

T.C.

ALTINBAŞ UNIVERSITY

Electrical and Computer Engineering

CENTRALIZED REINFORCEMENT LEARNING

FOR THE INTERNET OF THINGS DEVICES

Ahmed Hefdhi Hussein HUSSEIN

Master Thesis

Supervisor

Dr. Osman N. UÇAN

Istanbul (2019)

CENTRALIZED REINFORCEMENT LEARNING FOR THE

INTERNET OF THINGS DEVICES

by

Ahmed Hefdhi Hussein HUSSEIN

Electrical and Computer Engineering

Submitted to the Graduate School of Science and Engineering

in partial fulfillment of the requirements for the degree of

Master of Science

ALTINBAŞ UNIVERSITY

2019

iii

This is to certify that I have read this thesis and that in my opinion it is fully adequate, in

scope and quality, as a thesis for the degree of Master of Science.

Prof. Dr. Osman N. UÇAN

Supervisor

Examining Committee Members (first name belongs to the chairperson of the jury and the

Second name belongs to supervisor)

Prof. Dr. Osman N. UÇAN
Engineering and Natural

Science, Altinbas University __________________

Prof. Dr. Oğuz Bayat
Engineering and Natural

Science, Altinbas University __________________

Asst. Prof. Dr.Adil Deniz

Duru

Physical Education and

Sports,

Marmara University __________________

I certify that this thesis satisfies all the requirements as a thesis for the degree of Master of

Science.

 Asst. Prof. Dr. çağatay AYDIN

Head of Department

Prof. Dr.Oğuz BAYAT

Director

Approval Date of Graduate School of

Science and Engineering: 9 / 5 / 2019

iv

I hereby declare that all information in this document has been obtained and presented in

accordance with academic rules and ethical conduct. I also declare that, as required by these

rules and conduct, I have fully cited and referenced all material and results that are not

original to this work.

Ahmed Hefdhi Hussein HUSSEIN

v

DEDICATION

In the name of Allah the merciful.

 I would first like to thank God Almighty who gave me the opportunity and helped me to

finish my Master degree.

My dear father..

To my angel in life .. to the meaning of love and to the meaning of compassion and

dedication .. to the smile of life and the secret of existence to whom your invitation was the

secret of my success and affection

Dear mother..

To the one who has the largest and so I rely .. to a candle burning illuminates the darkness

of my life ..to those who have gained strength and love without limits ..to whom did you

know the meaning of life

To my dear wife, the source of comfort, happiness, and affectionate heart is for you and for

me , to the one who pleases my heart and blesses to the flower garden that sprouts flowers

blossoms

To those who are closest to my soul to those who share with me the bosom of pain, and

through them I draw my strength and my determination .. My brothers and sisters

Who paved the way in front of me to reach the height of science to .. my professor

"I was in my studies and shared my thoughts reminder and appreciation .. My friends

vi

ACKNOWLEDGMENTS

I would like to express my sincere gratitude to Prof. Dr. Osman N. Uçan for all the

knowledge and support he provided during my study for the Master Degree and throughout

the work to complete this thesis,which have diluted the difficulties I have faced during the

study. You have made my dream come true.

vii

ABSTRACT

CENTRALIZED REINFORCEMENT LEARNING FOR THE

INTERNET OF THINGS DEVICES

Ahmed Hefdhi Hussein HUSSEIN,

M.Sc., Electrical and Computer Engineering, Altınbaş University

Supervisor: Dr. Osman N. UÇAN

Date: April/2019

Pages: 56

The wide availability of the internet and communications schemes that allow connecting

different types of devices to that network has emerged the Internet of Things (IoT). IoT

devices are being deployed in different environments to collect data and execute

commands, so that, certain tasks can be achieved. However, the limited resources on these

devices restrict the range of applications that utilize them. Moreover, the rapid development

in machine learning and artificial intelligence increases the demand for these tasks from

IoT devices. Reinforcement Learning (RL) is one of these techniques that has been widely

investigated in recent years, according to its ability to recognize and interact with different

environment and tasks. In this study, a new method that uses a centralized computer to train

neural networks that are used for RL in IoT devices and update the operations of these

devices. Two approaches are evaluated using the proposed method. The first approach uses

a single neural network for all IoT devices. This neural network is trained using all the data

incoming from the IoT devices. The second approach uses a separate neural network per

each IoT device and train it using only the data incoming from that device. The

representation of the states to the neural network is also conducted using two approaches.

The state of the environment in the first approach is presented to the neural network as is,

without any modification to the image information. In this approach, the neural network is

required to learn the extraction of all the important information, such as the direction of the

car, its speed and the position of the path. In the second approach, the information about the

speed, steering and drifting are extracted from the image that represents the environment

viii

and provided as numerical values to the neural network. Moreover, only pixels from the

vertical and two diagonal lines of sight are collected from the image and delivered to the

neural network. The second representation, which is more efficient, has shown significant

improvement to the learning rate of the neural network, as the data is more concentrated

and less noisy, in addition to the significant reduction in the size of the data being

transmitted from the IoT device to the central computer.

Keywords: Artificial Neural Networks; Reinforcement Learning; Internet of Things; Deep

Q Learning.

ix

TABLE OF CONTENTS

sPage

ABSTRACT ... vii

LIST OF TABLES .. xi

LIST OF FIGURES ... xii

LIST OF ABBREVIATIONS .. xiii

1. INTRODUCTION ... 1

1.1 PROBLEM STATEMENT .. 3

1.2 THE AIM OF THE STUDY .. 3

1.3 LAYOUT OF THE THESIS .. 4

2. LITERATURE REVIEW ... 6

2.1 EMPLOYMENT OF IOT DEVICES... 7

2.2 REINFORCEMENT LEARNING ... 8

2.3 ARTIFICIAL NEURAL NETWORKS ... 11

2.4 DEEP Q-LEARNING .. 12

2.5 DQN IN AUTONOMOUS VEHICLES AND IOT ... 13

2.6 STRUCTURED DATA EXCHANGE OVER THE INTERNET 15

3. METHODOLOGY .. 18

3.1 DATA EXCHANGE .. 18

3.2 TRAINING THE NEURAL NETWORKS ... 20

4. EXPERIMENTAL RESULTS ... 22

4.1 EXPERIMENT A – A SINGLE CNN FOR ALL IOT DEVICES 24

4.2 EXPERIMENT B – A SINGLE FF-NN FOR ALL IOT DEVICES 26

4.3 EXPERIMENT C - A SINGLE CNN FOR EACH IOT DEVICE 27

x

4.4 EXPERIMENT D - A SINGLE FF-NN FOR EACH IOT DEVICE 28

5. DISCUSSION ... 30

6. CONCLUSION .. 33

REFERENCES .. 35

xi

LIST OF TABLES

Pages

Table 4.1: Defined actions for the agent... 24

Table 4.2: Structure of the CNN implemented for the DQN.. 25

Table 4.3: Structure of the FF-NN implemented for the DQN. ... 26

Table 5.1: Performances summary from the conducted experiments. 30

Table 5.2: Performance comparison with earlier methods. .. 31

xii

LIST OF FIGURES

Pages

Figure 2.1: The use of IoT devices in different fields of applications [30]. 6

Figure 2.2: Illustration of the interaction between the Agent and the Environment in

reinforcement learning. ... 8

Figure 2.3: Hierarchy of a sample deep neural network. ... 12

Figure 2.4: OpenAI gym's CarRacing environment. .. 15

Figure 2.5: A sample set of data in XML format [64]. ... 16

Figure 2.6: A sample set of data in JSON format [64]. .. 17

Figure 3.1: JSON structure for the data transmitted by the IoT devices. 18

Figure 3.2: JSON structure for the data transmitted by the central computer. 19

Figure 3.3: Neural network training approaches in the proposed method............................ 20

