

T.C.

ALTINBAŞ UNIVERSITY

Electrical and Computer Engineering

OPTIMIZING THE LIFETIME OF WIRELESS

SENSOR NETWORKS USING DEEP

REINFORCEMENT LEARNING IN A SOFTWARE-

DEFINED NETWORK ARCHITECTURE

Zainab Ali Abbood

Master Thesis

Supervisor

Cagatay AYDIN

Istanbul, 2019

OPTIMIZING THE LIFETIME OF WIRELESS SENSOR

NETWORKS USING DEEP REINFORCEMENT LEARNING IN A

SOFTWARE-DEFINED NETWORK ARCHITECTURE

Zainab Ali Abbood

Electrical and Computer Engineering

Submitted to the Graduate School of Science and Engineering

in partial fulfillment of the requirements for the degree of

Master of Science and Engineering

ALTINBAŞ UNIVERSITY

2019

iii

This is to certify that I have read this thesis and that in my opinion it is fully adequate, in

scope and quality, as a thesis for the degree of Master of Science

_______________________________ _______________________________

 Dr. Mahmoud Shuker Mahmoud Asst. Prof. Dr. Cagatay AYDIN

 Co-Supervisor Supervisor

Examining Committee Members (first name belongs to the chairperson of the jury and the

second name belongs to supervisor)

Asst. Prof. Dr. Cagatay AYDIN

School of Engineering

and Natural Sciences,

Altinbas Univerisity __________________

Asst. Prof. Dr. Dogu Cagdas ATILLA

School of Engineering

and Natural Sciences,

Altinbas Univerisity __________________

Asst. Prof. Dr. Cahit KARAKUS

Faculty of Engineering

and Architecture,

Esenyurt Univerisity __________________

I certify that this thesis satisfies all the requirements as a thesis for the degree of Master of

Science.

Asst. Prof. Dr. Cagatay AYDIN

Head of Department

Prof. Dr. Oguz BAYAT

Director

Approval Date of Graduate School of

Science and Engineering: ____/____/____

iv

DECLARATION

I hereby declare that all information in this document has been obtained and presented in

accordance with academic rules and ethical conduct. I also declare that, as required by these

rules and conduct, I have fully cited and referenced all material and results that are not

original to this work.

Zainab Ali Abbood

.

v

ACKNOWLEDGMENTS

My utmost thanks and gratitude must first be offered to Almighty Allah for all his

blessing, and in granting me patience throughout the duration of this research.

Profound appreciation and thanks are given to my supervisor, Asst. Prof. Cagatay

Aydin and Co-Supervisor Dr. Mahmoud Shuker Mahmoud, for their patient

supervision, guidance, constructive suggestions and comments during the entire

research period until its completion. Their advice and support throughout the program

have been invaluable. Without their tireless help, leadership, and confidence in my

ability, the completion of this project would not have been possible. I also offer my

gratitude to them for opening my mind to a new world of knowledge, opportunities,

and experience, giving me a better understanding throughout.

I would like to thank my brother, Dr. Hayder Ali Abbood, for always being beside me

and helping me. Love you, bro!

Finally, I must thank all my family for all their help and continuous support at every

stage of my research.

vi

ABSTRACT

OPTIMIZING THE LIFETIME OF WIRELESS SENSOR NETWORKS

USING DEEP REINFORCEMENT LEARNING IN A SOFTWARE-

DEFINED NETWORK ARCHITECTURE

Zainab Ali Abbood,

M.Sc., Electrical and Computer Engineering, Altınbaş University

Supervisor: Asst. Prof. Dr. Cagatay Aydin

Co-Supervisor: Dr. Mahmoud Shuker Mahmoud

Date: September/2019

Pages: 63

According to the changing topologies of modern networks, the use of static routing rules

has become obsolete. Software-Defined Networks (SDNs) are being used to overcome such

limitation, where a central controller handles the decision-making role regarding packets

routing. This controller collects information about the network, in addition to the packet

information, to decide the route a packet should follow to reach its destination. However,

with the growing complexity of WSNs topologies and the importance of efficient routing,

Machine Learning (ML) techniques are being used to handle the decision making in the

SDN controller. In this study, a new method is proposed to optimize the resources

consumption in a WSN that uses SDN. The proposed method employs a neural network

that is trained using Reinforcement Learning (RL), based on the lifetime of the WSN. To

extend the lifetime of WSN the neural network is required to optimize the power

consumption of the nodes in that network, in which the optimal routes must be used. Three

types of neural networks are evaluated in this thesis; Feed-Forward Neural Network (FF-

NN), 2D-Convolutional Neural Network (2D-CNN) and 3D-CNN. The evaluation of these

models show that the using the 3D-CNN has achieved the best performance, with an

average lifetime of 678251.6 seconds, with an extension of 17% of the 578122.2 seconds

using the existing state-of-the-art method. The average number of hops a packet is required

vii

to travel through, to reach its destination, in this model is 9.81 hops with an average Packet

Delivery Rate (PDR) of 85.07%. Additionally, the 2D-CNN model has achieved 638169.2

seconds lifetime, with an average of 12.37 hops per packet and 82.47% PDR, whereas the

FF-NN has achieved 578381.6 seconds lifetime with 83.37% PDR and 8.31 hops per

packet. In addition to the superiority of the 3D-CNN, the results also show that the use of

the shortest paths causes an exhaustion to the resources of certain nodes, positioned in

locations that handle extensive traffic, which reduces the overall lifetime of the WSN.

Thus, the extension of the lifetime requires using alternative, i.e. longer, paths to avoid such

exhaustion and extend the lifetime of the network.

Keywords: Software-Defined Network; Internet of Things; Wireless Sensor Network;

Reinforcement Learning; Artificial Neural Network.

viii

ÖZET

YAZILIM TANIMLI BİR AĞ MİMARİSİNDE DERİN TAKVİYELİ

ÖĞRENMEYİ

KULLANARAK KABLOSUZ SENSÖR AĞLARININ ÖMÜR BOYU

OPTİMİZASYONUNU SAĞLAMA

Zainab Ali Abbood,

Yüksek Lisans Elektrik ve Bilgisayar Mühendisliği, Altınbaş Üniversitesi

Danışman : Asst. Prof. Dr. Çağatay Aydın

Eş Danışman: Dr. Mahmoud Shuker Mahmoud

Tarih: Eylül/2019

Sayfa Sayısı: 63

Farklı uygulamalardaki verilerin günümüzde gittikçe artan önemi ile birlikte, çevreden söz

konusu verileri toplayabilmek adına Kablosuz Sensör Ağları (Wireless Sensor

Networks/WSN) yaygın bir biçimde kullanılmaktadır. Bu ağların görevlerini yerine

getirebilmek için ihtiyaç duymuş oldukları esnekliği sağlamak adına, küçük boyutlarda ve

bu sayede yüksek hareketliliğe sahip sensörler kullanılır. Ancak, bahsedilen sensörlerin

küçük boyutlu olması, güç ve enerji kaynaklarının işlenmesi gibi, devrelerin donatılabilecek

oldukları kaynak sayısını sınırlandırmaktadır. Ayrıca, internet erişiminin kolaylaşması ile

birlikte, söz konusu ağlar, Nesnelerin İnternetini (Internet of Things) oluşturan bir merkez

birimde toplamış oldukları verileri gönderebilmek için internete bağlanmaktadır. Kablosuz

Sensör Ağlarının (WSN) değişmekte olan devre topolojilerine adapte olabilmesi adına,

devreler, bir sunucudan diğer sunucuya, kendilerinden gönderilen paketlere ek paket

göndermeye yönlendirilirler. Dolayısıyla, kendi görevini yerine getirebilmek ve paketlerini

iletebilmek adına ihtiyaç duyduğu kaynaklara ek olarak, devreden ihtiyaç duyulan

kaynaklar, iletilmesi gereken paketlerin sayısına bağlıdır. Böylelikle, devrelerdeki kaynak

tüketiminin optimizasyonu, paketlerin hedeflerine ulaşabilmek için kullandıkları yolların

optimizasyonunu gerektirmektedir.

ix

Modern ağların değişmekte olan topolojisine göre, sabit ağ veri yönlendirme kuralları artık

kullanılmamaktadır. Söz konusu kısıtlandırmanın aşılması adına, merkezi bir denetçinin

paket verilerinin yönlendirilmesinde karar veren role sahip olduğu Yazılım Tanımlı Ağlar

(SDN) kullanılır. Söz konusu denetleyici, bir paketin hedefine ulaşmak için takip etmesi

gereken yolu belirlemek adına, paketin bilgilerine ek olarak, ağ hakkında da veri toplar.

Fakat, WSN’nin topolojisinde gelişen karmaşıklık ve etkili yönlendirmenin önemi ile

birlikte, SDN’nin denetçisinde karar verme sürecini kontrol etmek adına ML (Makine

Öğrenimi) teknikleri kullanılmaktadır. Bu çalışmada, SDN kullanmakta olan WSN

içerisindeki kaynak tüketiminin optimizasyonunu sağlamak adına yeni bir yöntem

sunulmaktadır. Sunulan yöntem, WSN’nin ömrü bazında, RL (Takviyeli Öğrenme)

kullanımı ile eğitilen bir nöral ağdan yararlanmaktadır. WSN’nin ömrünü uzatabilmek için,

nöral ağın en ideal rotaların kullanılması gereken ağlardaki devrelerin güç tüketimini

optimize etmesi gerekmektedir. Bu tez çalışmasında üç tür nöral ağ değerlendirilmketedir;

İleri Beslemeli Nöral Ağ (Feed-Forward Neural Network – FF-NN), 2 Boyutlu Evrişimsel

Nöral Ağ (2D- Convolutional Neural Network – 2D-CNN) ve 3D-CNN. Bu modellerin

değerlendirmesi; gelişen en son teknoloji ile var olan 578122.2 Saniye ömür süresini %17

değerinde uzatarak, 678251.6 Saniye ortalama ömür süresi ile 3D-CNN’nin en iyi

performansı elde ettiğini ortaya koymaktadır. Bu model dahilinde, bir paketin hedefine

ulaşabilmesi için gerekli ortalama sıçrama değeri, ortalama %85.07’lik Paket Aktarım

Oranı (Packet Delivery Rate - PDR) ile 9.81 sıçramadır. Ayrıca, 2D CNN modeli, paket

başına ortalama 12.37 sıçrama ve %82.47’lik PDR ile 638169.2 Saniye ömür süresi elde

etmiş, FF-NN modeli ise paket başına 8.31 sıçrama ve %83.37 PDR ile 578381.6 Saniye

ömür süresine ulaşmıştır. Sonuçlar, 3D-CNN modelinin üstünlüğüne ek olarak, en kısa

yolların kullanımının, yoğun trafiği kontrol altında tutan bölgelerde konumlandırılmış olan

bazı devrelerin kaynaklarında tükenme meydana getirdiğini ve WSN’nin toplam ömrünü

kısalttığını da göstermiştir. Yani, ömrün uzatılması, söz konusu tükenmeden kaçınabilmek

adına alternatif, yani daha uzun, rotaları tercih etmeyi gerektirmektedir.

