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ABSTRACT 

PATTERN-BASED BEHAVIORAL BIOMETRIC AUTHENTICATION USING 

ARTIFICIAL NEURAL NETWORKS 

 

Ali Saad Hussein ALNASER, 

M.Sc., Electrical and Computer Engineering, Altınbaş University 

Supervisor: Prof. Dr. Osman N. UÇAN 

Date: April/2019 

Pages: 58 

 

The use of smart devices to collect and store sensitive and private information has been 

increasing exponentially in recent years, according to the rapid progress in the electronics 

industry and the digital era. Different protection schemes are being proposed to protect 

these data from being revealed to unauthorized users that may gain physical access to the 

device. Some of these schemes have become obsolete, according to their sensitivity toward 

simple attacks or the development in the attacking strategies adopted by the intruders. Thus, 

more attention is being applied to the use of biometric features to recognize and 

authenticate users, according to the difficulty of replicating such features. However, the 

collection and storage of physiological biometric features can pose threats to the privacy of 

the users, which is the main reason behind not favoring such authentication schemes. A 

more privacy-conserving alternative has been widely employed in authentication schemes, 

which relies on behavioral features instead of the physiological. The collection and storage 

of behavioral biometric do not pose threats toward the privacy of the user, hence, users can 

adopt such schemes without worrying about their privacy. However, the robustness of the 

behavioral biometrics is lower than physiological, which imposes limitations to the 

performance of such schemes. Thus, in this study, Artificial Neural Networks (ANNs) are 

employed to handle variations in the behavioral biometrics and produce more robust 

descriptors per each user. The proposed method is designed to collect behavioral biometrics 

during the drawing of the graphical secret pattern that is widely used to protect smart 

devices with touch-sensitive screens. The generated fixed-size descriptor contains 128 
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values that describe the unique way each user draws a pattern, so that, even when the same 

pattern is used, different descriptors are generated for different users. Then, by measuring 

the Euclidean distance between the descriptor stored as a template and the one collected 

from the attempt, the user can be recognized and authenticated if the distance is lower than 

a threshold value. A Convolutional Neural Network (CNN), Long- Short-Term Memory 

(LSTM) and Gated Recurrent Unit (GRU) neural networks are evaluated for the proposed 

system. The results show that the descriptors generated by the GRU neural network have 

produced the highest performance of the proposed system, with only 6.91% Equal Error 

Rate (EER). 

Keywords: Security; Biometric Authentication; Behavioral Biometrics; Artificial Neural 

Networks.  
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1. INTRODUCTION 

The use of smart devices of different types has been growing exponentially in recent years, 

according to the proposal of the digital era. Several private and sensitive information is 

being stored and communicated, digitally, using these devices, according to the wide range 

of applications they are being used to access [1-3]. Accordingly, concerns about the 

security of such information are being the concern of many researchers, so that, any 

unauthorized access is denied and the information is protected. However, attacking 

techniques are also developing rapidly, which allows attackers to gain access to these 

devices. Thus, more complicated authentication methods are being proposed and employed 

to protect these devices [4, 5]. 

The aim of using an authentication method is to distinguish intruders and deny their access 

to the information on the device, even when they gain physical access to it. In other words, 

only the legitimate user is allowed to access such information. Thus, an input is required 

from the user to be used to recognize legibility and make the appropriate decision. Such 

input can be a predefined secret, textual or graphical, an identifying object, such as tokens 

and Radio Frequency Identifier (RFID), or using biometric features, which can be 

physiological or behavioral [6, 7]. However, shoulder surfing attack, which occurs when an 

intruder spies on the legitimate user during the authentication process to gain the secret 

used for authentication, is one of the simple attacks that can be executed against secret-

based methods. Moreover, the use of easy-to-remember secrets is a tendency among users, 

hence, such secrets become easy to predict. Thus, secret-based authentication has become 

obsolete and rarely used to protect any sensitive information or systems [8]. 

Additionally, authentication systems that rely on objects that users have to recognize them 

can be easily attacked by simply acquiring that object, so that, the intruder can authenticate 

as the legitimate user. These vulnerabilities to simple attacks have encouraged the use of 

biometric authentication to protect systems and information. Depending on the nature of the 

biological features collected from the user, two types of biometric authentication system 

exist, physiological and behavioral. When the biometric features represent the physical 

characteristics of a certain body part of the user, such as the iris or fingerprint, the system is 
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denoted as physiological. Moreover, when these features are collected from the behavior of 

the user while the execution of a certain task, it is denoted as behavioral [9, 10]. 

As the features that are used to recognize the user are extracted from the biometrics of that 

user, the possibility of gaining access to the system by an intruder is significantly lower 

than in other types of authentication systems, even if the intruder recognizes the type of the 

features being collected. This difficulty is according to the uniqueness of such features, in 

both physiological and behavioral biometrics, which makes the reproduction of such 

features significantly more difficult. Thus, systems and information protected using 

biometric authentication systems are more secure than those protected using the secret-

based or object-based techniques. However, despite the robustness of physiological 

features, most of the users avoid the use of such features according to concerns about their 

privacy. Thus, more emphasis on behavioral biometric features has been applied in recent 

years [4]. 

Despite the good security of the behavioral biometric authentication systems, behavioral 

features collected from the users are less robust the physiological ones. A set of features is 

considered robust when the same values are extracted from the user every time the user 

authenticates into the system. According to the different situations and environments that 

the user can be when authenticating into the system, some of the features collected from the 

behavior of the user may vary, which is not the case in physiological biometric features. 

Thus, it is important to consider variation in the behavioral biometric features and rely on 

the most robust features in the collected data [11]. 

