
i

 T.C.

 ALTINBAS UNIVERSITY

Graduate School of Science and Engineering

Electrical and Computer Engineering

APPLYING TEXT MINING CLASSIFICATION

FOR SOFTWARE REQUIREMENTS

PRIORITIZATION

Alialhadi Khaleel Ismael

 Master Thesis

Supervisor Asst. Prof. Dr. Sefer KURNAZ

Istanbul, 2019

ii

APPLYING TEXT MINING CLASSIFICATION FOR

SOFTWARE REQUIREMENTS PRIORITIZATION

by

Alialhadi Khaleel Ismael

 Electrical and Computer Engineering

Submitted to the Graduate School of Science and

Engineering in partial fulfillment of the

requirements for the degree of Master of Science

 ALTINBAŞ UNIVERSITY

 2019

iii

This is to certify that we have read this thesis and that in our opinion it is fully adequate, in scope and

quality, as a thesis for the degree of Master of Science

Examining Committee Members (first name belongs to the chairperson of the jury and the second name

belongs to supervisor)

Prof. Dr. Mesut RAZBONYALI

Graduation School

of Science and

Engineering,

Maltepe University

Asst. Prof. Dr. Sefer KURNAZ

School of

Engineering and Natural

Sciences, Altinbas

University

Assoc. Prof. Dr. Yasa EKŞİOĞLU ÖZOK

School of

Engineering and Natural

Sciences, Altinbas

University

I certify that this

Prof. Dr. Oğuz BAYAT

 Director

Asst. Prof. Dr. Sefer KURNAZ

 Supervisor

iv

I hereby declare that all information in this document has been obtained and presented in

accordance with academic rules and ethical conduct. I also declare that, as required by these

rules and conduct, I have fully cited and referenced all material and results that are not original

to this work.

 Alialhadi Khaleel Ismael

v

DEDICATION

First and foremost, I would like to thank Allah Almighty for giving me the knowledge, ability and

opportunity to undertake this research study and to persevere and complete it satisfactorily. Heartfelt

thanks goes to my father and my mother. Every success is a direct consequence of their influence in my

life and their love. At the end I have to mention my family for their support and love.

vi

ACKNOWLEDGEMENTS

 I would like to express my sincere gratitude to Supervisor Dr. Sefer KURNAZ for all the knowledge

and support he provided during my study for the Master Degree and throughout the work to complete

this thesis and I have to mention the kindness and the support to all my friend MOHAMMED RAOOF

which did not leave me alone the whole time at the courses and while doing this thesis.

vii

ABSTRACT

APPLYING TEXT MINING CLASSIFICATION FOR SOFTWARE

REQUIREMENTS PRIORITIZATION

Alialhadi Khaleel Ismael

M.S, Electrical and Computer Engineering, Altınbaş University

 Supervisor:Asst Prof.Dr. Sefer Kurnaz

 Date: 7/2019

 Pages: 66

Software product Priorities are needed in order to discover the most important parts of the product to

be developed at first, as the capacity of the development team is constrained by the number of the

workers involved, the experience of the individuals, the same as the good coordination of the whole

team and the necessity to detect the conflicts among the requirements and planning the sequence of

the requirements to be implemented and released. In the this paper , we have review the application

of requirements prioritization automation by means of machine learning to the open source

applications and software.As the development in the field of ML proceeds, there are many

possibilities to utilize the advancements. One of them is the automation of analytic work performed

up to now by humans. Requirements prioritization is one of them. It is time consuming and knowledge

demanding activity and with the growing number of requirements it can get easily unfeasible for a

human being to evaluate every requirement. The first part of this study is the literature review and

related works in the field requirements prioritization automation. the second part we have reviewed

some text mining background, the third discusses the relevant mechanics and problems of the open

source software (OSS) projects.We have analyzed the options for solving the problems of OSS

projects requirements management with particular emphasis on the ASF OSS projects, which are

interesting with their open development approach. in the fourth part, we propose a system design,

using the synthetic methodology of combining different known approaches to solve the particular

problems of the OSS projects and the automation of the requirements prioritization process. the fifth

part is devoted to the evaluation of the proposed system design with a prototype on apache software

viii

foundation (ASF) hadoop project.The proposed solution and evaluation is valid only in the context of

one particular foundation of projects (ASF) and one project (Hadoop). The evaluation outcome cannot

be generalized, since the fine tuning of the algorithms would require enormous effort. Using another

project would mean the refitting of the whole proposed solution.

Keywords:-Requirements-Prioritization-OpenSource-Software-Apache-Software_Foundation

Machine Learning Text Mining, Support Vector Machine,Support Vector Regression.

ix

ÖZET

YAZILIM GEREKLİLİKLERİ ÖNCELİKLERİ İÇİN METİN MADENCİLİK

SINIFLANDIRMA UYGULAMASI

Alialhadi Khaleel Ismael

Yüksek Lisans, Elektrik ve Bilgisayar Mühendisliği, Altınbaş Üniversitesi

Tez Danışman: Yrd.Doç. Dr. Sefer Kurnaz

 Tarih: 7/2019

 Sayfalar: 66

Yazılım ürünü. geliştirme ekibinin kapasitesi, ilgili çalışanların sayısıyla, kişilerin deneyimlerinin, iyi

bir koordinasyonla aynı şekilde kısıtlanmasından dolayı, ilk olarak geliştirilecek ürünün en önemli

kısımlarını keşfetmek için önceliklere ihtiyaç vardır. tüm ekip ve gereksinimler arasındaki

uyuşmazlıkların tespit edilmesi ve uygulanacak ve serbest bırakılacak gereksinimlerin sırasını planlama

zorunluluğu bu yazıda, açık öncelikli uygulamalara ve yazılımlara makine öğrenmesi yoluyla gereksinim

önceliklendirme otomasyonunun uygulanmasını gözden geçirdik. ml alanındaki gelişmeler ilerledikçe,

bu gelişmelerden yararlanmanın birçok yolu var. bunlardan biri, şimdiye kadar insanlar tarafından

gerçekleştirilen analitik işlerin otomasyonu. gereksinimler önceliklendirme bunlardan biridir. zaman

alıcı ve bilgidir zorlu faaliyetler ve artan sayıda gereksinim ile bir insanın her gereksinimi

değerlendirmesinde kolayca olanaksız hale gelebilir. bu çalışmanın ilk kısmı, alan gereksinimleri

önceliklendirme otomasyonu ile ilgili literatür taraması ve ilgili çalışmalardır. ikinci bölümde bazı metin

madenciliği geçmişini inceledik, üçüncüsü açık kaynaklı yazılım (oss) projelerinin ilgili mekaniklerini

ve problemlerini tartışıyor. açık gelişim yaklaşımlarıyla ilgi çekici projeler. dördüncü bölümde, oss

projelerinin belirli sorunlarını çözmek için bilinen farklı yaklaşımları bir araya getirmenin sentetik

metodolojisini ve gereksinim önceliklendirme sürecinin otomasyonunu kullanan bir sistem tasarımı

öneriyoruz. beşinci kısım, önerilen sistem tasarımının apache yazılım temeli (asf) hadoop projesi

üzerinde bir prototip ile değerlendirilmesine ayrılmıştır. önerilen çözüm ve değerlendirme, yalnızca

belirli bir proje temeli (asf) ve bir proje kapsamında geçerlidir. hadoop).

Anahtar Kelimeler: Gereksinimler Önceliklendirme, Açık Kaynak Kodlu Yazılım, Apache Software

Foundation Makine Öğrenmesi, Metin Madenciliği, Destek Vektör Makinesi, Destek Vektör Regresyon.

