

 T.C.

 ALTINBAS UNIVERSITY

Graduate School of Science and Engineering

Electrical and Computer Engineering

PART-OF-SPEECH TAGGING USING NEURAL

NETWORKS

Ameer Yalmaz Asaad

 Master Thesis

Supervisor Asst. Prof. Dr. Sefer KURNAZ

Istanbul, 2019

PART-OF-SPEECH TAGGING USING

NEURAL NETWORKS

Ameer Yalmaz Asaad

iii

This is to certify that we have read this thesis and that in our opinion it is fully adequate, in scope and

quality, as a thesis for the degree of

Asst. Prof. Dr. Sefer KURNAZ

Supervisor

Examining Committee Members (first name belongs to the chairperson of the jury and the second

name belongs to supervisor)

Asst. Prof. Dr. Osman N. UCAN

School of Electrical

and Computer Engineering,

Altinbaş University __________________

Asst. Prof. Dr. Sefer KURNAZ

School of Master of Electrical

and Computer Engineering,

Altinbaş University __________________

Asst. Prof. Name SURNAME

School of Master of Electrical

and Computer Engineering,

Altinbaş University __________________

I certify that this thesis satisfies all the requirements as a thesis for the degree of

 Asst. Prof. Dr. OĞUZ ATA

Head of Department

Approval Date of Graduate School of

Science and Engineering: ____/____/____

Asst. Prof. Dr.OĞUZ BAYAT

Director

 iv

I hereby declare that all information in this document has been obtained and presented in

accordance with academic rules and ethical conduct. I also declare that, as required by these

rules and conduct, I have fully cited and referenced all material and results that are not original

to this work.

 Ameer Yalmaz Asaad

 v

DEDICATION

First and foremost, I would like to thank Allah Almighty for giving me the knowledge, ability and

opportunity to undertake this research study and to persevere and complete it satisfactorily. Heartfelt

thanks goes to my father and my mother. Every success is a direct consequence of their influence in

my life and their love. At the end I have to mention my family for their support and love.

 vi

ACKNOWLEDGEMENTS

I would like to express my sincere gratitude to Supervisor Dr. Sefer KURNAZ for all the knowledge

and support he provided during my study for the Master Degree and throughout the work to complete

this thesis and I have to mention the kindness and the support to all my friends particularly

Abduladheem Khudhur which did not leave me alone the whole time at the courses and while doing

this thesis.

 vii

 Part-of-speech tagging, the process of assigning parts of speech to words in sentences, has a vast

field of applications in natural language processing. It constitutes an important intermediate step in

other tasks such as syntactic analysis or machine translation. Out of the methods that have been

employed in solving this problem, neural networks belong to the rather non-typical ones, being often

neglected in textbooks. In this work we provide an overview on some notable attempts that have been

made in part-of-speech tagging with neural networks. Based on these, we also propose our own tagger

based on similar principles. The tagger provides two rather different training methods that can be

chosen freely. The first method employs a set of recurrent multilayer perceptron networks which

learn the most likely tags from the wordto-tag probabilities of the words within a context. The second

method converts words into feature vectors in a multidimensional space; subsequently, the

hyperplanes separating the data in one class from the other ones are searched for using perceptrons.

An additional statistical method is available as a baseline to compare the performance. Training on

the first 999,998 words in the Brown corpus and evaluating on the rest, the best accuracy was 94.93%,

achieved by the first method. The second method was significantly more successful for smaller

training sets, nevertheless, long training times prevented us from determining the accuracy for the

largest set. Both methods did systematically better than the baseline.

Keywords: part of speech, part-of-speech tagging, tagger, neural network, neuron, perceptron,

MLP.

ABSTRACT

PART-OF-SPEECH TAGGING USING NEURAL NETWORKS

Ameer Yalmaz Asaad

M.Sc., Electrical and Computer Engineering, Altınbaş University,

Supervisor: Asst. Prof. Dr. Sefer KURNAZ

 Date: 7/ 2019

 Pages :58

 viii

ÖZET

YAPAY SİNİR AĞLARI KULLANARAK KONUŞMA KISMINDA ETİKETLEME

Ameer Yalmaz Asaad

Yüksek Lisans., Elektrik ve Bilgisayar Mühendisliği, Altınbaş Üniversitesi,

 Tez Danışman: Yrd.Doç.Dr. Sefer KURNAZ

 Tarih: 7/2019

 Sayfalar: 45

Konuşmanın bölümlerini etiketleme, konuşmanın bölümlerini cümlelerdeki kelimelere atama işlemi,

doğal dil işlemede geniş bir uygulama alanına sahiptir. Sözdizimsel analiz veya makine çevirisi gibi

diğer görevlerde önemli bir ara adım teşkil eder. Bu problemi çözmek için kullanılan yöntemlerden

sinir ağları, genellikle tipik olmayanlara aittir, ders kitaplarında sıklıkla ihmal edilir. Bu çalışmada,

sinir ağları ile etiketleme bölümünde yapılan bazı kayda değer girişimler hakkında genel bir bakış

sunuyoruz. Bunlara dayanarak, benzer prensiplere dayanarak kendi etiketleyicimizi öneriyoruz.

Etiketleyici, serbestçe seçilebilecek iki farklı eğitim yöntemi sunar. İlk yöntem, bir bağlamda

kelimelerin kelime-etiket olasılıklarından en muhtemel etiketleri öğrenen bir dizi tekrarlayan çok-

katmanlı algılayıcı ağlar kullanır. İkinci yöntem, kelimeleri çok boyutlu bir uzayda özellik

vektörlerine dönüştürür; daha sonra, bir sınıftaki verileri diğerlerinden ayıran hiper düzlemler,

algılayıcıların kullanımı için aranır. Performansı karşılaştırmak için ek bir istatistiksel yöntem temel

olarak mevcuttur. Brown corpus'taki ilk 999.998 kelimede eğitim ve geri kalanı değerlendiren ilk

yöntemle elde edilen en iyi doğruluk oranı% 94.93 idi.İkinci yöntem küçük egzersiz setleri için

önemli ölçüde daha başarılıydı, ancak uzun egzersiz süreleri en büyük setin doğruluğunu

belirlememize engel oldu. Her iki yöntem de sistematik olarak taban çizgisinden daha iyi sonuç verdi.

Anahtar Kelimeler: part of speech, part-of-speech tagging, tagger, neural network, neuron,

perceptron, MLP.

 ix

TABLE OF CONTENTS

Pages

LIST OF TABLES ... xi

LIST OF FIGURES .. xii

LIST OF ABBREVIATIONS ... xiii

1. INTRODUCTION .. 1

2. SECOND CHAPTER BASIC PRINCIPLES OF PART-OF-SPEECH TAGGING ... 3

 2.1 DISCRIMINATIVE AND GENERATIVE MODELS 3

 2.1.1 Discriminative Models .. 3

 2.1.2 Generative Models .. 6

 2.1.3 Viterbi Algorithm ... 8

3. THIRD CHAPTER NEURAL NETWORKS .. 10

3.1 INTRODUCTION ... 10

3.2 PERCEPTRON LEARNING ALGORITHM......................................…..…………......13

3.3 FAST PERCEPTRON TRAINING .. 14

3.4 MULTI-LAYER FEEDFORWARD NETWORKS .. 18

3.5 BACK-PROPAGATION LEARNING ALGORITHM ... 19

4. FOURTH CHAPTER HISTORICAL OVERVIEW .. 21

4.1 NAKAMURA AND SHIKANO (1989) .. 21

4.2 SCHMID (1994) ... 21

4.3 MARQUES AND LOPES (1996) ………………………………………………….....23

4.4 PÉREZ-ORTIZ AND FORCADA (2001) .. 24

4.5 OTHER TAGGERS DRAWING ON SCHMID .. 25

 4.5.1 Ma and Isahara (1997)……………..25

 x

 4.5.2 Olde Et Al (1999) ……………………………………………………………… .25

 4.5.3 Poel Et Al (2008) …………………………………………………………….…..26

4.6 COLLINS (2002) ... 26

4.7 JANICKI (2004) ... 28

5. FIVTH CHAPTER PROPOSED TAGGER .. 29

5.1 METHOD 1: RECURRENT MLP NETWORK . .. 29

5.2 METHOD 2: FEATURE-BASED PERCEPTRON ... 34

5.3 BASELINE METHOD ... 38

5.4 TECHNICAL DETAILS OF IMPLEMENTATION ... 38

6. SIXTH CHAPTER RESULTS AND DISCUSSION .. 40

6.1 RESULTS . .. 40

6.2 DISCUSSION 40

7. SEVENTH CHAPTER CONCLUSION ... 44

 REFERENCES ... 46

 xi

LIST OF TABLES

 Pages

Table 6.1: Results for method 1 (recurrent MLP network) ...40

Table 6.2: Results for method 2 (feature-based perceptron) ...42

Table 6.1: Results for method 3 (backoff tagger) ..42

 xii

LIST OF FIGURES

Pages

Figure 2.1: Illustration of the fundamental difference between discriminative and generative

models…………………………………………………………………………………………..…7

Figure 2.2 :Viterbi algorithm ……………………………………………………………….…….9

Figure 3.1: An example neuron unit with five inputs and bias…………………………………..11

Figure 3.2: Geometric interpretation of perceptron classification and learning………………....13

Figure 3.3: Initialization of weights according to Gkanogiannis and Kalamboukis (2009)……..15

.