According to the popularity of devices with touch-sensitive screens, several methods have 

been proposed to achieve behavioral biometric authentication based on features collected 

from these screens. Nguyen et. al. [12] propose a behavioral biometric authentication 

system that uses handwritten Personal Identification Numbers (PIN) over the touch-

sensitive screens, instead of using numbered buttons to enter these numbers. Authenticating 

or recognized individuals based on their handwriting has been widely employed in different 

applications, some of them are not related to smart devices, and has shown good 

recognition rate. Thus, the method has shown good security measure with 4.48% Equal 

Error Rate (EER), i.e. 4.48% False Acceptance Rate (FAR) and 4.48% False Rejection Rate 



3 

 

(FRR). However, the usability of this method can be very low according to the long time 

required to draw the number of the PIN, one by one, instead of tapping the numbered 

buttons. Moreover, most of the users of smart devices with touch-sensitive screens use 

graphical pattern-based secrets to authenticate into their devices, 32.5% according to 

Nathan et. al. [13]. 

1.1 PROBLEM DEFINITION 

Information is being stored on smart devices with touch-sensitive screens, such as 

smartphones, tablets and computers, are becoming of increasing importance according to 

the rapid growth of the digital era. Protecting such information is mandatory to deny 

intruders who may gain physical access to such devices from accessing the digital 

information stored on it. Several types of authentication system are being used to recognize 

and verify the legitimate user of the device before allowing access to its services and 

information. However, with the rapid development of attacking methods and vulnerabilities 

in earlier methods has encouraged the use of biometric authentication. Concerns about 

collecting and storing physiological biometric features have been rising from users as such 

information is considered personal and private. Thus, the use of behavioral biometric 

features has risen in recent years, despite the lower robustness of behavioral biometric 

features. Verifying user based on their handwriting has achieved good security measures in 

[13] but the usability of such a system is low according to the long time required to input 

the PIN. Graphical pattern-based secrets are widely used by users, which has encouraged 

the development of behavioral biometric authentication systems that rely on features 

collected from the touch-sensitive screen of the device during the input of the pattern [14]. 

However, the security measures of the method show poor performance, with 19% FRR and 

21% FAR, which are caused by the variation in the behavioral biometric features collected 

from the touch-sensitive screen. 

1.2 AIM OF THE THESIS 

To improve the security measures of the behavioral biometric authentication system based 

on biometric features collected from the touch-sensitive screen while inputting the 
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graphical pattern-based secret, the aim of this thesis is to use machine learning techniques 

that can handle variation in the collected biometric features. The proposed method uses 

artificial neural networks to produce a more robust descriptor that can be used to measure 

the similarity between the features stored in the template stored for the legitimate user of 

the device and those collected from the current authentication attempt. Artificial neural 

networks have shown the ability to handle variations in the inputs and can significantly 

improve the performance of the system while simplifying the computations to measure the 

similarity between the template and the attempt. 

1.3 THESIS LAYOUT 

The structure of the thesis following this chapter is organized as: 

• The literature regarding artificial neural networks and behavioral biometric 

authentication is reviewed in Chapter Two. 

• The descriptor generation approach and similarity measurement approach 

proposed in this study are described in Chapter Three. 

• The security of the proposed method is evaluated through a set of experiments 

that are illustrated in Chapter Four. 

• The performance of the method is discussed, to select the approach with the 

best performance, and compare it to similar methods in the literature in Chapter 

Five. 

• Conclusion and future work are summarized in Chapter Six. 
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2. LITERATURE REVIEW 

The purpose of using an authentication system is to distinguish the legitimate user of the 

device and allow their access to the services and information stored on the device while 

denying the access of any other users. Such a system requires a template that defines the 

secret or features, of the legitimate user, that can be used to verify and validate any future 

inputs collected from users [15]. Depending on the type of the input collected by the 

authentication system, the stored template and collected information may require different 

types of processing, so that, the usability of the system is maintained while improving its 

security. 

2.1 USERS AUTHENTICATION 

Basically, users can be authenticated into the system using three main types of information, 

which are [16]: 

• Something you know: the input collected from the user in this type of 

authentication systems represents a predefined secret that, supposedly, only the 

legitimate user knows. This secret is stored on the device and is required from 

the user upon authentication, so that, the inputted secret is validated against the 

stored one to make the appropriate authentication decision, i.e. the user is 

allowed access if secrets match. Thus, these methods are also known as secret-

based methods, where different types of secrets are being used, such as 

graphical patterns or PINs [17]. However, attacks as simple as shoulder surfing, 

dictionary predictions and brute force can be executed successfully against this 

type of authentication [18]. 

• Something you have: Instead of using predefined secrets, objects of known 

characteristics are used in this type of authentication to prove the identity of the 

user. The use of RFID or ATM cards are examples of such type authentication. 

However, losing the authentication object can cause the rejection of the 

legitimate user’s access to the system, while acquiring it by an intruder may 

gain them access to the system [19]. This type of authentication is rarely used 
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with smart devices, as these devices are widely used and the need to maintain 

the physical persistence of an object every time the user uses the device limits 

the usability of methods in this category. 

• Something you are: This type of authentication relies on identifying 

individuals using characteristics collected directly from the user, so that, such 

information cannot be lost by the legitimate user or replicated by an intruder. 

Methods in this category are also known as biometric authentication methods, 

where characters used by these methods can be collected from the face, iris or 

handwriting of the user [19, 20]. Furthermore, these methods can be 

categorized into physiological and behavioral, depending on the type of 

biometric features collected from the user. 