Anahtar Kelimeler: Yazılım Tanımlı Ağ; Nesnelerin İnterneti; Kablosuz Sensör Ağları;

Takviyeli Öğrenme; Yapay Nöral Ağ.

x

TABLE OF CONTENTS

Page

ABSTRACT .. vi

ÖZET .. viii

LIST OF TABLES .. xii

LIST OF FIGURES ... xiii

LIST OF ABBREVIATIONS ... xiv

1. INTRODUCTION ... 1

1.1. PROBLEM STATEMENT .. 3

1.2. AIM OF THE THESIS ... 4

1.3. THESIS LAYOUT ... 5

2. LITERATURE REVIEW ... 6

2.1. EMPLOYMENT OF IOT DEVICES... 7

2.2. SOFTWARE-DEFINED NETWORKING (SDN) .. 8

2.3. REINFORCEMENT LEARNING ... 10

2.4. ARTIFICIAL NEURAL NETWORKS ... 13

2.5. DEEP Q-LEARNING .. 17

2.6. EMPLOYMENT OF DRL IN SOFTWARE-DEFINED NETWORKING 18

3. METHODOLOGY .. 20

3.1. USING THE FEED-FORWARD NEURAL NETWORK (FFNN)....................... 21

3.2. USING THE 2D CONVOLUTIONAL NEURAL NETWORK (2D-CNN) 22

3.3. USING THE 3D CONVOLUTIONAL NEURAL NETWORK (3D-CNN) 24

3.4. TRAINING THE DQN MODELS ... 25

4. EXPERIMENTAL RESULTS ... 28

xi

4.1. PERFORMANCE OF THE FFNN MODEL ... 30

4.2. PERFORMANCE OF THE 2D-CNN MODEL ... 32

4.3. PERFORMANCE OF THE 3D-CNN MODEL ... 35

5. RESULTS SUMMARY AND DISCUSSION ... 37

6. CONCLUSIONS AND FUTURE WORK ... 40

REFERENCES .. 42

xii

LIST OF TABLES

Pages

Table 3.1: Structure of the FFNN implemented for the proposed method. 22

Table 3.2: Structure of the 2D-CNN implemented for the proposed method. 23

Table 3.3: Structure of the 3D-CNN implemented for the proposed method. 25

Table 5.1: Summary of the performance measure for the existing and proposed

methods. .. 37

xiii

LIST OF FIGURES

Pages

Figure 2.1: The use of IoT devices in different fields of applications [5]. 6

Figure 2.2: Generic architecture of an SDN [36]. .. 9

Figure 2.3: Illustration of the interaction between the Agent and the Environment in

reinforcement learning. ... 10

Figure 2.4: Hierarchy of a sample deep neural network. ... 14

Figure 2.5: A sample convolutional neural network [53]. ... 15

Figure 2.6: Sample input and output of a Max-Pooling layer. 16

Figure 2.7: Sample inputs and outputs of an average-pooling layer. 16

Figure 2.8: A sample wireless sensor network. .. 19

Figure 4.1: Samples of the randomly generated WSNs and traffic. (a): 8-node network;

(b): 14-node network; 20-node network; 30-node network. .. 28

Figure 4.2: Average minimum energy in the nodes of the evaluation WSNs using the

FFNN model. .. 31

Figure 4.3: Average number of hops versus time using the FFNN model. 31

Figure 4.4: Average PDR versus time using the FFNN model. 32

Figure 4.5: Average minimum energy in the nodes of the evaluation WSNs using 2D-

CNN model. .. 33

Figure 4.6: Average number of hops versus time using the 2D-CNN model. 34

Figure 4.7: Average PDR versus time using 2D-CNN model. 34

Figure 4.8: Average minimum energy in the nodes of the evaluation WSNs using 3D-

CNN model. .. 35

Figure 4.9: Average number of hops versus time using the 3D-CNN model. 36

Figure 4.10: Average PDR versus time using 3D-CNN model. 36

Figure 5.1: Summary of the average lifetime for the proposed and existing methods. 37

Figure 5.2: Average number of hops using the proposed and existing methods.......... 38

Figure 5.3: Summary of the PDR for the existing and proposed methods. 39

Figure 5.4: Average prediction time required by the existing and proposed methods to

predict the optimal next hop. .. 39

xiv

LIST OF ABBREVIATIONS

WSN : Wireless Sensor Network

IoT : internet of Things

SDN : Software-Defined Network

ML : Machine Learning

RL : Reinforcement Learning

ANN : Artificial Neural Network

CNN : Convolutional Neural Network

VANET : Vehicular ad hoc Network

GPS : Global Positioning System

PPG : Photo-Plethysmography

RFID : Radio-Frequency Identification

MSDS : Material Safety Data Sheets

API : Application Programming Interface

REST : Representational State Transfer

HTTP : Hyper-Text Transfer Protocol

FF-NN : Feed-Forward Neural Network

DQN : Deep Q-Networking

PDR : Packet Delivery Rate

1

1. INTRODUCTION

With the rapidly growing interest in collecting data of different types for different

applications, smaller devices have been used to collect these data and execute remote

commands. The smaller size is a mandatory feature of these devices, i.e. sensors, to provide

them with the mobility required to satisfy the applications these devices are employed for

[1]. Moreover, the use of wireless communications has also been able to improve the

mobility and flexibility of the networks that these devices create and use to communicate.

Such networks are known as Wireless Sensor Networks (WSNs) and use a special type of

communication to establish connections among the sensors and the external world, so that,

the collected information is delivered to their destinations [2-4].

The high availability of internet connections in different types has eased access to that

network, which can be used to establish communications among devices in remote

locations. This availability has brought attention to using the internet’s infrastructure to

connect several types of devices to the internet, in order to transfer the data that they collect

and execute the commands sent to them. These devices may vary from as simple as a coffee

maker to autonomous cars, which has presented the Internet of Things (IoT) [5, 6].

However, as the infrastructure of the internet, such as the communication protocols, are

designed to be used by computers with larger resources and less mobility, compared to IoT

devices, the IoT has imposed new challenges toward optimizing the operation of these

devices [7, 8].

One of the main concerns about the operation of IoT devices is the amount of energy the

devices consume to perform the tasks required from them. To maintain the mobility of

these devices, they are usually energized with power sources of limited energy [9, 10].

Moreover, in larger WSNs, the devices act like nodes to deliver the traffic from one host to

another, which can be another node in the network or the sink node that collects the data

and deliver it to the internet, i.e. the gateway of the network. Hence, the power consumed

by a certain node in the network does not only depend on the traffic initiated from, or

directed to, that node but it also depends on the traffic that the node is required to deliver to

other nodes to maintain the communications in the network [11, 12].

2

With the growing complexity of network topologies, routing the packets through the

network is also requiring more complex techniques, so that, the overall performance of the

network can be improved by improving the routing decisions. Thus, Software-Defined

Networking has emerged as a solution to such topologies, to handle the dynamic nature of

the network where static rules cannot be used to route the traffic [13]. In a Software-

Defined Network (SDN), a controller is designated to make the appropriate decisions for

each packet, depending on the state of the network at the time the packet is being

transmitted. Hence, these controllers require more information about the network than only

the addresses of the source and destination hosts. This information is used by the controller

to choose the appropriate route for the packet to reach its destination [14].

Machine Learning (ML) techniques have been widely used in SDNs, according to the

ability of ML techniques to dynamically interact with the inputs, unlike the use of static

rules. These techniques extract knowledge about the domain they are required to interact

with using sets of examples collected from that domain [15]. Depending on the approach

used to collect these data, ML techniques are categorized into three main categories,

unsupervised, supervised and reinforcement. In unsupervised learning, the data is provided

to the ML technique as collected from the domain, without any additional information,

where the relations among the inputs are detected and used to interact with the

environment. In supervised learning, additional information is added to the collected data,

so that, the ML technique investigates the relations between the characteristics of each

input and the information added to it. This additional information normally represents an

expert’s knowledge, which is aimed to be learned by the ML technique [16].

Reinforcement Learning (RL) techniques do not require any examples from the domain

they are interacting with, as such knowledge is extracted by directly interacting with the

domain. This interaction is defined as an agent that executes actions in the environment, by

collecting the state of the environment. The main aim of RL is to create a model that

approximates the behavior of the environment, so that, the best actions can be selected by

the agent to execute in the environment, depending on the state of the environment. This

model is created based on the execution of random actions in different states, so that, the

outcome of each action at a certain state can be predicted. These predictions can be used to

select the optimal action at each state the agent may be in the environment [17, 18].

3

One of the widely used approached to approximate complex functions is Artificial Neural

Networks (ANN). Such networks mathematically replicate the signals communicated

among the biological neurons in human brains to reach an appropriate decision, based on

the inputs collected from different senses. Thus, these networks are trained to predict the

outcome, i.e. reward, of executing a certain action at a certain state by providing the states

of the environment and the actual reward collected from the environment when a certain

action is executed. During operation, the state of the environment is fed to the neural

network, which predicts the reward expected for each possible action. Then, the action with

the highest reward is executed by the agent, to optimize the operation of the environment

by executing the best possible actions [19].

The neurons in a neural network are distributed in layers, where the input of a certain layer

is collected from the outputs of the neurons in the previous layer. Depending on the way

these inputs are collected, there exist several types of neural networks. Each of them has

shown better performance when interacting with a certain type of inputs [20].

Convolutional Neural Networks (CNNs) use multi-dimensional filters that are convoluted

throughout the input in order for the neuron to calculate its output. This type of neural

networks has shown significantly better performance in detecting local, multi-dimensional,

features in inputs, which is the reason that these networks have shown good performance

when interacting with images [21, 22]. Moreover, this type of neural networks has also

shown good performance in RL applications employed for the controllers of SDNs,

according to their ability of detecting relations among adjacent nodes, so that, the nodes

closer to the one forwarding the packet can be detected, regardless of the topology on the

network [23, 24].