Figure 4.1: Information collected from the RacingCar environment. 23

Figure 4.2: Average score versus episodes for the single CNN approach. 25

Figure 4.3: Average score versus episodes for the single neural network approach. 27

Figure 4.4: Average score versus episodes for the multiple neural network approach. 28

Figure 4.5: Average score versus episodes for the multiple neural network approach. 29

Figure 5.1: Average scores and data sizes of the conducted experiments. 31

Figure 5.2: Illustration of performance comparison with earlier methods. 32

xiii

LIST OF ABBREVIATIONS

USB : Universal Serial Bus

WSN : Wireless Sensor Network

IoT : Internet of Things

ML : Machine Learning

RL : Reinforcement Learning

ANN : Artificial Neural Network

RFID : Radio Frequency Identification

MSDS : Material Safety Data Sheets

REST : Representational State Transfer

HTTP : Hyper-Text Transfer Protocol

FF-NN : Feed-Forward Neural Network

CNN : Convolutional Neural Network

DQN : Deep Q-Learning

XML : eXtensible Markup Language

JSON : JavaScript Object Notation

1

1. INTRODUCTION

The peripherals connected to a computer, which enable it from interacting with the

environment and external devices, may be divided into two categories. The first category is

the sensors, which have the ability to measure one or more variables and convert these

values into computer standards. The second category receives commands from the

computer and executes these commands on other devices. The use of these peripherals led

to the revolution of using computers in automation [1], where computers became capable of

interacting with other devices in order to acquire the necessary input data, process them to

make a decision, and then execute that decision using the output peripherals. The benefits

of using such systems enabled the evolution of these systems from a single-duty device,

which is usually capable of interacting with only one kind of inputs or outputs, to the

embedded systems that are capable of interacting with multiple inputs and outputs

mountainously.

These devices are usually of limited resources. Thus, they are usually connected to a

computer in order to make use of the relatively huge capabilities of the computer. To make

these devices more useful in different applications, they are designed to be able to use the

existing computer ports in order to exchange information with the computer. Earlier

devices used the computer’s parallel port to send and receive data [2]. Later, the serial port

is also used to exchange data between these devices and computers [3]. The use of serial

port gives more flexibility to the distance between a device and the computer. Then, with

the help of microcontrollers or some specialized converters, these devices are connected to

computers using Universal Serial Bus (USB). This enables high-speed data transfer

between a device and the computer [4].

The rapid growth of Wireless Sensor Networks (WSN) usage in different fields of

application and with the need to communicate to these sensors from different places leads

to the urgent need of connecting these sensors to the internet, which created the internet of

things (IoT), [5]. These applications may vary from saving lives by monitoring patients’

vitals [6] to monitoring the environment for the plants in agricultural applications [7].

These devices are connected to the internet using a different interface such as wireless

internet (WIFI module) or using mobile networks (GSM module). Connecting these

2

devices to the internet enables communications among them, to a centralized device or to

monitoring and control devices.

Techniques that attempt to allow computers to interact with their environments without a

predefined set of rules that define such interaction are investigated in Machine Learning

(ML) field of study [8]. ML aims to allow such interaction by learning from examples

collected from the environment or by directly interacting with that environment to find the

best possible solutions [9, 10]. The use of examples collected from the environment can be

divided into two main categories, the supervised and unsupervised techniques [11, 12].

When additional information is added to the examples, to represent the experience from a

human expert in that domain, the knowledge extraction is focused on the relations between

the characteristics of the inputs and the information added to them [13, 14]. Hence, such

techniques belong to the supervised machine learning category. Moreover, when the data

are provided without any additional information, the learning is denoted as unsupervised

and focuses on the relations among the inputs themselves, depending on their

characteristics [15, 16].

Recently, more emphasis is applied to the learning techniques that have the ability to

interact directly with the environment, in order to approximate the definition of the

environment. Such techniques are known as Reinforcement Learning (RL) techniques,

where an agent is set to interact with the environment by executing different actions [17,

18]. However, as the impact of these actions on the environment are unknown to the agent,

a reward is sent back to the agent, so that, the agent can recognize the quality of the

executed action. Based on these rewards, the agent becomes capable of recognizing the

optimal action per each state of the environment, which is described by the inputs collected

by the agent [19, 20].

According to their capabilities in approximating computations that define the environment,

Artificial Neural Networks (ANNs) are widely used in RL [21, 22]. The aim of the ANN in

such application is to predict the reward that the agent can collect from the environment per

each possible action it can execute in the current state. Based on these rewards, the agent

can simply select the action that maximizes the overall reward, i.e. select the optimal action

for the current state [23, 24]. However, when the agent first starts to interact with the

environment, the neural network has no approximation to the definition of the environment.

Hence, the agent is required to execute random actions per each state to train the neural

3

network to predict the rewards values for the actions the agent can take per an environment

state [25, 26].

Neural networks rely on intense matrices computations for both the prediction and training

phases. However, the computations required for the training phase is significantly more

complex than those required to provide a prediction [27]. Moreover, the existence of more

data can significantly improve the performance of the ANN. In RL, providing more

accurate reward values can significantly assist the agent for better action selection at a

certain state. The reward values predicted by the neural network for the actions available

for a state the agent has been through before are more accurate than those predicted for a

state that the agent has never been through [28].

1.1 PROBLEM STATEMENT

The employment of RL techniques has been increasing rapidly in recent years, according to

its ability to learn directly by interacting with the environment. RL relies mainly on ANNs,

which require intense matrices operations, especially during the training phase. Such

computations require resources that are beyond the capabilities of IoT devices. Moreover,

even if the resources of the IoT device can be employed for such task, training the ANN

using these resources reduces the efficiency of the IoT device, as such limited resources can

be employed to achieve the actual tasks required from the device.

Moreover, the quality of the predictions provided by the neural network improves by

increasing the training data. From RL’s point of view, providing the actual rewards

collected from the environment, instead of the approximations from the neural network,

improves the predictions for each action in the state. Hence, the approximation of the

rewards values for actions in other states that the agent has not been through yet. Thus, the

performance of the IoT devices can be improved in two main aspects, the efficiency of the

resources consumption and the selection of the optimal action per each state by using a

centralized computer that collects the data from these IoT devices, train a neural network

and update the IoT devices with the new values of the neural network.

1.2 THE AIM OF THE STUDY

Centralizing the training phase of the neural network used to achieve the same task in

different environments can improve the performance of the IoT device. Thus, in this study,

4

a framework that enables IoT devices of making use of the relatively larger resources on a

central computer to train the neural network is proposed. The proposed framework defines

the structure of the data being sent from the IoT devices to the central computer and vice

versa. The parameters of the neural network are updated during the training and the new

values are forwarded to the IoT devices, so that, even if the connection to the central server

is lost, the IoT devices can still perform their tasks.

Two approaches are proposed in this study to train the neural network. The first approach

uses a single neural network that is trained using the data received from all the IoT devices,

which is then used to update the parameters of all IoT devices. In this approach, all the IoT

devices share the same neural network parameters. In the second approach, a neural

network is implemented per each IoT device and trained using only the data received from

that IoT devices. In this scenario, the parameters of the neural network in an IoT device is

different from those in another device. The first approach allows the neural network to gain

the ability of interacting with different environments, as the data is collected from different

environments to achieve the same task. The neural networks produced in the second

approach are more specialized in the environment that its data are used to train the neural

network. The performance of the approach that produces better overall performance is

selected for the proposed method, so that, the performance of the IoT devices is maximized

using minimum resources consumption.

1.3 LAYOUT OF THE THESIS

The remaining chapters of this thesis are organized as follows:

• Chapter Two reviews the literature related to RL and the methods proposed to

implement its techniques in IoT devices.

• Chapter Three describes the proposed framework and the approaches proposed

to train the neural networks using the data received from the interaction

between each IoT device and its environment.

