

T.C

ALTINBAŞ UNIVERSITY

Graduate School of Sciences and Engineering

 Electrical and Computer Engineering

DESIGN, IMPLEMENTATION AND PERFORMANCE

ANALYSIS OF AES WITH ONE WAY ENCRYPTION

SYSTEM USING LABVIEW BASED FPGA

SARA ABDULHALEEM AL-SHAREA

Master Thesis

Thesis Supervisor:

 Prof. Dr. Oguz BAYAT

Istanbul, 2019

DESIGN, IMPLEMENTATION AND PERFORMANCE ANALYSIS OF

AES WITH ONE WAY ENCRYPTION SYSTEM USING LABVIEW

BASED FPGA

By

 SARA ABDULHALEEM AL-SHAREA

Electrical and Computer Engineering

Submitted to the Graduate School of Science and Engineering

In partial fulfillment of the requirements for the degree of

Master of Science

ALTINBAŞ UNIVERSITY

2019

iii

This is to certify that we have read this thesis and that in our opinion it is fully adequate, in scope and

quality, as a thesis for the degree of Master of Science.

Prof. Dr. Oguz BAYAT

Supervisor

Examining Committee Members (first name belongs to the chairperson of the jury and the second name

belongs to supervisor)

Prof. Dr. Oguz BAYAT School of Engineering and

Natural Science,

Altinbas University __________________

Asst. Prof. Dr. Muhammad ILYAS School of Engineering and

Natural Science,

Altinbas University __________________

Asst. Prof. Dr. Adil Deniz DURU Faculty of Sport Sciences,

Marmara University __________________

I certify that this thesis satisfies all the requirements as a thesis for the degree of Master of Science.

Asst. Prof. Dr. Catatay AYDIN

Head of Department

Approval Date of Graduate School of

Science and Engineering: ____/____/____

Prof. Dr. Oguz BAYAT

 Director

 iv

I hereby declare that all information in this document has been obtained and presented in

accordance with academic rules and ethical conduct. I also declare that, as required by these

rules and conduct, I have fully cited and referenced all material and results that are not

original to this work.

SARA ABDULHALEEM AL-SHAREA

 v

DEDICATION

To my late father, dear mother, husband, children and my brothers, To my esteemed supervisor

Dr. Oguz Bayat ,To my dear friends and all who have helped me to finish this research.

 vi

ACKNOWLEDGEMENTS

First of All, thanks to Almighty Allah who has given us courage, wisdom to complete this work

and patience to face all difficulties.

Foremost, I would like to express my sincere gratitude to my advisor Asst. Prof. Dr. Oguz Bayat

for the continuous support of my study and research, for his patience, motivation, enthusiasm

and immense knowledge. This work would not have been possible without his guidance, support

and encouragement. Under his guidance I successfully overcame many difficulties and learned a

lot. His invaluable guidance and support at every stage has led to successful conclusion of the

study.

I want to convey my special thanks to my mother, for her love and continuous encouragement

for me, she is the most important person in my world and I dedicate this thesis to her. And I

would like to thank my husband Amro, for supporting me and give me the strength all the time

and to my lovely children Taleen and Taim, for being in my life and all my friends for Their call

and moral support have been invaluable at every stage of my life. Thank you all for standing by

me at all times.

 vii

The meaning of security is to protect something important from not authorized peoples.

Cryptography is one of the security systems. Many applications could be used in the security

systems like military applications, email, banking, information technology of database. The

proposed system uses advanced encryption standard with secure hash algorithms to produce a

strong ciphertext. Moreover, this thesis make the combination of hash functions which is a one

way encryption, as a key with Advanced Encryption Standard (AES) algorithm which is a two

way encryption as a ciphering generator to obtain confidentiality and integrity. The proposed

system combining between the advanced encryption standard with secure hash algorithms based

on Labview software and hardware implementation using Xilinx FPGA card. System generator

was made to connect the software of the proposed system with hardware platform based on

MATLAB system generation and in Labview platform in MATLAB script. The simulation

ABSTRACT

DESIG, IMPLEMENTATION AND PERFORMANCE ANALYSIS OF AES

WITH ONE WAY ENCRYPTION SYSTEM USING LABVIEW BASED

FPGA

SARA ABDULHALEEM AL-SHAREA,

M.Sc., Electrical and Computer Engineering, Altınbaş University,

Supervisor: Prof. Dr. Oguz BAYAT

Date: October2019

Pages: 110

 viii

results show the good ideas and powerful form of strength of security with different form and

size of plain text with both SHA-1 and SHA-2 of size extend from (1-bits to 2256 bits) and from

these results hardware implementation achieved by SPARTAN 3AN with clock of 50 MHz The

proposed system was designed based on FPGA, simulated using MATLAB and Xilinx-ISE 14.7

and then implemented in Spartan-3A 700AN FPGA. The proposed hash algorithms in this thesis

obtained with laptop specifications: CPU is 2.5 GHz, core i5, memory RAM 4G Bytes and

system type 64 bits. The implementation completed with Labview version of 2013 32-bits,

Xilinx ISE 14.7 and FPGA Spartan 3A 700AN. Well results obtaining and a satisfying security

level of the proposed work with respect to security statistical test with pass percentage of 90%.

Keywords: Advanced Encryption Standard (AES), Cryptanalysis, Field programmable gate

array (FPGA), LabView, Secure Hash Algorithm (SHA-1), Secure Hash Algorithm (SHA-2),

and Security.

 ix

TABLE OF CONTENTS

Pages

ABSTRACT ... vii

LIST OF TABLES ... xiii

LIST OF FIGURES ... xiii

LIST OF ABBREVIATIONS .. xvii

LIST OF SYMBOLS ... xix

1. INTRODUCTION.. 1

1.1 GENERAL INTRODUCTION ... 1

1.2 LITERATURE SURVEY ... 2

1.3 AIM OF WORK .. 4

1.4 THESIS CONTENT .. 5

2. AES AND HASH FUNCTION ALGORITHM ... 6

2.1 INTRODUCTION ... 6

2.2 CRYPTOGRAPHY ... 6

2.2.1 Authentication ... 8

2.2.2 Integrity ... 9

2.2.3 Digital Signiture .. 10

2.2.4 Confidentiality ... 10

2.3 ADVANCED ENCRYPTION STANDARD (AES) ... 11

2.3.1 AES Encryption .. 13

2.3.2 AES Decryption .. 18

2.4 BLOCK CIPHER MODES OF OPERATION.. 20

 2.4.1 ELECTRONIC CODEBOOK MODE (ECB) ... 20

 2.4.2 CIPHER BLOCK CHAINING (CBC) MODE .. 21

 2.4.3 CIPHER FEEDBACK MODE (CFB) ... 22

 2.4.4 OUTPUT FEEDBACK (OFB) MODE .. 23

file:///C:/Users/cagatay.aydin/Desktop/FBE_Docs/Altinbas%20University%20Thesis%20Template%20.docx%23_Toc3886892

 x

 2.4.5 COUNTER (CTR) ... 24

2.5 SECURE HASH ALGORITHM (SHA) ... 25

2.5.1 Secure Hash Algorithm (SHA-1) ... 25

 2.5.2 SHA-2 .. 29

2.6 ATTACKS ON THE PROPSED SYSTEM ... 30

2.7 FIELD PROGRAMMABLE GATE ARRAY (FPGA) .. 33

2.8 ENCRYPTİON QUALİTY MEASURİNG TECHNİQUE .. 35

 3. SOFTWARE IMPLEMENTATION OF AES AND HASH FUNCTION 38

3.1 INTRODUCTION ... 38

3.2 SOFTWARE IMPLEMENTATION ... 38

3.2.1 AES Implementation by LabView .. 38

3.2.2 AES Encryption process by LabView ... 39

3.2.3 AES Decryption process by LabView ... 44

3.3 IMPLEMENTATION OF HASH FUNCTIONS BY LABVIEW 47

3.3.1 Implementation of SHA-1 by LabView ... 47

3.3.2 Implementation of SHA-2 by LabView .. 52

3.4 COMPARATIVE ANALYSIS ... 58

 4. SOFTWARE AND HARDWARE IMPLEMENTATION RESULT............................ 60

4.1 INTRODUCTION ... 60

4.2 AES AND HASH FUNCTIONS SOFTWARE RESULT .. 60

4.3 IMPLEMENTATION OF THE PROPOSED ALGORITHM ON FPGA 68

4.4 MAPPING THE PROPOSED ALGORITHM ON FPGA .. 70

4.5 THE PROPOSED SYSTEM IMPLEMENTATION ON SPARTAN-3A 700AN

PLATFOR ... 73

4.6 STATISTICAL TESTS ... 75

 5. SOFTWARE AND HARDWARE IMPLEMENTATION RESULT............................ 78

5.1 CONCLUSIONS ... 78

5.2 FUTURE WORK .. 79

 xi

REFERENCES .. 80

APPENDIX A .. 84

APPENDIX B .. 85

APPENDIX C .. 88

APPENDIX D .. 94

CURRICULUM VITAE ... 69

 xii

LIST OF TABLES

Pages

Table 2.1: Shift offsets for different block lengths ... 15

Table 2.2: Primitive logic functions used in SHA-1 ... 28

Table 2.3: The run length boundaries ... 37

Table 3.1: Comparative analysis of the proposed algorithm .. 59

Table 4.1: (a) Encryption and (b) Decryption Process Utilization ... 71

Table 4.2: FIPS PUB 140-1 statistical tests of the proposed system. ... 76

 xiii

LIST OF FIGURES

Pages

 Figure 2.1: Encryption and decryption .. 6

Figure 2.2: Example on Authentication .. 8

Figure 2.3: Message integrity ... 9

Figure 2.4: Digital Signature Creation .. 10

Figure 2.5: Message Confidentiality achieved by encrypt/decrypt .. 11

Figure 2.6: General structure of AES algorithm ... 12

Figure 2.7: Sub-bytes transformation [5] .. 14

Figure 2.8: Shift Rows cyclically shift the last rows in the State ... 15

Figure 2.9: General Block Diagram of The Key Expansion [14] ... 17

Figure 2.10: Inverse Shift Rows transformation ... 18

Figure 2.11: ECB mode .. 21

Figure 2.12: CBC Mode .. 22

Figure 2.13: CFB Mode .. 23

Figure 2.14: Output Feedback (OFB) .. 24

Figure 2.15: Counter (CTR) Mode ... 25

Figure 2.16: Message digests construction [21] .. 26

 xiv

Figure 2.17: SHA-1 Compression Function [21] ... 29

Figure 2.18: Main Structure of The FPGA [32] .. 34

Figure 3.1: Key Generation in LabView... 40

Figure 3.2: AES Encryption Process by Labview .. 43

Figure 3.3:AES Decryption Process by Labview ... 46

Figure 3.4: Initial Vectors of SHA-1 .. 47

Figure3.5: SHA-1 core word calculation .. 48

Figure 3.6: SHA-1 calculations... 49

Figure3.7: Iterations of the case structure ... 50

Figure 3.8: SHA-1 by Labview ... 51

Figure 3.9: Message Preparation... 52

Figure3.10: Converting Array ... 53

Figure3.11: SHA-2 core Entery .. 53

Figure 3.12: Working Array ... 54

Figure 3.13: SHA-2 Calculations .. 55

Figure 3.14: Message Digest... 56

Figure 3.15: SHA-2 by Labview ... 57

 xv

Figure 4.1: Testing AES and SHA-1 (capital letters) .. 61

Figure 4.2: Testing AES and SHA-1 (small letters) .. 62

Figure 4.3: Testing AES and SHA-1 (symbols and numbers) ... 62

Figure 4.4: Testing AES and SHA-1 (ECB mode) .. 63

Figure 4.5: Testing AES and SHA-1 (CFB mode) .. 64

Figure 4.6: Testing AES-256 and SHA-2 (capital letters) ... 65

Figure 4.7: Testing AES-256 and SHA-2 (small letters) ... 65

Figure 4.8: Testing AES-256 and SHA-2 (symbols and numbers) ... 66

Figure 4.9: Testing AES-256 and SHA-2 (ECB mode) ... 67

Figure 4.10: Testing AES-256 and SHA-2 (CFB mode) ... 67

Figure 4.11: Proposed System Black Box .. 68

Figure 4.12: Encryption Process of The Proposed System .. 69

Figure 4.13: Decryption process of The Proposed System ... 69

Figure 4.14:(a) Simulation Output of The Encryption and (b) Decryption Process 70

Figure 4.15: JTAG Cable .. 73

Figure 4.16: Hardware Co-simulation .. 74

Figure 4.17: The bits stream downloading to the hardware device through the JTAG cable 74

 xvi

Figure 4.18: Connection between the computer and Spartan-3AN board 75

xvii

LIST OF ABBREVIATIONS

AES : Advanced Encryption Standard

ALU : Arithmetic Logic Unit

ASCII : American Standard Code for Information Interchange

ASIC : Application Specification Related Circuit

CBC : Cipher Block Chaining

CFB : Cipher Feedback

CLBs : Configurable Logic Blocks

CTR : Counter

DES : Data Encryption Standard

DSA : Digital Signature Algorithm

ECB : Electronic Code Book

FF : Flip-Flop

FIPS

FIPSPUB

:

:

Federal Information Processing Standard

Federal Information Processing Standard Publication

FPGA : Field Programmable Gate Array

GUI : Graphical User Interface

Hwcosm : Hardware Co-Simulator

ISE

IV

:

:

Integrated Synthesis Environment

Initial Vector

 xviii

JTAG : Joint Test Action Group

LabVIEW : Laboratory Virtual Instrument Engineering Workbench

LUT : Look Up Table

MAC : Message Authentication Code

Mod : Modulo

MUX : Multiplexer

NIST : National Institute of Standards and Technology

NSA : National Security Agency

P : Poker Test

PC : Personal Computer

RAM : Random Access Memory

RSA : Rivest, Shamir and Adleman

RTL : Register Translate Level

SHA

SHA-0

SHA-1

SHA-2

SHA-3

:

:

:

:

:

Secure Hash Algorithm

Secure Hash Algorithm 0

Secure Hash Algorithm 1

Secure Hash Algorithm 2

Secure Hash Algorithm 3

VHDL : Very high speed hardware description language

xix

LIST OF SYMBOLS

*
: Addition, multiplication, or some other general mathematical

operations

* : Multiplication operation in mathematics

⊕ : Xoring

<< : Shifting left

= : Equality sign

>> : Shifting right

A,B,C,D,E

A,B,C,D,E,F,G,H

:

:

Temporary vectors for SHA-1

Temporary vectors for SHA-2 256

AND : Login And

H

H (M), h_t

:

:

Hash code

Hash code of a message

H1,H2,H3,H4,H5

H1,H2,H3,H4,H5,H6,H7

:

:

SHA-1 initial vectors

Initial vectors of SHA-2 256

I

i , j

IV

:

:

:

Iteration

Used for looping

The random Initial Vector

Kt

L

:

:

The constant vectors for hashing

Length of message

 xx

M,M1,M2,M' : Message

Maj : Majority

Oj : Plaintext message

P

P,Q,R,S

ROT

:

:

:

Probability of finding birthday attack

Primitive logic functions

Rotation

S1

SHF

:

:

Register for hash calculations

Shifting

T

𝑆0

:

:

Iteration, round

Register for hash calculations

𝑇𝐸𝑀𝑃 : Temporary register

Wt : Words of hash calculations

𝑡𝑒𝑚𝑝1

𝑡𝑒𝑚𝑝2

:

:

Temporary register for hash calculations

Temporary register for hash calculations

 1

1. INTRODUCTION

1.1 GENERAL INTRODUCTION

Cryptography refers to the data encryption and decryption. Encryption is the process of

translating plain text data into something that appears to be random and meaningless (ciphertext),

while decryption is the process of converting ciphertext back to plaintext.

The aim of every encryption algorithm is to make a difficult ciphertext to be decrypted without

using the key. If a truly good encryption algorithm was used, then there is no technique

significantly better than methodically trying every possible key. For algorithm like that, the

longer the key, the more difficult to be decrypted a part of the ciphertext without having the key.

The problem is if the message contains confidential information, then the message could be

intercepted and read by an eavesdropper. That’s meaning, the scamper, as usual named as Eve,

might be able to modify the message during transmission in such a way that the legal recipient

does not detect the manipulation. One objective of cryptography is to provide methods for

preventing such attacks [1].

There are two types of keys that are used in cryptography, public and private. The public key is

as the name suggests public, where the it is made available to everyone via a publicly accessible

repository or directory. On the other hand, the private key must remain confidential to its

respective owner. The keys pair is mathematically related, so whatever data encrypting with a

public key may only be decrypted by its corresponding private key and vice versa.

There are two types of encryption, symmetric and asymmetric encryption. The only difference

between them is the symmetrical encryption uses a single key for both encryption and

decryption, while asymmetrical encryption uses a pair of public key and private key to encrypt

and decrypt messages.