2.1.1 Graphical Pattern-Based Authentication 

This type of secret-based authentication uses a predefined set of dots in a certain layout, 

shown in Figure 2.1, to define a secret graph that is used to authenticate the user [21]. The 

secret is defined as the sequence of the dots the user passes through in a single touch, i.e. 

without removing their finger from the touch-sensitive screen. The sequence starts as soon 

as the first dot is touched and terminated when the finger of the user is lifted from the 

screen. This sequence is compared to the sequence stored for the legitimate user and the 

user is authenticated if they match. This type of authentication is widely used among the 

smart devices’ users according to its ease of use and better security, compared to other 

secret-based methods [13]. This better security is according to the resistance of pattern-

based authentication to several attacks that can be executed against PIN and passphrases, 

such as dictionary-based guessing, keyloggers and spyware [22]. 
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Figure 2.1: Layout of the pattern inputting interface [21]. 

2.1.2 Behavioral Biometric Authentication 

Humans have unique behavior when executing similar tasks, so that, the same task is 

executed in a unique way by each individual. Behavioral biometrics are features that 

describe this unique behavior, so that, they can be used to distinguish different individuals. 

However, the possibility of collecting the exact same behavior from the same individual 

every time that task is executed is very low, according to the different environments and 

condition the individual may be in during the execution of that task [23]. Thus, unlike the 

secret-based methods, collecting data identical to the template stored on the device for the 

legitimate user cannot be achieved, which disables the use of direct matching techniques to 

authenticate the user. Moreover, using a wider range of similarity between the collected 

features and the template can impose limitation in the security of the authentication system, 

as an intruder that can reproduce features with similarity in the defined range can gain 

access to the device [24]. To overcome such limitation, machine learning techniques are 

widely used in behavioral biometric authentication. Such techniques provide more 

flexibility in measuring the similarity or predicting the authenticity of the user, so that, 

variation in the collected features and the template can be handled [9, 10].  
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2.2 ARTIFICIAL NEURAL NETWORKS 

Inspired by humans’ brains, artificial neurons are the basic units of an Artificial Neural 

Network (ANN). These neurons are distributed over multiple layers, where the distribution 

of the neurons in the layer defines its operations and the position of the layer in the network 

defines its type. Each neuron collects its inputs from the previous layer, i.e. the outputs of 

the neurons in the previous layer. As shown in Figure 2.2, the output of the neuron is 

calculated by multiplying each input with a corresponding value, known as the weight, 

before summed up and passed through an activation function. This nonlinearity provided by 

the activation function allows the detection of more complex features, as the margins of the 

values that form the feature can be nonlinear. Moreover, to adjust the positioning of these 

margins in a more accurate way, an additional value, known as the bias value, is added to 

the inputs of the neurons, where the value of the bias is adjusted by the neural network 

depending on the need to position the margins of the detected feature [25, 26]. 

 

Figure 2.2: Illustration of the computations inside an artificial neuron [25]. 

 

Two types of computations are executed in any neural network, forward and backward 

passes. During training, both passes are required to update the weights and biases values, 

while when a prediction is required, only the forward pass is executed [27]. In the forward 

pass, the execution of the computations is initiated from the input layer, where the output of 
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each neuron in a certain layer is calculated and inputted to those in the next layer until the 

output of the network is calculated. The modification of the weights and biases values is 

known as the training of the neural network, where the optimal value per each weight and 

bias is calculated to achieve the required output. Several types of optimizers can be used to 

update these values depending on the difference between the output of the neural network 

and the values required to be outputted from it. Mainly, these optimizers are derived from 

the gradient descent algorithm, which relies on the rate of change of the output per each 

value to optimize it [28-30]. The new value of each parameter is selected as shown in 

Equation 2.1. 

𝜃𝑗 ← 𝜃𝑗 − 𝛼
𝜕

𝜕𝜃𝑗
𝐽(𝜃) (2.1) 

As the formula shows, the difference between the required output and the prediction of the 

neural network is multiplied by the derivative of the difference with respect to the 

parameter being updated. As this value represents the direction to maximize the difference, 

it is subtracted from the current value in that parameter, so that, the difference is reduced. 

However, to avoid large updates that may reduce the efficiency of finding the global 

minimum, a learning rate 𝛼 is used to damp these changes [31]. To calculate the difference 

between the predictions and the required values, different types of functions are used, 

depending on the type of the output and task required from the neural network, as used to 

summarize the differences into a single value. Cross Entropy (CE) loss function is widely 

used in neural networks that are implemented for classification problems [32], which has 

the formula shown in Equation (2.2). 

𝐶𝐸 = −∑𝑡𝑖log⁡(𝑓(𝑠)𝑖)

𝐶

𝑖

 (2.2) 

Moreover, the selection of the activation function of the neuron depends on the position of 

the layer that the neuron belongs to and the performance of the activation function. Despite 

the existence of several types of activation function, as shown in Figure 2.3, significant 

improvement of the performance of the neural network is noticed when the Rectified Linear 

Unit (ReLU) is used as the activation function [33]. However, the task required from the 

neural network determines the type of the activation function used for the output layer’s 
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neurons. For classification tasks, the SoftMax function is used, where the summation of the 

outputs of the neurons adds up to the value of one and each value reflects the input’s 

probability to be in the class correspondent to that neuron [34, 35]. The formula of the 

SoftMax function is shown in Equation 2.3. 

 

Figure 2.3: Outputs of the Sigmoid, Hyperbolic Tangent and ReLU activation functions. 

𝑆(𝑦𝑖) =
𝑒𝑦𝑖

∑ 𝑒𝑦𝑗𝑗
 (2.3) 

2.2.1 Convolutional Neural Network (CNN) 

Comvultional layers in an artificial neural network consist of multi-dimensional filters that 

are convoluted over the input of the layer, depending on the dimensions of the input. Each 

filter contains the weights of a single neuron in the convolutional layer, so that, this neuron 

gains the ability of detecting multi-dimensional local features. Based on the values of the 

weights in the filter, the neuron becomes capable of measuring the similarity between the 

pattern in the filter and the feature it recognizes. As the neurons in deeper layers combine 

the outputs of those in the previous one, the complexity of the detected feature can be 

increased by adding more convolutional layers, so that, the feature in a layer represents a 
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combination of those in the previous. Depending on the defined convolution strategy, the 

output of the neuron has the same number of dimensions of its input but the size of each 

dimension can be different [36, 37].  