• Chapter Four presents the experiments conducted to evaluate the performance

of the IoT devices using both approaches.

• Chapter Five discusses the results collected from the experiments and compares

them to the state-of-the-art method in the literature for the same purpose.

5

• Chapter Six illustrates the conclusions of this thesis and the future work that is

going to be conducted to employ the proposed method in different RL tasks that

use IoT devices.

6

2. LITERATURE REVIEW

The high availability of internet connection has encouraged the use of these connections to

communicate information among different devices, other than computers and smart devices

usually used by internet users. These devices are used in different applications to provide

different kinds of services to the users, where in most cases, the information being

exchanged are automatically collected by these devices and require to user’s interaction.

This phenomenon has created the Internet of Things (IoT) and it has become mandatory to

adopt these devices and handle their communications [29]. The use of IoT devices has

grown rapidly in recent years, according to the features they provide, such as mobility and

accuracy. Thus, the IoT devices have been widely used in different fields of application,

such as healthcare, manufacturing, electricity, security and vehicles. The use of IoT devices

in different applications is illustrated in Figure 2.1, based on the percentage of devices used

in each field [30].

Figure 2.1: The use of IoT devices in different fields of applications [30].

Health Care
41%

Manufacturing
33%

Electricity
7%

Urban
Infrastructure

4%

Security
4%

Resource
Extraction

4%

Agriculture
4%

Retail
1%

Vehicles
2%

7

2.1 EMPLOYMENT OF IOT DEVICES

A healthcare system based on IoT is proposed by Arijit et al. [31] that collects several

biometric and environment measures to detect any anomaly in these measures in order to

alarm the patient to seek for a medical care. The anomaly detection is based on data mining

techniques, where measured variables are sent to a remote server to detect these anomalies.

The patient’s location, activity, movement and heart activity are monitored using the Global

Positioning System (GPS), Accelerometer, Magnetometer, and Photo-Plethysmography

(PPG) sensors, respectively. Moreover, an emergency health transmission system is

proposed by Govindhan et al. [32] the relies on the IoT to monitor the parameters of a

patient’s body in order to assist providing better health care for that patient in case of

emergency, where the recent vital measures can be analyzed to predict the required care in

need. The existence of such systems imposes the need for rigid long-life monitoring using

IoT devices, so that, reliable services are provided.

Although the IoT is not limited to healthcare, this field has the highest share among all

other fields as shown in Figure 2.1. However, there are different other services that rely on

IoT devices to improve their performance. A system is proposed by Kim et al. [33]

manages the security of a chemical laboratory using IoT sensors. This system uses flame,

gas and Radio-frequency identification (RFID) sensors to evaluate the environment in the

laboratory using Material Safety Data Sheets (MSDS) to detect any hazards, so that, the

administrator of the laboratory is immediately informed. The system uses an existing

Application Programming Interface (API) to achieve communications among the different

parts of the system, using Representational State Transfer (REST) architecture based on

Hyper-Text Transfer Protocol (HTTP).

Recently, the employment of IoT devices has enabled significant improvements in the self-

driving, i.e. autonomous, vehicles implementation, which is gaining significant attention

according to the benefits of such applications in reducing the risks of accidents and the

comfort it provides to the drivers [34-36]. These applications rely mainly on RL techniques,

according to the enormous number of states and actions the autonomous driver is required

to handle [37, 38]. In vehicles with larger power sources, such as cars, more resources can

be available for the computing device that is responsible for predicting the optimal action

based on the state of the vehicle. However, the quality of the predictions can still be

8

improved by sharing experiences, so that, the driving unit in a certain vehicle can evaluate

the actions for a certain state that it has never been through, such as accidents [39].

2.2 REINFORCEMENT LEARNING

Reinforcement learning uses the concepts of agents, environments, states, actions and

rewards [40-42]. As shown in Figure 2.2, the environment receives the actions selected by

the agent and outputs the new state of the agent and the reward. Agents, on the other hand,

collect the new state and the reward in order to select the next action, which is return

produces new state and reward from the environment. However, the agent does not have a

clue about the way the environment returns the next state and the rewards of a certain

action. Thus, in reinforcement learning, the agent attempts to predict the action that

maximizes the rewards received from the environment, by approximating the behavior of

the environment and how it responds to the actions [18].

Figure 2.2: Illustration of the interaction between the Agent and the Environment in

reinforcement learning.

The main components in RL applications are defined as follows:

• Agent: Is the component that is responsible of making the appropriate decision,

depending on the state collected from the environment, to achieve the goal of

the task assigned to it, such as making a delivery by a drone or navigating a car,

safely, to the intended destination.

• Action (A): Defines the set of possible actions that an agent can take, so that,

the agent can predict the reward it gets upon the execution of each action at a

certain state. For an autonomous vehicle, the possible actions at any state are to

accelerate, deaccelerate, go left, go right, go straight and do nothing. This set

represents the simplest actions for the RL agent, where more actions can

9

produce better performance but increases the complexity of the decision-

making procedure, according to the larger possibilities.

• Discount Factor: To allow the agent to focus on maximizing the overall

reward rather than emphasizing on the instant one, the maximum reward from

the new state the agent becomes into when an action is executed is included in

the computation of the current rewards. However, the reward value of the next

state is reduced by multiplying it by the discount factor, so that, the effect of the

instant reward and the overall reward is balanced. For instance, if an

autonomous vehicle is rewarded based on the instant values only,

deacceleration at risky situations is not considered by the agent, as it cannot

result in the maximum instant reward. Including the final rewards in the

computations increases the reward expected from avoiding accidents, which

allow the agent to make the appropriate decisions in that manner. Moreover,

relying only on the final reward can encourage the agent to take some unwanted

actions, such as driving off roads, to maximize the final reward. Thus, the

discount factor must be selected to balance all the scenarios and produce the

optimal performance from the agent.

• Environment: The domain that the agent is interacting with, by executing the

actions and collecting the rewards. In autonomous driving, the environment

represents the street the car is being driven through and the traffic in those

streets.

• State (S): The description of the current situation of the agent in the

environment, which can be represented to the agent in different formats. For

instance, an autonomous driver requires knowledge about the path it is

following, its current position on that path, the nearest vehicle and obstacles

ahead.

• Reward (R): Represents the feedback from the environment for the action

selected by the agent. Higher rewards values indicate more appropriate actions

for the current state, while lower values indicate that the correspondent actions

are less appropriate for the current state. For instances, deaccelerating the

vehicle may reduce the reward under certain circumstances, such as clear path

10

and low speed, but such action can have higher rewards in states that describe

an incoming vehicle, which can result in an accident.

• Policy (π): Is the approach employed by the agent to select the action

appropriate for the current state to maximize the reward.

• Value (V): Under policy π, the long-term reward expected by the agent for the

current state Vπ(s), considering the discount factor defined for the agent. This

value allows the agent to avoid being in states that can dramatically reduce the

long-term reward, even if it maximizes the instant reward. For instance,

increasing the speed above the speed limit can increase the instant reward, as

more distance is traveled faster, but considering the possibility of a fine or an

accident allows the agent to make more reasonable decisions.

• Q-Value (Q): This value defines the overall reward for a certain action at a

certain state, i.e. Qπ(s, a). The agents rely mainly on this value in making their

decisions, so that, the action that returns the maximum overall reward.

Reinforcement is based on the Bellman equation, which is proposed by the American

mathematician Richard Bellman. Using this equation, the reward per each action for a

certain state can be calculated based on the instant reward and all the rewards collected

until the end of the episode, which can be terminated as the agent reaches its goal or by

performing a specified number of actions [43, 44]. This reward is calculated as shown in

Equation 2.1.