1.1. PROBLEM STATEMENT

According to the dynamic nature of IoT networks, several methods are proposed to manage

routing the packets in the networks using RL [23-25]. However, these techniques do not

consider the power consumption in the network, which can exhaust certain nodes

depending on their positioning in the network. Such exhaustion can dramatically reduce the

lifetime of the network, as the loss of these nodes disturbs the communications among the

4

nodes of the network, hence, delivering the data to the required host. The method proposed

by Lin et al. [23] calculates the reward from the environment, which is the network, based

on the packets delay and loss in addition to the throughput of the network. According to

these measures, the highest reward predicted by the neural network is expected to represent

the shortest path, regardless of balancing the loading on the nodes in the network.

Moreover, Stampa et al. [25] also aim to shorten the path each packet travels through, to

reduce the time required to deliver the packet, whereas Zhang et al. [24] propose a method

to maximize the probability of delivering the packets in Vehicular ad hoc Networks

(VANETs).

1.2. AIM OF THE THESIS

This study presents a novel method to manage routing in SDNs based on RL. The proposed

method considers the lifetime of the network, so that, the SDN controller selects alternative,

possibly longer, routes for the packets to travel through. Despite the possibly longer paths,

the proposed method aims to balance loading among the nodes of the network, so that,

exhaustion of certain nodes is avoided. The proposed method uses different types of ANNs

to approximate the function that represents the operation of the network. Then, the state of

the network is collected and provided to the neural network, alongside with the information

of the packet being routed. The node that maximizes the reward is then selected as the next

hop in the route, until the packet is delivered. The lifetime of the network is included in the

computations of the reward, so that, a balanced performance can be achieved, between the

speed of the communications and the lifetime of the network. Hence, the proposed method

can justify the gap in the existing methods [23-25], which make use of RL but do not

consider balancing the nodes’ loading.

5

1.3. THESIS LAYOUT

The remainder of this thesis is organized as follows:

 Chapter Two reviews the literature related to RL and the methods proposed to

employ it in SDNs controllers.

 Chapter Three describes the proposed method and the different types of neural

networks that can be used to achieve the required task.

 Chapter Four presents the experiments conducted to evaluate the performance

of the proposed method using the selected types of neural networks.

 Chapter Five discusses the results collected from the experiments and compares

them to the state-of-the-art method in the literature for the same purpose.

 Chapter Six illustrates the conclusions of this thesis and the future work that is

going to be conducted to improve the performance of the proposed method.

6

2. LITERATURE REVIEW

The high availability of internet connection has encouraged the use of these connections to

communicate information among different devices, other than computers and smart devices

usually used by internet users. These devices are used in different applications to provide

different kinds of services to the users, where in most cases, the information being

exchanged are automatically collected by these devices and require to user’s interaction.

This phenomenon has created the Internet of Things (IoT) and it has become mandatory to

adopt these devices and handle their communications [26]. The use of IoT devices has

grown rapidly in recent years, according to the features they provide, such as mobility and

accuracy. Thus, the IoT devices have been widely used in different fields of applications,

such as healthcare, manufacturing, electricity, security and vehicles. The use of IoT devices

in different applications is illustrated in Figure 2.1, based on the percentage of devices used

in each field [5].

Figure 2.1: The use of IoT devices in different fields of applications [5].

7

2.1. EMPLOYMENT OF IOT DEVICES

A healthcare system based on IoT is proposed by Arijit et al. [27] that collects several

biometric and environment measures to detect any anomaly in these measures in order to

alarm the patient to seek for a medical care. The anomaly detection is based on data mining

techniques, where measured variables are sent to a remote server to detect these anomalies.

The patient’s location, activity, movement and heart activity are monitored using the Global

Positioning System (GPS), Accelerometer, Magnetometer, and Photo-Plethysmography

(PPG) sensors, respectively. Moreover, an emergency health transmission system is

proposed by Govindhan et al. [28] the relies on the IoT to monitor the parameters of a

patient’s body in order to assist providing better health care for that patient in case of

emergency, where the recent vital measures can be analyzed to predict the required care in

need. The existence of such systems imposes the need for rigid long-life monitoring using

IoT devices, so that, reliable services are provided.

Although the IoT is not limited to healthcare, this field has the highest share among all

other fields as shown in Figure 2.1. However, there are different other services that rely on

IoT devices to improve their performance. A system is proposed by Kim et al. [29]

manages the security of a chemical laboratory using IoT sensors. This system uses flame,

gas and Radio-frequency identification (RFID) sensors to evaluate the environment in the

laboratory using Material Safety Data Sheets (MSDS) to detect any hazards, so that, the

administrator of the laboratory is immediately informed. The system uses an existing

Application Programming Interface (API) to achieve communications among the different

parts of the system, using Representational State Transfer (REST) architecture based on

Hyper-Text Transfer Protocol (HTTP).

Moreover, the use of RL with the IoT has presented huge breakthroughs in modern

applications, such as autonomous, i.e. self-driving, vehicles. Such application is gaining

significant attention according to its benefits in reducing the risks of accidents and the

comfort it provides to the drivers [30, 31]. These applications rely mainly on RL

techniques, according to the enormous number of states and actions the autonomous driver

is required to handle [32, 33]. In vehicles with larger power sources, such as cars, more

8

resources can be available for the computing device that is responsible for predicting the

optimal action based on the state of the vehicle.

These applications illustrate the importance of the mobility of IoT devices, maintaining

communications among them and the lifetime of the network. Exhausting the resources of a

certain node in the network, according to the heavy traffic being forwarded through that

node, can affect the performance of that node in its designated task. Thus, vital information

that is being collected by the IoT device can be lost, especially when used in healthcare

applications [27, 28]. Moreover, any disturbance in the communications that is caused by

the loss of that node can cause the loss of an entire subregion of the network, especially in

less-dense networks. Such loss can prevent urgent information from being delivered to its

destination, in order to execute the appropriate procedure to handle an emergency event

[29]. However, maintaining the speed of the network is also important, so that, faster

decisions can be made by the nodes in the network, such as interchanging information

among different autonomous vehicles [30, 31].

2.2. SOFTWARE-DEFINED NETWORKING (SDN)

The business requirements of modern networks can change quickly, which requires

improvement in the methods used to control these networks to rapidly respond to these

changes. SDN has been presented as a solution to such challenges, where the traffic of the

network is controlled from a central console. This centralized console can communicate

with the different parts of the network that are responsible for routing the traffic by

interchanging information and command using the same network [34]. The architecture of

an SDN can be represented using three main layers, the application, control and

infrastructure layers[35].

Unlike traditional networks, in which a designated device is required for each application,

the controller in an SDN can be used to run these applications, such as firewalls, load

balancing and intrusion detection, in the application layer. Hence, software is required to

run in the controller of the SDN, where this software represents the control layer in the

SDN’s architecture. This software runs on a server in the network, which collects

information from the devices on the network alongside with the information of the packets

9

being communicated, which are interchanged using the hardware of the network, which

represents the infrastructure layer [36]. Figure 2.2 shows the generic architecture of an

SDN.

Figure 2.2: Generic architecture of an SDN [36].

The devices responsible for forwarding the packets in the network, in order to deliver them

to their destinations, consult the SDN controller for the next device the packet is forwarded

to. Using the information collected about the state of the network, represented by the state

of the devices in that network, and the characteristics of the packet being forwarded, the

controller can select the optimal operation and instruct the device, according to the

configurations of the software. The controller can instruct the device to forward the packet

to a certain host on the network, which can be the destination or another hop in the route

recognized by the controller, or to drop that packet, if the destination is unreachable or the

packet is considered an intrusion attempt, for example [37, 38].

10

2.3. REINFORCEMENT LEARNING

Reinforcement learning uses the concepts of agents, environments, states, actions and

rewards [39-41]. As shown in Figure 2.3, the environment receives the actions selected by

the agent and outputs the new state of the agent and the reward. Agents, on the other hand,

collect the new state and the reward in order to select the next action, which in return

produces new state and reward from the environment. However, the agent does not have a

clue about the way the environment returns the next state and the rewards of a certain

action. Thus, in reinforcement learning, the agent attempts to predict the action that

maximizes the rewards received from the environment, by approximating the behavior of

the environment and how it responds to the actions [42].

Figure 2.3: Illustration of the interaction between the Agent and the Environment in

reinforcement learning.

The main components in RL applications are defined as follows:

 Agent: Is the component that is responsible of making the appropriate decision,

depending on the state collected from the environment, to achieve the goal of

the task assigned to it, such as making a delivery by a drone or navigating a car,

safely, to the intended destination.

 Action (A): Defines the set of possible actions that an agent can take, so that,

the agent can predict the reward it gets upon the execution of each action at a

certain state. For an autonomous vehicle, the possible actions at any state are to

accelerate, deaccelerate, go left, go right, go straight and do nothing. This set

represents the simplest actions for the RL agent, where more actions can

produce better performance but increase the complexity of the decision-making

procedure, according to the larger possibilities.

11

 Discount Factor: To allow the agent to focus on maximizing the overall

reward rather than emphasizing on the instant one, the maximum reward from

the new state the agent becomes into when an action is executed is included in

the computation of the current rewards. However, the reward value of the next

state is reduced by multiplying it by the discount factor, so that, the effect of the

instant reward and the overall reward is balanced. For instance, if an

autonomous vehicle is rewarded based on the instant values only,

deacceleration at risky situations is not considered by the agent, as it cannot

result in the maximum instant reward. Including the final rewards in the

computations increases the reward expected from avoiding accidents, which

allow the agent to make the appropriate decisions in that manner. Moreover,

relying only on the final reward can encourage the agent to take some unwanted

actions, such as driving off roads, to maximize the final reward. Thus, the

discount factor must be selected to balance all the scenarios and produce the

optimal performance from the agent.

 Environment: The domain that the agent is interacting with, by executing the

actions and collecting the rewards. In autonomous driving, the environment

represents the street the car is being driven through and the traffic in those

streets.

 State (S): The description of the current situation of the agent in the

environment, which can be represented to the agent in different formats. For

instance, an autonomous driver requires knowledge about the path it is

following, its current position on that path, the nearest vehicle and obstacles

ahead.