The number of values per each dimension that are skipped by the filter per each 

convolution is known as the strides. Larger strides values reduce the size of the output from 

the neuron but can cause the loss of detecting features in the skipped values. Thus, pooling 

layers are used to reduce the dimensionality of the output without producing significant 

information loss [38]. Pooling layers also use multi-dimensional filters to summarize the 

values in that filter into a single value. The output values are calculated based on the type of 

pooling executed in the layer, where Max-Pooling is one of the widely used pooling layers. 

As shown in Figure 2.4, the Max-Pooling filter outputs the maximum value in the filter to 

summarize all the values in that filter [38, 39]. 

 

Figure 2.4: Output of Max-Pooling filter. 

2.2.2 Recurrent Neural Networks 

Recurrent Neural Networks (RNNs) are proposed to handle data that have features relevant 

to time, mostly time-series. The values are provided in a timely manner, where the position 

of the value in the series depends on the time it occurs, with respect to the other values in 

the same series. Thus, this type of neural networks handles two-dimensional inputs, where 

the size of one of the dimensions equals to the number of the features and the size of the 

second one is the number of values in each series. As shown in Figure 2.5, suppose a 
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weight value f is used to adjust the value of the output from the tuple previous to the current 

tuple positioned at t. During the computations of the output of the neuron at t, the output h 

from t-1 is included after being weighted using f. The output at this t tuple is also weighted 

using f and included with the inputs x of the next tuple at t+1. This process is repeated until 

all the tuples in the input set are processed [40, 41]. 

 

Figure 2.5: Computations in an RNN neuron. 

 

However, this basic RNN topology suffers from the exploding or vanishing gradient 

problem, where the weights values become extremely high or low to compute the output of 

the network. This problem has imposed the need to modify such topology, where the Long- 

Short-Term Memory (LSTM) neural network has proposed the required solution [42]. As 

shown in Figure 2.6, LSTM uses a set of gates to control the flow of data in the neuron, 

where each gate is controlled by a separate neural network. The neural network netc is the 

input network that receives the values from the external domain and calculates the outputs 

depending on its weights. Another network netin receives a copy of these inputs in order to 

control the gate that defines the flow of the output from netc, through the input gate value 

yin. The effect of the previous output is adjusted using the forget gate values yϕ, which is 

controlled using netϕ. This output Sc is squashed using an activation function before being 

adjusted using the values yout
 acquired from the output gate, which is controlled using netout 

that calculates the values of the gate using the outputs collected from the previous time 

instance. As each gate is controlled using a different neural network, the weights of each 

neural network are updated during the training of the networks, so that, the appropriate 
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decision is made based on the input values of the current time instance and the outputs 

collected from the previous ones [43]. 

 

Figure 2.6: Illustration of the data flow in an LSTM neural network [43]. 

To reduce the complexity of the LSTM, Gated Recurrent Unit (GRU) has been proposed to 

avoid the exploding and vanishing gradient problem using lower computations. A GRU 

contains two gates to control the flow of the values through the neuron, which are the reset 

and update gates, as shown in Figure 2.7 [44]. The reset gate controls the effect of the 

values outputted from the previous timestep, depending on the importance of those values 

in the computation for the current input. The update gate controls the effect of the current 

input on the output of the unit, so that, the output can consider both the current and 

previous values depending on the decision made at these gates. Such topology achieves the 

same methodology of the LSTM using fewer computations, as it uses fewer gates. 

However, the qualities of the predictions for both methods are very similar and both 

methods must be evaluated in order to select the appropriate method for the required 

application [45-47]. 
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Figure 2.7: Gated Recurrent Unit. 

2.3 PERFORMANCE EVALUATION OF THE AUTHENTICATION SYSTEMS 

As illustrated earlier, authentication systems rely on measuring the similarity between the 

template stored for the legitimate user and the descriptor or data collected from the current 

attempt. To convert such similarity to a binary decision, i.e. allow or deny access to the 

device, the similarity is compared to a threshold value, so that, only users with similarity 

lower than the threshold value are allowed access to the device. However, some intruders 

may be successful in producing such similarity measurement, lower than the threshold 

value, wherein such case they can gain access to the device, which is known as false 

acceptance. The ratio between the false acceptance and the total number of attacks executed 

against the authentication system is calculated as the security measure of the authentication 

system, which is denoted as the False Acceptance Rate (FAR) [48, 49]. Moreover, some of 

the similarity measures calculated for attempts collected from the legitimate user may not 

be less than, or equal to, the threshold value, in which the access to the device is denied. 

Such cases are known as false rejections, as the user has legitimate right to access the 

device, and the False Rejection Rate (FRR) is calculated to represent the usability of the 

authentication system [50, 51].  

Authentication systems with high FAR are insecure, as most of the intrusion attempts may 

success when executed against the system, and such system is inapplicable even if low FRR 

persists. Moreover, systems with high FRR are of low usability even if they have low FAR, 

as legitimate users are not gaining the rightful access to the device. Additionally, the use of 

multiple values to compare authentication systems imposes difficulties toward reasonable 
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comparison, as one system may outperform the other in one measure and the other system 

outperforms it in the other. Thus, the threshold value that produces equal FAR and FRR is 

selected to represent the Equal Error Rate (ERR) and this performance measure is normally 

used when available, as in some authentication systems, the threshold value is constant and 

cannot be adjusted to produce EER [52-54]. Figure 2.8 shows the variation in the FAR and 

FRR versus the threshold value and position of the EER value, using the Receiver 

Operating Characteristic (ROC) curve. 

