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ABSTRACT 

CENTRALIZED REINFORCEMENT LEARNING FOR THE 

INTERNET OF THINGS DEVICES 

 

Ahmed Hefdhi Hussein HUSSEIN, 

M.Sc., Electrical and Computer Engineering, Altınbaş University 

Supervisor: Dr. Osman N. UÇAN 

Date: April/2019 

Pages: 56 

 

The wide availability of the internet and communications schemes that allow connecting 

different types of devices to that network has emerged the Internet of Things (IoT). IoT 

devices are being deployed in different environments to collect data and execute 

commands, so that, certain tasks can be achieved. However, the limited resources on these 

devices restrict the range of applications that utilize them. Moreover, the rapid development 

in machine learning and artificial intelligence increases the demand for these tasks from 

IoT devices. Reinforcement Learning (RL) is one of these techniques that has been widely 

investigated in recent years, according to its ability to recognize and interact with different 

environment and tasks. In this study, a new method that uses a centralized computer to train 

neural networks that are used for RL in IoT devices and update the operations of these 

devices. Two approaches are evaluated using the proposed method. The first approach uses 

a single neural network for all IoT devices. This neural network is trained using all the data 

incoming from the IoT devices. The second approach uses a separate neural network per 

each IoT device and train it using only the data incoming from that device. The 

representation of the states to the neural network is also conducted using two approaches. 

The state of the environment in the first approach is presented to the neural network as is, 

without any modification to the image information. In this approach, the neural network is 

required to learn the extraction of all the important information, such as the direction of the 

car, its speed and the position of the path. In the second approach, the information about the 

speed, steering and drifting are extracted from the image that represents the environment 
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and provided as numerical values to the neural network. Moreover, only pixels from the 

vertical and two diagonal lines of sight are collected from the image and delivered to the 

neural network. The second representation, which is more efficient, has shown significant 

improvement to the learning rate of the neural network, as the data is more concentrated 

and less noisy, in addition to the significant reduction in the size of the data being 

transmitted from the IoT device to the central computer. 

Keywords: Artificial Neural Networks; Reinforcement Learning; Internet of Things; Deep 

Q Learning. 
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1. INTRODUCTION 

The peripherals connected to a computer, which enable it from interacting with the 

environment and external devices, may be divided into two categories. The first category is 

the sensors, which have the ability to measure one or more variables and convert these 

values into computer standards. The second category receives commands from the 

computer and executes these commands on other devices. The use of these peripherals led 

to the revolution of using computers in automation [1], where computers became capable of 

interacting with other devices in order to acquire the necessary input data, process them to 

make a decision, and then execute that decision using the output peripherals. The benefits 

of using such systems enabled the evolution of these systems from a single-duty device, 

which is usually capable of interacting with only one kind of inputs or outputs, to the 

embedded systems that are capable of interacting with multiple inputs and outputs 

mountainously. 

These devices are usually of limited resources. Thus, they are usually connected to a 

computer in order to make use of the relatively huge capabilities of the computer. To make 

these devices more useful in different applications, they are designed to be able to use the 

existing computer ports in order to exchange information with the computer. Earlier 

devices used the computer’s parallel port to send and receive data [2]. Later, the serial port 

is also used to exchange data between these devices and computers [3]. The use of serial 

port gives more flexibility to the distance between a device and the computer. Then, with 

the help of microcontrollers or some specialized converters, these devices are connected to 

computers using Universal Serial Bus (USB). This enables high-speed data transfer 

between a device and the computer [4]. 

The rapid growth of Wireless Sensor Networks (WSN) usage in different fields of 

application and with the need to communicate to these sensors from different places leads 

to the urgent need of connecting these sensors to the internet, which created the internet of 

things (IoT), [5]. These applications may vary from saving lives by monitoring patients’ 

vitals [6] to monitoring the environment for the plants in agricultural applications [7]. 

These devices are connected to the internet using a different interface such as wireless 

internet (WIFI module) or using mobile networks (GSM module). Connecting these 
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devices to the internet enables communications among them, to a centralized device or to 

monitoring and control devices.  

Techniques that attempt to allow computers to interact with their environments without a 

predefined set of rules that define such interaction are investigated in Machine Learning 

(ML) field of study [8]. ML aims to allow such interaction by learning from examples 

collected from the environment or by directly interacting with that environment to find the 

best possible solutions [9, 10]. The use of examples collected from the environment can be 

divided into two main categories, the supervised and unsupervised techniques [11, 12]. 

When additional information is added to the examples, to represent the experience from a 

human expert in that domain, the knowledge extraction is focused on the relations between 

the characteristics of the inputs and the information added to them [13, 14]. Hence, such 

techniques belong to the supervised machine learning category. Moreover, when the data 

are provided without any additional information, the learning is denoted as unsupervised 

and focuses on the relations among the inputs themselves, depending on their 

characteristics [15, 16]. 

Recently, more emphasis is applied to the learning techniques that have the ability to 

interact directly with the environment, in order to approximate the definition of the 

environment. Such techniques are known as Reinforcement Learning (RL) techniques, 

where an agent is set to interact with the environment by executing different actions [17, 

18]. However, as the impact of these actions on the environment are unknown to the agent, 

a reward is sent back to the agent, so that, the agent can recognize the quality of the 

executed action. Based on these rewards, the agent becomes capable of recognizing the 

optimal action per each state of the environment, which is described by the inputs collected 

by the agent [19, 20].  