The process of encryption is used by militaries and governments to simplify secret

communication for a long time. The encryption is now generally used in protecting information

within many kinds of normal people systems; therefore, cryptography plays an important role in

the security of data. It enables to store critical information or sending it across insecure networks

so that unauthorized persons cannot read it [2].

 2

The algorithms that using in this thesis are: advanced encryption standard and secure hash

algorithms. Secure hash algorithm was used as a key that entered to the AES algorithm. The

advantage of combing the AES and SHA algorithms is to make the SHA two way cryptography

instead of one way cryptography. The software implementation of the proposed algorithm was

implemented via labview 2013 64bits and Matlab 2012a. While the hardware implementation

was implemented using a FPGA card called Spartan 3AN 700E.

The cryptographic algorithms which implemented in hardware were more physically secure as

they cannot easily be modified or read by an outside attacker. Furthermore, the hardware

implementations have a chance of running basically faster than software implementations.

1.2 LITERATURE SURVEY

This section reviews some of the major works available in the literature on AES and hash

functions (SHA-1, SHA-2) algorithms. The reviews include their scopes and the ways to

improve these algorithms to be more secure and unbreakable. The configuration of the hardware

implementations on FPGAs that was introduced:

A.M. Deshpande, M.S. Deshpande and ET. Al in 2009 [3] proposed FPGA implementation of

AES based on the Very High Speed Integrated Circuit Hardware Description language (VHDL).

ModelSim SE PLUS 5.7g software is used for the simulation and optimization of the

synthesizable VHDL code. Synthesizing and implementation of the code is carried out on Xilinx

- Project Navigator, ISE 8.2i suite. This paper proposes a method to integrate the AES encrypter

and the AES decrypter. The proposed method made a very low-complexity architecture,

especially in saving the hardware resource in implementing the AES (Inv) Sub Bytes module and

(Inv) Mix columns module. The architecture can still deliver a high data rate in both

encryption/decryption operations.

P.B. Ghewari, J. K. Patil and ET. Al in 2010 [4] proposed the implementation of encryption

and decryption of AES algorithm with respect to FPGA and Very High Speed Integrated Circuit

Hardware Description language (VHDL). Most effective and a better VHDL code developed for

the implementation of both, 128 bits data encryption and decryption process. Xilinx ISE 8.1

software is utilized for computer simulation. Every program is examined with some of vectors

provided by NIST and the output results were typical with lower delay.

 3

W.Stallings in 2011 [5] given a functional overview of both the basics and workout with regards

to cryptography and network security at the beginning of the book, the essential problems related

to system security capacity are investigated through giving an instructional exercise and study of

cryptography and the network security innovation. The end part of the book includes the act of

the network security and the practical applications that have been actualized and used to give the

network security.

R.Patel and N.Chaudhary in 2012 [6] was related to hash function, which is a function that

takes a random block of data and returns a fixed size bits string called "message digest" this

mean any change to the information will change the achieved value. One of the application of the

message digest is the digital signature for online transactions. The proposed work tested the

robustness of different message digest with regard to digital signature. The repeat sequences in

the digest made the robustness of the message digest weak, as well as it may lead to same

message digest for different message blocks.

M.Pitchaiah, P.Daniel et al. in 2012 [7] proposed an implementation of AES (128 bits)

encryption and decryption by utilizing the Rijndael algorithm. The proposed work was made

using Verilog code which implemented based on FPGA card. The AES algorithm is collected

from three main parts: cipher, inverse cipher and key expansion. That made cipher converts data

to an ambiguous form which called plaintext, furthermore, key expansion produce a Key

schedule that is used in cipher and inverse cipher execution.

P.Gehlot, R.Sharma and ET. Al in 2012 [8] presented a comparison between implementing the

modules of AES algorithm with different families of FPGA platforms. This methodology uses

VHDL to implement the modules in terms of Delay and Frequency. The implementation based

on Xilinx – 6.1 xst software and there delay calculations and have been done on FPGA families

which are Spartan2, Spartan3 and Virtex2.

R.Ibrahim, R.Kadhim et al. (2015) [9] Presented an implementation of a secure hash algorithm

using LabView software. The proposed algorithm of SHA-1 was implemented by LabView

software from entering a string, padding, SHA-1 core, and message digest to produce 160 bitss

hash code for any plaintext. Moreover, an implementation of secure hash algorithm SHA-2using

labview software had been presented. However, the algorithm of SHA-2 proposed in the work is

 4

implemented by LabVIEW software by first entering: string, padding, SHA-2 core, and message

digest to produce 256 bits hash code for any plaintext entered.

In S.Paddhan, S.Shelke et al. (2015) [10] a modern scheme was made to develop the security of

wireless sensor network (WSN) gateway, in WSN the security is a challenging task, due to its

limitation towards the low latency in processing, speed and power. Previous results show that the

proposed scheme does not have application dependency and have potential in integrated with any

application of wireless sensor network. However, the advanced encryption standards (AES) is

the technique used in encryption algorithm and sleep scheduler for key management combined

and operated with the same key size to provide node authentication and secure key exchange.

 In this thesis the AES was combined with the SHA. The proposed system software was built via

Labview 2013 (64 bits) and Matlab 2012a. After that the proposed system was implemented on

an FPGA card (Spartan 3AN) that was connected via JTAG cable to HP laptop EliteBook corie5

(64 bits) 2.5 GHz CPU..

1.3 AIM OF THESIS

The aim of the proposed system is to design an encryption algorithm that combines the AES and

hash algorithms together by using LabView software in order to achieve confidentiality. The

SHA was used as a key to the AES and that led to making the SHA two way cryptography like

the AES instead of one way (encryption only).

These are steps implemented as the following:

1. Build the proposed system in software and shows the easiness of the implementation using

Labview.

2. Build the proposed system in hardware and compare the results using the FPGA card to take

the advantage of it in various applications.

 5

1.4 THESIS CONTENT

1. Contains a general introduction, the literature survey and the aim of the thesis.

2. Includes introduction to the Advanced Encryption Standard and hash functions by discussing

their requirements and some of their attacks. This chapter also includes the decryption of AES

and the relationship between the AES and hash functions.

3. Presents the implementation of the proposed system.

4. This chapter presents the results and the simulation test of all algorithms that were

implemented in chapter three.

5. Contains the conclusions and the suggestions for future works.

 6

2. AES AND HASH FUNCTION ALGORITHMS

2.1 INTRODUCTION

This chapter focuses on cryptography techniques. The techniques are: advanced encryption

standard algorithm and cryptographic hash functions. Some of these attacks, block cipher modes

of operation, and Field Programmable Gate Array were discussed. Finally, the measure of the

cipher randomness by applying cryptography strength tests on the proposed algorithm of our

system.

2.2 CRYPTOGRAPHY

Cryptography is the exploration of transmitting messages vigorously and safely from a

transmitter to a beneficiary. The point is to encode the message in a way that a meddler couldn't

have the capacity to comprehend its substance. By reproducing the essentials of cryptographic

situation, and assuming that there are two clients Alice and Bob who need to exchange messages

between each other solidly, so that the spy, Eve, couldn't get the information that transmitted.

They will utilize the cryptography exploration of guarding messages secure and safe. By

observing Figure 2.1, if Alice needs to send the plaintext (message) to Bob, she will utilize to

some encryption strategies to change this message to ciphertext. This ciphertext ought to be

incoherent to any outsider, additionally ready to be decrypted once it has been gotten by Bob

[11].

 Key Key

 Ciphertext

Figure 2.1: Encryption and decryption.

In this area, the motivation behind cryptography and how to utilize it in the cryptosystems is

depicted and security necessities and ideas, including authentication, integrity, digital signature

Encryption Decryption

Intruder

 7

and confidentiality or privacy. Cryptography is not just worried with encryption and

unscrambling messages, likewise it is utilized to take care of issues in genuine which require data

security.

Two types of cryptography are used:

1. One way cryptography:

There are two parts of cryptography functions, one way function and two way function.

One way function, means a function that it easy to compute in every input, but hard to invert

giving a random image of the input. In easy and hard it means to be understood in the

computational complexity theory. Computational complexity theory is a subfield of theoretical

computer science one of primary goals is to classify and compare the practical difficulty of

solving problems about finite computational objects [12].

One way encryption or hashing function H (M) can be used to map data of arbitrary size to data

of fixed size. In a simple way, hash function H (M) can calculate any length of data (M) to a

fixed length result h. Given M, it is easy to compute h, given h, it is hard to compute M such that

H (M) = h, Given M, it is hard to find another message, M’, such that H (M) = H (M’) [13].

Furthermore, the results of one way encryption or hashing after encrypted cannot be decrypted

back to original data. The useful use of hashing generally is used to store password or to detect

duplicated records in a large file [14].

2. Two way cryptography:

Two way cryptography refers that the input encrypted can be decrypted and returns to its'

original value. DES and AES are a two way cryptography. Data encryption standard (DES)

encrypts data in 64-bits blocks by using a 56-bits key. The DES algorithm transforms 64-bits

input in a series of steps into a 64-bits output. Same steps with the same key are used to reverse

the encryption [15]. Advanced encryption standard is described in details in the next sections

 8

2.2.1 Authentication

Communication requires security that any individual communicating can identify the identity of

which and whom they communicate and transmit the message. The basic definition of

authentication is the procedure of checking the identity of a person or entity. By returning to the

basic scenario of cryptography, which is about Alice and Bob to know the fundamental of

authentication, which is important to consider that Bob wants to be sure that the message he

received is sent by Alice only [15] .

There are two form ns of authentication in cryptography: entity authentication and data-origin

authentication. The first type is which expressed by the term identification that is interested in

the identity of the parties included within the network [16]. Data-origin authentication

concentrates on attaching the information about the origin of data with the data transferred, such

as the creator and the time of creation [11] [17].Identification is very important when logging in

to any account that belongs to the user to identify him/herself, typing a username only is not

sufficient to prove that account belong to the right user because there are many users who are

interested in the same name, so there is a need to password to prove the account verification

[18],as shown in Figure 2.2.

Figure 2.2: Example on an Authentication

 9

2.2.2 Integrity

Protecting data from being altered by not common intruders called Integrity. Information has a

value only if it is correct and could be invaluable if it has been altered. For example, if a person

sends an online money transfer of $500 but the data was altered in such a way that the person

actually sent $50,000, it could be very costly for the sender.

 In a similar format, for an information recipient, with the essential situation considers the

collector is Bob, must make certain that the information sent by the maker (Alice) is the very

same information got with no change [19].

Some methods are usually used to protect data integrity like "hashing", which mean received

data and make a comparison between the received hash and the hash of the original message.

According to this the hash of the original data must be given to the receiver in a secure way, as

shown in Figure 2.3.

Figure 2.3: Message integrity

 10

2.2.3 Digital Signature

The idea of the signature is to present the reality and the virtual advanced world is the same in

the genuine correspondence. For example, any paper in the organization conveys a choice from

the director goes to the customers ought to convey a signature of the supervisor to demonstrate

that choice is solid and not produced [1]. Digital signature used to spread a message in plaintext

frame when the collectors must check and distinguish the message transmitter. The Signing

message doesn't change the message, it essentially produces a computerized signature code string

that can either reach out to the message or transmitted independently [20]. A digital signature is a

short section of information that is encoded with the sender's private key, as appeared in Figure

2.4. Unscrambling the signature information utilizing the sender's public key demonstrates that

the information was scrambled by the transmitter or by somebody who had admittance to the

transmitter's private key [11] [15].

Figure 2.4: Digital Signature Creation

2.2.4 Confidentiality

Confidentiality is described as an office which is used to protect the content of data from all

messages but persons approved to get it. Protection is a period indistinguishable with

Confidentiality and mystery. There are fluctuated strategies to getting Confidentiality, reaching

out from framework security to registering calculations which reduce data unfathomable [21], as

shown in Figure 2.5.

 11

Figure 2.5: Message Confidentiality achieved by encrypt/decrypt

Confidentiality is generally proportionate to privacy. Measures embraced to guarantee

confidentiality is intended to keep touchy data from contacting the wrong users, while ensuring

that the correct users can in actuality get it: Access must be confined to those approved to see the

information being referred to.In addition, it is normal for information to be sorted by the sum and

kind of harm that should be to fall into unintended hands. Pretty much stringent measures can

then be actualized by those classifications [22].

Confidentiality and integrity are achieved by making the hash functions as an input password to

the AES case structure and this can be seen in details in the software implementation of the AES

in chapter three.

2.3 ADVANCED ENCRYPTION STANDARD (AES)

Advanced Encryption Standard (AES) is the current standard for secret key encryption, it was

created by two Belgian cryptographers, Vincent Rijmen and Joan Daemen. A standardized

version of the algorithm used by the Federal Information Processing Standard 197 called

Rijndael for the Advanced Encryption Standard. A combination of exclusive-OR operations

(XOR), octet substitution with an S-box, row and column rotations and a MixColumn used by

the algorithm. It was easy to implement and could run in a reasonable amount of time on a

regular computer [23].

 12

AES is a United States encryption standard known in Federal Information Processing Standard

"FIPS" 192. AES is a harmonic encryption algorithm handling data in block of 128 bits

[24].AES is harmonic since the same key is used for encryption and the decryption [25]. The key

is the only mystery important to keep for security. AES is configured to utilize various key

lengths it has that 3 lengths defined by the standard and the resulting algorithms are named AES-

128, AES-192 and AES-256 respectively to indicate the length in bits of the key. Figure 2.6

shows a flow chart of the Advanced Encryption Standard.

Figure 2.6: General structure of AES algorithm

 13

2.3.1 AES Encryption

Figure 2.6 demonstrates the common structure of the AES encryption process. The cipher picks a

plaintext block size of 128 bits (16 bytes) and the key length can be 16, 24, or 32 bytes (128,

192, or 256 bits). The algorithm is alluded to as AES-128, AES-192, or AES-256, contingent

onto the key length [15].

 Block cipher consists of N rounds, where the number of rounds depends on the key length: 10

rounds for a 16-bytes key, 12 rounds for a 24-bytes key, and 14 rounds for a 32-bytes key. The

principal rounds comprise of four distinct transformation functions: SubBytes, ShiftRows,

MixColumns, and AddRoundKey, which are described subsequently. The last round contains

just three transformations, and there is an initial single transformation (AddRoundKey) before

the main round, which can be viewed as Round 0. Each round key fill in as one of the

contributions to the AddRoundKey transformation in each round. The algorithm starts with an

Add round key stage.

There are four steps in AES encryption, Sub Bytes, Shift Rows, Mixing Columns and Add

Round Key which are discussed in this section.

a. Sub Bytes Transformation

 The Sub Bytes transformation is a nonlinear bytes substitution that acts on every bytes of the

state separately to produce a new bytes value using an S-box substitution table, this is called the

substitution layer. As appeared in Figure 2.7 ,the substitution layer is based on the S- box or (the

AES substitution table) which is invertible and is achieved by initializing the table in ascending

sequence row by row, after that, a structure of the following transformations is taken:

1. First, take the multiplicative inverse in GF (2^8) the value of {00} is mapped to itself.

2. Second, applying an affine-over GF (2)-transformation defined by:

𝑌𝑖 = 𝑥𝑖 ⊕ 𝑥(𝑖 + 4)𝑚𝑜𝑑8 ⊕ 𝑥(𝑖 + 5)𝑚𝑜𝑑8 ⊕ 𝑥(𝑖 + 6)𝑚𝑜𝑑8 ⊕ 𝑥(𝑖 + 7)𝑚𝑜𝑑8

⊕ 𝑐𝑖

(2.1)

 14

For 0 ≤ i< 8 where:

x_i is the i^th bits of the input bytes, y_i is the i^th bits of the output bytes and c_i is the i^th bits

of a bytes c with the value {63}.

 (2.2)

Figure 2.7: Sub-Bytes transformation [15]

S-box and inverted S-box that used in this section are found in Appendix A. Also 𝐺𝐹 (28) is

shown with more details in Appendix D.

b. Shift Rows Transformation

In the step of ShiftRows transformation, the bytes in last three rows of the state are cyclically

shifted over different numbers of bytes (offsets), as shown in Figure 2.8. Row 0 is not shifted;

[

𝑦0
𝑦1
𝑦2
𝑦3
𝑦4
𝑦5
𝑦6
𝑦7]

=

[

1
1
1
1
1
0
0
0

0
1
1
1
1
1
0
0

0
0
1
1
1
1
1
0

0
0
0
1
1
1
1
1

1
0
0
0
1
1
1
1

1
1
0
0
0
1
1
1

1
1
1
0
0
0
1
1

1
1
1
1
0
0
0
1]

[

x0
x1
x2
x3
x4
x5
x6
x7]

+

[

1
1
0
0
0
1
1
0]

 15

row 1 is shifted over C1 bytes, row 2 over C2 bytes and row 3 over C3 bytes. The shift offsets

C1, C2 and C3 depend on the block length Nb.

