on objects that users have to recognize them

can be easily attacked by simply acquiring that object, so that, the intruder can authenticate

as the legitimate user. These vulnerabilities to simple attacks have encouraged the use of

biometric authentication to protect systems and information. Depending on the nature of the

biological features collected from the user, two types of biometric authentication system

exist, physiological and behavioral. When the biometric features represent the physical

characteristics of a certain body part of the user, such as the iris or fingerprint, the system is

2

denoted as physiological. Moreover, when these features are collected from the behavior of

the user while the execution of a certain task, it is denoted as behavioral [9, 10].

As the features that are used to recognize the user are extracted from the biometrics of that

user, the possibility of gaining access to the system by an intruder is significantly lower

than in other types of authentication systems, even if the intruder recognizes the type of the

features being collected. This difficulty is according to the uniqueness of such features, in

both physiological and behavioral biometrics, which makes the reproduction of such

features significantly more difficult. Thus, systems and information protected using

biometric authentication systems are more secure than those protected using the secret-

based or object-based techniques. However, despite the robustness of physiological

features, most of the users avoid the use of such features according to concerns about their

privacy. Thus, more emphasis on behavioral biometric features has been applied in recent

years [4].

Despite the good security of the behavioral biometric authentication systems, behavioral

features collected from the users are less robust the physiological ones. A set of features is

considered robust when the same values are extracted from the user every time the user

authenticates into the system. According to the different situations and environments that

the user can be when authenticating into the system, some of the features collected from the

behavior of the user may vary, which is not the case in physiological biometric features.

Thus, it is important to consider variation in the behavioral biometric features and rely on

the most robust features in the collected data [11].

According to the popularity of devices with touch-sensitive screens, several methods have

been proposed to achieve behavioral biometric authentication based on features collected

from these screens. Nguyen et. al. [12] propose a behavioral biometric authentication

system that uses handwritten Personal Identification Numbers (PIN) over the touch-

sensitive screens, instead of using numbered buttons to enter these numbers. Authenticating

or recognized individuals based on their handwriting has been widely employed in different

applications, some of them are not related to smart devices, and has shown good

recognition rate. Thus, the method has shown good security measure with 4.48% Equal

Error Rate (EER), i.e. 4.48% False Acceptance Rate (FAR) and 4.48% False Rejection Rate

3

(FRR). However, the usability of this method can be very low according to the long time

required to draw the number of the PIN, one by one, instead of tapping the numbered

buttons. Moreover, most of the users of smart devices with touch-sensitive screens use

graphical pattern-based secrets to authenticate into their devices, 32.5% according to

Nathan et. al. [13].

1.1 PROBLEM DEFINITION

Information is being stored on smart devices with touch-sensitive screens, such as

smartphones, tablets and computers, are becoming of increasing importance according to

the rapid growth of the digital era. Protecting such information is mandatory to deny

intruders who may gain physical access to such devices from accessing the digital

information stored on it. Several types of authentication system are being used to recognize

and verify the legitimate user of the device before allowing access to its services and

information. However, with the rapid development of attacking methods and vulnerabilities

in earlier methods has encouraged the use of biometric authentication. Concerns about

collecting and storing physiological biometric features have been rising from users as such

information is considered personal and private. Thus, the use of behavioral biometric

features has risen in recent years, despite the lower robustness of behavioral biometric

features. Verifying user based on their handwriting has achieved good security measures in

[13] but the usability of such a system is low according to the long time required to input

the PIN. Graphical pattern-based secrets are widely used by users, which has encouraged

the development of behavioral biometric authentication systems that rely on features

collected from the touch-sensitive screen of the device during the input of the pattern [14].

However, the security measures of the method show poor performance, with 19% FRR and

21% FAR, which are caused by the variation in the behavioral biometric features collected

from the touch-sensitive screen.

1.2 AIM OF THE THESIS

To improve the security measures of the behavioral biometric authentication system based

on biometric features collected from the touch-sensitive screen while inputting the

4

graphical pattern-based secret, the aim of this thesis is to use machine learning techniques

that can handle variation in the collected biometric features. The proposed method uses

artificial neural networks to produce a more robust descriptor that can be used to measure

the similarity between the features stored in the template stored for the legitimate user of

the device and those collected from the current authentication attempt. Artificial neural

networks have shown the ability to handle variations in the inputs and can significantly

improve the performance of the system while simplifying the computations to measure the

similarity between the template and the attempt.

1.3 THESIS LAYOUT

The structure of the thesis following this chapter is organized as:

• The literature regarding artificial neural networks and behavioral biometric

authentication is reviewed in Chapter Two.

• The descriptor generation approach and similarity measurement approach

proposed in this study are described in Chapter Three.

• The security of the proposed method is evaluated through a set of experiments

that are illustrated in Chapter Four.

• The performance of the method is discussed, to select the approach with the

best performance, and compare it to similar methods in the literature in Chapter

Five.

• Conclusion and future work are summarized in Chapter Six.

5

2. LITERATURE REVIEW

The purpose of using an authentication system is to distinguish the legitimate user of the

device and allow their access to the services and information stored on the device while

denying the access of any other users. Such a system requires a template that defines the

secret or features, of the legitimate user, that can be used to verify and validate any future

inputs collected from users [15]. Depending on the type of the input collected by the

authentication system, the stored template and collected information may require different

types of processing, so that, the usability of the system is maintained while improving its

security.

2.1 USERS AUTHENTICATION

Basically, users can be authenticated into the system using three main types of information,

which are [16]:

• Something you know: the input collected from the user in this type of

authentication systems represents a predefined secret that, supposedly, only the

legitimate user knows. This secret is stored on the device and is required from

the user upon authentication, so that, the inputted secret is validated against the

stored one to make the appropriate authentication decision, i.e. the user is

allowed access if secrets match. Thus, these methods are also known as secret-

based methods, where different types of secrets are being used, such as

graphical patterns or PINs [17]. However, attacks as simple as shoulder surfing,

dictionary predictions and brute force can be executed successfully against this

type of authentication [18].

• Something you have: Instead of using predefined secrets, objects of known

characteristics are used in this type of authentication to prove the identity of the

user. The use of RFID or ATM cards are examples of such type authentication.

However, losing the authentication object can cause the rejection of the

legitimate user’s access to the system, while acquiring it by an intruder may

gain them access to the system [19]. This type of authentication is rarely used

6

with smart devices, as these devices are widely used and the need to maintain

the physical persistence of an object every time the user uses the device limits

the usability of methods in this category.

• Something you are: This type of authentication relies on identifying

individuals using characteristics collected directly from the user, so that, such

information cannot be lost by the legitimate user or replicated by an intruder.

Methods in this category are also known as biometric authentication methods,

where characters used by these methods can be collected from the face, iris or

handwriting of the user [19, 20]. Furthermore, these methods can be

categorized into physiological and behavioral, depending on the type of

biometric features collected from the user.

