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ABSTRACT 
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Machine Learning (ML) techniques are being widely used to extract knowledge from real-

life datasets to interact with the environments that these data are collected from. One of the 

widely used machine learning techniques that has shown outstanding performance, compared 

to other ML technique, is the Artificial Neural Networks (ANN). Similar to other ML 

methods, ANNs are trained using the instances in the dataset, so that, the task required from 

the ANN can be achieved. Real-life datasets consist of different types of values, mainly 

quantitative and qualitative. Handling the quantitative data is an easy task in ANN, as the 

inputs of these networks is numerical. However, as qualitative data may contain nominal 

values do not have meaningful order, encoding such values into numerical format can cause 

the loss of important knowledge. Thus, the selection of appropriate numerical values can 

significantly improve the neural networks’ performance, and vice versa. 

In this study, a novel method is proposed to allow ANNs produce the suitable values for the 

qualitative values in the dataset. As the ANN uses backpropagation to update the weights 

that connect the neurons in the network to each other, the proposed method produces a vector 

for each qualitative attribute, using One-Hot-Encoding (OHE). During training, the ANN 

updates the weight corresponding to each of the nominal values to reduce the error between 
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the predicted values and the actual values required from the ANN. Each vector is connected 

to a single neuron in the next layer, so that, by using the OHE, the value that appears on that 

neuron is equal to the weight corresponding to the position where the value is set to one in 

the vector. 

To evaluate the ANN’s performance using the proposed encoding method, different real-life 

datasets are used to train and evaluate the performance of the networks. Per each dataset, the 

predictions accuracy and loss versus the training epochs are monitored for standard ANNs 

with label-encoded inputs, and those using the proposed encoding method. The evaluation 

shows that the proposed method has improved the performance of the ANN significantly, 

illustrated by the higher learning rate, i.e. faster rise in accuracy and reduction in loss, as well 

as better predictions when the training is complete. Thus, the proposed encoding method can 

improve the performance of the same ANN, or produce similar performance using less-

complex networks. 

Keywords: Artificial Neural Network; Label Encoding; One Hot Encoding; 

Backpropagation. 

  



ix 

 

OZET  



x 

 

 

 

  



xi 

 

TABLE OF CONTENTS 

 

Page 

LIST OF ABBREVIATIONS ........................................................................................... xiii 

LIST OF TABLES ............................................................................................................. xiv 

LIST OF FIGURES ............................................................................................................ xv 

1. INTRODUCTION ........................................................................................................ 1 

1.1 PROBLEM STATETMENT ................................................................................... 3 

1.2 AIM OF THE STUDY ............................................................................................ 4 

1.3 THESIS LAYOUT .................................................................................................. 4 

2. LITERATURE REVIEW ............................................................................................ 6 

2.1 INTRODUCTIONN ................................................................................................ 6 

2.2 ARTIFICIAL NEUTRAL NETWORK ................................................................... 6 

2.2.1 Activation Function .......................................................................................... 9 

2.2.2 Forward Pass .................................................................................................. 10 

2.2.3 Reverse Pass (Backpropagation) .................................................................... 11 

2.3 EMPLOYMENT OF ARTIFICIAL NEURAL NETWORK IN ML .................... 13 

2.4 DATA TYPES ....................................................................................................... 15 

2.5 CATEGORICAL DATA ENCODING ................................................................. 17 

2.5.1 Label Encoding  .............................................................................................. 17 

2.5.2 One-Hot-Encoding ......................................................................................... 18 

3. METHODOLOGY ..................................................................................................... 20 

4. EXPERIMENTAL RESULTS .................................................................................. 26 

4.1 INTRODUCTION ................................................................................................. 26 

4.2 EVALUATION DATASETS ................................................................................ 26 



xii 

 

4.3 PERFORMANCE EVALUATION MEATURES ................................................ 27 

4.4 EXPERIMENT A-THE KDD 99 DATASET ....................................................... 28 

4.5 EXPERIMENT B-THE CENSUS INCOME DATASET  .................................... 31 

4.6 EXPERIMENT C-THE NURSERY DATASET .................................................. 35 

5. DISCUSSION .............................................................................................................. 38 

6. CONCLUSION ........................................................................................................... 41 

REFRNCES ......................................................................................................................... 44 

 



xiii 

 

LIST OF ABBREVIATIONS 

 

ML : Machine Learning 

ANN : Artificial Neural Network 

MSE : Mean Squared Error 

LE : Label-Encoding 

OHE One-Hot-Encoding 

CNN : Convolutional Neural Network 

RNN : Recurrent Neural Network 

MSE : Mean Squared Error 

 



xiv 

 

LIST OF TABLES 

Pages 

Table 2.1: Sample qualitative alphanumerical values and their coressponding encoded 

values. ................................................................................................................ 18 

Table 2.2: Sample qualitative alphanumerical values and their coressponding OHE values.

 ........................................................................................................................... 19 

Table 3.1: Weather conditions for tennis play forecast data table. ...................................... 22 

Table 3.2: Output of LE the weather conditions.................................................................. 23 

Table 3.3: The OHE values of the weather conditions to be processed using the proposed 

ANN topology ................................................................................................... 24 

Table 4.1: Summary of the datasets used in the evaluation procedure. ............................... 27 

Table 4.2: Description of the attributes in the KDD99 dataset............................................ 29 

Table 4.3: Description of the attributes in the census income dataset. ................................ 33 

Table 4.4: Description of the attributes in the nursery dataset. ........................................... 36 

Table 5.1: Summary of the results collected from the conducted experiments. .................. 38 

 



xv 

 

LIST OF FIGURES 

sPage 

Figure 1.1: Illustration of the computations of a neuron in an artificial neural network [8]. 2 

Figure 2.1: Structure of a biological neuron in humans' brains [9]. ...................................... 7 

Figure 2.2: Computations of a neuron in an artificial neural network. ................................. 8 

Figure 2.3: A sample fully connected artificial neural network. ......................................... 11 

Figure 2.4: Illustration of an autoencoding artificial neural network. ................................. 15 

Figure 2.5: Illustration of continuous and discrete quantitative values. .............................. 16 

Figure 3.1: Illustration of the topology in the two layers using the proposed method. ....... 21 

Figure 3.2:  A sample neural network to process the tennis playing dataset using the existing 

method. ............................................................................................................ 23 

Figure 3.3: The topology of the ANN required to process the weather conditions dataset 

using the proposed method. ............................................................................. 25 

Figure 4.1: Illustration of the loss and accuracy versus training epochs using the KDD 99 

dataset. Top: Loss versus Epochs; Bottom: Accuracy versus Epochs. ........... 31 

Figure 4.2: Illustration of the loss and accuracy versus training epochs using the census 

income dataset. Top: Loss versus Epochs; Bottom: Accuracy versus Epochs.