According to their capabilities in approximating computations that define the environment, 

Artificial Neural Networks (ANNs) are widely used in RL [21, 22]. The aim of the ANN in 

such application is to predict the reward that the agent can collect from the environment per 

each possible action it can execute in the current state. Based on these rewards, the agent 

can simply select the action that maximizes the overall reward, i.e. select the optimal action 

for the current state [23, 24]. However, when the agent first starts to interact with the 

environment, the neural network has no approximation to the definition of the environment. 

Hence, the agent is required to execute random actions per each state to train the neural 
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network to predict the rewards values for the actions the agent can take per an environment 

state [25, 26]. 

Neural networks rely on intense matrices computations for both the prediction and training 

phases. However, the computations required for the training phase is significantly more 

complex than those required to provide a prediction [27]. Moreover, the existence of more 

data can significantly improve the performance of the ANN. In RL, providing more 

accurate reward values can significantly assist the agent for better action selection at a 

certain state. The reward values predicted by the neural network for the actions available 

for a state the agent has been through before are more accurate than those predicted for a 

state that the agent has never been through [28].  

1.1 PROBLEM STATEMENT 

The employment of RL techniques has been increasing rapidly in recent years, according to 

its ability to learn directly by interacting with the environment. RL relies mainly on ANNs, 

which require intense matrices operations, especially during the training phase. Such 

computations require resources that are beyond the capabilities of IoT devices. Moreover, 

even if the resources of the IoT device can be employed for such task, training the ANN 

using these resources reduces the efficiency of the IoT device, as such limited resources can 

be employed to achieve the actual tasks required from the device.  

Moreover, the quality of the predictions provided by the neural network improves by 

increasing the training data. From RL’s point of view, providing the actual rewards 

collected from the environment, instead of the approximations from the neural network, 

improves the predictions for each action in the state. Hence, the approximation of the 

rewards values for actions in other states that the agent has not been through yet. Thus, the 

performance of the IoT devices can be improved in two main aspects, the efficiency of the 

resources consumption and the selection of the optimal action per each state by using a 

centralized computer that collects the data from these IoT devices, train a neural network 

and update the IoT devices with the new values of the neural network. 

1.2 THE AIM OF THE STUDY 

Centralizing the training phase of the neural network used to achieve the same task in 

different environments can improve the performance of the IoT device. Thus, in this study, 



4 

 

a framework that enables IoT devices of making use of the relatively larger resources on a 

central computer to train the neural network is proposed. The proposed framework defines 

the structure of the data being sent from the IoT devices to the central computer and vice 

versa. The parameters of the neural network are updated during the training and the new 

values are forwarded to the IoT devices, so that, even if the connection to the central server 

is lost, the IoT devices can still perform their tasks. 

Two approaches are proposed in this study to train the neural network. The first approach 

uses a single neural network that is trained using the data received from all the IoT devices, 

which is then used to update the parameters of all IoT devices. In this approach, all the IoT 

devices share the same neural network parameters. In the second approach, a neural 

network is implemented per each IoT device and trained using only the data received from 

that IoT devices. In this scenario, the parameters of the neural network in an IoT device is 

different from those in another device. The first approach allows the neural network to gain 

the ability of interacting with different environments, as the data is collected from different 

environments to achieve the same task. The neural networks produced in the second 

approach are more specialized in the environment that its data are used to train the neural 

network. The performance of the approach that produces better overall performance is 

selected for the proposed method, so that, the performance of the IoT devices is maximized 

using minimum resources consumption. 

1.3 LAYOUT OF THE THESIS 

The remaining chapters of this thesis are organized as follows: 

• Chapter Two reviews the literature related to RL and the methods proposed to 

implement its techniques in IoT devices. 

• Chapter Three describes the proposed framework and the approaches proposed 

to train the neural networks using the data received from the interaction 

between each IoT device and its environment. 

• Chapter Four presents the experiments conducted to evaluate the performance 

of the IoT devices using both approaches. 

• Chapter Five discusses the results collected from the experiments and compares 

them to the state-of-the-art method in the literature for the same purpose. 
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• Chapter Six illustrates the conclusions of this thesis and the future work that is 

going to be conducted to employ the proposed method in different RL tasks that 

use IoT devices. 
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2. LITERATURE REVIEW 

The high availability of internet connection has encouraged the use of these connections to 

communicate information among different devices, other than computers and smart devices 

usually used by internet users. These devices are used in different applications to provide 

different kinds of services to the users, where in most cases, the information being 

exchanged are automatically collected by these devices and require to user’s interaction. 

This phenomenon has created the Internet of Things (IoT) and it has become mandatory to 

adopt these devices and handle their communications [29]. The use of IoT devices has 

grown rapidly in recent years, according to the features they provide, such as mobility and 

accuracy. Thus, the IoT devices have been widely used in different fields of application, 

such as healthcare, manufacturing, electricity, security and vehicles. The use of IoT devices 

in different applications is illustrated in Figure 2.1, based on the percentage of devices used 

in each field [30]. 

 

Figure 2.1: The use of IoT devices in different fields of applications [30]. 
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2.1 EMPLOYMENT OF IOT DEVICES 

A healthcare system based on IoT is proposed by Arijit et al. [31] that collects several 

biometric and environment measures to detect any anomaly in these measures in order to 

alarm the patient to seek for a medical care. The anomaly detection is based on data mining 

techniques, where measured variables are sent to a remote server to detect these anomalies. 

