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ABSTRACT 

OPTIMIZING THE LIFETIME OF WIRELESS SENSOR NETWORKS 

USING DEEP REINFORCEMENT LEARNING IN A SOFTWARE-

DEFINED NETWORK ARCHITECTURE 

 

Zainab Ali Abbood, 

M.Sc., Electrical and Computer Engineering, Altınbaş University 

Supervisor: Asst. Prof. Dr. Cagatay Aydin 

Co-Supervisor: Dr. Mahmoud Shuker Mahmoud 

Date: September/2019 

Pages: 63 

According to the changing topologies of modern networks, the use of static routing rules 

has become obsolete. Software-Defined Networks (SDNs) are being used to overcome such 

limitation, where a central controller handles the decision-making role regarding packets 

routing. This controller collects information about the network, in addition to the packet 

information, to decide the route a packet should follow to reach its destination. However, 

with the growing complexity of WSNs topologies and the importance of efficient routing, 

Machine Learning (ML) techniques are being used to handle the decision making in the 

SDN controller. In this study, a new method is proposed to optimize the resources 

consumption in a WSN that uses SDN. The proposed method employs a neural network 

that is trained using Reinforcement Learning (RL), based on the lifetime of the WSN. To 

extend the lifetime of WSN the neural network is required to optimize the power 

consumption of the nodes in that network, in which the optimal routes must be used. Three 

types of neural networks are evaluated in this thesis; Feed-Forward Neural Network (FF-

NN), 2D-Convolutional Neural Network (2D-CNN) and 3D-CNN. The evaluation of these 

models show that the using the 3D-CNN has achieved the best performance, with an 

average lifetime of 678251.6 seconds, with an extension of 17% of the 578122.2 seconds 

using the existing state-of-the-art method. The average number of hops a packet is required 
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to travel through, to reach its destination, in this model is 9.81 hops with an average Packet 

Delivery Rate (PDR) of 85.07%. Additionally, the 2D-CNN model has achieved 638169.2 

seconds lifetime, with an average of 12.37 hops per packet and 82.47% PDR, whereas the 

FF-NN has achieved 578381.6 seconds lifetime with 83.37% PDR and 8.31 hops per 

packet. In addition to the superiority of the 3D-CNN, the results also show that the use of 

the shortest paths causes an exhaustion to the resources of certain nodes, positioned in 

locations that handle extensive traffic, which reduces the overall lifetime of the WSN. 

Thus, the extension of the lifetime requires using alternative, i.e. longer, paths to avoid such 

exhaustion and extend the lifetime of the network. 

Keywords:  Software-Defined Network; Internet of Things; Wireless Sensor Network; 

Reinforcement Learning; Artificial Neural Network. 
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ÖZET 

YAZILIM TANIMLI BİR AĞ MİMARİSİNDE DERİN TAKVİYELİ 

ÖĞRENMEYİ 

KULLANARAK KABLOSUZ SENSÖR AĞLARININ ÖMÜR BOYU 

OPTİMİZASYONUNU SAĞLAMA 

 

Zainab Ali Abbood, 

Yüksek Lisans Elektrik ve Bilgisayar Mühendisliği, Altınbaş Üniversitesi 

Danışman : Asst. Prof. Dr. Çağatay Aydın 

Eş Danışman: Dr. Mahmoud Shuker Mahmoud 

Tarih: Eylül/2019 

Sayfa Sayısı: 63 

 

Farklı uygulamalardaki verilerin günümüzde gittikçe artan önemi ile birlikte, çevreden söz 

konusu verileri toplayabilmek adına Kablosuz Sensör Ağları (Wireless Sensor 

Networks/WSN) yaygın bir biçimde kullanılmaktadır. Bu ağların görevlerini yerine 

getirebilmek için ihtiyaç duymuş oldukları esnekliği sağlamak adına, küçük boyutlarda ve 

bu sayede yüksek hareketliliğe sahip sensörler kullanılır. Ancak, bahsedilen sensörlerin 

küçük boyutlu olması, güç ve enerji kaynaklarının işlenmesi gibi, devrelerin donatılabilecek 

oldukları kaynak sayısını sınırlandırmaktadır. Ayrıca, internet erişiminin kolaylaşması ile 

birlikte, söz konusu ağlar, Nesnelerin İnternetini (Internet of Things) oluşturan bir merkez 

birimde toplamış oldukları verileri gönderebilmek için internete bağlanmaktadır. Kablosuz 