2.1.1 Graphical Pattern-Based Authentication

This type of secret-based authentication uses a predefined set of dots in a certain layout,

shown in Figure 2.1, to define a secret graph that is used to authenticate the user [21]. The

secret is defined as the sequence of the dots the user passes through in a single touch, i.e.

without removing their finger from the touch-sensitive screen. The sequence starts as soon

as the first dot is touched and terminated when the finger of the user is lifted from the

screen. This sequence is compared to the sequence stored for the legitimate user and the

user is authenticated if they match. This type of authentication is widely used among the

smart devices’ users according to its ease of use and better security, compared to other

secret-based methods [13]. This better security is according to the resistance of pattern-

based authentication to several attacks that can be executed against PIN and passphrases,

such as dictionary-based guessing, keyloggers and spyware [22].

7

Figure 2.1: Layout of the pattern inputting interface [21].

2.1.2 Behavioral Biometric Authentication

Humans have unique behavior when executing similar tasks, so that, the same task is

executed in a unique way by each individual. Behavioral biometrics are features that

describe this unique behavior, so that, they can be used to distinguish different individuals.

However, the possibility of collecting the exact same behavior from the same individual

every time that task is executed is very low, according to the different environments and

condition the individual may be in during the execution of that task [23]. Thus, unlike the

secret-based methods, collecting data identical to the template stored on the device for the

legitimate user cannot be achieved, which disables the use of direct matching techniques to

authenticate the user. Moreover, using a wider range of similarity between the collected

features and the template can impose limitation in the security of the authentication system,

as an intruder that can reproduce features with similarity in the defined range can gain

access to the device [24]. To overcome such limitation, machine learning techniques are

widely used in behavioral biometric authentication. Such techniques provide more

flexibility in measuring the similarity or predicting the authenticity of the user, so that,

variation in the collected features and the template can be handled [9, 10].

8

2.2 ARTIFICIAL NEURAL NETWORKS

Inspired by humans’ brains, artificial neurons are the basic units of an Artificial Neural

Network (ANN). These neurons are distributed over multiple layers, where the distribution

of the neurons in the layer defines its operations and the position of the layer in the network

defines its type. Each neuron collects its inputs from the previous layer, i.e. the outputs of

the neurons in the previous layer. As shown in Figure 2.2, the output of the neuron is

calculated by multiplying each input with a corresponding value, known as the weight,

before summed up and passed through an activation function. This nonlinearity provided by

the activation function allows the detection of more complex features, as the margins of the

values that form the feature can be nonlinear. Moreover, to adjust the positioning of these

margins in a more accurate way, an additional value, known as the bias value, is added to

the inputs of the neurons, where the value of the bias is adjusted by the neural network

depending on the need to position the margins of the detected feature [25, 26].

Figure 2.2: Illustration of the computations inside an artificial neuron [25].

Two types of computations are executed in any neural network, forward and backward

passes. During training, both passes are required to update the weights and biases values,

while when a prediction is required, only the forward pass is executed [27]. In the forward

pass, the execution of the computations is initiated from the input layer, where the output of

9

each neuron in a certain layer is calculated and inputted to those in the next layer until the

output of the network is calculated. The modification of the weights and biases values is

known as the training of the neural network, where the optimal value per each weight and

bias is calculated to achieve the required output. Several types of optimizers can be used to

update these values depending on the difference between the output of the neural network

and the values required to be outputted from it. Mainly, these optimizers are derived from

the gradient descent algorithm, which relies on the rate of change of the output per each

value to optimize it [28-30]. The new value of each parameter is selected as shown in

Equation 2.1.

𝜃𝑗 ← 𝜃𝑗 − 𝛼
𝜕

𝜕𝜃𝑗
𝐽(𝜃) (2.1)

As the formula shows, the difference between the required output and the prediction of the

neural network is multiplied by the derivative of the difference with respect to the

parameter being updated. As this value represents the direction to maximize the difference,

it is subtracted from the current value in that parameter, so that, the difference is reduced.

However, to avoid large updates that may reduce the efficiency of finding the global

minimum, a learning rate 𝛼 is used to damp these changes [31]. To calculate the difference

between the predictions and the required values, different types of functions are used,

depending on the type of the output and task required from the neural network, as used to

summarize the differences into a single value. Cross Entropy (CE) loss function is widely

used in neural networks that are implemented for classification problems [32], which has

the formula shown in Equation (2.2).

𝐶𝐸 = −∑𝑡𝑖log⁡(𝑓(𝑠)𝑖)

𝐶

𝑖

 (2.2)

Moreover, the selection of the activation function of the neuron depends on the position of

the layer that the neuron belongs to and the performance of the activation function. Despite

the existence of several types of activation function, as shown in Figure 2.3, significant

improvement of the performance of the neural network is noticed when the Rectified Linear

Unit (ReLU) is used as the activation function [33]. However, the task required from the

neural network determines the type of the activation function used for the output layer’s

10

neurons. For classification tasks, the SoftMax function is used, where the summation of the

outputs of the neurons adds up to the value of one and each value reflects the input’s

probability to be in the class correspondent to that neuron [34, 35]. The formula of the

SoftMax function is shown in Equation 2.3.

Figure 2.3: Outputs of the Sigmoid, Hyperbolic Tangent and ReLU activation functions.

𝑆(𝑦𝑖) =
𝑒𝑦𝑖

∑ 𝑒𝑦𝑗𝑗
 (2.3)

2.2.1 Convolutional Neural Network (CNN)

Comvultional layers in an artificial neural network consist of multi-dimensional filters that

are convoluted over the input of the layer, depending on the dimensions of the input. Each

filter contains the weights of a single neuron in the convolutional layer, so that, this neuron

gains the ability of detecting multi-dimensional local features. Based on the values of the

weights in the filter, the neuron becomes capable of measuring the similarity between the

pattern in the filter and the feature it recognizes. As the neurons in deeper layers combine

the outputs of those in the previous one, the complexity of the detected feature can be

increased by adding more convolutional layers, so that, the feature in a layer represents a

11

combination of those in the previous. Depending on the defined convolution strategy, the

output of the neuron has the same number of dimensions of its input but the size of each

dimension can be different [36, 37].

The number of values per each dimension that are skipped by the filter per each

convolution is known as the strides. Larger strides values reduce the size of the output from

the neuron but can cause the loss of detecting features in the skipped values. Thus, pooling

layers are used to reduce the dimensionality of the output without producing significant

information loss [38]. Pooling layers also use multi-dimensional filters to summarize the

values in that filter into a single value. The output values are calculated based on the type of

pooling executed in the layer, where Max-Pooling is one of the widely used pooling layers.

As shown in Figure 2.4, the Max-Pooling filter outputs the maximum value in the filter to

summarize all the values in that filter [38, 39].

Figure 2.4: Output of Max-Pooling filter.

2.2.2 Recurrent Neural Networks

Recurrent Neural Networks (RNNs) are proposed to handle data that have features relevant

to time, mostly time-series. The values are provided in a timely manner, where the position

of the value in the series depends on the time it occurs, with respect to the other values in

the same series. Thus, this type of neural networks handles two-dimensional inputs, where

the size of one of the dimensions equals to the number of the features and the size of the

second one is the number of values in each series. As shown in Figure 2.5, suppose a

12

weight value f is used to adjust the value of the output from the tuple previous to the current

tuple positioned at t. During the computations of the output of the neuron at t, the output h

from t-1 is included after being weighted using f. The output at this t tuple is also weighted

using f and included with the inputs x of the next tuple at t+1. This process is repeated until

all the tuples in the input set are processed [40, 41].