 Reward (R): Represents the feedback from the environment for the action

selected by the agent. Higher rewards values indicate more appropriate actions

for the current state, while lower values indicate that the correspondent actions

are less appropriate for the current state. For instances, deaccelerating the

vehicle may reduce the reward under certain circumstances, such as clear path

and low speed, but such action can have higher rewards in states that describe

an incoming vehicle, which can result in an accident.

12

 Policy (π): Is the approach employed by the agent to select the action

appropriate for the current state to maximize the reward.

 Value (V): Under policy π, the long-term reward expected by the agent for the

current state Vπ(s), considering the discount factor defined for the agent. This

value allows the agent to avoid being in states that can dramatically reduce the

long-term reward, even if it maximizes the instant reward. For instance,

increasing the speed above the speed limit can increase the instant reward, as

more distance is traveled faster, but considering the possibility of a fine or an

accident allows the agent to make more reasonable decisions.

 Q-Value (Q): This value defines the overall reward for a certain action at a

certain state, i.e. Q
π
(s, a). The agents rely mainly on this value in making their

decisions, so that, the action that returns the maximum overall reward.

Reinforcement is based on the Bellman equation, which is proposed by the American

mathematician Richard Bellman. Using this equation, the reward per each action for a

certain state can be calculated based on the instant reward and all the rewards collected

until the end of the episode, which can be terminated as the agent reaches its goal or by

performing a specified number of actions [18, 43]. This reward is calculated as shown in

Equation 2.1.

𝑄𝜋(𝑠𝑡, 𝑎𝑡) = 𝐸[𝑅𝑡+1 + 𝛾𝑅𝑡+2 + 𝛾𝑅𝑡+3 + ⋯ |𝑠𝑡, 𝑎𝑡] (2.1)

According to this equation, the highest Q value from a certain state, st, can be used to

calculate the Q value for any action that ends up with the agent in that state, by simply

multiplying it by the maximum Q value, as shown in Equation 2.2.

𝑛𝑒𝑤 𝑄(𝑠, 𝑎) = 𝑄(𝑠, 𝑎) + 𝛼[𝑅(𝑠, 𝑎) + 𝛾𝑚𝑎𝑥𝑄′(𝑠′, 𝑎′) − 𝑄(𝑠, 𝑎)] (2.2)

where the learning rate 𝛼 is used to damp the variation in the Q value for the selected action

in the current state and 𝛾 is the discount factor that controls the balance between the instant

and long-term rewards. The new Q value is then used to update the function that is used to

represent the environment, so that, the actual reward from executing the action is produced

instead of an approximation. This value also assists the computation of the reward values

expected in previous states, as this value provides the actual reward received from the

environment.

13

2.4. ARTIFICIAL NEURAL NETWORKS

According to the complexity of the computations required to predict the reward of each

action available for the agent at a certain state, deep neural networks are used to make the

predictions, based on the inputs collected from the environment at that state. The action

selected based on the predictions of the neural network aims to maximize the reward

received from the environment by executing the action with the highest. However, these

rewards may not be instant and depend on the results of a series of actions. Thus, it is

important to wait to the end of the interaction with the environment to evaluate these

actions. Moreover, in order to adjust the exploration and exploitation of the selected

actions, a certain percentage of random actions in any time instance is allowed to be

executed by the agent, especially before providing significant training for the neural

network. This enables finding the optimal output, even after a certain solution is found [44].

Artificial neural networks consist of neurons distributed in layers, where the output of a

neuron is weighted and connected to another neuron in a different layer, as input [45], as

shown in Figure 2.4. The decisions made by these networks depend on the values of these

weights, which are updated using backpropagation [46]. Backpropagation measures the

difference between the output of the neural network, and the actual output required from it

and update the weights among the neurons, based on the effect of each weight over the

output. The effect of each weight is measured by calculating the rate of change of the

output values, with respect to that weight. Thus, these computations require intensive

processing and neural networks with more layers, known as deep neural networks, have

significantly more weights, which increases the complexity of the computations. These

computations are very exhausting for the IoT device, according to their limited resources,

and require larger computers to achieve them [47]. However, these computations occur

during the training phase of the neural network only, and no further updates are required

during runtime, in most cases. The computations required to calculate the output of a neural

network are relatively easier than those required to train it, and they can be handled by the

IoT device itself, as the output of each neuron can be calculated by simply passing the

weighted summation, of the outputs collected from the neurons connected to it, through an

activation function [20, 48].

14

Figure 2.4: Hierarchy of a sample deep neural network.

Depending on the distribution of the inputs collected by each neuron in a layer, different

types of artificial neural networks can be produced, for different tasks. The Feed-Forward

Neural Network (FF-NN) shown in Figure 2.4 is the basic neural network that is used in

different applications. However, when the neuron collects its inputs from two-dimensional

windows, i.e. filters, that are convoluted through the two- or three-dimensional input, the

neural network is known as Convolutional Neural Network (CNN). CNNs have shown

significantly better performance than other types of neural networks when the inputs of the

neural networks are images, which are normally represented in two- or three-dimensional

arrays. Such better performance is the result of it CNN’s ability of detecting and combining

local features detected by the filters, regardless of their position in the input [49].

CNNs contain convolutional layers, which consists of two- or three-dimensional filters that

are convoluted throughout the input of each neuron. Mathematically, the filter is actually

the weight values of that neuron, which enable the neuron to detect local two-dimensional

patterns in the input. The sizes of the filters in a convolutional layer is constant and patterns

in the input can be detected within the size of the filter. However, by going deeper into the

neural network, i.e. layers farther from the input layer, each filter detects patterns defined

by the patterns detected by the previous layer’s filters. This enables the CNN to combine

the recognized patterns and detect more complex features. Although the output of a neuron

in a convolutional layer can have different dimensions from its input, the number of

15

dimensions is similar to that in the input, i.e. a neuron processing a two-dimensional input

outputs a two-dimensional array [50, 51].

During convolution, the number of values that the filter moves per each step is defined as

the strides, which can have different values for the horizontal and vertical movements. All

the values within the filter are multiplied with their corresponding weights and processed in

the neuron, which arranges its outputs according to the arrangement received during the

convolutions of its filters. Skipping more than one value per each convolution can cause the

loss of detecting important patterns, which can negatively affect the performance of the

CNN, despite the reduction in the size of the neuron’s output, which can simplify the

computations in following layers. To reduce the size of the output from a neuron without

losing important information, pooling layers can be placed after a convolutional layer to

subsample the values outputted from the convolutional layers [52], as shown in Figure 2.5.

Figure 2.5: A sample convolutional neural network [53].

A pooling layer also consists of filters that are convoluted throughout its input, which is the

output of the neuron. However, these filters have a different approach to process the input

values, as they are not forwarded to a neuron and has no weights. Despite the existence of

different types of pooling layers, Max-Pooling layer is one of the widely used pooling

layers that are used to reduce the size of the processed data without losing important

information. As shown in Figure 2.6, the filter in a max-pooling layer searches for the

maximum value within its dimensions, and outputs that value to represent that region. By

selecting the highest value, the most important feature in that region is selected, so that, it is

less likely to lose important information as in increasing the strides of the filter in the

convolutional layer [52].

16

Figure 2.6: Sample input and output of a Max-Pooling layer.

As Figure 2.5 shows, when a max-pooling layer is used, the values less than the maximum

values are neglected. Hence, only the feature the has maximum matching with the

convolutional filter is selected within the window of the pooling layer. However, in some

applications, it is still important to consider the other values in that window and maintain

the size reduction produced using pooling layers. Thus, average-pooling layers are used in

neural networks that are required for such applications, where the value outputted from

each pooling filter is equal to the average of the values in that filter, as shown in Figure 2.7.

Figure 2.7: Sample inputs and outputs of an average-pooling layer.

Max-Pooling layer

with (2×2) filter size

and (2×2) strides.

Average-Pooling layer

with (2×2) filter size

and (2×2) strides.

17

2.5. DEEP Q-LEARNING

The use of artificial neural networks to approximate the function that defines the

environment and predict the Q values per each action for a certain state, so that, the agent

can select the most appropriate action is known as Q-Learning. The aim of this learning

approach is to provide the neural network with the actual rewards collected from the

environment, so that, it can predict these rewards in future operations [17]. However, as the

neural network does not have any knowledge about the environment that the agent is

interacting with, the training process relies on executing random actions at the beginning of

the training [54]. As the neural network starts to gain more knowledge about the

environment, the decisions of the agent can start to be less random and more dependent on

the predictions of the neural network. To control such behavior, a value is defined to

control the randomness in the decisions made by the agent. This value is denoted as the

epsilon and it normally starts with a high value, i.e. more random actions, and reduced as

the neural network gains more knowledge about the environment [55].

To select between the execution of a random action or based on the outputs of the neural

network, the epsilon value is compared to a randomly generated value. If the random value

is less than the epsilon, the action selected by the agent is the action that produces the

highest reward, based on the predictions of the neural network. Otherwise, the action is

selected randomly and executed against the environment [56]. In both cases, the reward

collected from the environment upon the execution of the selected action at the current state

is used with the maximum Q value predicted by the neural network for the new state the

agent becomes in, to produce a new Q value that is used to train the neural network [57].

When the agent finishes an episode, the neural network is trained using the data collected

by the agent during the episode, i.e. the states, actions and rewards, and the epsilon value is

reduced by a predefined ration, known as the gamma value. This process is repeated until

the defined number of training episodes is reached, in which the neural network is expected

to have gained enough knowledge to produce accurate Q value that can assist the agent to

select the optimal action per each state it faces [18, 58]. The ability of the neural networks

to provide approximations for states that it has never been through, during the training,

allows the employment of these networks in the Deep Q-Learning (DQN) approach, so that,

18

the agent still has approximate Q values to make the appropriate decision. Comparing this

approach to the use of tables that contains the states and their corresponding Q values

shows the benefits of the approximated computations, as Q values for states that are

included in the Q table can be recognized by the agent [59, 60]. Thus, DQN has been

widely used in approximating the functions of complex environments, such as those faced

by autonomous vehicles drivers.