Table 2.1: Shift offsets for different block lengths

Nb C1 C2 C3

4 1 2 3

6 1 2 3

8 1 3 4

Figure 2.8: Shift Rows cyclically shift the last three rows in the State

c. Mix Columns Transformation

The mix Column transformation along the shift rows step works on the state column by column

by handling each column as a four term polynomial. Every bytes of a column is charted into a

new value that is a function of all four bytes in that column. The transformation can be

introduced by the following matrix:

 16

Each or every element in the product matrix is the summation of products of elements of one row

and one column. In this situation, the single additions and multiplications are performed in

𝐺𝐹 (28). The MixColumns transformation on an individual column of State can be implemented

as:

d. Add Round Key

In the forward add round key transformation, a round key is added to the state by a simple

bitswise XOR operation. The operation is seen as a column wise operation between the bytes of

a state segment and single word of the round key; it can likewise be seen as a bytes-level

operation.

e. Key Expansion

 The AES uses a cipher key whose length is 128, 192 or 256 bits. This cipher key is expanded

into 10, 12, or 14 round keys respectively, using the Key Expansion algorithm, where the length

of each round key is 128 bits. This Key Expansion algorithm depends only on the cipher key.

Since it independent of the processed data, it can be (and typically is) executed prior to the

encryption/decryption phase.

The AES calculation takes the Cipher Key, K (key length) and plays out a Key Expansion

routine to produce a key timetable. The Key Expansion creates an aggregate of Nb (Nr + 1)

words: the calculation requires an underlying arrangement of Nb (number of words in an AES

block) words and each of the Nr (Number of Rounds) rounds require Nb expressions of key

information. The subsequent key calendar comprises of a straight exhibits of 4-bytes words,

 [

02
01
01
03

03
02
01
01

01
03
02
01

01
01
03
02

] [

𝑠0,0
𝑠1,0
𝑠2,0
𝑠3,0

𝑠0,1
𝑠1,1
𝑠2,1
𝑠3,1

𝑠0,2
𝑠1,2
𝑠2,2
𝑠3,2

𝑠0,3
𝑠1,3
𝑠2,3
𝑠3,3

] =

[

𝑠0,0
′

𝑠1,0
′

𝑠2,0
′

𝑠3,0
′

𝑠0,1
′

𝑠1,1
′

𝑠2,1
′

𝑠3,1
′

𝑠0,2
′

𝑠1,2
′

𝑠2,2
′

𝑠3,2
′

𝑠0,3
′

𝑠1,3
′

𝑠2,3
′

𝑠3,3
′]

 (2.3)

𝑆0,𝐽
′ = (2 • 𝑠0,𝑗) + (3 • 𝑠1,𝑗) + 𝑠2,𝑗 + 𝑠3,𝑗

𝑆1,𝐽
′ = 𝑠0,𝑗 + (2 • 𝑠1,𝑗) + (3 • 𝑠2,𝑗) + 𝑠3,𝑗

𝑆2,𝐽
′ = 𝑠0,𝑗 + 𝑠1,𝑗 + (2 • 𝑠2,𝑗) + (3 • 𝑠3,𝑗)

𝑆3,𝐽
′ = (3 • 𝑠0,𝑗) + 𝑠1,𝑗 + 𝑠2,𝑗 + (2 • 𝑠3,𝑗)}

 (2.4)

 17

signified [WI], with I in the range 0 < I <Nb (Nr + 1). The extension of the information entered

into the key timetable continues as indicated by the pseudo code.

Sub word is a function that picks 4 bytes input word and applies the S-box to each of the 4 bytess

in order to produce an output word. The function Rot Word picks a word [a0, a1, a2, a3] as

information, plays out a periodic change and returns the word [a1, a2, a3, a0]. Rcon [I] (Rcon is

the exponentiation of 2 to a user given value), contains the qualities given by [xi-1, {00}, {00},

{00}], with x i-1 being forces of (x is signified as {02}) in the field GF (28). The main Nk terms

of the extended key are expanded with the cipher key. After each word, w[i] is equal to the XOR

of the previous word (w [i-1]). For the words in positions that are a plenty of Nk, a change is

connected to w [i-1] before the XOR, withdrawn by a XOR with a round consistent, Rcon[i] as

appeared in Figure 2.9. This change comprises of a cyclic move of the bytess in a word

(RotWord), trailed by the utilization of a table query to all Four bytes of the word (SubWord).

Note that the Key Expansion routine for 256-piece Cipher Keys (Nk = 8) is marginally not quite

the same as for 128-and 192-piece Cipher Keys. In the event that Nk = 8 and i-4 is a different of

Nk, then SubWord () applies to w [i-1] before the XOR.

Figure 2.9: General Block Diagram of the Key Expansion [26]

The process involved is to rotate cyclic left by 1 bytes and then substitute rotated word with the

S-Box as shown in Table (A.1) in Appendix A. The substituted word must be XORed with,

round constant Rcon[i]. The word of the round constant Rcon[i] include the values given by

[x^(i-1), {00},{00},{00}], with x^(i-1) being powers of x(x is denoted as {02}) in the field GF

 18

(2^8), where (i) here starts at 1 not 0. For w4 value of i for Rcon[i] will be 1 and is increased in

each round [26].

2.3.2 AES Decryption

In the decryption mode, the operations are backward request contrasted with their request in

encryption mode. It begins with an underlying round, trailed by 9 emphasis of a backwards

typical round and closes with an Add Round Key. A backwards ordinary round comprises of the

accompanying operations in a specific order: Add Round Key, Inverse Mix Columns, Inverse

Shift Rows, and Inverse Sub Bytes. An underlying round is a reverse typical round without the

Inverse Mix Columns. [27].

a. Inverse Shift Rows Transformation

Opposite Shift rows is the reverse of the Shift rows transformation. The bytes which are in the

last three rows of the state are systematically moved over many quantities of bytes. The main

row, R = 0, is not moved. The last three rows are systematically moved by [Nb – shift (r, Nb)]

bytes, where the move bits shift (r ,Nb) depends on the line number as shown in Figure 2.10.

Figure 2.10: Inverse Shift Rows Transformation

 19

b. Inverse Sub Bytes Transformation

 Inverse Sub Bytes is the reverse of the bytes substitution transformation, in which the inverse

Sbox is applied to each bytes of the State. This is obtained by applying the inverse of the affine

transformation followed by taking the multiplicative inverse in𝑮𝑭 (𝟐𝟖).

c. Inverse Mix Columns Transformation

 Inverse Mix Columns is the reverse of the Mix Columns transformation. Inverse Mix Columns

works on the state column by column, handling every column as a four term polynomial. The

columns are assumed as polynomials over 𝑮𝑭 (𝟐𝟖) and multiplied modulo x4 + 1 with a

constant polynomial a-1 (x), given by a-1 (x) = {0b} x3 + {0d} x2 + {09} x + {0e}, this can be

written as a matrix multiplication. Let As a result of this multiplication, the four bytess in a

column are exchange by the matrix bellow:

d. Inverse of Add Round Key Transformation

Add Round Key own inverse since it only involves an application of the XOR operation. The

inverse cipher transformations differ from Cipher transformation, while the form of the key

schedules for encryption and decryption stills the same. However, many properties of the AES

algorithm allows for the Inverse Cipher that has exactly same sequence of transformations as the

Cipher (with the transformations exchanged by their inverses). This is completed with an

alteration in the key schedule.

[

𝑆0,𝐶
′

𝑆1,𝑐
′

𝑆2,𝑐
′

𝑆3,𝑐
′]

= [

0𝑒
09
0𝑑
0𝑏

0𝑏
0𝑒
09
0𝑑

0𝑑
0𝑏
0𝑒
09

09
0𝑑
0𝑏
0𝑒

]

[

𝑆0,𝑐
𝑆1,𝑐
𝑆2,𝑐
𝑆3,𝑐]

 … (2.5)

𝑆0,𝑐
′ = ({0𝑒} • 𝑠0, 𝑐) + ({0𝑏} • 𝑠1, 𝑐) + ({0𝑑} • 𝑠2, 𝑐) + ({09} • 𝑠3, 𝑐)

𝑆1,𝑐
′ = ({09} • 𝑠0, 𝑐) + ({0𝑒} • 𝑠1, 𝑐) + ({0𝑏} • 𝑠2, 𝑐) + ({0𝑑} • 𝑠3, 𝑐)

𝑆2,𝑐
′ = ({0𝑑} • 𝑠0, 𝑐) + ({09} • 𝑠1, 𝑐) + ({0𝑒} • 𝑠2, 𝑐) + ({0𝑏} • 𝑠3, 𝑐)

𝑆3,𝑐
′ = ({0𝑏} • 𝑠0, 𝑐) + ({0𝑑} • 𝑠1, 𝑐) + ({09} • 𝑠2, 𝑐) + ({0𝑒} • 𝑠3, 𝑐)}

… (2.6)

 20

2.4 BLOCK CIPHER MODES OF OPERATION

 Five modes of operation are used when applying block ciphers in a variety of applications.

These modes are: electronic codebook mode, cipher block chaining mode, cipher feedback

mode, output feedback mode and counter mode. These modes are explained in this section [15].

2.4.1 Electronic Codebook Mode (ECB)

Electronic codebook is the simplest mode between the five modes. Figure 2.11 shows the plan

where a block of plaintext (which is a similar size for every situation) is encrypted with a

comparable key K. The expression codebook is utilized in light of the fact that, for a specific

key, there is a new ciphertext for each block of a plaintext. In this manner, a huge codebook

could be imagined, where there is a passage for each possible plaintext design by demonstrating

the related ciphertext of it. If the message is more in length in comparison with the block length,

the strategy would be, breaking the message into squares of the required length and padding the

last block if needed. Likewise, encryption and decryption could be performed one block at any

given moment, dependably utilizing a similar key .

 The ECB technique is perfect for little measures of information. For example, an encryption key

in any case, for longer messages if the same plaintext block was seen more than once, then the

same ciphertext is delivered. This may help the attackers.

 21

Figure 2.11: ECB mode

2.4.2 Cipher Block Chaining (CBC) Mode

The same plaintext blocks produce distinctive ciphertext blocks. Cipher Block Chaining permits

this by XORing each plaintext with the ciphertext from the past round (the first round utilizing

an Initialization Vector (IV) (As sometime recently, a similar key is utilized for each block),

Encrypting functions shown in the Figure 2.12 (a). Decrypting functions as appeared in the

Figure 2.12 (b) in light of the properties of the XOR operation, i.e. IV xor IV xor P = P where IV

is the Initialization Vector and P is the plaintext. Clearly, the IV should be known by both sender

and got and it ought to be kept a mystery alongside the key for most extreme security.

 22

Figure 2.12: CBC Mode.

2.4.3 Cipher Feedback Mode (CFB)

The Cipher Feedback allows a block cipher to be altered into a stream cipher. There is no need to

pad a message to be an indispensable number of blocks. Likewise, it could work in real time.

Figure (2.13) demonstrates the CFB schema. In this Figure, the unit of conveyance is s bits; a

typical esteem is s = 8. Like the CBC mode, the units of plaintext are tied together, so that the

ciphertext of each plaintext unit is a component of all the previous plaintext (which is part into s

bits fragments). The contribution to the encryption task is move enroll break even with long to

the square Figure of the algorithm (despite the fact that the graph refers to 64 bits, which is block

size utilized by DES, and that could be stretched out to other block sizes, for example, the 128

bits of the AES). Some Initialization Vector (IV) is set at the beginning. The leftmost s bits of the

encryption function are XORed with, to begin with a piece of plaintext P1 to deliver the main

unit of ciphertext C1 which is then transmitted. What's more, the contents of the shift register are

shifted left by s bits and C1 is set in the least significant s bits of the shift register. This process

proceeds until all plaintext units are encrypted. Decrypting is comparable

 23

Figure 2.13: CFB Mode.

2.4.4 Output Feedback (OFB) Mode

 The Output Feedback Mode is comparative in structure to the CFB mode, as found in Figure

(2.14). The yield of the encryption function is fed back to the shift register in OFB, while in CFB

the ciphertext unit is fedback to the shift register. One wanted standpoint of the OFB strategy, the

bits errors in transmission do not increased. For instance, if the bits error happens in C1 just the

recouped estimation of P1 is influenced; the achieved plaintext units are not corrupted. With

CFB, C1 likewise fills in as input to the shift register and in this way causes extra defilement

downstream.

 24

Figure 2.14: Output Feedback (OFB)

2.4.5 Counter (CTR)

Interest in this mode has developed in a great way recently. A counter equivalent to the plaintext

block size is utilized. The main necessity expressed in the standard is that the counter value

should be distinctive for every plaintext obstruct that is encrypted. Commonly, the CTR is

initialized to some value and after that it will be increased by 1 for every resulting square

(modulo 2b where b is the block size), as shown in Figure 2.15. For encryption, the counter is

encrypted and then XORed with the plaintext to deliver the ciphertext block; no chaining is

found. For decrypting, a similar arrangement of counter values is utilized, with every encrypted

counter XORed with a ciphertext block to gt the comparing plaintext block. This mode contains

various favorable advantages including hardware efficiency, software efficiency, provable

security (as in it is in any event as secure as alternate modes previously) and simplicity.

 25

Figure 2.15: Counter (CTR) Mode

2.5 SECURE HASH ALGORITHM (SHA)

Hash functions are functions that comprises an input of arbitrary length to a result with a fixed

length [28]. Hashes are used to confirm information and message integrity, password authenticity

the fundamental of many other cryptographic systems. Every hash is individual, but always

repeatable. The word 'dog' will hash to something that no other word hashes too, but it would

always hash to the same thing [29].

2.5.1 Secure Hash Algorithm (SHA-1)

SHA-1 makes a 160-bits (20 bytes) message digest. The main specification of the SHA-1

algorithm was released in 1993 based on the Secure Hash Standard (FIPS PUB 180) by US

government standards agency NIST. This version is now often referred to as SHA-0. It was

replaced by the revised version, published in 1995 in FIPS PUB 180-1 and commonly pointed to

as SHA-1. SHA-1 differs from SHA-0 only by a single bitswise shifting in the message schedule

 26

of its compression function; this was done, according to the national security agency NSA, to

correct a flaw in the original algorithm which decreased its cryptographic security [30].

The Secure Hash Algorithm (SHA-1), Merkle-Damgård construction was designed by R. Merkle

[31] and I. Damgård[32] .

The vast majority of the hash functions and all the steady hash functions are based on message

digest construction as appeared in Figure 2.16.

Message digest construction is basically taken care of in three steps. Initial step is the padding.

The motivation behind the padding is to sort the length of message a different of message block

length, m. The most normally utilized padding procedure is: a "1" bits taken after series of "0"

bits and the bitswise documentation of the message length are added to the message. The

quantity of "0" bits added to the message are chosen so that the message length transforms into a

various of block length m. Comprehensively the greatest length of the message that can be dealt

with by the hash function is 264 − 1 [33].

Figure 2.16: Message digests construction [33]

The Second step is isolating the padded message into m bits blocks m0, m1, m2 . . . m_t−1. Next

of this progression, the binding values are recursively settled by utilizing a fixed publicly

recognized as an initialization vector (IV), and the message pieces.

ℎ_0 = 𝐼𝑉 (2.7)

where i = 1, 2 . . . , t ℎ_𝑖 = 𝑓 (ℎ𝑖 − 1,𝑚𝑖 − 1) (2.8)

Where f is the compression function of the hash. Generally, H is thought to be the message hash

value. The vital property of Merkle-Damgård structure is the collision resistance protection of

 27

the compression function [31] [32]. The message digest development expends a wellbeing

affirmation that if (f) utilized as a part of hash algorithm collision resistant, then the hash

function is collision resistant. Additionally, the impact resistance that assumed the message

digest structure likewise saves the preimage resistance and second preimage resistance of (f).

The input is passed to the system must be managed in 512 bits message blocks. The procedure of

the SHA-1 algorithm is described as followed:

Step 1: Padding bits:

The message is padded until the length in bits is comparing to 448 modulo 512. Subsequently,

the length of the padded message is 64-bitss less a multiple of 512-bitss. Padding is persistently

supplementary, regardless of the possibility that the message is now of the desired length, in light

of the fact that the message M is isolated into chunks everyone called m [33] [34].

Step 2: Append length:

A message chain of 64-bitss unsigned 64-bits number is added to the bits of the message for the

thought processes of security. This chain of message bits covers the length of the first bits of the

message before including the padding bits [33] [34].