𝑄𝜋(𝑠𝑡, 𝑎𝑡) = 𝐸[𝑅𝑡+1 + 𝛾𝑅𝑡+2 + 𝛾𝑅𝑡+3 + ⋯ |𝑠𝑡, 𝑎𝑡] (2.1)

According to this equation, the highest Q value from a certain state, st, can be used to

calculate the Q value for any action that ends up with the agent in that state, by simply

multiplying it by the maximum Q value, as shown in Equation 2.2.

𝑛𝑒𝑤 𝑄(𝑠, 𝑎) = 𝑄(𝑠, 𝑎) + 𝛼[𝑅(𝑠, 𝑎) + 𝛾𝑚𝑎𝑥𝑄′(𝑠′, 𝑎′) − 𝑄(𝑠, 𝑎)] (2.2)

where the learning rate 𝛼 is used to damp the variation in the Q value for the selected action

in the current state and 𝛾 is the discount factor that controls the balance between the instant

and long-term rewards. The new Q value is then used to update the function that is used to

represent the environment, so that, the actual reward from executing the action is produced

instead of an approximation. This value also assists the computation of the reward values

11

expected in previous states, as this value provides the actual reward received from the

environment.

2.3 ARTIFICIAL NEURAL NETWORKS

According to the complexity of the computations required to predict the reward of each

action available for the agent at a certain state, deep neural networks are used to make the

predictions, based on the inputs collected from the environment at that state. The action

selected based on the predictions of the neural network aims to maximize the reward

received from the environment by executing the action with the highest. However, these

rewards may not be instant and depend on the results of a series of actions. Thus, it is

important to wait to the end of the interaction with the environment to evaluate these

actions. Moreover, in order to adjust the exploration and exploitation of the selected

actions, e a certain percentage of random actions in any time instance are allowed to be

executed by the agent, especially before providing significant training for the neural

network. This enables finding the optimal output, even after a certain solution is found [45].

Artificial neural networks consist of neurons distributed in layers, where the output of a

neuron is weighted and connected to another neuron in a different layer, as input [46], as

shown in Figure 2.3. The decisions made by these networks depend on the values of these

weights, which are updated using backpropagation [47]. Backpropagation measures the

difference between the output of the neural network, and the actual output required from it

and update the weights among the neurons, based on the effect of each weight over the

output. The effect of each weight is measured by calculating the rate of change of the

output values, with respect to that weight. Thus, these computations require intensive

processing and neural networks with more layers, known as deep neural networks, have

significantly more weights, which increases the complexity of the computations. These

computations are very exhausting for the IoT device, according to their limited resources,

and require larger computers to achieve them [48]. However, these computations occur

during the training phase of the neural network only, and no further updates are required

during runtime, in most cases. The computations required to calculate the output of a neural

network are relatively easier than those required to train it, and they can be handled by the

IoT device itself, as the output of each neuron can be calculated by simply passing the

12

weighted summation, of the outputs collected from the neurons connected to it, through an

activation function [49, 50].

Figure 2.3: Hierarchy of a sample deep neural network.

Depending on the distribution of the inputs collected by each neuron in a layer, different

types of artificial neural networks can be produced, for different tasks. The Feed-Forward

Neural Network (FF-NN) shown in Figure 2.3 is the basic neural network that is used in

different applications. However, when the neuron collects its inputs from two-dimensional

windows, i.e. filters, that are convoluted through the two- or three-dimensional input, the

neural network is known as Convolutional Neural Network (CNN). CNNs have shown

significantly better performance than other types of neural networks when the inputs of the

neural networks are images, which are normally represented in two- or three-dimensional

arrays. Such better performance is the result of it CNN’s ability of detecting and combining

local features detected by the filters, regardless of their position in the input [51].

2.4 DEEP Q-LEARNING

The use of artificial neural network to approximate the function that defines the

environment and predict the Q values per each action for a certain state, so that, the agent

can select the most appropriate action is known as Q-Learning. The aim of this learning

approach is to provide the neural network with the actual rewards collected from the

environment, so that, it can predict these rewards in future operations [20]. However, as the

neural network does not have any knowledge about the environment that the agent is

interacting with, the training process relies on executing random actions at the beginning of

the training [26]. As the neural network starts to gain more knowledge about the

13

environment, the decisions of the agent can start to be less random and more dependent on

the predictions of the neural network. To control such behavior, a value is defined to

control the randomness in the decisions made by the agent. This value is denoted as the

epsilon and it normally starts with a high value, i.e. more random actions, and reduced as

the neural network gains more knowledge about the environment [52].

To select between the execution of a random action or based on the outputs of the neural

network, the epsilon value is compared to a randomly generated value. If the random value

is less than the epsilon, the action selected by the agent is the action that produces the

highest reward, based on the predictions of the neural network. Otherwise, the action is

selected randomly and executed against the environment [53]. In both cases, the reward

collected from the environment upon the execution of the selected action at the current state

is used with the maximum Q value predicted by the neural network for the new state the

agent becomes in, to produce a new Q value that is used to train the neural network [54,

55].

When the agent finishes an episode, the neural network is trained using the data collected

by the agent during the episode, i.e. the states, actions and rewards, and the epsilon value is

reduced by a predefined ration, known as the gamma value. This process is repeated until

the defined number of training episodes is reached, in which the neural network is expected

to have gained enough knowledge to produce accurate Q value that can assist the agent to

select the optimal action per each state it faces [43, 56]. The ability of the neural networks

to provide approximations for states that it has never been through, during the training,

allows the employment of these networks in the Deep Q-Learning (DQN) approach, so that,

the agent still has approximate Q values to make the appropriate decision. Comparing this

approach to the use of tables that contains the states and their corresponding Q values

shows the benefits of the approximated computations, as Q values for states that are

included in the Q table can be recognized by the agent [57, 58]. Thus, DQN has been

widely used in approximating the functions of complex environments, such as those faced

by autonomous vehicles drivers.

2.5 DQN IN AUTONOMOUS VEHICLES AND IOT

According to the complex nature of autonomous driving, imposed by the enormous number

of rules and situations the drivers should consider in their decision about the appropriate

14

actions, DQN has been widely used to assist providing these decisions by evaluating the

outcome of each action at a certain state, i.e. the Q values. It is also important for the DQN

method to consider all the variables in the environment, i.e. the traffic rules, street signs and

vehicles that are sharing the road with the autonomous driver. Despite the increased

complexity required to consider these factors, they can assist the agent is executing more

efficient actions that can provide safer environment. However, the absence of signs in some

intersections can impose a challenge for the agent, as the passing priority and the need to

come to a complete stop before entering the intersection is unknown. Thus, a method based

on DQN is proposed in [59] to allow autonomous drivers to go through such intersections

relying only on the traffic conditions and the positioning of other vehicles in the

intersection. This method illustrates the importance of the collaborative training, where

certain states that an agent has never been through before are used to train the neural

network, so that, better actions can be selected when the agent goes through a similar state.

OpenAI Gym [60] provide a variety of environments that can be used to train and evaluate

the performance of RL techniques. The interaction between the RL technique and the

environment is defined through a set of actions that the agent can execute at any state.

When the action is executed, the environment returns the instant reward based on the

selected action and the new state the agent becomes in. These environments are widely

used in different RL studies, according to their ease of implementation and integration. One

of the popular environments is the ‘CarRacing’ environment, where a predefined track is

set for the car and the agent is required to pass through that path until the all the tiles on the

path are collected. Per each tile, the agent is rewarded with three points, while a negative

reward, i.e. a punishment, of -0.1 is returned when a frame passes without touching a time,

i.e. the car is not moving or driving off roads [61]. A screenshot of this environment is

shown in Figure 2.4.

15

Figure 2.4: OpenAI gym's CarRacing environment.

DQN has also been widely employed to optimize the operation of IoT devices, such as

optimizing the power consumption by IoT devices while transmitting data be avoiding

jamming communication channels [62] or to enhance the security of these devices [63].