The patient’s location, activity, movement and heart activity are monitored using the Global 

Positioning System (GPS), Accelerometer, Magnetometer, and Photo-Plethysmography 

(PPG) sensors, respectively. Moreover, an emergency health transmission system is 

proposed by Govindhan et al. [32] the relies on the IoT to monitor the parameters of a 

patient’s body in order to assist providing better health care for that patient in case of 

emergency, where the recent vital measures can be analyzed to predict the required care in 

need. The existence of such systems imposes the need for rigid long-life monitoring using 

IoT devices, so that, reliable services are provided. 

Although the IoT is not limited to healthcare, this field has the highest share among all 

other fields as shown in Figure 2.1. However, there are different other services that rely on 

IoT devices to improve their performance. A system is proposed by Kim et al. [33] 

manages the security of a chemical laboratory using IoT sensors. This system uses flame, 

gas and Radio-frequency identification (RFID) sensors to evaluate the environment in the 

laboratory using Material Safety Data Sheets (MSDS) to detect any hazards, so that, the 

administrator of the laboratory is immediately informed. The system uses an existing 

Application Programming Interface (API) to achieve communications among the different 

parts of the system, using Representational State Transfer (REST) architecture based on 

Hyper-Text Transfer Protocol (HTTP).  

Recently, the employment of IoT devices has enabled significant improvements in the self-

driving, i.e. autonomous, vehicles implementation, which is gaining significant attention 

according to the benefits of such applications in reducing the risks of accidents and the 

comfort it provides to the drivers [34-36]. These applications rely mainly on RL techniques, 

according to the enormous number of states and actions the autonomous driver is required 

to handle [37, 38]. In vehicles with larger power sources, such as cars, more resources can 

be available for the computing device that is responsible for predicting the optimal action 

based on the state of the vehicle. However, the quality of the predictions can still be 
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improved by sharing experiences, so that, the driving unit in a certain vehicle can evaluate 

the actions for a certain state that it has never been through, such as accidents [39]. 

2.2 REINFORCEMENT LEARNING  

Reinforcement learning uses the concepts of agents, environments, states, actions and 

rewards [40-42]. As shown in Figure 2.2, the environment receives the actions selected by 

the agent and outputs the new state of the agent and the reward. Agents, on the other hand, 

collect the new state and the reward in order to select the next action, which is return 

produces new state and reward from the environment. However, the agent does not have a 

clue about the way the environment returns the next state and the rewards of a certain 

action. Thus, in reinforcement learning, the agent attempts to predict the action that 

maximizes the rewards received from the environment, by approximating the behavior of 

the environment and how it responds to the actions [18]. 

 

Figure 2.2: Illustration of the interaction between the Agent and the Environment in 

reinforcement learning. 

The main components in RL applications are defined as follows: 

• Agent: Is the component that is responsible of making the appropriate decision, 

depending on the state collected from the environment, to achieve the goal of 

the task assigned to it, such as making a delivery by a drone or navigating a car, 

safely, to the intended destination. 

• Action (A): Defines the set of possible actions that an agent can take, so that, 

the agent can predict the reward it gets upon the execution of each action at a 

certain state. For an autonomous vehicle, the possible actions at any state are to 

accelerate, deaccelerate, go left, go right, go straight and do nothing. This set 

represents the simplest actions for the RL agent, where more actions can 



9 

 

produce better performance but increases the complexity of the decision-

making procedure, according to the larger possibilities. 

• Discount Factor: To allow the agent to focus on maximizing the overall 

reward rather than emphasizing on the instant one, the maximum reward from 

the new state the agent becomes into when an action is executed is included in 

the computation of the current rewards. However, the reward value of the next 

state is reduced by multiplying it by the discount factor, so that, the effect of the 

instant reward and the overall reward is balanced. For instance, if an 

autonomous vehicle is rewarded based on the instant values only, 

deacceleration at risky situations is not considered by the agent, as it cannot 

result in the maximum instant reward. Including the final rewards in the 

computations increases the reward expected from avoiding accidents, which 

allow the agent to make the appropriate decisions in that manner. Moreover, 

relying only on the final reward can encourage the agent to take some unwanted 

actions, such as driving off roads, to maximize the final reward. Thus, the 

discount factor must be selected to balance all the scenarios and produce the 

optimal performance from the agent. 

• Environment: The domain that the agent is interacting with, by executing the 

actions and collecting the rewards. In autonomous driving, the environment 

represents the street the car is being driven through and the traffic in those 

streets.  

• State (S): The description of the current situation of the agent in the 

environment, which can be represented to the agent in different formats. For 

instance, an autonomous driver requires knowledge about the path it is 

following, its current position on that path, the nearest vehicle and obstacles 

ahead. 

• Reward (R): Represents the feedback from the environment for the action 

selected by the agent. Higher rewards values indicate more appropriate actions 

for the current state, while lower values indicate that the correspondent actions 

are less appropriate for the current state. For instances, deaccelerating the 

vehicle may reduce the reward under certain circumstances, such as clear path 
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and low speed, but such action can have higher rewards in states that describe 

an incoming vehicle, which can result in an accident. 

• Policy (π): Is the approach employed by the agent to select the action 

appropriate for the current state to maximize the reward. 

• Value (V): Under policy π, the long-term reward expected by the agent for the 

current state Vπ(s), considering the discount factor defined for the agent. This 

value allows the agent to avoid being in states that can dramatically reduce the 

long-term reward, even if it maximizes the instant reward. For instance, 

increasing the speed above the speed limit can increase the instant reward, as 

more distance is traveled faster, but considering the possibility of a fine or an 

accident allows the agent to make more reasonable decisions. 