Sensör Ağlarının (WSN) değişmekte olan devre topolojilerine adapte olabilmesi adına, 

devreler, bir sunucudan diğer sunucuya, kendilerinden gönderilen paketlere ek paket 

göndermeye yönlendirilirler. Dolayısıyla, kendi görevini yerine getirebilmek ve paketlerini 

iletebilmek adına ihtiyaç duyduğu kaynaklara ek olarak, devreden ihtiyaç duyulan 

kaynaklar, iletilmesi gereken paketlerin sayısına bağlıdır. Böylelikle, devrelerdeki kaynak 

tüketiminin optimizasyonu, paketlerin hedeflerine ulaşabilmek için kullandıkları yolların 

optimizasyonunu gerektirmektedir. 
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Modern ağların değişmekte olan topolojisine göre, sabit ağ veri yönlendirme kuralları artık 

kullanılmamaktadır. Söz konusu kısıtlandırmanın aşılması adına, merkezi bir denetçinin 

paket verilerinin yönlendirilmesinde karar veren role sahip olduğu Yazılım Tanımlı Ağlar 

(SDN) kullanılır. Söz konusu denetleyici, bir paketin hedefine ulaşmak için takip etmesi 

gereken yolu belirlemek adına, paketin bilgilerine ek olarak, ağ hakkında da veri toplar. 

Fakat, WSN’nin topolojisinde gelişen karmaşıklık ve etkili yönlendirmenin önemi ile 

birlikte, SDN’nin denetçisinde karar verme sürecini kontrol etmek adına ML (Makine 

Öğrenimi) teknikleri kullanılmaktadır. Bu çalışmada, SDN kullanmakta olan WSN 

içerisindeki kaynak tüketiminin optimizasyonunu sağlamak adına yeni bir yöntem 

sunulmaktadır. Sunulan yöntem, WSN’nin ömrü bazında, RL (Takviyeli Öğrenme) 

kullanımı ile eğitilen bir nöral ağdan yararlanmaktadır. WSN’nin ömrünü uzatabilmek için, 

nöral ağın en ideal rotaların kullanılması gereken ağlardaki devrelerin güç tüketimini 

optimize etmesi gerekmektedir. Bu tez çalışmasında üç tür nöral ağ değerlendirilmketedir; 

İleri Beslemeli Nöral Ağ (Feed-Forward Neural Network – FF-NN), 2 Boyutlu Evrişimsel 

Nöral Ağ (2D- Convolutional Neural Network – 2D-CNN) ve 3D-CNN. Bu modellerin 

değerlendirmesi; gelişen en son teknoloji ile var olan 578122.2 Saniye ömür süresini %17 

değerinde uzatarak, 678251.6 Saniye ortalama ömür süresi ile 3D-CNN’nin en iyi 

performansı elde ettiğini ortaya koymaktadır. Bu model dahilinde, bir paketin hedefine 

ulaşabilmesi için gerekli ortalama sıçrama değeri, ortalama %85.07’lik Paket Aktarım 

Oranı (Packet Delivery Rate - PDR) ile 9.81 sıçramadır. Ayrıca, 2D CNN modeli, paket 

başına ortalama 12.37 sıçrama ve %82.47’lik PDR ile 638169.2 Saniye ömür süresi elde 

etmiş, FF-NN modeli ise paket başına 8.31 sıçrama ve %83.37 PDR ile 578381.6 Saniye 

ömür süresine ulaşmıştır. Sonuçlar, 3D-CNN modelinin üstünlüğüne ek olarak, en kısa 

yolların kullanımının, yoğun trafiği kontrol altında tutan bölgelerde konumlandırılmış olan 

bazı devrelerin kaynaklarında tükenme meydana getirdiğini ve WSN’nin toplam ömrünü 

kısalttığını da göstermiştir. Yani, ömrün uzatılması, söz konusu tükenmeden kaçınabilmek 

adına alternatif, yani daha uzun, rotaları tercih etmeyi gerektirmektedir.  