Despite the employment of DQN to improve the performance of the IoT devices, these

methods do not use the resources of the IoT devices to execute the RL computations.

Instead, information collected from the IoT devices, such as their position and the amount

of data they transmit, are used to control their behavior.

2.6 STRUCTURED DATA EXCHANGE OVER THE INTERNET

The data collected from a certain environment is structured, i.e. a fixed number of features

are collected from the environment to represent the state of the environment to the agent.

The communication of structured data over the internet can use different formats. Two of

these formats that are widely used for structured data exchange is the eXtensible Markup

Language (XML) and JavaScript Object Notation (JSON). The XML format is derived

from the HTTP format, which is the most used format over the internet, as the websites are

displayed in this format [64]. As shown in Figure 2.5, each object is defined using nested

values described by an opening and closing tags [65].

16

Figure 2.5: A sample set of data in XML format [65].

The JSON format, shown in Figure 2.6, imposes less overload to the actual data being

transmitted. According to the limited resources of the IoT devices and the dependency of

the power consumption on the amount of data being transmitted, this difference between

the XML and JSON is the key to select the JSON format to exchange data with the IoT

devices [66].

17

Figure 2.6: A sample set of data in JSON format [65].

18

3. METHODOLOGY

The proposed framework defines the format that is used to exchange the data between the

IoT devices, from one side, and a central computer that collects these data, train the neural

network and return the updated values to the IoT devices, so that, these devices can achieve

their tasks even when the communication with the computer is lost. According to its lower

overhead, JSON format is selected for data exchange with the central computer. The

computer then can use one of two approaches to train the neural networks of the IoT

devices, one is to use a single neural network for all the IoT devices and the other is to use

one neural network per each device.

3.1 DATA EXCHANGE

The data in the proposed framework flows in two directions. The first data flow is from the

IoT device to the central computer. These data contain information about the state, the

action executed and the reward collected by the agent from the environment after executing

the action, as well as the new state that the agent has become in after the action is executed.

The format shown in Figure 3.1 summarizes the JSON structure that is used to send the

data from the IoT device to the central computer, where n is the number of features in the

state.

{“IoT-ID”:

 {

 “Current”:[

 {“State”: D0, D1, ………, Dn,

 “Action”: A,

 “Reward”: R

 }

]

 “Next”:[

 {

 “State”: D0, D1, ………, Dn,

 }

]

 }

}

Figure 3.1: JSON structure for the data transmitted by the IoT devices.

19

The other direction that the data flows in is from the central computer to the IoT devices.

The data traveling in that direction contains the weights and biases values for each layer in

the network. These values are used to update the neural network in the IoT devices, so that,

the actions taken by the corresponding agent, i.e. the IoT device. This methodology ensures

that the IoT device can still perform its task even if the communication with the central

computer is interrupted. However, the neural network in that IoT device is not updated, as

the computations required to update the neural network are exhaustive to its resources. The

structure of the JSON format that is used to transfer the data from the central computer to

the IoT devices is shown in Figure 3.1.

{“NN-Update”:

 {

 “Layer-1”:[

 {“Weights”: W01, W11, ………, Wi1,

 “Biases”: B01, B11, ………, Bi1,

 }

]

 “Layer-2”:[

 {“Weights”: W02, W12, ………, Wj2,

 “Biases”: B02, B12, ………, Bj2,

 }

]

.

.

.

 “Layer-k”:[

 {“Weights”: W0k, W1k, ………, Wlk,

 “Biases”: B0k, B1k, ………, Blk,

 }

]

 }

}

Figure 3.2: JSON structure for the data transmitted by the central computer.

20

3.2 TRAINING THE NEURAL NETWORKS

According to the complexity of the computations required to train a neural network, which

is used for the DQN implementation, and to avoid exhausting the limited resources on IoT

device, the proposed method uses a centralized computer to collect the data from the IoT

devices and train a neural network to achieve the required RL task. Accordingly, this

computer receives data collected by multiple IoT devices, which can be employed in two

different approaches to train the neural network. In the first approach, the data collected

from multiple IoT devices that are intended for the same task are combined together to train

the neural network, as shown in Figure 3.3 (a). In the second approach, a separate neural

network is implemented per each IoT device, so that, the neural network of each device

becomes more familiar with the corresponding device’s environment, as shown in Figure

3.3 (b).

Figure 3.3: Neural network training approaches in the proposed method.

The IoT device is instructed to send a copy of the collected data to the computer every time

such data are collected or be appending them and sending them periodically, depending on

the size of the memory available on the IoT device and the network connection. Each data

instance sent to the computer must contain the state of the environment before taking the

action, the action, the state of the environment after the action is executed and the rewards

collected from the environment. However, in applications that do not have instantaneous

rewards, it is possible for the IoT device to only send the states and actions until the end of

(a) Single Neural Network Approach (b) Multiple Neural Networks

21

the sequential actions when the reward can be collected and sent to the computer. The

computer then uses the collected data to train the neural network, depending on the

approach being used, and send updates of the neural network to the IoT device periodically,

so that, the IoT devices are still able to interact with the environment even if they are not

connected to the computer.

22

4. EXPERIMENTAL RESULTS

Both approaches are implemented using Python programming language using a Windows

computer with 3.1GHz CPU and 16GB memory with additional 11GB of memory in

Nvidia GTX1080Ti GPU. According to the ability of the GPUs to parallelize complex

matrices operations, they have been widely used to accelerate the training of neural

networks, as they contain complex matrices operations. According to the recent use of RL

in self-driving cars, the “CarRacing-v0” environment from Gym’s OpenAI environment is

selected for the evaluation. The simulated approach utilizes 100 IoT devices each

interacting with its own track for 100 episodes. Each episode is terminated by the

environment when the agent completes 100 frames or when it becomes out the borders of

the defined region, including green regions outside the track. The state of the agent is

described to the neural network using two formats. In the first format, the entire image as

retrieved from the environment, which requires a transmitting a total of 55299 bytes per

each frame. The second format extracts the crucial information from the frame and sends it

to the neural network in the central computer, instead of the entire frame, which has

reduced the size of the communicated data to only 37 Bytes. The extracted information is:

• The pixels from the vertical line in front of the car in grayscale.

• The pixels from the diagonal line starting at the position of the car to the top

right corner of the screen in grayscale.

• The pixels from the diagonal line starting at the position of the car to the top

left corner of the screen.

• The overall speed of the car in addition to four speeds, one per each wheel.

• The steering level of the car, from -1 to 1, representing 100% left to 100%

right, respectively.

• The drifting level of the car, also varying from -1 to 1 representing 100% left

drifting to 100% right drifting.

23

All the previous information is extracted from the state received from the environment,

which is presented in graphical form, as shown in Figure 4.1.

Figure 4.1: Information collected from the RacingCar environment.

However, according to the ability of CNNs in detecting local two-dimensional features, the

performance of the proposed method is evaluated using the CNN directly with the image

retrieved as the state of the agent from the environment. The action required by the

environment consists of three values, the accelerator, brake and steering. However,

naturally, driving a vehicle autonomously consists of nine possible actions, shown in Table

4.1. Thus, the output layer of all the neural networks consists of nine neurons, where each

neuron predicts the Q value expected for the current state if the corresponding action is

selected.

Total Reward

Overall Speed

Wheels’ Speeds

Steering Drifting

24

Table 4.1: Defined actions for the agent.

Action Description

1 Accelerate.

2 Brake.

3 Steer Right (maintain speed)

4 Steer Left (maintain speed)

5 Accelerate and Steer Right

6 Accelerate and Steer Left

7 Brake and Steer Right

8 Brake and Steer Left

9 Do Nothing (maintain speed and direction)

The performance of each approach is evaluated by calculating the average score that each

simulated IoT device achieves when interacting with its own environment. The score of an

IoT device is calculated according to the rewards received from the environment, as

illustrated in Section 2.5, using Equation 4.1, where f is the number of frames in the

episode and T is the number of tiles that the car in the environment passes through.