2.6. EMPLOYMENT OF DRL IN SOFTWARE-DEFINED NETWORKING

As illustrated earlier in this chapter, the software in the SDN controller is required to handle

very complex and dynamic states and present the appropriate decisions to the devices

responsible for forwarding the packets to their destinations. Hence, static rules can impose

dramatic restrictions on the operation of the network, as such rules are not able to handle

changes in the topology of the network. Moreover, according to the ability of DRL to

interact with states that have not been included in the training i.e. the agent has not been

through before, several methods are proposed in the literature as the backbone of the SDN

controller. Zhang et al. [24] propose a DRL-based method for the SDN’s controller to

manage the traffic in Vehicular ad hoc Networks (VANETs). The main challenge in such

networks is the continuous movement of the nodes in the network, i.e. the vehicles. Hence,

this method emphasizes on finding the route that has the highest probability of delivering

the packet to its destination, without being affected by the movement of the nodes in the

network. To train the DRL technique for such a task, the Packet Delivery Rate (PDR) is

used as the reward of the DQN. The results show that the best performance has been

achieved by the proposed method when the CNN is used to predict the reward values for

each network state and use it to select the best route. Similarly, the method proposed by Lin

et al. [23] also considers the PDR in the computations of the reward value but also include

the delay of packets before reaching their destinations and the overall throughput of the

network. However, both methods do not consider the resources consumption of the nodes

in the network, which can exhaust certain nodes depending on their positioning and the

flow of the traffic in the network.

19

Stampa et al. [25] propose a method that aims to reduce the time each packet travel, in

order to reach its destination. Hence, this method attempts to reduce the number of hops,

i.e. nodes, that forward the packet and attempt to find the shortest route, so that, the highest

reward is collected. However, focusing only on the number of hops neglects balancing the

load over the nodes in the network. For instance, communicating packets between the red

and blue nodes in the sample WSN shown in Figure 2.8 without considering balancing the

load can exhaust the resources of the red node. To avoid such exhaustion, it is important to

forward some of these packets through the green nodes despite the longer path. Considering

such balance can significantly increase the lifetime of the network.

Figure 2.8: A sample wireless sensor network.

20

3. METHODOLOGY

The method proposed in this thesis relies on DQN to manage the traffic in a WSN, so that,

the loading is balanced among the nodes to extend the lifetime of the network. This DQN

predicts the reward value, which represents the lifetime of the network when the packet is

forwarded to every possible node in that network. Hence, the node that maximizes the

lifetime of the network when the packet is forwarded to it is selected as the packet’s next

hop. The use of the networks’ lifetime guarantees balanced loading on the nodes in the

network, as the use of longer paths or exhausting the power source of one of the nodes can

both reduce the lifetime of the network. However, it is important to consider the constraints

of communications in such networks, which are the limited transmission power of the

nodes and the packets delivery rate.

Different types of neural networks are evaluated for the proposed method, where the

information collected about the nodes in the network as well as the packet is delivered to

the neural network in order to select the next hop. Each neural network is trained to predict

the reward value using RL, where the lifetime of the network is used to represent the

quality of the decisions. Moreover, decisions that are not in compliance with the constraints

of the network are punished, i.e. negative reward values are assigned to them. The neural

networks used for the DQN are a Feed-Forward Neural Network. 2D-CNN and 3d-CNN.

In order to route a packet through the network, it is important for the controller to recognize

the state of the packet and the network, so that, the appropriate decision, i.e. action, is

selected by the RL model in the controller. The main information required by the controller

are:

 Remaining energy: To accomplish the required load balancing, it is important for

the controller to monitor the energy remaining in each node. Accordingly,

alternative routes can be selected to avoid exhausting certain nodes.

 Positioning: The positioning of the nodes is required to select the next hops that is

capable of delivering the packet to its destination and within the range of the node

that the packet is currently at. Hence, the node that is in the required direction to

21

accomplish the route and can receive the packet using the limited transmission

power of the node.

 Source and Destination: The source and destination nodes must be known to the

controller in order to define the appropriate path for the packet, based on the

positioning of the nodes in the network and the remaining energy in each node.

3.1. USING THE FEED-FORWARD NEURAL NETWORK (FFNN)

As illustrated in Section 2.4, the input of an FFNN is a one-dimensional vector. Hence, the

state of the network is summarized in such a vector, which represents the following

features:

1. The energy remaining per each host.

2. The distance between each host and the source host, where the source host can

be recognized as the host corresponding to the position of the values 0.

3. The distances between each host and the destination host, where the destination

host has a distance of 0 in this set.

4. The distances between each host and the host the packet is currently at.

5. The hosts that the packet has been through, where a value of 1 is correspondent

to the host that the packet has passed through.

Accordingly, the number of features in the vector is equal to 5×N, where N is the number

of nodes in the WSN. However, as the size of the input layer of the neural network must be

equal to the number of features in the vector and according to the possibly varying number

of nodes in a WSN, the value of N is set to 100, so that, the trained neural network can be

used with WSNs of up to 100 nodes. The values correspondent to nodes that do not exist,

i.e. WSNs with less than 100 nodes, are set to -1, so that, the neural network can recognize

the absence of these nodes. Hence, the number of neurons in this neural network is set to

500, while the output layer contains 100 neurons. The value outputted from each neuron in

the output layer represents the reward value predicted if the packet is forwarded to that

node. Thus, forwarding the packet to the node corresponding to the neuron with the highest

output is expected to maximize the lifetime of the network. The structure of the FFNN

implemented for the proposed method is shown in Table 3.1.

22

Table 3.1: Structure of the FFNN implemented for the proposed method.

Layer (type) Output Shape Param #

===

dense_1 (Dense) (None, 512) 256512

dense_2 (Dense) (None, 256) 131328

dense_3 (Dense) (None, 128) 32896

dense_4 (Dense) (None, 100) 12900

===

Total params: 433,636

Trainable params: 433,636

Non-trainable params: 0

3.2. USING THE 2D CONVOLUTIONAL NEURAL NETWORK (2D-CNN)

According to the limitation imposed using the FFNN, regarding the limited number of

possible nodes in the WSN, convolutional neural networks are employed for the proposed

method. According to the ability of CNNs to accept three-dimensional inputs, the values

can be positioned according to the positioning of the nodes in the network. Hence, the input

to the neural network is presented in a three-dimensional array of size 100×100×5. In other

words, the input consists of five layers, each with 100×100 values. The values in each layer

represent a certain feature, which are:

1. The remaining energy of each node.

2. A value of one corresponding to the position of the source host.

3. A value of one corresponding to the position of the destination host.

4. Value of ones positioned at the positions of the nodes that are within the range of the

node that the packet is currently at.

23

5. Route description for the hosts that the packet has been through up to the current hop,

where the source node is assigned with zero while the current host is assigned with

one. Other hosts that the packet has passed through are assigned with value depending

on the sequence of hosts in the route, lower values are assigned to the hosts the packet

has passed through earlier. These values are calculated by using the algorithm shown in

3.1.

Input: Hops’ list of a packet; Position of nodes.

Output: Two-dimensional representation of the hops list.

Step1: H ← Read hops list. L ← Length(H)

R ← Full(100×100, -1). //A 100×100 array the value -1 for the output.

Step2: For i = 1 to L:

 p = H(i).position //Find the position the node of the current hop.

 R[p] ← i/L

Step3: Return R

Figure 3.1: Hops representation algorithm.

The output of the CNN is a two-dimensional array, where the reward values are mapped on

the position corresponding to each node, so that, the node closed to the highest reward

value is selected to forward the packet. The structure of the 2D-CNN implemented for this

method is shown in Table 3.2.

Table 3.2: Structure of the 2D-CNN implemented for the proposed method.

Layer (type) Output Shape Param #

===

conv2d_1 (Conv2D) (None, 100, 100, 32) 544

conv2d_2 (Conv2D) (None, 100, 100, 16) 2064

24

conv2d_3 (Conv2D) (None, 100, 100, 8) 1160

conv2d_4 (Conv2D) (None, 100, 100, 4) 804

conv2d_5 (Conv2D) (None, 100, 100, 1) 101

===

Total params: 4,673

Trainable params: 4,673

Non-trainable params: 0

3.3. USING THE 3D CONVOLUTIONAL NEURAL NETWORK (3D-CNN)

Unlike 2D-CNNs, the three-dimensional filters in the 3D-CNNs allow detecting features

that have values distributed in several layers of the input array. However, as these values

represent a single node and according to the need for a two-dimensional output, producing

a single reward value per each node, an Average-Pooling layer is used to summarize the

values per each node into a single value. Hence, a single value is produced in the hidden

layers of the neural network that can be used to predict the reward value if that node is

selected. The values in the layers are similar to those collected in 2D-CNN, but the filters in

the Average-Pooling layer are set to summarize the features detected by the first hidden

layer into a single value, i.e. the size of the filter is set to (1, 1, 5). According to the

existence of weight values between the input and the first hidden layers, the effect of each

feature value, e.g. the remaining power and route description, are adjusted in the value

produced by the average-pooling filters, according to the requirements detected by the

neural network during training. The structure of the implemented 3D-CNN is shown in

Table 3.3

25

Table 3.3: Structure of the 3D-CNN implemented for the proposed method.

Layer (type) Output Shape Param #

===

conv3d_1 (Conv3D) (None, 100, 100, 4, 32) 160

average_pooling3d_1 (Average (None, 100, 100, 1, 32) 0

conv3d_2 (Conv3D) (None, 100, 100, 1, 16) 8208

conv3d_3 (Conv3D) (None, 100, 100, 1, 8) 4616

conv3d_4 (Conv3D) (None, 100, 100, 1, 4) 3204

conv3d_5 (Conv3D) (None, 100, 100, 1, 1) 401

===

Total params: 16,589

Trainable params: 16,589

Non-trainable params: 0

3.4. TRAINING THE DQN MODELS

Initially, the neural network has no knowledge about the rewards it can get for each action.

Hence, the packets are forwarded in a random manner, so that, the reward returned by the

network based on the selected action, i.e. next hop, is used to train the neural network.

After a few iterations, the neural network starts to gain knowledge about the environment

and how to deliver the packets from one node to another. However, this knowledge can be

limited to the approaches recognized during the use of random actions. For example, the

neural network may start to learn to deliver the packet to the destination node using the

shortest path but still unable to extend the lifetime of the network. Thus, a fraction of the

decisions is still required to be executed randomly in order to balance exploration and

26

exploitation. Thus, a variable with a value equal to one is set at the first iteration and

compared to randomly generated numbers in the interval [0,1], so that, if the random

number is greater than the value of the variable, the action is selected based on the output of

the neural network. Otherwise, the action is selected randomly. This value of this variable

is reduced by multiplying it to 0.99 after each iteration, so that, the number of actions

selected based on the predictions of the neural network is increased as the knowledge of the

neural network increases.