 ......................................................................................................................... 34 

Figure 4.3.a: Illustration of the loss and accuracy versus training epochs using the nursery 

dataset. Top: Loss versus Epochs; Bottom: Accuracy versus Epochs. ........... 35 

Figure 4.3.b: Illustration of the loss and accuracy versus training epochs using the nursery 

dataset. Top: Loss versus Epochs; Bottom: Accuracy versus Epochs. ........... 36 

Figure 5.1: Illustration of the results collected from the conducted experiments. .............. 39 

 

 

 

 



1 

 

1. INTRODUCTION 

Techniques that enable computers of extracting knowledge from an external environment, in 

order to use this knowledge to interact with that environment, are known as Machine 

Learning (ML) techniques [1,2]. Instead of providing static rules that define the way the 

computers interact with the environment, machine learning techniques allow computers to 

dynamically recognize these rules and make the appropriate decisions, based on the inputs 

collected from the environment and the rules extracted from it. The knowledge extraction 

phase, in which the machine learning techniques extract the knowledge from the collected 

sample inputs, is known as the training phase. This training phase require a set of samples 

collected from the environment, so that, the ML techniques detect the patterns and relations 

among these samples to create the model that is used to interact with the environment [3]. 

 As the machine learning techniques require real-life data, in order to extract real knowledge 

that enables it to interact with the corresponding environment, the data used with the ML can 

be of different types. Depending of the environment that the data is collected from, the 

attribute’s values can be quantitative or qualitive. Quantitative data can be continuous, in 

which an infinite number of possible values can exist in any certain range, or discrete, in 

which the number of values in a certain range is finite. For example, the weight of an 

individual is continuous, while the number of individuals in a family is discrete. Qualitive 

data, also known as categorical data, can be nominal, binominal or ordinal. Data are 

considered ordinal when each category value represents a specific range in a wider range, so 

that, the categories in the data can have a meaningful order, such as the baby, kid, teen and 

adult categories in age data [4].  

The data are considered nominal when the category values do not have a specific order, such 

as colors. Unlike ordinal data, nominal data cannot have meaningful comparisons, where a 

certain color cannot be greater or smaller than another in the previous example. Moreover, 

when the nominal data have only two possible values, such as gender, these data are known 

as binomial, where the values in that data also have no possible order. However, the values 

of such data can still have significant knowledge to the machine learning techniques, where 

the existence of one categorical value can increase the possibilities of a certain output, while 

another value may have the opposite effect, or no significant effect at all [5, 6]. 
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Artificial Neural Networks (ANN) has attracted significant attention in the recent years, 

according to their remarkable results in different machine learning applications. Similar to 

the humans’ brains, which the ANNs are inspired from, the basic component of an ANN is 

the neuron, shown in Figure 1.1. The summation of the weighted inputs of a neuron is passed 

through an activation function, to calculate the output of the neuron. The aim of using the 

activation function is to provide nonlinearity to the output of the neuron, so that, more 

accurate boundaries can be produced by that neuron to define a more appropriate output. 

However, as the activation function’s input is the summation of the weighted inputs, the input 

values still have significant effect over the output, regardless of the activation function. 

Moreover, to calculate the weighted summation of the inputs, it is essential that all input 

values are in numerical format. Thus, any alphanumerical values must be converted to 

numerical before being used with the ANNs [7-9]. 

 

Figure 1.1: Illustration of the computations of a neuron in an artificial neural network [9]. 

 

Although there are multiple activation functions that can be used in artificial neurons, the 

output of these function is proportional to the value of the weighted summation. The value 

of the weighted summation is also proportional to an input value, directly when the weight 

value is positive and inversely when the weight value is negative, assuming the other inputs 

are constant [10]. These computations impose challenges in handling the uncertainty of 
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nominal values, when a certain value has more excitatory influence over the output of the 

neuron than another, while the numerical value assigned to the excitatory nominal value can 

have the opposite influence on the output [11].  

In order to overcome these limitations, more complex ANNs are required, so that, the neurons 

at one level can detect the complex patterns in the previous outputs. Increasing the 

complexity of the ANN require more computer resources, to handle the more computations 

required by the network, and reduces the learning rate, where more training is required to 

update the network to achieve the required ML task. Moreover, despite the ability of 

increasing the complexity of the neural network, some features can still be difficult to detect, 

or may be neglected by the neural network for more important features, according to the 

limitations in the selected topology of the network [7, 12].  

Encoding ordinal values into numerical can be an easy task, where each unique categorical 

value is assigned with a unique numerical number that defines its position in the range, so 

that, the relativity between the categories are maintained. However, encoding nominal values 

can be more challenging, as there is no meaningful order to the categorical values in the 

nominal data, while these values can have significant meaning on features and patterns 

detected in the data [13, 14]. Thus, it is important to encode these categorical values into 

more suitable numerical format, so that, the complexity of the ANN is maintained as low as 

possible, while the performance of the network is maximized. 

1.1 PROBLEM STATEMENT 

Machine learning has been widely used to interact with real-life datasets, while the use of 

artificial neural network has attracted more attention in the recent years. ANNs has shown 

significantly better performance, compared to other ML techniques, especially when used 

with larger datasets. However, as real-life datasets may contain nominal values, which are 

categorical values that have no meaningful order, handling the uncertainty of such values 

poses challenges in processing these data using ANNs [4]. This limitation is a result of the 

way inputs are processed in the neurons, where the summation of the weighted inputs is 

passed through an activation function before being outputted from the neuron. Thus, 
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encoding the nominal values outside the knowledge and data patterns, or features, recognized 

by the ANN can increase the complexity of the network required to achieve the ML task [14].  

1.2 AIM OF THE STUDY 

To improve the performance of the ANNs, when processing nominal data, while maintaining 

the complexity of the network to minimum, this study aims to proposed a novel method that 

allows neural networks of encoding the nominal data according to their needs. The proposed 

method allows the network to assign any numerical values, depending on the recognized 

patterns or features and how the nominal value participate in them, so that, maximum 

knowledge is extracted from the dataset. This approach is expected to improve the learning 

rate of the neural network, so that, knowledge is extracted faster and more accurately. As the 

weights of the inputs are adjusted during the training of the neural network, the proposed 

method distributes the nominal values over multiple weights, one weight per each value, so 

that, the value assigned to that weight represents the value that the input is encoded into. The 

performance of the neural networks is evaluated, and compared, when the proposed method 

is used with the existing encoding method, by monitoring the accuracy and error of these 

networks during training. 

1.3 THESIS LAYOUT 

The remaining chapters of this thesis are organized as follows: 

• Chapter two reviews the encoding techniques being used to transform nominal data 

into numerical values and the architecture of artificial neural network, their types and 

applications. 

• Chapter three describes the topology proposed to handle the uncertainty of nominal 

values with ANNs, so that, the numerical value per each categorical value is assigned 

by the neural network itself, instead of using predefined encoding values. 

• Chapter four describes the environment used to perform the experiments used to 

evaluate the performance of the neural network and the improvement in the 

performance when the proposed method is used. This chapter also describes the 

dataset used for the evaluation and their structure. 
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• Chapter five discusses the results of the conducted experiments, in order to illustrate 

the improvement in the performance of the ANNs when the proposed topology is 

used. 