Figure 3.4: Illustration of one step in fast perceptron training according to Gkanogiannis and

Kalamboukis (2009)………………………………………………………………………….......17

Figure 3.5: An example MLP network with two hidden layers……………………………….....18

Figure 4.1: Topology of the MLP network used in Schmid’s NetTagger ………………….…....22

Figure 4.2: Topology of one of the MLP networks used by Marques and Lopes (1996) ….........23

Figure 4.3: Averaged perceptron algorithm used in Collins (2002) ……………………….........27

Figure 5.1: Topology of the MLP network used in method 1……………………………...........29

Figure 5.2: The feature set used in the second method …………………………………...….....35

.

Figure 6.1: Accuracies achieved by the individual methods for each training set……….......….44

.

xiii

LIST OF ABBREVIATIONS

MLP : Multilayer Perceptron

ML : Machine Learning

NNA : Neural Network Artificial

 1

1. INTRODUCTION

1.1 GENERAL OVERVIEW

Part-of-speech ambiguity is a common feature of a majority of the world’s languages.

Considering the English word left as an example, we can observe that in different situations it

functions as an adjective (as in the left mouse button), an adverb (turn left), a noun (I was sit-

ting to his left) or a verb, either a past tense form (he left his wife) or a past participle (she was

left wondering). A substantial amount of words is ambiguous. In Brown corpus, an English

corpus of about 1,000,000 words each of which was manually assigned to a part-of-speech

category, about 16% of the words appear as two or more different part of speech. Programs

which assign parts of speech to words in a plain text corpus automatically are commonly termed

‘taggers’. These are typically trained on manually tagged corpora beforehand in order to learn

certain statistical properties of the target language, such as that the sequence determiner-

adjective-noun is more likely to appear than, say, preposition-verb-preposition.The task of part-

of-speech tagging, as the process of assignment part-of-speech categories to words in sentences

is called, has a vast range of applications in natural language processing. Assigning parts of

speech to words is often followed by a syntactic analysis (parsing), a pro-cess whereby the

sentence structure is determined, such as finding the subject, predicate and object. This can

provide a better insight into the information structure of the sentence, making it possible to tell

some-thing about the meaning of the sentence. Part-of-speech disambiguation also plays an

irreplaceable role in machine translation: translating the aforementioned examples featuring the

word left to Czech gives levé tlačítko myši, zahnout doleva, seděl jsem nalevo od něj, opustil

svou ženu and zůstala v údivu, respectively. For the tools making use of part-of-speech tags to

yield reasonable results, it is essential that tag-gers assign the tags with as high an accuracy as

possible. Tagging the noun in the subject position of a sentence as e.g. a verb can have a sig-

nificant negative impact on the resulting parse tree or the translation.A number of techniques

have been applied to part-of-speech tag-ging over history and even nowadays there is no clear

answer to the question of which approach is the best. The most common methods can be

grouped into a handful of classes. Statistical taggers try to learn various kinds of probabilities

from a training corpus and use them to find the most likely tag sequence for each sentence to

be tagged. Rule-based taggers, as the name indicates, use a set of rules to assign tags; for

instance, if a word ambiguous between noun and verb is preceded by to, choose the tag ‘verb’.

Information-theoretical approaches try to find such context clues which best indicate a word’s

most likely part-of-speech tag. Last but not least, neural networks of an aptly chosen

 2

architecture have been repeatedly employed in the task as well.The position of researchers

towards neural networks has been ambiguous ever since their invention in the mid-20th century.

This ma-chine learning technique was motivated by processes which take place in the nervous

systems of animals, including the human brain. The parallel with the human brain, a fascinating

computing machine of which we still have rather fragmentary knowledge, is probably a major

reason why artificial neural networks keep coming to popularity every now and then, even

though many machine learning tasks can be performed more effectively by other techniques

like support-vector ma-chines. Part-of-speech tagging is a task for which neural networks have

been used comparatively seldom. In fact, many textbooks on natural language processing do

not consider neural networks when dealing with part-of-speech tagging at all, as is the[8]. The

reasons as to why neural networks did not make it into the mainstream of the field can be

several, including generally rather long training times or unconvincing performance; also the

fact that the models work with many parameters whose values have to be estimated

experimentally (such as the number of neurons and the connections between them) makes

neural networks a little difficult to work with.In the following text we are going explore more

in detail how neural networks can be applied to part-of-speech tagging and also present our own

tool which seeks to accomplish the task. Essential theoretical concepts will be introduced first

in order to provide a fundament on which the rest will be built. The chapter immediately

following after this one describes basic principles of part-of-speech tagging in general, explain-

ing the difference between discriminative and generative models. Chapter 3 serves as a brief

introduction into neural networks which includes the computation mechanisms of neuron units

and multilayer networks together with some algorithms used for their training. In chapter 4, we

give a historical overview of some notable cases in which neural net-works were employed in

part-of-speech tagging. Inspired by these, we propose a new tagger based on neural networks,

described in detail in chapter 5. Two tagging methods are available, along with a third, statis-

tical method which was used as a baseline. Finally, chapter 6 compares the performances of the

individual methods based on experiments that were done using the Brown corpus. In addition,

some possible improvements are suggested that could be done in order to make the tagger better

in some respects.

 3

2. BASIC PRINCIPLES OF PART-OF-SPEECH TAGGING

2.1 INTRODUCTION

The purpose of this chapter is not to give an exhaustive overview on all the techniques that are

or ever have been used to solve the part-of-speech tagging task. What we are seeking to do here

is provide an essential theoretical background for the things that will be dealt with in the

subsequent chapters; in particular, techniques that are going to have at least some relevance to

the methods we are proposing in this work are described here. Since employing neural networks

in solving the task is a topic of special interest to us, a separate chapter will be devoted to this

matter and we are not going to discuss it here.We are going to use certain conventions in the

remaining text. The notation w1 : : : wn, alternatively written as w1
n refers to a bare (un-tagged)

sequence of n words or tokens. The terms word and token are to be understood as

interchangeable, so ‘words’ include also various non-lexical items such as punctuation marks,

frequently found in cor-pora. The set of all words in a vocabulary learnt from a corpus will be

denoted as W, its cardinality being W . A sequence of n part-of-speech tags will be written as

t1 …… tn or briefly tn
1. The tagset corresponding to a particular corpus will be denoted as T ,

the cardinality of this set is T . The notations Wn and T n refer to the sets of all possible word or

tag sequences of the length n, respectively. In case that only a subsequence of a word or tag

sequence is being dealt with, the shorthand notations wk
l = wkwk+1….. wl-1 wl and tl

k = tktk+1 …..

ti-1….tl are going to be used.

2.2 DISCRIMINATIVE AND GENERATIVE MODELS

2.2.1 Discriminative Models

Given a sequence of tokens wn1 = w1 … :wn, the common goal of all part-of-speech tagging

techniques is to find the most likely sequence of tags tn1 = t1 : : : tn. Formally put, we are trying

to find such a sequence ^tn1 among all the possible sequences tn1 such that

 4

Since it is impossible to find the exact values of P(tn1 Jwn 1) for each pair of sequences wn1 ;

tn1 , various approximation techniques are used to estimate them. By definition of conditional

probability,

This can be easily seen to be equal to

which can be expressed in terms of conditional probabilities as

Now, instead of computing the probability P(tn1 jwn1), it suffices to find the values of each

factor in 2.4 and calculate the product instead. Even though the task itself is not any more

feasible than the original one if insisting on the precise values, it makes it possible to make

certain simplifying assumptions. These adopted, estimating the conditional probabilities need

not be an insurmountable problem any longer.

Two kinds of assumptions are frequently employed in part-of-speech taggers, both cropping the

context that is taken as relevant for the current tag. The first one limits the number of words on

which the current tag depends. Typically, only one word is taken into consideration, i.e.

The other assumption concerns the number of preceding tags which affect the probability of the

current tag. Depending on this, the corresponding taggers are termed unigram (no previous tags

are taken account of), bigram (one preceding tag), trigram (two preceding tags)

 5

or quadrigram (three preceding tags). Due to the sparse data problem, longer context are hardly

ever made use of in existing taggers. Considering now the trigram assumption as an example,

a tag probability is approximated as

Taking both assumptions together, we yield the following approximation, frequently used in

existing taggers:

By substituting into equation 2.4 and subsequently 2.1, the most likely tag sequence tn1

for given wn 1 can be found as

For practical reasons, it is more convenient to take a logarithm (to an arbitrary base) of the

product; as the logarithm is a monotonically increasing function, it does not affect the result of

the arg max operator.

Models which estimate the probability of a tag sequence in a way like the one in 2.8 are

commonly referred to as discriminative models. These constitute one of the two major classes

of statistical taggers. The idea behind this technique is fairly straightforward: provided a

training set of labeled data, the model strives to learn conditional probabilities of each tag in

combination with every possible context; be they estimated from the respective conditional

relative frequencies or in a different way.