Anahtar Kelimeler: Yazılım Tanımlı Ağ; Nesnelerin İnterneti; Kablosuz Sensör Ağları; 

Takviyeli Öğrenme; Yapay Nöral Ağ.  
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1. INTRODUCTION 

With the rapidly growing interest in collecting data of different types for different 

applications, smaller devices have been used to collect these data and execute remote 

commands. The smaller size is a mandatory feature of these devices, i.e. sensors, to provide 

them with the mobility required to satisfy the applications these devices are employed for 

[1]. Moreover, the use of wireless communications has also been able to improve the 

mobility and flexibility of the networks that these devices create and use to communicate. 

Such networks are known as Wireless Sensor Networks (WSNs) and use a special type of 

communication to establish connections among the sensors and the external world, so that, 

the collected information is delivered to their destinations [2-4].  

The high availability of internet connections in different types has eased access to that 

network, which can be used to establish communications among devices in remote 

locations. This availability has brought attention to using the internet’s infrastructure to 

connect several types of devices to the internet, in order to transfer the data that they collect 

and execute the commands sent to them. These devices may vary from as simple as a coffee 

maker to autonomous cars, which has presented the Internet of Things (IoT) [5, 6]. 

However, as the infrastructure of the internet, such as the communication protocols, are 

designed to be used by computers with larger resources and less mobility, compared to IoT 

devices, the IoT has imposed new challenges toward optimizing the operation of these 

devices [7, 8]. 

One of the main concerns about the operation of IoT devices is the amount of energy the 

devices consume to perform the tasks required from them. To maintain the mobility of 

these devices, they are usually energized with power sources of limited energy [9, 10]. 

Moreover, in larger WSNs, the devices act like nodes to deliver the traffic from one host to 

another, which can be another node in the network or the sink node that collects the data 

and deliver it to the internet, i.e. the gateway of the network. Hence, the power consumed 

by a certain node in the network does not only depend on the traffic initiated from, or 

directed to, that node but it also depends on the traffic that the node is required to deliver to 

other nodes to maintain the communications in the network [11, 12]. 
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With the growing complexity of network topologies, routing the packets through the 

network is also requiring more complex techniques, so that, the overall performance of the 

network can be improved by improving the routing decisions. Thus, Software-Defined 

Networking has emerged as a solution to such topologies, to handle the dynamic nature of 

the network where static rules cannot be used to route the traffic [13]. In a Software-

Defined Network (SDN), a controller is designated to make the appropriate decisions for 

each packet, depending on the state of the network at the time the packet is being 

transmitted. Hence, these controllers require more information about the network than only 

the addresses of the source and destination hosts. This information is used by the controller 

to choose the appropriate route for the packet to reach its destination [14]. 

Machine Learning (ML) techniques have been widely used in SDNs, according to the 

ability of ML techniques to dynamically interact with the inputs, unlike the use of static 

rules. These techniques extract knowledge about the domain they are required to interact 

with using sets of examples collected from that domain [15]. Depending on the approach 

used to collect these data, ML techniques are categorized into three main categories, 

unsupervised, supervised and reinforcement. In unsupervised learning, the data is provided 

to the ML technique as collected from the domain, without any additional information, 

where the relations among the inputs are detected and used to interact with the 

environment. In supervised learning, additional information is added to the collected data, 

so that, the ML technique investigates the relations between the characteristics of each 

input and the information added to it. This additional information normally represents an 

expert’s knowledge, which is aimed to be learned by the ML technique [16]. 

Reinforcement Learning (RL) techniques do not require any examples from the domain 

they are interacting with, as such knowledge is extracted by directly interacting with the 

domain. This interaction is defined as an agent that executes actions in the environment, by 

collecting the state of the environment. The main aim of RL is to create a model that 

approximates the behavior of the environment, so that, the best actions can be selected by 

the agent to execute in the environment, depending on the state of the environment. This 

model is created based on the execution of random actions in different states, so that, the 

outcome of each action at a certain state can be predicted. These predictions can be used to 

select the optimal action at each state the agent may be in the environment [17, 18].  
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One of the widely used approached to approximate complex functions is Artificial Neural 

Networks (ANN). Such networks mathematically replicate the signals communicated 

among the biological neurons in human brains to reach an appropriate decision, based on 

the inputs collected from different senses. Thus, these networks are trained to predict the 

outcome, i.e. reward, of executing a certain action at a certain state by providing the states 

of the environment and the actual reward collected from the environment when a certain 

action is executed. During operation, the state of the environment is fed to the neural 

network, which predicts the reward expected for each possible action. Then, the action with 

the highest reward is executed by the agent, to optimize the operation of the environment 

by executing the best possible actions [19]. 