𝑆𝑐𝑜𝑟𝑒 = 3 × 𝑇 − 0.1 × 𝑓 (4.1)

4.1 EXPERIMENT A – A SINGLE CNN FOR ALL IOT DEVICES

The performance of the first approach is evaluated in this experiment, where a single

convolutional neural network is created for all the simulated IoT devices. Upon the arrival

of each data instance form any of the IoT devices, the network is trained to update the

predicted reward value for the executed action, based on the actual reward collected from

the environment. The implemented CNN for this experiment consists of the layers

described in Table 4.2. By the end of all episodes, the average score is 418 with an average

deviation of ±37. Figure 4.2 shows the average reward for all the 100 IoT devices per each

episode.

25

Table 4.2: Structure of the CNN implemented for the DQN.

Layer Type Size

Input Layer - (96, 96, 3)

Conv1 Convolutional 128 × (3, 3)

Conv2 Convolutional 64 × (3, 3)

Dense1 Fully-Connected 128

Dense2 Fully-Connected 9

Figure 4.2: Average score versus episodes for the single CNN approach.

The results show that the CNN has not been able to gain enough knowledge to assist the

decision-making of the agent. According to the complexity of the features in the

convolutional layer, more training is required to allow more accurate predictions, so that,

better decisions are made by the agent. Moreover, the amount of data transferred from the

IoT device to the central computer, in this experiment, is equal to 54KB for the previous

and current states, in addition to three bytes that represents the reward collected from the

previous state and the action executed to get that reward.

26

4.2 EXPERIMENT B – A SINGLE FF-NN FOR ALL IOT DEVICES

The performance of the first approach is evaluated in this experiment, where a single feed-

forward neural network is created for all the simulated IoT devices. Upon the arrival of

each data instance form any of the IoT devices, the network is trained to update the

predicted reward value for the executed action, based on the actual reward collected from

the environment. Table 4.3 summarizes the FF-NN implemented for this experiment. By

the end of all episodes, the average score is 937 with an average deviation of ±19. Figure

4.3 shows the average reward for all the 100 IoT devices per each episode.

Table 4.3: Structure of the FF-NN implemented for the DQN.

Layer Type Size

Input Layer - (37)

Dense1 Fully-Connected 128

Dense2 Fully-Connected 64

Dense3 Fully-Connected 9

27

Figure 4.3: Average score versus episodes for the single neural network approach.

The results show that the implemented FF-NN has better performance for the DQN task,

according to the simpler structure, hence, a lower number of parameters, i.e. weights and

biases, to update. Moreover, as the state of the environment is provided to the neural

network in a more efficient way, by providing the speed, steering and drift in numerical

values, it has been able to show faster learning, compared to the CNN. Additionally, the

size of the communicated data is significantly lower than that in CNN, with only 77 bytes

to represent the previous and current state, as well as the reward and the selected action.

4.3 EXPERIMENT C - A SINGLE CNN FOR EACH IOT DEVICE

The second approach where a neural network is implemented per each IoT device is

evaluated in this experiment, using a sperate convolutional neural network per each IoT

device. Accordingly, a total of 100 convolutional neural networks, shown in Table 4.2, are

created and each network is trained using the data received from the corresponding IoT

device. By the end of all episodes, the simulated IoT devices have achieved an average

score of 351 with an average deviation of ±29. The average score for all the 100 IoT device

per each episode for this experiment is shown in Figure 4.2.

28

Figure 4.4: Average score versus episodes for the multiple neural network approach.

The figure shows huge oscillations, which are the results of new states that an IoT device

may pass through that has no prior knowledge of how to handle them. In the first approach,

when a single IoT device goes through such a state, the reward from the action executed by

that IoT device is propagated through all the other devices, as the same neural network is

used in these devices and this neural network has gained the ability to predict the reward

from that action in that state. The size of the communicated data is similar to that is

Experiment A.

4.4 EXPERIMENT D - A SINGLE FF-NN FOR EACH IOT DEVICE

The second approach where a neural network is implemented per each IoT device is

evaluated in this experiment, using a sperate feed-forward neural network per each IoT

device. Accordingly, a total of 100 neural networks are created and each network is trained

using the data received from the corresponding IoT device. By the end of all episodes, the

simulated IoT devices have achieved an average score of 890 with an average deviation of

±24. The average score for all the 100 IoT device per each episode for this experiment is

shown in Figure 4.2.

29

Figure 4.5: Average score versus episodes for the multiple neural network approach.

The figure shows that the more efficient representation of the states has produced less

oscillation in the collected data, as the neural network has gained better approximation

capability, in comparison with the results of Experiment C. The size of the communicated

data in this experiment is similar to that in Experiment B.

30

5. DISCUSSION

In addition to the higher score achieved by the simulated IoT device in the first approach,

where a single neural network is implemented for all IoT device, the lower deviation in the

scores of these devices, compared to the second approach, show that the first approach has

produced better performance. Moreover, the summary of the results, shown in Table 5.1,

shows that the more efficient presentation of the state has been able to accelerate the

learning of the neural network, for more accurate predictions of the Q value per each action

in a certain state. Additionally, improving the efficiency of the states’ representations has

been able to significantly reduce the amount of data transmitted from each IoT device to the

central computer, in addition to the improvement in the learning rate of the neural

networks, as shown in Figure 5.1. This summary shows that the use of a single feed-

forward neural network has achieved the best performance by scoring the highest average

score. Moreover, the lower size of the data improves the performance of the IoT devices, as

transmitting more data requires more of the limited resources of the IoT device.

Table 5.1: Performances summary from the conducted experiments.

Method Average Score Exchanged Data Size (Bytes)

Single CNN 418 ±37 55299

Single FF-NN 937 ±19 37

Multiple CNNs 351 ±29 55299

Multiple FF-NNs 890 ±24 37

31

Figure 5.1: Average scores and data sizes of the conducted experiments.

 Moreover, the comparison with the methods evaluated in [24], which is summarized in

Table 4.1 and Figure 4.3, shows that the cooperation among the IoT device has been able to

improve the performance of all these devices.

Table 5.2: Performance comparison with earlier methods.

Study Method Average Score

Ha and Schmidhuber [24]

DQN 343 ± 19

A3C (continuous) 591 ± 45

A3C (discrete) 652 ± 10

DQN (memory replay) 838 ± 11

Dual NN 906 ± 21

This Study Single CNN 418 ±37

Single FF-NN 937 ±19

Multiple-CNNs 351 ±29

Multiple FF-NNs 890 ±24

32

Figure 5.2: Illustration of performance comparison with earlier methods.

33

6. CONCLUSION

IoT devices are widely employed in different applications, according to their high mobility

and low-cost. Accordingly, lower resources are available on these devices, which can limit

the applications they are employed in. To allow a wider range of applications to utilize

these devices, computers can be used to support their operations. Reinforcement learning is

one of the fields that is attracting more attention in recent years, according to its ability of

interacting with different environments. RL mainly utilizes artificial neural networks,

which require intensive computations during training. Such training is difficult to be

executed using the limited resources of IoT devices.

In this study, a new method is proposed to allow computers to train neural networks and

update the operation of the IoT devices. Data collected by these devices are delivered to the

central computer to train the neural network and update the weights of the similar network

used to interact with the IoT’s environment. The proposed method uses two different

approaches for IoT devices that are intended to achieve the task. The first approach

implements a single neural network that is trained using all the data collected from the IoT

devices, be appending all the received data from these devices. The second approach

implements a neural network per each IoT device, so that, this neural network becomes

more familiar with the environment of the corresponding IoT device. The results of the

experiments conducted in this study show that the use of a single neural network has

improved the performance of all IoT device, as these devices are considered to be

cooperating to update the neural network. However, the use of a sperate neural network per

each IoT device has been slightly lower in performance than the first approach.