• Q-Value (Q): This value defines the overall reward for a certain action at a 

certain state, i.e. Qπ(s, a). The agents rely mainly on this value in making their 

decisions, so that, the action that returns the maximum overall reward.  

Reinforcement is based on the Bellman equation, which is proposed by the American 

mathematician Richard Bellman. Using this equation, the reward per each action for a 

certain state can be calculated based on the instant reward and all the rewards collected 

until the end of the episode, which can be terminated as the agent reaches its goal or by 

performing a specified number of actions [43, 44]. This reward is calculated as shown in 

Equation 2.1. 

𝑄𝜋(𝑠𝑡, 𝑎𝑡) = 𝐸[𝑅𝑡+1 + 𝛾𝑅𝑡+2 + 𝛾𝑅𝑡+3 + ⋯ |𝑠𝑡, 𝑎𝑡] (2.1) 

According to this equation, the highest Q value from a certain state, st, can be used to 

calculate the Q value for any action that ends up with the agent in that state, by simply 

multiplying it by the maximum Q value, as shown in Equation 2.2. 

𝑛𝑒𝑤 𝑄(𝑠, 𝑎) = 𝑄(𝑠, 𝑎) + 𝛼[𝑅(𝑠, 𝑎) + 𝛾𝑚𝑎𝑥𝑄′(𝑠′, 𝑎′) − 𝑄(𝑠, 𝑎)] (2.2) 

where the learning rate 𝛼 is used to damp the variation in the Q value for the selected action 

in the current state and 𝛾 is the discount factor that controls the balance between the instant 

and long-term rewards. The new Q value is then used to update the function that is used to 

represent the environment, so that, the actual reward from executing the action is produced 

instead of an approximation. This value also assists the computation of the reward values 
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expected in previous states, as this value provides the actual reward received from the 

environment.  

2.3 ARTIFICIAL NEURAL NETWORKS 

According to the complexity of the computations required to predict the reward of each 

action available for the agent at a certain state, deep neural networks are used to make the 

predictions, based on the inputs collected from the environment at that state. The action 

selected based on the predictions of the neural network aims to maximize the reward 

received from the environment by executing the action with the highest. However, these 

rewards may not be instant and depend on the results of a series of actions. Thus, it is 

important to wait to the end of the interaction with the environment to evaluate these 

actions. Moreover, in order to adjust the exploration and exploitation of the selected 

actions, e a certain percentage of random actions in any time instance are allowed to be 

executed by the agent, especially before providing significant training for the neural 

network. This enables finding the optimal output, even after a certain solution is found [45]. 

Artificial neural networks consist of neurons distributed in layers, where the output of a 

neuron is weighted and connected to another neuron in a different layer, as input [46], as 

shown in Figure 2.3. The decisions made by these networks depend on the values of these 

weights, which are updated using backpropagation [47]. Backpropagation measures the 

difference between the output of the neural network, and the actual output required from it 

and update the weights among the neurons, based on the effect of each weight over the 

output. The effect of each weight is measured by calculating the rate of change of the 

output values, with respect to that weight. Thus, these computations require intensive 

processing and neural networks with more layers, known as deep neural networks, have 

significantly more weights, which increases the complexity of the computations. These 

computations are very exhausting for the IoT device, according to their limited resources, 

and require larger computers to achieve them [48]. However, these computations occur 

during the training phase of the neural network only, and no further updates are required 

during runtime, in most cases. The computations required to calculate the output of a neural 

network are relatively easier than those required to train it, and they can be handled by the 

IoT device itself, as the output of each neuron can be calculated by simply passing the 
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weighted summation, of the outputs collected from the neurons connected to it, through an 

activation function [49, 50]. 

 

Figure 2.3: Hierarchy of a sample deep neural network. 

 

Depending on the distribution of the inputs collected by each neuron in a layer, different 

types of artificial neural networks can be produced, for different tasks. The Feed-Forward 

Neural Network (FF-NN) shown in Figure 2.3 is the basic neural network that is used in 

different applications. However, when the neuron collects its inputs from two-dimensional 

windows, i.e. filters, that are convoluted through the two- or three-dimensional input, the 

neural network is known as Convolutional Neural Network (CNN). CNNs have shown 

significantly better performance than other types of neural networks when the inputs of the 

neural networks are images, which are normally represented in two- or three-dimensional 

arrays. Such better performance is the result of it CNN’s ability of detecting and combining 

local features detected by the filters, regardless of their position in the input [51]. 

2.4 DEEP Q-LEARNING 

The use of artificial neural network to approximate the function that defines the 

environment and predict the Q values per each action for a certain state, so that, the agent 

can select the most appropriate action is known as Q-Learning. The aim of this learning 

approach is to provide the neural network with the actual rewards collected from the 

environment, so that, it can predict these rewards in future operations [20]. However, as the 

neural network does not have any knowledge about the environment that the agent is 

interacting with, the training process relies on executing random actions at the beginning of 

the training [26]. As the neural network starts to gain more knowledge about the 
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environment, the decisions of the agent can start to be less random and more dependent on 

the predictions of the neural network. To control such behavior, a value is defined to 

control the randomness in the decisions made by the agent. This value is denoted as the 

epsilon and it normally starts with a high value, i.e. more random actions, and reduced as 

the neural network gains more knowledge about the environment [52]. 