 6

2.1.2 Generative Models

An alternative approach, possibly a little less intuitive for the first sight, is represented by the

so-called generative models. We have just seen that discriminative models estimate the

posterior probability of each sequence of tags given a particular word sequence. Generative

models, on the other hand, compute prior probabilities of the possible tag sequences together

with likelihoods of the word sequence being ‘generated’ by the particular tag sequence. The

following text should make it clear how to understand this—so far perhaps a bit obscure—

terminology.

Let us go back to equation 2.1 again. It can be converted into a different form which can be

more suitable for certain uses. We can apply Bayes’ rule to the term P(tn1 jwn1), which yields

For a given word sequence wn1 , the probability P(wn1) is effectively a constant. While its

exact value is unknown, it is clear that dividing the numerator by this constant does not affect

the result of the arg max operator in any way and as such can be left out from the formula:

It should be obvious by now why models using this approach are termed ‘generative’. For each

possible sequence tn1 , we estimate two probabilities: P(tn1), the probability of the given tag

sequence no matter what the words in wn1 are, and P(wn1 jtn1), the probability of the sentence

among all possible sentences with the same structure, i.e. those which are ‘generated’ by tn1

.Both probabilities on the right-hand side can be approximated if simplifying assumptions

similar to those in 2.5 and 2.6 are made. Adopting, say, the trigram assumption as in 2.6, P(tn1

) can be converted to the form

As for the probability P(wn1 jtn1), the assumption most frequently made is that the probability

of a word appearing at given position only depends on the corresponding tag, not on the other

 7

tags or words in the sequence. (Note that this assumption is not equivalent to the one made in

2.5.) The probability P(wn1 jtn1) can thus be simplified to

Taking now equations 2.12 and 2.13 together and substituting into equation 2.11, we come to

the following formula, central to many existing taggers:

The sum of log probabilities can be used here for computation of the most likely tag sequence

instead of the product of probabilities in the

Figure 2.1: Illustration of the fundamental difference between discriminative and generative

models.

 8

In discriminative models, the probability of a tag sequence is obtained by multiplying the

probabilities of individual tags in given contexts. In generative models, on the other hand, two

kinds of probabilities are used: transition probabilities, telling how likely a given sequence (in

this case, pair) of tags is to appear, and emission probabilities, stating how likely each single

word is to appear given the corresponding tag.

same way as it was done in equation 2.9:

2.1.3 Viterbi Algorithm

However simple the formula 2.15 for the most likely tag sequence may seem in theory, it does

not give straightforward instructions how to find ^tn1 within a reasonable time frame. A naïve

approach taking all possible tag sequences of the length n would fail to accomplish this task

(except for a couple values of n close to zero) due to the exponential complexity.

Fortunately, a dynamic programming algorithm for solving Hidden Markov Models was

developed by Andrew Viterbi in 1967, which guarantees to find the optimal solution in a

significantly shorter time. The algorithm is shown in figure 2.2. It basically consist in creating

a table in which the log probabilities of each tag are computed for each wi. The probabilities

calculated for each word are reused in computing the probabilities of the word that follows.

Once the table has been filled, the path which maximizes the overall probability of a tag

sequence (the Viterbi path) is found and the most likely tag sequence is returned.

 9

Figure 2.2: Viterbi algorithm

 10

 3. NEURAL NETWORKS

3.1 INTRODUCTION

Neural networks are a machine learning technique incorporating principles that have been

observed in biological nervous systems. A biological neuron is a cell consisting of a body,

multiple smaller protrusions called dendrites and a single long protrusion called an axon. On

the surface of the dendrites are found numerous spots called synapses, whereby axons of other

neurons are connected to the neuron. Every now and then, the axons fire an electric impulse

which affects the permeability of the cell membrane in such a way that the voltage inside the

neuron body increases slightly. The more activations come from other neurons, the higher the

voltage grows. At the base of the axon is a center which ‘measures’ the voltage permanently.

As long as the voltage value lies below a certain threshold, nothing particular happens. Once

this threshold has been exceeded, the neuron fires an action potential, meaning that a wave of

high voltage starts propagating towards the end of the axon. This axon can be attached to the

dendrites of one or more other neurons, where the process is repeated in an analogous way. This

simplified mechanism of function of biological neurons is simulated by artificial neuron

networks. Like their biological counterparts, also artificial neurons are units which contain one

or more inputs and a single output. Depending on how much non-zero inputs the neuron

receives, it either remains inactive, giving a zero output, or generates an action potential,

represented by a non-zero output. Multiple neurons can be connected to one another, producing

an (artificial) neural network. The following sections will describe the functioning of neural

networks in more detail. This chapter draws mainly on [19], to which book the reader should

refer for more information.

 11

Figure 3.1: An example neuron unit with five inputs and bias

3.2 PERCEPTRON

The basic constituent unit of most neural networks is called a perceptron or simply an

(articifical) neuron. It can be viewed as a simplified model of a biological neuron. Much like

its biological counterpart, a perceptron is sort of a ‘black box’ with some fixed number of inputs

(sometimes referred to as dendrites) and a single output (also known as the axon).Each input

has a corresponding weight indicating the extent to which the particular connection influences

the resulting output. The rough idea described above can be formalized as follows. Let X =

(x1……xn) be the vector of input values and w = (w1……wn) the vector of the corresponding

weights. To calculate the output, we need to compute the weighted sum

 (3.1)

(sometimes called the inner potential of the neuron) first. The weighted sum is subsequently

passed to the activation function _, yielding the output

 (3.2)

The activation function _ may be of various kinds, depending on the task the neuron is designed

to perform. In the case of (two-class) classification, threshold activation functions are widely

used. A threshold The (two-dimensional) sample vectors are split into two groups, labeled either

as 0 (red points) or 1 (blue points). The current weight vector w(k) defines a hyperplane h(k)

 12

which splits the vector space into two half-spaces. Samples in one half-space (the ‘left’ one in

the graph) are classified as 0, samples in the other one as 1.

This configuration gives rise to two classification errors: one false negative (x1) and one false

positive (x2). The new weight vector w(k+1) is obtained from the old one by adding all the

vectors corresponding to the false negative samples (here only x1) and subtracting the fals

positive.

vectors (x2 in our case). (In fact, the error vectors are multiplied by the parameter " first;

 here ɛ = 1.) It is the normal vector of a new separating hyperplane h(k+1), which already

classifies all the samples correctly.activation function has a general form

where h is an arbitrary (but fixed) real-valued parameter. Like in a biological

neuron, the ‘action potential’ (i.e. non-zero output) is generated whenever the weighted sum of

inputs exceeds a pre-defined threshold value and vice versa.

A variant of an artificial neuron is a neuron with bias. Such a neuron contains an extra formal

input x0 whose value is always 1. This input has a corresponding weight w0. When the weighted

sum is computed, the product w0x0 = w0 is also included in it, effectively adding w0 to

the weighted sum of the remaining inputs. Note that if w0 = 􀀀h where h is the threshold

mentioned above, the activation function _ can be equivalently defined as

This approach is more convenient for many uses, notably for learning, as will be shown

in a short while. Henceforth, any mention of the term ‘neuron’ is to be understood as a neuron

with bias unless specified otherwise.

 13

Figure 3.2: Geometric interpretation of perceptron classification and learning.

3.3 PERCEPTRON LEARNING ALGORITHM

Considering what has been said so far, a neuron can be viewed as an nary function from Rn to

the set f0; 1g. For each n-dimensional real vector, it returns either 0 or 1, the choice being made

as defined in 3.2. Note that _ = w0x0 + …… + wnxn = 0 is an equation of an (n - 1)-dimensional

hyperplane which separates the space Rn into two half-spaces. The first half-space contains

precisely those vectors X for which £(X) ≥ 0; the other half-space those for which £(X) < 0.

This hyperplane is fully defined by the vector w = (w0……wn): the components (w1……wn)

constitute the normal vector of the hyperplane, while the terms w0 w1………w0 wn define its

intersection points with the corresponding axes. In every subsequent step, the weights are

computed as

 14

It was shown already by Frank Rosenblatt that the algorithm always converges, provided that

the sets of examples labeled with 0, resp. 1 are linearly separable. That is to say, if a

hyperplaneexists such that all examples labeled as 0 are located on one side of it and all

examples:

labeled as 1 on the other, the algorithm guarantees to find it in a finite time.The condition of

linear separability imposes a strong limitation on the data to which the perceptron algorithm

can be applied. Not only it fails to learn functions as simple as the logical XOR, but—more

importantly—the algorithm is not robust enough to cope with outliers.

A single outlier in the vicinity of the other cluster is enough to make the algorithm run ad

infinitum without success. Since real-life data are generally not linearly separable, other

techniques must be employed to build a succesful classifier.

3.4 FAST PERCEPTRON TRAINING

The basic perceptron algorithm, as formulated in the previous section, raises a couple of

questions which ought to be discussed first in order to boost the algorithm’s effectively (most

importantly, the rate of convergence).First, what values should the weights be set to during the

initialization? And second, how to choose the optimal value for the parameter ", i.e. learning

rate? Should it be constant, or is it better for it to change in each iteration?