 

Figure 2.8: ROC curve and Equal Error Rate. 
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3. METHODOLOGY 

The proposed method aims to produce a fixed-size descriptor in which the values 

summarize the behavioral biometrics collected for an attempt. This descriptor is generated 

from the information collected from the user during the drawing of the pattern secret, using 

the sensors available in the touch-sensitive screen. In addition to the traditional information 

that can be collected from any touch-sensitive screen, which are the coordinates of the pixel 

being touched, modern screens provide the pressure being applied and the size of the region 

covered by the touching finger. As the timestamp of each pixel touching is known, the 

speed and direction of the movement can be recognized and used as behavioral biometrics. 

However, such biometric information can change for the same individual, which should be 

considered in the generated descriptor, so that, the values are similar for the same 

individual regardless of the speed the user draws the pattern with. This can be achieved by 

considering the relative speed, i.e. monitoring the positions that the user normally has 

different speeds. 

3.1 CHARACTERISTICS OF THE REQUIRED DESCRIPTOR 

In order to define the neural network that is going to be implemented for the descriptor 

generation, it is important to define the characteristics of that descriptor. The main 

characteristics required for the descriptor are: 

• The produced descriptor must be of a fixed size to ease the similarity 

measurement procedure. Comparing descriptors with different sizes requires 

more complex computations, such as the use of Dynamic Time Warping 

(DTW) method. The number of values in the generated descriptor is set to 128, 

similar to descriptors generated by several techniques for authentication 

purposes. 

• The values in the descriptor must be different when different users draw the 

same pattern, so that, the descriptor can be used to distinguish different users 

even when the same pattern is used to protect their smart devices. 
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• The values in the descriptor must remain similar per user per pattern, regardless 

of the variation in their behavior when inputting the pattern. Such variation may 

occur according to the different situations and environments that the user may 

be in during the unlocking process of their devices. 

• The descriptor’s values must be different when the same individual uses 

different patterns, so that, drawing the old pattern does not produce a match, 

even if the pattern is rejected by the default pattern authentication process. 

3.2 NEURAL NETWORK IMPLEMENTATION FOR THE DESCRIPTOR 

GENERATION 

The output from the neural network is computed based on the values in the input, using the 

forward pass. Each neuron is responsible for detecting a feature, or pattern, from the 

outputs of the neurons from the previous layer, so that, more complex features can be 

recognized. Accordingly, the values outputted from neurons in a certain layer represent 

features in the input, which can be used to produce the required output. Thus, these features 

must include the important information to be considered in the decision made by the neural 

network and neglect any information that has no effect.  

To produce the required descriptors, a dataset is collected from a range of different users, 

where each user is required to draw a set of predefined patterns. Supposing U users have 

drawn P patterns, each for N times, a total of U×P unique attempts are produced in the 

collected dataset. This dataset is then used to train neural networks, with the topology 

shown in Figure 3.1. The neural network is trained to recognize the pattern and the user 

who has drawn it, so that, the values generated in the layer shaded in gray hold information 

of both of these variables. Thus, when the descriptors are similar, it is possible to recognize 

that the user is legitimate, while unsimilar descriptors indicate an intrusion attempt. Three 

types of special layers are evaluated in this study, which are the Convolutional GRU and 

LSTM neural networks. 
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Figure 3.1: Topology of the trained neural network. 

3.3 DESCRIPTORS GENERATION AND MATCHING 

During the training of the implemented neural network, to produce the required outputs at 

the output layer, the values in Dense Layer 2 must be invariant per user per pattern and 

have different values when any of these inputs change. Thus, these values can be used to 

summarize the behavioral biometrics collected from the pattern drawing attempt. 

Accordingly, the last two layers are removed from the neural network, which produces the 

neural network shown in Figure 3.2, where Dense Layer 2 is the output layer. Be feeding 

the data collected from the touch-sensitive screen the neural network produces the required 

fixed-size descriptor, which can be used to match the attempts. 
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Figure 3.2: Descriptor generation neural network. 

As the descriptor is of a fixed size, a simple distance measurement can be used to calculate 

the difference between any two descriptors, unlike the direct use of the collected data, 

which required more complex computations. For the proposed method, the Euclidean 

distance, shown in Equation 3.1, is used to measure the distance between any two 

descriptors, a and b, with i values in each. This distance can then be compared to a 

threshold value, selected based on the experimental results, to make a binary authenticity 

decision. 

𝑑 = √∑(𝑎𝑖 − 𝑏𝑖)2

𝑖

 (3.1) 

3.4 DATA PREPROCESSING 

The data collected from the touch-sensitive screen, x and y coordinates of the touched pixel, 

the pressure applied on the screen and the size of the region covered by the finger, are 

appended to the timestamp of each tuple and used to generate the required descriptor. 

However, as neural networks required fixed-size inputs, regardless of the number of 

dimensions, it is important to preprocess these data before forwarding them to the network. 

Moreover, the preprocessing procedure depends on the type of the neural network, where 

the data formation required by the CNN is different from that required by the RNN. Thus, 

two preprocessing procedures are proposed, one per each type of neural network. 
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3.4.1 Preprocessing the Data for the CNN 

A three-dimensional array is created to present the values collected from the user to the 

CNN. The first two dimensions are equal to the size of the touch-sensitive screen, i.e. the 

height and width of the screen. The third dimension is equal to three, one for the time, one 

for the pressure and one for the size. Each time value t is normalized to the interval required 

by the user to complete the pattern, based on the start time st and end time et, as shown in 

Equation 3.2. 

𝑡 ←
𝑡 − 𝑠𝑡

𝑒𝑡 − 𝑠𝑡
 (3.2) 

Then, each time, pressure and size values are positioned in the array depending on the 

position of the pixel being touched, so that, the distribution of the values per each layer 

reflects the drawn pattern. Moreover, to reduce the size of the input of the CNN, hence the 

complexity of the computation, the size of the produced array is reduced to one-third of the 

original size of the screen. The algorithm shown in Figure 3.3 summarizes the procedure 

conducted to convert the data for the CNN network. 

