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 vii 

 Part-of-speech tagging, the process of assigning parts of speech to words in sentences, has a vast 

field of applications in natural language processing. It constitutes an important intermediate step in 

other tasks such as syntactic analysis or machine translation. Out of the methods that have been 

employed in solving this problem, neural networks belong to the rather non-typical ones, being often 

neglected in textbooks. In this work we provide an overview on some notable attempts that have been 

made in part-of-speech tagging with neural networks. Based on these, we also propose our own tagger 

based on similar principles. The tagger provides two rather different training methods that can be 

chosen freely. The first method employs a set of recurrent multilayer perceptron networks which 

learn the most likely tags from the wordto-tag probabilities of the words within a context. The second 

method converts words into feature vectors in a multidimensional space; subsequently, the 

hyperplanes separating the data in one class from the other ones are searched for using perceptrons. 

An additional statistical method is available as a baseline to compare the performance. Training on 

the first 999,998 words in the Brown corpus and evaluating on the rest, the best accuracy was 94.93%, 

achieved by the first method. The second method was significantly more successful for smaller 

training sets, nevertheless, long training times prevented us from determining the accuracy for the 

largest set. Both methods did systematically better than the baseline. 

 

Keywords: part of speech, part-of-speech tagging, tagger, neural network, neuron, perceptron, 

MLP. 
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ÖZET 

 

YAPAY SİNİR AĞLARI KULLANARAK KONUŞMA KISMINDA ETİKETLEME 

 

Ameer Yalmaz Asaad 

Yüksek Lisans., Elektrik ve Bilgisayar Mühendisliği, Altınbaş Üniversitesi, 

             Tez Danışman: Yrd.Doç.Dr. Sefer KURNAZ 

                                                Tarih: 7/2019 

                                                Sayfalar: 45 

Konuşmanın bölümlerini etiketleme, konuşmanın bölümlerini cümlelerdeki kelimelere atama işlemi, 

doğal dil işlemede geniş bir uygulama alanına sahiptir. Sözdizimsel analiz veya makine çevirisi gibi 

diğer görevlerde önemli bir ara adım teşkil eder. Bu problemi çözmek için kullanılan yöntemlerden 

sinir ağları, genellikle tipik olmayanlara aittir, ders kitaplarında sıklıkla ihmal edilir. Bu çalışmada, 

sinir ağları ile etiketleme bölümünde yapılan bazı kayda değer girişimler hakkında genel bir bakış 

sunuyoruz. Bunlara dayanarak, benzer prensiplere dayanarak kendi etiketleyicimizi öneriyoruz. 

Etiketleyici, serbestçe seçilebilecek iki farklı eğitim yöntemi sunar. İlk yöntem, bir bağlamda 

kelimelerin kelime-etiket olasılıklarından en muhtemel etiketleri öğrenen bir dizi tekrarlayan çok-

katmanlı algılayıcı ağlar kullanır. İkinci yöntem, kelimeleri çok boyutlu bir uzayda özellik 

vektörlerine dönüştürür; daha sonra, bir sınıftaki verileri diğerlerinden ayıran hiper düzlemler, 

algılayıcıların kullanımı için aranır. Performansı karşılaştırmak için ek bir istatistiksel yöntem temel 

olarak mevcuttur. Brown corpus'taki ilk 999.998 kelimede eğitim ve geri kalanı değerlendiren ilk 

yöntemle elde edilen en iyi doğruluk oranı% 94.93 idi.İkinci yöntem küçük egzersiz setleri için 

önemli ölçüde daha başarılıydı, ancak uzun egzersiz süreleri en büyük setin doğruluğunu 

belirlememize engel oldu. Her iki yöntem de sistematik olarak taban çizgisinden daha iyi sonuç verdi. 

 

Anahtar Kelimeler: part of speech, part-of-speech tagging, tagger, neural network, neuron, 

perceptron, MLP. 
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1. INTRODUCTION 

1.1 GENERAL OVERVIEW 

Part-of-speech ambiguity is a common feature of a majority of the world’s languages. 

Considering the English word left as an example, we can observe that in different situations it 

functions as an adjective (as in the left mouse button), an adverb (turn left), a noun (I was sit-

ting to his left) or a verb, either a past tense form (he left his wife) or a past participle (she was 

left wondering). A substantial amount of words is ambiguous. In Brown corpus, an English 

corpus of about 1,000,000 words each of which was manually assigned to a part-of-speech 

category, about 16% of the words appear as two or more different part of speech. Programs 

which assign parts of speech to words in a plain text corpus automatically are commonly termed 

‘taggers’. These are typically trained on manually tagged corpora beforehand in order to learn 

certain statistical properties of the target language, such as that the sequence determiner-

adjective-noun is more likely to appear than, say, preposition-verb-preposition.The task of part-

of-speech tagging, as the process of assignment part-of-speech categories to words in sentences 

is called, has a vast range of applications in natural language processing. Assigning parts of 

speech to words is often followed by a syntactic analysis (parsing), a pro-cess whereby the 

sentence structure is determined, such as finding the subject, predicate and object. This can 

provide a better insight into the information structure of the sentence, making it possible to tell 

some-thing about the meaning of the sentence. Part-of-speech disambiguation also plays an 

irreplaceable role in machine translation: translating the aforementioned examples featuring the 

word left to Czech gives levé tlačítko myši, zahnout doleva, seděl jsem nalevo od něj, opustil 

svou ženu and zůstala v údivu, respectively. For the tools making use of part-of-speech tags to 

yield reasonable results, it is essential that tag-gers assign the tags with as high an accuracy as 

possible. Tagging the noun in the subject position of a sentence as e.g. a verb can have a sig-

nificant negative impact on the resulting parse tree or the translation.A number of techniques 

have been applied to part-of-speech tag-ging over history and even nowadays there is no clear 

answer to the question of which approach is the best. The most common methods can be 

grouped into a handful of classes. Statistical taggers try to learn various kinds of probabilities 

from a training corpus and use them to find the most likely tag sequence for each sentence to 

be tagged. Rule-based taggers, as the name indicates, use a set of rules to assign tags; for 

instance, if a word ambiguous between noun and verb is preceded by to, choose the tag ‘verb’. 

Information-theoretical approaches try to find such context clues which best indicate a word’s 

most likely part-of-speech tag. Last but not least, neural networks of an aptly chosen 
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architecture have been repeatedly employed in the task as well.The position of researchers 

towards neural networks has been ambiguous ever since their invention in the mid-20th century. 

This ma-chine learning technique was motivated by processes which take place in the nervous 

systems of animals, including the human brain. The parallel with the human brain, a fascinating 

computing machine of which we still have rather fragmentary knowledge, is probably a major 

reason why artificial neural networks keep coming to popularity every now and then, even 

though many machine learning tasks can be performed more effectively by other techniques 

like support-vector ma-chines. Part-of-speech tagging is a task for which neural networks have 

been used comparatively seldom. In fact, many textbooks on natural language processing do 

not consider neural networks when dealing with part-of-speech tagging at all, as is the[8]. The 

reasons as to why neural networks did not make it into the mainstream of the field can be 

several, including generally rather long training times or unconvincing performance; also the 

fact that the models work with many parameters whose values have to be estimated 

experimentally (such as the number of neurons and the connections between them) makes 

neural networks a little difficult to work with.In the following text we are going explore more 

in detail how neural networks can be applied to part-of-speech tagging and also present our own 

tool which seeks to accomplish the task. Essential theoretical concepts will be introduced first 

in order to provide a fundament on which the rest will be built. The chapter immediately 

following after this one describes basic principles of part-of-speech tagging in general, explain-

ing the difference between discriminative and generative models. Chapter 3 serves as a brief 

introduction into neural networks which includes the computation mechanisms of neuron units 

and multilayer networks together with some algorithms used for their training. In chapter 4, we 

give a historical overview of some notable cases in which neural net-works were employed in 

part-of-speech tagging. Inspired by these, we propose a new tagger based on neural networks, 

described in detail in chapter 5. Two tagging methods are available, along with a third, statis-

tical method which was used as a baseline. Finally, chapter 6 compares the performances of the 

individual methods based on experiments that were done using the Brown corpus. In addition, 

some possible improvements are suggested that could be done in order to make the tagger better 

in some respects. 
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2. BASIC PRINCIPLES OF PART-OF-SPEECH TAGGING 