To select between the execution of a random action or based on the outputs of the neural 

network, the epsilon value is compared to a randomly generated value. If the random value 

is less than the epsilon, the action selected by the agent is the action that produces the 

highest reward, based on the predictions of the neural network. Otherwise, the action is 

selected randomly and executed against the environment [53]. In both cases, the reward 

collected from the environment upon the execution of the selected action at the current state 

is used with the maximum Q value predicted by the neural network for the new state the 

agent becomes in, to produce a new Q value that is used to train the neural network [54, 

55].  

When the agent finishes an episode, the neural network is trained using the data collected 

by the agent during the episode, i.e. the states, actions and rewards, and the epsilon value is 

reduced by a predefined ration, known as the gamma value. This process is repeated until 

the defined number of training episodes is reached, in which the neural network is expected 

to have gained enough knowledge to produce accurate Q value that can assist the agent to 

select the optimal action per each state it faces [43, 56]. The ability of the neural networks 

to provide approximations for states that it has never been through, during the training, 

allows the employment of these networks in the Deep Q-Learning (DQN) approach, so that, 

the agent still has approximate Q values to make the appropriate decision. Comparing this 

approach to the use of tables that contains the states and their corresponding Q values 

shows the benefits of the approximated computations, as Q values for states that are 

included in the Q table can be recognized by the agent [57, 58]. Thus, DQN has been 

widely used in approximating the functions of complex environments, such as those faced 

by autonomous vehicles drivers. 

2.5 DQN IN AUTONOMOUS VEHICLES AND IOT 

According to the complex nature of autonomous driving, imposed by the enormous number 

of rules and situations the drivers should consider in their decision about the appropriate 
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actions, DQN has been widely used to assist providing these decisions by evaluating the 

outcome of each action at a certain state, i.e. the Q values. It is also important for the DQN 

method to consider all the variables in the environment, i.e. the traffic rules, street signs and 

vehicles that are sharing the road with the autonomous driver. Despite the increased 

complexity required to consider these factors, they can assist the agent is executing more 

efficient actions that can provide safer environment. However, the absence of signs in some 

intersections can impose a challenge for the agent, as the passing priority and the need to 

come to a complete stop before entering the intersection is unknown. Thus, a method based 

on DQN is proposed in [59] to allow autonomous drivers to go through such intersections 

relying only on the traffic conditions and the positioning of other vehicles in the 

intersection. This method illustrates the importance of the collaborative training, where 

certain states that an agent has never been through before are used to train the neural 

network, so that, better actions can be selected when the agent goes through a similar state. 

OpenAI Gym [60] provide a variety of environments that can be used to train and evaluate 

the performance of RL techniques. The interaction between the RL technique and the 

environment is defined through a set of actions that the agent can execute at any state. 

When the action is executed, the environment returns the instant reward based on the 

selected action and the new state the agent becomes in. These environments are widely 

used in different RL studies, according to their ease of implementation and integration. One 

of the popular environments is the ‘CarRacing’ environment, where a predefined track is 

set for the car and the agent is required to pass through that path until the all the tiles on the 

path are collected. Per each tile, the agent is rewarded with three points, while a negative 

reward, i.e. a punishment, of -0.1 is returned when a frame passes without touching a time, 

i.e. the car is not moving or driving off roads [61]. A screenshot of this environment is 

shown in Figure 2.4. 
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Figure 2.4: OpenAI gym's CarRacing environment. 

 

DQN has also been widely employed to optimize the operation of IoT devices, such as 

optimizing the power consumption by IoT devices while transmitting data be avoiding 

jamming communication channels [62] or to enhance the security of these devices [63]. 

Despite the employment of DQN to improve the performance of the IoT devices, these 

methods do not use the resources of the IoT devices to execute the RL computations. 

Instead, information collected from the IoT devices, such as their position and the amount 

of data they transmit, are used to control their behavior. 

2.6 STRUCTURED DATA EXCHANGE OVER THE INTERNET 

The data collected from a certain environment is structured, i.e. a fixed number of features 

are collected from the environment to represent the state of the environment to the agent. 

The communication of structured data over the internet can use different formats. Two of 

these formats that are widely used for structured data exchange is the eXtensible Markup 

Language (XML) and JavaScript Object Notation (JSON). The XML format is derived 

from the HTTP format, which is the most used format over the internet, as the websites are 

displayed in this format [64]. As shown in Figure 2.5, each object is defined using nested 

values described by an opening and closing tags [65]. 
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Figure 2.5: A sample set of data in XML format [65]. 

 

The JSON format, shown in Figure 2.6, imposes less overload to the actual data being 

transmitted. According to the limited resources of the IoT devices and the dependency of 

the power consumption on the amount of data being transmitted, this difference between 

the XML and JSON is the key to select the JSON format to exchange data with the IoT 

devices [66]. 
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Figure 2.6: A sample set of data in JSON format [65]. 
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3. METHODOLOGY 

The proposed framework defines the format that is used to exchange the data between the 

IoT devices, from one side, and a central computer that collects these data, train the neural 

network and return the updated values to the IoT devices, so that, these devices can achieve 

their tasks even when the communication with the computer is lost. According to its lower 

overhead, JSON format is selected for data exchange with the central computer. The 

computer then can use one of two approaches to train the neural networks of the IoT 

devices, one is to use a single neural network for all the IoT devices and the other is to use 

one neural network per each device. 