Input: Raw data from the touch-sensitive screen. 

Output: A three-dimensional array for the CNN. 

Step 1: T ← Read the time values from the data. 

P ← Read the pressure values from the data. 

S ← Read the size values from the data. 

C ← Read the coordinates of the touched pixels. 

O ← [, , ,] //Empty three-dimensional array for the output values. 

Step 2: For each timestamp t in T: 

 𝑡 ←
𝑡−𝑠𝑡

𝑒𝑡−𝑠𝑡
  

Step 3: For i = 0 to length(T): 

 x ← int(C[i, 0]/3) 

 y ← int(C[i, 1]/3) 

 O[0, x, y] ← Ti 

 O[1, x, y] ← Pi 
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 O[2, x, y] ← Si 

Step 4: Return O 

Figure 3.3: Data Preprocessing Algorithm for the CNN. 

3.4.2 Preprocessing the Data for the RNN 

Unlike CNN, the RNN can only handle two-dimensional inputs, where one of these 

dimensions is the number of features in the descriptor and the other is the number of tuples 

in each series. Although the positioning of the values reflects the sequence they are 

collected in, the exact time difference between any two sequential values cannot be 

recognized based on the position. Thus, the timestamp is maintained in the inputs and is 

also normalized similarly to the CNN. Moreover, the length of the data is set to be equal to 

the total number of tuples in the longest data collected from the patterns. However, as the 

attempts cannot be guaranteed to have this length, the data of shorter patterns is padded to 

match that length. The padding uses a value of -1, as it does not occur in the actual data and 

can be easily recognized as padding by the neural network, and the actual data collected 

from the user is positioned after the padding, so that, the actual data is considered in the 

final output of the RNN. Moreover, the coordinates of the touched pixel are also fed to the 

neural network, producing five features per each tuple. The algorithm shown in Figure 3.4 

summarizes the data preprocessing procedure for the RNN. 

Input: Raw data from the touch-sensitive screen, Length of the required array. 

Output: A two-dimensional array for the RNN. 

Step 1: T ← Read the time values from the data. 

P ← Read the pressure values from the data. 

S ← Read the size values from the data. 

C ← Read the coordinates of the touched pixels. 

L ← Read the required length of the data. 

O ← [L,5] //Empty two-dimensional array for the output values. 

O = -1 //Fill the array with the value -1. 

S = L - Length(T) //The position of the first tuple in the output array. 

Step 2: For each timestamp t in T: 
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 𝑡 ←
𝑡−𝑠𝑡

𝑒𝑡−𝑠𝑡
  

Step 3: For i = 0 to length(T): 

 O[S+I, 0:2] = Ci 

 O[S+I, 3] = Ti 

 O[S+I, 4] = Si 

 O[S+I, 5] = Pi 

Step 4: Return O 

Figure 3.4: Data Preprocessing Algorithm for the RNN. 
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4. EXPERIMENTAL RESULTS 

To train the neural network implemented to generate the proposed descriptor, data is 

collected from volunteers and labeled according to the pattern number and the volunteer’s 

name. Then, this data is preprocessed and inputted to each neural network in order to train 

it and evaluate the quality of the produced descriptors. The neural networks are 

implemented, trained and evaluated using Python [55] programming language with the aid 

of the Keras [56] Deep Learning (DL) and Scikit-Learn [57] Machine Learning (ML) 

libraries. The training and evaluation experiments are conducted using a computer with 

Intel® Core™ i7-8700K Processor at a frequency of 3.7GHz, 16GB of memory and 11GB 

of Graphical Processing Unit (GPU) memory in Nvidia GTX1080Ti display card. 

4.1 DATA COLLECTION 

An application is implemented using Android Studio Integrated Development Environment 

to replicate the pattern layout and collect data from the users. Five patterns are defined in 

the application, so that, each user is required to provide attempts per each pattern. Each 

volunteer is allowed to attempt the pattern until feels comfortable to draw it as their own 

pattern, without logging the data. Then, data logging is started and each volunteer is 

required to provide 50 attempts per each pattern. A counter is placed in the Graphical User 

Interface (GUI), so that, the user knows the number of successful attempts logged so far, 

and the application is set to terminate the logging and disable the layout when 50 successful 

attempts are collected. Figure 4.2 shows the GUI of the implemented application. 
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Figure 4.1: GUI of the implemented data logging Android application. 

The patterns that are used to collect the data vary in the number of dots the user is required 

to connect and the complexity of the pattern, based on the positions of the connected dots. 

Such a variety of patterns are used to produce an unbiased and accurate evaluation, as users 

may choose different patterns with different levels of complexity. Figure 4.2 shows the 

pattern defined for the data collection phase. 

 

Figure 4.2: The patterns used for data logging from volunteers. 



25 

 

Random attempts from 26 of the volunteers are excluded from the training and used to 

evaluate the proposed method, where attempts from other users using the same pattern are 

used as intrusion attempts for the legitimate user being investigated. These sets are stored 

and used for all the experiments, so that, no biased evaluation is conducted as all the 

evaluated methods use the exact same training and testing data. 

4.2 CNN’S PERFORMANCE EVALUATION 

The convolutional neural network shown in Figure 4.3 is implemented and trained using 

the data collected from the volunteers. This neural network is trained for 100 epochs before 

the removal of the last two layers to produce the descriptors generation neural network. 

During training, the output layer is set to have 155 neurons, each neuron represents a 

certain user inputting a certain pattern. As the size of the screen is equal to 450×600 and the 

array generated for the CNN by the preprocessing procedure is one third in dimensions, the 

input layer is set to accept an array with the dimensions of 150×200×3. 