• Chapter six concludes the thesis by illustrating the significance of the research and 

summarizes the results of the conducted experiments and the findings of the study. 
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2. LITERATURE REVIEW 

2.1 INTRODUCTION 

The neural networks’ structure and the distribution of the neurons in these networks are first 

illustrated in this chapter. Then, the computations employed to calculate the outputs of the 

neurons, hence the output of the neural network, and computations required to update the 

weights in the neural network, to achieve the required ML task are described in details. 

Moreover, the data types exist in real-life datasets and the characteristics of each type are 

described in details, alongside with the method used to encode the nominal values into 

numerical format, are also reviewed in this chapter. 

2.2 ARTIFICAL NEURAL NETWORKS 

Inspired from humans’ brains, ANNs use mathematical representations to simulate the 

electrical signals and the way they are processed and communicated among the biological 

neurons in these brains. As shown in Figure 2.1, inputs of a biological neuron are collected 

by the dendrites and delivered to the cell body [15]. However, before collecting these inputs, 

by the dendrites, the electrical impulses received by the neuron, which are the inputs of the 

neuron, are passed through the synapses. These synapses contain electrochemical conductors 

that adjust the effect of the received input on the cell body, by controlling the conductivity 

of the electrochemical solution [16, 17].  

Based on the magnitudes of the electrical impulses delivered by the dendrites to the cell body, 

after being adjusted by the synapses, the cell body makes the decision, whether to output an 

impulse or not. This output is then carried out by the axon to another neuron or to the organ 

corresponding to the decision made by the neuron to execute the required task. Inputs that 

excite the cell body to output an impulse are known as excitatory inputs, while inputs that 

inhibit the impulse outputted by the cell body are known as inhibitory inputs. Moreover, 

regardless of the type of effect the input has on the decision made by the cell body, the 

magnitude of that effect is controlled by the synapses, so that, some inputs can have 

significantly higher effect on the decision that others. Different decision that are made by 
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different humans for same inputs is a result of the different connections between the neurons 

in the brains and the different conductivities in their synapses [18]. 

 

Figure 2.1: Biological neuron’s structure in humans' brains [18]. 

Similarly, a neuron in an artificial neural network, shown in Figure 2.2, collects the inputs, 

which can be collected from the external environment or outputs or other neurons, in order 

to come up with the appropriate output. The weights (w) in the figure simulate the synapses 

of the biological neuron. The absolute value of the weight, i.e. the magnitude, represents the 

conductivity of the synapsis, where higher magnitudes indicate higher effects of the 

corresponding inputs, while the sign of the weight, positive or negative, represents the type 

of the effect, excitatory of inhibitory respectively. To increase the flexibility of the 

computations in the neuron, according to its needs to detect a certain pattern or feature in the 

dataset, a bias value is also included in the summation, which is a static value that is updated 

during the training phase of the ANN. Then, the weighted values of the inputs are summed 

up, with the bias value, in the neuron and passed through an activations function [7, 8].  
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Figure 2.2: Computations of a neuron in an artificial neural network [8]. 

 

The number of neurons in ANNs can be different from one network to another, depending 

on the complexity of the features, or patterns, in the input data and the number of inputs 

provided to the neural network, as well as the number of outputs required from it. These 

neurons are distributed in different levels, known as layers, which can be of three types, based 

on their position in the neural network. The first type of layers is the input layers, which 

collects the inputs from the environment that the neural network is interacting with. The 

number of neurons in this type of layers is determined by the count of inputs collected from 

the external environment that the network is interacting with. The other type of layers in 

neural networks is the output layer, which delivers the network’s outputs to the external 

environment. Hence, the number of required outputs determines the number of neurons in 

this layer [19]. Each neural network typically has only one input and one output layers, which 

poses the need of a third type of layers in order to allow more flexibility in determining the 

number of neurons in the ANN and the complexity of the features and patterns the network 

can recognize. Thus, a third type of layers, known as hidden layers, are used in these 

networks, so that, any number of neurons can be used in these layers, with any number of 

hidden layers in the neural network. These layers are denoted as hidden layers as they are 
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hidden from the external environment, unlike the input and output layers, which are 

connected to it [20]. 

2.2.1 Activation Functions 

As mentioned earlier, activation functions are used in neurons to allow nonlinear outputs 

from the neuron, depending on the calculated summation of weighted inputs. Although each 

neuron in the neural network can be assigned with a different type of activations function, 

neurons in the same layer are normally assigned with the same activation function, as the 

tasks of neurons in the same layer are identical. Rectified Linear Unit (ReLU), shown in 

Equation 2.1, is widely used as an activation function for neurons in the hidden layers of 

ANNs, according to the improvement in the performance of these networks, when this 

activation function is used. However, the task assigned to the neural networks and the outputs 

required from are used to select the appropriate activation function. Most of the widely used 

activation functions in the neurons of the output layer are [21, 22]: 

• Sigmoid: The output of this activation function, shown in Equation 2.2, is limited in 

the range (0,1). This function is normally used when the ANN is required to measure 

the probability of the input to belong to one of only two possible outputs. By 

comparing the calculated probability to a threshold value, the output can be converted 

from linear to binary decision. ANNs that achieve such tasks normally have a single 

neuron in the output layer. However, it is possible to have multiple neurons in the 

output layer with Sigmoid activation function, when the input may have multiple 

labels at once, so that, the output of each neuron represents the probability of 

assigning the corresponding label to the input. 

• Soft-Max: Using this activation function, shown in Equation 2.3, the summation of 

the outputs of the output layer’s neurons is always one, while the output value per 

each neuron is within the range (0,1). As the summation of the output is guaranteed 

to be equal to one, and each output value represents the probability of assigning the 

corresponding label to the input, this function is used when the input can have only 

one of the possible labels, so that, the label correspondent to the neuron with the 

highest output is assigned to the input.  
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• Linear: When the summation of the weighted inputs is outputted directly to the 

external environment, without passing it through a nonlinear activation function, a 

linear activation function is considered to be exist, where the value of the output is 

multiplied by the constant value of one. This activation function is used in regression 

problems, where the output can by any value, including negative values, based on the 

characteristics of the inputs. 

𝑅𝑒𝐿𝑈(𝑥) = {
𝑥,      𝑥 ≥ 0
0,      𝑥 < 0

 (2.1) 

𝑆𝑖𝑔𝑚𝑜𝑖𝑑(𝑥) =
1

1 + 𝑒−𝑥
 (2.2) 

𝑆𝑜𝑓𝑡𝑀𝑎𝑥(𝑥) =
𝑒𝑥𝑖

∑ 𝑥𝑗
𝑘
𝑗=0

 (2.3) 

where k is the neurons count in the output layer and i is the position of the neuron the output 

is calculated for. 

2.2.2 Forward Pass 

The computations executed on the input values, by the ANN, in order to calculate the output 

of the network are known as the forward pass. In a fully connected network, the inputs of the 

neurons in the hidden and output layer are collected from the neurons in the previous layer, 

as shown in the sample network in Figure 2.3. An array that holds the values of the weights, 

between each two neurons in the sequential layers, is used to multiply the outputs from the 

previous layer, before calculating the summation of the weighted sums in the neuron. The 

use of such topology allows the combination of patterns detected by neurons in a specific 

layer in the following one. Moreover, to increase the number of patterns, or features, that can 

be detected at a certain level of complexity can be increased by increasing the number of 

neurons in the corresponding layer [23, 24]. The output of neuron i, with J inputs x from the 

previous layer, using the weights array w, is calculated using Equation 2.4. 
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Figure 2.3: A sample fully connected artificial neural network. 