x

TABLE OF CONTENTS

Pages

LIST OF TABLES………………………………………………………………………………xiii

LIST OF FIGURES……...……………………………………………………………………...xiv

LIST OF ABBREVIATIONS…………………………………………………………………...xv

1. INTRODUCTION....……...……………………….………………………………………….. 1

 1.1 CONTEXT .. 1

 1.2 PROBLEM STATEMENT .. 2

 1.3 IMPORTANCE OF THE PROBLEM .. 3

 1.4 OBJECTIVES ... 4

 1.5 CONTRIBUTION .. 4

 2. AUTOMATION OF REQUIREMENTS PRIORITIZATION….…..….…….….…………5

 2.1 LITERATURE REVIEW…………………………….…………………………5

 3. TEXT MINING..10

 3.1 TEXT DOCUMENT REPRESENTATION - FEATURE EXTRACTION…………. 10

 3.1.1 TF-IDF .. 10

 3.2 CLASSIFICATION .. 11

 3.3 CLASSIFICATION FUNCTION ... 11

 3.4 REGRESSION .. 11

 3.5 PERFORMANCE MEASURE .. 11

 3.5.1 Kendall Tau Significance Test .. 12

 3.6 SUPERVISED LEARNING AND UNSUPERVISED LEARNING 13

 3.7 SUPPORT VECTOR MACHINE (SVM) .. 14

 3.7.1 SVM Regression 15

 3.8 HYPERPARAMETER TUNING .. 15

 3.9 USING TEXT MINING IN THE CONTEXT OF REQUIREMENTS 16

4. OPEN SOURCE SOFTWARE PROJECTS……..…....…………......…….……………... 17

xi

4.1 GOVERNANCE MODELS……….…………………………………………………. 17

4.1.1 Contribution Models……………………………………………………………... 17

4.2 OPEN DEVELOPMENT………………………………………………………………17

4.3 COMMUNICATION IN THE OSS PROJECT…………………..…………………... 18

4.3.1 Mailing Lists……………………………………………………………………. . 18

4.3.2 Community .. ….... 19

4.4 REQUIREMENTS PRIORITIZATION IN THE CONTEXT OF OSS…….………... 22

5. SOLUTION PROPOSAL …….....…...…..….…….…….…………….……………………23

5.1 METHODOLOGY ……………………………………………………………………. 23

5.2 DATA SOURCES……………………………………………………………………... 24

5.3 PROCESS VIEW…………………………………………………………………….. 25

5.3.1 Requirement Management……….……………………………………………… 25

5.3.2 Data Linking……………….…….……………………………………………….. 26

5.3.3 Community Management…........….………………………………………………26

5.4 DATA VIEW………………………………………………………………………….. 26

5.5 ARCHITECTURE ……………………………………………………………………..28

 5.5.1 Services……………….…….……………………………………………………..29

5.6 INFORMATION LINKING……………………….…………………………………...31

5.7 REQUIREMENT PRIORITIZATION AUTOMATION………………………………31

5.8 TARGET PROJECT ………………………..…………… …………………………...35

5.9 PROCESSED DATA ………………..………..………………………… …………….35

5.9.1 NLP.….………..….…….……………………………………..……………….…36

5.9.2 Knowledg……...…….…………………………..………………………………..36

5.9.3 Votes………...……...……………………..……………………………………...36

5.9.4 Linked Issues……...…….……………………………………………………..... 36

5.9.5 Dates…… …..…....….…………………………………………………………...37

5.9.8 Source…...….……..….…………………………………………………………..38

5.9.9 People…….…………………………………………………………..……….…..38

xii

 6. PROTOTYPE AND EVALUATION EVALUATION........…...........………….……....…...41

6.1 PROTOTYPE………….………………………………………………………………...41

6.1.1 Chosen Projectç…..…...………………...………………………………………...41

6.1.2 Machine Learnin...………….……………………………………………….…....42

6.1.3 Data….….……….………………...………………………………………….…..42

6.1.4 Technology Stack....…...………....………………………..……………………...44

6.1.5 JIRA Downloader…….……….……...…...………………..…………………….44

6.1.6 Mail List Downloader..………………...….…....…………..…………………….45

6.1.7 Mailbox Read……….…..…….…….…..…………………..…………………….46

6.1.8 Prioritizer...…………….…..….………..………...………..……………………..46

6.2 EVALUATION………………………………………………………………………….48

6.2.1 Evaluation Setup……...……..……………………………....……………………49

6.2.2 Dataset……..………..…..………………...………………………………………49

6.2.3 Results………..………...…………………………………………………………50

7. CONCLUSIONS……….…...…..…....….…..….……………...….…………………………..52

7.1 EVALUATION RESULTS……..………………….…………………………………...53

7.2 DATABASE STRUCTURE.…..…………………….………………………………….54

REFERENCES………..…..…………….……….…………….….……………………………..61

xiii

 LIST OF TABLES

Pages

Table 5.1: Main Data Sources ... 24

Table 5.2: Other Data Sources .. 25

Table 5.3: Issue Properties interesting for prioritization ... 27

Table 5.4: Community members Properties……………………………………………….. ..….28

Table 5.5: System services .. 39

Table 5.6: Community Social Events ... 40

Table 5.7: Issue related Events ... 40

Table 6.1: Automated requirement prioritization prototype evaluation results 51

xiv

LIST OF FIGURES

 Pages

Figure 5.1: System diagram of basic services ... 26

Figure 5.2: Community service social event processing .. 27

 Figure 5.3: Priority depends on several issue attributes and other information ………..………..27

 Figure 6.1: Components of the implemented prototype………………………………………….35

Figure 6.2: Priority function .. 40

Figure 6.3: Requirement duration prediction ... 41

Figure 6.4: Evaluation testing data folding ... 44

Figure 7.1: Evaluation, iteration #1, 500 requirements ... 53

Figure 7.2: Evaluation, iteration #2, 1000 requirements .. 54

Figure 7.3: Evaluation, iteration #3, 1500 requirements ... 55

Figure 7.4: Evaluation, iteration #4, 2000 requirements ... 56

Figure 7.5: Evaluation, iteration #5, 2500 requirements ... 57

Figure 7.6: Evaluation, iteration #6, 3000 requirements ... 58

Figure 7.7: Evaluation, iteration #7, 3500 requirements ... 59

 Figure 7.8 : Evaluation, iteration #8, 4000 requirements………………………………...60

xv

OOS : Open Source Software

ASF : Apache Software Foundation

ML : Machine Learning

CBR : Case-Based Ranking

AHP : Analytical Hierarchy Process

PH : Priority Handler

SVM : Support Vector Machine

SVR : Support Vector Regression

VSM : Vector Space Model

TF-IDF : Term Frequency – Inverse Document Frequency

RE : Requirements Engineering

IM : Instant Messaging

IRC : Internet Relay Chat

SOA : Service Oriented Architecture

DS : Data Source

LOC : Lines Of Code

ORM : Object Relational Mapping

LIST OF ABBREVIATIONS

1

LIST OF ABBREVIATIONS

1. INTRODUCTION

1.1 CONTEXT

Requirements prioritization is very important part of the process of developing a new

software product. Priorities are needed in order to discover the most important parts of

the product to be developed at first, as the capacity of the development team is

constrained by the number of the workers involved, the experience of the individuals,

the same as the good coordination of the whole team and the neces- sity to detect the

conflicts among the requirements and planning the sequence of the requirements to be

implemented and released. [1]

The priority itself is a metric attribute of a requirement, that may serve various

purposes depending on the needs and should lead to the process of requirements

prioritization. The Helsinki University of Technology’s Qure (Quality through

Requirements) case project,wh- ich lasted for three years, learned that the terms

“prioritization pro- cess” and “priority” are not uniformly defined and they have

many meanings in the case companies, which leads to misunderstanding and

confusion of the team members. The prioritization sometimes means the strategic

process of the setting of the priority in the long term and sometimes the operative

selection of the most important requirements to be implemented at present for the

next release. Or sometimes it means the process of identifying the requirements to be

implemented first in the new project. The priority is also ambiguous term as it may

signify the importance of the requirement to the cus- tomer while another time it

denotes the deadline when it should be finished. Also the priority scales doesn’t have

set meaning among the team members and it takes a long discussion about them. [1]

In the case companies, there was no common process of require- ments prioritization.

The process relied mostly on the basis of per- sonal competencies and experience.

There were no explicit methods in use. The personnel in charge made a rough guess

with no system- atic approach. The contracts with the customers and informal dis-

cussions had the major influence on the priorities and the companies often got into

2

situations of just trying to avoid the fines for violating the contracted deadlines. [1] In

practice, there was no time to analyze the raw requirements data they gathered from the

customers and discover the relevant in- formation needed for sound priority decisions.

The priorities assigned to the requirements were based on the cost-value analysis, which

were very informal and the product managers weren’t able to truly com- bine

information from different sources. [1]

1.2 PROBLEM STATEMENT

As we can see, the problem of requirements prioritization is a big issue in the world of

software engineering. This topic is widely dis- cussed and the volume of research being

conducted is increasing with each year passing. The problem up to now lies in the fact,

that existing techniques for requirements prioritization are can only handle sam- ple

toy projects or on the other hand are too complex to be success- fully implemented in

the real world scenario, yet with unconvincing results. [2] The issue is related right to

the fact, that OSS projects have distributed nature.

There are two main problems related to the automation of require- ments prioritization

in the context of OSS projects:

1.The majority of requirements prioritization research focuses on solving standard

proprietary projects problems. How ever OSS community projects are being managed

in a different way and therefore require different approach to solve the requirements

prioritization automation problem. For more information, see the section 4 Open

source software projects.

2. According to A. Guzzi et al. [3], the OSS projects have a big problem with

communication, which is scattered among infor- mation repositories and the project

developers have problems with maintaining and refreshing all the information about

the project.In practice, there was no time to analyze the raw requirements data they

gathered from the customers and discover the relevant in- formation needed for sound

priority decisions. The priorities assigned to the requirements were based on the cost-

value analysis, which were very informal and the product managers weren’t able to

truly com- bine information from different sources. [1]

3

1.3 IMPORTANCE OF THE PROBLEM

The related work mainly focuses on requirements prioritization in closed source

projects. While the open source projects me- chanics work differently.

1. The problem of automatic information linking between different sources, is also

crucial for the automation of the require- ments prioritization process, because we can

automate the pri- oritization process, only if we have all the needed information at one

place. Also the project community members would be freed from doing this task

manually, so the overall productivity of the project could rise. [3]

Requirements prioritization is an important and complex phase in the software

engineering process that leads to the decision about the most important requirements

to be implemented first. An aid to the automated decision about the priority of

requirements has been pro- posed in recent research[5], but its application still needs

validation, especially in OSS projects that collect large number of requests from the

community.The first part of the problem lies in the fact, that the experiment[5] ihad

proprietary data set and on top of that, some of the exact set- tings of the used

algorithms were not published in the paper. Thus it is not easily possible to replicate

this experiment with the same set- tings (like the same data set) to for example

benchmark the original algorithms performances against the new or different ones. The

sec- ond part is related to the applicability of such Machine learning (ML) approach to

large OSS projects.

1.4. OBJECTIVES

The first objective is to review current state of the art in the classifica- tion and prediction

of priorities in software engineering to set up the base–ground for our next work.

The next objective is to analyze the way, how OSS projects are be- ing managed

(especially in the terms of priority management of the requirements)

The primary objective is to study and implement the machine learn- ing approach in the

context of large OSS projects and to validate if this approach could be applicable to such

projects.

4

1.5 CONTRIBUTION

In this thesis, we address the problem of using machine learning ap- proaches for

requirements prioritization in the context of OSS. We analyzed the current state of the

art in this research field and stated, that there is no solid research in the contextof the

OSS projects. Given the results of the previous research work, we used a synthe- sis way

to combine different approaches and algorithms to solve the problem of requirements

prioritization in order to design a system for our scenario. The next step was the

evaluation of such design in the context of real open source project and adapting the

original design to real world scenarios. So the first contribution is adaptation of the

original approaches posted by former researchers to the context od OSS projects. The

next contribution is the evaluation of the projects dynamics in time by means of

communication. The third contribu- tion is building up the prototype for mining data

from JIRA and mail lists for further processing

5

2. AUTOMATION OF REQUIREMENTS PRIORITIZATION

2.1 LITERATURE REVIEW

As the development in the field of ML proceeds, there are many possibilities to utilize the

advancements. One of them is the automation of analytic work performed up to now by

humans. Requirements prioritization is one of them. It is time consuming and knowledge

demanding activity and with the growing number of requirements it can get easily

unfeasible for a human being to evaluate every requirement. The ML approach is trying

to solve this problem by exploiting and learning domain knowledge and utilizing it to

automatically preprocess the requirements and assign some basic priority. So the human

decision-maker who is responsible for the assignment of the priority can focus only on

the important requirements.