Per each iteration, the training of the neural network is continued until the energy of one of

the network’s nodes is drained. Then, the lifetime of the network is used to update the

reward values of the neural network. However, as the delivery of each packet in the

network is not related to other packets, the lifetime of the network is used to update the

reward values of each packet solely, i.e. the packets deliveries are considered parallel

operations rather than serial and the reward value is assigned for the last action or hop. This

value is reduced using the discount factor (Gamma), which is set to 0.9, as higher values for

the discount factor have shown better performance in [23].

The predictions of the neural network are updated using the formula shown in Equation 3.1,

where Q is the predicted reward value for executing action a in state s. R is the actual

reward value retrieved from the environment after executing the action, maxQ’ is the

maximum reward expected from the agent after being in the new state s’, i.e. after

forwarding the packet to the next hop.

𝑁𝑒𝑤 𝑄(𝑠, 𝑎) = 𝑄(𝑠, 𝑎)+∝ (𝑅(𝑠, 𝑎) + 𝛾𝑚𝑎𝑥𝑄′(𝑠′, 𝑎′) − 𝑄(𝑠, 𝑎)) (3.1)

As the value computed using this formula represents only the reward value of the node the

packet is forwarded to, the reward values for the other nodes are maintained as predicted by

the neural network. Using such an approach, any prior knowledge is maintained and the

knowledge extraction can continue even when random actions are selected. However, to

present the knowledge required by the neural network to avoid forwarding packets to

positions that do not nodes in them, reward values of -1, i.e. punishments, are placed in the

positions that have no nodes in them. This training procedure is conducted after the first

node in the network is exhausted. However, instant training occurs when one of the

following conditions occurs:

27

 The packet is forwarded to a node that is out of the transmission range of the current

node.

 The packet is forwarded to a node that does not have sufficient power to receive or

forward the packet unless it is the destination node.

 The packet is forwarded to a node that is in the list of hops that the packet has been

through, to avoid infinite loops.

 The number of hops the packet passes through exceed 10 times the number of nodes

in the network.

28

4. EXPERIMENTAL RESULTS

The proposed method is implemented using the different neural networks models employed

for the DQN. To train these neural networks, a set of 100 randomly generated WSNs is

used, with a number of nodes varying from 8 to 32 randomly distributed in a region with

1000×1000 square meters. However, to ensure the generation of the same networks for all

the evaluated methods, random seeds are used with similar values, so that, the exact same

random numbers are generated per each experiment. Each node is initiated with the energy

of 1 joule, where the transmission or receival of a packet consumes 5×10
-9

 joule. The

packets are set to be of 1024 bytes in size with 2Mbps data rate. The maximum distance a

node can transmit a packet is set to 300 meters. Hence, a packet that is transmitted to a

farther node is considered a failed transmission. Moreover, each node consumes 10
-10

joule/sec when it is in idle mode, i.e. no packets are sent from or to that node. Figure 4.1

shows examples of the randomly generated WSNs with the randomly generated sample

traffic.

Figure 4.1: Samples of the randomly generated WSNs and traffic. (a): 8-node network; (b): 14-

node network; 20-node network; 30-node network.

(a) (b)

(c) (d)

29

The experiments are implemented using Python programming language [61] using a

computer with Intel® Core™ i7-7700 processor with 2.8GHz frequency and 16GB of

random access memory. Python’s Keras library [62] is used to implement the neural

networks used for the DQN, using Google’s Tensorflow machine learning library [63]

backend. The Keras library produces the matrices and their operations to be conducted

using Tensorflow, so that, the same efficiency acquired from Tensorflow can be

implemented using simpler representation in Keras. Each DQN is trained using 100

randomly generated WSNs and evaluated using 10 other networks. The packets are

generated randomly, i.e. random source and destination hosts, until one of the nodes in the

WSN exhausts its power.

To reach its destination, a packet passes through one or more hops, depending on the

position of the source and destination hosts in the WSN. However, in some situations, the

packet may not be delivered to its destination. For instances, if the source or destination

hosts are out of the range of remaining nodes or if the network controller fails to make the

appropriate routing decisions. Accordingly, the ratio between the number of packets to the

total number of packets initiated in the network, i.e. the lifetime of the WSN is calculated

based on the total number of hops H the packets travel through, the size of these packets,

which is 1024 bytes in this setup, and the bandwidth of the network, which is 2Mbps, as

shown in Equation 4.1. The average prediction time required by the method to predict the

next hop for the packet is also measured to illustrate the delay imposed by the network

controller according to the complexity of the model. For a total of H hops each required Eh

second to be calculated, the average prediction time is calculated as shown in Equation 4.2

The average number of hops that the network packets travel in order to reach their

destinations is also calculated as a performance measure, as longer paths can produce more

delay for a packet to be delivered according to the limited bandwidth in the network. For T

total packets, each is delivered using Pt hops, the average number of hops can be calculated

as shown in Equation 4.3. Finally, the PDR, is calculated as a performance measure of the

routing method. Hence, for a WSN that has been able to deliver D packets to their

destinations, out of T total packets, the PDR can be calculated shown in Equation 4.4.

30

𝑙𝑖𝑓𝑒𝑡𝑖𝑚𝑒 =
𝐻 × 1024 × 8

2 × 106
 (4.1)

𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛 𝑇𝑖𝑚𝑒 =
∑ 𝐸ℎ

𝐻
ℎ=1

𝐻
 (4.2)

𝐴𝑣𝑒𝑟𝑎𝑔𝑒 ℎ𝑜𝑝𝑠 =
∑ 𝑃𝑡

𝑇
𝑡=1

𝑇
 (4.3)

𝑃𝐷𝑅 =
𝐷

𝑇
× 100% (4.4)

4.1. PERFORMANCE OF THE FFNN MODEL

After training the implemented FFNN for the DQN using 100 WSNs, its performance is

evaluated using the other 10 WSNs. The average lifetime of these networks is 593814.16

sec, with an average number of hops equal to 13.61 hops per packet and 83.37% PDR.

Moreover, each prediction of the next hop has consumed an average of 278.82uS. The

average minimum power remaining on the nodes is calculated for these networks as they

operate and illustrated in Figure 4.2, which shows that when the minimum available power

decreases, the FFNN attempt to avoid forwarding the packets through that node. This

behavior is reflected by the decreasing slope of the average minimum value as time

progresses.

31

Figure 4.2: Average minimum energy in the nodes of the evaluation WSNs using the FFNN model.

Moreover, the average number of hops is also monitored during the operation of the WSNs,

using the proposed method as the traffic flow manager. For better illustration, the values are

summarized for every 1000 seconds, i.e. these average values are also averaged. These

values are noticed to be increasing as time progresses, according to the use of longer paths

to avoid consuming power from the nodes with less remaining energy, as shown in Figure

4.3.

Figure 4.3: Average number of hops versus time using the FFNN model.

Additionally, the average PDR has also been monitored during the operation of the WSNs,

which is also measured for every 1000 seconds to produce a better illustration. As shown in

32

Figure 4.4, the proposed method has been able to maintain high PDR despite the longer

paths the packets travel when the energy of the nodes starts getting exhausted.

Figure 4.4: Average PDR versus time using the FFNN model.

4.2. PERFORMANCE OF THE 2D-CNN MODEL

Similar to the previous experiment, the 2D-CNN is trained using the same 100 WSNs,

before being evaluated using another 10 networks. The average lifetime of these networks

is 638169.21 sec, which is large than the time achieved by the FFNN. The average number

of hops in this experiment is 12.37 hops per packet with 82.47% PDR and 316.03uS

average prediction time. The average minimum power remaining in the nodes is calculated

for these networks as they operate and illustrated in Figure 4.5, which shows that when the

minimum available power decreases, the 2D-CNN also attempts to avoid forwarding the

packets through that node. This behavior is reflected by the decreasing slope of the average

minimum value as time progresses.

33

Figure 4.5: Average minimum energy in the nodes of the evaluation WSNs using 2D-CNN model.

Moreover, the average number of hops is also monitored during the operation of the WSNs,

using the proposed method as the traffic flow manager. For better illustration, the values are

summarized for every 1000 seconds, i.e. these average values are also averaged. It is

noticeable that the average number of hops starts to increase after 400,000 seconds as the

minimum power of the nodes starts becoming critical. However, by the end of the networks

lifetime, this model starts to favor shorter paths, as the energy of most of the nodes

becomes lower and avoiding them becomes more exhaustive to the overall network, as

shown in Figure 4.6.

34

Figure 4.6: Average number of hops versus time using the 2D-CNN model.

Additionally, the average PDR has also been monitored during the operation of the WSNs,

which is also measured for every 1000 seconds to produce a better illustration. As shown in

Figure 4.7, the proposed method has been able to maintain high PDR despite the longer

paths the packets travel when the energy of the nodes starts getting exhausted.

Figure 4.7: Average PDR versus time using 2D-CNN model.

35

4.3. PERFORMANCE OF THE 3D-CNN MODEL

After training the implemented 3D-CNN for the DQN using 100 WSNs, its performance is

evaluated using the same 10 WSNs in the previous experiments. The average lifetime of

these networks is 678251.62 sec, with an average number of hops of 9.81 hops per packet

and 85.07% PDR, where each prediction has consumed an average of 351.71uS. The

average minimum power remaining on the nodes is calculated for these networks as they

operate and illustrated in Figure 4.8, which shows that this model has achieved less slope,

compared to the previous experiments. Hence, this model has achieved a better balancing

of energy consumption among the nodes in the network.

Figure 4.8: Average minimum energy in the nodes of the evaluation WSNs using 3D-CNN model.

Moreover, the average number of hops is also monitored during the operation of the WSNs,

using the proposed method as the traffic flow manager. For better illustration, the values are

summarized for every 1000 seconds, i.e. these average values are also averaged. A

noticeable change in the average number of hops cannot be recognized at any range of time

in the lifetime of the network. This behavior combined with the lower overall average of

number of hops per packet, compared to the 2D-CNN, shows that the 3D-CNN model has

attempted balancing the load earlier than the 2D-CNN, i.e. before the energy of the nodes

starts to get exhausted.