 

Figure 4.3: Topology of the trained CNN. 

 

When the training epochs are finished, the convolutional neural network has achieved 

98.40% accuracy, where the accuracy and loss versus the epochs are shown in Figure 4.4.  
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Figure 4.4: Accuracy and loss versus training epochs for the CNN. 

 

Next, the descriptor generation neural network is extracted from the trained CNN and used 

to generate descriptors for the testing data collected from the volunteers. A template is 

generated for each user based on the median of the descriptors from the first five attempts. 

The Euclidean distance is then used to calculate the distance between each template and the 

remaining attempts of that user in the corresponding pattern. The distances are also 

measured using descriptors of users’ attempts for the same patters, to simulate the intrusion 

attempts. Additionally, the templates are also compared to descriptors from other patterns, 

to ensure the existence of differences in the produced descriptors. The measured distances 

for these three situations are shown in Figure 4.5. 

 

Figure 4.5: Distribution of distances measured from the CNN descriptors. 
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Different users, same pattern. 
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As shown in the figure, the distance between the template and attempts from other users 

using the same pattern are more similar than the attempts from other patterns. Thus, the 

performance measures of the system to detect the difference among these distances is used 

for the evaluation, as the distinguishing such attacks is more challenging to the proposed 

method. The ROC curve shown in Figure 4.6 shows that the EER of the proposed method 

based on the CNN’s descriptors is 10.91% and is achieved at a threshold value of 50.48. 

 

Figure 4.6: ROC curve of the predictions made depending on the descriptors of the CNN. 

 

4.3 LSTM’S PERFORMANCE EVALUATION 

The LSTM neural network shown in Figure 4.7 is implemented and trained using the data 

collected from the volunteers. This neural network is trained for 100 epochs before the 

removal of the last two layers to produce the descriptors generation neural network. During 

training, the output layer is set to have 155 neurons, each neuron represents a certain user 

inputting a specific pattern. As the longest data collected from the patterns has 650 

instances, the input layer is set to handle 650×5 features.  
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Figure 4.7: Topology of the trained LSTM neural network. 

 

Upon the termination of the training, the accuracy of the predictions provided by the neural 

network, which represent the user and pattern information, is 92.34%, which is lower than 

the accuracy achieved by the CNN. However, this accuracy does not necessarily indicate 

that the generated descriptor is of less quality than that generated by the CNN. Figure 4.8 

shows the accuracy and loss versus the training epochs during the training of the LSTM 

neural network.  

 

Figure 4.8: Accuracy and loss versus training epochs for the LSTM neural network. 

 

Next, the descriptor generation neural network is extracted from the trained LSTM neural 

network and then used to generate descriptors for the testing data collected from the 

volunteers. A template is generated for each user based on the median of the descriptors 

from the first five attempts. The Euclidean distance is then used to calculate the distance 
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between each template and the remaining attempts of that user in the corresponding pattern. 

The distances are also measured using descriptors of users’ attempts for the same patters, to 

simulate the intrusion attempts. Additionally, the templates are also compared to 

descriptors from other patterns, to ensure the existence of difference in the produced 

descriptors. The measured distances for these three situations are shown in Figure 4.9.  

 

Figure 4.9: Distribution of distances measured from the LSTM descriptors. 

 

Despite the lower distances calculated for the descriptors generated by the LSTM neural 

network, these distances have better distribution, regarding the relative distances between 

each type of distances, compared to those calculated using the CNN’s descriptors. 

Moreover, the difference between the distances of the legitimate attempts and those using 

different template has increased significantly and has been able to achieve a very narrow 

intersection area. As the most challenging distinguishing is between the attempts of the 

legitimate user and those of the same pattern but from other users, the EER between these 

scenarios is calculated, using the ROC curve shown in Figure 4.10, which shows that the 

LSTM-based descriptors have been able to achieve 7.34% EER at 9.24 threshold value. 
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Figure 4.10: ROC curve of the predictions made depending on the descriptors of the LSTM neural 

network. 

 

 

4.4 GRU’S PERFORMANCE EVALUATION 

The GRU is used to implement the neural network shown in Figure 4.11 and trained using 

the data collected from the volunteers. This neural network is trained for 100 epochs before 

the removal of the last two layers to produce the descriptors generation neural network. 

During training, the output layer is set to have 155 neurons, each neuron represents a 

certain user inputting a specific pattern. Similar to the LSTM neural network, the longest 

data collected from the patterns has 650 instances, the input layer is set to handle 650×5 

features.  
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Figure 4.11: Topology of the trained LSTM neural network. 

 

Upon the termination of the training, the accuracy of the predictions provided by the neural 

network, which represent the user and pattern information, is 95.04%, which is also lower 

than the accuracy achieved by the CNN but higher than that achieved by the LSTM neural 

network. Figure 4.12 shows the accuracy and loss versus the training epochs during the 

training of the LSTM neural network.  

 

Figure 4.12: Accuracy and loss versus training epochs for the LSTM neural network. 

 

Next, the descriptor generation neural network is extracted from the trained GRU neural 

network and then used to generate descriptors for the testing data collected from the 

volunteers. A template is generated for each user based on the median of the descriptors 

from the first five attempts. The Euclidean distance is then used to calculate the distance 

between each template and the remaining attempts of that user in the corresponding pattern. 
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The distances are also measured using descriptors of users’ attempts for the same patters, to 

simulate the intrusion attempts. Additionally, the templates are also compared to 

descriptors from other patterns, to ensure the existence of difference in the produced 

descriptors. The measured distances for these three situations are shown in Figure 4.13.  

 

Figure 4.13: Distribution of distances measured from the GRU descriptors. 