Step 3: Initialization Vector:

 A 160-bits buffer of a message is saved to clamp center and the hash function comes about. This

buffer denoted as five 32-bits (A, B, C, D and E) registers. The registers qualities are set up with

the accompanying 32-bits constant values in hexadecimal shape: [33] [34]

A: 67452301

B: EFCDAB89

C: 98BADCFE

D: 10325476

E: C3D2E1F0

 28

Step 4: Processing message:

The fundamental procedure of the hash algorithm is the module which has four loops of

preparing, each of 20 steps [17]. The contributions of each loop are 512-bits message chunk

being overseen and the 160-bits buffer value (ABCDE). As the procedure proceeds with the

estimations of the buffer are refreshed, the huge loop has a comparable development, but each

stage with a different logical operation function which is parleyed as P, Q, R and S, which

appeared in table 2.2. The yield of the last loop is summing of the contribution to the main loop

in a strategy these bits of the yield are added to the reliable bits of the input [33] [34]. The

processing appears in Figure 2.17.

Table 2.2: Primitive logic functions used in SHA-1

step Primitive logic function~ ~(t.B.C.D)

(0≤t≤19) P(t.B.C.D) (B ^ C) v (B ̅^ D)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅

(20≤t≤39) Q(t.B.C.D) 𝐵 ⊕ 𝐶 ⊕𝐷

(40≤t≤59) R(t.B.C.D) (𝐵 ^ 𝐶)𝑣(𝐵 ^ 𝐷)𝑣(𝐶 ^ 𝐷)

(60≤t≤79) S(t.B.C.D) 𝐵 ⊕ 𝐶 ⊕𝐷

 29

Figure 2.17: SHA-1 Compression Function [33]

Step 5: The Output:

Finally, the next procedure step states that all message blocks are handled in the previous way,

the output of the final stage is a 160-bits message digest.

2.5.2 SHA-2

SHA2, not often used for now, is the successor of SHA1 and gathered 4 kinds of hash functions:

SHA224, SHA256, SHA384 and SHA512. It works the same way than SHA1 but is stronger and

generate a longer hash [35]. National institute of standards and technology (NIST) developed the

new version of SHA, which is the SHA-2. Many network systems are still using the SHA-1

because it still strong and can modulate it to get more secrecy. Other systems start using the

updated version of hash function which is SHA-2. NIST advanced SHA-2, takes a greater output

(256 or 512-bits instead of the 160-bits in SHA-1) and changes inside the message calculation

[36]. SHA-2 has many types giving to the number of bits of the message digest. The SHA-2 256

is described as an example, the SHA-2 256 algorithm basically consists of three stages: (a)

message padding parsing (b) expansion and (c) compression.

 30

a. Message Padding

The input message converted to its binary equivalent in order to be handled. This will happened

by added with a ‘1’ and padded with zeros until its length ≡ 448 mod 512 [37]. The original

message length is then appended to the end of the padded message as a 64-bits binary number,

such as SHA-1.

b. Message Parsing

The resulted padded message is partioned into N 512-bits blocks, denoted M (1), M (2). . . M

(N). These M (i) message blocks are approved distinctly to the message expander.

c. Message Expansion

The SHA-2 256 algorithm functions work on 32-bits words, so that each 512-bits M(i) block

from the padding stage is observed as sixteen 32-bits blocks signified M(i) t , 0 ≤ t ≤ 15. The

message expander takes each M (i) and expands it into 64 32-bits Wt blocks [37].

d. Message Compression

 The Wt words from message expansion stage are then passed to the SHA compression function

or the SHA core. The core uses 8 working factors named A, B,… … ,H which are then instated

to predefined values H0 (0) – H7 (0) toward the begin of each call to the hash function [38].

2.6 ATTACKS ON THE PROPOSED SYSTEM

An attack is any attempt to pulverize, uncover, adjust, handicap, take or increase unauthorized

access to or make unauthorized utilization of an advantage. This section contains several attacks

that occur on the two different methods: Advanced Encryption Standard and hash function.

A. Brute Force Attack

In advanced encryption standard, brute force attack includes formally checking all potential key

combinations until the proper key is found. It is one way attack when it is not potential to take a

use of other weaknesses in an encryption system [39].

 31

AES has never been broken yet and it safe against every brute force attacks contrary to

confidence and excuses. However, the key size utilized for encryption should always be large

enough that it could not be broken by modern computers.

In secure hash algorithm, Brute force attack is a particular arrangement used to attempting

subjectively computed hashes to get a correct message process. Brute force attacks don't rely on

upon the development of the hash function. The security of any hash algorithm dishonesties on

the length of yield hash code. Along these lines, the more drawn out hash code the more

protected hash work. This kind of assault relies on upon wonders of experimentation to get a

coveted hash function. For instance, brute-force attack is a lexicon attack which cover a tilt of

word reference file string words to attempt them all in a progressive way [40].

B. Known-key distinguisher

Known-key distinguisher was first known to analyze the security of AES-128 and some Feistel-

based ciphers. The purpose of this model was to have a better estimation of the security margin

of a cipher, but also to cover the scenario of block cipher-based hashing, where the key is

recognized and even selected by the attacker. The property offered for their distinguisher was an

integral structure on the input and output of a set of plaintext/ciphertext pairs, for a given known

key [41].

C. Related-Key Attacks

1. The chosen key attack: In the chosen key attacks, two linked keys with certain relationship

are utilized and many plaintexts are encrypted under each of them. The attacker distinguishes

only the relationship between the two keys, but not the keys. Attacker receives the ciphertexts

and uses them to find both keys [42]. There are two types of chosen key attack: a chosen key

known as plaintext attack in which only the relation between the keys is selected by the attacker

and a chosen key chosen plaintext attack in which the attacker selects the relation between the

keys and the plaintexts to be ciphered. These attacks not depend on the exact number of rounds

of the attacked cryptosystem and even if the number of rounds is increased (especially if

doubled). The resulting cryptosystem stays vulnerable to the same attack

 32

2. The Chosen plaintext attacks: This attack can be combined with the attacks based on

complementation properties and it is almost three times faster than the corresponding attacks

based only on complementation properties. When this attack is used against 64-bits block

ciphers, it requires about 232-237 chosen plaintexts, whose corresponding ciphertexts are to be

stored in random access memory during the analysis [42]. A hash function will be destroyed if an

aggressor stays capable to acquire the usage of the hash work encroaches in any event single of

the claimed security property. On the off chance that a hash algorithm function is asked for to be

collision resistant, a positive attack is to identify one impact no less than two divergent messages

have a similar hash code [5]. There are a great deal of sorts of hash function attacks, however the

outlined is just attacks that are free of the algorithm which additionally have many sorts yet the

usually utilized are: birthday attack, Random attack and brute force attack [33].

D. Birthday Attack

The idea of birthday attack is created from birthday paradox. The birthday paradox conditions

are a group of 23 arbitrarily chosen people the probability of two people as a minimum having

the same birthday, is in excess of ½ [32]. This called birthday attack which is utilized to deliver a

well-known cryptographic attack. To property this, by assuming that the hash of the message of

length n bitss that gives 2n potential outcomes to the hash code. "In the event that two pools from

the process space, one containing 1 x tests and the other covering 2 x tests are made by a

cryptanalyst, the likelihood of finding a match between two pools approximated given as"

[31][33]:

p ≈ 1 − 1/(e
x1x2

2n
)

(2.9)

In the theory of probability, the birthday issue identifies with the probability that in an

arrangement of n subjectively chose individuals any match of them have a similar birthday. Not

at all like the ordinary likelihood, the required number n of individuals that brand the likelihood

of about combining having the common birthday more noteworthy than 0.5 is not firmly 180, it

is just 23. For 57 individuals, the likelihood of finding any combine having shared birthday is

over 99%. In genuine condition, the essential point of the aggressor is the fake of advanced

marks in messages that the genuine sender does not have any desire to send. The same messages

 33

that shift in just a couple of bits, for instance a lowercase letter supplanted by a similar letter,

however a capitalized, there is a primary change in linking advanced marks. To defeat this drop,

the attacker produces two arrangements of conceivable messages M1 and M2. The first

incorporates messages got from M1 that the sender would be anxious to check, and that are

evidently the same, yet fluctuate in a couple of bits. The second one incorporates messages, got

from M2 by changing a couple of bits, and is all messages that the aggressor needs to send. The

soul of this strategy is to discover reasonable sets M'1 ϵ M1 and M'2 ϵ M2 so that:

(𝑀1
′) = ℎ(𝑀2

′) (2.10)

Collision resistance is essentially noteworthy for digital signature robbery discouragement. At

that point, if a collision between at least two messages happens, certain message's digital

signature sent by sender contorted and included against a discretionarily picked message without

that sender's endorsement or learning. The time craved to discover an impact is the vital

occasions in evaluating a hash algorithm. This time is commonly called the pursuit cost of the

algorithm [34].

E. Random Attack

The attacker chooses a message or bits of a message and prospects that is indistinguishable to the

genuine message. On the off chance that the hash work expends the required self-assertive

execution, then the likelihood of achievement is equivalent to 1/2a, where, a: is the aggregate

number of bits of the hash code. For a Message Confirmation Code (MAC) the attack relies on

upon two elements [33]:

1. The quantity of endeavors.

2. The normal incentive for a fruitful attack

2.7 FIELD PROGRAMMABLE GATE ARRAY (FPGA)

Field Programmable Gate Array is a programmable integrated circuit that includes a huge digits

of logic cells with programmable correlation between them [43]. FPGA consists of thousands of

universal building blocks, known as configurable logic blocks (CLBs) [3], connected using

 34

programmable interconnects. Figure 2.18 shows how the FPGA made up of a Configurable

Logic Blocks (CLB) that is linked by interconnections and input/output blocks [44]. Every CLB

can have a high degree of a logic function for a supposed inputs. A VHDL is a hardware

language which can be utilized to show the FPGA hardware functions. VHDL code converted to

a binary bits stream when it written, and loaded into the FPGA system.

Figure 2.18: Main Structure of the FPGA [45]

FPGAs allow creators to alter their plans late in the configuration cycle-even if the program has

been invented and sent to the field. FPGAs are a total fit for different markets because of the

programmable nature of it. Xilinx is one of the biggest providers of FPGA tools. These tools are

appropriate to be performed in a lot of applications like security, wireless communications,

digital signal processing and other. To translate the design into a hardware particular software is

needed. Software programs that was used in this work are; Labview 2013, MATLAB 2012a, ISE

14.7 and Xilinx System Generator 14.7. System Generator is a Xilinx design instrument that

found in MATLAB based on block sets of Simulink. Steps of execution that done to create the

FPGA program files are performed automatically by the Xilinx System Generator. System

generator offers the ability to simulate hardware scheme that is handled by the MATLAB

software. System Generator has a block named black box that allows the VHDL code to be got

into the MATLAB-Simulink and co-simulated by Xilinx ISE Simulator.

 35

To prove the designed system on FPGA platform, the Hardware (HW) Co-Simulation must be

performed after establishing the system by timing analysis and simulation. By the HW Co-

Simulation, hardware simulation is examined by making a comparison between the MATLAB

simulation results and the device simulation results due to the Xilinx System Generator supply

bits-true and cycle-true outcomes. The Co-Simulation generates the bits stream file for the Xilinx

System Generator designed blocks depending on the Xilinx ISE and the core of the System

Generator. The bits stream would be filled into FPGA board through basic connection such as

Ethernet or Joint Test Action Group (JTAG) in order to implement the hardware implementation

by linking the PC to the Xilinx board in a locked loop.

2.8 ENCRYPTION QUALITY MEASURING TECHNIQUE

Many of the system's statistical analysis are presented and discussed in this section. These

analyses are classified into a group of tests. These tests are used to check the system randomness

according the key from the proposed system. These tests are: monobits test (frequency test),

serial test, poker test, run test and autocorrelation test.

These tests check whether the system produced data are random or constant. Before performing

any statistical test, it is necessary to transform the set of data to a 20,000 continuous bits, then

apply every test separately [46].

A. Frequency Test (Monobits Test) :

This test consider the first test of randomness, it is used to determine the number of zeros or ones

in the 20,000 bits. The system passes this test if the number of one’s (or zeros) is between 9,654

and 10,346 [46].

Let n_0, n_1 refers to the number of 0’s and 1’s in s, respectively while n is the total number of

bits. The statistic used is:

𝑋1 =
(𝑛0 − 𝑛1)

2

𝑛

(2.11)

 36

B. Serial Test (Two bits Test)

Serial test is used to calculate if the number of occurrences of 00, 01, 10, and 11 as subsequences

of (s) are nearly the same, as would be thought for a random sequence. Let n_0,n_1 refers to the

number of 0’s and 1’s ins, respectively, and let n_00,n_01,n_10,n_11 refers to the number of

occurrences of 00, 01, 10, 11 in s respectively. As noted n_00+n_01+n_10+ n_11= (n - 1),

because the subsequences are allowed to overlap. The statistic equation used is:

𝑥2 =
4

𝑛 − 1
+ (𝑛00

2 + 𝑛01
2 + 𝑛10

2 + 𝑛11
2) −

2

𝑛
(𝑛0

2𝑛1
2) + 1

(2.12)

Which almost follows a 2 distribution with 2 degrees of freedom if n ≥ 21. Note: if block (000) is

a (00) and (00) [47].

C. Poker test

Performing this test requires the continuous 20,000 bits to be divided into 5000 segment and 4

bits of every segment. Then, determining the number of occurrence of each 16 possibilities for

the 5000 segments. So, if x (i) is the achieved number of counting each 4 bits possibility of i,

where i between 0 and 15, then

𝑃 =
16

5000
∑ (𝑥(𝑖))

215

𝑖=0
− 5000 (2.13)

If P is between 1.03 and 57.4, then the system passes this test [46].

D. Runs test

This test is used to count the number of sequential ones and zeros, in the 20,000 continuous bits

stream of the data set. All run length should be counted and saved for all lengths which are ≥1.

The run length boundaries for system's passing are shown in Table 2.3.

The system passes the run test if all 12 intervals (6 for zeros and 6 for ones) occur in the required

interval [46].

𝑋4 =∑
(𝑏𝑖 + 𝑒𝑖)

2

𝑒𝑖

𝐾

𝑖=1

+∑
(𝑔𝑖 − 𝑒𝑖)

2

𝑒𝑖

𝐾

𝑖=1

(2.14)

 37

Which almost follows a 2 distribution with 2k − 2 degrees of freedom Note: (K) depend on the

higher (i).

Table 2.3: The run length boundaries

Length of run Required interval

1 2,267 - 2,733

2 1,079 - 1,421

3 502 – 748

4 223 – 402

5 90 – 223

6 or greater 90 – 223

E. Autocorrelation test

The aim of this test is to check for correlations between the sequence (s) and its shifted versions.

Let d be a fixed integer, 1≤ d ≤ [n/2], the number of bits in s not equal to their d-shifts is

2 𝑨(𝒅) = ∑ 𝑺𝒊 ^ 𝑺𝒊 + 𝒅 𝒏−𝒅−𝟏
𝒊=𝟎 , where ^ refers to the XOR operator.

The statistic:

𝑋5 = 2(𝐴(𝑑) − (𝑛 −
𝑑

2
))√𝑛 − 𝑑

2

(2.15)

Which almost keep track of an N (0, 1) allocation if n − d ≥ 10. For small values of A (d) which

are not as expected as huge values of A (d), a two sided test should be utilized [47].

 38

3. SOFTWARE IMPLEMENTATION OF AES AND HASH

FUNCTIONS

3.1 INTRODUCTION

 In this Chapter, AES and hash functions were implemented based on software process using

LabView to give an overview of using AES, SHA-1, and SHA-2. Furthermore coupling SHA-1

and SHA-2 with AES to show the use of hash functions to achieve integrity and authentication

by merging it with AES to achieve confidentiality and a two way cryptographic algorithm. AES

and hash functions are also can be implemented as a hardware to construct a system of

encryption and decryption by using FPGA.

3.2 SOFTWARE IMPLEMENTATION

In the first step of implementing, the AES and hash function algorithms (SHA-1, SHA-2) over

FPGA was presented using National Instrument LabView 2013 version (32 bits). This presents

an overview of cryptographic AES algorithm and hash function on LabView to work with logical

calculations easily through the necessary functions of SHA-1 and SHA-2 that are designed in

LabView.

 Hash function achieves integrity and authentication, this made hash function itself does not

achieve confidentiality. To make the hash more secure, there is a need to merge it with any

encryption method. The AES algorithm was implemented in LabView to achieve the

confidentiality property to support the security of the system. The original message that

processed by the hash function algorithm first represent the plain text, while the hash code that

produced via a hash function represent the key of the AES algorithm to generate another code

which is very difficult to break.