Figure 2.5: Computations in an RNN neuron.

However, this basic RNN topology suffers from the exploding or vanishing gradient

problem, where the weights values become extremely high or low to compute the output of

the network. This problem has imposed the need to modify such topology, where the Long-

Short-Term Memory (LSTM) neural network has proposed the required solution [42]. As

shown in Figure 2.6, LSTM uses a set of gates to control the flow of data in the neuron,

where each gate is controlled by a separate neural network. The neural network netc is the

input network that receives the values from the external domain and calculates the outputs

depending on its weights. Another network netin receives a copy of these inputs in order to

control the gate that defines the flow of the output from netc, through the input gate value

yin. The effect of the previous output is adjusted using the forget gate values yϕ, which is

controlled using netϕ. This output Sc is squashed using an activation function before being

adjusted using the values yout
 acquired from the output gate, which is controlled using netout

that calculates the values of the gate using the outputs collected from the previous time

instance. As each gate is controlled using a different neural network, the weights of each

neural network are updated during the training of the networks, so that, the appropriate

13

decision is made based on the input values of the current time instance and the outputs

collected from the previous ones [43].

Figure 2.6: Illustration of the data flow in an LSTM neural network [43].

To reduce the complexity of the LSTM, Gated Recurrent Unit (GRU) has been proposed to

avoid the exploding and vanishing gradient problem using lower computations. A GRU

contains two gates to control the flow of the values through the neuron, which are the reset

and update gates, as shown in Figure 2.7 [44]. The reset gate controls the effect of the

values outputted from the previous timestep, depending on the importance of those values

in the computation for the current input. The update gate controls the effect of the current

input on the output of the unit, so that, the output can consider both the current and

previous values depending on the decision made at these gates. Such topology achieves the

same methodology of the LSTM using fewer computations, as it uses fewer gates.

However, the qualities of the predictions for both methods are very similar and both

methods must be evaluated in order to select the appropriate method for the required

application [45-47].

14

Figure 2.7: Gated Recurrent Unit.

2.3 PERFORMANCE EVALUATION OF THE AUTHENTICATION SYSTEMS

As illustrated earlier, authentication systems rely on measuring the similarity between the

template stored for the legitimate user and the descriptor or data collected from the current

attempt. To convert such similarity to a binary decision, i.e. allow or deny access to the

device, the similarity is compared to a threshold value, so that, only users with similarity

lower than the threshold value are allowed access to the device. However, some intruders

may be successful in producing such similarity measurement, lower than the threshold

value, wherein such case they can gain access to the device, which is known as false

acceptance. The ratio between the false acceptance and the total number of attacks executed

against the authentication system is calculated as the security measure of the authentication

system, which is denoted as the False Acceptance Rate (FAR) [48, 49]. Moreover, some of

the similarity measures calculated for attempts collected from the legitimate user may not

be less than, or equal to, the threshold value, in which the access to the device is denied.

Such cases are known as false rejections, as the user has legitimate right to access the

device, and the False Rejection Rate (FRR) is calculated to represent the usability of the

authentication system [50, 51].

Authentication systems with high FAR are insecure, as most of the intrusion attempts may

success when executed against the system, and such system is inapplicable even if low FRR

persists. Moreover, systems with high FRR are of low usability even if they have low FAR,

as legitimate users are not gaining the rightful access to the device. Additionally, the use of

multiple values to compare authentication systems imposes difficulties toward reasonable

15

comparison, as one system may outperform the other in one measure and the other system

outperforms it in the other. Thus, the threshold value that produces equal FAR and FRR is

selected to represent the Equal Error Rate (ERR) and this performance measure is normally

used when available, as in some authentication systems, the threshold value is constant and

cannot be adjusted to produce EER [52-54]. Figure 2.8 shows the variation in the FAR and

FRR versus the threshold value and position of the EER value, using the Receiver

Operating Characteristic (ROC) curve.

Figure 2.8: ROC curve and Equal Error Rate.

16

3. METHODOLOGY

The proposed method aims to produce a fixed-size descriptor in which the values

summarize the behavioral biometrics collected for an attempt. This descriptor is generated

from the information collected from the user during the drawing of the pattern secret, using

the sensors available in the touch-sensitive screen. In addition to the traditional information

that can be collected from any touch-sensitive screen, which are the coordinates of the pixel

being touched, modern screens provide the pressure being applied and the size of the region

covered by the touching finger. As the timestamp of each pixel touching is known, the

speed and direction of the movement can be recognized and used as behavioral biometrics.

However, such biometric information can change for the same individual, which should be

considered in the generated descriptor, so that, the values are similar for the same

individual regardless of the speed the user draws the pattern with. This can be achieved by

considering the relative speed, i.e. monitoring the positions that the user normally has

different speeds.

3.1 CHARACTERISTICS OF THE REQUIRED DESCRIPTOR

In order to define the neural network that is going to be implemented for the descriptor

generation, it is important to define the characteristics of that descriptor. The main

characteristics required for the descriptor are:

• The produced descriptor must be of a fixed size to ease the similarity

measurement procedure. Comparing descriptors with different sizes requires

more complex computations, such as the use of Dynamic Time Warping

(DTW) method. The number of values in the generated descriptor is set to 128,

similar to descriptors generated by several techniques for authentication

purposes.

• The values in the descriptor must be different when different users draw the

same pattern, so that, the descriptor can be used to distinguish different users

even when the same pattern is used to protect their smart devices.

17

• The values in the descriptor must remain similar per user per pattern, regardless

of the variation in their behavior when inputting the pattern. Such variation may

occur according to the different situations and environments that the user may

be in during the unlocking process of their devices.

• The descriptor’s values must be different when the same individual uses

different patterns, so that, drawing the old pattern does not produce a match,

even if the pattern is rejected by the default pattern authentication process.

3.2 NEURAL NETWORK IMPLEMENTATION FOR THE DESCRIPTOR

GENERATION

The output from the neural network is computed based on the values in the input, using the

forward pass. Each neuron is responsible for detecting a feature, or pattern, from the

outputs of the neurons from the previous layer, so that, more complex features can be

recognized. Accordingly, the values outputted from neurons in a certain layer represent

features in the input, which can be used to produce the required output. Thus, these features

must include the important information to be considered in the decision made by the neural

network and neglect any information that has no effect.

To produce the required descriptors, a dataset is collected from a range of different users,

where each user is required to draw a set of predefined patterns. Supposing U users have

drawn P patterns, each for N times, a total of U×P unique attempts are produced in the

collected dataset. This dataset is then used to train neural networks, with the topology

shown in Figure 3.1. The neural network is trained to recognize the pattern and the user

who has drawn it, so that, the values generated in the layer shaded in gray hold information

of both of these variables. Thus, when the descriptors are similar, it is possible to recognize

that the user is legitimate, while unsimilar descriptors indicate an intrusion attempt. Three

types of special layers are evaluated in this study, which are the Convolutional GRU and

LSTM neural networks.

18

Figure 3.1: Topology of the trained neural network.

3.3 DESCRIPTORS GENERATION AND MATCHING

During the training of the implemented neural network, to produce the required outputs at

the output layer, the values in Dense Layer 2 must be invariant per user per pattern and

have different values when any of these inputs change. Thus, these values can be used to

summarize the behavioral biometrics collected from the pattern drawing attempt.