One method to tackle these issues was proposed by [5]. In their approach, the centers of both

classes of samples are computed first in the following manner:

 15

The vector w = C1 - C0j is then used as the initial weight vector (w1…..wn). The method to

find the initial weight vector is illustrated

Figure 3.3: Initialization of weights according

The centres (C0;C1) were computed for both classes of samples. The initial weight vector w(0)

was then set to C1-C0. Finally, the bias w0 was set to C0+ C1-C02 which ensures that,

the initial separating hyperplane h(0) passes halfway between C0 and C1. In this setup, a

substantial number of samples is already assigned to the correct class, even though a handful of

samples are still classified incorrectly.

in Figure 3.3. As regards the initial bias w0, the authors suggest using the Scut method,

originally developed by [20]. Roughly speaking, it means to go through the training samples

one by one, shift the separating hyperplane to pass through the particular sample by choosing

an appropriate bias value and compute the ‘quality’ of such a configuration (e.g. accuracy or F-

measure). The best scoring bias value is then used as the actual bias in the initialization.Apart

from the initialization, the authors also suggest a modified stepwise learning rule for the

adaptation of the weights, see Figure 3.4.In the traditional approach, the output values are

 16

computed for each sample and the weights are subsequently updated in such a way that the

separating hyperplane is rotated in the direction of the misclassified samples. The extent to

which the weights are modified is co-determined by the parameter ", which has to be assessed

experimentally. The modified variant is both similar and different. It also determines the

incorrectly classified samples of both types—false positives (FP) and false negatives (FN)—

using the current weights first. After that, the respective centers FP and FN are computed in the

following fashion:

The error vector e is obtained by subtracting FP-FN. (Recall that in the traditional

approach),After words identically in both approaches a multiple of the error vector is added to

the current weight vector :

 17

Figure 3.4: Illustration of one step in fast perceptron training according to [5]

We are trying to find a hyperplane (in this case, line) which separates two classes of examples

from each other. The separating line corresponding to the current weight vector w(k) is labeled

as h(k). Apparently, a certain number of samples from the class 0 are incorrectly classified as 1

(“false positives” in the left grey area) and contrarily, other samples from the class 1 are

misclassified as 0 (“false negatives” in the right grey area). The centers FP, resp. FN are

computed for all false positives, resp. false negatives, following which the error vector e can be

obtained. Finally, the weights are adapted in such a way that both FP and FN lie on the new

separating hyperplane h(k+1).The major benefit of the new approach is that the value of " can

be calculated precisely. It is done by adopting the assumption that a hyperplane passing through

the points FP and FN will lead to an improvement in the classification rate. Since these points

are the centers of the respective misclassified sets, it follows that about half of the previously

misclassified samples will now be classified correctly. (Naturally, new erroneously classified

samples may emerge instead.) It can be seen that setting "(k) to

 18

3.5 MULTI-LAYER FEED FORWARD NETWORKS

In the case of a single neuron unit described above, the output value was directly used as the

final result indicating the class assigned to the input vector. An alternative option to make use

of the output is to pass it as an input of another neuron instead. In this way it is possible to create

a network of interconnected neurons, in certain aspects analogous to biological neural networks.

Numerous different topologies have been used in practice for different purposes. One of the

most widely used type of neural networks are the so-called multi-layer feedforward networks.

Since these have been employed in part-of-speech tagging as well, they are of a particular

importance for this thesis. It is therefore worth saying a few words about their structure,

computation and mechanism of learning first.

Figure 3.5: An example MLP network with two hidden layers

As the name hints, multi-layer feedforward networks, also known as multi-layer perceptrons

(MLPs) consist of a certain number of neurons which are split into several disjoint sets, so called

layers. Every MLP contains an input layer, to which the input vector is fed, and an output layer,

which produces the vector of output values. In addition, the network may contain one or more

hidden layers, located between the input and the output layer. Each neuron is connected to all

the neurons in the adjacent layers: the outputs of the neurons from the previous layer serve as

inputs and the output is passed to input of the neurons in the next layer.

 19

As with a single perceptron unit, various activation functions can be used. For reasons that will

be shown shortly, it is required that it be differentiable. As the threshold function cannot be

used (it is discontinuous in 0), other functions of a similar shape are often employed instead.

Two frequently used examples are the logistic sigmoid (3.11) and the hyperbolic tangent (3.12):

These functions behave in an analogous way to the threshold function in that they return a value

close to the maximum (1 in this case) in for sufficiently large inputs; similarly, a value close to

the minimum (0, resp. -1) is returned for inputs low enough. Between these two extremes, the

functions grow continuously, their growth rate being determined by the parameter _ (in the

logistic sigmoid), resp. b (in the hyperbolic tangent).

3.6 BACK-PROPAGATION LEARNING ALGORITHM

Let us consider an arbitrary multilayer perceptron network. Let N be the set of all the neurons

it consists of, IN N the set of the neurons in the input layer and OUT _ N the set of the neurons

in the output layer. The individual neurons are indexed by numbers from 1 to jNj. The weight

of the connection from a neuron i to a neuron j is denoted by wji, the set of all the weights by

W. The notation i! refers to the set of all the neurons to which a connection from i exists, and

contrarily, i is the set of all the neurons which are connected to the input of i. Once all the

output vectors yk have been obtained, they need to be compared to the desired output vectors

dk to determine how well the network does and in what way the weights should be modified to

improve the performance. To do so, we define the squared error function E(w) of the network’s

weight vector as

Where Ek(w) is the partial error function of the network for the k-th training sample defined as:

 20

The more training samples generated incorrect outputs, the higher the value of the squared error

function is, and vice versa. If the network produces correct outputs for all the samples, the

squared error is zero. The problem of finding the best weights for a network is therefore

equivalent to the problem of finding the global minimum of the function E. One way to find the

global minimum is to compute the gradient ∇E(w) = (∂wji
)wji∈W in the point w, corresponding

to the current vector of all the weights wji in the network. The gradient is a vector which

determines the direction of the fastest growth of the error function in the specified point, as well

as the steepness of the slope in the respective direction. If the gradient is subtracted from the

current weight vector, we obtain a new vector which is likely to lie ‘below’ the original one in

terms of the value of E. Therefore, the vector w is updated in the t-th iteration (t = 1; 2….) as

follows:

The parameter " determines the learning rate much like in the case of the basic perceptron

learning algorithm. Here it specifies the coefficient by which the gradient vector is multiplied

prior to its subtraction.Its value can change in every iteration and is usually set to values

between 0 and 1.

 21

4. HISTORICAL OVERVIEW

4.1 NAKAMURA AND SHIKANO (1989)

One of the earliest attempts to employ neural networks in word category prediction was made

by [11] . In their paper, the authors presented a tool for estimating the most likely part-of- speech

tags based on the left context of a chosen size. Such a tool was not a tagger in the usual sense:

rather than disambiguating among the possible tags for each word, it learned the probability

distributions of individual n-gram tag sequences and stored them in a compact way the trained

network. The performance of this approach was comparable to that of previously used statistical

methods; moreover, the number of free parameters did not increase exponentially with growing

length of context, a notable improvement in comparison to the statistical approach. The network

Nakamura and Shikano used was a 4-layered perceptron network trained via a slightly modified

version of the back propagation algorithm. Its basic constituent unit was so-called bigram

network, which approximated the probability distribution of tag-to-tag transitions: given a

particular tag on the input (represented by setting the corresponding input neuron to 1), the

network generated a vector of numbers, each of them higher or lower according to the rate at

which the corresponding tag occurred after the input tag in the training data. The subsequent

cluster analysis of values of the neurons of the lower hidden layer, when run on the individual

word categories, shown that the network displays similar behavior for categories that form

linguistically meaningful groups (e.g. forms of the verb be, subjective pronouns, categories

which can come before nouns etc.). The ability to extract various additional linguistic

information from texts has been observed numerous times in multiple types of neural networks

let us mention self-organizing semantic maps by [16] as a notable example and demonstrates

the strength of this approach.

4.2 SCHMID (1994)

Drawing on the work by [11] mentioned in the previous section, [18] constructed the first

notable part-of- speech tagger based on neural networks, named NetTagger.The network used

in NetTagger is a classical MLP network, reproduced here in figure 4.1. The input layer collects

various information about the current token and its context. These are subsequently propagated

through several hidden layers to the output layer. Each neuron of the output layer represents

one part-of-speech tag in the particular tagset. From the output neurons, the one with the highest

output value is returned as the result, suggesting the most likely tag for the current token.

 22

Figure 4.1: Topology of the MLP network used in [18]

The network is trained on a corpus of manually tagged sentences. Each sentence is converted

into a set of training samples representing one word each. The input vector is generated in

exactly the same way as in the active phase (i.e. lexical probabilities of the words within

context). The desired output is 0 for all output neurons except the correct one, whose expected

output is set to 1.The reccurence brought about by re-using the outputs pertaining to previous

words is reflected in the adaptive phase too. Instead of feeding the input neurons representing

the left context directly with the network output (which is far from correct in the early learning

phase), a weighted average of the desired output and the actual output is used instead.