2.1  INTRODUCTION 

The purpose of this chapter is not to give an exhaustive overview on all the techniques that are 

or ever have been used to solve the part-of-speech tagging task. What we are seeking to do here 

is provide an essential theoretical background for the things that will be dealt with in the 

subsequent chapters; in particular, techniques that are going to have at least some relevance to 

the methods we are proposing in this work are described here. Since employing neural networks 

in solving the task is a topic of special interest to us, a separate chapter will be devoted to this 

matter and we are not going to discuss it here.We are going to use certain conventions in the 

remaining text. The notation w1 : : : wn, alternatively written as w1
n refers to a bare (un-tagged) 

sequence of n words or tokens. The terms word and token are to be understood as 

interchangeable, so ‘words’ include also various non-lexical items such as punctuation marks, 

frequently found in cor-pora. The set of all words in a vocabulary learnt from a corpus will be 

denoted as W, its cardinality being W . A sequence of n part-of-speech tags will be written as 

t1 …… tn or briefly tn
1. The tagset corresponding to a particular corpus will be denoted as T , 

the cardinality of this set is T . The notations Wn and T n refer to the sets of all possible word or 

tag sequences of the length n, respectively. In case that only a subsequence of a word or tag 

sequence is being dealt with, the shorthand notations wk
l = wkwk+1….. wl-1 wl and tl

k = tktk+1 ….. 

ti-1….tl are going to be used. 

 

2.2  DISCRIMINATIVE AND GENERATIVE MODELS 

2.2.1 Discriminative Models 

Given a sequence of tokens wn1 = w1 … :wn, the common goal of all part-of-speech tagging 

techniques is to find the most likely sequence of tags tn1 = t1 : : : tn. Formally put, we are trying 

to find such a sequence ^tn1 among all the possible sequences tn1 such that  
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Since it is impossible to find the exact values of P(tn1 Jwn 1 ) for each pair of sequences wn1 ; 

tn1 , various approximation techniques are used to estimate them. By definition of conditional 

probability, 

                                                                                  

  

This can be easily seen to be equal to  

 

 

which can be expressed in terms of conditional probabilities as  

 

 

Now, instead of computing the probability P(tn1 jwn1 ), it suffices to find the values of each 

factor in 2.4 and calculate the product instead. Even though the task itself is not any more 

feasible than the original one if insisting on the precise values, it makes it possible to make 

certain simplifying assumptions. These adopted, estimating the conditional probabilities need 

not be an insurmountable problem any longer.  

Two kinds of assumptions are frequently employed in part-of-speech taggers, both cropping the 

context that is taken as relevant for the current tag. The first one limits the number of words on 

which the current tag depends. Typically, only one word is taken into consideration, i.e. 

 

 

The other assumption concerns the number of preceding tags which affect the probability of the 

current tag. Depending on this, the corresponding taggers are termed unigram (no previous tags 

are taken account of), bigram (one preceding tag), trigram (two preceding tags) 
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or quadrigram (three preceding tags). Due to the sparse data problem, longer context are hardly 

ever made use of in existing taggers. Considering now the trigram assumption as an example, 

a tag probability is approximated as 

 

Taking both assumptions together, we yield the following approximation, frequently used in 

existing taggers: 

 

  
By substituting into equation 2.4 and subsequently 2.1, the most likely tag sequence tn1 

for given wn 1 can be found as 

 

 

For practical reasons, it is more convenient to take a logarithm (to an arbitrary base) of the 

product; as the logarithm is a monotonically increasing function, it does not affect the result of 

the arg max operator. 

 

Models which estimate the probability of a tag sequence in a way like the one in 2.8 are 

commonly referred to as discriminative models. These constitute one of the two major classes 

of statistical taggers. The idea behind this technique is fairly straightforward: provided a 

training set of labeled data, the model strives to learn conditional probabilities of each tag in 

combination with every possible context; be they estimated from the respective conditional 

relative frequencies or in a different way. 
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2.1.2 Generative Models 

 

An alternative approach, possibly a little less intuitive for the first sight, is represented by the 

so-called generative models. We have just seen that discriminative models estimate the 

posterior probability of each sequence of tags given a particular word sequence. Generative 

models, on the other hand, compute prior probabilities of the possible tag sequences together 

with likelihoods of the word sequence being ‘generated’ by the particular tag sequence. The 

following text should make it clear how to understand this—so far perhaps a bit obscure— 

terminology. 

Let us go back to equation 2.1 again. It can be converted into a  different form which can be 

more suitable for certain uses. We can apply Bayes’ rule to the term P(tn1 jwn1 ), which yields 

 

 
For a given word sequence wn1 , the probability P(wn1 ) is effectively a constant. While its 

exact value is unknown, it is clear that dividing the numerator by this constant does not affect 

the result of the arg max operator in any way and as such can be left out from the formula: 

 

 

It should be obvious by now why models using this approach are termed ‘generative’. For each 

possible sequence tn1 , we estimate two probabilities: P(tn1), the probability of the given tag 

sequence no matter what  the words in wn1 are, and P(wn1 jtn1), the probability of the sentence 

among all possible sentences with the same structure, i.e. those which are ‘generated’ by tn1 

.Both probabilities on the right-hand side can be approximated if simplifying assumptions 

similar to those in 2.5 and 2.6 are made. Adopting, say, the trigram assumption as in 2.6, P(tn1 

) can be converted to the form  

 

As for the probability P(wn1 jtn1), the assumption most frequently made is that the probability 

of a word appearing at given position only depends on the corresponding tag, not on the other 
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tags or words in the sequence. (Note that this assumption is not equivalent to the one made in 

2.5.) The probability P(wn1 jtn1) can thus be simplified to  

 

 

Taking now equations 2.12 and 2.13 together and substituting into equation 2.11, we come to 

the following formula, central to many existing taggers: 

 

 

 

The sum of log probabilities can be used here for computation of the most likely tag sequence 

instead of the product of probabilities in the  

 

Figure 2.1: Illustration of the fundamental difference between discriminative and generative    

models. 
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In discriminative models, the probability of a tag sequence is obtained by multiplying the 

probabilities of individual tags in given contexts. In generative models, on the other hand, two 

kinds of probabilities are used: transition probabilities, telling how likely a given sequence (in 

this case, pair) of tags is to appear, and emission probabilities, stating how likely each single 

word is to appear given the corresponding tag. 

same way as it was done in equation 2.9:  

 

 

2.1.3 Viterbi Algorithm 

However simple the formula 2.15 for the most likely tag sequence may seem in theory, it does 

not give straightforward instructions how to find ^tn1 within a reasonable time frame. A naïve 

approach taking all possible tag sequences of the length n would fail to accomplish this task 

(except for a couple values of n close to zero) due to the exponential complexity. 

Fortunately, a dynamic programming algorithm for solving Hidden Markov Models was 

developed by Andrew Viterbi in 1967, which guarantees to find the optimal solution in a 

significantly shorter time. The algorithm is shown in figure 2.2. It basically consist in creating 

a table in which the log probabilities of each tag are computed for each wi. The probabilities 

calculated for each word are reused in computing the probabilities of the word that follows. 

Once the table has been filled, the path which maximizes the overall probability of a tag 

sequence (the Viterbi path) is found and the most likely tag sequence is returned.  
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Figure 2.2: Viterbi algorithm 
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                                            3.      NEURAL NETWORKS 

3.1  INTRODUCTION  

Neural networks are a machine learning technique incorporating principles that have been 

observed in biological nervous systems. A biological neuron is a cell consisting of a body, 

multiple smaller protrusions called dendrites and a single long protrusion called an axon. On 

the surface of the dendrites are found numerous spots called synapses, whereby axons of other 

neurons are connected to the neuron. Every now and then, the axons fire an electric impulse 

which affects the permeability of the cell membrane in such a way that the voltage inside the 

neuron body increases slightly. The more activations come from other neurons, the higher the 

voltage grows. At the base of the axon is a center which ‘measures’ the voltage permanently. 