2013 Systematic mapping study performed by the authors M.Per-gher and B. Rossi [4]

reviewed the requirements prioritization studies with the focus on empirical studies. The

results show, that the re- search in the field of requirements engineering is increasing in

the recent years. The majority of the analyzed studies tried to find the most accurate

technique for prioritizing (compared to an theoretical optimal ranking), with lesser

regards to the other practical questions like scalability, fault tolerance and practical

usability. The evaluators were frequently using sample data for evaluation. The paper

points out, that the research concerning the possible integration of proposed

prioritization techniques into existing Requirements Engineering (RE) techniques and

process is an unexplored area.The experiment conducted by A. Perini, A. Susi, and

P.Avesani [5] was one of the first attempts to study the automated requirements

prioritization process with the application of ML on the real world data–set. The paper

discusses the two different ways to deal with this problem – the ex-ante and ex-post

approach. The ex-ante approach tries to formulate the target criterion for ranking

requirements in advance and then assigns the rankings according to the ranking

according to the requirements attributes. The problem of this approach is the

independence of the target ranking criterion and the examined set of requirements. On

6

the other hand, the ex-post approach tries to utilize the known solutions to similar

problems. The paper focuses on the ex-post approach, namely Case-Based Reasoning.

involve the stakeholders, which have to set relative pairwise priority among pairs of

requirements. Therefore the final ranks are not computed from the (absolute) values of

the requirement attributes, but by the assigned (relative) rankings. The relative rankings

are considered to have lesser input noise than the absolute values. And the stake- holders

might take their decision based on some implicit information, which may not be encoded

directly in the requirement’s attributes. The paper introduces Analytical Hierarchy Process

(AHP), which is used as a reference method. AHP uses pairwise comparison between all

requirements pairs. This approach is in theory the most accurate (every pair is being

evaluated), but the real usability of this approach is get- ting worse and worse with the

increasing number of requirements, as the number of pairs rises quadratically. So the

paper proposes a new better approach, called Case-Based Ranking (CBRank). This

approach allows for domain adaptability – combining sets of priorities elicited by human

input and the automatically computed priorities using the ML approach (which utilizes

the partial pairwise priorities) to minimize the number of the needed human input

comparisons. The CBRank is directly applicable to different domains and that the

estimated priority accuracy increases with the amount of encoded information. 2014 One

year later, the researchers P. Achimugu, A. Selamat,R. Ib-rahim and Mohd Naz’ri

MAHRIN conducted a systematic review of the state of the art of the requirements

prioritization research [6]. The method consisted of systematic search, which led to the

selection of 73 relevant studies, including the work of A. Perini’s team [5], and their

analysis. Concluding, that the prioritization is significantly discussed problem in the

requirements engineering domain. Stating that the existing prioritization techniques

suffer several limitations, including scalability concerns, requirements’ evolution

leading to rank up- dates, stakeholders coordination and all in all, the existing techniques

are complex and the real usage is yet to be reported.

Paper based on the results of [6] also conducted by the same team of P. Achimugu, A.

Selamat, and R. Ibrahim [7] focuses on the possibilities to requirements prioritization

automation. Discusses the related work and possible approaches on this topic and the

7

problems of the approaches. There are mentioned two main categories of prioritization

techniques: The first allows the stakeholders to assign weights (priority) to the

requirements (e.g. AHP and CBRank), while the other makes use of the communication

between the stakeholders to negotiate an agreement on the priorities (e.g. MoSCoW

and planning game). While the AHP is recognized as the most popular approach used

in other related works and considered to be the best in the terms of reliability, the

limitations of scalability and the inability to rank newly added requirements are not

useful for a real world The main focus of this paper is based on the statement, that

while there are many methods for requirements prioritization, the support tool for real

usage is non-existent, so the paper proposes a web-based multi criteria decision making

tool to help the stakeholders with the prioritization process. The proposed tool has

generic architecture which is supposed to be used for an ML enhanced requirements

prioritization. The system is based on ex-post ranking of the usage requirements on a

importance scale of 1(low) - 5(high), assigned by the stake holder while the multiple

criteria decision making system computes the relative weights. When the requirement

changes, the priority is re- computed, based on the linear combination of the

requirement’s at- tributes (compared with the other known requirements). Still, the pa-

per lacked the implementation details of the system.

2015 Another year later M.I. Babar et al. [8] published a relevant paper, which also

highlighted the fact, that existing requirements prioritization techniques are not

suitable for large number of requirements and handle only toy projects or projects with

small number of requirements. The paper identifies main problems of existing tech-

niques as following:not scalable,not sufficient level of automation, not intelligent

enough, time consuming, complex = difficult to imple- ment and still leading to faulty

results.

The paper aims to solve the first problem – the scalability concern, proposing a new

approach called Priority Handler (PHandler), consisting of a combination of three

techniques. At first value-based technique using expert knowledge, a back-

propagation neural net- work to predict a priority and a traditional AHP, which is

applied to prioritized groups of requirements to be scalable. this approach is

8

completely different to the approach of [7].

2016 Two years later after the original P. Achimugu et al. paper [7], this team further

developed and fully implemented the originally proposed system, which is called

Requirements Prioritizer (ReproTizer).

[9] The paper notes, that the PHandler approach has the same prob- lem as CBRank

as it is unable to update rankings with newly added or deleted requirements.

requirements on a importance scale of 1(low) - 5(high), assigned by the stakehold- ers,

while the multiple criteria decision making system computes the relative weights.

When the requirement changes, the priority is re- computed, based on the linear

combination of the requirement’s at- tributes (compared with the other known

requirements). Still, the pa- per lacked the implementation details of the system.

2015 Another year later M.I. Babar et al. [8] published a relevant paper, which also

highlighted the fact, that existing requirements pri- oritization techniques are not

suitable for large number of require- ments and handle only toy projects or projects

with small number of requirements. The paper identifies main problems of existing

tech- niques as following: not scalable, not sufficient level of automation, not intelligent

enough, time consuming, complex = difficult to imple- ment and still leading to faulty

results.

The paper aims to solve the first problem – the scalability con- cern, proposing a new

approach called Priority Handler (PHandler), consisting of a combination of three

techniques. At first value-based technique using expert knowledge, a back-propagation

neural net- work to predict a priority and a traditional AHP, which is applied to

prioritized groups of requirements to be scalable. this approach is completely different

to the approach of [7].

9

`

2016 Two years later after the original P. Achimugu et al. paper [7], this team further

developed and fully implemented the originally proposed system, which is called

Requirements Prioritizer (ReproTizer).

[9] The paper notes, that the PHandler approach has the same prob- lem as CBRank

as it is unable to update rankings with newly added or deleted requirements.

10

| |

3. TEXT MINING

Text mining is the process of information retrieval from natural lan- guage text

documents. It consists of several approaches, which will be further introduced in

this section.

3.1 TEXT DOCUMENT REPRESENTATION - FEATURE EXTRACTION

Text documents cannot be directly interpreted by the ML algorithm, so a proper

representation is necessary. Usual approach is a Vector Space Model (VSM).The

basic model of vectorization term frequency (occurence count- ing) is Bag-of-

words, where a document d is represented by a vector of weights d = < w1, w2, . . . ,

w V >, where V is a set of terms that occur at least once in the training document set

D. [23]The updated model to the The Bag-of-words is the Bag-of-ngrams. Which

incorporates n-grams into the VSM. N-gram is a sequence of n words contained

in the document. Bag of 1-grams (unigrams) is directly equal to the bag of words.

The 2-grams (bigrams) consists of two following words.[23] f (t, d) = f

requency(t, d)

3.1.1 TF-IDF

The Term Frequency – Inverse Document Frequency (TF-IDF) is the im- provement

to the basic TF - term frequency - word count vectoriza- tion (Bag-of-words). As

the number of documents grow bigger, the occurence of some words will be very

large. In basic count vectoriza- tion that means, they have more influence. But in

reality these terms do not bring any new information to the model as there is no

variance between documents. So we want to lower the priority of these words in

contrast to the priority of rarely occuring words.[23]contrast to the priority of.

11

≈

∈ ×

{ } | || |

3.2 CLASSIFICATION

Text classification is being used for categorizing text documents in a predefined

set of classes, based on the document content. Text clas- sification dates back to

1960’s, but used expert knowledge based ap- proaches, which relies on manually

defined rules of classification. The ML based approaches didn’t appear until the

late 1980’, but then become pervasive. These approaches incorporate the ML

techniques to automatically build text classifiers based on learning from manu-

ally classified documents. [22]

3.3 CLASSIFICATION FUNCTION

Formally, the text classification function f can be defined as followed: Let’s have an

instance space X, where each instance is a text document d and a fixed set of classes

C = C1, C2, . . . C C , where C is the number of classes. Given the training set D of

training documents< d, Ci > X C, the goal is to use the training set of documents

D to construct a classification function f with the training documents to classify any

document: f (d) : X → C; ∀d ∈ X [23]

3.4 REGRESSION

The opposite approach to classification is regression. While classifi- cation tries

to assign known class to a model, the regression function tries to predict some

continuous or ordered variable. So the problem is to find the relation between

variables of the model.[11] The regres- sion problem can be defined as y βX.

Where we are searching for the β parameter, which signifies the relation between

y and X.

3.5 PERFORMANCE MEASURE

Recall, precision and F1-measure is the most popular measure for eval- uating the

performance of a text classifier.[22] Given a classifier, whose input is a document

and output a ranked list of categories assigned to such document.

12

·1

∈ −

where

·

√

defined decision threshold:

Recall =
categories Found AND Correct

 total categories Correct

Precision =
categories Found AND Correct

 total categories Found

(3.1)

(3.2)

where „categories Found" means categories above the threshold.[24] The F1-

measure is traditionally defined as a harmonic mean of precision and recall: [24]

F = 2
precision · recall

 precision + recall

(3.3)

3.5.1 Kendall Tau Significance Test

This measure shows the pairwise correspondence of two rankings. Kendall

tau is defined as[32]:

τ = c−d

(c+d+t) (c+d+u)

c = concordant pairs, d = discordant pairs, t = ties in first rank- ing and u =

ties in second ranking.[32]

f (τ) < 1; 1 >.