36

Figure 4.9: Average number of hops versus time using the 3D-CNN model.

Additionally, the average PDR has also been monitored during the operation of the WSNs,

which is also measured for every 1000 seconds to produce a better illustration. As shown in

Figure 4.10, the proposed method has been able to maintain high PDR until the end of the

lifetime of the WSN.

Figure 4.10: Average PDR versus time using 3D-CNN model.

37

5. RESULTS SUMMARY AND DISCUSSION

The results collected from the experiments conducted in this study are summarized in Table

5.1, which also summarizes the results of state-of-the-art studies that also use DRL for

SDNs. This summary shows that the proposed method using the 3D-CNN DQN model has

been able to achieve the highest lifetime of the network, whereas the FFNN has achieved

the lowest, as also illustrated in Figure 5.1. However, despite the similar lifetime of the

WSNs between the FFNN and the method proposed by Lin et al. [23], all DQN models

have achieved longer lifetime, according to the use of this value as the reward for the DQN.

Table 5.1: Summary of the performance measure for the existing and proposed methods.

Method Lifetime Prediction Time(uS) Average Hops PDR(%)

FFNN 578382 278.8 8.31 83.37

2D-CNN 638169 316 12.37 82.47

3D-CNN 678252 351.7 9.81 85.07

Lin et al. [23] 578122 328.1 9.32 81.68

Zhang et al. [24] 541840 341.9 10.53 72.55

Stampa et al. [25] 520364 283.1 8.76 64.71

Figure 5.1: Summary of the average lifetime for the proposed and existing methods.

0

100000

200000

300000

400000

500000

600000

700000

800000

FFNN 2D-CNN 3D-CNN Lin et al. [23] Zhing et al.
[24]

Stampa et
al. [25]

Li
fe

ti
m

e
(S

)

Method

38

The 3D-CNN model has been able to extend the lifetime of the network by 17% compared

to the highest lifetime using the existing method, which is achieved by Lin et al. [23].

Moreover, this model has also been able to improve the PDR of the network with a quite

similar average number of hops, which proves the hypothesis of this study that the use of

the networks lifetime as the reward value can balance the overall performance of the

network. Additionally, the highest average number of hops, shown in Figure 4.2, using the

method proposed in this study is expected behavior, as the SDN controller is required to

use longer paths in order to avoid exhausting the resources of a certain node.

Figure 5.2: Average number of hops using the proposed and existing methods.

Although the FFNN has only been able to slightly extend the lifetime of the WSN,

compared to the method proposed by Lin et al. [23], this model has been able to reduce the

average number of hops required to deliver the packets an improve the PDR, as shown in

Figure 5.2 and 5.3. However, the main drawback of using the FFNN is the limited number

of possible nodes in the WSN, which must be less than or equal to the number of neurons in

the output layer. Otherwise, the implementation and training of a new neural network are

required to handle larger WSNs, which may increase the time required to predict the

optimal node a packet must be sent to. In the 2D- and 3D-CNNs, the same neural network

can be used regardless of the number of nodes in the network and the dimensions of the

regions the network is placed in. The values are mapped into a fixed-size array, according

to their actual position in that region. Hence, the prediction time is constant for these

0

2

4

6

8

10

12

14

FFNN 2D-CNN 3D-CNN Lin et al. [23] Zhing et al.
[24]

Stampa et al.
[25]

Average Hops

39

methods. Figure 5.4 shows the average prediction time required by the proposed and

existing methods.

Figure 5.3: Summary of the PDR for the existing and proposed methods.

Figure 5.4: Average prediction time required by the existing and proposed methods to predict the

optimal next hop.

0

10

20

30

40

50

60

70

80

90

FFNN 2D-CNN 3D-CNN Lin et al. [23] Zhing et al.
[24]

Stampa et al.
[25]

PDR(%)

0

50

100

150

200

250

300

350

400

FFNN 2D-CNN 3D-CNN Lin et al. [23] Zhing et al.
[24]

Stampa et al.
[25]

Prediction Time(uS)

40

6. CONCLUSIONS AND FUTURE WORK

 The use of smaller highly-mobile devices to collect information and execute commands

remotely has presented the era of the Internet of Things. Normally, these devices are of

limited resources, such as processing power, memory and energy sources. However, to

maintain the flexibility of networks used to exchange the information in these WSNs, the

IoT devices are required to deliver traffic initiated by other nodes in the network. Thus, it is

important to optimize the flow of the traffic in the network, so that, communications are

established using minimum resources consumption. SDN has emerged as a new solution to

such challenges, where a controller is designated for the network to control the flow of the

packets and maintain communications.

In this study, a new method is proposed to be used in the controller of an SDN. The

proposed method uses DQNs to predict the reward values for a packet is forwarded to each

of the nodes in the network. Information about the packet as well as the nodes in the

network is provided to the DQN, so that, the node that maximizes the lifetime of the

network is selected to forward the packet to it. The use of the lifetime value as the reward

to train the DQN can balance the overall performance of the WSN, as extending the

lifetime requires optimizing the resources consumption from the nodes. Several DQN

models are implemented using FFNN, 2D-CNN and 3D-CNN, where the state of the

networks and the information of the packet being forwarded are summarized in a one-

dimensional vector for the FFNN, whereas these values are summarized in a three-

dimensional array for the CNN models.

The results of the experiments conducted to evaluate the performance of the proposed

method show that the 3D-CNN has the best performance, as it has achieved the longest

lifetime. This performance is according to the use of three-dimensional average pooling

filters to summarize the features detected for each node into a single value that can be used

to represent the overall state of that node. This model has been able to extend the lifetime of

the WSNs by 17% to 678251.6S, compared to the longest lifetime of 578122.2S using the

existing state-of-art-methods. However, to ensure the extension of the WSN’s lifetime, i.e.

balanced resources consumption, the average number of hops required to deliver the

41

packets has relatively higher value of 9.81 hops per packet, compared to 8.76 in the existing

methods. However, the PDR of the network has significantly increased to 85.07%.

The FFNN has achieved the shortest lifetime of 578381.6S among the proposed models,

according to the limited information can be represented in the one-dimensional vector,

compared to the three-dimensional arrays in the CNN models. However, this method has

been able to achieve the lowest number of hops per packet, i.e. shorter paths, with 83.37%

PDR. The 2D-CNN model has shown a reasonable lifetime of 638169.2S with 82.47%

PDR. However, this model has shown longer paths, with an average of 12.37 hops per

packet, which is longest among the evaluated models. The results show that the 2D-CNN

starts to use longer paths as the energy available in the nodes start to get exhausted, up to a

certain level where most of the nodes start to have critical energy levels. At that point, this

model falls back to choosing the shortest paths, as most of the nodes have low energy

values and the selection of longer paths can increase the consumption of the already limited

resources in the network.

In future work, the RL model is going to be provided with the ability to drop packets, so

that, a packet that is sent to a node which is out of reach is dropped immediately without

being forwarded to any other nodes. However, to implement such modes, it is important to

include the PDR in the computations of the reward value. Otherwise, the DQN is going to

learn that dropping the packets returns the highest reward, as it does not consume any

additional resources. The use of such a model is expected to extend the networks lifetime

furthermore, as packets can be dropped immediately instead of being forwarded to nodes

that cannot deliver the packet to its destination.

42

REFERENCES

[1] M. Kocakulak and I. Butun, "An overview of Wireless Sensor Networks towards

internet of things," in 2017 IEEE 7th Annual Computing and Communication

Workshop and Conference (CCWC), 2017, pp. 1-6.

[2] I. F. Akyildiz, W. Su, Y. Sankarasubramaniam, and E. Cayirci, "Wireless sensor

networks: a survey," Computer networks, vol. 38, pp. 393-422, 2002.

[3] J. N. Al-Karaki and A. E. Kamal, "Routing techniques in wireless sensor networks:

a survey," IEEE wireless communications, vol. 11, pp. 6-28, 2004.

[4] B. Rashid and M. H. Rehmani, "Applications of wireless sensor networks for urban

areas: A survey," Journal of network and computer applications, vol. 60, pp. 192-

219, 2016.

[5] A. Al-Fuqaha, M. Guizani, M. Mohammadi, M. Aledhari, and M. Ayyash, "Internet

of things: A survey on enabling technologies, protocols, and applications," IEEE

communications surveys & tutorials, vol. 17, pp. 2347-2376, 2015.

[6] I. Lee and K. Lee, "The Internet of Things (IoT): Applications, investments, and

challenges for enterprises," Business Horizons, vol. 58, pp. 431-440, 2015.

[7] A. Botta, W. De Donato, V. Persico, and A. Pescapé, "Integration of cloud

computing and internet of things: a survey," Future generation computer systems,

vol. 56, pp. 684-700, 2016.

[8] F. Wortmann and K. Flüchter, "Internet of things," Business & Information Systems

Engineering, vol. 57, pp. 221-224, 2015.

43

[9] W. Ejaz, M. Naeem, A. Shahid, A. Anpalagan, and M. Jo, "Efficient energy

management for the internet of things in smart cities," IEEE Communications

Magazine, vol. 55, pp. 84-91, 2017.

[10] M. S. Mahmoud and A. A. Mohamad, "A study of efficient power consumption

wireless communication techniques/modules for internet of things (IoT)

applications," 2016.

[11] S. Bera, S. Misra, S. K. Roy, and M. S. Obaidat, "Soft-WSN: Software-defined

WSN management system for IoT applications," IEEE Systems Journal, vol. 12, pp.

2074-2081, 2016.

[12] A. Akbas, H. U. Yildiz, B. Tavli, and S. Uludag, "Joint optimization of transmission

power level and packet size for WSN lifetime maximization," IEEE Sensors

Journal, vol. 16, pp. 5084-5094, 2016.

[13] G. Lee, "Software defined networking-based vehicular adhoc network with fog

computing," in 2015 IFIP/IEEE International Symposium on Integrated Network

Management (IM), 2015, pp. 1202-1207.

[14] H. Farhady, H. Lee, and A. Nakao, "Software-defined networking: A survey,"

Computer Networks, vol. 81, pp. 79-95, 2015.

[15] T. A. Tang, L. Mhamdi, D. McLernon, S. A. R. Zaidi, and M. Ghogho, "Deep

learning approach for network intrusion detection in software defined networking,"

in 2016 International Conference on Wireless Networks and Mobile

Communications (WINCOM), 2016, pp. 258-263.