As long as the voltage value lies below a certain threshold, nothing particular happens. Once 

this threshold has been exceeded, the neuron fires an action potential, meaning that a wave of 

high voltage starts propagating towards the end of the axon. This axon can be attached to the 

dendrites of one or more other neurons, where the process is repeated in an analogous way. This 

simplified mechanism of function of biological neurons is simulated by artificial neuron 

networks. Like their biological counterparts, also artificial neurons are units which contain one 

or more inputs and a single output. Depending on how much non-zero inputs the neuron 

receives, it either remains inactive, giving a zero output, or generates an action potential, 

represented by a non-zero output. Multiple neurons can be connected to one another, producing 

an (artificial) neural network. The following sections will describe the functioning of neural 

networks in more detail. This chapter draws mainly on [19], to which book the reader should 

refer for more information.  
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Figure 3.1: An example neuron unit with five inputs and bias 

3.2  PERCEPTRON 

The basic constituent unit of most neural networks is called a perceptron or simply an 

(articifical) neuron. It can be viewed as a simplified model of a biological neuron. Much like 

its biological counterpart, a perceptron is sort of a ‘black box’ with some fixed number of inputs 

(sometimes referred to as dendrites) and a single output (also known as the axon).Each input 

has a corresponding weight indicating the extent to which the particular connection influences 

the resulting output. The rough idea described above can be formalized as follows. Let X = 

(x1……xn) be the vector of input values and w = (w1……wn) the vector of the corresponding 

weights. To calculate the output, we need to compute the weighted sum  

              (3.1)                      

(sometimes called the inner potential of the neuron) first. The weighted sum is subsequently 

passed to the activation function _, yielding the output 

              (3.2)                       

 

The activation function _ may be of various kinds, depending on the task the neuron is designed 

to perform. In the case of (two-class) classification, threshold activation functions are widely 

used. A threshold The (two-dimensional) sample vectors are split into two groups, labeled either 

as 0 (red points) or 1 (blue points). The current weight vector w(k) defines a hyperplane h(k) 



 

 12 

which splits the vector space into two half-spaces. Samples in one half-space (the ‘left’ one in 

the graph) are classified as 0, samples in the other one as 1.  

This configuration gives rise to two classification errors: one false negative (x1) and one false 

positive (x2). The new weight vector w(k+1) is obtained from the old one by adding all the 

vectors corresponding to the false negative samples (here only x1) and subtracting the fals 

positive. 

vectors (x2 in our case). (In fact, the error vectors are multiplied by the parameter " first; 

 here ɛ = 1.) It is the normal vector of a new separating hyperplane h(k+1), which already 

classifies all the samples correctly.activation function has a general form  

 

where h is an arbitrary (but fixed) real-valued parameter. Like in a biological 

neuron, the ‘action potential’ (i.e. non-zero output) is generated whenever the weighted sum of 

inputs exceeds a pre-defined threshold value and vice versa. 

A variant of an artificial neuron is a neuron with bias. Such a neuron contains an extra formal 

input x0 whose value is always 1. This input has a corresponding weight w0. When the weighted 

sum is computed, the product w0x0 = w0 is also included in it, effectively adding w0 to 

the weighted sum of the remaining inputs. Note that if w0 = 􀀀h where h is the threshold 

mentioned above, the activation function _ can be equivalently defined as  

 

This approach is more convenient for many uses, notably for learning, as will be shown 

in a short while. Henceforth, any mention of the term ‘neuron’ is to be understood as a neuron 

with bias unless specified otherwise. 
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Figure 3.2: Geometric interpretation of perceptron classification and learning. 

 

3.3 PERCEPTRON LEARNING ALGORITHM 

 

Considering what has been said so far, a neuron can be viewed as an nary function from Rn to 

the set f0; 1g. For each n-dimensional real vector, it returns either 0 or 1, the choice being made 

as defined in 3.2. Note that _ = w0x0 + …… + wnxn = 0 is an equation of an (n - 1)-dimensional 

hyperplane which separates the space Rn into two  half-spaces. The first half-space contains 

precisely those vectors X for which £(X) ≥ 0; the other half-space those for which £( X) < 0. 

This hyperplane is fully defined by the vector w = (w0……wn): the components (w1……wn) 

constitute the normal vector of the hyperplane, while the terms w0 w1………w0 wn define its 

intersection points with the corresponding axes. In every subsequent step, the weights are 

computed as 
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It was shown already by Frank Rosenblatt that the algorithm always converges, provided that 

the sets of examples labeled with 0, resp. 1 are linearly separable. That is to say, if a 

hyperplaneexists such that all examples labeled as 0 are located on one side of it and all 

examples: 

labeled as 1 on the other, the algorithm guarantees to find it in a finite time.The condition of 

linear separability imposes a strong limitation on the data to which the perceptron algorithm 

can be applied. Not only it fails to learn functions as simple as the logical XOR, but—more 

importantly—the algorithm is not robust enough to cope with outliers. 

A single outlier in the vicinity of the other cluster is enough to make the algorithm run ad 

infinitum without success. Since real-life data are generally not linearly separable, other 

techniques must be employed to build a succesful classifier.  

 

 

3.4 FAST PERCEPTRON TRAINING 

 

The basic perceptron algorithm, as formulated in the previous section, raises a couple of 

questions which ought to be discussed first in order to boost the algorithm’s effectively (most 

importantly, the rate of convergence).First, what values should the weights be set to during the 

initialization? And second, how to choose the optimal value for the parameter ", i.e. learning 

rate? Should it be constant, or is it better for it to change in each iteration?  

One method to tackle these issues was proposed by [5]. In their approach, the centers of both 

classes of samples are computed first in the following manner: 
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The vector w = C1 - C0j is then used as the initial weight vector (w1…..wn). The method to 

find the initial weight vector is illustrated  

 

Figure 3.3: Initialization of weights according  

 

The centres (C0;C1) were computed for both classes of samples. The initial weight vector w(0) 

was then set to C1-C0. Finally, the bias w0 was set to C0+ C1-C02 which ensures that, 

the initial separating hyperplane h(0) passes halfway between C0 and C1. In this setup, a 

substantial number of samples is already assigned to the correct class, even though a handful of 

samples are still classified incorrectly. 

in Figure 3.3. As regards the initial bias w0, the authors suggest using the Scut method, 

originally developed by [20]. Roughly speaking, it means to go through the training samples 

one by one, shift the separating hyperplane to pass through the particular sample by choosing 

an appropriate bias value and compute the ‘quality’ of such a configuration (e.g. accuracy or F-

measure). The best scoring bias value is then used as the actual bias in the initialization.Apart 

from the initialization, the authors also suggest a modified stepwise learning rule for the 

adaptation of the weights, see Figure 3.4.In the traditional approach, the output values are 
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computed for each sample and the weights are subsequently updated in such a way that the 

separating hyperplane is rotated in the direction of the misclassified samples. The extent to 

which the weights are modified is co-determined by the parameter ", which has to be assessed 

experimentally. The modified variant is both similar and different. It also determines the 

incorrectly classified samples of both types—false positives (FP) and false negatives (FN)—

using the current weights first. After that, the respective centers FP and FN are computed in the 

following fashion: 

 

 

  

   

 

The error vector e is obtained by subtracting FP-FN. (Recall that in the traditional 

approach),After words identically in both approaches a multiple of the error vector is added to 

the current weight vector : 
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Figure 3.4: Illustration of one step in fast perceptron training according to [5] 

         

We are trying to find a hyperplane (in this case, line) which separates two classes of examples 

from each other. The separating line corresponding to the current weight vector w(k) is labeled 

as h(k). Apparently, a certain number of samples from the class 0 are incorrectly classified as 1 

(“false positives” in the left grey area) and contrarily, other samples from the class 1 are 

misclassified as 0 (“false negatives” in the right grey area). The centers FP, resp. FN are 

computed for all false positives, resp. false negatives, following which the error vector e can be 

obtained. Finally, the weights are adapted in such a way that both FP and FN lie on the new 

separating hyperplane h(k+1).The major benefit of the new approach is that the value of " can 

be calculated precisely. It is done by adopting the assumption that a hyperplane passing through 

the points FP and FN will lead to an improvement in the classification rate. Since these points 

are the centers of the respective misclassified sets, it follows that about half of the previously 

misclassified samples will now be classified correctly. (Naturally, new erroneously classified 

samples may emerge instead.) It can be seen that setting "(k) to  
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3.5 MULTI-LAYER FEED FORWARD NETWORKS 

 

In the case of a single neuron unit described above, the output value was directly used as the 

final result indicating the class assigned to the input vector. An alternative option to make use 

of the output is to pass it as an input of another neuron instead. In this way it is possible to create 

a network of interconnected neurons, in certain aspects analogous to biological neural networks. 