The neurons in a neural network are distributed in layers, where the input of a certain layer 

is collected from the outputs of the neurons in the previous layer. Depending on the way 

these inputs are collected, there exist several types of neural networks. Each of them has 

shown better performance when interacting with a certain type of inputs [20]. 

Convolutional Neural Networks (CNNs) use multi-dimensional filters that are convoluted 

throughout the input in order for the neuron to calculate its output. This type of neural 

networks has shown significantly better performance in detecting local, multi-dimensional, 

features in inputs, which is the reason that these networks have shown good performance 

when interacting with images [21, 22]. Moreover, this type of neural networks has also 

shown good performance in RL applications employed for the controllers of SDNs, 

according to their ability of detecting relations among adjacent nodes, so that, the nodes 

closer to the one forwarding the packet can be detected, regardless of the topology on the 

network [23, 24]. 

1.1. PROBLEM STATEMENT 

According to the dynamic nature of IoT networks, several methods are proposed to manage 

routing the packets in the networks using RL [23-25]. However, these techniques do not 

consider the power consumption in the network, which can exhaust certain nodes 

depending on their positioning in the network. Such exhaustion can dramatically reduce the 

lifetime of the network, as the loss of these nodes disturbs the communications among the 
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nodes of the network, hence, delivering the data to the required host. The method proposed 

by Lin et al. [23] calculates the reward from the environment, which is the network, based 

on the packets delay and loss in addition to the throughput of the network. According to 

these measures, the highest reward predicted by the neural network is expected to represent 

the shortest path, regardless of balancing the loading on the nodes in the network. 

Moreover, Stampa et al. [25] also aim to shorten the path each packet travels through, to 

reduce the time required to deliver the packet, whereas Zhang et al. [24] propose a method 

to maximize the probability of delivering the packets in Vehicular ad hoc Networks 

(VANETs).  

1.2. AIM OF THE THESIS 

This study presents a novel method to manage routing in SDNs based on RL. The proposed 

method considers the lifetime of the network, so that, the SDN controller selects alternative, 

possibly longer, routes for the packets to travel through. Despite the possibly longer paths, 

the proposed method aims to balance loading among the nodes of the network, so that, 

exhaustion of certain nodes is avoided. The proposed method uses different types of ANNs 

to approximate the function that represents the operation of the network. Then, the state of 

the network is collected and provided to the neural network, alongside with the information 

of the packet being routed. The node that maximizes the reward is then selected as the next 

hop in the route, until the packet is delivered. The lifetime of the network is included in the 

computations of the reward, so that, a balanced performance can be achieved, between the 

speed of the communications and the lifetime of the network. Hence, the proposed method 

can justify the gap in the existing methods [23-25], which make use of RL but do not 

consider balancing the nodes’ loading. 
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1.3. THESIS LAYOUT 

The remainder of this thesis is organized as follows: 

 Chapter Two reviews the literature related to RL and the methods proposed to 

employ it in SDNs controllers. 

 Chapter Three describes the proposed method and the different types of neural 

networks that can be used to achieve the required task. 

 Chapter Four presents the experiments conducted to evaluate the performance 

of the proposed method using the selected types of neural networks. 

 Chapter Five discusses the results collected from the experiments and compares 

them to the state-of-the-art method in the literature for the same purpose. 

 Chapter Six illustrates the conclusions of this thesis and the future work that is 

going to be conducted to improve the performance of the proposed method. 
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2. LITERATURE REVIEW 

The high availability of internet connection has encouraged the use of these connections to 

communicate information among different devices, other than computers and smart devices 

usually used by internet users. These devices are used in different applications to provide 

different kinds of services to the users, where in most cases, the information being 

exchanged are automatically collected by these devices and require to user’s interaction. 

This phenomenon has created the Internet of Things (IoT) and it has become mandatory to 

adopt these devices and handle their communications [26]. The use of IoT devices has 

grown rapidly in recent years, according to the features they provide, such as mobility and 

accuracy. Thus, the IoT devices have been widely used in different fields of applications, 

such as healthcare, manufacturing, electricity, security and vehicles. The use of IoT devices 

in different applications is illustrated in Figure 2.1, based on the percentage of devices used 

in each field [5]. 