Accordingly, the last two layers are removed from the neural network, which produces the

neural network shown in Figure 3.2, where Dense Layer 2 is the output layer. Be feeding

the data collected from the touch-sensitive screen the neural network produces the required

fixed-size descriptor, which can be used to match the attempts.

In
p
u
t

L
ay

er

S
p
ec

ia
l

L
ay

er
 1

 (
1
2
8
 n

eu
ro

n
s)

S
p
ec

ia
l

L
ay

er
 2

 (
6
4
 n

eu
ro

n
s)

S
p
ec

ia
l

L
ay

er
 3

 (
3
2
 n

eu
ro

n
s)

D
en

se
 L

ay
er

 1
 (

2
5
6
 n

eu
ro

n
s)

D
en

se
 L

ay
er

 2
 (

1
2
8
 n

eu
ro

n
s)

D
en

se
 L

ay
er

 3
 (

2
5
6
 n

eu
ro

n
s)

D
en

se
 L

ay
er

 1
 (
U
×
P

 n
eu

ro
n

s)

19

Figure 3.2: Descriptor generation neural network.

As the descriptor is of a fixed size, a simple distance measurement can be used to calculate

the difference between any two descriptors, unlike the direct use of the collected data,

which required more complex computations. For the proposed method, the Euclidean

distance, shown in Equation 3.1, is used to measure the distance between any two

descriptors, a and b, with i values in each. This distance can then be compared to a

threshold value, selected based on the experimental results, to make a binary authenticity

decision.

𝑑 = √∑(𝑎𝑖 − 𝑏𝑖)2

𝑖

 (3.1)

3.4 DATA PREPROCESSING

The data collected from the touch-sensitive screen, x and y coordinates of the touched pixel,

the pressure applied on the screen and the size of the region covered by the finger, are

appended to the timestamp of each tuple and used to generate the required descriptor.

However, as neural networks required fixed-size inputs, regardless of the number of

dimensions, it is important to preprocess these data before forwarding them to the network.

Moreover, the preprocessing procedure depends on the type of the neural network, where

the data formation required by the CNN is different from that required by the RNN. Thus,

two preprocessing procedures are proposed, one per each type of neural network.

In
p
u
t

L
ay

er

S
p
ec

ia
l

L
ay

er
 1

 (
1
2
8
 n

eu
ro

n
s)

S
p
ec

ia
l

L
ay

er
 2

 (
6
4
 n

eu
ro

n
s)

S
p
ec

ia
l

L
ay

er
 3

 (
3
2
 n

eu
ro

n
s)

D
en

se
 L

ay
er

 1
 (

2
5
6
 n

eu
ro

n
s)

D
en

se
 L

ay
er

 2
 (

1
2
8
 n

eu
ro

n
s)

20

3.4.1 Preprocessing the Data for the CNN

A three-dimensional array is created to present the values collected from the user to the

CNN. The first two dimensions are equal to the size of the touch-sensitive screen, i.e. the

height and width of the screen. The third dimension is equal to three, one for the time, one

for the pressure and one for the size. Each time value t is normalized to the interval required

by the user to complete the pattern, based on the start time st and end time et, as shown in

Equation 3.2.

𝑡 ←
𝑡 − 𝑠𝑡

𝑒𝑡 − 𝑠𝑡
 (3.2)

Then, each time, pressure and size values are positioned in the array depending on the

position of the pixel being touched, so that, the distribution of the values per each layer

reflects the drawn pattern. Moreover, to reduce the size of the input of the CNN, hence the

complexity of the computation, the size of the produced array is reduced to one-third of the

original size of the screen. The algorithm shown in Figure 3.3 summarizes the procedure

conducted to convert the data for the CNN network.

Input: Raw data from the touch-sensitive screen.

Output: A three-dimensional array for the CNN.

Step 1: T ← Read the time values from the data.

P ← Read the pressure values from the data.

S ← Read the size values from the data.

C ← Read the coordinates of the touched pixels.

O ← [, , ,] //Empty three-dimensional array for the output values.

Step 2: For each timestamp t in T:

 𝑡 ←
𝑡−𝑠𝑡

𝑒𝑡−𝑠𝑡

Step 3: For i = 0 to length(T):

 x ← int(C[i, 0]/3)

 y ← int(C[i, 1]/3)

 O[0, x, y] ← Ti

 O[1, x, y] ← Pi

21

 O[2, x, y] ← Si

Step 4: Return O

Figure 3.3: Data Preprocessing Algorithm for the CNN.

3.4.2 Preprocessing the Data for the RNN

Unlike CNN, the RNN can only handle two-dimensional inputs, where one of these

dimensions is the number of features in the descriptor and the other is the number of tuples

in each series. Although the positioning of the values reflects the sequence they are

collected in, the exact time difference between any two sequential values cannot be

recognized based on the position. Thus, the timestamp is maintained in the inputs and is

also normalized similarly to the CNN. Moreover, the length of the data is set to be equal to

the total number of tuples in the longest data collected from the patterns. However, as the

attempts cannot be guaranteed to have this length, the data of shorter patterns is padded to

match that length. The padding uses a value of -1, as it does not occur in the actual data and

can be easily recognized as padding by the neural network, and the actual data collected

from the user is positioned after the padding, so that, the actual data is considered in the

final output of the RNN. Moreover, the coordinates of the touched pixel are also fed to the

neural network, producing five features per each tuple. The algorithm shown in Figure 3.4

summarizes the data preprocessing procedure for the RNN.

Input: Raw data from the touch-sensitive screen, Length of the required array.

Output: A two-dimensional array for the RNN.

Step 1: T ← Read the time values from the data.

P ← Read the pressure values from the data.

S ← Read the size values from the data.

C ← Read the coordinates of the touched pixels.

L ← Read the required length of the data.

O ← [L,5] //Empty two-dimensional array for the output values.

O = -1 //Fill the array with the value -1.

S = L - Length(T) //The position of the first tuple in the output array.

Step 2: For each timestamp t in T:

22

 𝑡 ←
𝑡−𝑠𝑡

𝑒𝑡−𝑠𝑡

Step 3: For i = 0 to length(T):

 O[S+I, 0:2] = Ci

 O[S+I, 3] = Ti

 O[S+I, 4] = Si

 O[S+I, 5] = Pi

Step 4: Return O

Figure 3.4: Data Preprocessing Algorithm for the RNN.

23

4. EXPERIMENTAL RESULTS

To train the neural network implemented to generate the proposed descriptor, data is

collected from volunteers and labeled according to the pattern number and the volunteer’s

name. Then, this data is preprocessed and inputted to each neural network in order to train

it and evaluate the quality of the produced descriptors. The neural networks are

implemented, trained and evaluated using Python [55] programming language with the aid

of the Keras [56] Deep Learning (DL) and Scikit-Learn [57] Machine Learning (ML)

libraries. The training and evaluation experiments are conducted using a computer with

Intel® Core™ i7-8700K Processor at a frequency of 3.7GHz, 16GB of memory and 11GB

of Graphical Processing Unit (GPU) memory in Nvidia GTX1080Ti display card.