Numerous different topologies have been used in practice for different purposes. One of the 

most widely used type of neural networks are the so-called multi-layer feedforward networks. 

Since these have been employed in part-of-speech tagging as well, they are of a particular 

importance for this thesis. It is therefore worth saying a few words about their structure, 

computation and mechanism of learning first. 

 

 

Figure 3.5: An example MLP network with two hidden layers 

As the name hints, multi-layer feedforward networks, also known as multi-layer perceptrons 

(MLPs) consist of a certain number of neurons which are split into several disjoint sets, so called 

layers. Every MLP contains an input layer, to which the input vector is fed, and an output layer, 

which produces the vector of output values. In addition, the network may contain one or more 

hidden layers, located between the input and the output layer. Each neuron is connected to all 

the neurons in the adjacent layers: the outputs of the neurons from the previous layer serve as 

inputs and the output is passed to input of the neurons in the next layer. 
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As with a single perceptron unit, various activation functions can be used. For reasons that will 

be shown shortly, it is required that it be differentiable. As the threshold function cannot be 

used (it is discontinuous in 0), other functions of a similar shape are often employed instead. 

Two frequently used examples are the logistic sigmoid (3.11) and the hyperbolic tangent (3.12): 

 

 

  

  

These functions behave in an analogous way to the threshold function in that they return a value 

close to the maximum (1 in this case) in for sufficiently large inputs; similarly, a value close to 

the minimum (0, resp. -1) is returned for inputs low enough. Between these two extremes, the 

functions grow continuously, their growth rate being determined by the parameter _ (in the 

logistic sigmoid), resp. b (in the hyperbolic tangent). 

3.6 BACK-PROPAGATION LEARNING ALGORITHM 

Let us consider an arbitrary multilayer perceptron network. Let N be the set of all the neurons 

it consists of, IN  N the set of the neurons in the input layer and OUT _ N the set of the neurons 

in the output layer. The individual neurons are indexed by numbers from 1 to jNj. The weight 

of the connection from a neuron i to a neuron j is denoted by wji, the set of all the weights by 

W. The notation i! refers to the set of all the neurons to which a connection from i exists, and 

contrarily, i  is the set of all the neurons which are connected to the input of i. Once all the 

output vectors yk have been obtained, they need to   be compared to the desired output vectors 

dk to determine how well  the network does and in what way the weights should be modified to  

improve the performance. To do so, we define the squared error function  E(w) of the network’s 

weight vector as  

 

 

Where Ek(w) is the partial error function of the network for the k-th training sample defined as: 
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The more training samples generated incorrect outputs, the higher the value of the squared error 

function is, and vice versa. If the network produces correct outputs for all the samples, the 

squared error is zero. The problem of finding the best weights for a network is therefore 

equivalent to the problem of finding the global minimum of the function E. One way to find the 

global minimum is to compute the gradient ∇E(w) = ( ∂wji 
)wji∈W   in the point w, corresponding 

to the current vector of all the weights wji in the network. The gradient is a vector which 

determines the direction of the fastest growth of the error function in the specified point, as well 

as the steepness of the slope in the respective direction. If the gradient is subtracted from the 

current weight vector, we obtain a new vector which is likely to lie ‘below’ the original one in 

terms of the value of E. Therefore, the vector w is updated in the t-th iteration (t = 1; 2….) as 

follows: 

 

 

 

The parameter " determines the learning rate much like in the case of the basic perceptron 

learning algorithm. Here it specifies the coefficient by which the gradient vector is multiplied 

prior to its subtraction.Its value can change in every iteration and is usually set to values 

between 0 and 1. 
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4.   HISTORICAL OVERVIEW 

4.1  NAKAMURA AND SHIKANO (1989) 

One of the earliest attempts to employ neural networks in word category prediction was made 

by [11] . In their paper, the authors presented a tool for estimating the most likely part-of- speech 

tags based on the left context of a chosen size. Such a tool was not a tagger in the usual sense: 

rather than disambiguating among the possible tags for each word, it learned the probability 

distributions of individual n-gram tag sequences and stored them in a compact way the trained 

network. The performance of this approach was comparable to that of previously used statistical 

methods; moreover, the number of free parameters did not increase exponentially with growing 

length of context, a notable improvement in comparison to the statistical approach. The network 

Nakamura and Shikano used was a 4-layered perceptron network trained via a slightly modified 

version of the back propagation algorithm. Its basic constituent unit was so-called bigram 

network, which approximated the probability distribution of tag-to-tag transitions: given a 

particular tag on the input (represented by setting the corresponding input neuron to 1), the 

network generated a vector of numbers, each of them higher or lower according to the rate at 

which the corresponding tag occurred after the input tag in the training data. The subsequent 

cluster analysis of values of the neurons of the lower hidden layer, when run on the individual 

word categories, shown that the network displays similar behavior for categories that form 

linguistically meaningful groups (e.g. forms of the verb be, subjective pronouns, categories 

which can come before nouns etc.). The ability to extract various additional linguistic 

information from texts has been observed numerous times in multiple types of neural networks 

let us mention self-organizing semantic maps by [16] as a notable example and demonstrates 

the strength of this approach. 

4.2  SCHMID (1994) 

Drawing on the work by [11] mentioned in the previous section, [18] constructed the first 

notable part-of- speech tagger based on neural networks, named NetTagger.The network used 

in NetTagger is a classical MLP network, reproduced  here in figure 4.1. The input layer collects 

various information  about the current token and its context. These are subsequently propagated  

through several hidden layers to the output layer. Each neuron of the output layer represents 

one part-of-speech tag in the particular  tagset. From the output neurons, the one with the highest 

output value is returned as the result, suggesting the most likely tag for the current token. 

 



 

 22 

 
Figure 4.1: Topology of the MLP network used in [18]      

The network is trained on a corpus of manually tagged sentences. Each sentence is converted 

into a set of training samples representing one word each. The input vector is generated in 

exactly the same way as in the active phase (i.e. lexical probabilities of the words within 

context). The desired output is 0 for all output neurons except the correct one, whose expected 

output is set to 1.The reccurence brought about by re-using the outputs pertaining to previous 

words is reflected in the adaptive phase too. Instead of feeding the input neurons representing 

the left context directly with the network output (which is far from correct in the early learning 

phase), a weighted average of the desired output and the actual output is used instead. 
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Figure 4.2: Topology of one of the MLP networks used by [10]     

 

4.3 MARQUES AND LOPES (1996) 

Another early attempt to make use of neural networks in part-of-speech tagging was made by 

Marques and Lopes (1996) for Portuguese. In many aspects it resembled the one described by 

Schmid two years earlier (see above). As in the previous cases, it was also based on multilaye 

perceptrons. A total of three topologies were tested, all of them employing a context of length 

1 the following word.In the first topology, only input and output layer were used. Each output 

neuron corresponded to one particular tag. The input layer was divided into two blocks, the first 

one representing the word under consideration, and the second one the word to its right. The 

input neurons in each block represented probabilities of individual tags for the corresponding 

word. In the second topology, the network was enlarged by adding an extra hidden layer 

between the input and output layer; the number of these units was unspecified in the article. 