 

𝑂𝑢𝑡𝑝𝑢𝑡𝑖 = ∑ 𝑥𝑗𝑤𝑖𝑗

𝐽

𝑗=1

+ 𝑏𝑖 (2.4) 

where bi is the bias value for that neuron. 

2.2.3 Reverse Pass (Backpropagation) 

Similar to humans’ brains, where the topology of the biological neural network and the 

conductivities of the synapses define the decisions made by the brain, ANNs also rely of the 

distribution of the neurons and the weights among them to make the required decision. Two 

identical neural networks can be used in completely different task, in which different 

decisions are made, by using different weights values among their neurons. The value of a 

weight between two neurons defines the type of the effect, the output of the neuron in the 

previous layer over the neuron in the next one, as well as the significance of that effect on 

the output of the neuron in the later layer [25]. 

Backpropagation has a key-role in the popularity of neural networks, as the performance of 

these networks is significantly improved when this technique is used to update the value of 

the network’s weights. In order to update the weights of the ANN, backpropagation requires 

three values, as shown in Equation 2.5, which are the rate of change of the network’s output, 

with respect to the weight being updated 
𝜕𝑂

𝜕𝑤
, the error E between the output of the network 

and the one actually required from it and the learning rate L [26]. 
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𝑤̂ = 𝑤 −
𝜕𝑂

𝜕𝑤
× 𝐸 × 𝐿 (2.5) 

Regardless of the type of error function used by the neural network, such as the cross-entropy 

and Mean Squared Error (MSE) functions, these functions calculate a single value that 

represents the difference between the output of the neural network, using the current weights 

values, and the values required from the network. The output of the neural network is 

collected by processing a batch of sample inputs, from the training dataset, using the forward 

pass of the neural network, while the actual outputs are collected directly from the training 

dataset, or by processing the inputs using predefined functions. The calculated error value is 

then used by in the backpropagation. However, as large error values can produce large delta 

values, for weights updates, a learning rate is used to control the delta values in lower ranges. 

This control of the delta values ensures the avoidance of exploding weight values, so that, 

the weights values that produce the minimum error can be discovered [27]. 

By calculating the rate of change of the output error, with respect to the weight values, three 

possible values can be produces [20, 28], which are: 

• A positive value, which indicate that increasing that weight value increases the error. 

Thus, the weight value must be decreased by the calculate delta value, in order to 

decrease the difference between the outputs of the neural network and the required 

ones. 

• A negative value that indicates that the error is decreased by increasing the value of 

that weight. Thus, the current weight value must be increased by the calculated delta 

value, in order to reduce the error value and produce more accurate outputs. 

• A zero value, which indicates that no change is required to the current value of the 

weight. 

According to these possible values and by using the formula shown in Equation 2.5, the 

values of the weights in the neural network can be updated in order to reduce the difference 

between the predictions of the neural network and the actual output that is required to achieve 

the task of the ANN. However, according to the need of learning rate, to reduce the delta 

value used to update the weight values, the optimal performance of the neural network, 
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produced by minimizing the error through updating the weights, calculating the optimal 

weights values require multiple iterations, i.e. epochs [7]. 

2.3 EMPLOYMENT OF ARITIFICIAL NEURAL NETWORK IN ML 

Depending on the information used in the training of the ML techniques, two main categories 

of ML exist, unsupervised and supervised [3]. Training an unsupervised ML technique 

require only the samples collected from the environment, where the aim of such techniques 

is to find similarities and relation among these inputs [29]. In contrast, training a supervised 

machine learning technique requires additional information about each of the collected 

sample, which is added by a human expert. The aim of supervised ML techniques is to find 

the features and patterns that join the characteristic of each data instance and the information 

added to these sample inputs [30]. 

Artificial neural networks have been used in both types of machine learning, in where these 

networks have been able to achieve remarkable performances, compared to other techniques 

used for the same tasks. Moreover, depending on the shape of the inputs of the ANN and the 

nature of the environment these samples are collected from, different types of ANNs are 

being used. Some of the most popular existing types of artificial neural networks are: 

• Feed-Forward ANN: The output of each neuron at a certain layer in this type of 

ANNs is weighted and forwarded as the input to all the neurons in the following layer. 

The neurons in the input layer are distributed in a one-dimensional formation, so that, 

a neuron is assigned for each input. Thus, this type of neural networks is used when 

each data instance is characterized using a one-dimensional vector [31, 32]. 

• Convolutional Neural Networks (CNN): The inputs of each neuron in a 

convolutional layer are collected using a two-dimensional window, known as filter, 

which is convoluted through the entire input. Per each convolution, the output of the 

neuron is placed in a two-dimensional array corresponding to the position of the filter. 

This results in a three-dimensional array, where the size of the third dimension equals 

to the number of neurons in the layer. Such approach allows the detection of local 

two-dimensional features in the input, which makes this type of ANN have better 

performance with two- and three-dimensional inputs, such as images [33, 34]. 
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• Recurrent Neural Networks (RNN): This type of neural networks also processes 

two-dimensional inputs but the inputs are fed in one-dimensional vectors, one at a 

time. However, as the output of a neuron is feedback to the same neuron, the output 

at a certain time instance, i.e. an input vector at a certain position in the input, is 

affected by the computations from the previous time instance. Thus, this type of 

ANNs is widely used to process timeseries, as the inputs are time-relative to each 

other [35, 36]. 

One the important supervised applications that employs ANNs, regardless of its type, is 

classification, is classification, where the inputs are categorized based on their characteristics 

into categories. The characteristics of inputs in each category are extracted by the neural 

network during the training, so that, the characteristics of future inputs are investigated to 

predict their categories. A neuron in the output layer is assigned per each possible category 

in the dataset, except when two categories exist in the network, where a single-neuron output 

layer is used to determine which of the labels is assigned to the input, based on the output 

value of the neuron. The Soft-Max function is used for activation in the output-layer’s 

neurons when each input can be assigned with a single category, while the Sigmoid function 

is used when an input can be assigned with more than one category [37, 38]. 

In unsupervised ML, artificial neural networks are widely employed for autoencoding, where 

the dimensionality of an input is reduced using these networks [39]. Although a single ANN 

is used for auto encoding, splitting the layers into encoding and decoding layer, sharing the 

same encoded values, as shown in Figure 2.4, can simplifies the operation of such networks. 

Autoencoders are trained to output values similar to the inputs of the network. After being 

trained, the encoder can be used to output the code calculated for the input, which can be 

used to recalculate the input using the decoding part of the network. Thus, the same value, or 

quite similar ones, of the input can be retrieved using a smaller descriptor, which is the code 

value that connects the encoder with the decoder. As the error is calculated by measuring the 

similarity between the input and output of the network, no extra information is required with 

the dataset for training [39, 40]. 
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Figure 2.4: Illustration of an autoencoding artificial neural network [40]. 