The Advanced Encryption Standard software implementation was implemented by LabView as

in the sections below:

 39

3.2.1 AES Implementation by LabView

This section presents the implementation of the Advanced Encryption Standard (AES) algorithm

using LabView. The steps of the proposed algorithm of AES which were implemented are:

entering a plain text (string), AES encryption block, AES decryption block and finally the output

plain text which is the same input plaintext that was first encrypted. The procedure of the AES

implementation was based on LabView environment in order to be suitable for effective

realization and implementation of cryptographic algorithms. Furthermore, if the AES (256 bits)

will be implemented, the key length need to be changed. This will enable of using SHA-2 instead

of SHA-1. The implementation steps of the AES software are as follows.

3.2.2 AES Encryption process by LabView

Before the message enters the case structure of the LabView AES block diagram, some

definitions must be introduced. Firstly, create the variables of AES VI of LabView and the

dimensions of AES as an array string and defining the key value so that to introduce the encrypt

algorithm string as an array of bytes. If the length of the plaintext is less or equal to zero, then no

plaintext is entered. The plaintext value is then entered as a dimension string and the AES

entered as a bytes value. The value of the AES key is entered as (128, 192 or 256 bits), since that

we would connect the hash function with AES where the hash function (SHA-1,SHA-2) is

entered as a key (section 3.3 in chapter three shows the software implementation of hash

functions SHA-1 and SHA-2 in) to the AES block diagram instead of entering the key directly,

so the key used for the AES is 192 bits or 256 bits as the hash functions (SHA-1 and SHA-2)

lengths are 160 bits and 256 bits respectively. The decryption algorithm is also introduced by

decrypting the bytes into a string which can perform the stream transform. The stream contains

all data such as the plaintext and the array bytes encrypted. The streams that created by the

decryption algorithms are used for the encryption algorithm in order to return the encrypted

bytess from the memory stream. This process is made to create an AES object with specified key

and Initial Vectors (IV) and additionally, creating the encryption, decryption algorithm so it can

be able to return the original plaintext.

The key value is chosen according to the length of the hash functions (SHA-1). For "SHA-1",

192 bits key length is used of the AES where SHA-1 will use 160 bits of the AES length and the

 40

rest of the length is used as a salt. The cipher block chaining (CBC) mode is used. Cipher Block

Chaining (CBC) is discussed in details in chapter two.

 Each key value has its own number of rounds where AES-128, AES-192 and AES-256 has 10,

12 and 14 rounds respectively as discussed in chapter two. The more rounds used means more

security against cryptanalysis. Simply, this means there is more confusion and diffusion.

The initial phase of the cipher is the key creation that happens on the server. In this stage, the

client would give a confidential key that will be extended through utilizing the Rijndael key

program. The small key is augmented to a bigger one. A key of 128-bits is changed into a key of

176-bytess, a key of 192-bitss is changed into a key of 208-bytes, and a key of 256-bitss is

changed into a key of 240-bytess. The key schedule would take a 4-bytes part of the key as a

digit 32 bytes and a repetition count and deliver this information to the key schedule core that

restores a 256-bitss (32 bytes). This step can be seen in Figure 3.1.

Figure 3.1: Key Generation in LabView

The key schedule core initially plays out a bytes shifting on the key and divides the 32 bytes into

particular bytes and sends the bytes to have Rijndael S-box used. This is utilized to apart the

connection between the key and the ciphertext.

 41

The Rcon step is the next step in the core scheduler. This picks the principal bytes of the

resulting word from the Sbox and plays out a XORing operation on the bytes with the outcomes

of the Rcon step, which is basically the exponentiation of 2 to the repetition count of the key

schedule.

After producing the key, the type of encryption to perform, data about the key and also the key

itself should be transmitted to the scheduler. The key is changed into a bytes array and

transformed one bytes at a period alongside a break to guarantee the schedule gets every part of

the information in the right order.

The server then would send essential commands to the scheduler to progress the information by

both the encryption and decryption process before restoring the information returned to the

client.

If the server wants to have the capacity to play out the cryptanalysis, it is perfect to keep the key

in a LUT (Look up Table). So a VI methodology is utilized. There are various cryptographic

algorithms which the look up table can be utilized to store a wide range of keys which will give a

client adaptability.

The moment that the key data is given from the server, the encryption could occur when the host

hands the signal. The encryption would initially produce what is known as a 'round key' which is

gotten from the key schedule. It would then start the relating procedure playing out real

encryption.

The main repetition of the encryption algorithm will join every bytes of the state with the round

key utilizing a bitswise XOR. The size of the repetition (named rounds) will play out a non-

linear substitution that will substitute every bytes with other bytes according to a predefined look

up table. At that point every row of the state will be shifted in a cyclic way.

After that, there would be a mixing operation that happens on the columns and combine four

bytes of every column. Afterward the round key would be included once more. The last

repetation is like the past "n" rounds except that the column mixing operation not included.

 42

Key Expansion: key expansion routine is used to deliver the round keys from the cipher key. The

AES standard specifies the key expansion operations on a four bytes words. The subkey is poised

of four such words. In AES-256, the key expansion nearly univocal:

- The main subkey corresponds to the cipher key itself.

- The accompanying words are calculated recursively from this initial set of words utilizing a

basic XOR function.

- For the words with files that are a multiple, a special transformation is used. At the beginning,

the bytes requesting of to start with is changed by the cyclic left shift, and after that, the

SubBytes function is connected to each of the four bytes. In the AES standard these operations

are named RotWord and SubWord individually.

The AES encryption process is shown in Figure 3.2:

 43

F
ig

u
re

 3
.2

:
A

E
S

 E
n
cr

y
p
ti

o
n
 P

ro
ce

ss
 b

y
 L

ab
v
ie

w
.

 44

3.2.3 AES Decryption Process by LabView

Decrypting means doing everything in reverse. The same definitions that were introduced in the

previous section that are used with the decryption process by LabView.

The algorithm was built via LabView, the initial values that introduced to encode in order to get

bites and the string is also entered which is considered as the plain text input. The string and

Bytes that entered are also encoded to get the salt that is added to complete the space left from

the entered key. The key entered is the secure hash algorithm (section 3.3), which is 160 bits in

length, therefore, to be comparable with the AES key size, 192 bits key length of the AES is

used.

After entering the plaintext and the password is now produced by the hash algorithm, the key

value is specified according to the length of the hash function (SHA-1) as we mentioned

previously. The CBC mode is used.

The first step of the decryption algorithm is the inverse add round key. Inverse add round key

transformation is comparable to the forward add round key transformation, since the XOR has its

own inverse operation. The next step of the AES decryption is the inverse mix columns. The

procedure of the inverse mix column is implemented in Equation (2.5) in chapter two.

The next step of the AES decryption mode is the inverse shift rows. Inverse shift rows is the

reverse of the shift row transformation. The bytes that are founded in the last three rows of the

state are consistently transferred over different quantities of bytes. The first line is not moved.

The last three rows are consistently transferred by Nb - shift(r, Nb) bytes, where the move

esteem shift(r,Nb) depends on the line number.

The last step of the AES decryption mode is the inverse sub bytes. This step is the reverse of the

bytes substitution transformation, in which the inverse Sbox is applied to each bytes of the State.

This is obtained by applying the inverse of the transformation followed by taking the

multiplicative inverse in GF (28). The inverse S-box used in this step transformation is presented

in Table (A.2) in Appendix A.

 45

Finally the output is converted from an array to a string and returns the plain text entered in the

first place. The result of this operation can be seen in details in chapter four, different modes are

used like OFB mode, CTR mode and else.

The AES decryption process is shown in Figure 3.3.

 46

F
ig

u
re

 3
.3

:
A

E
S

 D
ec

ry
p
ti

o
n
 P

ro
ce

ss
 b

y
 L

ab
v
ie

w

 47

3.3 STHE IMPLEMENTATION OF HASH FUNCTIONS BASED ON LABVIEW

The software implementation of the hash functions (SHA-1 and SHA-2) is implemented as it will

describe in the next sections.

3.3.1 The Implementation of SHA-1

Secure Hash algorithm (SHA-1) is an extremely significant calculation for integrity and

authentication acknowledgment. The proposed calculation of SHA-1 actualized by LabView

programming from entering string, padding, SHA-1 core, and message digest to deliver 160 bits

hash code for any plaintext.

The principal organize at the padding procedure is the message entering to the framework chunk

by chunk which implies each 512 bits are handled alone with succession However, enters as a

bytes (64 bytes) that is particular at Figure (3.4). The symbols in LabView appeared in appendix

A.

Figure 3.4: Initial Vectors of SHA-1

The message is entered to the SHA-1 center. The initial vector's values as observed in Figure

(3.4) (H0, H1, H2, H3, H4) are instated as settled constants, for instance, H0=67452301,

H1=FECDAB89, H2= 98BADCFE, H3=10325476, and H4=C3D2E1F0. The message separated

into chunks of size 512.

 The information that was prepared by the SHA-1 core, is the padded message (or the message

with 512 bits measure without padding) and the initial vectors to be handled with their initial

 48

worth and after that refreshed after every figuring inside the center. The initial vectors qualities

were in Hex, so ought to be changed over to their proportional values in unsigned whole number

then to their ASCII to be good with the message array. The message measure entered to the

center is with the extent of 512 bits, yet the procedure work with information bytes by bytes, so

its 64 bytes that is the most extreme size of chunk to be prepared at once.

The entire computations included inside for loop in LabView program which execute the

operation an N of times.

The principal sub-step in SHA-1 core which is that each chunck would be putted through a small

function that would make 80 words from the 16 words that was entered. This progression is a

loop t means each progression after that would be rehashed till a specific condition is valid. This

situation would start by tuning the variable "i" equivalent to 16. After every run of the loop, a 1

would added to "i" until "i" is equal to 79.

Figure 3.5: SHA-1 core word calculation

In the wake of apportioning the 80 words array the technique comes progressively, saves the

initial 16 words to be the 512 bits block are isolated into 16 words, the rest of the words are

made by playing out the logical function: Word [i3] XOR word [i8] XOR word [i14] XOR word

[i16], and afterward rotated left as a one bits, as appeared in Figure 3.5. The LabView block

diagram demonstrates that the third, eighth, fourteenth, and sixteenth words XORed and rotated

to left.

Next, the functions that represent the calculations and the constants identified a sequence of

logical functions of the hash core process are: f (0), f (1)... f (79) is utilized in SHA-1. Every f (t),

 49

0 <= t <= 79, works on three 32-bits words B, C, D and achieves a 32-bits word as output. f

(t;B,C,D) is introduced as follows:

𝑓 (𝑡; 𝐵, 𝐶, 𝐷) = (𝐵𝐴𝑁𝐷𝐶)𝑂𝑅((𝑁𝑂𝑇𝐵)𝐴𝑁𝐷𝐷) (0 ≤ 𝑡 ≤ 19) (3.1)

𝑓(𝑡; 𝐵, 𝐶, 𝐷) = 𝐵𝑋𝑂𝑅𝐶𝑋𝑂𝑅𝐷 (20 ≤ 𝑡 ≤ 39) (3.2)

𝑓(𝑡; 𝐵, 𝐶, 𝐷) = (𝐵𝐴𝑁𝐷𝐶)𝑂𝑅(𝐵𝐴𝑁𝐷𝐷)𝑂𝑅(𝐶𝐴𝑁𝐷𝐷) (40 ≤ 𝑡 ≤ 59) (3.3)

𝑓(𝑡; 𝐵, 𝐶, 𝐷) = 𝐵𝑋𝑂𝑅𝐶𝑋𝑂𝑅𝐷 (60 ≤ 𝑡 ≤ 79)

(3.4)

These operations implemented in Labview blocks as shown in Figure 3.6:

Figure 3.6: SHA-1 calculations

A series of constant words K (0), K (1)... K (79) is used in the SHA-1. In hex these values are as

the following:

𝐾(𝑡) = 5𝐴827999 (0 <= 𝑡 <= 19)

𝐾(𝑡) = 6𝐸𝐷9𝐸𝐵𝐴1 (20 <= 𝑡 <= 39)

𝐾(𝑡) = 8𝐹1𝐵𝐵𝐶𝐷𝐶 (40 <= 𝑡 <= 59)

𝐾(𝑡) = 𝐶𝐴62𝐶1𝐷6 (60 <= 𝑡 <= 79)}

 (3.5)

 50

From Figure 3.6, the 80 rounds of hash algorithm started. Inside these rounds, there is a case

structure which has four iterations, for each iteration the logical operation converted and also the

constant changed according to t value as seen in Figure 3.7.

Figure 3. 7: iterations of the case structure

The message process is spoken to in Hex to give 160 bits hash code of the SHA-1 calculation.

The last phase of the SHA-1 core is the message process which is the last computation to give

the last code which is the hash.

 The whole algorithm of SHA-1 implemented by LabView is shown at Figure 3.8.

 51

F
ig

u
re

 3
.8

:
S

H
A

-1
 b

y
 L

ab
v
ie

w

 52

3.3.2 The Implementation of SHA-2

The implementation of secure hash algorithm (SHA-2 256) is performed in this section. The

algorithm of SHA-2 was implemented, from entering string, padding, SHA-2 core, and message

digest to achieve 256 bits hash code for any entered plaintext.

Calculation of a hashed message starts with preparing the message. Pad the message in the usual

way (as in SHA-1), let (M) be the message and (L) be the length of the message in bits. Add bits

"1" to the end of the message, and then (k) zero bits where (k) is the shortest non negative

solution to the equation L+1+k=448 mod 512. Add the 64-bits block that is equal to the number

written in binary. As an example the 8-bits ASCII message "a b c" has length 8 - 3 = 24, so it is

padded with a one, then 448-(24+1) = 423 zero bits, and then its length to become the 512 bits

padded message.

The entered length of the padded message should then be a multiple of 512 bits.

 Next step is to analyze the message into a number of an (N) 512 bits blocks M (1), M (2) ...M

(N). The first 32 bits of the message block (i) are denoted M_0^i, the next 32 bits are M_1^i, and

so on up to M_15^i. With every 32 bits word, the left-most bits is saved in the most significant

bits position as shown in Figure 3.9.

Figure 3.9: Message Preparation

 53

At the end of the process, the prepared message is given as an array in ASCII code, just similar

to SHA-1. After that, the array of (ASCII) should be converted to 32 word size to be appropriate

for applying to the next step of the process of the SHA-2 core. This function is ready by NI to

convert an array from U8 to U32, as shown in Figure 3.10.

Figure 3.10: Converting Array

The converted array that introduced to the SHA-2 core simultaneously with the entry of the

initial vectors.

The (SHA-2) Core holds the whole system calculations and functions. Initial vectors and padded

message are the entry to the SHA-2 core.

Figure 3.11: SHA-2 core Entery

The next step is to define a working array by the array initialization function. Like (SHA-1,

SHA-2 256) treats message chunk by chunk, each with size of 512 bits, then the existence of a

64-entry message schedule array w [0...63] of 32-bits words is completed for each chunk. After

 54

this process, copying chunk to the top 16 words w [0...15] of the message schedule array is done

and the initial hash values were entered to the system, as shown in Figure 3.10. Converting the

initial 16 words into the residual 48 words w [16...63] of the message schedule array is in Figure

3.12.

Figure 3.12: Working Array

After that, similar to SHA-1, the remaining 48 words pass through a different step from SHA-1.

This different step is responsible for the logical operations, identifying two temporary variables:

S0, S1 and their values updated according to the following:

For i from 16 to 64

𝑠0 = (𝑊[𝑖 − 15] 𝑅𝑂𝑇 7) 𝑥𝑜𝑟 (𝑊[𝑖 − 15] 𝑅𝑂𝑇 18) 𝑥𝑜𝑟 (𝑊[𝑖 − 15] 𝑆𝐻𝑅 3)

(3.6)

𝑠1 = (𝑊[𝑖 − 2]𝑅𝑂𝑇 17)𝑥𝑜𝑟(𝑊[𝑖 − 2]𝑅𝑂𝑇 19)𝑥𝑜𝑟(𝑊[𝑖 − 2]𝑆𝐻𝑅 10)

(3.7)

𝑊[𝑖] = 𝑊[𝑖 − 16] + 𝑠0 +𝑊[𝑖 − 7] + 𝑠1 (3.8)

 55

Next step is to define variables to present hash value: A= H0, B= H1, C= H2, D= H3, E= H4, F=

H5, G= H6 and H= H7. These variables are defined to be assigned by the old values of the initial

vectors in order to be updated at the next step of processing, as shown in Figure 3.13.