Finally, the third topology used was based on [4] . In this case, each neuron in the context block 

was recurrently connected to itself via an identity link, i.e. the weight was fixed to 1. In addition, 

each neuron in the hidden layer was connected via an identity link to one neuron in the context 

block. This recurrence, not dissimilar to the one used by Schmid, introduces a notion of (short-

time) memory to the network. This topology is sketched in Figure 4.2.All three topologies were 

tested with several in several configurations, using either external resources to generate 

probability vectors, or computing these from the training corpus. Perhaps a bit surprisingly, the 
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simple network without a hidden layer systematically achieved better scores than either of the 

two topologies that contained a hidden layer. 

 

4.4 PÉREZ-ORTIZ AND FORCADA (2001) 

 

The method proposed by [14] is different from the former approaches in that it does not require 

a manually disambiguated corpus for training. Instead, it learns from an ambiguously tagged 

corpus, i.e. corpus in which each word is assigned to a set of one or more part-of-speech tags 

that are applicable for the particular word form (regardless of the context). Such a corpus can 

be easily created from a raw corpus e.g. by running a morphological analyser for each word. 

The sets of possible tags are also referred to as ambiguity classes. Since the number of 

ambiguity classes in a typical corpus is substantially lower compared to the number of different 

word forms, converting words to ambiguity classes and throwing away any other information 

can be a good way to simplify the complex task of part-of-speech tagging. This is exactly what 

the first step of the proposed method looks like. 

Once the sentences have been transformed into sequences of ambiguity classes, a two-phase 

training of the tagger begins. An Elman network is used, i.e. network containing recurrent 

identity links from the hidden layer to a part of the input layer. The network is trained first to 

predict the ambiguity class of the next word given the current ambiguity class and a left context, 

remembered in a context unit. When the training is complete, the network is activated for each 

word by passing its ambiguity class to the input and the hidden state vector is saved. The hidden 

state vector of each word is subsequently used for training another perceptron (probably 

intended to denote a MLP), the purpose of which is to choose the correct tag for the word f 

positions to the left (i.e. the decision about a word’s tag is postponed to a moment when f 

following words have been read as well). Each part-of-speech tag has assigned its own output 

neuron; its desired output value during the training is non-zero (e.g. one) if the tag is contained 

in the ambiguity class and zero otherwise. This approach was shown to achieve the accuracy of 

about 54.5%,significantly worse if compared to supervised methods learning from 

disambiguated corpora, but having an important advantage in that the training data can be 

obtained very easily, without need to expend considerable resources to create a manually tagged 

training corpus. 
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4.5 OTHER TAGGERS DRAWING ON SCHMID 

The comparative success of Schmid’s NetTagger inspired a number of authors to develop 

taggers based on the same principle, more or less modified. Apart from [10] , which was already 

described in the previous section, it is worth mentioning at least the following ones: 

 

4.5.1 Ma and Isahara (1997) 

 

[9] proposed a tagger for Thai which is able to work with a variable length of context. For 

specified lengths of the left and right context l and r (respectively), an MLP pretty much same 

as in NetTagger is constructed; in addition, further analogous networks are built which differ 

only in the length of context, which becomes shorter in every subsequent network. All networks 

are subseqently trained independently with the same data (respecting the length of context 

required). A network’s output is interpreted as a tag ti if the corresponding output neuron outi 

returns the value 1 and all the other output neurons return 0. If this is not the case, the network’s 

output is defined to be unknown. In the active phase, the data to be tagged are transformed into 

input vectors and passed to the input of each network. Afterwards, the resulting output vectors 

of individual networks are combined by using either of the logic elements AND or OR. The 

AND operator produces the tag ti if this was the result returned by every network in the system, 

unknown otherwise. OR, on the other hand, returns the tag provided by the network which 

works with the longest context whose output was not unknown. If no such network exists, 

unknown is returned instead. 

 

4.5.2 Olde et al. (1999) 

 

The tagger described in [12] is a module which constitutes a part of a bigger automated tutoring 

system, AutoTutor. Two topological variants of MLP were tested during its development. As 

usually, each output neuron out1…..outT  represented one part-of-speech tag.  

The input layer comprised three blocks corresponding to the word being tagged and its 

neighbours, each of the size T (cardinality of the tagset). The input vector consisted of estimated 

probabilities of individual tags for given words, exactly like in NetTagger. The second topology 

contained four extra input neurons indicating whether the current word starts a sentence or 

whether it is on the second, third or last position in the sentence. Unlike NetTagger, the network 

did not incorporate recurrent links of any kind. 
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4.5.3 Poel et al. (2008) 

 

A 2008 paper by [13] describes another MLP-based part-of- speech tagger for the Dutch 

language. Again, the input consists of tag probability vectors generated for each word within 

the context window. Out of the window sizes examined, the best accuracy was achieved for 

sizes 3-2, 3-3 and 4-3 (the numbers specify the length of the left and right context, respectively). 

The best scoring sizes of the hidden layer were 250 and 370. An important change to the 

methods presented so far was made in handling unknown words. Instead of constructing a suffix 

guesser like in [18], each candidate tag was simply assigned an equal probability. From the total 

of 72 tags in the tagset, the 9 which occured most frequently with unknown words (and covered 

about 98% of these) were chosen as candidates. These tags were identified by a 10-fold cross 

validation on the training set. 

 

4.6 Collins (2002) 

 

We have seen earlier that generative models compute the score (i.e. log joint probability) of 

given pair wn1…..tn1as the sum of certain parameters generated for each tag in the sequence 

with respect to the context. In 2.15, two parameters were utilized for each tag: log P(wijti) and 

log P(tijti􀀀1 i􀀀2). 
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Notation  

Let F denote the set of all features φf , f = 1, . . . , |F | we are working 
n  n with. Let further S be the set of training sentences si = (wi

1 

, t1i
 ), i =  

1, . . . , |S|. The parameter E will represent the (arbitrarily chosen)  

number of training epochs. Finally, the notation α(e),i will refer to f 

the value of the weight αf in the e-th epoch immediately after the 

sentence si has been processed.  

Algorithm  

  

d  Initialize the vector α˙(0),i = (α(0), . . . , α(0) ) to zeros.  
 1  |F|  

d For e in 1, . . . , E:  

y Repeat for each tagged sentence si = (wni , tni ) in the training corpus 

until tˆni   = tni : 1 1  
 1  1  

¤ Run the Viterbi algorithm to find the best scoring sequence tˆni   

which satisfies the following equality, as defined above: 1  
Σ  
 tˆni   = arg max α(e−1),iΦf (wn   

 (4.8)  

 1  ni T ni  f  
τ  
 1  f  
  

¤  If tˆni   ƒ= tni , update every weight αf  in the following fash-  
1  1 ion:  

α(e),i = α(e−1),i + Φf (wni , tni ) − Φf (wni , tˆni ) (4.9) f f 1 1 1 1  

  

d For each f = 1, . . . , |F | compute  

 αf =   1   ΣE    Σ|S| α(fe ),i  (4.10)  

E · |S|  
e=1 i=1  

d  Return the weight vector α˙  = (α1, . . . , α|F|).  

 

Figure 4.3: Averaged perceptron algorithm used in [2]         
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4.7 JANICKI (2004) 

 

The tagger constructed by [7] for Polish differs from those mentioned so far in that in assigns 

tags on the basis of the word form itself, irrespective of the words which come before or after 

it. Moreover, only the last 7 characters of each word are taken into consideration. Since the 

tagger is designed to handle alphabetical characters only, each position may contain one of the 

35 letters of the Polish alphabet or a space (prepended in front of words shorter than 7 letters). 

The input layer therefore consists of seven blocks containing 36 units each. When a word is 

being transformed into a binary input vector, one unit in each block is set to 1 according to the 

letter at the corresponding position, the others are set to 0. The output layer contains one unit 

for each tag as usually; the tag whose unit gives the highest output is then returned as the result. 

The network contains no hidden layers.To speed up the learning process, the number of neurons 

in the input layer was reduced to lower values, which were subsequently tested for performance. 

The size of 50 turned out to achieve an accuracy only slightly worse compared to the non-

reduced input layer. Unfortunately, the author does not specify the criterion by which the inputs 

were chosen into the reduced network.It turned out that a significant improvement can be 

achieved by using two separate networks, one for words shorter than six characters and the 

other for words containing six or more characters. The reason for this distinction is the fact that 

short words are more likely to be irregular or following slightly different morphological rules 

than the long ones. With this configuration the tagger achieved an accuracy of about 98%. 