 

Figure ‎2.1: The use of IoT devices in different fields of applications [5]. 
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2.1. EMPLOYMENT OF IOT DEVICES 

A healthcare system based on IoT is proposed by Arijit et al. [27] that collects several 

biometric and environment measures to detect any anomaly in these measures in order to 

alarm the patient to seek for a medical care. The anomaly detection is based on data mining 

techniques, where measured variables are sent to a remote server to detect these anomalies. 

The patient’s location, activity, movement and heart activity are monitored using the Global 

Positioning System (GPS), Accelerometer, Magnetometer, and Photo-Plethysmography 

(PPG) sensors, respectively. Moreover, an emergency health transmission system is 

proposed by Govindhan et al. [28] the relies on the IoT to monitor the parameters of a 

patient’s body in order to assist providing better health care for that patient in case of 

emergency, where the recent vital measures can be analyzed to predict the required care in 

need. The existence of such systems imposes the need for rigid long-life monitoring using 

IoT devices, so that, reliable services are provided. 

Although the IoT is not limited to healthcare, this field has the highest share among all 

other fields as shown in Figure 2.1. However, there are different other services that rely on 

IoT devices to improve their performance. A system is proposed by Kim et al. [29] 

manages the security of a chemical laboratory using IoT sensors. This system uses flame, 

gas and Radio-frequency identification (RFID) sensors to evaluate the environment in the 

laboratory using Material Safety Data Sheets (MSDS) to detect any hazards, so that, the 

administrator of the laboratory is immediately informed. The system uses an existing 

Application Programming Interface (API) to achieve communications among the different 

parts of the system, using Representational State Transfer (REST) architecture based on 

Hyper-Text Transfer Protocol (HTTP).  

Moreover, the use of RL with the IoT has presented huge breakthroughs in modern 

applications, such as autonomous, i.e. self-driving, vehicles. Such application is gaining 

significant attention according to its benefits in reducing the risks of accidents and the 

comfort it provides to the drivers [30, 31]. These applications rely mainly on RL 

techniques, according to the enormous number of states and actions the autonomous driver 

is required to handle [32, 33]. In vehicles with larger power sources, such as cars, more 
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resources can be available for the computing device that is responsible for predicting the 

optimal action based on the state of the vehicle.  

These applications illustrate the importance of the mobility of IoT devices, maintaining 

communications among them and the lifetime of the network. Exhausting the resources of a 

certain node in the network, according to the heavy traffic being forwarded through that 

node, can affect the performance of that node in its designated task. Thus, vital information 

that is being collected by the IoT device can be lost, especially when used in healthcare 

applications [27, 28]. Moreover, any disturbance in the communications that is caused by 

the loss of that node can cause the loss of an entire subregion of the network, especially in 

less-dense networks. Such loss can prevent urgent information from being delivered to its 

destination, in order to execute the appropriate procedure to handle an emergency event 

[29]. However, maintaining the speed of the network is also important, so that, faster 

decisions can be made by the nodes in the network, such as interchanging information 

among different autonomous vehicles [30, 31]. 

2.2. SOFTWARE-DEFINED NETWORKING (SDN) 

The business requirements of modern networks can change quickly, which requires 

improvement in the methods used to control these networks to rapidly respond to these 

changes. SDN has been presented as a solution to such challenges, where the traffic of the 

network is controlled from a central console. This centralized console can communicate 

with the different parts of the network that are responsible for routing the traffic by 

interchanging information and command using the same network [34]. The architecture of 

an SDN can be represented using three main layers, the application, control and 

infrastructure layers[35]. 

Unlike traditional networks, in which a designated device is required for each application, 

the controller in an SDN can be used to run these applications, such as firewalls, load 

balancing and intrusion detection, in the application layer. Hence, software is required to 

run in the controller of the SDN, where this software represents the control layer in the 

SDN’s architecture. This software runs on a server in the network, which collects 

information from the devices on the network alongside with the information of the packets 
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being communicated, which are interchanged using the hardware of the network, which 

represents the infrastructure layer [36]. Figure 2.2 shows the generic architecture of an 

SDN. 

 

Figure ‎2.2: Generic architecture of an SDN [36]. 