3.1 DATA EXCHANGE 

The data in the proposed framework flows in two directions. The first data flow is from the 

IoT device to the central computer. These data contain information about the state, the 

action executed and the reward collected by the agent from the environment after executing 

the action, as well as the new state that the agent has become in after the action is executed. 

The format shown in Figure 3.1 summarizes the JSON structure that is used to send the 

data from the IoT device to the central computer, where n is the number of features in the 

state. 

{“IoT-ID”: 

  { 

      “Current”:[ 

         {“State”: D0, D1, ………, Dn, 

          “Action”: A, 

          “Reward”: R 

         } 

          ] 

      “Next”:[ 

        { 

         “State”: D0, D1, ………, Dn, 

         } 

          ] 

   } 

} 

Figure 3.1: JSON structure for the data transmitted by the IoT devices. 
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The other direction that the data flows in is from the central computer to the IoT devices. 

The data traveling in that direction contains the weights and biases values for each layer in 

the network. These values are used to update the neural network in the IoT devices, so that, 

the actions taken by the corresponding agent, i.e. the IoT device. This methodology ensures 

that the IoT device can still perform its task even if the communication with the central 

computer is interrupted. However, the neural network in that IoT device is not updated, as 

the computations required to update the neural network are exhaustive to its resources. The 

structure of the JSON format that is used to transfer the data from the central computer to 

the IoT devices is shown in Figure 3.1. 

{“NN-Update”: 

  { 

      “Layer-1”:[ 

         {“Weights”: W01, W11, ………, Wi1, 

          “Biases”: B01, B11, ………, Bi1, 

         } 

          ] 

      “Layer-2”:[ 

         {“Weights”: W02, W12, ………, Wj2, 

          “Biases”: B02, B12, ………, Bj2, 

         } 

          ] 

. 

. 

. 

      “Layer-k”:[ 

         {“Weights”: W0k, W1k, ………, Wlk, 

          “Biases”: B0k, B1k, ………, Blk, 

         } 

          ] 

   } 

} 

Figure 3.2: JSON structure for the data transmitted by the central computer. 
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3.2 TRAINING THE NEURAL NETWORKS 

According to the complexity of the computations required to train a neural network, which 

is used for the DQN implementation, and to avoid exhausting the limited resources on IoT 

device, the proposed method uses a centralized computer to collect the data from the IoT 

devices and train a neural network to achieve the required RL task. Accordingly, this 

computer receives data collected by multiple IoT devices, which can be employed in two 

different approaches to train the neural network. In the first approach, the data collected 

from multiple IoT devices that are intended for the same task are combined together to train 

the neural network, as shown in Figure 3.3 (a). In the second approach, a separate neural 

network is implemented per each IoT device, so that, the neural network of each device 

becomes more familiar with the corresponding device’s environment, as shown in Figure 

3.3 (b).  

 

Figure 3.3: Neural network training approaches in the proposed method. 

 

The IoT device is instructed to send a copy of the collected data to the computer every time 

such data are collected or be appending them and sending them periodically, depending on 

the size of the memory available on the IoT device and the network connection. Each data 

instance sent to the computer must contain the state of the environment before taking the 

action, the action, the state of the environment after the action is executed and the rewards 

collected from the environment. However, in applications that do not have instantaneous 

rewards, it is possible for the IoT device to only send the states and actions until the end of 

(a) Single Neural Network Approach (b) Multiple Neural Networks 
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the sequential actions when the reward can be collected and sent to the computer. The 

computer then uses the collected data to train the neural network, depending on the 

approach being used, and send updates of the neural network to the IoT device periodically, 

so that, the IoT devices are still able to interact with the environment even if they are not 

connected to the computer. 
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4. EXPERIMENTAL RESULTS 

Both approaches are implemented using Python programming language using a Windows 

computer with 3.1GHz CPU and 16GB memory with additional 11GB of memory in 

Nvidia GTX1080Ti GPU. According to the ability of the GPUs to parallelize complex 

matrices operations, they have been widely used to accelerate the training of neural 

networks, as they contain complex matrices operations. According to the recent use of RL 

in self-driving cars, the “CarRacing-v0” environment from Gym’s OpenAI environment is 

selected for the evaluation. The simulated approach utilizes 100 IoT devices each 

interacting with its own track for 100 episodes. Each episode is terminated by the 

environment when the agent completes 100 frames or when it becomes out the borders of 

the defined region, including green regions outside the track. The state of the agent is 

described to the neural network using two formats. In the first format, the entire image as 

retrieved from the environment, which requires a transmitting a total of 55299 bytes per 

each frame. The second format extracts the crucial information from the frame and sends it 

to the neural network in the central computer, instead of the entire frame, which has 

reduced the size of the communicated data to only 37 Bytes.  The extracted information is: 

• The pixels from the vertical line in front of the car in grayscale. 

• The pixels from the diagonal line starting at the position of the car to the top 

right corner of the screen in grayscale. 

• The pixels from the diagonal line starting at the position of the car to the top 

left corner of the screen. 

• The overall speed of the car in addition to four speeds, one per each wheel. 

• The steering level of the car, from -1 to 1, representing 100% left to 100% 

right, respectively. 

• The drifting level of the car, also varying from -1 to 1 representing 100% left 

drifting to 100% right drifting. 
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All the previous information is extracted from the state received from the environment, 

which is presented in graphical form, as shown in Figure 4.1. 

 

Figure 4.1: Information collected from the RacingCar environment. 