Moreover, the state of the environment that is delivered to the agent is also represented to

the neural network in two formats. In the first format, the data received by the agent are

forwarded to the neural network as they are, without any modifications or extractions. In

the second approach, a more efficient way is used to represent the data to the neural

network, where only three lines of sight are used to collect the data from the entire image

and the speed, steering and drifting values are extracted from the image and delivered in

numerical format to the neural network. The neural network is then trained to predict the Q

value per each action for a certain state, in both formats. The results show that the use of

the more efficient representation does not only significantly reduce the size of the

34

transmitted data from the IoT device, it has also been able to improve the learning rate of

the neural network. Such improvement in the learning rate is a result of the lower number

of parameters, i.e. weights and biases, to be updated during training. Thus, more accurate

results can be collected from the predictions of the neural network. Hence, the best

performance of the evaluated approaches and data formats combines the use of a single

feed-forward neural networks that predicts the reward values per each state per each state

using the information extracted from the environment, instead of sending the entire image

that represents the environment.

In future work, the benefits of using the centralized learning approach are going to be

evaluated using other classification technique, such as random forest and Support Vector

Machine. Despite the ability of training these classifiers locally in the IoT devices, the

centralized approach can have a significant improvement in the learning speed, as more

data is collected from different IoT devices and use them to accelerate the training and

produce a better performance as more knowledge is available in the training.

35

References

[1] D. Popovic and V. P. Bhatkar, Distributed Computer Control Systems in Industrial

Automation vol. 66: CRC Press, 1990.

[2] S. Rosminah and A. Z. M. Ali, "Development of hardware-interfacing learning kit

for novice learning programming," International Journal of Information and

Education Technology, vol. 6, p. 647, 2016.

[3] V. K. Patel and M. N. Patel, "Development of Smart Sensing Unit for Vibration

Measurement by Embedding Accelerometer with the Arduino Microcontroller,"

International Journal of Instrumentation Science, vol. 6, pp. 1-7, 2017.

[4] E. Popa and V. Popa, "Graphic interface for numerical commands on the USB port

of PC compatible computers," in MATEC Web of Conferences, 2017, p. 01008.

[5] J. Gubbi, R. Buyya, S. Marusic, and M. Palaniswami, "Internet of Things (IoT): A

vision, architectural elements, and future directions," Future generation computer

systems, vol. 29, pp. 1645-1660, 2013.

[6] S. Kim, S. Pakzad, D. Culler, J. Demmel, G. Fenves, S. Glaser, et al., "Health

monitoring of civil infrastructures using wireless sensor networks," in Proceedings

of the 6th international conference on Information processing in sensor networks,

2007, pp. 254-263.

[7] F. TongKe, "Smart agriculture based on cloud computing and IOT," Journal of

Convergence Information Technology, vol. 8, 2013.

[8] M. I. Jordan and T. M. Mitchell, "Machine learning: Trends, perspectives, and

prospects," Science, vol. 349, pp. 255-260, 2015.

[9] R. Ramprasad, R. Batra, G. Pilania, A. Mannodi-Kanakkithodi, and C. Kim,

"Machine learning in materials informatics: recent applications and prospects," npj

Computational Materials, vol. 3, p. 54, 2017.

36

[10] T. G. Dietterich, "Ensemble methods in machine learning," in International

workshop on multiple classifier systems, 2000, pp. 1-15.

[11] P. Chaovalit and L. Zhou, "Movie review mining: A comparison between

supervised and unsupervised classification approaches," in Proceedings of the 38th

annual Hawaii international conference on system sciences, 2005, pp. 112c-112c.

[12] A. L. Buczak and E. Guven, "A survey of data mining and machine learning

methods for cyber security intrusion detection," IEEE Communications Surveys &

Tutorials, vol. 18, pp. 1153-1176, 2016.

[13] E. W. Ngai, L. Xiu, and D. C. Chau, "Application of data mining techniques in

customer relationship management: A literature review and classification," Expert

systems with applications, vol. 36, pp. 2592-2602, 2009.

[14] S. B. Kotsiantis, I. Zaharakis, and P. Pintelas, "Supervised machine learning: A

review of classification techniques," Emerging artificial intelligence applications in

computer engineering, vol. 160, pp. 3-24, 2007.

[15] P. Berkhin, "A survey of clustering data mining techniques," in Grouping

multidimensional data, ed: Springer, 2006, pp. 25-71.

[16] Y. Kim, W. N. Street, and F. Menczer, "Feature selection in unsupervised learning

via evolutionary search," in KDD, 2000, pp. 365-369.

[17] R. S. Sutton and A. G. Barto, Reinforcement learning: An introduction: MIT press,

2018.

[18] V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, I. Antonoglou, D. Wierstra, et al.,

"Playing atari with deep reinforcement learning," arXiv preprint arXiv:1312.5602,

2013.

[19] P. Dayan and B. W. Balleine, "Reward, motivation, and reinforcement learning,"

Neuron, vol. 36, pp. 285-298, 2002.

37

[20] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G. Bellemare, et

al., "Human-level control through deep reinforcement learning," Nature, vol. 518,

p. 529, 2015.

[21] G.-B. Huang, P. Saratchandran, and N. Sundararajan, "A generalized growing and

pruning RBF (GGAP-RBF) neural network for function approximation," IEEE

Transactions on Neural Networks, vol. 16, pp. 57-67, 2005.

[22] R. S. Sutton, D. A. McAllester, S. P. Singh, and Y. Mansour, "Policy gradient

methods for reinforcement learning with function approximation," in Advances in

neural information processing systems, 2000, pp. 1057-1063.

[23] D. Silver, A. Huang, C. J. Maddison, A. Guez, L. Sifre, G. Van Den Driessche, et

al., "Mastering the game of Go with deep neural networks and tree search," nature,

vol. 529, p. 484, 2016.

[24] D. Ha and J. Schmidhuber, "Recurrent world models facilitate policy evolution," in

Advances in Neural Information Processing Systems, 2018, pp. 2455-2467.

[25] A. A. Rusu, N. C. Rabinowitz, G. Desjardins, H. Soyer, J. Kirkpatrick, K.

Kavukcuoglu, et al., "Progressive neural networks," arXiv preprint

arXiv:1606.04671, 2016.

[26] J. Oh, X. Guo, H. Lee, R. L. Lewis, and S. Singh, "Action-conditional video

prediction using deep networks in atari games," in Advances in neural information

processing systems, 2015, pp. 2863-2871.

[27] A. Novikov, D. Podoprikhin, A. Osokin, and D. P. Vetrov, "Tensorizing neural

networks," in Advances in neural information processing systems, 2015, pp. 442-

450.

38

[28] T. Salimans and D. P. Kingma, "Weight normalization: A simple reparameterization

to accelerate training of deep neural networks," in Advances in Neural Information

Processing Systems, 2016, pp. 901-909.

[29] Z. Yang, Y. Yue, Y. Yang, Y. Peng, X. Wang, and W. Liu, "Study and application

on the architecture and key technologies for IOT," in Multimedia Technology

(ICMT), 2011 International Conference on, 2011, pp. 747-751.

[30] A. Al-Fuqaha, M. Guizani, M. Mohammadi, M. Aledhari, and M. Ayyash, "Internet

of things: A survey on enabling technologies, protocols, and applications," IEEE

Communications Surveys & Tutorials, vol. 17, pp. 2347-2376, 2015.

[31] A. Ukil, S. Bandyoapdhyay, C. Puri, and A. Pal, "IoT healthcare analytics: The

importance of anomaly detection," in Advanced Information Networking and

Applications (AINA), 2016 IEEE 30th International Conference on, 2016, pp. 994-

997.