The devices responsible for forwarding the packets in the network, in order to deliver them 

to their destinations, consult the SDN controller for the next device the packet is forwarded 

to. Using the information collected about the state of the network, represented by the state 

of the devices in that network, and the characteristics of the packet being forwarded, the 

controller can select the optimal operation and instruct the device, according to the 

configurations of the software. The controller can instruct the device to forward the packet 

to a certain host on the network, which can be the destination or another hop in the route 

recognized by the controller, or to drop that packet, if the destination is unreachable or the 

packet is considered an intrusion attempt, for example [37, 38]. 
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2.3. REINFORCEMENT LEARNING 

Reinforcement learning uses the concepts of agents, environments, states, actions and 

rewards [39-41]. As shown in Figure 2.3, the environment receives the actions selected by 

the agent and outputs the new state of the agent and the reward. Agents, on the other hand, 

collect the new state and the reward in order to select the next action, which in return 

produces new state and reward from the environment. However, the agent does not have a 

clue about the way the environment returns the next state and the rewards of a certain 

action. Thus, in reinforcement learning, the agent attempts to predict the action that 

maximizes the rewards received from the environment, by approximating the behavior of 

the environment and how it responds to the actions [42]. 

 

Figure ‎2.3: Illustration of the interaction between the Agent and the Environment in 

reinforcement learning. 

The main components in RL applications are defined as follows: 

 Agent: Is the component that is responsible of making the appropriate decision, 

depending on the state collected from the environment, to achieve the goal of 

the task assigned to it, such as making a delivery by a drone or navigating a car, 

safely, to the intended destination. 

 Action (A): Defines the set of possible actions that an agent can take, so that, 

the agent can predict the reward it gets upon the execution of each action at a 

certain state. For an autonomous vehicle, the possible actions at any state are to 

accelerate, deaccelerate, go left, go right, go straight and do nothing. This set 

represents the simplest actions for the RL agent, where more actions can 

produce better performance but increase the complexity of the decision-making 

procedure, according to the larger possibilities. 
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 Discount Factor: To allow the agent to focus on maximizing the overall 

reward rather than emphasizing on the instant one, the maximum reward from 

the new state the agent becomes into when an action is executed is included in 

the computation of the current rewards. However, the reward value of the next 

state is reduced by multiplying it by the discount factor, so that, the effect of the 

instant reward and the overall reward is balanced. For instance, if an 

autonomous vehicle is rewarded based on the instant values only, 

deacceleration at risky situations is not considered by the agent, as it cannot 

result in the maximum instant reward. Including the final rewards in the 

computations increases the reward expected from avoiding accidents, which 

allow the agent to make the appropriate decisions in that manner. Moreover, 

relying only on the final reward can encourage the agent to take some unwanted 

actions, such as driving off roads, to maximize the final reward. Thus, the 

discount factor must be selected to balance all the scenarios and produce the 

optimal performance from the agent. 

 Environment: The domain that the agent is interacting with, by executing the 

actions and collecting the rewards. In autonomous driving, the environment 

represents the street the car is being driven through and the traffic in those 

streets.  

 State (S): The description of the current situation of the agent in the 

environment, which can be represented to the agent in different formats. For 

instance, an autonomous driver requires knowledge about the path it is 

following, its current position on that path, the nearest vehicle and obstacles 

ahead. 

 Reward (R): Represents the feedback from the environment for the action 

selected by the agent. Higher rewards values indicate more appropriate actions 

for the current state, while lower values indicate that the correspondent actions 

are less appropriate for the current state. For instances, deaccelerating the 

vehicle may reduce the reward under certain circumstances, such as clear path 

and low speed, but such action can have higher rewards in states that describe 

an incoming vehicle, which can result in an accident. 
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 Policy (π): Is the approach employed by the agent to select the action 

appropriate for the current state to maximize the reward. 

 Value (V): Under policy π, the long-term reward expected by the agent for the 

current state Vπ(s), considering the discount factor defined for the agent. This 

value allows the agent to avoid being in states that can dramatically reduce the 

long-term reward, even if it maximizes the instant reward. For instance, 

increasing the speed above the speed limit can increase the instant reward, as 

more distance is traveled faster, but considering the possibility of a fine or an 

accident allows the agent to make more reasonable decisions. 

 Q-Value (Q): This value defines the overall reward for a certain action at a 

certain state, i.e. Q
π
(s, a). The agents rely mainly on this value in making their 

decisions, so that, the action that returns the maximum overall reward.  