Figure 3.13: SHA-2 Calculations

After that, the compression function of the (SHA-2) main loop is initialized and the working

array from Figure 3.13, and the constants of the round are stepped inside to the loop. The

constant values are changed after every iteration which means; there are 64 constants for SHA-2

while SHA-1 has only four constants. Two temporary registers are defined, they are temp1,

temp2. After that the values of the variables are updated as

𝐻 = 𝐺, 𝐺 = 𝐹, 𝐹 = 𝐸, 𝐸 = 𝐷 + 𝑡𝑒𝑚𝑝1, 𝐷 = 𝐶, 𝐶 = 𝐵, 𝐵 = 𝐴,

𝐴 = 𝑡𝑒𝑚𝑝1 + 𝑡𝑒𝑚𝑝2

(3.9)

 56

Then the Compression hash operation main loop starts:

For i from 0 to 63

𝑆1:= (𝐸𝑅𝑂𝑇 6) 𝑥𝑜𝑟 (𝐸𝑅𝑂𝑇 11) 𝑥𝑜𝑟 (𝐸𝑅𝑂𝑇 25)

𝐶ℎ: = (𝐸𝐴𝑁𝐷𝐹) 𝑥𝑜𝑟 ((𝑁𝑂𝑇𝐸) 𝐴𝑁𝐷𝐺)

𝑡𝑒𝑚𝑝1:= 𝐻 + 𝑆1 + 𝐶ℎ + 𝑘[𝑖] + 𝑤[𝑖]

𝑆0:= (𝐴𝑅𝑂𝑇 2) 𝑥𝑜𝑟 (𝐴𝑅𝑂𝑇 13) 𝑥𝑜𝑟 (𝐴𝑅𝑂𝑇 22)

𝑀𝑎𝑗: = (𝐴𝐴𝑁𝐷𝐵) 𝑥𝑜𝑟 (𝐴𝐴𝑁𝐷𝐶) 𝑥𝑜𝑟 (𝐵𝐴𝑁𝐷𝐶)

𝑡𝑒𝑚𝑝2:= 𝑆0 + 𝑀𝑎𝑗

(3.10)

(3.11)

(3.12)

(3.13)

(3.14)

(3.15)

Maj and Ch are symbols from FIPS standards which are still ambiguous to the meaning of what

this symbols stand for.

The last step of SHA-2 algorithm is updating the values by adding the old values which are IV

(the initial vectors) and the updating values resulted from Figure 3.13 to achieve the hash code

and then it would be converted to its equivalent Hex value.

Figure 3.14: Message Digest

 57

The full description of SHA-2 algorithm is illustrated in Figure 3.15.

F
ig

u
re

 3
.1

5
:

S
H

A
-2

 b
y
 L

ab
v
ie

w

 58

3.4 COMPARATIVE ANALYSIS

A scientific examination for the correlation of regular and proposed calculation is displayed in

this section. In this thesis, the size of key used in the hardware implementation is 128 bits, so the

whole key space will be of 2^128 Combinations which is equal to

(340282366920938463463374607431 768211456).

Therefore; system that is able to perform combination for each unit of time would have

(340282366920938463463374607431768211456) time, units to discover the key via an attacker.

Furthermore, the size of the input plaintext is of 128 bits, all the input data space would be same

as key space that is equal to(340282366920938463463374607431768211456) in addition to the

same quantity of time units that needs to discover the data by the attackers. Furthermore, there

are 2 attempts to find a transpose array.

Therefore, the total space will be consisting of 2^2 Combinations that equal 4. The Xor-ing will

be consisting of 2^1Combinations that equal 2 operations. Table 3.1 shows the result

combination of brute force attack.

 As illustrated in this table the maximum attempts to discover the cipher by force attack per

second are (680564733841876926926749214863536422918) which is a very large number.

 59

Table 3.1: Comparative analysis of the proposed encryption algorithm

S Reference

type

Bits

size(n)

Types

Techniques(n)

No. of

Attempt(2𝑛)

No. of Attempt/Sec (Complexity)

1 Input Data 128 2128 340282366920938463463374607431768211456

2 Input Key 128 2128 340282366920938463463374607431768211456

3 Transpose

Method

 2 22 4

4 Exclusive-

OR

operation

 1 21 2

Sum

680564733841876926926749214863536422918

 60

4. THE RESULTS OF SOFTWARE AND HARDWARE

IMPLEMENTATION

4.1 INTRODUCTION

In this chapter, the results of the system design of encryption and decryption processes of the

AES and SHA algorithm are presented. As mentioned previously, the simulation based on

MATLAB (2012a) and Labview (2013) 64-bits. The proposed algorithm was written as a VHDL

model by using the Xilinx ISE 14.7 (Integrated Software Environment) and input/output ports of

an existing sample, this sample is found in block sets of Xilinx System Generator as function

blocks that is found in MATLAB/Simulink. The origin files of the VHDL code created in ISE

are brought to the System Generator by black box block and simulated by MATLAB/Simulink

connected with Xilinx System Generator. The hardware program that was utilized to implement

the proposed algorithms system was Spartan 3A 700AN.

4.2 AES AND HASH FUNCTIONS SOFTWARE RESULTS

This section describes and shows the result coupling AES with Hash Functions (SHA-1 and

SHA-2) algorithms at each step of software implementation by LabView 2013 (32 bits).

A. AES and SHA-1 Software Result by LabView

From the implementation of cryptographic Advanced Encryption Standard algorithm and hash

function in LabVIEW 2013 that described in chapter 3, the test of execution of all steps in AES

and SHA-1 algorithms which held for different types of plain text such as English, Arabic,

symbols, and numbers to produce fixed 128 bits AES code and 128 bits hash code. The testing

Figures of AES and SHA-1 hash function are shown in Figures 4.1, 4.2 and 4.3, the cipher block

chaining (CBC) mode is used.

The Salt is a strong random value that is added to the input of hash functions creating unique

hashes for every input data, regardless of the input not being unique. Salt is a cryptographically

constant length , it considered not determinism a hash function and AES, which is a great as long

as duplication of password is something we don’t want to being discovered.

 61

The cipher text is a hashing code which converted to string to be inserted as a password to AES

that will be combined with salt. Salt could be any character, number or symbol .Salt will be fixed

to (q12) for example to see the difference between the Encryption Modes, it’s could be variant

due to the need such as daily Salt, hourly Salt or even been agreed between the transmitter and

receiver.

Figure 4.1: Testing AES and SHA-1 (capital letters)

The front panel of LabView in Figure 4.1 contains the input of the system (plain text)

representing the string, which is typed as a text of different characters and numbers as illustrated

previously to give the hash code represented by Hex values, which is converted from array to

string and entered as a key to the AES. The cipher array (ciphertext) of the plain text

"COMPUTER" is: E1C0 BE32 2D12 C3D6 5454 DF13 7646 80B2 which is 32 hex digit and

represent the 192 bits of the AES cipher text. While the resulting hash code is: 9E47 DA19

C32D 29CF 1C25 A67D 7C36 9C7B DA94 3623 which is 32 hex digit and represent the 128

bits of the message digest. After decryption, the plaintext return the same as its value before

encryption.

 62

Figure 4.2: Testing AES and SHA-1 (small letters)

Figure 4.2 shows the changing the same text from the previous test, but with lower case. The

hash code is completely different, showing the encrypted plain text is completely different and

also the hash sensitivity to changes. The cipher array (ciphertext of the small same word

"computer": FA72 2BA1 9F04 EE90 28BC BD69 87FC 8686 and the hash code is: C602 66A8

ADAD 2F8E E67D 793B 4FD3 FD0F FD73 CC61 and after decryption the plaintext return the

same as its value before encryption.

Figure 4.3: Testing AES and SHA-1 (symbols and numbers)

 63

Figure 4.3 shows how the symbols and numbers are encrypted and how a simple change in the

plain text entered will change all the hash code and the encrypted cipher text. The cipher array

(ciphertext) of the entered text “345@#$%^&789" is: 2E6A B967 A7D1 30D7 36B8 6522 7B58

BC3B and the hash code is: D1ED A4EA CE92 FE66 FED2 370D 4766 13EC C4FC 046D

and after decryption the plaintext return the same as its value before encryption.

The same procedure is repeated with different modes such as electronic codebook mode, cipher

feedback mode, output feedback mode and counter mode. The difference could be seen clearly in

the ciphertext as shown below.

Figure 4.4 shows the difference in the ciphertext when entering the same word "COMPUTER"

but choosing ECB mode instead of CBC mode in Figure 4.1.

Figure 4.4: Testing AES and SHA-1 (ECB mode)

Figure 4.5 also shows the difference in the ciphertext, but when entering the same word

"computer" in small letters and choosing CFB mode instead of CBC mode as in Figure 4.2. The

same step was done for the other modes.

 64

Figure 4.5: Testing AES and SHA-1 (CFB mode)

B. AES-256 and SHA-2 (256) Result by LabView

The front panel of LabView is shown in Figure 4.6, shows the text entered to the system

"COMPUTER". The hash code of this text by SHA-2 is shown as Hash which is converted to

string to be insert as the password to AES, the encrypted code of "COMPUTER" indicated as

ciphertext, and after decryption the plaintext return the same as its value before encryption.

Figure 4.6 described the encryption of the following plain text "COMPUTER" is: 8982 0F00

D41A A34B 9CF9 72BD 7975 7BE2, which is 32 hex and represent the AES cipher text. The

hash code is: B412 254D E584 8709 483A A99B B5D0 969A DF80 B676 8C87 B546 C460

41B0 0AB9 B858 which is 64 hex and represent the 256 bits message digest. This is done using

CBC mode.

 65

Figure 4.6: Testing AES-256 and SHA-2 (capital letters)

Figure 4.7 shows the encryption of the same plain text "computer" but in small letters. Thus it

described how if we change a single letter will change the hash code and also the message

encrypted. The encryption of the plain text “computer" is: 7761 98D8 9C9D 803E F352 5A3F

FD73 A8E5 while the hash code is: AA97 3021 50FC E811 425C D845 3702 8A5A FBE3

7E3F 1362 AD45 A51D 467E 17AF DC9C and the decryption will return the plain text the

same as before encryption.

Figure 4.7: Testing AES-256 and SHA-2 (small letters)

 66

Figure 4.8 shows how the symbols and numbers are encrypted and how a simple change in the

plain text entered will change all the hash code and the encrypted cipher text. The encryption of

the entered text "345@#$%^&789" is: 0E00 8FD4 FBBD 0943 EDE3 E33C 254F 82B5 and the

hash code is: 100B FB87 79A2 1799 C9EB F324 949F 26C9 3BB6 4A84 4C4F 3B75 53C9

6AD4 547D 2AC2 and after decryption the plaintext return the same as its value before

encryption.

Figure 4.8: Testing AES-256 and SHA-2 (symbols and numbers)

The same procedure is repeated but with different modes as previously in SHA-1, the results are

shown below.

Figure 4.9 shows the difference in the ciphertext when entering the same word

"345@#$%^&789" but choosing ECB mode instead of CBC mode in Figure 4.8.

 67

Figure 4.9: Testing AES-256 and SHA-2 (ECB mode)

Figure 4.10 also describes the difference in the ciphertext, but when entering the same word

"computer" in small letters and choosing CFB mode instead of CBC mode as in Figure 4.7.

Figure 4.10: Testing AES-256 and SHA-2 (CFB mode)

 68

4.3 THE IMPLEMENTATION OF THE PROPOSED ALGORITHM BASED ON FPGA

To import the written VHDL code of the proposed algorithms to System Generator, the Xilinx

Black Box is used as illustrated in Figure 4.11. After that, the proposed algorithm was

implemented and simulated by MATLAB/Simulink connected with ISE 14.7. The clock input is

the input system frequency to the black box that shows the validity of the input data, the Data in

is the plain text entered to be encrypted which consists of 128 bits, the Key is the chosen input

key (SHA output code), while the Cipher is the output of the proposed algorithm.

Figure 4.11: Proposed System Black Box

In the output of the proposed system, the reverse transformation is important to put into words

the system generator data type to every wanted data kind held by MATLAB. Xilinx 'Gateway

Out' is blocks assigned to the output Cipher which represents the ciphered data and used to

complete the operation.

Figure 4.12 shows the encryption process of the proposed system, the same steps and the same

black box is shown in the decryption process in Figure 4.13. The input of the black box is the

ciphered data and the output is the original data.

 69

Figure 4.12: Encryption Process of The Proposed System

Figure 4.13: Decryption process of The Proposed System

Figure 4.14 illustrates the simulation result of encryption and decryption of SHA-1 and AES by

using Xilinx 14.7 simulator. It shows that input plaintext that is represented in hex Number

entered to be encrypted, and the input key that is represented in hex Number which is generated

by SHA-1 to be the key to the AES algorithm. The key load signal must be loaded before loading

the signal of plaintext start, so as to prepare the key required in the top round then the load signal

will be activated to load the plaintext. Signal (BUSY) means that if the system is really work or

not, it will be at the first time equal to (0) until the starting of the first round, then it will be kept

activated until the system complete the encryption process. Signal (NEAR_DONE) is active

when the system is near to finish the encryption process. Signal (DONE) is active when system

 70

completes the encryption process and displays the final result 'ciphertext'. The output of the

simulation decryption process is the same plaintext of the case study which shows that the

system runs successfully.

(a) Simulation of the encryption process that done by using SHA-1 with AES

(b) Simulation of the decryption process that done by using SHA-1 with AES

Figure 4.14: Simulation Output of the Encryption and Decryption Process

4.4 MAPPING THE PROPOSED ALGORITHM ON FPGA

In order to achieve the design flow of the FPGA, four stages are done. These stages are: the

design entry, the design synthesis, the design implementation and finally the Xilinx device

programming. The structure of the suggested system contains writing the VHDL code of the

system in the design entry stage. Design hierarchy is checked and analyzed by the VHDL code

arrangement in order to make the best or most effective use of the proposed system design to

FPGA architecture that was completed in the design synthesis stage. The design execution step is

in charge of:

a. By "Translate" process, merge input net lists and restriction inside design files

 71

b. By "Map" process, fit framework design to the references of the FPGA hardware device

c. By "Place and Route" process, place and route framework design with the timing restrictions.

In the step of the "Xilinx device programming", the bits stream file would be generated for the

system design and to be loaded to the Xilinx device.

Table 4.1 shows the design summary of algorithm in both encryption and decryption process

which takes 22% of the hardware device slices of Spartan3A 700AN slices as it is clear in the

device utilization summary below.

Table 4. 1: Encryption and Decryption Process Utilization

(a) Encryption Process Utilization Summery

Device Utilization Summery

Logic Utlization Used Available Utlization

Number of slice flip floops

1,710

11,776 14%

Number of 4input LUTS 1,135
11.776 9%

Number of occupid slices 1,337
5,888 22%

Number of slices containig only related logic 1,337
1,337 100%

Number of slices containig un related logic 0
1,337 0%

Total Number of 4 input LUTS 1,135
11,776 9%

Number of bounded IOBs 21
372 5%

IOB Flip Flop 9

Number of BUFGMUXs 1
24 4%

Number of RAMB 16BWFs 10
20 50%

Average Fanout of Non-Clock Nets 3.76

 72

(b) Decryption Process Utilization Summery

Device Utilization Summery

Logic Utlization Used Available Utlization

Number of slice flip floops

1,710

11,776 29%

Number of 4input LUTS 1,135
11.776 22%

Number of occupid slices 1,337
5,888 53%

Number of slices containig only related logic 1,337
1,337 100%

Number of slices containig un related logic 0
1,337 0%

Total Number of 4 input LUTS 2,814
11,776 23%

Number used as logic 2,686

Number used as a route-thru 128

Number of bounded IOBs 21
372 5%

IOB Flip Flop 9

Number of BUFGMUXs 1
24 4%

Number of RAMB 16BWFs 10
20 50%

Average Fanout of Non-Clock Nets 3,43

After the system design pass into the FPGA design flow steps successfully, a file of the proposed

algorithms is created called bits stream, and it is ready to be downloaded into the hardware

platform. The bits stream is downloaded into the hardware platform and it will configure the

hardware device according to the wanted system design. Different programs are utilized to

download the "bits stream" file to an FPGA device, such as the XILINX ISE 14.7 that configures

the target device process in order to transfer the bits stream via JTAG cable to the FPGA

program. Another programs such as hardware co-simulator system generator in MATLAB can

be used, to configure the device and link the proposed design operation in the FPGA directly into

a MATLAB/Simulink simulation. So, utilizing the HW Co-simulation is useful in this work

 73

since it is significant to check the hardware program by transferring the input data to the device

in addition to the bits stream file and lock onto the achievement.

4.5 THE PROPOSED SYSTEM IMPLEMENTATION ON SPARTAN-3A 700AN

PLATFORM

After the steps of the FPGA design flow has done successfully, a bits stream file of the proposed

system would be made and prepared to download into the hardware program. The bits stream is

downloaded in order to configure the hardware device according to the wanted system design.

Several software programs were used to download the file into the device of the FPGA; XILINX

ISE 14.7 is one of the softwares that was used. It configures the wanted device process in order

to transfer the bits stream by the JTAG cable to the FPGA program. Another package such as the

MATLAB, it used the system generator hardware co-simulator in order to define the device and

combine the proposed system design working in the FPGA at once into a MATLAB/Simulink

simulation. As a consequence, utilizing the HW Co-simulation was very useful in this system

since it is significant to check the hardware program by transferring the input data and the bits

stream file to the device and get the outcomes.