 23

Figure 4.2: Topology of one of the MLP networks used by [10]

4.3 MARQUES AND LOPES (1996)

Another early attempt to make use of neural networks in part-of-speech tagging was made by

Marques and Lopes (1996) for Portuguese. In many aspects it resembled the one described by

Schmid two years earlier (see above). As in the previous cases, it was also based on multilaye

perceptrons. A total of three topologies were tested, all of them employing a context of length

1 the following word.In the first topology, only input and output layer were used. Each output

neuron corresponded to one particular tag. The input layer was divided into two blocks, the first

one representing the word under consideration, and the second one the word to its right. The

input neurons in each block represented probabilities of individual tags for the corresponding

word. In the second topology, the network was enlarged by adding an extra hidden layer

between the input and output layer; the number of these units was unspecified in the article.

Finally, the third topology used was based on [4] . In this case, each neuron in the context block

was recurrently connected to itself via an identity link, i.e. the weight was fixed to 1. In addition,

each neuron in the hidden layer was connected via an identity link to one neuron in the context

block. This recurrence, not dissimilar to the one used by Schmid, introduces a notion of (short-

time) memory to the network. This topology is sketched in Figure 4.2.All three topologies were

tested with several in several configurations, using either external resources to generate

probability vectors, or computing these from the training corpus. Perhaps a bit surprisingly, the

 24

simple network without a hidden layer systematically achieved better scores than either of the

two topologies that contained a hidden layer.

4.4 PÉREZ-ORTIZ AND FORCADA (2001)

The method proposed by [14] is different from the former approaches in that it does not require

a manually disambiguated corpus for training. Instead, it learns from an ambiguously tagged

corpus, i.e. corpus in which each word is assigned to a set of one or more part-of-speech tags

that are applicable for the particular word form (regardless of the context). Such a corpus can

be easily created from a raw corpus e.g. by running a morphological analyser for each word.

The sets of possible tags are also referred to as ambiguity classes. Since the number of

ambiguity classes in a typical corpus is substantially lower compared to the number of different

word forms, converting words to ambiguity classes and throwing away any other information

can be a good way to simplify the complex task of part-of-speech tagging. This is exactly what

the first step of the proposed method looks like.

Once the sentences have been transformed into sequences of ambiguity classes, a two-phase

training of the tagger begins. An Elman network is used, i.e. network containing recurrent

identity links from the hidden layer to a part of the input layer. The network is trained first to

predict the ambiguity class of the next word given the current ambiguity class and a left context,

remembered in a context unit. When the training is complete, the network is activated for each

word by passing its ambiguity class to the input and the hidden state vector is saved. The hidden

state vector of each word is subsequently used for training another perceptron (probably

intended to denote a MLP), the purpose of which is to choose the correct tag for the word f

positions to the left (i.e. the decision about a word’s tag is postponed to a moment when f

following words have been read as well). Each part-of-speech tag has assigned its own output

neuron; its desired output value during the training is non-zero (e.g. one) if the tag is contained

in the ambiguity class and zero otherwise. This approach was shown to achieve the accuracy of

about 54.5%,significantly worse if compared to supervised methods learning from

disambiguated corpora, but having an important advantage in that the training data can be

obtained very easily, without need to expend considerable resources to create a manually tagged

training corpus.

 25

4.5 OTHER TAGGERS DRAWING ON SCHMID

The comparative success of Schmid’s NetTagger inspired a number of authors to develop

taggers based on the same principle, more or less modified. Apart from [10] , which was already

described in the previous section, it is worth mentioning at least the following ones:

4.5.1 Ma and Isahara (1997)

[9] proposed a tagger for Thai which is able to work with a variable length of context. For

specified lengths of the left and right context l and r (respectively), an MLP pretty much same

as in NetTagger is constructed; in addition, further analogous networks are built which differ

only in the length of context, which becomes shorter in every subsequent network. All networks

are subseqently trained independently with the same data (respecting the length of context

required). A network’s output is interpreted as a tag ti if the corresponding output neuron outi

returns the value 1 and all the other output neurons return 0. If this is not the case, the network’s

output is defined to be unknown. In the active phase, the data to be tagged are transformed into

input vectors and passed to the input of each network. Afterwards, the resulting output vectors

of individual networks are combined by using either of the logic elements AND or OR. The

AND operator produces the tag ti if this was the result returned by every network in the system,

unknown otherwise. OR, on the other hand, returns the tag provided by the network which

works with the longest context whose output was not unknown. If no such network exists,

unknown is returned instead.

4.5.2 Olde et al. (1999)

The tagger described in [12] is a module which constitutes a part of a bigger automated tutoring

system, AutoTutor. Two topological variants of MLP were tested during its development. As

usually, each output neuron out1…..outT represented one part-of-speech tag.

The input layer comprised three blocks corresponding to the word being tagged and its

neighbours, each of the size T (cardinality of the tagset). The input vector consisted of estimated

probabilities of individual tags for given words, exactly like in NetTagger. The second topology

contained four extra input neurons indicating whether the current word starts a sentence or

whether it is on the second, third or last position in the sentence. Unlike NetTagger, the network

did not incorporate recurrent links of any kind.

 26

4.5.3 Poel et al. (2008)

A 2008 paper by [13] describes another MLP-based part-of- speech tagger for the Dutch

language. Again, the input consists of tag probability vectors generated for each word within

the context window. Out of the window sizes examined, the best accuracy was achieved for

sizes 3-2, 3-3 and 4-3 (the numbers specify the length of the left and right context, respectively).

The best scoring sizes of the hidden layer were 250 and 370. An important change to the

methods presented so far was made in handling unknown words. Instead of constructing a suffix

guesser like in [18], each candidate tag was simply assigned an equal probability. From the total

of 72 tags in the tagset, the 9 which occured most frequently with unknown words (and covered

about 98% of these) were chosen as candidates. These tags were identified by a 10-fold cross

validation on the training set.

4.6 Collins (2002)

We have seen earlier that generative models compute the score (i.e. log joint probability) of

given pair wn1…..tn1as the sum of certain parameters generated for each tag in the sequence

with respect to the context. In 2.15, two parameters were utilized for each tag: log P(wijti) and

log P(tijti􀀀1 i􀀀2).

 27

Notation

Let F denote the set of all features φf , f = 1, . . . , |F | we are working
n n with. Let further S be the set of training sentences si = (wi

1

, t1i
), i =

1, . . . , |S|. The parameter E will represent the (arbitrarily chosen)

number of training epochs. Finally, the notation α(e),i will refer to f

the value of the weight αf in the e-th epoch immediately after the

sentence si has been processed.

Algorithm

d Initialize the vector α˙(0),i = (α(0), . . . , α(0)) to zeros.
 1 |F|

d For e in 1, . . . , E:

y Repeat for each tagged sentence si = (wni , tni) in the training corpus

until tˆni = tni : 1 1
 1 1

¤ Run the Viterbi algorithm to find the best scoring sequence tˆni

which satisfies the following equality, as defined above: 1
Σ
 tˆni = arg max α(e−1),iΦf (wn

 (4.8)

 1 ni T ni f
τ
 1 f

¤ If tˆni ƒ= tni , update every weight αf in the following fash-
1 1 ion:

α(e),i = α(e−1),i + Φf (wni , tni) − Φf (wni , tˆni) (4.9) f f 1 1 1 1

d For each f = 1, . . . , |F | compute

 αf = 1 ΣE Σ|S| α(fe),i (4.10)

E · |S|
e=1 i=1

d Return the weight vector α˙ = (α1, . . . , α|F|).

Figure 4.3: Averaged perceptron algorithm used in [2]

 28

4.7 JANICKI (2004)

The tagger constructed by [7] for Polish differs from those mentioned so far in that in assigns

tags on the basis of the word form itself, irrespective of the words which come before or after

it. Moreover, only the last 7 characters of each word are taken into consideration. Since the

tagger is designed to handle alphabetical characters only, each position may contain one of the

35 letters of the Polish alphabet or a space (prepended in front of words shorter than 7 letters).

The input layer therefore consists of seven blocks containing 36 units each. When a word is

being transformed into a binary input vector, one unit in each block is set to 1 according to the

letter at the corresponding position, the others are set to 0. The output layer contains one unit

for each tag as usually; the tag whose unit gives the highest output is then returned as the result.

The network contains no hidden layers.To speed up the learning process, the number of neurons

in the input layer was reduced to lower values, which were subsequently tested for performance.

The size of 50 turned out to achieve an accuracy only slightly worse compared to the non-

reduced input layer. Unfortunately, the author does not specify the criterion by which the inputs

were chosen into the reduced network.It turned out that a significant improvement can be

achieved by using two separate networks, one for words shorter than six characters and the

other for words containing six or more characters. The reason for this distinction is the fact that

short words are more likely to be irregular or following slightly different morphological rules

than the long ones. With this configuration the tagger achieved an accuracy of about 98%.

Naturally, Janicki’s method has its limitations. It is based on the assumption that the part of

speech is more or less fully determined by the word form itself. This is possible for languages

with rich morphology like Polish in which relatively little part-of-speech ambiguity exists.