4.1 DATA COLLECTION

An application is implemented using Android Studio Integrated Development Environment

to replicate the pattern layout and collect data from the users. Five patterns are defined in

the application, so that, each user is required to provide attempts per each pattern. Each

volunteer is allowed to attempt the pattern until feels comfortable to draw it as their own

pattern, without logging the data. Then, data logging is started and each volunteer is

required to provide 50 attempts per each pattern. A counter is placed in the Graphical User

Interface (GUI), so that, the user knows the number of successful attempts logged so far,

and the application is set to terminate the logging and disable the layout when 50 successful

attempts are collected. Figure 4.2 shows the GUI of the implemented application.

24

Figure 4.1: GUI of the implemented data logging Android application.

The patterns that are used to collect the data vary in the number of dots the user is required

to connect and the complexity of the pattern, based on the positions of the connected dots.

Such a variety of patterns are used to produce an unbiased and accurate evaluation, as users

may choose different patterns with different levels of complexity. Figure 4.2 shows the

pattern defined for the data collection phase.

Figure 4.2: The patterns used for data logging from volunteers.

25

Random attempts from 26 of the volunteers are excluded from the training and used to

evaluate the proposed method, where attempts from other users using the same pattern are

used as intrusion attempts for the legitimate user being investigated. These sets are stored

and used for all the experiments, so that, no biased evaluation is conducted as all the

evaluated methods use the exact same training and testing data.

4.2 CNN’S PERFORMANCE EVALUATION

The convolutional neural network shown in Figure 4.3 is implemented and trained using

the data collected from the volunteers. This neural network is trained for 100 epochs before

the removal of the last two layers to produce the descriptors generation neural network.

During training, the output layer is set to have 155 neurons, each neuron represents a

certain user inputting a certain pattern. As the size of the screen is equal to 450×600 and the

array generated for the CNN by the preprocessing procedure is one third in dimensions, the

input layer is set to accept an array with the dimensions of 150×200×3.

Figure 4.3: Topology of the trained CNN.

When the training epochs are finished, the convolutional neural network has achieved

98.40% accuracy, where the accuracy and loss versus the epochs are shown in Figure 4.4.

In
p
u
t

L
ay

er
 (

1
5
0
×

2
0
0
×

3
0
0
)

C
o

n
v
o
lu

ti
o
n
al

 L
ay

er
 1

 (
1
2
8
,

(3
×

3
))

C
o
n
v
o
lu

ti
o
n
al

 L
ay

er
 2

 (
6

4
,
(2

×
2
))

C
o
n
v
o
lu

ti
o
n
al

 L
ay

er
 3

 (
3

2
,
(2

×
2
))

D
en

se
 L

ay
er

 1
 (

2
5
6
 n

eu
ro

n
s)

D
en

se
 L

ay
er

 2
 (

1
2
8
 n

eu
ro

n
s)

D
en

se
 L

ay
er

 3
 (

2
5
6
 n

eu
ro

n
s)

D
en

se
 L

ay
er

 1
 (

1
5
5
 n

eu
ro

n
s)

M
ax

 P
o
o
li

n
g
 L

ay
er

 (
2
×

2
)

M
ax

 P
o
o
li

n
g
 L

ay
er

 (
2
×2

)

M
ax

 P
o
o
li

n
g
 L

ay
er

 (
2
×2

)

26

Figure 4.4: Accuracy and loss versus training epochs for the CNN.

Next, the descriptor generation neural network is extracted from the trained CNN and used

to generate descriptors for the testing data collected from the volunteers. A template is

generated for each user based on the median of the descriptors from the first five attempts.

The Euclidean distance is then used to calculate the distance between each template and the

remaining attempts of that user in the corresponding pattern. The distances are also

measured using descriptors of users’ attempts for the same patters, to simulate the intrusion

attempts. Additionally, the templates are also compared to descriptors from other patterns,

to ensure the existence of differences in the produced descriptors. The measured distances

for these three situations are shown in Figure 4.5.

Figure 4.5: Distribution of distances measured from the CNN descriptors.

Same user and pattern.

Different users, same pattern.

Different patterns.

F
re

q
u
en

cy

Distance

27

As shown in the figure, the distance between the template and attempts from other users

using the same pattern are more similar than the attempts from other patterns. Thus, the

performance measures of the system to detect the difference among these distances is used

for the evaluation, as the distinguishing such attacks is more challenging to the proposed

method. The ROC curve shown in Figure 4.6 shows that the EER of the proposed method

based on the CNN’s descriptors is 10.91% and is achieved at a threshold value of 50.48.

Figure 4.6: ROC curve of the predictions made depending on the descriptors of the CNN.

4.3 LSTM’S PERFORMANCE EVALUATION

The LSTM neural network shown in Figure 4.7 is implemented and trained using the data

collected from the volunteers. This neural network is trained for 100 epochs before the

removal of the last two layers to produce the descriptors generation neural network. During

training, the output layer is set to have 155 neurons, each neuron represents a certain user

inputting a specific pattern. As the longest data collected from the patterns has 650

instances, the input layer is set to handle 650×5 features.

28

Figure 4.7: Topology of the trained LSTM neural network.

Upon the termination of the training, the accuracy of the predictions provided by the neural

network, which represent the user and pattern information, is 92.34%, which is lower than

the accuracy achieved by the CNN. However, this accuracy does not necessarily indicate

that the generated descriptor is of less quality than that generated by the CNN. Figure 4.8

shows the accuracy and loss versus the training epochs during the training of the LSTM

neural network.

Figure 4.8: Accuracy and loss versus training epochs for the LSTM neural network.

Next, the descriptor generation neural network is extracted from the trained LSTM neural

network and then used to generate descriptors for the testing data collected from the

volunteers. A template is generated for each user based on the median of the descriptors

from the first five attempts. The Euclidean distance is then used to calculate the distance

In
p
u
t

L
ay

er
 (

6
5
0
×

5
)

L
S

T
M

 L
ay

er
 1

 (
1
2
8
 n

eu
ro

n
s)

L
S

T
M

 L
ay

er
 2

 (
6
4
 n

eu
ro

n
s)

L
S

T
M

 L
ay

er
 3

 (
3
2
 n

eu
ro

n
s)

D
en

se
 L

ay
er

 1
 (

2
5
6
 n

eu
ro

n
s)

D
en

se
 L

ay
er

 2
 (

1
2
8
 n

eu
ro

n
s)

D
en

se
 L

ay
er

 3
 (

2
5
6
 n

eu
ro

n
s)

D
en

se
 L

ay
er

 1
 (

1
5

5
)

29

between each template and the remaining attempts of that user in the corresponding pattern.

The distances are also measured using descriptors of users’ attempts for the same patters, to

simulate the intrusion attempts. Additionally, the templates are also compared to

descriptors from other patterns, to ensure the existence of difference in the produced

descriptors. The measured distances for these three situations are shown in Figure 4.9.

Figure 4.9: Distribution of distances measured from the LSTM descriptors.

Despite the lower distances calculated for the descriptors generated by the LSTM neural

network, these distances have better distribution, regarding the relative distances between

each type of distances, compared to those calculated using the CNN’s descriptors.