The connection that supports the hardware device is either Ethernet or JTAG cable relying on the

accessibility of these cables. A JTAG cable is used in this work to define the proposed algorithm

on the FPGA board, shown in Figure 4.15.

Figure 4.15: JTAG Cable

The comparison between the results of the FPGA system design simulation and the hardware

platform shows both results are the same during the execution for all tests when the run button of

the MATLAB is hilted. The HW Co-simulation (hwcosim) was putted with the FPGA design of

the proposed system. When the Simulink simulation begun, the bits stream would be

 74

downloaded to the hardware device in order to define it as seen in Figure 4.16. When the device

configuration was finished, the link between hwcosim and the FPGA device would be re-

established so as to begin the co-simulating of the system design as showen in Figure 4.17.

Figure 4.16: Hardware Co-simulation

Figure 4.17: The bits stream downloading to the hardware device through the JTAG cable

Figure 4.18 shows how the connection was done between the computer and Spartan-3A 700AN board that

was held by the proposed system design.

 75

Figure 4.18: Connection between the computer and Spartan-3A 700AN board

4.6 STATISTICAL TESTS

A lot of testing techniques were utilized to determine encryption quality and system execution.

The result of the testing technique is done by testing the randomness attitude using the FIPS PUB

140-1 statistical tests.

Table 4.2 displays the result of accomplishing the FIPS PUB 140-1 statistical tests in order to

examine the system randomness. The results shown in the Table conclude that the proposed

algorithm system had achieved the randomness requirements needed for safe encryption

algorithm.

 76

Table 4.2: FIPS PUB 140-1 statistical tests of the proposed system

Table 4.2 shows the results of the FIPS PUB 140-1 statistical tests. Every test has a special

condition and a freedom degree, where the frequency test accomplished a success rate that

exceeded the condition, and crossed the wall. The goal of the frequency test is to calculate

whether the number of 0’s and 1’s in s is almost the same as would be expected for the random

sequence in reference a certain freedom degree. In the serial test, the suggested algorithm system

also succeeded. The goal of this test is to determine whether the number of occurrences of 00,

01, 10, and 11 as subsequences of s are almost the same as would be expected for the random

sequence.

The proposed encryption algorithm could pass the Pocker and Run test since it achieved the

condition. As in the Poker test, the proposed system achieved whether the sequences of stream

length appear almost the same number of time as prospective for a random sequence. And in the

Run test the proposed system achieved a good success since the condition of this test calculate

whether the number of runs of either zeros or ones of different lengths in the sequences is as

expected for the random sequence that it is easy to pass through the proposed system.

Statistical test Freedom Degree

Test result of

proposed

algorithm

Pass/Fail

Frequency test MUST BE <= 11.81 1.125 PASS

Serial test MUST BE <= 7.81 5.625 PASS

Poker test MUST BE <= 11.1 5.850 PASS

Run test MUST BE <= 10.788 2.500 PASS

Autocorrelation test

SHIFT NO. 1

M
U

S
T

 B
E

 <
=

 3
.8

4

1.331 PASS

SHIFT NO. 2 3.841 FAIL

SHIFT NO. 3 5.000 FAIL

SHIFT NO. 4 1.581 PASS

SHIFT NO. 5 0.073 PASS

SHIFT NO. 6 0.033 PASS

SHIFT NO. 7 23.215 FAIL

SHIFT NO. 8 0.833 PASS

SHIFT NO. 9 8.076 FAIL

SHIFTNO. 10 4.881 FAIL

 77

Many results are there for the Autocorrelation test, it achieved success in most results, while

failing in some of them, since it relies on checking of the correlations between the sequence of

bits stream and the shifted versions of it, and this is probably not always accomplished in the

sequence bits stream of the proposed system.

 78

5. CONCLUSIONS AND SUGGESTIONS FOR FUTURE WORKS

5.1 CONCLUSIONS

From the previous chapters and the results from the proposed technique, the most important

concluded points that achieved could be summarized as follows:

1. From the proposed idea, the confidentiality achieved by the combination of one way

encryption technique (Hash Algorithms) as a key and two way encryption technique

(AES Algorithm) to get integrity and authority with high power security .

2. All implementations of the proposed security system based on simple GUI software as

the human machine interaction, which is simply modified the algorithm by changing the

block parameters, also obtain the signal flow through the stages of the proposed system

software implementation.

3. From the simulation results of the proposed system implementation good results obtained

and different text level tested into the proposed security system (capital, small letters,

symbols, numbers) with different sizes from (1-bits to 2256 bits).

4. Different security and statistical testing techniques were applied to the proposed system,

in order to obtain the power of security, which was a 90% success percentage.

5. Depending on the testing results in software the hardware implementation of the

proposed system (AES with SHA-1) had been accomplished based on FPGA card. The

approximation same results obtained with respect to simulation results offers less

processing times as compared with software processing time. The results of the hardware

design are harmonic with simulation results and this leads to the strength of the work and

trustiness.

6. In hardware, the proposed system takes less than 22% of hardware device slices in

encryption and less than 53% of hardware device slices in decryption.

 79

5.2 FUTURE WORK

A number of future projects can be suggested to develop the proposed work as stated below:

1. Implementation of more powerful security algorithm of modified AES with complicated hash

algorithms in both software and hardware using another GUI software and another hardware kit

such as raspberry or other hardware kits

2. Using signal flow graph technique to reduce the size of the hardware in FPGA card and in

iteration of both AES and Hash algorithms which deals with some simple blocks in iterative

form

3. Build the most common (commands, word, numbers) in some application and create a security

reference dictionary of the hash key to avoid the collision in keys because the limited size of the

hash algorithms.

4. Build the complete database depending on the proposed system for generation high level

security system.

 80

REFERENCES

[1] Hans Delfs and Helmut Knebl, "Introduction to Cryptography Principles and Applications",

3rd ed. Berlin Heidelberg, New York Dordrecht London: Springer-Verlag Berlin

Heidelberg, 2006.

[2] Razi Hosseinkhani and Seyyed Hamid Haj Seyyed Javadi, "Using image as cipher key in

AES ," IJCSI International Journal of Computer Science Issues, vol. 9, no. 2, pp. 538-544,

March 2012.

[3] Ashwini M. Deshpande, Mangesh S. Deshpande, and Devendra N. Kayatanavar, "FPGA

Implementation of AES Encryption and Decryption," nternational Confernational

Conference on “Control, Automation, Communication And Energy Concervation, June

2009.

[4] Pravin B. Ghwari, Mrs.Jaymala K. Patil, and Amit B. Chougule, "Efficient Hardware

Design and Implementation of AES Cryptosystem”," International Journal of Engineering

Science and Technology, vol. 2(3), pp. 213-219, 2010.

[5] William Stallings, "Cryptography and Network Security Principles and Practice, Fifth

Edittion "ed., Rose Kernan et al., Eds., 2011, 2006.

[6] Rubina B. Patel and Naveen Chaudhary , "Special Issue of International Journal of

Computer Applications (0975 – 8887) on Communication Security," Analyzing Digital

Signature Robustness with Message Digest Algorithms Digest Algorithms, pp. 41-44, Mar

2012.

[7] M. Pitchaiah, Philemonl Danie, and Praveen , "Implementation of Advanced Encryption

Standard Algorithm," International Journal of Scientific & Engineering Research, vol. 3, no.

3, pp. 1-6, March 2012.

[8] Richa Sharma, Purnima Gehlot, and S. R. Biradar, "VHDL Implementation of AES

Algorithm".

[9] Raaed K. Ibrahim, Ali SH. Hussain, and Roula A. Kadhim, "Implementation of Secure Hash

Algorithm SHA-1 by Labview," International Journal of Computer Science and Mobile

Computing, vol. 4, no. 3, pp. 61-67, March 2015.

[10] Sagar Paddhan, Padma Lohiya, and Sudhir Shelke3, "International Journal of Advanced

Research in Electrical, Electronics and Instrumentation Engineering," AES-256 Encryption

in Communication using LabVIEW, vol. 4, no. 6, pp. 533-5340, June 2015.

 81

[11] Lawrence C. Washington, "Introduction to Cryptography". Wade Trappe: Wireless

Information Network Laboratory, 2006.

[12] (2016) Stanford Encyclopedia of Philosophy. [Online].

https://plato.stanford.edu/entries/computational-complexity/

[13] Bruce Schneier, "Applied Cryptography", 2nd ed. Mountain View, CA: Whitfield Diffie.

[14] (2017) E-Power. [Online]. http://developer.e-power.com.kh/one-way-vs-two-way-

encryption/

[15] William Stallings, "Cryptography and Network Security Principles and Practices, Fourth

Edition". United States of America: Prentice Hall, 2005.

[16] loannis Yiakoumis, Markos Papadonikolakis, Harris Michail, Athanasios P. Kakarountas,

and Costas E. Goutis, "Efficient Small-Sized Implementation of the Keyed-Hash Message

Authentication Code," EUROCON, the International Conference, pp. 1875-1878, 2005.

[17] A. Menezes, P. van Oorschot, and S. Vanstone, Handbook of Applied Cryptography.:

Massachusetts Institute of Technology (MIT), 1996.

[18] Marc Martinus Jacobus Stevens, "Attacks on Hash Functions and Applications".

Amsterdam: The thesis carried out at the Centrum Wiskunde & Informatica in the

Netherlands and has been funded by the NWO VICI grant of Prof. dr. R. Cramer.Printed by

Ipskamp Drukkers,AMS 2000 Subj. class. code: 94A60,ISBN: 978-94-6191-317-3,

Universitiet Leiden, 2012.

[19] Alfred J. Menezes, Paul C. van Oorschot, and Scott A. , Handbook of Applied

Cryptography., 1996.

[20] Rubina B. and PatelNaveen Chaudhary, "Analyzing digital signature robustness witm

message digest algorithm," IJCA Special Issue on Communication Security, 2012.

[21] Alfred J. Menezes, Paul C. van Oorschot, and Scott A. Vanstone, "Handbook of Applied

Cryptography". United State of America: Massachusetts Institute of Technology MIT, 1996.

[22] (2014, November) WhatIs.com. [Online].

http://whatis.techtarget.com/definition/Confidentiality-integrity-and-availability-CIA

[23] Douglas Selent, "Advanced Encryption Standard," River Academic Journal, vol. 6, pp. 1-14,

2010.

https://plato.stanford.edu/entries/computational-complexity/
http://developer.e-power.com.kh/one-way-vs-two-way-encryption/
http://developer.e-power.com.kh/one-way-vs-two-way-encryption/
http://whatis.techtarget.com/definition/Confidentiality-integrity-and-availability-CIA

 82

[24] M.Pitchaiah, Philemon Daniel, and Praveen, "Implementation of Advanced Encryption

Standard algoritm," International Journal of Scientific & Engineering Research, vol. 3, no.

3, pp. 1-6, March 2012.

[25] J. Daemen and V. Rijmen, "The block cipher Rijndael," Smart Card research and

Applications ,LNCS 1820, Springer Verlag, pp. 88-296.

[26] Bibek Bhattarai, Bipin Thapa Magar, Naresh Kumar Giri, and Gaurav Sitaula, "FPGA

Prototyping of the secured biometric based Identification system," ResearchGate, 2014.

[27] M. Pitchaiah, Philemon Daniel, and Praveen , "Implementation of Advanced Encryption

Standard Algorithm," International Journal of Scientific & Engineering Research, vol. 3, no.

3, pp. 2229-5518, march 2012.

[28] Bart Preneel, "Analysis and Design of Cryptographic Hash Functions," pp. 1-323, February

2003.

[29] "http://www.metamorphosite.com/one-way-hash-encryption-sha1-data-software," pp. 1-13,

accessed on 30/12/2016.

[30] Atul Kahate, "Cryptography and Network Security.Second Edition," 2003, Tata McGraw-

Hill Pvt.

[31] Ivan Damgård, "A design principle for hash functions," In Gilles Brassard, editor, Advances

in Cryptology: CRYPTO 89, volume 435, pp. 416-427, 1989.

[32] Ralph Merkle, "One way hash functions and DES," In Gilles Brassard,editor, Advances in

cryptology: CRYPTO 89, volume 435, pp. 428-446, 1989.

[33] Murali Krishna Reddy Danda, "Design and Analysis of Hash Function"., 2007.

[34] D. Zibin and Z. Ning, "FPGA Implementation of SHA-1 Algorithm," 0-7803-7889-

X/03/$17.00@2003 IEEE, pp. 1321-1324, 2003.

[35] "https://www.tbs-certificates.co.uk/FAQ/en/sha256.html," last accessed on 2-1-2017.

[36] C. i Xiao-hu and D. Jian-zhi, "Design of SHA-1 Algorithm based on FPGA," International

Conference on Networks Security, Wireless Communications and Trusted Computing IEEE,

pp. 532-534, 2010.

[37] Ryan Glabba, Laurent Imbertb, and Graham Jullien, "Multi-mode operator for SHA-2 hash

functions," Journal of Systems Architecture, vol. 53, no. 2-3, pp. 12-138, March 2007.

 83

[38] R. V. Mankar and Prof. S. I. Nipanikar, "C Implementation of SHA-256 Algorithm,"

International Journal of Emerging Technology and Advanced Engineering, vol. 3, no. 6, pp.

167-170, June 2013.

[39] Mohit Arora. (2012, July) EETimes. [Online].

http://www.eetimes.com/document.asp?doc_id=1279619

[40] Mohammad A. AlAhmad and Imad Fakhri Alshaikhli, "Broad View of Cryptographic Hash

Functions," IJCSI International Journal of Computer Science Issues, Vol. 10, Issue 4, No 1,

pp. 239-246, 2013.

[41] Blondeau, Thomas Peyrin, and Lei Wang, "Known-key Distinguisher on Full PRESENT,"

Known-key Distinguisher on Full PRESENT, pp. 1-20.

[42] Eli Biham, "New types of cryptanalytic attacks using related keys," Springer-Verlag Berlin

Heidelberg 1994, pp. 398-409, 1994.

[43] P. Burns, "Software Defined Radio for 3G", 1st ed. LONDON, 2003.

[44] T. L. Floyd, "Digital Fundementals", 9th ed. USA, 2006.

[45] Quora. [Online]. https://www.quora.com/What-is-the-difference-between-CPLD-and-FPGA

[46] JuanSoto,JamesNechvatal,Milesmid,ElaineBarker,StefanLeigh, MarkLevenson, Mark

Vangel, DavidBanks, AlanHeckert, JamesDray, SanVo AndrewRukhin, "A Statistical Test

Suite for Random and Pseudorandom Number Generators for Cryptographic Applications,"

USA, 2010.