While Polish makes it possible to distinguish words like praca ‘a work’ vs. pracowac ‘to work’

right away, in English it is essential to take account of the neighbouring words as well, for

example by checking whether it is preceded by a determiner, or rather by the infinitive particle

to.

 29

5. PROPOSED TAGGER

5.1 METHOD 1: RECURRENT MLP NETWORK

The first method draws on the ideas of [18] .The core part of the tagger is a set of multilayer

perceptron networks, the topology of which is shown in figure 1. Each network functions as a

binary classifier choosing one out of two candidate tags. The output layer contains two neurons

corresponding to the two tags in question. Upon activation, the tag whose neuron gives higher

output is chosen as the result and assigned to the corresponding word.The input layer consists

of three blocks of neurons which represent the preceding word, the following word (we will

refer to these blocks as the left context block and right context block, respectively) and finally

the word to be tagged (referred to as the input word block in the following text). The left and

right context blocks both contain T neurons where is the size of the tag set. The input word

block consists of two neurons which represent the two tags between which we want to

disambiguate. The tagging of a sentence w1 … :wn goes from the end to beginning as follows.

For each word wi, its left and right neighbor wi+1 and wi+1 (respectively) are obtained. Supposing

that wi is ambiguous between tags tk and tl, we pick the corresponding network and feed The

tagger uses a whole system of such networks, each functioning as a binary classifier deciding

between two tags. This particular network makes a choice between the tags tj and tk. Note that

the recurrent link connecting the output layer with the left context block is only relevant in the

active phase; it is not utilized during the training.

Figure 5.1 Topology of the MLP network used in method 1

 30

The estimated probabilities P (tk|wi); P (tk|wj) into the neurons of the input word block.

Similarly, the probabilities P (tm|wi 1); m = 1….. T are passed to the input of the neurons in the

left context block. The right context block is a recurrent unit which is fed with output values

obtained in the previous run, i.e. for the word to the right of the current one. If the following

word was for example ambiguous between tk and tl and the corresponding network produced

output values yk and yl, the neurons representing these tags in the right context block will be

passed these values to the input, all the other inputs being set to 0.Each network also includes

a single hidden layer, which contains eight neurons. Among the numbers which were tested—

from a few up to several hundred—this turned out to provide best classification accuracy. The

hidden neurons use the hyperbolic tangent as their activation function, since it yields better

results compared to the logistic sigmoid.Naturally, not all words are ambiguous between exactly

two part-of-speech categories. Some are virtually unambiguous (e.g. the, where), some can be,

on the other hand, assigned to a higher number of different tags (e.g. round, which can in

different contexts function as a noun, adjective, verb, adverb or preposition). Moreover, if a

word to be tagged does not appear in the training corpus, we typically want the guesser (based

on suffixes in our case) to generate a high recall/low precision set of candidate tags, which can

best be accomplished if more tags are included rather than less. For these reasons, we need to

be able to convert the multi-class classification problem into such a form that the networks

described above can be used for solving it.The solution for a candidate tag set of an arbitrary

cardinality is following: if only one candidate tag is present, it is returned as the result. In the

next iteration (i.e. when the preceding word is being processed), the value 1 is passed to the

input of the corresponding neuron in the right context block, all the other ones being set to 0.

In the case of two or more candidate tags, all subsets of cardinality 2 are generated. For each

subset, the corresponding network is found (if it exists) and activated with the appropriate input

vector. For each tag, the total number of ‘victories’ is counted. The tag which won most times—

let us call it tmax for now—is returned as the result. If there is a draw between two or more tags,

the default tag, i.e. the most common one in the training corpus, is used instead. In the next

iteration, the input neuron in the right context block corresponding to this winner is set to 1.

Each neuron of this block representing one of the other candidate tags—say, tk—is set to the

output value outk for this tag divided by the output outmax for the winning tag as computed by

the network deciding between tk and tmax. If such a network does not exist, the neuron for tk

from the right context block is set to 0 instead.A special attention needs to be paid to situations

in which sentence boundaries lie within the context, that is when processing the first or the last

token in a sentence. Since the first (last) word does not have a left (right) context, the respective

 31

context block cannot be provided with an input generated in the conventional way. A very

simple solution has been adopted instead: whenever reaching beyond sentence boundaries, all

the neurons in the corresponding context block are set to 0.The training of the tagger consists

of two phases. First, a statistical model is computed from the training corpus, which is

subsequently used for training the networks. The statistics computed in the first phase include

particularly the tag probabilities for individual words P (t|w). These are sometimes estimated

using the method of maximum likelihood, i.e. by dividing the number of occurrences of the

word w tagged as t in the training corpus by the total number of occurrences of w. In our tagger,

we use a Laplace estimator instead as it provided marginally better results. The probabilities P

(tjw) are estimated in the following manner,where C(w, t) stands for the number of occurrences

of the word w tagged as t in the training corpus, C(w) is the total number of occurrences of w

and B is (in this case) the maximum number of tags any word can take, based on the data

provided.Since the training corpus does not (and cannot) contain all words that exist in the

respective language, a separate method has to be employed in estimating the tag probabilities

for out-of-vocabulary items. A common method is to rely on word endings, which are in many

languages good indicators of a word’s part-of-speech. Taking all the words with the same

ending and averaging their tag probability distributions can therefore be used as an

approximation of the word’s actual probability distribution.As there is no universal rule which

length of the suffix predicts the part of speech best, suffixes of length up to 10 are used for

building the suffixes guesser. For each suffix s in the training corpus of length from 1 to 10, the

values C(s, t) and C(s) are determined, representing the number of words ending in s tagged as

t and the total number of words ending in s, respectively. Using the Laplace estimator again,

the probability of s being tagged as t is computed for each suffix s and tag t:

Since an unknown word w ending in the suffix s = l1 …..l|s| also ends in the suffixes s’ = l2 …..

l|s|, s’’ = l3 …. l|s| etc., the dilemma arises as to which suffix to use to obtain a probability

distribution. This problem is typically overcome by so-called smoothing, a technique which

combines the probability distribution of a suffix with those of all its sub-suffixes and returns a

single new probability distribution. When an unknown word w appears in the data to be tagged,

the longest suffix of w that is present in the pre-computed suffix dictionary is found and its

smoothed probability distribution is returned, which is ready to be used in the neural

networks.The smoothed probability for a suffix s = l1 …. l|s| is calculated recursively as follows:

 32

Starting from the whole suffix s, the formula incorporates probability distributions derived from

ever shorter suffixes one by one. In the end, it reaches the stage when the probability P (tj") is

needed to evaluate the right-hand side of the formula. This is simply put to be equal to the

probability of the tag t itself:

P (t|£) = P (t) 5) . (2

It remains to explain the meaning of the parameter which appears in equation 3. Taking a value

between 0 and 1, it functions as a weighting factor that determines how much individual sub-

suffixes of a suffix contribute to the resulting probability distribution. If = 0, only the longest

suffix itself is taken account of. On the other hand, if = 1 is the case, all the sub-suffixes

participate equally on the result, which is a plain average of the respective probability

distributions. We chose to compute the value by taking the sample variance of tag probabilities

as proposed in Brants (2000), i.e.

where T denotes the cardinality of the tag set and P is the mean tag probability defined as:

In fact, not all the words in the training corpus are used in construction of the suffix guesser. It

is a common feature observed across the world’s languages that the most frequent words display

different inflectional and derivational patterns than the infrequent ones. Apparently, the

information that the form was is a verb in the past tense will be hardly of any help in the suffix

 33

guesser since there are no other past tense forms ending in -was, -as or even -s in English. For

this reason, we decided to leave out the common words from training the guesser. Every word

that appears in the training corpus more than three times is considered as common.Now that the

probabilities are computed, they can be used in net-work training. The networks are trained

with a batch algorithm, which means that the training samples (input vectors together with their

de-sired outputs) must be generated beforehand for each network. This is accomplished in the

following way:

1. Taking one word wi in the training corpus at a time, find the corresponding tag probability

distribution as computed in the

statistical model. Do the same for the words to its left and right, wi 1 and wi+1 (respectively). If

either context does not exist (in the case of the first or last word in a sentence), the probability

of each tag is set to 0.

2. Let ti1……… tim be the tags whose probability is greater than zero for wi. Out of these, let tik

be the tag with which wi is tagged in the corpus. Generate all the pairs of tags containing tik ,

i.e.

For each of these pairs a neural network has to be constructed which functions as a binary

classifier deciding between the two tags. Build all the networks that have not been created in

one of the previous iterations. The input layer will contain 2T + 2 neurons, two for the current

word and T for each of its neighbors (T is again the total size of the tagset).

3. Generate a training sample for each network. The left and right

context blocks of the input vector will always contain the whole tag probability vector for wi 1

and wi+1 (respectively).

The input word block will differ among the individual networks. If a network decides between,

say, tij and tik , the two input neurons will be set to P (tij |wi) and P (tik |wi). The desired output

will be 1 for the neuron representing tik and 0 for the other output neuron.Once the training

samples have been generated, they are used for training the networks. Ten passes over each

training set are done. The learning rate " has been set to 0:01, the momentum to 0:1 and the rate

of weight decay to 0:01. All these number have been determined experimentally, providing the

best accuracy and keeping the time necessary to learn on an acceptable level.