The value 0 means no correlation. 1 means perfect match and -1 means reverse

ordering.[32]

(3.4)

13

3.6 SUPERVISED LEARNING AND UNSUPERVISED LEARNING

The majority of ML methods incorporate the supervised learning. The supervised

learning uses the training data to supervise the learn- ing process of the ML

method to predict the output. While the unsu- pervised learning method doesn’t

incorporate the training data in the process. The example of supervised learning

algorithm might be su- pervised classifying with labeled training dataset of some

data, while the unsupervised algorithm might use clustering instead of classifi-

cation, so if the dataset has good data, the clustering method might be able to

separate the different sets of the data, but would not tell us the semantics (a.k.a.

the classes in the supervised method).[11]

14

∈ { − }
∈ ∈

2

3.7 SVM

The recent research in the field of machine learning led to a new gen- eration

of algorithms. One of them is SVM, which was successfully used to

information retrieval from text. The SVMs can be used both for classification

and regression, but are rather used for classification. The SVMs are highly

effective in hish dimension vector spaces. [23] The SVM looks at the data as

points in n-dimensional space. The n is the number of features of the item. If

used for classification, the SVM tries to find a decission surface (hyperplane)

which is maximally far away from any data point. [23] The SVM method is

formally de- scribed as:[30] Given the training set of n-dimensional vectors

xi R
n, i = 1, . . . , l, in two classes, and a vector y Rl

 such that yi 1, 1 , C-SVM solves

the following pri- mal problem:

min
w,b,ξ

1
wT w

2

l

+ C ∑ ξi

i=1

(3.5)

yi(wT φ(xi) + b) ≥ 1 − ξi,

ξi ≥ 0, i = 1, . . . , l.

This primal problem can be transformet into the dual prob- lem defined as:

min
α

1
αT Qα − eT α

0 ≤ αi ≤ C, i = 1, . . . , l, (3.6)

yT α = 0,

where e is the vector of all ones, C is the upper bound, Q is an l by l positive

semidefinite matrix, Qij ≡ yiyjK(xi, xj), and K(xi, xj) ≡ φ(xi)T φ(xj) is the kernel.

15

∈

3.7.1 SVM regression

A SVM method can be used not only for classification, but it can be extended to

also solve regression problems. The SVR performs linear

regression in n-dimensional space using c loss function. The method is called

SVR.[29] The SVR method is formally described as: [30]

Given the training set of n-dimensional vectors xi Rn, (xl, zl) , such that xi R
n is

an input and zi R
1 is a target output, the support vector is defined as minimal- ization

problem:

w,b,ξ,ξ* 2 + ∑ ξi +

i=1

∑ ξi

i=1

zi − wT φ(xi) − b ≤ c + ξi, w
T

φ(xi) + b − zi ≤ c + ξi
*, ξi, ξi

*

≥ 0, i = 1, . . . , l.

The primary minimalization problem can be transformed to this dual

3.8 HYPERPARAMETER TUNING

The hyperparameters are the parameters, which are not directly learnt from by the

predictor methods by the training data. For getting best prediction accuracy, it

is recommended to do a hyperparameter tun- ing. This can be done by searching

the parameter space for optimal values. The two basic methods are random

search and grid search. The random search samples the space given by some

random dis- tribution, while the grid does an exhaustive search of the parameter

space based on the selected grid intervals. This approach can have a significant

influence on the predicted values, but is computional challenging.[31]

(3.7)

16

3.9 USING TEXT MINING IN THE CONTEXT OF REQUIREMENTS

There are different studies, that look into requirements retrieval from text. We will

look at some of them in order to get basic background in this area.

The paper of M. Xiao et al. [10] concerns the problem of automatic mining useful

information from the Q&A sites. The paper focuses on acquiring feature requests

from the users’ posts. The approach consists of a SVM using TF-IDF approach

to compare different text documents (posts), combined with a dictionary of

requirements key- words. To evaluate the SVM approach, the researchers

implemented also prototype of another technique, consisting of a set of linguistic

rules. The evaluation showed, that the linguistic rules approach led to worse

results (F-measure 57.8%) compared to the results of using pure SVM only,

without the dictionary (F-measure 71.77%). The con- cept of the linguistic rules

is easy to understand, but the key prob- lem lies in the fact, that it is not easy to

create rules which would fit every way of possible expression of the users’ ideas.

Also the re- searchers had to build the rules manually, which was exhausting time

consuming. On the other hand, the SVM, which led to better results, can be taught

by any kind of training data set and is also able to au- tomatically create an

appropriate classifier. The SVM enhanced with the keyword dictionary did not

lead to significantly better results (F- measure 74.22%), but the researchers

attribute this result to the small size of the dictionary

17

4. OPEN SOURCE SOFTWARE PROJECTS

In this chapter, we will discuss some OSS specifics to show, that the context of

proprietary software development is way different than the context of large OSS

projects.This section summarizes the pecularities of the OSS projects which may

affect (directly or indirectly) the requirements prioritization.

4.1 GOVERNANCE MODELS

There are many ways, how to manage OSS projects. They range from the

centralized models when the responsibility of the control lies in the hands of a

single individual (benevolent dictator) to distributed models, in which the wider

counsel makes the decisions(meritocracy). The governance model describes the

inner processes of control and also the contribution model of the project. [14]

4.1.1 Contribution Models

The contribution model illustrates wether the project foster the con- tributions

from broader community (bazaar model) or utilizes small core of stable

contributors (cathedral model). [14]We can find existing projects at any point

between the centralized and distributed governance models as the between the

bazaar and cathedral models, while the governance model doesn’t imply the con-

tribution model and the projects can move along and shift the models as they

mature. [14]

4.2 OPEN DEVELOPMENT

In some OSS projects we can note some differences between the terms “Open

source” and “Open development”. While the source code of the software is

publicly available and released under some free soft- ware license. The

18

problematic part is, that the steps taken and de- cisions made to develop this

source code are not public, so anybody who wants to develop the software further

doesn’t know the story be- hind it. So with the Open development method, the

community not only releases the source code, but also the documentation –

historical context about all the decisions that had been [20]

who wants to develop the software further doesn’t know the story be- hind it. So

with the Open development method, the community not only releases the source

code, but also the documentation – historical context about all the decisions that

had been taken. [20]

4.3 COMMUNICATION IN THE OSS PROJECTS

4.3.1 Mailing Lists

The earlier works reported, that the mailing lists are the core part of the

communication in the OSS projects. For example Mockus et al.[15] claimed that

the developers communicate only through mail- ing lists, recent research

discovers a big change in the project com- munication. A. Guzzi et al. [3] analyzed

the developers’ mailing lists threads of the OSS project Lucene (which belongs to

the ASF just as the Apache Server). The study was analyzing mainly the

developer’s mailing lists, but found out, that the developers are also monitoring

the user’s mailing lists in order to better understand the real usage of the developed

application. Historically, the mailing lists were consid- ered as the information hub

of the OSS projects. This consideration proves false for the modern OSS projects

like Lucene, since its make of extensive use of the issue repository (JIRA), where

a significant amount of communication is taking place (and still increasing). The

developers also use an Instant messaging (IM) platform (Internet Re- lay Chat

(IRC)) to discuss details of the project and implementation. There is also evidence

19

of numerous developer’s personal meetings. The policy of most OSS projects is to

archive official messages along with important discussions from different sources

to the mailing list, yet there is often clear situation, when this policy gets broken

and the information flow between the sources is disconnected. Which leads to

coordination issues and information loss or duplicity. Moreover, the paper reveals,

that the communication channels work in parallel and disconnected from each

other and the project developers have prob- lems with maintaining awareness

about each other’s work. The paper calls for a tool for automatic linking of relevant

information among different data sources, which would help the researchers in

obtaining better picture of the development process as like as take some of the

strain off the developers.

4.3.2 Community

Crowston and I. Shamshurin [25] examined the relationship be- tween community

members and the project success. The study used data from 74 projects of the ASF

Incubator. The core members were identified by the official list of project

developers, the other were iden- tified as peripheral. The results suggest, that the

successful projects (which managed to build a community and graduate from

incuba- tion) have more members and a matching amount of communication. The

core members contribute more code, but the number of messages is evenly split

between the core and peripheral members, suggesting that both roles play an

important part in the successfull OSS project.

Hannemann et al. [26] discussed, that while there are plenty of studies concerning

OSS project visualization tools, most of them are related either only to the source

code or standalone developers. This paper investigates the question of visualizing

the evolution of the whole community. The online survey among OSS

communities showed, that there is a big interest in such solution. The survey results

show, that 75% of the participants use web-based issue-management tool like

20

GitHub and 63% of the OSS developers were interested in the social community

related statistics. The majority of the participants also showed a strong interest in

a text mining analysis of the commu- nication for purposes like:“determine the needs

of the users in addition to voting and tagging in bugtrackers", “creating FAQs for new

contributors" and “finding out in which direction the community wants to evolve". The

survey also discovered, which functionalities the users missed in the existing OSS

visualization statistics: which problems are the most dis- cussed, non-code

contributions (reported by, tested by) statistics and overall more information about

project activity. Based on the survey, the researchers developed a prototype Web-

based dashboard filled with mailing lists communication data of three OSS

Bioinformatics projects. This prototype was sent to members of three

communities for evaluation. The most positive feedback received the social net-

work graph of the community, which is really interesting for the de- velopers: “The

social aspects of OSS projects are no less intriguing than the technological ones!” and

“[...] there is a lot to learn from this on how OSS projects get off the ground, what makes

a successful project, etc”. The dis- covered weakness is that the data source is

limited to the mail lists

21

as the details are often discussed for example on the issue repos- itory, so adding

such data source to the text mining and compar- ing the results with the mail lists

could be interesting. K. Crowston and I. Shamshurin [25] examined the

relationship between commu- nity members and the project success. The study

used data from 74 projects of the ASF Incubator. The core members were

identified by the official list of project developers, the other were identified as pe-

ripheral. The results suggest, that the successful projects (which man- aged to build

a community and graduate from incubation) have more members and a matching

amount of communication. The core mem- bers contribute more code, but the

number of messages is evenly split between the core and peripheral members,

suggesting that both roles play an important part in the successfull OSS project.

A. Hannemann et al. [26] discussed, that while there are plenty of studies

concerning OSS project visualization tools, most of them are related either only

to the source code or standalone developers. This paper investigates the question

of visualizing the evolution of the whole community. The online survey among

OSS communities showed, that there is a big interest in such solution. The survey

results show, that 75% of the participants use web-based issue-management tool

like GitHub and 63% of the OSS developers were interested in the social community

related statistics. The majority of the participants also showed a strong interest in

a text mining analysis of the commu- nication for purposes like:“determine the needs

of the users in addition to voting and tagging in bugtrackers", “creating FAQs for new

contributors" and “finding out in which direction the community wants to evolve". The

survey also discovered, which functionalities the users missed in the existing OSS

visualization statistics: which problems are the most dis- cussed, non-code

contributions (reported by, tested by) statistics and overall more information about

project activity. Based on the survey, the researchers developed a prototype Web-

based dashboard filled with mailing lists communication data of three OSS

Bioinformatics projects. This prototype was sent to members of three

22

communities for evaluation. The most positive feedback received the social net-

work graph of the community, which is really interesting for the de- velopers: “The

social aspects of OSS projects are no less intriguing than the technological ones!” and

“[...] there is a lot to learn from this on how OSS projects get off the ground, what makes

a successful project, etc”. The dis-covered weakness is that the data source is limited

to the mail lists as the details are often discussed for example on the issue

repository, so adding such data source to the text mining and comparing the results

with the mail

lists.could.be.interesting.