Moreover, the difference between the distances of the legitimate attempts and those using

different template has increased significantly and has been able to achieve a very narrow

intersection area. As the most challenging distinguishing is between the attempts of the

legitimate user and those of the same pattern but from other users, the EER between these

scenarios is calculated, using the ROC curve shown in Figure 4.10, which shows that the

LSTM-based descriptors have been able to achieve 7.34% EER at 9.24 threshold value.

Same user and pattern.

Different users, same pattern.

Different patterns.

F
re

q
u
en

cy

Distance

30

Figure 4.10: ROC curve of the predictions made depending on the descriptors of the LSTM neural

network.

4.4 GRU’S PERFORMANCE EVALUATION

The GRU is used to implement the neural network shown in Figure 4.11 and trained using

the data collected from the volunteers. This neural network is trained for 100 epochs before

the removal of the last two layers to produce the descriptors generation neural network.

During training, the output layer is set to have 155 neurons, each neuron represents a

certain user inputting a specific pattern. Similar to the LSTM neural network, the longest

data collected from the patterns has 650 instances, the input layer is set to handle 650×5

features.

31

Figure 4.11: Topology of the trained LSTM neural network.

Upon the termination of the training, the accuracy of the predictions provided by the neural

network, which represent the user and pattern information, is 95.04%, which is also lower

than the accuracy achieved by the CNN but higher than that achieved by the LSTM neural

network. Figure 4.12 shows the accuracy and loss versus the training epochs during the

training of the LSTM neural network.

Figure 4.12: Accuracy and loss versus training epochs for the LSTM neural network.

Next, the descriptor generation neural network is extracted from the trained GRU neural

network and then used to generate descriptors for the testing data collected from the

volunteers. A template is generated for each user based on the median of the descriptors

from the first five attempts. The Euclidean distance is then used to calculate the distance

between each template and the remaining attempts of that user in the corresponding pattern.

In
p
u
t

L
ay

er
 (

6
5
0
×

5
)

G
R

U
 L

ay
er

 1
 (

1
2
8
 n

eu
ro

n
s)

G
R

U
 L

ay
er

 2
 (

6
4
 n

eu
ro

n
s)

G
R

U
 L

ay
er

 3
 (

3
2
 n

eu
ro

n
s)

D
en

se
 L

ay
er

 1
 (

2
5
6
 n

eu
ro

n
s)

D
en

se
 L

ay
er

 2
 (

1
2
8
 n

eu
ro

n
s)

D
en

se
 L

ay
er

 3
 (

2
5
6
 n

eu
ro

n
s)

D
en

se
 L

ay
er

 1
 (

1
5

5
)

32

The distances are also measured using descriptors of users’ attempts for the same patters, to

simulate the intrusion attempts. Additionally, the templates are also compared to

descriptors from other patterns, to ensure the existence of difference in the produced

descriptors. The measured distances for these three situations are shown in Figure 4.13.

Figure 4.13: Distribution of distances measured from the GRU descriptors.

The distribution of the distances shows a narrower intersection between the distances

among the attempts of the same user in the same pattern and the attempts of other users

using the same pattern. Moreover, the use of the descriptors generated by the GRU neural

network has maintained the difference with the attempts for other patterns. The EER of the

proposed system using the descriptors of the GRU neural network is 6.91% achieved at a

threshold distance value of 8.81, as shown in the ROC curve in Figure 4.14.

Same user and pattern.

Different users, same pattern.

Different patterns.

F
re

q
u
en

cy

Distance

33

Figure 4.14: ROC curve of the predictions made depending on the descriptors of the LSTM neural

network.

34

5. DISCUSSION

The performance of the proposed system using the descriptors generated by the CNN,

LSTM and GRU neural network is summarized in Table 5.1. The best performance of the

proposed system has been accomplished based on the descriptors generated by the GRU

neural network, which has only 6.91% EER. This low error rate indicates that only 6.91%

of the legitimate user attempts are denied by the proposed method, while 93.09% of the

intrusion attempts are detected and denied access. Moreover, as Figure 5.1 shows, the lower

training accuracy of the GRU neural network, compared to the CNN, proves the hypothesis

proposed in this study, which states that the training accuracy does not necessarily reflect

the quality of the descriptors generated by the neural network. The LSTM neural network

has significantly lower training accuracy, compared to the CNN, but has also achieved

significantly lower EER. Moreover, the training accuracy of the GRU neural network is

between those of the LSTM and CNN but the descriptors generated using the GRU neural

network have the lowest EER. The values in the descriptors generated by the CNN network

can be overfitted on the data used for the training, which is the reason behind the high

training accuracy and low EER, while the values in the descriptors generated by the LSTM

neural network are of low quality, which is the reason behind the low training accuracy and

relatively high EER, compared to the GRU neural network. The GRU neural network has

achieved the balanced performance during both the training and the descriptors generation.

Table 5.1: Summary of the performance for the evaluated neural networks.

Neural Network Training Accuracy EER Threshold

CNN 98.40% 10.91% 50.48

LSTM 92.34% 7.34% 9.24

GRU 95.04% 6.91% 8.81

35

Figure 5.1: Training accuracies and EERs of the evaluated neural networks.

Additionally, Table 5.2 shows that the proposed method has better performance than the

method proposed by De Luca et al. [14], using the descriptors generated by any type of

neural networks. Moreover, the use of the descriptors generated by the GRU neural

network has significantly better performance measures, with 96.09%, compared to De

Luca’s method, which has only 77% accuracy. The use of the GRU neural network’s

descriptors has also produced a more secure authentication system, with only 6.91% FAR,

compared to 21% in the method proposed by De Luca et al. The usability of the proposed

system is also improved with only 6.91% FRR using the descriptors from the GRU neural

network, compared to De Luca’s method, which has 19% FRR.

0

0,02

0,04

0,06

0,08

0,1

0,12

89,00%

90,00%

91,00%

92,00%

93,00%

94,00%

95,00%

96,00%

97,00%

98,00%

99,00%

CNN LSTM GRU

EE
R

Tr
ai

n
in

g
A

cc
u

ra
cy

Training Accuracy D DD EER

36

Table 5.2: Performance comparison to the state-of-the-art method in the literature.

 This Study

 De Luca et al. [14] CNN LSTM GRU

True Positive 398 437 454 456

False Negative 92 53 36 34

True Negative 852 965 1004 1009

False Positive 231 118 79 74

Accuracy 77% 89.09% 92.66% 93.09%

FAR 21% 10.91% 7.34% 6.91%

FRR 19% 10.91% 7.34% 6.91%

37

6. CONCLUSION

The rapid development of the digital era has increased the storage of digital data on

different types of devices. The revolution in the electronics industry has also increased the

number of smart devices with touch-sensitive screens, such as tablets and smartphones, to

accomplish different tasks. The exponentially growing amount of digital information being

stored on the devices has risen concerns about the security of such information, especially

with sensitive and personal nature of such information. Thus, protecting such data from any

unauthorized access, even if physical access to the device is gained, has become of more

interest in recent years.

The use of biometric authentication has shown good solution toward protecting this

information, as the replication of biometric features is a difficult task to be achieved by an

attacker. However, concerns about the privacy of the collected information have been rising

by the users of such devices, according to the sensitivity of physiological biometrics. Thus,

most of the users have chosen to avoid the use of physiological biometric authentication.