2.4 DATA TYPES 

A dataset consists of a data instances, each instance is defined by a set of attributes’ values. 

Data collected from real-life environments can have different types in their attributes, mainly, 

quantitative and qualitative [41]. Quantitative attributes use numerical values to characterize 

the instance. As shown in Figure 2.5, a continuous quantitative value can have any, of infinite 

number of possible, values in a certain range, while a discrete value can have only one of a 

finite number of possible values. However, in both cases, continuous or discrete, the 

similarity between two data instances, regarding the characteristic that the attribute 

represents, can be measured by measuring the difference between their quantitative values, 

so that, data instances with more similar values are more similar in that characteristic when 

the difference between their values is low [42]. 
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Figure 2.5: Illustration of continuous and discrete quantitative values. 

 

Qualitative data, also known as categorical, is the other type of data that can be found in a 

real-life dataset. This type of data can be divided into three main categories, nominal, 

binominal and ordinal, where the binominal type of qualitative data is similar to nominal but 

has only two possible categorical values. The values of this type of data is always discrete, 

and can be described using numerical or alphanumerical values. The uncertainty in 

categorical values is the main challenge against handling this type of data in machine 

learning, where the position of the value in a category cannot be recognized [43, 44]. For 

example, measuring the similarity between two data instances, with teen value in the age 

attribute, is quite difficult, as the individual with this value can be actually aged anywhere 

between being one day away from being a child to one day away from being an adult. Thus, 

it is possible that the individual is more similar to another data instance with the child value, 

or senior, in the age attribute than another with the teen value, regarding the age similarity. 

Additionally, as the categorical values in a nominal attribute cannot have a reasonable order, 

it is impossible to measure the similarity between these values, directly from the dataset. 

However, these values are still of significant importance to machine learning, as they contain 

important information that can assist the ML technique to achieve the required task [45]. 
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2.5 CATEGORICAL DATA ENCODING 

Most of machine learning techniques, especially ANNs, can only handle numerical data, 

while many of the real-life datasets contain categorical attributes. When the categorical data 

is ordinal, it is possible to use a human’s experience to convert it into numerical format, so 

that, categories are assigned with numbers that reflect their position in the overall range of 

the attribute [46]. However, this process requires additional knowledge and manual 

processing of the dataset, which is undesired operation in machine learning as it aims to 

automate data processing and knowledge extraction. Moreover, this kind of conversion limits 

the performance of the ML technique, as it is restricted to the knowledge imposed by the 

expert [47]. Additionally, as the aim of machine learning is to recognize and extract hidden 

features and patterns, in the dataset, that are difficult to be recognized by humans, the 

conversion of nominal values into numerical format can mislead the ML technique, so that, 

the knowledge extraction becomes quite difficult or inaccurate knowledge is extracted [48]. 

2.5.1 Label Encoding 

As artificial neural networks can only handle numerical data, alphanumerical values in a 

qualitative attribute are converted to numerical format using Label-Encoding (LE). Per each 

categorical attribute, with alphanumerical values, all distinct values are collected from that 

attribute and ordered, alphabetically if no other order is specified [49]. Thus, for the sample 

alphanumerical values, shown in Table 2.1, the label-encoded value per each of them is 

shown. However, even if a reasonable order is selected, from an expert’s point of view, the 

encoded values are not guaranteed to satisfy the order that can assist the ANN to extract the 

knowledge, accurately, using simpler topology and less resources consumption. 
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Table 2.1: Sample qualitative alphanumerical values and their coressponding encoded values. 

 

2.5.2 One-Hot-Encoding 

Except when a binominal, or continuous, output is required from the ANN, the number of 

neurons in the output layer is equal to the number of distinct values. The probability of an 

output to be assigned to the input is reflected by the neuron assigned to that output. In order 

to train the ANN, it is important to convert the shape of the actual outputs, from the dataset, 

into a format that allows calculating the error between the predicted and actual values. This 

type of encoding is known as One-Hot-Encoding (OHE), where each value is converted into 

a vector. The length of the vector is equal to the number of distinct values in the categorical 

attribute that holds the output values. All the values in the vector are set to zero, except the 

value placed in the position corresponding to the required output is set to one, which is the 

reason behind the OHE denotation [50, 51]. As the number of distinct values, in 

alphanumerical format, shown in Table 2.2 is four, the size of the vector created per each 

value is four, where only one of the values in the vector is set to one, among the zeros. This 

indicates that there a probability of 100% that this label is assigned to the input, which is used 

to measure the error for the neural network during training. 
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Table 2.2: Sample qualitative alphanumerical values and their coressponding OHE values. 
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3. METHODOLOGY 

Despite the popularity of using label and manual encoding to convert nominal data into 

numerical values, the values selected using both methods are not guaranteed to be suitable 

for the computations implemented in the ANNs, to achieve the best performance. Even when 

the values are encoded manually by an expert, the values that may seem reasonable for an 

expert may not match the needs of the neural network, especially that all ML techniques aim 

to extract knowledge that is hidden in the inputs. Thus, such encoding techniques limit the 

performance of the neural network, so that, the knowledge extraction becomes more difficult 

for these networks, and more complex networks become required to achieve the same tasks. 

As the neural networks already have the ability to select the weights values that can maximize 

its performance, the proposed method aims to allow these networks to adjust the numerical 

value that represents each categorical, or nominal, value in an attribute. This adjustment is 

achieved during the training of the neural network, using backpropagation, so that, each 

categorical value is assigned with the suitable numerical value that achieves the best 

performance in the network. However, as the real-life datasets may contain mixed types of 

data, it is still important for the proposed method to handle quantitative values the same way 

they currently do, so that, the performance of the neural network is maximized when any 

type of data is used. 

To handle any type of data, the proposed method uses two layers at the inputs side of the 

neural network. The number of neurons in the second layer is selected based on the number 

of attributes in the dataset, so that, a neuron is assigned per each attribute, regardless of the 

type of the data in that attribute. However, the number of neurons in the first layer, which 

directly receives the inputs from the environment is calculated depending on the type of the 

data in each attribute and the number of distinct values in attributes with nominal values. The 

connection among the neurons in these layers are defined based on the type of the data that 

the corresponding attribute have. 

As shown in Figure 3.1, an attribute with quantitative values is assigned with a single neuron, 

in the first layer, which is directly connected to the corresponding neuron in the second layer. 

However, the number of neurons assigned to a nominal attribute is equal to the number of 

distinct values in that attribute, in the first layer. Neurons assigned for a certain nominal 
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attribute in the first layer are connected to a single neuron, which is assigned for that input, 

in the second layer. These neurons are not connected to any other neurons in the second layer. 

 

Figure 3.1: Illustration of the topology in the two layers using the proposed method. 

 

To allow assigning the suitable value per each categorical value in the dataset, categorical 

inputs are encoded using OHE, so that, per each input, the set of neurons in the first layer 

that are connected to a single neuron in the second layer can have only a single input with 

the value one. As the value received by the neurons in the first layer are zeros, except one, 

the value received by the neuron in the second layer is equal to the value of the weight 

between the neuron in the second layer and the one that represent the nominal value in that 

attribute. Thus, by updating the weights values between the neurons in the first and second 

layers, the values of each nominal value, received by the neuron in the second layer, can be 

adjusted according to the needs of the neural network. 