4.4 REQUIREMENTS PRIORITIZATION IN THE CONTEXT OF OSS

The distributed nature of OSS is also shaping the project manage- ment style of

such projects. There is usually a large number of dif- ferent requirements from

different sources. The community dynam- ics as shown in the previous section

also plays its role. In the whole, there is not much direct information about OSS

projects in regard to the requirements prioritization.

Laurent and Cleland-Huang[13] explored and evaluated the on- line requirement

prioritization process. It is rather old paper, but the general idea is still the same.

The thing what changed from the time of publishing is by our observation the

technology - in 2009, there were online forums for discussion, while today most

of the projects facil- itate some online requirement management system (namely

JIRA). The paper distinguishes

23

5. SOLUTION PROPOSAL

This chapter is devoted to the high level solution proposal. We will analyze the

options for solving the problems of OSS projects requirements management in this

chapter with particular emphasis on the ASF OSS projects, which are interesting

with their open development approach. The previous chapters outlined the current

development in the fields of requirements prioritization automation, text mining

and the review of the OSS projects working principles. This chapter is divided

into two sections. The first section is about the problem of information linking

from different sources. The second section analyses the possible ways of

prioritizing requirements in the OSS projects.

5.1 METHODOLOGY

We apply the synthesis methodology of the previously introduced concepts to

propose a system, which would solve the discovered problems.

The identified problems in the context of OSS are following:

1. large amount of requirements in the repositories

2. managing the priorities retrieval from different sources (voting, reviews, users

etc.)

3. manual requirement repository management (some projects have outdated

requirements repository)

4. manual prioritization process (time consuming and the process gets harder with

the expanding number of requirements in the repository)

5. linking data from different data sources and communication channels (e.g.

design discussion in IRC, voting in emails, requirement in issue tracking system)

6. managing the ever changing community In the next sections, we will propose a

system concerning these problems.

24

5.2 DATA SOURCES

The first part we need to discuss is information. We can gain infor- mation from

different sources. We identified the data sources of the OSS projects of two basic

types:

Main data sources of the OSS project are those, which are directly managed by the

community. As noted by [3], 88 projects of the ASF use the same standard

communication channels: Mailing lists, JIRA Issue repository and IRC channels.

We consider also the project web- site and source code repositories as the basic

resources. For more info see table 5.1

Additional data sources are all, which do not completely belong to the project

itself. Here can be custom search results from the web, QA sites issues or user

reviews. For more info see table 5.2 on the next page.

Table 5.1: Main Data Sources

Name Description

Mailing lists officially the main mean of communication among the ASF

projects. [27], needs text mining for information retrieval

Issue repository contains structured data about issues

Project website contains official list of core members for rough community

structure estimation [26]

IM Mainly IRC channels are being used in the ASF [27]. Serve as

a synchronous communica- tion channel for discussing

implementation de- tails and decisions [3].

Source Code Another source for community social graph es- timation.

25

5.3 PROCESS VIEW

To address the identified problems we identify following three basic areas we

have to handle: data linking, requirement management and community

management. Each area consists of some processes.

Table 5.2: Other Data Sources

5.3.1 Requirement Management

Requirement management is one of the basic components in the sys- tem. It serves

the purpose of automation of the part of the (currently) human tasks. Amogst the

processes of reqirement management be- longs the requirement prioritization for

predicting the priority of the requirements the second is requirement repository

management, wh- ich should concern the good condition of the repository

Name Description

Competitors The projects often reflect the competitors’ new functions in

the next development plan.

Web search Custom web search results related to some issue

Reviews We can gain new ideas from user reviews

Q/A Sites Search information related to the project

26

5.3.2 Data Linking

The data linking component is essential for bringing all the related data together.

The basic tasks are finding the data sources, retrieving data from those data

sources and linking these data together.

5.4 DATA VIEW

The data in the system are basically of two kinds:

1. Issue repository requirements - contains all official require- ments of the

project with further attributes. Can be used as a base ground for project

repository information building.

2. Text data - all other data is expected to be text written in natural language. The

only exception could be the source code reposi- tory with commit messages.

27

Table 5.3: Issue Properties interesting for prioritization

Name Source Description

Reporter JIRA User, who reported the issue.

Votes JIRA Votes collected from the users

Labels
JIRA

Text mining

Activity
Creation date Last Update

Due date Code activity
Community activity statistics

Impact x x

Importance x x

Related users
Mail lists JIRA

IM
Users, who discussed the issue.

E-mails Mail Lists List of related e-mails

IM discus- sions IRC List of related IM messages

Text de- scription x x

Priority Priority Service The computed priority of the issue

28

5.5 ARCHITECTURE

The architecture consists of a distributed Event Driven Service oriented Architecture

(SOA). Based on several basic services: Data source ser- vices, Text mining service,

Data linking service, Community service, Issues repository and Prioritization

service, which will be described

Table 5.4: Community members Properties

Name properties Description

Date joined First appear- ance of the member.

Aliases List of possible aliases One user can use several aliases

Ranks Community ranks of the user Signifies the official member-

ship

Communicati

on Activity

Active

First activity Last activity

Response time Mood

The developer’s involvement in

the decision making and

discussions process

Developer

activity

LOC

Issues resolved Last commit

Signifies the developer’s im-

portance

Other Devices IP address

Median active

hours

Can be used for alias resolv-

ing heuristics

29

in the following text. Due to the distributed nature, it can be properly scaled up

with higher demand. Also the independence of the services means, that each

service can be implemented with different technolo- gies. It is also possible to

upgrade or change some service on the go. It is possible to implement high-

availability or performance clustering or to possibly run the system in the cloud.

5.5.1 Services

1.Data Source Services are services, which are used for manag- ing the data

input from different sources. If new data is found in the data source, then a

message is emitted about this event.

Figure 5.1: System diagram of basic services

30

The data source services serve only as the low level provider of the data. The

transformations and processing are being made on higher level services.

A.Jira Service – manages the communication with the JIRA instance via REST API

B.Mail List Service – manages the project mail lists data

C.IRC Service – manages the IRC data source

D.Web Service – manages the other data sources

2. Data Linking Service connects the data from different data sour- ces

3. Prioritization Service computes the priorities of the issues and constructs the

prioritized list of issues

4. Community service analyzes the social graph based on the com- munity

members’ activity. From the technical point, the service consists of a database of

the community members, which is cre- ated and updated via processing the social

events (see table 5.6 on page 34) emitted by the Data Source (DS) services

(illustrated by the diagram 5.2). The social graph and user statistics is pro- vided

to the Prioritization service for calculating the priorities.

Figure 5.2: Community service: social event processing

31

5.6 INFORMATION LINKING

As we saw in the section 4.3.1 on page 16, earlier works assumed, that the mailing

lists are the core part of the OSS development process. With our current analysis

of the ASF projects with the most active committers, we saw a shift from the

classic mailing lists communi- cation to issue tracking systems (namely JIRA).

The mailing lists are still active and open to user’s suggestions and questions. But

the main part of the mailing communication traffic is devoted to mirroring the

communication from the issue tracking system. If there is need for an text mining,

then we propose to use cosine similarity method.

5.7 REQUIREMENT PRIORITIZATION AUTOMATION

This open development method is from the point of view of machine learning the

main source for good training of the algorithms, because if the machine is being

learned also by the rationale why the decisions

were made, we do expect it to advice smarter decisions compared to the

elementary methods.

As we have seen in previous chapters, the concept of priority and prioritization is

rather complex and in many cases not standardized nor well known to the team

members. On the other hand, if the project is somehow managed regarding the

issues priorities, still there might arise the scalability problems of the manual

prioritization process, if the project grows somewhat big and thus still leads to the

challenges for the project management to keep the project under control. We do

propose utilizing the machine learning and text mining concepts to solve the

problems of issue prioritization process. Firstly with this approach, we are able

to bring some level of standardization to unify how the issues are being handled

throughout the project. Secondly we are able to combine information from

different sources together and process them, so the managers are not overloaded

32

with the pro- cess of analyzing the issues and at the same time we can deliver them

the mined information in the form of prioritized list of issues. The last, but not

least, benefit of this approach should be the scalability improvement over the

manual processes, because of the highly auto- mated work and lower user

interaction demand.

We are basing the prioritization model on Attlasian’s Jira software,

which is getting to be de-facto standard in the requirements man- agement

software and is being used among many OSS projects like Red hat’s projects and

ASF’s projects, which will be used for the eval- uation part. To harmonize the used

terms in the following text, we will refer to nowadays trendy "issue" term to

encompass any of the terms like "feature", "bug", "issue" etc.[17] The priority is the

result of the data mining of the multi dimensional available data (attributes) about

the issues. We do propose a data model of useful attributes for the issue retrieval

in the following section.

Literature offers us many insights into the intricacies and working of various requirement

prioritization techniques. We have gathered certain valuable findings while working with

these techniques as well. In this section, we shall briefly elaborate upon those techniques.

Our experience has shown that for large projects with multi-objective requirements, AHP

is a more preferred approach among the professionals. This technique yields statically

very reliable results. The experience has also shown that the cost of conducting AHP is

also marginal as compared to various other techniques. This technique however is not

suitable in the situation where requirements are fast evolving and new requirements are

being introduced at a much higher pace. The purely statistical nature of AHP (and it is

true for other techniques described above as well) makes it difficult to generate a

prioritization which accommodates these changes taking place. The technique due to it’s

highly time consuming nature also becomes an unfit solution for development models

where several iterations take place (unless a sufficient time box is available for

33

prioritization process at each iteration). Since cumulative voting involves human insight

apart from statistical techniques, we also experienced a more flexible and accommodating

prioritization when handling changing and creeping requirements. The cost factor for

cumulative voting becomes an inhibiting factor when we deal a project of several hundred

requirements and a very tight budget. The element of bias was also visible in some of our

experiments as experts inadvertently prioritized those requirements which they thought

were more important from their perspective. We believe that AHP is more suitable for

projects with medium number of requirements and waterfall or prototyping model.