As a substitute, behavioral biometrics are being used to distinguish and authenticate users

into smart devices. However, according to the lower robustness of behavioral biometrics,

compared to physiological, the existing method lack the accuracy required to maintain high

security and usability measures.

In this study, a new behavioral biometric authentication system is proposed, based on

artificial neural networks and distance measurement. The proposed method collects

behavioral biometrics from the touch-sensitive screen during the drawing of the graphical

secret, known as pattern, which is the most widely used type of authentication. Different

types of artificial neural networks are used to generate a more robust and distinctive

descriptor for the data collected during the drawing of the pattern. Then, the descriptor

stored as the template of the user is matched with the one collected from the current attempt

to make the appropriate authenticity decision.

First, each neural network is trained to recognize each user per each pattern. Then, the

values collected from the neuron of a hidden layer, with 128 neurons, are selected as the

descriptor of the input collected from the attempt. Three types of artificial neural networks

38

are evaluated for this purpose, which are the CNN, LSTM and GRU neural networks. The

evaluation results show that the descriptors generated using the GRU neural network have

the highest quality, as the proposed system has been able to achieve low EER of only

6.91%, compared to 10.91% and 7.34% for the CNN and LSTM, respectively. The results

also show that the proposed system has been able to outperform the existing state-of-the-art

method, which has been able to achieve only 77% accuracy, compared to 93.09% achieved

by the proposed system.

In future work, the performance of the proposed method with other secret-based method is

going to be evaluated, such as Personal Identification Number (PIN), so that, the proposed

method can allow more flexibility to the user in selecting the authentication method of their

choice, rather than limiting it to pattern-based methods.

39

REFERENCES

[1] M. E. Chua, M. A. Saunders, P. R. Bowlin, J. M. Ming, R. I. Lopes, W. A. Farhat,

et al., "Impact of smartphone digital photography, email, and media communication

on emergency room visits post-hypospadias repair," Canadian Urological

Association Journal, vol. 11, p. E134, 2017.

[2] A. Rahim, S. Z. Safin, L. K. Kheng, N. Abas, and S. M. Ali, "Factors influencing

purchasing intention of Smartphone among university students," Procedia

Economics and Finance, vol. 37, pp. 245-253, 2016.

[3] L. Vasudevan, K. Zeller, and A. Labrique, "Mobile Health," in Digital Health, ed:

Springer, 2018, pp. 15-25.

[4] M. T. Ahvanooey, Q. Li, M. Rabbani, and A. R. Rajput, "A Survey on Smartphones

Security: Software Vulnerabilities, Malware, and Attacks," INTERNATIONAL

JOURNAL OF ADVANCED COMPUTER SCIENCE AND APPLICATIONS, vol. 8,

pp. 30-45, 2017.

[5] J. Velho, D. Marques, T. Guerreiro, and L. Carriço, "Physical Intrusion Detection

and Prevention for Android Smartphones," in INFORUM, 2015.

[6] C. Bhagavatula, B. Ur, K. Iacovino, S. M. Kywe, L. F. Cranor, and M. Savvides,

"Biometric authentication on iphone and android: Usability, perceptions, and

influences on adoption," Proc. USEC, pp. 1-2, 2015.

[7] A. Alzubaidi and J. Kalita, "Authentication of smartphone users using behavioral

biometrics," IEEE Communications Surveys & Tutorials, vol. 18, pp. 1998-2026,

2016.

[8] S. Acharya, A. Polawar, and P. Pawar, "Two factor authentication using smartphone

generated one time password," IOSR Journal of Computer Engineering (IOSR-

JCE), vol. 11, pp. 85-90, 2013.

[9] F. Monrose and A. D. Rubin, "Keystroke dynamics as a biometric for

authentication," Future Generation computer systems, vol. 16, pp. 351-359, 2000.

[10] H. Saevanee and P. Bhatarakosol, "User authentication using combination of

behavioral biometrics over the touchpad acting like touch screen of mobile device,"

in Computer and Electrical Engineering, 2008. ICCEE 2008. International

Conference on, 2008, pp. 82-86.

40

[11] T. J. Neal and D. L. Woodard, "Surveying biometric authentication for mobile

device security," Journal of Pattern Recognition Research, vol. 1, pp. 74-110, 2016.

[12] T. Van Nguyen, N. Sae-Bae, and N. Memon, "DRAW-A-PIN: Authentication using

finger-drawn PIN on touch devices," Computers & Security, vol. 66, pp. 115-128,

2017.

[13] N. Malkin, M. Harbach, A. De Luca, and S. Egelman, "THE ANATOMY OF

SMARTPHONE UNLOCKING: Why and How Android Users Around the World

Lock their Phones," GetMobile: Mobile Computing and Communications, vol. 20,

pp. 42-46, 2017.

[14] A. De Luca, A. Hang, F. Brudy, C. Lindner, and H. Hussmann, "Touch me once and

i know it's you!: implicit authentication based on touch screen patterns," in

proceedings of the SIGCHI Conference on Human Factors in Computing Systems,

2012, pp. 987-996.

[15] O. N. Uçan, O. Bayat, and M. B. Çoşkun, "Development and evaluation of the

authentication systems by using phase-only correlation palm print identificaton

methods," in 2017 International Conference on Engineering and Technology

(ICET), 2017, pp. 1-4.

[16] W. Meng, D. S. Wong, S. Furnell, and J. Zhou, "Surveying the development of

biometric user authentication on mobile phones," IEEE Communications Surveys &

Tutorials, vol. 17, pp. 1268-1293, 2015.

[17] A. Mahfouz, I. Muslukhov, and K. Beznosov, "Android users in the wild: Their

authentication and usage behavior," Pervasive and Mobile Computing, vol. 32, pp.

50-61, 2016.

[18] L. Sobrado and J.-C. Birget, "Graphical passwords," The Rutgers Scholar, an

electronic Bulletin for undergraduate research, vol. 4, pp. 12-18, 2002.

[19] R. Spolaor, Q. Li, M. Monaro, M. Conti, L. Gamberini, and G. Sartori, "Biometric

Authentication Methods on Smartphones: A Survey," PsychNology Journal, vol. 14,

2016.

[20] M. Harbach, A. De Luca, and S. Egelman, "The anatomy of smartphone unlocking:

A field study of android lock screens," in Proceedings of the 2016 CHI Conference

on Human Factors in Computing Systems, 2016, pp. 4806-4817.

41

[21] G. Cho, J. H. Huh, J. Cho, S. Oh, Y. Song, and H. Kim, "Syspal: System-guided

pattern locks for android," in 2017 IEEE Symposium on Security and Privacy (SP),

2017, pp. 338-356.

[22] A. H. Lashkari, S. Farmand, D. Zakaria, O. Bin, and D. Saleh, "Shoulder surfing

attack in graphical password authentication," arXiv preprint arXiv:0912.0951, 2009.

[23] A. EJJARI, P. GÖRGEL, and A. SERTBAŞ, "COMPUTER AIDED PALM VEIN

AUTHENTICATION SYSTEM BASED ON FEATURE MATCHING," Electronic

Turkish Studies, vol. 12, 2017.