 34

5.2 METHOD 2: FEATURE-BASED PERCEPTRON

The second method is inspired by [2] and his averaged perceptron algorithm. It works with a

substantially higher number of con-text features than the method proposed in the previous

section. The words are converted into vectors in a multidimensional vector space, which are

subsequently classified using binary perceptron classifiers, determining their most likely part-

of-speech tag.The feature set used in this method is shown in Figure 2. It is a modification of

Collins’s feature set, itself drawing on [15] who used a similar feature set in his maximum

entropy tagger.

 35

Figure 5.2: The feature set used in the second method

 36

The tagging of a sentence w1,……, wn goes as follows. Starting from the first word, it is checked

which context features hold true and which do not. A feature vector of 0’s and 1’s is generated

which contains ones precisely on those positions which correspond to the present features. For

example, if 3 is by definition 1 iff wi 1 = the, the third component of the vector will contain 1 if

the word previous to the current one was indeed the; it will be zero otherwise.Once the feature

vector has been computed, it is passed as an input to a set of neurons. Each neuron represents

one part-of-speech tag, for which it serves as a yes/no classifier, determining whether the word

should be tagged with the respective part-of-speech or not. To speed up the tagging process,

only those neurons are activated which correspond to the word’s possible tags. If the word was

not present in the training corpus and it begins with a capital letter, this is changed to lowercase

and tag candidates are checked for once again. If this still does not help, all the neurons are

activated one after another.In the optimal case, exactly one neuron will give the output 1, all

the other producing 0; the winner’s tag would then be returned as the result. Nevertheless,

nothing prevents more neurons from returning 1’s; also, the situation may arise when all the

neurons yield 0’s. For this reason, it is the inner potentials, i.e. weighted sums of the inputs, that

are compared. The tag whose neuron’s inner potential was the highest upon activation is then

used for tagging the word in question.It is worth noting that some features make reference to

the previous (but not following) tags, see Figure 2. The tags assigned to preceding words by the

mechanism described above are therefore immediately used for finding the values of these

features in words that follow. No probabilistic computation takes place, each word is assigned

to precisely one fixed tag at the moment when it is being processed. If a word has been

misclassified, it can naturally have an impact on the correctness of the tags of words which

follow. On the other hand, the system makes use of a number of other features which do not

rely on the previous tags, so a single mistake does not necessarily mean producing nonsense in

the whole rest of the sentence.Before the system can be used for tagging, the neurons have to

be trained first. The idea is as straightforward as it gets: for each word wi tagged as ti in the

training corpus, check which features hold true and generate the appropriate feature vector. This

will be used as an input vector of each of the T neurons. The desired output value will differ

among individual neurons: it will be 1 for the neuron which makes a decision about the tag ti,

0 for every other neuron.The number of features increases rapidly as the training corpus grows

bigger; it is roughly comparable to the corpus size in terms of tokens. When learning from a

1,000,000-word corpus, a neuron with several million inputs has to be trained for each part-of-

speech tag. Clearly, this is a time demanding task which cannot be accomplished easily using

the traditional perceptron algorithm without any modifications. The training algorithm

 37

described in what follows has a significantly shorter running time compared to the perceptron,

yet it needs to be said that for bigger corpora the required time still gets unacceptably long.The

training algorithm used is the fast perceptron trainer of the authors [5] . During the initialization

of the weight vector, the sam-ples are split into two classes according to the desired output (0

or 1) and their centers C0 and C1 are computed. The initial weight vector (w1,….., wF) is

obtained by subtracting C1 C0. Afterwards, the value w0 of the bias has to be determined. Using

the Scut method as proposed in the original article does not seem adequate here due to its

extreme time complexity—for 1,000,000 training samples it would mean 1012 activations of a

neuron with several million inputs. Instead, we chose such a bias value that the separating hyper

plane pass through the midpoint of the line segment

In the original article, the weights are adapted in every iteration in the following way: using the

current weight vector, compute the neuron’s output for each sample. Compare the output with

the desired output for the sample; it these two are not equal, label the sample as either false

negative (desired output 1, actual 0) or false positive (desired output 0, actual 1). Find the

respective centers FN; FP for the sets of false negative and false positive samples and modify

the weights by adding an "-multiple of e = FP FN to the current weight vector such that both

FN and FP lie on the new separating hyperplane. The time needed to perform a single weight

modification step largely depends on the total number of misclassified samples: the more of

them, the longer it takes to compute the centers FN and FP. To speed up the training, we made

a minor modification to the algorithm: instead of taking all the misclassified samples, only 100

of them are randomly chosen and used in finding the new weight vector.The weights are

iteratively modified until at least one of the stopping criteria is met. Naturally, the training stops

when the neuron classifies all the training samples correctly; moreover, it there is only one

misclassified sample, the training is finished as well. The second stopping criterion limits the

number of iterations to prevent an overly long train-ing without any progress: if 30 iterations

passed without beating the best accuracy reached so far, the training is terminated and the

weights that gave the best accuracy are kept.

 38

5.3 BASELINE METHOD

To get a better idea as to how well the proposed methods perform, a third method was used for

comparison. It is a so-called back off tagger which itself incorporates three n-gram taggers

trigram, bigram and unigram together with a primitive suffix guesser. For each word wi in given

sentence w1
n, the probability

is determined for each ti based on a training corpus provided beforehand; the tag with highest

probability is then assigned to wi. If the probabilities are zero for all candidate ti’s, the tag is

computed using the bigram probability P (ti|wi; ti 1). In the case that this step fails too, the

unigram probability P (ti|wi) is used. If this is still not enough due to the absence of wi from the

training data, the three-letter suffix s3
i is taken from wi and the tag ti with maximal P (ti|s

3
i) is

assigned. Finally, it it was not possible to determine ti by any of the previous methods, the most

frequent tag from the training corpus is chosen for ti.

5.4 TECHNICAL DETAILS OF IMPLEMENTATION

The tagger was implemented in the programming language Python, making use of certain

functionality provided by [1] . The core of the system is formed by three modules named tag1,

tag2 and tag3 which correspond to the individual tag- ging methods described above. Each

module contains the class Tagger implementing the interface nltk.TaggerI. This essentially

means it contains a method tag() which takes a list of tokens representing a bare sentence and

returns a list of tuples (word, tag). One particu- lar benefit of this choice is the availability of

the method evaluate() which, given a list of tagged sentences, readily returns the tagger’s ac-

curacy as a number between 0 and 1. To build and train the multilayer perceptron networks in

method 1, we used the [17] .which has been designed for this purpose. It makes it possible and

very intuitive to build various neural networks with a desired number of layers and neurons

with a chosen activation function. In addition to this, the training of the network can also be

performed in a simple way, allowing one to choose the values of parameters like the learning

rate ε, momentum and weight decay rate. Since pybrain is typically not a built-in part of Python

installations, it has to be installed beforehand for the tagger to work properly. The same applies

to the package nltk.The backoff tagger from method 3 was implemented using the classes

 39

TrigramTagger, BigramTagger, UnigramTagger, AffixTagger and DefaultTagger, all available

from the package nltk.The program contains an interface for training the tagger and eval- uation

of the individual methods for the Brown corpus. The module is named test and is used in the

following way:

test.py [-l] [-s] [-o] -m<METHOD> <train_size> <test_size>

There are three parameters that have to be passed to the script as command-line arguments. The

parameter -m<METHOD> selects that is to be used for training and tagging, the options being

-m1, -m2 or -m3. <train_size> specifies the number of sentences from the beginning of the

corpus that will be used for training. Similarly, <test_size> determines the number of sentences

from the end of the corpus used for evaluation. There are three more optional command-line

arguments: -s allows to export the tagger after training into a file, from which it can be sub-

sequently loaded by invoking the option -l. Finally, calling the script with -o generates an output

file to which the test sentences tagged by the chosen method are written in a human-readable

form. So, for example, if we want to train the tagger using method 2 (feature-based perceptron)

with the first 1462 sentences from the Brown corpus, evaluate it on the last 10128 sentences

and save the tagger into a file, it is accomplished through the following call: $ python test.py -

s -m2 1462 10128

 40

6. RESULTS AND DISCUSSION

6.1 RESULTS

To test the performance of the individual methods, we used the Brown corpus, a manually

tagged English corpus of 1,161,192 words which is freely available from the package nltk. From

the total of 57,340 sentences in the corpus, the last 10,128 sentences containing 161,194 words

were used for testing. From the rest several training sets of different sizes were built to

determine how the tagging accuracy changes depending on the amount of data provided.