Cumulative counting on the other hand, can manage iterative development quite

efficiently provided enough budget and expertise is provided. We have also observed that

some kind of automation is required for both of these techniques. This automation can

reduce the time requirement of AHP and make it more suitable for iterative development

while it can also reduce the element of bias for cumulative counting and lend it more

credibility. Numerical assignment technique was one of the most difficult to work with in

our experience. Despite it being the most commonly used technique, we face almost

insurmountable problems while working with numerical assignment. This technique was

rendered useless when working in iterative environment. It was difficult to identify and

gather all the stakeholders in each iteration, determining the exact status of their

requirements (including all changes, creeps and incomplete) and then performing

classification based prioritization. Our experience has shown us that numerical assignment

is very unreliable when software is to be developed in iterations, has several stakeholders

and fluidity of the requirements is very high. Some degree of success was achieved where

the stakeholders are very few and highly oriented. Second problem while working with

numerical assignment was the much greater degree of bias that was exhibited by

stakeholder’s when prioritizing than the bias we experienced in the case of cumulative

voting.

34

 Third problem that we experienced was that classification posed problems instead of

solutions. It was because a large majority of requirements posed by various stakeholders

were actually placed in the highest classification by their owners while requirements

posed by other stakeholders were put in lower classifications as those were considered

less important. Ranking was another prioritization mechanism which had very low

potential in modern day development in its true sense. Top ten techniques is good at

establishing a set of the most critical requirements. Our experience has shown that all

these three techniques are very difficult to work with and can’t meet the objectives of

requirement prioritization in an optimal way. Theory W is a very valuable requirement

prioritization technique. It has a two tier prioritization system which works within

predefined limits. Stakeholders are given the opportunity to prioritize their own

requirements which are then further studied and adjusted by experts before those are

presented to all for negotiations. These negotiations last until we have asset of

requirements in such a prioritized order that every stakeholder is a winner. We were able

to get much better results by applying theory W than any other technique. The major

problem that we faced while working with theory W was when requirements were fluid

beyond certain degree. It was impossible to perform negotiations at each iteration. So the

utility of this technique was somewhat diminished in iterative development with highly

evolving and changing requirements. Planning game is also a better variant of numerical

but the same problems persist (with somewhat less intensity). Wieger’s method and

requirement triage are relatively new entrants in the field of requirement prioritization.

These techniques offer solutions to the problem of requirement prioritization which are

more realistic and are more in sync with ground realities. These techniques are good in

both linear and iterative process models. Our experimentations and observations have

shown that AHP and cumulative voting are best existing techniques for linear and iterative

models respectively.

35

5.8 TARGET PROJECT

The typical target project for this concept should be somewhat bigger with a large

amount of issues. Since this thesis focuses on the open source world, we would

like to aim at the open source projects which are being led in an open

development model with meritocratic elements.

5.9 PROCESSED DATA

The processed data model is based on the basic build-in Jira Software issue

attributes with some improvements for the future. The whole structure can be seen

on the figure 5.3. The data attributes to be used by the machine learning can be

altered to fit the specific needs of the particular project (and available data).

Metadata

Components

Estimated duration

Description

Reporter

Knowledge

Priority

External

Linked

Figure 5.3: Priority depends on several issue attributes and other in- formation

36

5.9.1 NLP

This part is dedicated to the NLP and text classification. The text parts of the data

like the description and comments can be mined

5.9.2 Knowledge

Expert knowledge and learned history (supervised learning) of the project to be

used by the data mining.

5.9.3 Votes

Votes of the community members. Each member can vote for the is- sue to increase

the priority. The vote has a weight, that signifies the member’s rank in the community.

The higher influence the member has, the more impact of his votes. Votes = ∑

rankweigth; ∀uservoted

5.9.4 Linked issues

The issue linking allows one to create a relation between two issues. In Jira

Software, an issue might be blocked by another, block another. duplicate or simply

relate to another issue.[16] If we have linked issues, then we can retrieve information

about their relative priority from their relationship: Example:

If Issue i1 is blocked by issue i2

Then: Issue i1.priority ≤ issue i2.priority

If: Issue i1 is blocked by issue i2

Then: Issue i1.priority ≤ issue i2.priority

Let’s have Issues i1 and i2, then from the issue links, we can de- duce next

information:

In reality, we would leave out one of the first two rules (is blocked by or

blocks). The issue links would then form directed acyclic graph, so we

wouldn’t have to consider the recurring link cycles.

37

5.9.5 Dates

Also from the date attributes related to the issue can be learned some new

information regarding the issue priority.

Due date As seen in the section ??, the date might mean the due date (for ex-

ample the planned release date of the issue). We do want to deliver on time. The

priority of the issue should be increased as the dead- line is approaching, so

there exist an inverse variation between the remaining time to resolve the issue

and the priority for the remain- ing duration ∆t:

date priority = k for some well selected k (depends on the particular∆tproject)

5.9.6 Source

The original source of this issue might be useful to learn the impact of the

issue.

Internal source – issue was created directly by a member of the inner circles

of the project community, who has somewhat a high rank and is permitted to

do so.

External source – this issue has emerged from the broader community. In this

context – means from automatic text mining of the forums, mailing lists, app

store reviews or QA sites to search for and acquire new feature or change

requests or bugs reports. As seen for example in [19]

By default, the internal issue is of higher importance, so it has higher priority

in comparison to the external issue. However in some cases it may be the

opposite. For example, if the external issue concerns the whole community

and is mentioned on many places and many people, then it has big impact and

may surpass the internal issue by the means of priority

∙

38

5.9.7 People

The people partly belongs to the internal source as the one of the peo- ple

involved is the reporter, who reported the issue. The priority of the issue

grows with the rank and influence of the reporter. Also some project would

incorporate the assignee attribute – if an issue is as- signed to someone, then

it can be considered more important than the issues not assigned to anyone

yet.

39

JIRA

Datasource

Communicates with the project JIRA

Mailing list

Datasource

Collects e-mails from the lists

IRC

Datasource

Collects messages from the IRC channels

Source code

Datasource

Notifies the programming activity of the devel-

opers

Web

Datasources

Custom services for searching external data re-

lated to the project

Text mining

Service

Serves as a storage of the requirements and re-

lated data

Linking

Service

Serves as a storage of the requirements and re-

lated data

Community

Service

Tracks the social evolution of the community and

provides the community social graph and user

statistics

Issues

Service

Serves as a storage of all the issues data

Prioritization

Service

Computes the issues priorities based on the dis-

covered information

Dashboard Ser-

vice

Service for presenting the learned information

40

 Table 5.6: Community Social Events

Name Source Description

Developer

changed

Project

Website

When the official community list is

changed = Developer is added or re-

moved.

Source

Code

change

Code

Repository

Developer activity.

New

message

Text

mining

When user posts a new text message.

 Table 5.7: Issue related Events

Name Source Description

New

JIRA Issue

JIRA When an issue is added to the JIRA

database.

Update

JIRA Issue

JIRA When an issue is updated in JIRA.

New

Text Issue

Data

linking

When a new issue(which is not in JIRA

yet) is discovered.

New data

for issue

Data

linking

When new text data is found for some

existing issue.

41

6. PROTOTYPE AND EVALUATION

This chapter is devoted to the description of the prototype, the data, process

and decisions, which led to the evaluated results.

6.1 PROTOTYPE

For the evaluation part, we chose to focus mainly on the base services of the system.

We tried to cover the Data sources, text mining and requirements prioritization.

The rest of the system components are higher level and depends on the previously

mentioned, so that can be considered a future development of the prototype.

Figure 6.1: Components of the implemented prototype

6.1.1 Chosen Project

As we discussed in the previous chapter, we are interested in the projects

developed with open development model. We chose to use the ASF projects.

As the ASF incorporates the open development me- thod and has accessible

42

stance for the whole foundation). Also all details and discussion re- garding

the project and decisions should be incorporated either in JIRA or forwarded

to apropriate mailling list, even if it was discussed elsewhere (IRC or other

method). So in the end, we should be able to easily get all the desired

information.

6.1.2 Machine Learning

6.1.3 Data

The data downloaded and stored in the database repository provided

by this prototype are basically from two sources:

∙ JIRA

– Requirement

* Requirement key - unique

* Description

* Summary

* Issue type

* Priority

* Status

* Resolution

* Reporter

* Created date

* Assignee

* Affect version

43

* Fix version

* Updated date

* Resolved date

– User

* Name - unique

* Display name

* E-mail

* Active

– Comment

* Requirement Key

* Body

* Author

* Created date

∙ Project Mail lists

– id - unique

– Project

– Mail list

– Sender

– Date

– Subject

– Body

44

– References = referenced emails = email thread

6.1.4 Technology Stack

The prototype is written in python programming language, as it is good tool

for fast prototyping. The Technology stack is following:

- sqlite3 database with local file storage

- python jira module for REST client to the JIRA REST service

- peewee as a lightweight Object relational mapping (ORM) frame- work

for storing and retrieving data to/from database

- pandas framework for priority prediction data management

- numpy, sci py, sklearn frameworks for priority prediction

6.1.5 JIRA Downloader

JIRA Downloader is basically a REST Client. The module is able to connect

to a generic JIRA instance and download requirements data. The module is

configured with next parameters:

- URL of the JIRA instance

- Project name (e.g. ’Hadoop’)

- Issue types = enumeration of issue types, which should be down- loaded

(e.g. ’Requirement’)

- Issue status = enumeration of issue status, which should be

∙

∙

∙

45

downloaded (e.g. ’Closed’)

The basic operation consists of two steps:

1. Requirement downloading, which connects to the JIRA instance

and tries to download all requirements according to the config-

uration.

2. Comment downloading, which is connecting to different REST

endpoint and downloads text comments per-requirement.

6.1.6 Mail List Downloader

The mail list downloader module connects to an mbox archive site and

downloads the required files into specified directory.

∙ URL of the mbox archives site

∙ Project

∙ Mail lists

∙ Download dir

∙ Year, Month start

∙ Year, Month stop

46

−

6.1.7 Mailbox Reader

The mailbox reader gets the file names from the Mail list downloader and

operates in two steps:

1. Save downloaded messages into local database.

2. Resolve references after saving the requirements, the email th- reads

can be resolved.