[24] R. A. Isaac, A. Kathera, K. Venkatachalam, M. T. Raj, and G. Gokulnath,

"Spoofing Detection for Fingerprint, Palm-Vein and Facial Recognition Using Deep

Representation."

[25] S. K. Esser, R. Appuswamy, P. Merolla, J. V. Arthur, and D. S. Modha,

"Backpropagation for energy-efficient neuromorphic computing," in Advances in

Neural Information Processing Systems, 2015, pp. 1117-1125.

[26] G. F. Montufar, R. Pascanu, K. Cho, and Y. Bengio, "On the number of linear

regions of deep neural networks," in Advances in neural information processing

systems, 2014, pp. 2924-2932.

[27] D. Maclaurin, D. Duvenaud, and R. Adams, "Gradient-based hyperparameter

optimization through reversible learning," in International Conference on Machine

Learning, 2015, pp. 2113-2122.

[28] J. H. Lee, T. Delbruck, and M. Pfeiffer, "Training deep spiking neural networks

using backpropagation," Frontiers in neuroscience, vol. 10, p. 508, 2016.

[29] K. B. Nahato, K. N. Harichandran, and K. Arputharaj, "Knowledge mining from

clinical datasets using rough sets and backpropagation neural network,"

Computational and mathematical methods in medicine, vol. 2015, 2015.

[30] P. Gorgel, N. Kilic, B. Ucan, A. Kala, and O. N. Ucan, "A Backpropagation Neural

Network Approach For Ottoman Character Recognition," Intelligent Automation &

Soft Computing, vol. 15, pp. 451-462, 2009.

[31] J. Schmidhuber, "Deep learning in neural networks: An overview," Neural

networks, vol. 61, pp. 85-117, 2015.

[32] G. Hinton, O. Vinyals, and J. Dean, "Distilling the knowledge in a neural network,"

arXiv preprint arXiv:1503.02531, 2015.

42

[33] P. U. Diehl, D. Neil, J. Binas, M. Cook, S.-C. Liu, and M. Pfeiffer, "Fast-

classifying, high-accuracy spiking deep networks through weight and threshold

balancing," in Neural Networks (IJCNN), 2015 International Joint Conference on,

2015, pp. 1-8.

[34] A. Severyn and A. Moschitti, "Unitn: Training deep convolutional neural network

for twitter sentiment classification," in Proceedings of the 9th international

workshop on semantic evaluation (SemEval 2015), 2015, pp. 464-469.

[35] J. Wang, Y. Yang, J. Mao, Z. Huang, C. Huang, and W. Xu, "Cnn-rnn: A unified

framework for multi-label image classification," in Proceedings of the IEEE

conference on computer vision and pattern recognition, 2016, pp. 2285-2294.

[36] B. Kayalibay, G. Jensen, and P. van der Smagt, "CNN-based segmentation of

medical imaging data," arXiv preprint arXiv:1701.03056, 2017.

[37] Y. Lu, S.-C. Zhu, and Y. N. Wu, "Learning frame models using cnn filters," arXiv

preprint arXiv:1509.08379, 2015.

[38] G. Tolias, R. Sicre, and H. Jégou, "Particular object retrieval with integral max-

pooling of CNN activations," arXiv preprint arXiv:1511.05879, 2015.

[39] O. Ronneberger, P. Fischer, and T. Brox, "U-net: Convolutional networks for

biomedical image segmentation," in International Conference on Medical image

computing and computer-assisted intervention, 2015, pp. 234-241.

[40] W. Zaremba, I. Sutskever, and O. Vinyals, "Recurrent neural network

regularization," arXiv preprint arXiv:1409.2329, 2014.

[41] I. Sutskever, O. Vinyals, and Q. V. Le, "Sequence to sequence learning with neural

networks," in Advances in neural information processing systems, 2014, pp. 3104-

3112.

[42] H. Sak, A. Senior, and F. Beaufays, "Long short-term memory recurrent neural

network architectures for large scale acoustic modeling," in Fifteenth annual

conference of the international speech communication association, 2014.

[43] F. A. Gers, J. Schmidhuber, and F. Cummins, "Learning to forget: Continual

prediction with LSTM," 1999.

[44] K. Cho, B. Van Merriënboer, C. Gulcehre, D. Bahdanau, F. Bougares, H. Schwenk,

et al., "Learning phrase representations using RNN encoder-decoder for statistical

machine translation," arXiv preprint arXiv:1406.1078, 2014.

43

[45] R. Fu, Z. Zhang, and L. Li, "Using LSTM and GRU neural network methods for

traffic flow prediction," in 2016 31st Youth Academic Annual Conference of

Chinese Association of Automation (YAC), 2016, pp. 324-328.

[46] B. Athiwaratkun and J. W. Stokes, "Malware classification with LSTM and GRU

language models and a character-level CNN," in 2017 IEEE International

Conference on Acoustics, Speech and Signal Processing (ICASSP), 2017, pp. 2482-

2486.

[47] R. Dey and F. M. Salemt, "Gate-variants of gated recurrent unit (GRU) neural

networks," in 2017 IEEE 60th International Midwest Symposium on Circuits and

Systems (MWSCAS), 2017, pp. 1597-1600.

[48] G. Kambourakis, D. Damopoulos, D. Papamartzivanos, and E. Pavlidakis,

"Introducing touchstroke: keystroke‐based authentication system for smartphones,"

Security and Communication Networks, vol. 9, pp. 542-554, 2016.

[49] S. Li, A. Ashok, Y. Zhang, C. Xu, J. Lindqvist, and M. Gruteser, "Whose move is it

anyway? Authenticating smart wearable devices using unique head movement

patterns," in 2016 IEEE International Conference on Pervasive Computing and

Communications (PerCom), 2016, pp. 1-9.

[50] S. J. Kang, S. Y. Lee, H. I. Cho, and H. Park, "ECG authentication system design

based on signal analysis in mobile and wearable devices," IEEE Signal Processing

Letters, vol. 23, pp. 805-808, 2016.

[51] T. Kawamata, T. Ishii, and T. Akakura, "Face authentication for e-Learning using

time series information," in 2016 IEEE International Conference on Teaching,

Assessment, and Learning for Engineering (TALE), 2016, pp. 116-121.

[52] L. Fridman, S. Weber, R. Greenstadt, and M. Kam, "Active authentication on

mobile devices via stylometry, application usage, web browsing, and GPS location,"

IEEE Systems Journal, vol. 11, pp. 513-521, 2017.

[53] A. Salem and M. S. Obaidat, "A novel security scheme for behavioral

authentication systems based on keystroke dynamics," Security and Privacy, p. e64,

2019.

[54] A. S. H. ALNASER, O. N. UÇAN, and O. BAYAT, "Passive Detection of

Islanding Events in Microgrids Using Machine Learning," AURUM Journal of

Engineering Systems and Architecture, vol. Submitted, 2019.

44

[55] M. F. Sanner, "Python: a programming language for software integration and

development," J Mol Graph Model, vol. 17, pp. 57-61, 1999.

[56] F. Chollet, "Keras: The python deep learning library," Astrophysics Source Code

Library, 2018.

[57] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, et al.,

"Scikit-learn: Machine learning in Python," Journal of machine learning research,

vol. 12, pp. 2825-2830, 2011.