Training sets of five sizes were generated: 435 sentences (10,018 words), 1462 sentences

(31,623 words), 4,600 sentences (100,012 words), 14,900 sentences (316,235 words) and

finally the whole rest of the corpus containing 47,212 sentences (999,998 words). For each

experiment, the accuracy was computed as the ratio of correctly tagged tokens to the total

number of tokens. The accuracies achieved by the three methods for each training set are shown

in tables 1 through 3. In addition, a graph plotting the results is provided in figure 3.Looking

on the results, several observations can be made from them. Firstly, both methods 1 and 2

performed better than method 3 (the only exception being the smallest training set), which is an

indication that the proposed algorithms actually work. This is definitely good news,

Table 6.1: Results for method 1 (recurrent MLP network)

of sents # of words accuracy training time

 435 10018 77.75% 50s

1462 31623 86.24% 3m 9s

4600 100012 90.81% 12m 40s

14900 316235 93.27% 57m 40s

47212 999998 94.93% 5h 46m 19s

42

Table 6.2: Results for method 2 (feature-based perceptron)

of sents # of words accuracy training time

435 10018 82.41% 6m 31s

1462 31623 89.59% 46m 24s

4600 100012 92.96% 4h 15m 55s

14900 316235 ? ?

47212 999998 ? ?

Table 6.3: Results for method 3 (backoff tagger)

of sents # of words accuracy training time

435 10018 78.10% 1s

1462 31623 85.40% 5s

4600 100012 88.83% 13s

14900 316235 91.08% 44s

47212 999998 92.98% 2m 24s

confirming that the proposed methods make sense. Secondly, the re-current MLP network approach

has shorter training times compared to the feature-based perceptron; in fact, the time needed to

train the neurons in the latter method with the two largest training sets was so long that we were

not able to determine the respective accuracies. Thirdly, for the three smallest training sets, the

feature-based perceptron did constantly better compared to the recurrent MLP network at the cost

of substantially longer training times. The absolutely best accuracy achieved by any of the methods

was 94:93%.

43

6.2 DISCUSSION

We have seen in the previous section that the feature-based perceptron consistently provided the

best results in terms of accuracy, as far as we were able to tell. However, the extremely long training

time prevented us from measuring the performance for training sets containing hundreds of

thousands or millions of tokens. This was in spite of the optimization techniques that are made use

of during the training to accelerate the learning (see section 5.2). To determine the accuracy for

larger corpora, the training could be performed on a supercomputer or alternatively—and better—

further optimization could be made to the learning algorithm. It is likely that many features

(perhaps a majority of them) in our feature set do not have a significant impact on the probabilities

of individual tags. If we were able to detect these ‘junk’ features for each tag and keep only those

whose presence is strongly correlated with it—whether in a negative or positive way—the number

of inputs could decrease drastically, making the time necessary for training significantly shorter.It

is fair to say here that the best accuracy we were able to reach, 94:93%, is by far not the best

accuracy that could be achieved by any existing tagger. For example, when the largest training set

of 999,998 words was processed by [6] , a faster and open-source reimplementation of the

successful tagger TnT [2], the accuracy on the same test set was 96:13%; also the training time was

just a fraction of the time needed by either of our methods using neural learning.The only language

for which experiments were done was English. The Brown corpus that was used for evaluation

contains 40 different part-of-speech tags, a comparatively small tagset among tagset which are used

in corpora. It is clear from the architecture of our tagger that larger tagsets likely increase the

training time proportionally. This should be taken into consideration when tagging e.g. Slavic or

Finno-Ugric languages, whose tags often incorporate numerous morphological features such as

case, number, tense etc. This naturally leads to greater tagsets which can contain as much as several

hundred or even more than a thousand different tags.

44

Figure 6.1: Accuracies achieved by the individual methods for each training set

6.3. CONCLUSION

In this work we proposed an automated system for part-of-speech tagging which benefits from the

principles of neural learning. From numerous methods experimented with in the course of the

development, the two most promising ones were chosen for a more in-depth exploration and were

included in the tagger. The first method, using a system of recurrent multilayer perceptron

networks, achieves an overall accuracy of 94:93% when trained on the first ca. million tokens from

the Brown corpus and tested on the rest. The other method, based on simple threshold neurons

processing a high number of context features was computationally too complex to converge in a

reasonable time for the same training set; however, for all the smaller subcorpora provided for

training, it systematically achieved a significantly better accuracy com-pared to the first method.

As far as we were able to tell, both methods performed better than a conventional trigram-bigram-

unigram backoff tagger that was used as a baseline.

45

Time complexity is generally a major drawback of neural algorithms, though we have seen that

certain tricks can be made to accelerate the learning. Even though the training times needed were

rather long compared to e.g. HMM taggers, at least the first method definitely lies within the limits

of acceptability. The second method could potentially be sped up by selecting the relevant context

features for each tag, decreasing the amount of information needed to be processed for each word

drastically.Notwithstanding all the imperfections that our tagger can be reproached with, we

believe this work gives an illustrative insight into an intriguing class of lesser-used part-of-speech

tagging techniques. Despite the criticism of neural learning that can be heard from time to time, we

are convinced that a tagger with an aptly chosen neural architecture can make a tough competition

to the more conventional techniques used nowadays. There is beyond all doubt a room for further

experiments leading to an improvement in performance, both in terms of accuracy and time

complexity.

46

REFERENCES

[1] Bird, S. (2006). NLTK: the natural language toolkit, Proceedings of theCOLING/ACL

on Interactive presentation sessions, Association for Computational Linguistics,

Stroudsburg, PA, USA, pp. 69–72.

[2] Brants, T. (2000). TnT: a statistical part-of-speech tagger, Proceed-ings of the sixth

conference on Applied natural language processing, Association for Computational

Linguistics, pp. 224–231.

[2] Collins, M. (2002). Discriminative training methods for hidden Markov models: theory

and experiments with perceptron algorithms, Pro-ceedings of the ACL-02 conference

on Empirical methods in natu-ral language processing, Association for Computational

Linguistics, pp. 1–8.

[4] Elman, J. L. (1990). Finding structure in time, Cognitive science 14(2): 179–211.

[5] Gkanogiannis, A. and Kalamboukis, T. (2009). A modified and fast perceptron learning

rule and its use for tag recommendations in so-cial bookmarking systems, ECML

PKDD Discovery Challenge 2009 (DC09) p. 71.

[6] Halácsy, P., Kornai, A. and Oravecz, C. (2007). HunPos: an open source trigram tagger,

Proceedings of the 45th annual meeting of the ACL on interactive poster and

demonstration sessions, Association for Com-putational Linguistics, pp. 209–212.

[7] Janicki, A. (2004). Application of neural networks for POS tagging and intonation control

in speech synthesis for Polish, Soft Computing and Intelligent Systems (SCIS 2004) .

[8] Jurafsky, D. and Martin, J. H. (2009). Speech and language process-ing: An introduction

to natural language processing, computational linguistics, and speech recognition, 2nd

edn, Pearson Education.

47

[9] Ma, Q. and Isahara, H. (1997). Part-of-speech tagging of Thai cor-pus with the logically

combined neural networks, Proceedings of the Natural Language Processing Pacific Rim

Symposium, pp. 537–540.

[10] Marques, N. C. and Lopes, G. P. (1996). A neural network approach to part-of-speech

tagging, Proceedings of the Second Workshop on Computational Processing of Written

and Spoken Portuguese, pp. 1– 9.

[11] Nakamura, M. and Shikano, M. (1989). A study of English word cat-egory prediction

based on neutral networks, Acoustics, Speech, and Signal Processing, 1989. ICASSP-89.,

1989 International Conference on, IEEE, pp. 731–734.

[12] Olde, B. A., Hoeffner, J., Chipman, P., Graesser, A. C. and Group, T. R. (1999). A

connectionist model for part of speech tagging., FLAIRS Conference, pp. 172–176.

 [13] Poel, M., Boschman, E. and op den Akker, R. (2008). A neural network based Dutch part

of speech tagger.

 [14] Pérez-Ortiz, J. A. and Forcada, M. L. (2001). Part-of-speech tagging with recurrent neural

networks, Neural Networks, 2001. Proceedings. 15. IJCNN’01. International Joint

Conference on, Vol. 3, IEEE, pp. 1588– 1592.

 [15] Ratnaparkhi, A. (1996). A maximum entropy model for part-of-speech tagging,

Proceedings of the conference on empirical methods in nat-ural language processing, Vol.

1, pp. 133–142.

 [16] Ritter, H. and Kohonen, T. (1989). Self-organizing semantic maps, Biological cybernetics

61(4): 241–254.

 [17] Schaul, T., Bayer, J., Wierstra, D., Sun, Y., Felder, M., Sehnke, F., Rückstieß, T. and

Schmidhuber, J. (2010). PyBrain, The Journal of Machine Learning Research 11: 743–746.

48

 [18] Schmid, H. (1994). Part-of-speech tagging with neural networks, Proceedings of the 15th

conference on Computational linguistics, Asso-ciation for Computational Linguistics, pp.

172–176.

 [19] Šíma, J. and Neruda, R. (1996). Teoretické otázky neuronových sítí, Matfyzpress.

 URL: http: // www2. cs. cas. cz/ ~sima/ kniha. pdf

 [20] Yang, Y. (2001). A study of thresholding strategies for text catego-rization, Proceedings

of the 24th annual international ACM SIGIR conference on Research and development in

information retrieval, ACM, pp. 137–145.

http://www2.cs.cas.cz/~sima/kniha.pdf