 For the popular example of tennis play prediction based on the weather’s condition, shown 

in Table 3.1, the data consists of four categorical attributes. Although it is possible to 

manually encode the two ordinal attributes, humidity and temperature, it is difficult to find 

reasonably encoded values for the two nominal attributes, wind and outlook. Moreover, the 

suitability of the manually encoded values for the computations in the neural network is 

questionable, as the way the neural network builds its decision is unknown. The existing 

.     .     .     . 
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method to process this dataset using an artificial neural network requires converting these 

values into numerical format, using LE, as shown in Table 3.2, and use the ANN shown in 

Figure 3.2 to process this dataset. 

Table 3.1: Weather conditions for tennis play forecast data table. 
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Table 3.2: Output of LE the weather conditions. 

Outlook Temperature Humidity Windy Play 

2 1 0 0 0 

2 1 0 1 0 

0 1 0 0 1 

1 2 0 0 1 

1 0 1 0 1 

1 0 1 1 0 

0 0 1 1 1 

2 2 0 0 0 

2 0 1 0 1 

1 2 1 0 1 

2 2 1 1 1 

0 2 0 1 1 

0 1 1 0 1 

1 2 0 1 0 

 

 

Figure 3.2:  A sample neural network to process the tennis playing dataset using the existing 

method. 

Using the proposed method, the data is converted into numerical values, shown in Table 3.3, 

using OHE, and the ANN shown in Figure 3.3 is used to process the encoded data. 
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Table 3.3: The OHE values of the weather conditions to be processed using the proposed ANN 

topology 

Outlook Temperature Humidity Windy 

Play Overcast Rainy Sunny Cool Hot Mild High Low False True 

0 0 1 0 1 0 1 0 1 0 0 

0 0 1 0 1 0 1 0 0 1 0 

1 0 0 0 1 0 1 0 1 0 1 

0 1 0 0 0 1 1 0 1 0 1 

0 1 0 1 0 0 0 1 1 0 1 

0 1 0 1 0 0 0 1 0 1 0 

1 0 0 1 0 0 0 1 0 1 1 

0 0 1 0 0 1 1 0 1 0 0 

0 0 1 1 0 0 0 1 1 0 1 

0 1 0 0 0 1 0 1 1 0 1 

0 0 1 0 0 1 0 1 0 1 1 

1 0 0 0 0 1 1 0 0 1 1 

1 0 0 0 1 0 0 1 1 0 1 

0 1 0 1 0 1 1 0 0 1 0 
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Figure 3.3: The topology of the ANN required to process the weather conditions dataset using the 

proposed method. 
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4. EXPERIMENTAL RESULTS 

4.1 INTRODUCTION 

As the aim of the proposed method is to improve the performance of ANNs when the input 

data include categorical values, this chapter illustrates the results of the experiments 

conducted to illustrate the difference in the performance when the propose topology is used. 

Each dataset is used to evaluate both the existing and the proposed topologies of artificial 

neural networks, so that, the improvements in the learning rate and overall performance of 

these networks can be measured and comparted. 

4.2 EVALUATION DATASETS 

Three UCI [52] datasets are used for the evaluation, which are the KDD 99, census income 

and nursery datasets. The KDD 99 dataset, which contains information collected from a 

network traffic that contains normal and intrusion access to the network, consists of 494,021 

instances. Each instance is characterized using 41 attributes, where three of these attributes 

are categorical, which represents 7.32% of attributes. The census income dataset consists of 

199,522 instances, each characterized using 41 attributes. The total number of categorical 

attributes in this dataset is 28, which represents 68.29% of the total attributes in the dataset. 

Additionally, the nursery dataset consists of 18,959 instances characterized using eight 

categorical attributes, i.e. 100% of the attributes are categorical. Table 4.1 summarizes the 

descriptions of these dataset. As the ratio of categorical attributes in a real-life dataset may 

vary, depending on the characteristics of the environment that the data is collected from, 

theses dataset are selected in order to evaluate the performance of the proposed method under 

different scenarios. 
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Table 4.1: Summary of the datasets used in the evaluation procedure. 

Dataset Instances 

Count 

Attributes 

Count 

Categorical 

Attributes Count 

Percentage of 

Categorical Attributes 

KDD99 494,021 41 3 7.32% 

Census Income 199,522 41 28 68.29% 

Nursery 18,959 8 8 100% 

 

4.3 PERFORMANCE EVALUATION MEASURES 

Backpropagation relies of the difference between the outputs predicted by the neural network 

and the actual outputs, acquired from the dataset, that the neural network is required to output. 

However, according to the use of the learning rate to avoid huge delta values to update the 

weights values, the neural network requires multiple iterations, epochs, to find the optimal 

value per each weight. The difference between the outputs of the neural network and the 

required ones is known the loss, where many functions are used to calculate that loss. Mean 

Squared Error (MSE), is one of the widely used function to calculate the error of the neural 

network. As shown in Equation 4.1, the MSE is calculated by calculating the squared 

difference between each output and its corresponding required value. Then, the mean of these 

values is calculated, by summing them up and dividing them by the number of outputs. 

𝑀𝑆𝐸 =
1

𝑛
∑(𝑃𝑖 − 𝐴𝑖)

2

𝑛

𝑖=1

 (4.1) 

where n is the number of classes in the dataset, P is the predicted value and A is the actual 

value of a data instance. 

Another important measure is the accuracy of the predictions provided by the neural network. 

As the datasets used for the evaluation contain a class for each data instance, the task required 

from the neural network is to predict the correct class for each of the instances. The output 

with the highest value is used as the predicted label for that input. Thus, the accuracy of the 

predictions can be defined as the ratio between the total number of correctly predicted labels 

to the data instances’ count, as shown in Equation 4.2. 
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𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝐶𝑜𝑟𝑟𝑒𝑐𝑡𝑙𝑦 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝑙𝑎𝑏𝑒𝑙𝑠

𝐷𝑎𝑡𝑎 𝑖𝑛𝑠𝑡𝑎𝑛𝑐𝑒𝑠′𝑐𝑜𝑢𝑛𝑡
 (4.2) 

To illustrate the learning rate of the neural network, the values of the loss and accuracy are 

monitored through all the training epochs, so that, faster improvement in these values 

illustrate faster learning rate. The loss value is considered to be improved when it is reduced 

throughout the training, while the accuracy is improved when its value is increased during 

the training. Moreover, for accurate evaluation, the instances in the dataset are distributed in 

five bins, using stratified cross-validation. Stratified indicates that the ratios of each class in 

the bins is maintained as similar to its ratio in the original dataset as possible. The use of such 

approach eliminates any chance to produce biased splits, which can be more suitable for one 

of the networks than another. The overall performance of the neural network is illustrated by 

calculating the average loss and accuracy of that network per each epoch, for all the bins. 