[47] Dr Alaa kadhim and Mohammed salih, "Proposal of New Keys Generator for DES

Algorithms Depending on Multi Techniques," Eng. &Tech., vol. 32, pp. 1-13, 2014.

http://www.eetimes.com/document.asp?doc_id=1279619
https://www.quora.com/What-is-the-difference-between-CPLD-and-FPGA

 84

APPENDIX A

S-BOXOF THE AES

The S-box depended on the AES algorithm that used in the section (2.3.1) is shown:-

Table A.1: The Values of the S-Box

99 124 119 123 242 107 111 197 48 1 103 43 254 215 171 118

202 130 201 125 25 89 71 240 173 212 162 175 156 164 114 192

183 253 147 38 54 63 247 204 52 165 229 241 113 216 49 21

4 199 35 195 24 150 5 154 7 18 128 226 235 39 178 117

9 131 44 26 27 110 90 160 82 59 214 179 41 227 47 132

83 209 0 237 32 252 177 91 106 203 190 57 74 76 88 207

208 239 170 251 67 77 51 133 69 249 2 127 80 60 159 168

81 163 64 143 146 157 56 245 188 182 218 33 16 255 243 210

205 12 19 236 95 151 68 23 196 167 126 61 100 93 25 115

96 129 79 220 34 42 144 136 70 238 184 20 222 94 11 219

224 50 58 10 73 6 36 92 194 211 172 98 145 149 228 121

231 200 55 109 141 213 78 169 108 86 244 234 101 122 174 8

186 120 37 46 28 166 180 198 232 221 116 31 75 189 139 138

112 62 181 102 72 3 246 14 97 53 87 185 134 193 29 158

225 248 152 17 17 217 142 148 155 30 135 233 206 85 40 223

140 161 137 13 191 230 66 104 65 153 45 15 176 84 187 22

Table A.2: The Inverted Values of the S-Box

82 9 106 213 48 54 165 56 191 64 163 158 129 243 215 251

124 227 57 130 155 47 255 135 52 142 67 68 196 222 233 203

84 123 148 50 166 194 35 61 238 76 149 11 66 250 195 78

8 46 161 102 40 217 36 178 118 91 162 73 109 139 209 37

114 248 246 100 134 104 152 22 212 164 92 204 93 101 182 146

108 112 72 80 253 237 185 218 94 21 70 87 167 141 157 132

144 216 171 0 140 188 211 10 247 228 88 5 184 179 69 6

208 44 30 143 202 63 15 2 193 175 189 3 1 19 138 107

58 145 17 65 79 103 220 234 151 242 207 206 240 180 230 115

150 172 116 34 231 173 53 133 226 249 55 232 28 117 223 110

71 241 26 113 29 41 197 137 111 183 98 14 170 24 190 27

252 86 62 75 198 210 121 32 154 219 192 254 120 205 90 244

31 221 168 51 136 7 199 49 177 18 16 89 39 128 236 95

96 81 127 169 25 181 74 13 45 229 122 159 147 201 156 239

160 224 59 77 174 42 245 176 2 235 187 60 131 83 153 97

23 43 4 126 186 119 214 38 225 105 20 99 85 33 12 125

 85

APPENDIX B

HASH CALCULATOR

Hash value'SHA-2 Hash value/SHA-1 Message

F0CF 39D0 BE3E FBB6 F86A

C240 4100 FF7E 055C 17DE D946

A068 08D6 6F89 CA03 A811

1070 0447 2B7BA4E5 E31F

3082 EE1F B5A1 239E EC61
Array

1ADE 60AB E93F 5CFC E908

A10B B2D1 B474 F024 7798

43FA BA4B B1F2 EF06 F277

D3C7

1D20 DE03 126B 297E 05C1

3A7D 280F 33E2 4C72 C537
Generator

458C 1FED 5743 5404 2397 E664

D6DA BE58 415C 8AB6 29F0

52DB 5723 FB42 B490 D280

6734 E197 90F1 1127 0C9E

4D31 EAC3 1CEF 4653 4E85
Evening

8D2A C8B5 8EAD 9744 D772

86DE 9B0B CB7A 894F 238C

3149 FC9F 3B1E 3CAF F363

30FE

C952 59DE 1FD7 1981 4DAE

F8F1 DC4B D64F 9D88 5FF0
money

E06F 8CFC 39F1 2AA9 8DFF

BC04 587E D1A5 CF4D 6588

9EC9 B02D 4CF4 B9B9 4DF2

2E69

FDA4 3783 BE8E 0B3F 9206

A57F 2248 C223 7F04 9F81
Submitted

6725 E7BB CD28 F3A8 A586

FA34 BF19 1FD7 2DDE 8B61

7569 32CD 3237 C17A 6F19 6F1A

BC07 92D8 DC81 E8AA 30B9

8724 6A5C E97C 40CD 6833
System

6ADB 770A 21AE 7200 BFAC

6D1E 694F C76B 3E8B 8166 C788

0223 62ED 1E66 055A B88A

49B7 8AF2 D644 590F F6F7

3D4D 7C64 E821 EE5B 4E08
Perform

D4A3 3D5B 78BC CEBE 3F16

843D C30E 6C0F 73B4 EB6E

4827 EA22 716A 74AA F8BB

E499 FC31 4BB9 3F73 C65E
Discover

 86

FB4E 7114 DDFE BDE7 FA2C

9954

52C6 A4F6 8307 D05B FD64

60D1 DD80 7E2F A05D 65B9

4FEF EDB7 4C63 296B 3C78

642A

2EF8 75B9 BF67 843A C034

CA44 671C 7357 F602 55B4
What do you need?

983F FB9D 216F 36AC AAB3

3D26 DCE5 141B 5BE8 C802

F4F9 30A8 E8F3 5AD5 D135

53C3

7C98 1020 D9D75F09 0317

A244 67DE 6792 DD1A 3853
How much it's cost?

B7BC 3F43 8183 072B AF3E

BB11 D3D6 3D78 1661 D4ED

7F1F 4D79 916F 89F5 1F56 17F7

21EB 497B 66EB 1A1A C2A6

3106 D6CF 3732 5C25 57AE
what is your name?

9B18 1DE4 83E0 DA61 391C

D385 F163 83F9 5340 1FDF EE8C

A2C4 6297 BD81 2F3E 0B5D

C0DC BA11 D4CF D9FF 2130

9597 CDFE D785 7868 7712
How old are you?

F30F 4D24 6D07 2267 F9B8 9A5E

B809 F26C 2EFA 0EE9 5F2B

7AB9 6BD2 E0B7 C4EB 3153

A44D 9889 2A49 3F27 7F9F

68CD 58D2 C5AF F9C3 6990
I'm a student

F349 17CD C984 9D93 DC74

4DEA B27C 36C6 7262 119C

B968 B227 9360 AF78 FF9A

DF5D

BF13 5557 FFF2 4CB8 BD58

BA66 50B8 A40C 2CEF 3B0E
Can you help me?

55BF D6F2 3246 2031 B00C 2892

3EE3 288F 1CE8 9163 7B21 6307

1400 4904 E78A 54FA

BF4A 182C 27DF AFEE

AD4E C20B 458F 3476 4385

4FFF

Go straight

D2B8 5FA6 A231 E708 BD7D

FA02 3A6E 6A51 C9DD B8EA

F378 6E64 28B1 0B1B BC15

8DA5

9AC7 2AE1 B801 10EB 451E

2C4B CC4B 0010 AF22 921E
Happy new year

E30F 7D7D 5B68 9D52 0F47 3749

47C0 02AF AC0D BE5C CC74
70ED AEFE 7730 5671 6A87 What do you do for a

 87

1718 05E2 BE7B 2B5D 1B5C 5E0C 473E 32B7 A67E FD10 living?

307E E207 F54C 3018 21B5 2A4F

F3DB 4983 B460 F232 6EF3 F1A7

D376 02B3 3F9B 7BDB

2761 4E0E D525 A1AB 1F48

9010 C7F0 D631 6B2B 76DB

I destroy my enemies

when I make them my

friends

9C3F ADB0 285A 3762 0BA5

3360 9AC7 403E A1F9 7D49

884A A8CF F3B8 FB22 5DE6

27A8

2D33 F185 4D65 60DD 13A7

427C 2D6E 78E5 F051 FF75

If the plan doesn’t work,

change the plan, but

never the goal

95F4 6C28 7E1F A2AF C272

7AB3 B352 3CB9 7E08 7C6A

7185 1F8F 7DCE 48DF CF12

2B4F

9EFC 13AC E333 852B 7DEF

6DC1 8F36 C0FB 4C3C 5570

Always keep your eyes

open. Keep watching.

Because whatever you

see can inspire

 88

APPENDIX C

LAbVIEW ICONS TABLE

Icon symbol Icon Name Icon work
The aim of using in the AES

and SHA design

Property Node

To select the class on

which to execute the

property

To access the private data of the

AES

Invoke Node

To select the class on

which to execute the

method

Configuring the VI Server

Application class or Virtual

Instrument class

or

Constructor Node
Displays the Select .NET

Constructor dialog box

This node identifies the

constructor from which to create a

.NET object.

Merge Errors

Function

It has two inputs available

and another inputs can be

added.

To look for errors beginning with

the error in 0 parameter and

reports the first error found

Expression Node

Expression Nodes are

useful when an expression

has only one variable.

To calculate expressions that

contain a single variable

or

String of

characters

Generate a string of

characters.

To make the string generated

represent the original message to

the system.

 89

String To Byte

Array Function

Converts a string into an

array of unsigned bytes.

Each byte in the array has

the ASCII value of the

corresponding character in

the string.

To convert the string which is the

original message to its equivalent

ASCII to be suitable for the next

processing

Array Size

Function

Returns the number of

elements in each

dimension of array.

Responsible of the block size, if

the array is one dimension such as

in the message string; then the

returned value of this function is a

32-bit integer.

Quotient &

Remainder

Function

Computes the integer

quotient and the

remainder of the inputs.

Used in many places in

algorithm, most of these to

calculate the modulo value

Subtract Function

Computes the difference

of the inputs.

Used in many places at the design

to find the difference between two

values.

Array Subset

Function

Returns a portion of array

starting at index and

containing length

elements

When an array wired to this

function, the function resizes

automatically to display index

inputs for each dimension in the

array. If the wired array is a 1

dimension array to the function,

the function displays the index

inputs for an element

 90

To Unsigned

Long Integer

Function

Converts A Number To A

32-Bit Unsigned Integer

In The Range 0 To

(2^32)–1

Used In Many Places, This

Function Rounds All Floating-

Point And Fixed-Point Numeric

Values To The Nearest Integer. If

The Fractional Part Of The Value

Is .5, The Function Rounds The

Value To The Nearest Even

Integer. For Example, The

Function Rounds 13.5 To 14 And

Rounds 14.5 To 14.

Rotate Left With

Carry Function

Rotates each bit in the

input value one bit to the

left (from least significant

to most significant bit),

inserts carry in the low-

order bit, and returns the

most significant bit.

Used in many places, especially

at the padding and the core

calculation to rotate the array

when necessary.

Split Number

Function

Breaks a number into its

component bytes or words

Used at the padding process, to

determine the MSB and LSB of

the array after the rotating.

Reverse 1D Array

Function

Reverses the order of the

elements in array

Used at the padding after the

splitting to reorder the array at the

same initial sequence

Build Array

Function

Concatenates multiple

arrays or appends

elements to an n-

dimensional array.

You also can use the

Replace Array Subset

function to modify an

existing array

Used at the padding process to

reorder each chunk entered to the

process to take its place and to

append the padded message with

the reserved register

Decrement

Function
Subtracts 1 from the input

value

Used in many places at the design

when needing to decrement the

value.

 Initialize Array
Creates an n-dimensional

array in which every

element is initialized to

Used to initial an array concludes

the array followed by 1 and series

glang.chm::/Replace_Array_Subset.html

 91

Function

the value of element.

Initialized array is an

array of the same type as

the type you wire to

element.

of zeroes then followed by 64 bits

to show the length before padding

at one array.

Multiply Function Returns the product of the

inputs

Used in many places of

algorithm.

Replace Array

Subset Function
Replaces an element or

subarray in an array at the

point you specify in index

Used in many places at

algorithms

Type Cast

Function

Casts x to the data type,

type, by flattening it and

unflattening it using the

new data type. If the

function must reinterpret

data instead of

transforming it,

LabVIEW uses a

temporary buffer.

Used in many places of algorithm

to convert to the suitable type, to

dispose the error generated from

data mismatching

Exclusive Or

Function

Computes the logical

exclusive or (XOR) of the

inputs. Both inputs must

be Boolean values,

numeric values, or error

clusters. If both inputs are

TRUE or both inputs are

FALSE, the function

returns FALSE.

Otherwise, it returns

TRUE.

Used in many places of the SHA-

1/SHA-2 core for necessary

calculations.

Add Function

If two waveform values or

two dynamic data type

values wired to this

function, error in and

error out terminals appear

on the function. You

cannot add two time

stamp values together.

The dimensions of two

matrices you want to add

must be the same.

Otherwise, this function

returns an empty matrix.

The connector pane

displays the default data

types for this polymorphic

function

Used in many places of the

algorithm inside the SHA-1 core

calculations.

lvconcepts.chm::/Flattened_Data.html
lvconcepts.chm::/Flattened_Data.html

 92

Rotate Function Rotates x the number of

bits specified by y

Used in many places of the

algorithm inside the SHA-1 core

calculations

Replace Array

Subset Function

Replaces an element or

subarray in an array at the

point you specify in

index. When an array

wired to this function, the

function resizes

automatically to display

index inputs for each

dimension in the array

you wired. The connector

Used in many places

Compound

Arithmetic

Function

Performs arithmetic on

one or more numeric,

array, cluster, or Boolean

inputs. To select the

operation (Add, Multiply,

AND, OR, or XOR),

right-click the function

and select Change Mode

from the shortcut menu.

When you select this

function from the

Numeric palette, the

default mode is Add.

When you select this

function from the Boolean

palette, the default mode

is OR.

Used in many places

Number To

Hexadecimal

String Function

Converts number to a

string of hexadecimal

digits at least width

characters wide or wider

if necessary. The digits

A–F always appear in

uppercase in the output

string. If number is

floating-point or fixed-

point, it is rounded to a

64-bit integer before

conversion.

Used to display the hash code in

Hex.

glang.chm::/Numeric_Functions.html
glang.chm::/Boolean_Functions.html

 93

For Loop
SHA core

For repetition to the SHA rounds

Case structure
Case probability

For many cases

First Call?

Function Before the case structure

For proving the true and false

cases

 94

APPENDIX D

GALOIS FIELD (GF)

𝐺𝐹 (𝑝𝑛)The case in which n is greater than one is much more difficult to describe. In

cryptography, one almost always takes p to be 2 in this case. This section just treats the special

case of p = 2 and n = 8, that is. GF (2^8), because this is the field used by the new U.S.

Advanced Encryption Standard (AES). The AES works primarily with bytes (8 bits), represented

from the right as: b_7 b_6 b_5 b_4 b_3 b_2 b_1 b_0. The 8-bit elements of the field are regarded

as polynomials with coefficients in the field Z2:

𝑏7𝑥
7 + 𝑏6𝑥

6 + 𝑏5𝑥
5 + 𝑏4𝑥

4 + 𝑏3𝑥
3 + 𝑏2𝑥

2 + 𝑏1𝑥
1 + 𝑏0𝑥

0 (D.1)

The field elements will be denoted by their sequence of bits, using two hex digits.

D.1 ADDITION IN 𝑮𝑭 (𝟐𝟖)

To add two field elements, just add the corresponding polynomial coefficients using addition in

𝑍2. Here addition is 𝑚𝑜𝑑𝑢𝑙𝑜 2, so that 1 + 1 = 0, and addition, subtraction and exclusive-or

are all the same. The identity element is just zero: 00000000(in bits) or 0x00 (hex).

D.2 MULTIPLICATION IN 𝑮𝑭 (𝟐𝟖)

Multiplication is this field is much more difficult and harder to understand, but it can be

implemented very efficiently in hardware and software. The first step in multiplying two field

elements is to multiply their corresponding polynomials just as in beginning algebra (except that

the coefficients are only 0 or 1, and 1 + 1 = 0 makes the calculation easier, since many terms just

drop out). The result would be up to a degree 14 polynomial -- too big to fit into one byte. A

finite field now makes use of a fixed degree eight irreducible polynomial (a polynomial that

cannot be factored into the product of two simpler polynomials). For the AES the polynomial

used is the following (other polynomials could have been used):

 95

𝑚(𝑥) = 𝑥 8 + 𝑥 4 + 𝑥 3 + 𝑥 + 1 = 0 ∗ 11𝑏 (ℎ𝑒𝑥) (D.2)

The intermediate product of the two polynomials must be divided by m(x). The remainder from

this division is the desired product. This sounds hard, but is easier to do by hand than it might

seem (though error-prone). To make it easier to write the polynomials down, adopt the

convention that instead of 𝒙 𝟖 + 𝒙 𝟒 + 𝒙 𝟑 + 𝒙 + 𝟏 just write the exponents of each non-zero

term. (Remember that terms are either zero or have a 1 as coefficient.).

 96

CURRICULUM VITAE

Name: (SARA ABDULHALEEM AL-SHAREA)

M.Sc. (at 2019) in (TURKEY)

Affiliation: University of ALTINBAS

Dept.: ELECTRIC AND COMPUTER ENGINEERING

College: Graduate School of Social Science

University: ALTINBAS

Mobile: - +964- 7901414277 / +905396332236

Specialization: - NETWORK SECURITY

Your Research Interests:

- Cryptography

- Computer networks - security

Google Site: Google scholar :

https://scholar.google.com/citations?hl=ar&user=Xb-

JkxsAAAAJ

Research gate:

https://www.researchgate.net/profile/Sara_Al-Sharea

Academia.edu : sara.al-

sharea@ogr.altinbas.edu.trhttp://uzem.altinbas.edu.tr/us

er/profile.php?id=1834&lang=en

LinkedIn: http://linkedin.com/in/sara-haleem-7a4ab27a

Facebook:

https://www.facebook.com/profile.php?id=1000002580

04945

sarahah_sarahen@yahoo.com

sarahaleem26@gmail.com

-Are you a member in IEEE Iraq

Section? If Yes, when you start

your first registration? NO

-Any Activities you have with

IEEE Iraq Section???

-Do you wish to be a reviewer in

the IEEE conferences hold in

IRAQ? YES

- MY

EADS

ID:

- 1628116

https://scholar.google.com/citations?hl=ar&user=Xb-JkxsAAAAJ
https://scholar.google.com/citations?hl=ar&user=Xb-JkxsAAAAJ
https://www.researchgate.net/profile/Sara_Al-Sharea
http://uzem.altinbas.edu.tr/user/profile.php?id=1834&lang=en
http://uzem.altinbas.edu.tr/user/profile.php?id=1834&lang=en
mailto:sarahah_sarahen@yahoo.com
mailto:??????@gmail.com

 97