Naturally, Janicki’s method has its limitations. It is based on the assumption that the part of 

speech is more or less fully determined by the word form itself. This is possible for languages 

with rich morphology like Polish in which relatively little part-of-speech ambiguity exists. 

While Polish makes it possible to distinguish words like praca ‘a work’ vs. pracowac ‘to work’ 

right away, in English it is essential to take account of the neighbouring words as well, for 

example by checking whether it is preceded by a determiner, or rather by the infinitive particle 

to. 
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5. PROPOSED TAGGER 

 

5.1 METHOD 1: RECURRENT MLP NETWORK 

The first method draws on the ideas of [18] .The core part of the tagger is a set of multilayer 

perceptron networks, the topology of which is shown in figure 1. Each network functions as a 

binary classifier choosing one out of two candidate tags. The output layer contains two neurons 

corresponding to the two tags in question. Upon activation, the tag whose neuron gives higher 

output is chosen as the result and assigned to the corresponding word.The input layer consists 

of three blocks of neurons which represent the preceding word, the following word (we will 

refer to these blocks as the left context block and right context block, respectively) and finally 

the word to be tagged (referred to as the input word block in the following text). The left and 

right context blocks both contain T neurons where is the size of the tag set. The input word 

block consists of two neurons which represent the two tags between which we want to 

disambiguate. The tagging of a sentence w1 … :wn goes from the end to beginning as follows. 

For each word wi, its left and right neighbor wi+1 and wi+1 (respectively) are obtained. Supposing 

that wi  is ambiguous between tags tk and tl, we pick the corresponding network and feed  The 

tagger uses a whole system of such networks, each functioning as a binary classifier deciding 

between two tags. This particular network makes a choice between the tags tj and tk. Note that 

the recurrent link connecting the output layer with the left context block is only relevant in the 

active phase; it is not utilized during the training. 

 

Figure 5.1 Topology of the MLP network used in method 1 
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The estimated probabilities P (tk|wi); P (tk|wj) into the neurons of the input word block. 

Similarly, the probabilities P (tm|wi 1); m = 1….. T are passed to the input of the neurons in the 

left context block. The right context block is a recurrent unit which is fed with output values 

obtained in the previous run, i.e. for the word to the right of the current one. If the following 

word was for example ambiguous between tk and tl and the corresponding network produced 

output values yk and yl, the neurons representing these tags in the right context block will be 

passed these values to the input, all the other inputs being set to 0.Each network also includes 

a single hidden layer, which contains eight neurons. Among the numbers which were tested—

from a few up to several hundred—this turned out to provide best classification accuracy. The 

hidden neurons use the hyperbolic tangent as their activation function, since it yields better 

results compared to the logistic sigmoid.Naturally, not all words are ambiguous between exactly 

two part-of-speech categories. Some are virtually unambiguous (e.g. the, where), some can be, 

on the other hand, assigned to a higher number of different tags (e.g. round, which can in 

different contexts function as a noun, adjective, verb, adverb or preposition). Moreover, if a 

word to be tagged does not appear in the training corpus, we typically want the guesser (based 

on suffixes in our case) to generate a high recall/low precision set of candidate tags, which can 

best be accomplished if more tags are included rather than less. For these reasons, we need to 

be able to convert the multi-class classification problem into such a form that the networks 

described above can be used for solving it.The solution for a candidate tag set of an arbitrary 

cardinality is following: if only one candidate tag is present, it is returned as the result. In the 

next iteration (i.e. when the preceding word is being processed), the value 1 is passed to the 

input of the corresponding neuron in the right context block, all the other ones being set to 0. 

In the case of two or more candidate tags, all subsets of cardinality 2 are generated. For each 

subset, the corresponding network is found (if it exists) and activated with the appropriate input 

vector. For each tag, the total number of ‘victories’ is counted. The tag which won most times—

let us call it tmax for now—is returned as the result. If there is a draw between two or more tags, 

the default tag, i.e. the most common one in the training corpus, is used instead. In the next 

iteration, the input neuron in the right context block corresponding to this winner is set to 1. 

Each neuron of this block representing one of the other candidate tags—say, tk—is set to the 

output value outk for this tag divided by the output outmax for the winning tag as computed by 

the network deciding between tk and tmax. If such a network does not exist, the neuron for tk 

from the right context block is set to 0 instead.A special attention needs to be paid to situations 

in which sentence boundaries lie within the context, that is when processing the first or the last 

token in a sentence. Since the first (last) word does not have a left (right) context, the respective 
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context block cannot be provided with an input generated in the conventional way. A very 

simple solution has been adopted instead: whenever reaching beyond sentence boundaries, all 

the neurons in the corresponding context block are set to 0.The training of the tagger consists 

of two phases. First, a statistical model is computed from the training corpus, which is 

subsequently used for training the networks. The statistics computed in the first phase include 

particularly the tag probabilities for individual words P (t|w). These are sometimes estimated 

using the method of maximum likelihood, i.e. by dividing the number of occurrences of the 

word w tagged as t in the training corpus by the total number of occurrences of w. In our tagger, 

we use a Laplace estimator instead as it provided marginally better results. The probabilities P 

(tjw) are estimated in the following manner,where C(w, t) stands for the number of occurrences 

of the word w tagged as t in the training corpus, C(w) is the total number of occurrences of w 

and B is (in this case) the maximum number of tags any word can take, based on the data 

provided.Since the training corpus does not (and cannot) contain all words that exist in the 

respective language, a separate method has to be employed in estimating the tag probabilities 

for out-of-vocabulary items. A common method is to rely on word endings, which are in many 

languages good indicators of a word’s part-of-speech. Taking all the words with the same 

ending and averaging their tag probability distributions can therefore be used as an 

approximation of the word’s actual probability distribution.As there is no universal rule which 

length of the suffix predicts the part of speech best, suffixes of length up to 10 are used for 

building the suffixes guesser. For each suffix s in the training corpus of length from 1 to 10, the 

values C(s, t) and C(s) are determined, representing the number of words ending in s tagged as 

t and the total number of words ending in s, respectively. Using the Laplace estimator again, 

the probability of s being tagged as t is computed for each suffix s and tag t: 

Since an unknown word w ending in the suffix s = l1 …..l|s| also ends in the suffixes s’ = l2 ….. 

l|s|, s’’ = l3 …. l|s| etc., the dilemma arises as to which suffix to use to obtain a probability 

distribution. This problem is typically overcome by so-called smoothing, a technique which 

combines the probability distribution of a suffix with those of all its sub-suffixes and returns a 

single new probability distribution. When an unknown word w appears in the data to be tagged, 

the longest suffix of w that is present in the pre-computed suffix dictionary is found and its 

smoothed probability distribution is returned, which is ready to be used in the neural 

networks.The smoothed probability for a suffix s = l1 …. l|s| is calculated recursively as follows: 
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Starting from the whole suffix s, the formula incorporates probability distributions derived from 

ever shorter suffixes one by one. In the end, it reaches the stage when the probability P (tj") is 

needed to evaluate the right-hand side of the formula. This is simply put to be equal to the 

probability of the tag t itself: 

 

P (t|£) = P (t) 5) . (2  

 

It remains to explain the meaning of the parameter which appears in equation 3. Taking a value 

between 0 and 1, it functions as a weighting factor that determines how much individual sub-

suffixes of a suffix contribute to the resulting probability distribution. If = 0, only the longest 

suffix itself is taken account of. On the other hand, if = 1 is the case, all the sub-suffixes 

participate equally on the result, which is a plain average of the respective probability 

distributions. We chose to compute the value by taking the sample variance of tag probabilities 

as proposed in Brants (2000), i.e. 