4.4 EXPERIMENT A – THE KDD 99 DATASET 

The KDD 99 dataset, which has three, out of the 41, attributes with categorical values, as 

shown in Table 4.2, is used in this experiment. These categorical attributes are transformed 

into numerical values using both LE and the proposed encoding methods. Each formation is 

fed to a neural network with a suitable topology and the average loss and accuracy per each 

epoch for the five bins are monitored during the training. The neural network that relies on 

the LE value has an accuracy of 98.93% after being trained for 100 epochs, compared to an 

accuracy of 99.96% when the proposed topology is used. Other than the additional layer 

added to handle the OHE inputs, the topologies of these networks are identical, with 41, 64, 

32, 16 and 32 neurons in each layer, respectively.  
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Table 4.2: Description of the attributes in the KDD99 dataset. 

Attribute # Data Type No. of distinct values 

1 
 

- 

2 Qualitative 3 

3 Qualitative 66 

4 Qualitative 11 

5 
 

- 

6 
 

- 

7 
 

- 

8 
 

- 

9 
 

- 

10 
 

- 

11 
 

- 

12 
 

- 

13 
 

- 

14 
 

- 

15 
 

- 

16 
 

- 

17 
 

- 

18 
 

- 

19 
 

- 

20 
 

- 

21 
 

- 

22 
 

- 

23 
 

- 

24 
 

- 

25 
 

- 

26 
 

- 

27 
 

- 

28 
 

- 

29 
 

- 

30 
 

- 

31 
 

- 

32 
 

- 

33 
 

- 

34 
 

- 

35 
 

- 

36 
 

- 

37 
 

- 

38 
 

- 

39 
 

- 

40 
 

- 

41 
 

- 
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The number of classes in this dataset is 32, which is the reason behind setting the number of 

neurons in the output layer to that number and the use of Soft-Max activation function. 

However, the 1.03% improvement in the performance, despite the existence of only 7.32% 

categorical attributes, reflects the importance of these attributes and the significant 

knowledge they contain, which has been able to improve the performance of the neural 

network when the suitable values are assigned per each of the nominal values in these 

attributes. Figure 4.1 also shows that the use of the proposed method has been able to improve 

the learning rate of the neural network, as the loss value has decreased, and accuracy 

increased, rapidly, compared to the use of the standard method. 
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Figure 4.1: Illustration of the loss and accuracy versus training epochs using the KDD 99 dataset. 

Top: Loss versus Epochs; Bottom: Accuracy versus Epochs. 

 

4.5 EXPERIMENT B – THE CENSUS INCOME DATASET 

The categorical attributes in this dataset represent 68.29% of the total number of attributes, 

i.e. 28 out of 41 attributes, that are used to characterize the instances in the dataset, as 
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summarized in table 4.3. The same neural networks described in the previous experiment are 

used to process the dataset, except the output layer, which consists of a single neuron, with 

Sigmoid activation function, as there are only two possible labels per each instance. After 

training these networks for 100 epochs, the neural network that uses LE has shown a 

predictions accuracy of 94.91%, while the neural network implemented using the proposed 

method has shown an accuracy of 95.39%. Thus, the proposed method has only been able to 

achieve 0.48% better accuracy.  

Despite the expectations of larger difference as the ratio of categorical attributes in the dataset 

is increased, it is possible that the values set by the LE are suitable for the computations of 

the neural network, or the selected topology is complex enough, for the required task, so that, 

it has been able to handle the values selected by the LE. However, as shown in Figure 4.2, 

the proposed method has shown significantly better learning rate, where the performance of 

the neural network has been able to achieve high accuracy, and low loss, within few epochs. 

Moreover, the figure shows that the neural network that uses the existing method has faced 

some struggle before it has been able to adopt the values imposed by LE. 
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Table 4.3: Description of the attributes in the census income dataset. 

Attribute # Data Type No. of distinct values 

1 
 

- 

2 Qualitative 9 

3 
 

- 

4 
 

- 

5 Qualitative 17 

6 
 

- 

7 Qualitative 3 

8 Qualitative 7 

9 Qualitative 24 

10 Qualitative 15 

11 Qualitative 5 

12 Qualitative 10 

13 Qualitative 2 

14 Qualitative 3 

15 Qualitative 6 

16 Qualitative 8 

17 
 

- 

18 
 

- 

19 
 

- 

20 Qualitative 6 

21 Qualitative 6 

22 Qualitative 51 

23 Qualitative 38 

24 Qualitative 8 

25 
 

- 

26 Qualitative 10 

27 Qualitative 9 

28 Qualitative 10 

29 Qualitative 3 

30 Qualitative 4 

31 
 

- 

32 Qualitative 5 

33 Qualitative 43 

34 Qualitative 43 

35 Qualitative 43 

36 Qualitative 5 

37 
 

- 

38 Qualitative 3 

39 
 

- 

40 
 

- 

41 
 

- 
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Figure 4.2: Illustration of the loss and accuracy versus training epochs using the census income 

dataset. Top: Loss versus Epochs; Bottom: Accuracy versus Epochs. 
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4.6 EXPERIMENT C – THE NURSERY DATASET 

The instances in this dataset are characterized using eight categorical attributes, i.e. 100% of 

attributes are categorical, as shown in Table 4.4. The same neural networks are trained to 

predict the five possible classes, one per each instance, which imposes the use of five neurons 

in the output layer, with Soft-Max activation function. The average loss and accuracy, for the 

five folds, are also monitored during the 100 training epochs, to illustrate the learning rate of 

these networks, as shown in Figure 4.3. The neural networks that uses the existing LE-based 

method has produced an accuracy of 98.71%, while the neural network that uses the proposed 

method has an accuracy of 99.99%. The 1.26% better performance of the neural network that 

uses the proposed method, as well as the almost perfect predictions, with only one 

misclassified data instance, illustrate the remarkable performance of the proposed method, 

as this dataset consists of only categorical data. On the other hand, the existing method, using 

LE, has produces 167 misclassified data instances, which illustrate the difficulties that the 

neural network faces to adopt the values imposed by the LE. 

  

 Figure 4.3.a: Illustration of the loss and accuracy versus training epochs using the nursery dataset. 

Top: Loss versus Epochs; Bottom: Accuracy versus Epochs. 
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Figure 4.4.b: Illustration of the loss and accuracy versus training epochs using the nursery dataset. 

Top: Loss versus Epochs; Bottom: Accuracy versus Epochs. 

 

Table 4.4: Description of the attributes in the nursery dataset. 

Attribute # Data Type No. of distinct values 

1 Qualitative 3 

2 Qualitative 5 

3 Qualitative 4 

4 Qualitative 4 

5 Qualitative 3 

6 Qualitative 2 

7 Qualitative 3 

8 Qualitative 3 
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Another important difference between the proposed method and the LE-based method is the 

how fast these networks have been able to learn from the dataset, represented by the change 

in the loss and accuracy values versus training epochs. The use of the proposed method has 

been able to produce a significantly better start, as well as quick improvement in its 

performance. In contrast, the neural network that uses the existing method requires more 

training epochs to recognize the more complex patterns in the dataset, as the unsuitable values 

produces by the label encoder increased this complexity. Moreover, Figure 4.3 shows that 

the neural network that uses the LE method has not been able to improve its performance 

despite it has reached a high accuracy before the end of the training. This behavior shows 

that the values produced by the label encoder have caused the loss of knowledge in the 

dataset, while such behavior does not exist in the proposed method. 
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5. DISCUSSION 

The results acquired from the experiment conducted to evaluate the performance of the 

existing and proposed methods, summarized in Table 5.1 and Figure 5.1, show that the 

proposed method has been able to achieve higher accuracy in all the conducted experiments. 