However, according to the ability of CNNs in detecting local two-dimensional features, the 

performance of the proposed method is evaluated using the CNN directly with the image 

retrieved as the state of the agent from the environment. The action required by the 

environment consists of three values, the accelerator, brake and steering. However, 

naturally, driving a vehicle autonomously consists of nine possible actions, shown in Table 

4.1. Thus, the output layer of all the neural networks consists of nine neurons, where each 

neuron predicts the Q value expected for the current state if the corresponding action is 

selected. 

 

 

 

Total Reward 

Overall Speed 

Wheels’ Speeds 

Steering Drifting 
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Table 4.1: Defined actions for the agent. 

Action Description 

1 Accelerate. 

2 Brake. 

3 Steer Right (maintain speed) 

4 Steer Left (maintain speed) 

5 Accelerate and Steer Right 

6 Accelerate and Steer Left 

7 Brake and Steer Right 

8 Brake and Steer Left 

9 Do Nothing (maintain speed and direction) 

 

The performance of each approach is evaluated by calculating the average score that each 

simulated IoT device achieves when interacting with its own environment. The score of an 

IoT device is calculated according to the rewards received from the environment, as 

illustrated in Section 2.5, using Equation 4.1, where f is the number of frames in the 

episode and T is the number of tiles that the car in the environment passes through. 

𝑆𝑐𝑜𝑟𝑒 = 3 × 𝑇 − 0.1 × 𝑓 (4.1) 

4.1 EXPERIMENT A – A SINGLE CNN FOR ALL IOT DEVICES 

The performance of the first approach is evaluated in this experiment, where a single 

convolutional neural network is created for all the simulated IoT devices. Upon the arrival 

of each data instance form any of the IoT devices, the network is trained to update the 

predicted reward value for the executed action, based on the actual reward collected from 

the environment. The implemented CNN for this experiment consists of the layers 

described in Table 4.2. By the end of all episodes, the average score is 418 with an average 

deviation of ±37. Figure 4.2 shows the average reward for all the 100 IoT devices per each 

episode. 
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Table 4.2: Structure of the CNN implemented for the DQN. 

Layer Type Size 

Input Layer - (96, 96, 3) 

Conv1 Convolutional 128 × (3, 3) 

Conv2 Convolutional 64 × (3, 3) 

Dense1 Fully-Connected 128  

Dense2 Fully-Connected 9 

 

 

Figure 4.2: Average score versus episodes for the single CNN approach. 

The results show that the CNN has not been able to gain enough knowledge to assist the 

decision-making of the agent. According to the complexity of the features in the 

convolutional layer, more training is required to allow more accurate predictions, so that, 

better decisions are made by the agent. Moreover, the amount of data transferred from the 

IoT device to the central computer, in this experiment, is equal to 54KB for the previous 

and current states, in addition to three bytes that represents the reward collected from the 

previous state and the action executed to get that reward. 
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4.2 EXPERIMENT B – A SINGLE FF-NN FOR ALL IOT DEVICES 

The performance of the first approach is evaluated in this experiment, where a single feed-

forward neural network is created for all the simulated IoT devices. Upon the arrival of 

each data instance form any of the IoT devices, the network is trained to update the 

predicted reward value for the executed action, based on the actual reward collected from 

the environment. Table 4.3 summarizes the FF-NN implemented for this experiment. By 

the end of all episodes, the average score is 937 with an average deviation of ±19. Figure 

4.3 shows the average reward for all the 100 IoT devices per each episode. 

Table 4.3: Structure of the FF-NN implemented for the DQN. 

Layer Type Size 

Input Layer - (37) 

Dense1 Fully-Connected 128  

Dense2 Fully-Connected 64 

Dense3 Fully-Connected 9 
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Figure 4.3: Average score versus episodes for the single neural network approach. 

The results show that the implemented FF-NN has better performance for the DQN task, 

according to the simpler structure, hence, a lower number of parameters, i.e. weights and 

biases, to update. Moreover, as the state of the environment is provided to the neural 

network in a more efficient way, by providing the speed, steering and drift in numerical 

values, it has been able to show faster learning, compared to the CNN. Additionally, the 

size of the communicated data is significantly lower than that in CNN, with only 77 bytes 

to represent the previous and current state, as well as the reward and the selected action. 

4.3 EXPERIMENT C - A SINGLE CNN FOR EACH IOT DEVICE 

The second approach where a neural network is implemented per each IoT device is 

evaluated in this experiment, using a sperate convolutional neural network per each IoT 

device. Accordingly, a total of 100 convolutional neural networks, shown in Table 4.2, are 

created and each network is trained using the data received from the corresponding IoT 

device. By the end of all episodes, the simulated IoT devices have achieved an average 

score of 351 with an average deviation of ±29. The average score for all the 100 IoT device 

per each episode for this experiment is shown in Figure 4.2. 
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Figure 4.4: Average score versus episodes for the multiple neural network approach. 

The figure shows huge oscillations, which are the results of new states that an IoT device 

may pass through that has no prior knowledge of how to handle them. In the first approach, 

when a single IoT device goes through such a state, the reward from the action executed by 

that IoT device is propagated through all the other devices, as the same neural network is 

used in these devices and this neural network has gained the ability to predict the reward 

from that action in that state. The size of the communicated data is similar to that is 

Experiment A. 