 

 
      

where T denotes the cardinality of the tag set and P is the mean tag probability defined as: 

 

In fact, not all the words in the training corpus are used in construction of the suffix guesser. It 

is a common feature observed across the world’s languages that the most frequent words display 

different inflectional and derivational patterns than the infrequent ones. Apparently, the 

information that the form was is a verb in the past tense will be hardly of any help in the suffix 
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guesser since there are no other past tense forms ending in -was, -as or even -s in English. For 

this reason, we decided to leave out the common words from training the guesser. Every word 

that appears in the training corpus more than three times is considered as common.Now that the 

probabilities are computed, they can be used in net-work training. The networks are trained 

with a batch algorithm, which means that the training samples (input vectors together with their 

de-sired outputs) must be generated beforehand for each network. This is accomplished in the 

following way: 

1. Taking one word wi in the training corpus at a time, find the corresponding tag probability 

distribution as computed in the 

statistical model. Do the same for the words to its left and right, wi 1 and wi+1 (respectively). If 

either context does not exist (in the case of the first or last word in a sentence), the probability 

of each tag is set to 0. 

2. Let ti1……… tim be the tags whose probability is greater than zero for wi. Out of these, let tik 

be the tag with which wi is tagged in the corpus. Generate all the pairs of tags containing tik , 

i.e. 

 

For each of these pairs a neural network has to be constructed which functions as a binary 

classifier deciding between the two tags. Build all the networks that have not been created in 

one of the previous iterations. The input layer will contain 2T + 2 neurons, two for the current 

word and T for each of its neighbors (T is again the total size of the tagset). 

3. Generate a training sample for each network. The left and right 

context blocks of the input vector will always contain the whole tag probability vector for wi 1 

and wi+1 (respectively). 

The input word block will differ among the individual networks. If a network decides between, 

say, tij and tik , the two input neurons will be set to P (tij |wi) and P (tik |wi). The desired output 

will be 1 for the neuron representing tik and 0 for the other output neuron.Once the training 

samples have been generated, they are used for training the networks. Ten passes over each 

training set are done. The learning rate " has been set to 0:01, the momentum to 0:1 and the rate 

of weight decay to 0:01. All these number have been determined experimentally, providing the 

best accuracy and keeping the time necessary to learn on an acceptable level. 
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5.2 METHOD 2: FEATURE-BASED PERCEPTRON 

The second method is inspired by [2] and his averaged perceptron algorithm. It works with a 

substantially higher number of con-text features than the method proposed in the previous 

section. The words are converted into vectors in a multidimensional vector space, which are 

subsequently classified using binary perceptron classifiers, determining their most likely part-

of-speech tag.The feature set used in this method is shown in Figure 2. It is a modification of 

Collins’s feature set, itself drawing on [15] who used a similar feature set in his maximum 

entropy tagger. 
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Figure 5.2: The feature set used in the second method 
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The tagging of a sentence w1,……, wn goes as follows. Starting from the first word, it is checked 

which context features hold true and which do not. A feature vector of 0’s and 1’s is generated 

which contains ones precisely on those positions which correspond to the present features. For 

example, if 3 is by definition 1 iff wi 1 = the, the third component of the vector will contain 1 if 

the word previous to the current one was indeed the; it will be zero otherwise.Once the feature 

vector has been computed, it is passed as an input to a set of neurons. Each neuron represents 

one part-of-speech tag, for which it serves as a yes/no classifier, determining whether the word 

should be tagged with the respective part-of-speech or not. To speed up the tagging process, 

only those neurons are activated which correspond to the word’s possible tags. If the word was 

not present in the training corpus and it begins with a capital letter, this is changed to lowercase 

and tag candidates are checked for once again. If this still does not help, all the neurons are 

activated one after another.In the optimal case, exactly one neuron will give the output 1, all 

the other producing 0; the winner’s tag would then be returned as the result. Nevertheless, 

nothing prevents more neurons from returning 1’s; also, the situation may arise when all the 

neurons yield 0’s. For this reason, it is the inner potentials, i.e. weighted sums of the inputs, that 

are compared. The tag whose neuron’s inner potential was the highest upon activation is then 

used for tagging the word in question.It is worth noting that some features make reference to 

the previous (but not following) tags, see Figure 2. The tags assigned to preceding words by the 

mechanism described above are therefore immediately used for finding the values of these 

features in words that follow. No probabilistic computation takes place, each word is assigned 

to precisely one fixed tag at the moment when it is being processed. If a word has been 

misclassified, it can naturally have an impact on the correctness of the tags of words which 

follow. On the other hand, the system makes use of a number of other features which do not 

rely on the previous tags, so a single mistake does not necessarily mean producing nonsense in 

the whole rest of the sentence.Before the system can be used for tagging, the neurons have to 

be trained first. The idea is as straightforward as it gets: for each word wi tagged as ti in the 

training corpus, check which features hold true and generate the appropriate feature vector. This 

will be used as an input vector of each of the T neurons. The desired output value will differ 

among individual neurons: it will be 1 for the neuron which makes a decision about the tag ti, 

0 for every other neuron.The number of features increases rapidly as the training corpus grows 

bigger; it is roughly comparable to the corpus size in terms of tokens. When learning from a 

1,000,000-word corpus, a neuron with several million inputs has to be trained for each part-of-

speech tag. Clearly, this is a time demanding task which cannot be accomplished easily using 

the traditional perceptron algorithm without any modifications. The training algorithm 
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described in what follows has a significantly shorter running time compared to the perceptron, 

yet it needs to be said that for bigger corpora the required time still gets unacceptably long.The 

training algorithm used is the fast perceptron trainer of the authors [5] . During the initialization 

of the weight vector, the sam-ples are split into two classes according to the desired output (0 

or 1) and their centers C0 and C1 are computed. The initial weight vector (w1,….., wF ) is 

obtained by subtracting C1 C0. Afterwards, the value w0 of the bias has to be determined. Using 

the Scut method as proposed in the original article does not seem adequate here due to its 

extreme time complexity—for 1,000,000 training samples it would mean 1012 activations of a 

neuron with several million inputs. Instead, we chose such a bias value that the separating hyper 

plane pass through the midpoint of the line segment  

 

In the original article, the weights are adapted in every iteration in the following way: using the 

current weight vector, compute the neuron’s output for each sample. Compare the output with 

the desired output for the sample; it these two are not equal, label the sample as either false 

negative (desired output 1, actual 0) or false positive (desired output 0, actual 1). Find the 

respective centers FN; FP for the sets of false negative and false positive samples and modify 

the weights by adding an "-multiple of e = FP FN to the current weight vector such that both 

FN and FP lie on the new separating hyperplane. The time needed to perform a single weight 

modification step largely depends on the total number of misclassified samples: the more of 

them, the longer it takes to compute the centers FN and FP. To speed up the training, we made 

a minor modification to the algorithm: instead of taking all the misclassified samples, only 100 

of them are randomly chosen and used in finding the new weight vector.The weights are 

iteratively modified until at least one of the stopping criteria is met. Naturally, the training stops 

when the neuron classifies all the training samples correctly; moreover, it there is only one 

misclassified sample, the training is finished as well. The second stopping criterion limits the 

number of iterations to prevent an overly long train-ing without any progress: if 30 iterations 

passed without beating the best accuracy reached so far, the training is terminated and the 

weights that gave the best accuracy are kept. 
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5.3 BASELINE METHOD 

To get a better idea as to how well the proposed methods perform, a third method was used for 

comparison. It is a so-called back off tagger which itself incorporates three n-gram taggers 

trigram, bigram and unigram together with a primitive suffix guesser. For each word wi in given 

sentence w1
n, the probability   

 

is determined for each ti based on a training corpus provided beforehand; the tag with highest 

probability is then assigned to wi. If the probabilities are zero for all candidate ti’s, the tag is 

computed using the bigram probability P (ti|wi; ti 1). In the case that this step fails too, the 

unigram probability P (ti|wi) is used. If this is still not enough due to the absence of wi from the 

training data, the three-letter suffix s3
i is taken from wi and the tag ti with maximal P (ti|s

3
i) is 

assigned. Finally, it it was not possible to determine ti by any of the previous methods, the most 

frequent tag from the training corpus is chosen for ti. 