 

The distribution of the distances shows a narrower intersection between the distances 

among the attempts of the same user in the same pattern and the attempts of other users 

using the same pattern. Moreover, the use of the descriptors generated by the GRU neural 

network has maintained the difference with the attempts for other patterns. The EER of the 

proposed system using the descriptors of the GRU neural network is 6.91% achieved at a 

threshold distance value of 8.81, as shown in the ROC curve in Figure 4.14. 
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Figure 4.14: ROC curve of the predictions made depending on the descriptors of the LSTM neural 

network. 
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5. DISCUSSION 

The performance of the proposed system using the descriptors generated by the CNN, 

LSTM and GRU neural network is summarized in Table 5.1. The best performance of the 

proposed system has been accomplished based on the descriptors generated by the GRU 

neural network, which has only 6.91% EER. This low error rate indicates that only 6.91% 

of the legitimate user attempts are denied by the proposed method, while 93.09% of the 

intrusion attempts are detected and denied access. Moreover, as Figure 5.1 shows, the lower 

training accuracy of the GRU neural network, compared to the CNN, proves the hypothesis 

proposed in this study, which states that the training accuracy does not necessarily reflect 

the quality of the descriptors generated by the neural network. The LSTM neural network 

has significantly lower training accuracy, compared to the CNN, but has also achieved 

significantly lower EER. Moreover, the training accuracy of the GRU neural network is 

between those of the LSTM and CNN but the descriptors generated using the GRU neural 

network have the lowest EER. The values in the descriptors generated by the CNN network 

can be overfitted on the data used for the training, which is the reason behind the high 

training accuracy and low EER, while the values in the descriptors generated by the LSTM 

neural network are of low quality, which is the reason behind the low training accuracy and 

relatively high EER, compared to the GRU neural network. The GRU neural network has 

achieved the balanced performance during both the training and the descriptors generation.  

Table 5.1:  Summary of the performance for the evaluated neural networks. 

Neural Network Training Accuracy EER Threshold 

CNN 98.40% 10.91% 50.48 

LSTM 92.34% 7.34% 9.24 

GRU 95.04% 6.91% 8.81 
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Figure 5.1: Training accuracies and EERs of the evaluated neural networks. 

 

Additionally, Table 5.2 shows that the proposed method has better performance than the 

method proposed by De Luca et al. [14], using the descriptors generated by any type of 

neural networks. Moreover, the use of the descriptors generated by the GRU neural 

network has significantly better performance measures, with 96.09%, compared to De 

Luca’s method, which has only 77% accuracy. The use of the GRU neural network’s 

descriptors has also produced a more secure authentication system, with only 6.91% FAR, 

compared to 21% in the method proposed by De Luca et al. The usability of the proposed 

system is also improved with only 6.91% FRR using the descriptors from the GRU neural 

network, compared to De Luca’s method, which has 19% FRR. 
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Table 5.2: Performance comparison to the state-of-the-art method in the literature. 

  This Study 

 De Luca et al. [14] CNN LSTM GRU 

True Positive 398 437 454 456 

False Negative 92 53 36 34 

True Negative 852 965 1004 1009 

False Positive 231 118 79 74 

Accuracy 77% 89.09% 92.66% 93.09% 

FAR 21% 10.91% 7.34% 6.91% 

FRR 19% 10.91% 7.34% 6.91% 
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6. CONCLUSION 

The rapid development of the digital era has increased the storage of digital data on 

different types of devices. The revolution in the electronics industry has also increased the 

number of smart devices with touch-sensitive screens, such as tablets and smartphones, to 

accomplish different tasks. The exponentially growing amount of digital information being 

stored on the devices has risen concerns about the security of such information, especially 

with sensitive and personal nature of such information. Thus, protecting such data from any 

unauthorized access, even if physical access to the device is gained, has become of more 

interest in recent years. 

The use of biometric authentication has shown good solution toward protecting this 

information, as the replication of biometric features is a difficult task to be achieved by an 

attacker. However, concerns about the privacy of the collected information have been rising 

by the users of such devices, according to the sensitivity of physiological biometrics. Thus, 

most of the users have chosen to avoid the use of physiological biometric authentication. 

As a substitute, behavioral biometrics are being used to distinguish and authenticate users 

into smart devices. However, according to the lower robustness of behavioral biometrics, 

compared to physiological, the existing method lack the accuracy required to maintain high 

security and usability measures. 

In this study, a new behavioral biometric authentication system is proposed, based on 

artificial neural networks and distance measurement. The proposed method collects 

behavioral biometrics from the touch-sensitive screen during the drawing of the graphical 

secret, known as pattern, which is the most widely used type of authentication. Different 

types of artificial neural networks are used to generate a more robust and distinctive 

descriptor for the data collected during the drawing of the pattern. Then, the descriptor 

stored as the template of the user is matched with the one collected from the current attempt 

to make the appropriate authenticity decision.  

First, each neural network is trained to recognize each user per each pattern. Then, the 

values collected from the neuron of a hidden layer, with 128 neurons, are selected as the 

descriptor of the input collected from the attempt. Three types of artificial neural networks 
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are evaluated for this purpose, which are the CNN, LSTM and GRU neural networks. The 

evaluation results show that the descriptors generated using the GRU neural network have 

the highest quality, as the proposed system has been able to achieve low EER of only 

6.91%, compared to 10.91% and 7.34% for the CNN and LSTM, respectively. The results 

also show that the proposed system has been able to outperform the existing state-of-the-art 

method, which has been able to achieve only 77% accuracy, compared to 93.09% achieved 

by the proposed system. 

In future work, the performance of the proposed method with other secret-based method is 

going to be evaluated, such as Personal Identification Number (PIN), so that, the proposed 

method can allow more flexibility to the user in selecting the authentication method of their 

choice, rather than limiting it to pattern-based methods. 
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