4.4 EXPERIMENT D - A SINGLE FF-NN FOR EACH IOT DEVICE 

The second approach where a neural network is implemented per each IoT device is 

evaluated in this experiment, using a sperate feed-forward neural network per each IoT 

device. Accordingly, a total of 100 neural networks are created and each network is trained 

using the data received from the corresponding IoT device. By the end of all episodes, the 

simulated IoT devices have achieved an average score of 890 with an average deviation of 

±24. The average score for all the 100 IoT device per each episode for this experiment is 

shown in Figure 4.2. 
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Figure 4.5: Average score versus episodes for the multiple neural network approach. 

The figure shows that the more efficient representation of the states has produced less 

oscillation in the collected data, as the neural network has gained better approximation 

capability, in comparison with the results of Experiment C. The size of the communicated 

data in this experiment is similar to that in Experiment B. 



30 

 

5. DISCUSSION 

In addition to the higher score achieved by the simulated IoT device in the first approach, 

where a single neural network is implemented for all IoT device, the lower deviation in the 

scores of these devices, compared to the second approach, show that the first approach has 

produced better performance. Moreover, the summary of the results, shown in Table 5.1, 

shows that the more efficient presentation of the state has been able to accelerate the 

learning of the neural network, for more accurate predictions of the Q value per each action 

in a certain state. Additionally, improving the efficiency of the states’ representations has 

been able to significantly reduce the amount of data transmitted from each IoT device to the 

central computer, in addition to the improvement in the learning rate of the neural 

networks, as shown in Figure 5.1. This summary shows that the use of a single feed-

forward neural network has achieved the best performance by scoring the highest average 

score. Moreover, the lower size of the data improves the performance of the IoT devices, as 

transmitting more data requires more of the limited resources of the IoT device. 

Table 5.1: Performances summary from the conducted experiments. 

Method Average Score Exchanged Data Size (Bytes) 

Single CNN 418 ±37 55299 

Single FF-NN 937 ±19 37 

Multiple CNNs 351 ±29 55299 

Multiple FF-NNs 890 ±24 37 
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Figure 5.1: Average scores and data sizes of the conducted experiments. 

 

 Moreover, the comparison with the methods evaluated in [24], which is summarized in 

Table 4.1 and Figure 4.3, shows that the cooperation among the IoT device has been able to 

improve the performance of all these devices.  

Table 5.2: Performance comparison with earlier methods. 

Study Method Average Score 

Ha and Schmidhuber [24] 

DQN 343 ± 19 

A3C (continuous) 591 ± 45 

A3C (discrete) 652 ± 10 

DQN (memory replay) 838 ± 11 

Dual NN 906 ± 21 

This Study Single CNN 418 ±37 

Single FF-NN 937 ±19 

Multiple-CNNs 351 ±29 

Multiple FF-NNs 890 ±24 
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Figure 5.2: Illustration of performance comparison with earlier methods. 
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6. CONCLUSION 

IoT devices are widely employed in different applications, according to their high mobility 

and low-cost. Accordingly, lower resources are available on these devices, which can limit 

the applications they are employed in. To allow a wider range of applications to utilize 

these devices, computers can be used to support their operations. Reinforcement learning is 

one of the fields that is attracting more attention in recent years, according to its ability of 

interacting with different environments. RL mainly utilizes artificial neural networks, 

which require intensive computations during training. Such training is difficult to be 

executed using the limited resources of IoT devices. 

In this study, a new method is proposed to allow computers to train neural networks and 

update the operation of the IoT devices. Data collected by these devices are delivered to the 

central computer to train the neural network and update the weights of the similar network 

used to interact with the IoT’s environment. The proposed method uses two different 

approaches for IoT devices that are intended to achieve the task. The first approach 

implements a single neural network that is trained using all the data collected from the IoT 

devices, be appending all the received data from these devices. The second approach 

implements a neural network per each IoT device, so that, this neural network becomes 

more familiar with the environment of the corresponding IoT device. The results of the 

experiments conducted in this study show that the use of a single neural network has 

improved the performance of all IoT device, as these devices are considered to be 

cooperating to update the neural network. However, the use of a sperate neural network per 

each IoT device has been slightly lower in performance than the first approach. 

Moreover, the state of the environment that is delivered to the agent is also represented to 

the neural network in two formats. In the first format, the data received by the agent are 

forwarded to the neural network as they are, without any modifications or extractions. In 

the second approach, a more efficient way is used to represent the data to the neural 

network, where only three lines of sight are used to collect the data from the entire image 

and the speed, steering and drifting values are extracted from the image and delivered in 

numerical format to the neural network. The neural network is then trained to predict the Q 

value per each action for a certain state, in both formats. The results show that the use of 

the more efficient representation does not only significantly reduce the size of the 



34 

 

transmitted data from the IoT device, it has also been able to improve the learning rate of 

the neural network. Such improvement in the learning rate is a result of the lower number 

of parameters, i.e. weights and biases, to be updated during training. Thus, more accurate 

results can be collected from the predictions of the neural network. Hence, the best 

performance of the evaluated approaches and data formats combines the use of a single 

feed-forward neural networks that predicts the reward values per each state per each state 

using the information extracted from the environment, instead of sending the entire image 

that represents the environment.  

In future work, the benefits of using the centralized learning approach are going to be 

evaluated using other classification technique, such as random forest and Support Vector 

Machine. Despite the ability of training these classifiers locally in the IoT devices, the 

centralized approach can have a significant improvement in the learning speed, as more 

data is collected from different IoT devices and use them to accelerate the training and 

produce a better performance as more knowledge is available in the training. 
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