6.1.8 Prioritizer

The prioritizer module takes the previously created data repository and

calculates the prediction of the priority.

After a discussion, we chose to predict the priority as a continuous value. That

means, we will not use classification, but regression for predicting the

priority value.

When we evaluated the possibility of using the classification al- gorithm, we

conducted an experiment with classifying the priority based on the JIRA

priority attribute. We chose to use the JIRA at- tributes: description,

summary, reporter and issue type to predict the JIRA attribute priority

(enumeration of values). The text data prepro- cessed with TF-IDF,

classification with SVM algorithm and with tun- ing the parameters using grid

search method on smaller batch of re- quirements (100), we set the TFIDF to

remove english stop words, use (1,3) n-grams and tuned SVM alpha = 1e 3

with the estimated pre- diction rate with mean accuracy around 70%.

However, we leaved the further evaluation of classification ap- proach in

behalf of trying to predict continuous value of the priority with regression

approach. The priority in our point of view is here de- fined as the index in the

47

ordering by resolving date, therefore, based on created date and other

attributes, we are trying to predict the re- solved date. In other words, the

priority depends on the creation date and the duration of the requirement. The

shorter the duration is, the higher is the priority. The figure 6.2 on the

following page illustrates this function. The ordering in the right "resolved

Requirements" list means the priority of the requirements. In other words: the

higher the priority value, the sooner the requirement gets resolved.

 Figure 6.2: Priority function

48

 Figure 6.3: Requirement duration prediction using SVR method

6.2 Evaluation

We evaluated the proposed algorithm with data of the ASF Hadoop project.

The dataset was obtained with our prototype directly from ASF JIRA. The

evaluation process consisted of filtering the dataset, scaling the dataset and

processing the text data with an TF-IDF vec- torization/transformation

along with transforming also other feat- ures of the requirements. This

mapping of data had been input into an SVM.

49

6.2.1 Evaluation Setup

- JIRA = ASF JIRA (https://issues.apache.org/jira)

- Project = Hadoop

- Issue types considered as belonging to Requirements = Improve- ment,

New Feature, Task, Wish, Sub-task, Epic, Umbrella, Story, Technical

task, Planned work, Request, Proposal

- Issue status = Resolved, Closed

- Mails archives = ASF Mail archives (http://mail-

archives.apache.org/mod_mbox)

- Mail lists = common-commits, common-dev, common-issues,

common-user, general, user

6.2.2 Dataset

The data retrieving took non-trivial amount of time, since the set of emails is

not small and the processing from mbox file format took hours of time. Also

the access to the JIRA REST service was problem- atic. Downloading large sets

of data from JIRA wasn’t easy, since after some data transit it threw time-outs

or http session abortions, so the process of obtaining data costs much time.

For this purpose, the pro- totype is equipped with a self recovery mechanism

after unsuccessful data retrieving. The prototype remembers the last

downloaded piece of data and starts at this position. The structure of data

retrieved from the data sources are following:

Emails

The emails dataset consist of 382010 different messages spanning from

January 2006 to the start of December 2017.

∙

∙

∙

https://issues.apache.org/jira
http://mail-archives.apache.org/mod_mbox)
http://mail-archives.apache.org/mod_mbox)

50

common-commits: 75495 messages, commit messages with co-

de changes

common-dev: 98258 messages, general discussion messages,

90059 messages from JIRA

∙ common-issues: 142282 messages, notifications from jira

∙ common-user: 37691 messages, user related thread

∙ general: 7453 messages - general discussion

user: 20831 messages, another user related thread, but more

regarding the user issues with the using of the product, not with

the development

After analysis of the emails dataset, we can say, that the meaning of mails

which are not stored in JIRA is getting lower (92% of all emails in the mail list

’common-dev’ origins in JIRA, so we assume that the role of information

linking is nowadays insignificant.

6.2.3 Results

The setting of ML system was set the same as in the previous sec- tion.The

grid search didn’t yield much help, since there was no time left and not

sufficient computing power to compute the right fitting parameters for larger

number of requirements. The evaluation set- tings were the same with the

proposed ones in previous section.The dataset of JIRA requirements was

divided to 9 folds of 500 require- ments. The evaluation consisted of 8

iterations run. Each iteration had growing training dataset by one fold as

illustrated on figure A.8 on page 55.

∙

∙

∙

51

Table 6.1: Automated requirement prioritization prototype evalua- tion

results

The results can be seen in the summary table of results 6.1 The proposed

solution is in the state of prototype. As we can see from the evaluation, it

doesn’t behave well in general terms of requirement prioritization yet and is

not applicable to gen- eral data, but in some cases (iteration 5) can predict

the data with some accuracy. The worsening of the prediction with latter

iterations can be caused either by some bug in the prototype code or there is

also possibility, that the project evolved in time to much, that the predic- tion

is not directly possible without further transforming the source data.

Iteration Training SVM Score Kendall Kendall p value

1 500 -1.704639 -0.000375 0.995012

2 1000 -4.401022 -0.357508 0.000001

3 1500 -5.618613 0.019622 0.804647

4 2000 -1.515781 -0.023564 0.736550

5 2500 -0.843487 0.294505 0.000008

6 3000 -3.773701 -0.128141 0.025225

7 3500 -6.688573 -0.028749 0.609166

8 4000 -9.269804 0.033466 0.542008

52

7. CONCLUSIONS

The work presented here can be extended in many ways in the fu- ture work.

In this thesis, we address the problem of using machine learning approaches

for requirements prioritization in the context of OSS. We analyzed the

current state of the art in this research field and found out, that there is not

much research being done the field of requirements prioritization in the

context of the OSS projects.

Given the results of the previous research work, we used a synthe- sis way to

combine different approaches and algorithms to propose a system, which

would solve the problem of requirements prioritiza- tion in the context of OSS

projects. The second step was to implement a prototype of such system, which

would use some features of the proposed solution to predict the requirements

priority. The next step was the evaluation of such design in the context of real

open source project and adapting the original design to real world scenarios.

So the first contribution is adaptation of the prime approaches posted by

former researchers to the context od OSS projects.

The next contribution was the implementation of prototype. At first we

conducted a short evaluation of priority classification, but shortly afterwards

switched to regression priority prediction. The pro- totype is not directly

applicable to general data, but can be used as a base ground for further research

in this context. Also the prototype is able to create data repositories of software

projects, which use JIRA and mail lists.

The next contribution was the creation of repository consisting of 10 year

project life span of ASF project Hadoop containing its require- ments and

emails data. This database was created directly with the prototype.

53

Evaluation results

 Figure 7.1: Evaluation, iteration #1, 500 requirements

54

Figure 7.2: Evaluation, iteration #2, 1000

requirements

55

Figure 7.3: Evaluation, iteration #3, 1500 requirements

56

Figure 7.4 : Evaluation, iteration #4, 2000 requirements

57

Figure 7.5 : Evaluation, iteration #5, 2500 requirements

58

Figure 7.6 : Evaluation, iteration #6, 3000 requirements

59

Figure 7.7 : Evaluation, iteration #7, 3500 requirements

60

Figure 7.8 : Evaluation, iteration #8, 4000 requirements

61

REFERENCES

[1] LEHOTA, Laura, Kauppinen MARJO, Kaulaja SARI, Bomar- ius FRANK

and Iida HALIMU. Requirements Prioritization Chal- lenges in Practice.

Product Focused Software Process Improve- ment. 2004. Berlin: Springer Berlin

Heidelberg, 2005, p. 497-508. ISBN 9783540246596.

[2] BABAR, Muhammad Imran, Muhammad RAMZAN a Shah- baz A. K.

GHAYYUR. Challenges and future trends in software re- quirements

prioritization. In: International Conference on Com- puter Networks and

Information Technology [online]. IEEE, 2011, p. 319-324 [cit. 2016-12-11].

DOI: 10.1109/ICCNIT.2011.6020888. ISBN 978-1-61284-940-9. Available:

http://ieeexplore.ieee. org/document/6020888/

[3] GUZZI, Anja, Alberto BACCHELLI, Michele LANZA, Martin PINZGER a

Arie VAN DEURSEN. Communication in open source software development

mailing lists. In: 2013 10th Working Confer- ence on Mining Software

Repositories (MSR) [online]. IEEE, 2013, p. 277-286 [cit. 2016-12-11]. DOI:

10.1109/MSR.2013.6624039. ISBN 978-1-4673-2936-1. Available:

http://ieeexplore.ieee. org/document/6624039/

[4] PERGHER, Massimiliano a Bruno ROSSI. Requirements priori- tization in

software engineering: A systematic mapping study. In: 2013 3rd International

Workshop on Empirical Requirements En- gineering (EmpiRE)[online]. IEEE,

2013, p. 40-44 [cit. 2016-12- 09]. DOI: 10.1109/EmpiRE.2013.6615215. ISBN

978-1-4799-1011.

[5] PERINI, Anna, SUSI Angelo, and AVESANI Paolo, A Machine Learning

Approach to Software Requirements Prioritization, IEEE Transactions on

http://ieeexplore.ieee.org/document/6020888/
http://ieeexplore.ieee.org/document/6020888/
http://ieeexplore.ieee.org/document/6624039/
http://ieeexplore.ieee.org/document/6624039/

62

Software Engineering, vol. 39, no. 4, p. 445–461, 2013.

[6] ACHIMUGU, Philip, Ali SELAMAT, Roliana IBRAHIM and Mohd Naz’ri

MAHRIN. A systematic literature review of soft- ware requirements

prioritization research. Information and Software

[7] ACHIMUGU, Philip, SELAMAT, Ali, and IBRAHIM Roliana, A Web-Based

Multi-Criteria Decision Making Tool for Software Require- ments Prioritization,

D. Hwang et al. (Eds.): ICCCI 2014, LNAI 8733, pp. 444–453, 2014.

[8] BABAR, Muhammad Imran, Masitah GHAZALI, Dayang N.A. JAWAWI, Siti

Maryam SHAMSUDDIN a Noraini IBRAHIM. PHandler: An expert system for

a scalable software requirements prioritization process. Knowledge-Based

Systems [online]. 2015, 84, 179-202 [cit. 2016-12-07]. DOI:

10.1016/j.knosys.2015.04.010.