[16] M. I. Jordan and T. M. Mitchell, "Machine learning: Trends, perspectives, and

prospects," Science, vol. 349, pp. 255-260, 2015.

44

[17] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G. Bellemare, et

al., "Human-level control through deep reinforcement learning," Nature, vol. 518,

p. 529, 2015.

[18] H. Van Hasselt, A. Guez, and D. Silver, "Deep reinforcement learning with double

q-learning," in Thirtieth AAAI conference on artificial intelligence, 2016.

[19] D. Silver, A. Huang, C. J. Maddison, A. Guez, L. Sifre, G. Van Den Driessche, et

al., "Mastering the game of Go with deep neural networks and tree search," nature,

vol. 529, p. 484, 2016.

[20] I. N. Da Silva, D. H. Spatti, R. A. Flauzino, L. H. B. Liboni, and S. F. dos Reis

Alves, "Artificial neural networks," Cham: Springer International Publishing, 2017.

[21] M. Defferrard, X. Bresson, and P. Vandergheynst, "Convolutional neural networks

on graphs with fast localized spectral filtering," in Advances in neural information

processing systems, 2016, pp. 3844-3852.

[22] H.-C. Shin, H. R. Roth, M. Gao, L. Lu, Z. Xu, I. Nogues, et al., "Deep

convolutional neural networks for computer-aided detection: CNN architectures,

dataset characteristics and transfer learning," IEEE transactions on medical

imaging, vol. 35, pp. 1285-1298, 2016.

[23] S.-C. Lin, I. F. Akyildiz, P. Wang, and M. Luo, "QoS-aware adaptive routing in

multi-layer hierarchical software defined networks: A reinforcement learning

approach," in 2016 IEEE International Conference on Services Computing (SCC),

2016, pp. 25-33.

[24] D. Zhang, F. R. Yu, and R. Yang, "A Machine Learning Approach for Software-

Defined Vehicular Ad Hoc Networks with Trust Management," in 2018 IEEE

Global Communications Conference (GLOBECOM), 2018, pp. 1-6.

45

[25] G. Stampa, M. Arias, D. Sanchez-Charles, V. Muntés-Mulero, and A. Cabellos, "A

deep-reinforcement learning approach for software-defined networking routing

optimization," arXiv preprint arXiv:1709.07080, 2017.

[26] Z. Yang, Y. Yue, Y. Yang, Y. Peng, X. Wang, and W. Liu, "Study and application

on the architecture and key technologies for IOT," in Multimedia Technology

(ICMT), 2011 International Conference on, 2011, pp. 747-751.

[27] A. Ukil, S. Bandyoapdhyay, C. Puri, and A. Pal, "IoT healthcare analytics: The

importance of anomaly detection," in Advanced Information Networking and

Applications (AINA), 2016 IEEE 30th International Conference on, 2016, pp. 994-

997.

[28] P. Govindhan, G. V. Pratap, S. Balaji, M. Gurumoorthy, and H. Khudhrathulla,

"Emergency Health Transmission System via Internet," International Journal of

Engineering Science, vol. 16508, 2018.

[29] H. Kim, E. Lee, D. Kwon, and H. Ju, "Chemical laboratory safety management

service using IoT sensors and open APIs," in Information and Communications

(ICIC), 2017 International Conference on, 2017, pp. 262-263.

[30] T. Tettamanti, I. Varga, and Z. Szalay, "Impacts of autonomous cars from a traffic

engineering perspective," Periodica Polytechnica Transportation Engineering, vol.

44, pp. 244-250, 2016.

[31] A. Lari, F. Douma, and I. Onyiah, "Self-driving vehicles and policy implications:

current status of autonomous vehicle development and minnesota policy

implications," Minn. JL Sci. & Tech., vol. 16, p. 735, 2015.

[32] S. Shalev-Shwartz, S. Shammah, and A. Shashua, "Safe, multi-agent, reinforcement

learning for autonomous driving," arXiv preprint arXiv:1610.03295, 2016.

46

[33] G. Hartman, Z. Shiller, and A. Azaria, "Deep Reinforcement Learning for Time

Optimal Velocity Control using Prior Knowledge," arXiv preprint

arXiv:1811.11615, 2018.

[34] T. Lin, J.-M. Kang, H. Bannazadeh, and A. Leon-Garcia, "Enabling SDN

applications on software-defined infrastructure," in 2014 IEEE Network Operations

and Management Symposium (NOMS), 2014, pp. 1-7.

[35] M.-K. Shin, K.-H. Nam, and H.-J. Kim, "Software-defined networking (SDN): A

reference architecture and open APIs," in 2012 International Conference on ICT

Convergence (ICTC), 2012, pp. 360-361.

[36] I. Z. Bholebawa and U. D. Dalal, "Performance analysis of sdn/openflow

controllers: Pox versus floodlight," Wireless Personal Communications, vol. 98, pp.

1679-1699, 2018.

[37] R. Kandoi and M. Antikainen, "Denial-of-service attacks in OpenFlow SDN

networks," in 2015 IFIP/IEEE International Symposium on Integrated Network

Management (IM), 2015, pp. 1322-1326.

[38] A. Bianco, P. Giaccone, S. Kelki, N. M. Campos, S. Traverso, and T. Zhang, "On-

the-fly traffic classification and control with a stateful SDN approach," in 2017

IEEE International Conference on Communications (ICC), 2017, pp. 1-6.

[39] M. L. Littman, "Markov games as a framework for multi-agent reinforcement

learning," in Machine learning proceedings 1994, ed: Elsevier, 1994, pp. 157-163.

[40] M. Tan, "Multi-agent reinforcement learning: Independent vs. cooperative agents,"

in Proceedings of the tenth international conference on machine learning, 1993, pp.

330-337.

47

[41] C. J. Watkins and P. Dayan, "Q-learning," Machine learning, vol. 8, pp. 279-292,

1992.

[42] V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, I. Antonoglou, D. Wierstra, et al.,

"Playing atari with deep reinforcement learning," arXiv preprint arXiv:1312.5602,

2013.

[43] T. Hester, M. Vecerik, O. Pietquin, M. Lanctot, T. Schaul, B. Piot, et al., "Deep q-

learning from demonstrations," in Thirty-Second AAAI Conference on Artificial

Intelligence, 2018.

[44] T. P. Lillicrap, J. J. Hunt, A. Pritzel, N. Heess, T. Erez, Y. Tassa, et al., "Continuous

control with deep reinforcement learning," arXiv preprint arXiv:1509.02971, 2015.

[45] G. Ertaş, H. Ö. Gülçür, O. Osman, O. N. Uçan, M. Tunacı, and M. Dursun, "Breast

MR segmentation and lesion detection with cellular neural networks and 3D

template matching," Computers in biology and medicine, vol. 38, pp. 116-126,

2008.

[46] P. Gorgel, N. Kilic, B. Ucan, A. Kala, and O. N. Ucan, "A Backpropagation Neural

Network Approach For Ottoman Character Recognition," Intelligent Automation &

Soft Computing, vol. 15, pp. 451-462, 2009.

[47] O. Osman, A. M. Albora, and O. N. Ucan, "Forward modeling with forced neural

networks for gravity anomaly profıle," Mathematical Geology, vol. 39, p. 593,

2007.

[48] O. Osman, A. M. Albora, and O. N. Ucan, "A new approach for residual gravity

anomaly profile interpretations: Forced Neural Network (FNN)," Annals of

Geophysics, vol. 49, 2006.

48

[49] A. Krizhevsky, I. Sutskever, and G. E. Hinton, "Imagenet classification with deep

convolutional neural networks," in Advances in neural information processing

systems, 2012, pp. 1097-1105.

[50] B. Kayalibay, G. Jensen, and P. van der Smagt, "CNN-based segmentation of

medical imaging data," arXiv preprint arXiv:1701.03056, 2017.

[51] Y. Lu, S.-C. Zhu, and Y. N. Wu, "Learning frame models using cnn filters," arXiv

preprint arXiv:1509.08379, 2015.

[52] G. Tolias, R. Sicre, and H. Jégou, "Particular object retrieval with integral max-

pooling of CNN activations," arXiv preprint arXiv:1511.05879, 2015.

[53] K.-L. Hua, C.-H. Hsu, S. C. Hidayati, W.-H. Cheng, and Y.-J. Chen, "Computer-

aided classification of lung nodules on computed tomography images via deep

learning technique," OncoTargets and therapy, vol. 8, 2015.

[54] J. Oh, X. Guo, H. Lee, R. L. Lewis, and S. Singh, "Action-conditional video

prediction using deep networks in atari games," in Advances in neural information

processing systems, 2015, pp. 2863-2871.

[55] Y. Chen and E. Kulla, "A Deep Q-Network with Experience Optimization (DQN-

EO) for Atari’s Space Invaders," in Workshops of the International Conference on

Advanced Information Networking and Applications, 2019, pp. 351-361.

[56] S. Yoon and K.-J. Kim, "Deep Q networks for visual fighting game AI," in 2017

IEEE Conference on Computational Intelligence and Games (CIG), 2017, pp. 306-

308.

[57] Y. Bengio, P. Lamblin, D. Popovici, and H. Larochelle, "Greedy layer-wise training

of deep networks," in Advances in neural information processing systems, 2007, pp.

153-160.

49

[58] J. Foerster, I. A. Assael, N. de Freitas, and S. Whiteson, "Learning to communicate

with deep multi-agent reinforcement learning," in Advances in Neural Information

Processing Systems, 2016, pp. 2137-2145.

[59] A. Pritzel, B. Uria, S. Srinivasan, A. P. Badia, O. Vinyals, D. Hassabis, et al.,

"Neural episodic control," in Proceedings of the 34th International Conference on

Machine Learning-Volume 70, 2017, pp. 2827-2836.

[60] I. Osband, C. Blundell, A. Pritzel, and B. Van Roy, "Deep exploration via

bootstrapped DQN," in Advances in neural information processing systems, 2016,

pp. 4026-4034.

[61] B. Rhodes, J. Goerzen, A. Beaulne, and P. Membrey, Foundations of Python

network programming: Springer, 2014.

[62] F. Chollet. (2018). Keras: The python deep learning library. Available:

https://keras.io/

[63] M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean, et al., "Tensorflow: A

system for large-scale machine learning," in 12th {USENIX} Symposium on

Operating Systems Design and Implementation ({OSDI} 16), 2016, pp. 265-283.

https://keras.io/