Although the improvement in the performance is expected to increase as the percentage of 

categorical attributes in the dataset increases, the improvement in the second experiment has 

been less than the one in the first experiment. Such anomaly reflects the effect of label 

encoded values over the performance of the neural network, as such similar performance 

between both methods is a result of the possible suitable values produced by the label 

encoder, or a complex neural network with respect to the features and patterns in that dataset. 

However, the faster learning of the neural network that uses the proposed method, shown by 

the faster improvement with respect to the training epochs, show that the values selected by 

the neural network itself are more suitable than those selected by the label encoder.  

 

Table 5.1: Summary of the results collected from the conducted experiments. 

Dataset 
Percentage of 

Categorical Attributes 

LE method 
Accuracy 

Proposed 
Method Accuracy Improvement 

KDD99 7.32% 98.93% 99.96% 1.03% 

Census Income 68.29% 94.91% 95.39% 0.48% 

Nursery 100% 98.71% 99.99% 1.26% 

Average 58.54% 97.52% 98.45% 0.92% 
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Figure 5.1: Illustration of the results collected from the conducted experiments. 

 

Additionally, the remarkable performance of 99.99% using the proposed method, with the 

nursery dataset, which has 100% categorical attributes, illustrates the significance of the 

proposed method. As only one data instance is misclassified, compared to 167 using the LE-

based method, out of the 18,959 data instances in the dataset, show that the maximum 

possible knowledge is extracted from the dataset using the proposed method. However, using 

the existing method, the accuracy has not been able to improve during the training, despite 

that the accuracy has reached to the maximum level before the training is completed. This 

behavior shows that the values produced by the LE has caused hiding some of the knowledge 

in the dataset, so that, the neural network has not been able to recognize despite the available 

epochs for such discovery. 

As many of the real-life dataset may contain qualitative data, depending on the environment 

the data are collected from, the use of the proposed method can improve the performance of 

the ANNs employed in different applications. Some of the recent applications implemented 

using these networks, to process real-life data with qualitative data, such as [53-55], can 

improve their performance by employing the proposed method. Such improvement can be 

achieved in two aspects, the accuracy and simplicity of the neural network. As the knowledge 

extraction is significantly improved, simpler neural networks can be used to achieve the 
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required tasks, so that, faster and more accurate decisions using less computing-resources 

can be produced. Thus, the performance of these methods can be significantly improved, 

where better and rapid predictions can be made. 
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6. CONCLUSION 

The data collected from a real-life environment can contain quantitative and qualitative 

values. Reasoning values of quantitative type is a simple task, as the actual value reflects its 

position in the range of data for that attribute. Qualitative data can be nominal or ordinal, 

where the approximate position of an ordinal value can be recognized in the range of data for 

an attribute. However, the precise position is sill uncertain, which imposes the challenge of 

handling such uncertainties in these values, even if the ordinal values are encoded by an 

expert. Moreover, the position of a nominal value in a range is unknown, as the order of these 

values and a defined range cannot be recognized. As this type of data in the dataset still 

contain important knowledge from the ML technique, it is important to convert these values 

into a numerical format with reasonable values, from the ML technique’s point of view. 

The existing method that converts qualitative values into numerical requires a predefined 

ordering rule, alphabetically by default, to convert the values in a qualitative attribute, in a 

dataset, to numerical format is known as label encoding. However, the values produced by 

this method are not guaranteed to be suitable for the ML techniques to extract the maximum 

knowledge in the dataset. Even if the ordering rule is defined by an expert in the domain that 

the data are collected from, these rules may conflict with the ML technique’s mathematical 

computation used to extract the knowledge. Thus, allowing the ML technique to set a 

numerical value per each qualitative value is the optimal solution to allow the extraction of 

the maximum knowledge from the dataset. 

Artificial neural networks are one of the ML techniques that are being widely used in 

different ML applications. The mathematical implementations in these networks are inspired 

by the signals processing and communications in a human’s brain. A value, known as weight, 

is multiplied by the output of a neuron before being inputted to another neuron, to adjust the 

effect of source neuron on the computation in the destination one. To extract the knowledge 

from the dataset, during training, so that, the neural network becomes capable of achieving 

the intended task, two passes are executed in the network, forward and reverse. Calculating 

the output values of the neural network based on the input values is the forward pass, as the 

computation occur from the input to the output layers. In the reverse pass, backpropagation 

calculated the difference between the output of the network and the actual outputs, collected 
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from the dataset, in order to update the weight values. Thus, two identical neural networks 

can be employed to execute different tasks, by providing different training dataset to produce 

different weights values. 

According to the ability of these networks to calculate the weight values suitable for their 

task, a novel method is proposed in this study to make use of the backpropagation to select 

the values suitable to encode qualitative attributes. A vector is created per each categorical 

attribute, where the length of the vector is equal to the number of distinct values in that 

attribute, and set all the values in that vector to zero, except the value located in a position 

corresponding to the categorical value of that data instance in the attribute. An additional 

layer is added to the neural network that has no role in patterns and features recognition but 

collects the inputs of each vector and connects them to a single neuron in the next layer. Thus, 

the number of neurons in the second layer is equal to the number of attributes in the original 

dataset, while the number of neurons in the first layer depends on the number of attributes, 

as well as the number of distinct values in each of the qualitative attributes. During 

backpropagation, the suitable value for each distinct value is selected, by adjusting the weight 

that connects this value to the neuron responsible of that attribute in the second layer. As the 

input can only be zero or one, the value that appear on the neuron corresponding to the 

attribute is equal to the weight value assigned to that categorical value. 

The performance of the proposed method is evaluated using three UCI datasets, which has 

different ratio of qualitative attributes, and compared to the use of the existing LE-based 

method. The results of these experiments show that the performance of the ANN is improves 

when the proposed method is used with dataset that have categorical data. In addition to the 

improved accuracy, the proposed method has shown faster learning rate, reflected by the 

rapid decrement in the loss and rapid increment in the accuracy against the training epochs. 

Moreover, the results show that the use of the LE-based method has not been able to extract 

the maximum knowledge, as the value produced by the label encoder has hidden some of the 

patterns in the dataset. Thus, the proposed method can improve the performance of many 

application implemented based on ANNs to process real-life dataset that contain categorical 

attributes. 
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In future work, the employment of the proposed methods in different application is going to 

be evaluated. Some of the important applications that can make use of the proposed method 

can be, but not limited to, cyber security, medical data processing and natural language 

processing. According to the definite existence of categorical data in these applications, the 

use of the proposed method can improve the accuracy of the ANN and reduce the complexity 

of their topologies, so that, better decision can be produces using less computer resources, or 

faster decisions using the same resources. 
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