 ISSN09507051.Availablehttp://linkinghub.elsevier.com/retrieve/pii/S0950

705115001483

[9] ACHIMUGU, Philip, Ali SELAMAT a Roliana IBRAHIM. Re- proTizer: A

Fully Implemented Software Requirements Prioritiza- tion Tool [online]. p. 80

[cit. 2016-12-07]. DOI: 10.1007/978-3- 662-49619-0_5. Available:

http://link.springer.com/10.1007/ 978-3-662-49619-0_5

[10] IAO, Ming, Gang YIN, Tao WANG, Cheng YANG a Mengwen CHEN.

Requirement Acquisition from Social Q&A Sites [online]. p. 64 [cit. 2016-12-10].

DOI: 10.1007/978-3-662-48634-4_5. Available:

http://link.springer.com/10.1007/978-3-662-48634-4_5

[11] HAN, Jiawei, Micheline KAMBER a Jian PEI. Data mining: con- cepts and

techniques. 3rd ed. Boston: Elsevier, 2012, xxxv, 703 p. Morgan Kaufmann

http://linkinghub.elsevier.com/retrieve/pii/S0950705115001483
http://linkinghub.elsevier.com/retrieve/pii/S0950705115001483
http://linkinghub.elsevier.com/retrieve/pii/S0950705115001483
http://link.springer.com/10.1007/978-3-662-49619-0_5
http://link.springer.com/10.1007/978-3-662-49619-0_5
http://link.springer.com/10.1007/978-3-662-48634-4_5

63

series in data management systems. ISBN 978-0-12-381479-1.

[12] Jonna, KORHONEN a Riku SUOMELA.Open Source Software Development:

Requirements Elicitation Methods for Open Source Software Systems. 2015.

University-of-Oulu.-Available:

https://wiki.oulu.fi/download/attachments/58197330/ossd_2015_alkhanji_korh

onen_suomela.pdf?version=1& modificationDate=1448956481000&api=v2

[13] LAURENT Paula and CLELAND-HUANG Jane, Martin a PATRICK

HEYMANS (EDS.). Lessons Learned from Open Source Projects for

Facilitating Online Requirements Processes, Re- quirements engineering:

foundation for software quality 15th International Working Conference, REFSQ

2009 Amsterdam, The Netherlands, June 8-9, 2009: proceedings. [Online] [cit.

2017-12-13]. pages 240-255, Berlin: SpringerLink, 2009. ISBN

 9783642020506.

[14] GARDLER, Ross and Gabriel HANGANU. Governance Mod- els. OSS

Watch [online]. 2013 [cit. 2016-04-26]. Available: http:

 //oss-watch.ac.uk/resources/governancemodels

[15] A. Mockus, R. T. Fielding, and J. D. Herbsleb. A case study of open source

software development: the apache server. In Proc. of ICSE’00, pages 263–272,

2000.

[16] Linking issues. Attlassian documentation [online]. [cit. 2016- 05-04].

Available: https://confluence.atlassian.com/ jirasoftwarecloud/linking-

issues-776997756.html

[17] What is an Issue. Attlasian documentation [online]. [cit. 2016-05- 05].

Available: https://confluence.atlassian.com/jira064/ what-is-an-issue-

https://wiki.oulu.fi/download/attachments/58197330/
https://wiki.oulu.fi/download/attachments/58197330/ossd_2015_al-khanji_korhonen_suomela.pdf?version=1&modificationDate=1448956481000&api=v2
https://wiki.oulu.fi/download/attachments/58197330/ossd_2015_al-khanji_korhonen_suomela.pdf?version=1&modificationDate=1448956481000&api=v2
https://wiki.oulu.fi/download/attachments/58197330/ossd_2015_al-khanji_korhonen_suomela.pdf?version=1&modificationDate=1448956481000&api=v2
http://oss-watch.ac.uk/resources/governancemodels
http://oss-watch.ac.uk/resources/governancemodels
https://confluence.atlassian.com/jirasoftwarecloud/linking-issues-776997756.html
https://confluence.atlassian.com/jirasoftwarecloud/linking-issues-776997756.html
https://confluence.atlassian.com/jirasoftwarecloud/linking-issues-776997756.html
https://confluence.atlassian.com/jira064/what-is-an-issue-720416138.html
https://confluence.atlassian.com/jira064/what-is-an-issue-720416138.html

64

720416138.html

[18] The ultimate guide for software development teams us- ing Kanban.

Kanbanize [online]. [cit. 2016-05-05]. Available:

https://kanbanize.com/kanban-resources/case-studies/ kanban-for-software-

development-teams/

[19] IAO, Ming, Gang YIN, Tao WANG, Cheng YANG a Mengwen CHEN. Requirement

Acquisition from Social Q&A Sites [online]. p. 64 [cit. 2016-05-05]. DOI:

10.1007978-3-662-48634-4_5. Available:

 http://link.springer.com/10.1007/978-3-662-48634-4_5

[20] ANDERSON, Paul. Meritocrats, Cluebats And The Open De- velopment

Method: An Interview With Justin Erenkrantz. OSS Watch [online].

Intelligent content, 2012 [cit. 2016-04-26]. Avail- able: http://oss-

watch.ac.uk/resources/erenkrantz

[21] Daneva, M. and van der Veen, E. and Amrit, C. and Ghaisas,

 S. and Sikkel, K. and Kumar, Ramesh and Ajmeri, N. and Ram- teerthkar, U.

and Wieringa, R.J. (2013) Agile requirements prioritiza- tion in large-scale

outsourced system projects: an empirical study. Jour- nal of systems and software,

86 (5). 1333 -1353. ISSN 0164-1212

[22] HINTERBERGER, Hans, Josep DOMINGO-FERRER, Vipul

 KASHYAP, et al. Text Classification. Encyclopedia of Database Systems [online].

Boston, MA: Springer US, 2009, p. 3044 [cit. 2016-12-13]. DOI: 10.1007/978-0-

387-39940-9_3791. ISBN 978-0-

 387-35544-3. Available: http://www.springerlink.com/index/

10.1007/978-0-387-39940-9_3791

https://confluence.atlassian.com/jira064/what-is-an-issue-720416138.html
https://kanbanize.com/kanban-resources/case-studies/kanban-for-software-development-teams/
https://kanbanize.com/kanban-resources/case-studies/kanban-for-software-development-teams/
https://kanbanize.com/kanban-resources/case-studies/kanban-for-software-development-teams/
http://link.springer.com/10.1007/978-3-662-48634-4_5
http://oss-watch.ac.uk/resources/erenkrantz
http://oss-watch.ac.uk/resources/erenkrantz
http://www.springerlink.com/index/10.1007/978-0-387-39940-9_3791
http://www.springerlink.com/index/10.1007/978-0-387-39940-9_3791

65

[23] MANNING, Christopher D., Prabhakar. RAGHAVAN and Hin- rich.

SCHÜTZE. Introduction to information retrieval. New York: Cambridge

University Press, 2008. ISBN 0521865719.

[24] YANG, Yiming. An Evaluation of Statistical Approaches to Text

Categorization. Information Retrieval [online]. 1(1/2), 69-90 [cit. 2016-12-13].

DOI: 10.1023/A:1009982220290. ISSN

 13864564. Available: http://link.springer.com/10.1023/A:

 1009982220290

[25] CROWSTON, Kevin a Ivan SHAMSHURIN. Core-Periphery Com- munication

and the Success of Free/Libre Open Source Software Projects [online]. p. 45

[cit. 2016-12-15]. DOI: 10.1007/978-3- 319-39225-7_4. Available:

http://link.springer.com/10.1007/ 978-3-319-39225-7_4

[26] HANNEMANN, Anna, Kristjan LIIVA a Ralf KLAMMA. Navi- gation

Support in Evolving Open-Source Communities by a Web-Based Dashboard

[online]. p. 11 [cit. 2016-12-15]. DOI: 10.1007/978-3- 642-55128-4_2.

Available: http://link.springer.com/10.1007/ 978-3-642-55128-4_2

[27] Process. Apache Software Foundation [online]. [cit. 2016- 12-20]. Available:

https://www.apache.org/foundation/ how-it-works.html

[28] Sklearn.svm.SVR. Scikit learn [online]. 2017 [cit. 2017-12- 12].

Available: http://scikit-learn.org/stable/modules/

generated/sklearn.svm.SVR.html

[29] SMOLA Alex J. and SCHOLKOPF Bernhard . A tutorial on sup- port vector

regression Statistics and Computing 14 2004 [online]. p. 199-222 [cit. 2017-

12-12]. Available: http://scikit-learn.org/

stable/modules/generated/sklearn.svm.SVR.html

http://link.springer.com/10.1023/A
http://link.springer.com/10.1007/978-3-319-39225-7_4
http://link.springer.com/10.1007/978-3-319-39225-7_4
http://link.springer.com/10.1007/978-3-642-55128-4_2
http://link.springer.com/10.1007/978-3-642-55128-4_2
https://www.apache.org/foundation/how-it-works.html
https://www.apache.org/foundation/how-it-works.html
http://scikit-learn.org/stable/modules/generated/sklearn.svm.SVR.html
http://scikit-learn.org/stable/modules/generated/sklearn.svm.SVR.html
http://scikit-learn.org/stable/modules/generated/sklearn.svm.SVR.html
http://scikit-learn.org/stable/modules/generated/sklearn.svm.SVR.html
http://scikit-learn.org/stable/modules/generated/sklearn.svm.SVR.html
http://scikit-learn.org/stable/modules/generated/sklearn.svm.SVR.html

66

[30] Chih-Chung Chang and Chih-Jen Lin. LIBSVM A library for Support

Vector Machines [online]. 2013 [cit. 2017-12-12]. Avail- able: http://scikit-

learn.org/stable/modules/generated/ sklearn.svm.SVR.html

[31] Tuning the hyper-parameters of an estimator. Scikit learn [on- line]. 2017

[cit. 2017-12-12]. Available: http://scikit-learn.

org/stable/modules/grid_search.html#grid-search

[32] NOETHER Gottfried E. , Elements of Nonparametric Statistics”, New York: John

Wiley & Sons, 1967

http://scikit-learn.org/stable/modules/generated/sklearn.svm.SVR.html
http://scikit-learn.org/stable/modules/generated/sklearn.svm.SVR.html
http://scikit-learn.org/stable/modules/generated/sklearn.svm.SVR.html
http://scikit-learn.org/stable/modules/grid_search.html#grid-search
http://scikit-learn.org/stable/modules/grid_search.html#grid-search
http://scikit-learn.org/stable/modules/grid_search.html#grid-search

 67