[32] P. Govindhan, G. V. Pratap, S. Balaji, M. Gurumoorthy, and H. Khudhrathulla,

"Emergency Health Transmission System via Internet," International Journal of

Engineering Science, vol. 16508, 2018.

[33] H. Kim, E. Lee, D. Kwon, and H. Ju, "Chemical laboratory safety management

service using IoT sensors and open APIs," in Information and Communications

(ICIC), 2017 International Conference on, 2017, pp. 262-263.

[34] T. Tettamanti, I. Varga, and Z. Szalay, "Impacts of autonomous cars from a traffic

engineering perspective," Periodica Polytechnica Transportation Engineering, vol.

44, pp. 244-250, 2016.

[35] A. Lari, F. Douma, and I. Onyiah, "Self-driving vehicles and policy implications:

current status of autonomous vehicle development and minnesota policy

implications," Minn. JL Sci. & Tech., vol. 16, p. 735, 2015.

39

[36] A. H. H. HUSSEIN, O. N. UÇAN, and O. BAYAT, "Centralized Reinforcement

Learning for the Internet of Things Devices," AURUM Journal of Engineering

Systems and Architecture, vol. Submitted, 2019.

[37] S. Shalev-Shwartz, S. Shammah, and A. Shashua, "Safe, multi-agent, reinforcement

learning for autonomous driving," arXiv preprint arXiv:1610.03295, 2016.

[38] G. Hartman, Z. Shiller, and A. Azaria, "Deep Reinforcement Learning for Time

Optimal Velocity Control using Prior Knowledge," arXiv preprint

arXiv:1811.11615, 2018.

[39] G. Kahn, A. Villaflor, V. Pong, P. Abbeel, and S. Levine, "Uncertainty-aware

reinforcement learning for collision avoidance," arXiv preprint arXiv:1702.01182,

2017.

[40] M. L. Littman, "Markov games as a framework for multi-agent reinforcement

learning," in Machine Learning Proceedings 1994, ed: Elsevier, 1994, pp. 157-163.

[41] M. Tan, "Multi-agent reinforcement learning: Independent vs. cooperative agents,"

in Proceedings of the tenth international conference on machine learning, 1993, pp.

330-337.

[42] C. J. Watkins and P. Dayan, "Q-learning," Machine learning, vol. 8, pp. 279-292,

1992.

[43] H. Van Hasselt, A. Guez, and D. Silver, "Deep reinforcement learning with double

q-learning," in Thirtieth AAAI Conference on Artificial Intelligence, 2016.

[44] T. Hester, M. Vecerik, O. Pietquin, M. Lanctot, T. Schaul, B. Piot, et al., "Deep q-

learning from demonstrations," in Thirty-Second AAAI Conference on Artificial

Intelligence, 2018.

[45] T. P. Lillicrap, J. J. Hunt, A. Pritzel, N. Heess, T. Erez, Y. Tassa, et al., "Continuous

control with deep reinforcement learning," arXiv preprint arXiv:1509.02971, 2015.

40

[46] G. Ertaş, H. Ö. Gülçür, O. Osman, O. N. Uçan, M. Tunacı, and M. Dursun, "Breast

MR segmentation and lesion detection with cellular neural networks and 3D

template matching," Computers in biology and medicine, vol. 38, pp. 116-126,

2008.

[47] P. Gorgel, N. Kilic, B. Ucan, A. Kala, and O. N. Ucan, "A Backpropagation Neural

Network Approach For Ottoman Character Recognition," Intelligent Automation &

Soft Computing, vol. 15, pp. 451-462, 2009.

[48] O. Osman, A. M. Albora, and O. N. Ucan, "Forward modeling with forced neural

networks for gravity anomaly profıle," Mathematical Geology, vol. 39, p. 593,

2007.

[49] I. N. Da Silva, D. H. Spatti, R. A. Flauzino, L. H. B. Liboni, and S. F. dos Reis

Alves, "Artificial neural networks," Cham: Springer International Publishing, 2017.

[50] O. Osman, A. M. Albora, and O. N. Ucan, "A new approach for residual gravity

anomaly profile interpretations: Forced Neural Network (FNN)," Annals of

Geophysics, vol. 49, 2006.

[51] A. Krizhevsky, I. Sutskever, and G. E. Hinton, "Imagenet classification with deep

convolutional neural networks," in Advances in neural information processing

systems, 2012, pp. 1097-1105.

[52] Y. Chen and E. Kulla, "A Deep Q-Network with Experience Optimization (DQN-

EO) for Atari’s Space Invaders," in Workshops of the International Conference on

Advanced Information Networking and Applications, 2019, pp. 351-361.

[53] S. Yoon and K.-J. Kim, "Deep Q networks for visual fighting game AI," in 2017

IEEE Conference on Computational Intelligence and Games (CIG), 2017, pp. 306-

308.

41

[54] Y. Bengio, P. Lamblin, D. Popovici, and H. Larochelle, "Greedy layer-wise training

of deep networks," in Advances in neural information processing systems, 2007, pp.

153-160.

[55] A. HUSSEIN, O. UÇAN, and O. BAYAT, "Centralized Reinforcement Learning

for the Internet of Things Devices," AURUM Journal of Engineering Systems and

Architecture, vol. Submitted, 2019.

[56] J. Foerster, I. A. Assael, N. de Freitas, and S. Whiteson, "Learning to communicate

with deep multi-agent reinforcement learning," in Advances in Neural Information

Processing Systems, 2016, pp. 2137-2145.

[57] A. Pritzel, B. Uria, S. Srinivasan, A. P. Badia, O. Vinyals, D. Hassabis, et al.,

"Neural episodic control," in Proceedings of the 34th International Conference on

Machine Learning-Volume 70, 2017, pp. 2827-2836.

[58] I. Osband, C. Blundell, A. Pritzel, and B. Van Roy, "Deep exploration via

bootstrapped DQN," in Advances in neural information processing systems, 2016,

pp. 4026-4034.

[59] D. Isele, R. Rahimi, A. Cosgun, K. Subramanian, and K. Fujimura, "Navigating

occluded intersections with autonomous vehicles using deep reinforcement

learning," in 2018 IEEE International Conference on Robotics and Automation

(ICRA), 2018, pp. 2034-2039.

[60] G. Brockman, V. Cheung, L. Pettersson, J. Schneider, J. Schulman, J. Tang, et al.,

"Openai gym," arXiv preprint arXiv:1606.01540, 2016.

[61] D. Ha and J. Schmidhuber, "Recurrent world models facilitate policy evolution," in

Advances in Neural Information Processing Systems, 2018, pp. 2450-2462.

42

[62] Y. Chen, Y. Li, D. Xu, and L. Xiao, "Dqn-based power control for iot transmission

against jamming," in 2018 IEEE 87th Vehicular Technology Conference (VTC

Spring), 2018, pp. 1-5.

[63] L. Xiao, X. Wan, X. Lu, Y. Zhang, and D. Wu, "IoT security techniques based on

machine learning: How do IoT devices use AI to enhance security?," IEEE Signal

Processing Magazine, vol. 35, pp. 41-49, 2018.

[64] J. Vihervaara and T. Alapaholuoma, "The impact of HTTP/2 on the service

efficiency of e-commerce websites," in 2018 41st International Convention on

Information and Communication Technology, Electronics and Microelectronics

(MIPRO), 2018, pp. 1317-1321.

[65] Z. U. Haq, G. F. Khan, and T. Hussain, "A Comprehensive analysis of XML and

JSON web technologies," New Developments in Circuits, Systems, Signal

Processing, Communications and Computers, pp. 102-109, 2015.

[66] J. L. Rebelo Moreira, L. Ferreira Pires, and M. Van Sinderen, "Semantic

Interoperability for the IoT: Analysis of JSON for Linked Data," Enterprise

Interoperability: Smart Services and Business Impact of Enterprise Interoperability,

pp. 163-169, 2018.