5.4 TECHNICAL DETAILS OF IMPLEMENTATION  

The tagger was implemented in the programming language Python, making use of certain 

functionality provided by [1] . The core of the system is formed by three modules named tag1, 

tag2 and tag3 which correspond to the individual tag- ging methods described above. Each 

module contains the class Tagger implementing the interface nltk.TaggerI. This essentially 

means it contains a method tag() which takes a list of tokens representing a bare sentence and 

returns a list of tuples (word, tag). One particu- lar benefit of this choice is the availability of 

the method evaluate() which, given a list of tagged sentences, readily returns the tagger’s ac- 

curacy as a number between 0 and 1. To build and train the multilayer perceptron networks in 

method 1, we used the [17] .which has been designed for this purpose. It makes it possible and 

very intuitive to build various neural networks with a desired number of layers and neurons 

with a chosen activation function. In addition to this, the training of the network can also be 

performed in a simple way, allowing one to choose the values of parameters like the learning 

rate ε, momentum and weight decay rate. Since pybrain is typically not a built-in part of Python 

installations, it has to be installed beforehand for the tagger to work properly. The same applies 

to the package nltk.The backoff tagger from method 3 was implemented using the classes 
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TrigramTagger, BigramTagger, UnigramTagger, AffixTagger and DefaultTagger, all available 

from the package nltk.The program contains an interface for training the tagger and eval- uation 

of the individual methods for the Brown corpus. The module is named test and is used in the 

following way:  

test.py [-l] [-s] [-o] -m<METHOD> <train_size> <test_size>  

There are three parameters that have to be passed to the script as command-line arguments. The 

parameter -m<METHOD> selects that is to be used for training and tagging, the options being 

-m1, -m2 or -m3. <train_size> specifies the number of sentences from the beginning of the 

corpus that will be used for training. Similarly, <test_size> determines the number of sentences 

from the end of the corpus used for evaluation. There are three more optional command-line 

arguments: -s allows to export the tagger after training into a file, from which it can be sub- 

sequently loaded by invoking the option -l. Finally, calling the script with -o generates an output 

file to which the test sentences tagged by the chosen method are written in a human-readable 

form. So, for example, if we want to train the tagger using method 2 (feature-based perceptron) 

with the first 1462 sentences from the Brown corpus, evaluate it on the last 10128 sentences 

and save the tagger into a file, it is accomplished through the following call: $ python test.py -

s -m2 1462 10128  
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6.      RESULTS AND DISCUSSION 

6.1 RESULTS 

To test the performance of the individual methods, we used the Brown corpus, a manually 

tagged English corpus of 1,161,192 words which is freely available from the package nltk. From 

the total of 57,340 sentences in the corpus, the last 10,128 sentences containing 161,194 words 

were used for testing. From the rest several training sets of different sizes were built to 

determine how the tagging accuracy changes depending on the amount of data provided. 

Training sets of five sizes were generated: 435 sentences (10,018 words), 1462 sentences 

(31,623 words), 4,600 sentences (100,012 words), 14,900 sentences (316,235 words) and 

finally the whole rest of the corpus containing 47,212 sentences (999,998 words). For each 

experiment, the accuracy was computed as the ratio of correctly tagged tokens to the total 

number of tokens. The accuracies achieved by the three methods for each training set are shown 

in tables 1 through 3. In addition, a graph plotting the results is provided in figure 3.Looking 

on the results, several observations can be made from them. Firstly, both methods 1 and 2 

performed better than method 3 (the only exception being the smallest training set), which is an 

indication that the proposed algorithms actually work. This is definitely good news, 

Table 6.1: Results for method 1 (recurrent MLP network) 

#            of sents # of words accuracy training time 

         435 10018 77.75% 50s 

1462 31623 86.24% 3m 9s 

4600 100012 90.81% 12m 40s 

14900 316235 93.27% 57m 40s 

47212 999998 94.93% 5h 46m 19s 
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Table 6.2: Results for method 2 (feature-based perceptron) 

# of sents # of words accuracy training time 

435 10018 82.41% 6m 31s 

1462 31623 89.59% 46m 24s 

4600 100012 92.96% 4h 15m 55s 

14900 316235 ? ? 

47212 999998 ? ? 

    

 

Table 6.3: Results for method 3 (backoff tagger) 

# of sents # of words accuracy training time 

435 10018 78.10% 1s 

1462 31623 85.40% 5s 

4600 100012 88.83% 13s 

14900 316235 91.08% 44s 

47212 999998 92.98% 2m 24s 

    

 

 

confirming that the proposed methods make sense. Secondly, the re-current MLP network approach 

has shorter training times compared to the feature-based perceptron; in fact, the time needed to 

train the neurons in the latter method with the two largest training sets was so long that we were 

not able to determine the respective accuracies. Thirdly, for the three smallest training sets, the 

feature-based perceptron did constantly better compared to the recurrent MLP network at the cost 

of substantially longer training times. The absolutely best accuracy achieved by any of the methods 

was 94:93%. 
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6.2 DISCUSSION 

We have seen in the previous section that the feature-based perceptron consistently provided the 

best results in terms of accuracy, as far as we were able to tell. However, the extremely long training 

time prevented us from measuring the performance for training sets containing hundreds of 

thousands or millions of tokens. This was in spite of the optimization techniques that are made use 

of during the training to accelerate the learning (see section 5.2). To determine the accuracy for 

larger corpora, the training could be performed on a supercomputer or alternatively—and better—

further optimization could be made to the learning algorithm. It is likely that many features 

(perhaps a majority of them) in our feature set do not have a significant impact on the probabilities 

of individual tags. If we were able to detect these ‘junk’ features for each tag and keep only those 

whose presence is strongly correlated with it—whether in a negative or positive way—the number 

of inputs could decrease drastically, making the time necessary for training significantly shorter.It 

is fair to say here that the best accuracy we were able to reach, 94:93%, is by far not the best 

accuracy that could be achieved by any existing tagger. For example, when the largest training set 

of 999,998 words was processed by [6] , a faster and open-source reimplementation of the 

successful tagger TnT [2], the accuracy on the same test set was 96:13%; also the training time was 

just a fraction of the time needed by either of our methods using neural learning.The only language 

for which experiments were done was English. The Brown corpus that was used for evaluation 

contains 40 different part-of-speech tags, a comparatively small tagset among tagset which are used 

in corpora. It is clear from the architecture of our tagger that larger tagsets likely increase the 

training time proportionally. This should be taken into consideration when tagging e.g. Slavic or 

Finno-Ugric languages, whose tags often incorporate numerous morphological features such as 

case, number, tense etc. This naturally leads to greater tagsets which can contain as much as several 

hundred or even more than a thousand different tags. 
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Figure 6.1: Accuracies achieved by the individual methods for each training set 

 

6.3. CONCLUSION 

In this work we proposed an automated system for part-of-speech tagging which benefits from the 

principles of neural learning. From numerous methods experimented with in the course of the 

development, the two most promising ones were chosen for a more in-depth exploration and were 

included in the tagger. The first method, using a system of recurrent multilayer perceptron 

networks, achieves an overall accuracy of 94:93% when trained on the first ca. million tokens from 

the Brown corpus and tested on the rest. The other method, based on simple threshold neurons 

processing a high number of context features was computationally too complex to converge in a 

reasonable time for the same training set; however, for all the smaller subcorpora provided for 

training, it systematically achieved a significantly better accuracy com-pared to the first method. 

As far as we were able to tell, both methods performed better than a conventional trigram-bigram-

unigram backoff tagger that was used as a baseline.  
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Time complexity is generally a major drawback of neural algorithms, though we have seen that 

certain tricks can be made to accelerate the learning. Even though the training times needed were 

rather long compared to e.g. HMM taggers, at least the first method definitely lies within the limits 

of acceptability. The second method could potentially be sped up by selecting the relevant context 

features for each tag, decreasing the amount of information needed to be processed for each word 

drastically.Notwithstanding all the imperfections that our tagger can be reproached with, we 

believe this work gives an illustrative insight into an intriguing class of lesser-used part-of-speech 

tagging techniques. Despite the criticism of neural learning that can be heard from time to time, we 

are convinced that a tagger with an aptly chosen neural architecture can make a tough competition 

to the more conventional techniques used nowadays. There is beyond all doubt a room for further 

experiments leading to an improvement in performance, both in terms of accuracy and time 

complexity. 
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