Reinforcement is based on the Bellman equation, which is proposed by the American 

mathematician Richard Bellman. Using this equation, the reward per each action for a 

certain state can be calculated based on the instant reward and all the rewards collected 

until the end of the episode, which can be terminated as the agent reaches its goal or by 

performing a specified number of actions [18, 43]. This reward is calculated as shown in 

Equation 2.1. 

𝑄𝜋(𝑠𝑡, 𝑎𝑡) = 𝐸[𝑅𝑡+1 + 𝛾𝑅𝑡+2 + 𝛾𝑅𝑡+3 + ⋯ |𝑠𝑡, 𝑎𝑡] (2.1) 

According to this equation, the highest Q value from a certain state, st, can be used to 

calculate the Q value for any action that ends up with the agent in that state, by simply 

multiplying it by the maximum Q value, as shown in Equation 2.2. 

𝑛𝑒𝑤 𝑄(𝑠, 𝑎) = 𝑄(𝑠, 𝑎) + 𝛼[𝑅(𝑠, 𝑎) + 𝛾𝑚𝑎𝑥𝑄′(𝑠′, 𝑎′) − 𝑄(𝑠, 𝑎)] (2.2) 

where the learning rate 𝛼 is used to damp the variation in the Q value for the selected action 

in the current state and 𝛾 is the discount factor that controls the balance between the instant 

and long-term rewards. The new Q value is then used to update the function that is used to 

represent the environment, so that, the actual reward from executing the action is produced 

instead of an approximation. This value also assists the computation of the reward values 

expected in previous states, as this value provides the actual reward received from the 

environment.  
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2.4. ARTIFICIAL NEURAL NETWORKS 

According to the complexity of the computations required to predict the reward of each 

action available for the agent at a certain state, deep neural networks are used to make the 

predictions, based on the inputs collected from the environment at that state. The action 

selected based on the predictions of the neural network aims to maximize the reward 

received from the environment by executing the action with the highest. However, these 

rewards may not be instant and depend on the results of a series of actions. Thus, it is 

important to wait to the end of the interaction with the environment to evaluate these 

actions. Moreover, in order to adjust the exploration and exploitation of the selected 

actions, a certain percentage of random actions in any time instance is allowed to be 

executed by the agent, especially before providing significant training for the neural 

network. This enables finding the optimal output, even after a certain solution is found [44]. 

Artificial neural networks consist of neurons distributed in layers, where the output of a 

neuron is weighted and connected to another neuron in a different layer, as input [45], as 

shown in Figure 2.4. The decisions made by these networks depend on the values of these 

weights, which are updated using backpropagation [46]. Backpropagation measures the 

difference between the output of the neural network, and the actual output required from it 

and update the weights among the neurons, based on the effect of each weight over the 

output. The effect of each weight is measured by calculating the rate of change of the 

output values, with respect to that weight. Thus, these computations require intensive 

processing and neural networks with more layers, known as deep neural networks, have 

significantly more weights, which increases the complexity of the computations. These 

computations are very exhausting for the IoT device, according to their limited resources, 

and require larger computers to achieve them [47]. However, these computations occur 

during the training phase of the neural network only, and no further updates are required 

during runtime, in most cases. The computations required to calculate the output of a neural 

network are relatively easier than those required to train it, and they can be handled by the 

IoT device itself, as the output of each neuron can be calculated by simply passing the 

weighted summation, of the outputs collected from the neurons connected to it, through an 

activation function [20, 48]. 
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Figure ‎2.4: Hierarchy of a sample deep neural network. 

 

Depending on the distribution of the inputs collected by each neuron in a layer, different 

types of artificial neural networks can be produced, for different tasks. The Feed-Forward 

Neural Network (FF-NN) shown in Figure 2.4 is the basic neural network that is used in 

different applications. However, when the neuron collects its inputs from two-dimensional 

windows, i.e. filters, that are convoluted through the two- or three-dimensional input, the 

neural network is known as Convolutional Neural Network (CNN). CNNs have shown 

significantly better performance than other types of neural networks when the inputs of the 

neural networks are images, which are normally represented in two- or three-dimensional 

arrays. Such better performance is the result of it CNN’s ability of detecting and combining 

local features detected by the filters, regardless of their position in the input [49]. 

CNNs contain convolutional layers, which consists of two- or three-dimensional filters that 

are convoluted throughout the input of each neuron. Mathematically, the filter is actually 

the weight values of that neuron, which enable the neuron to detect local two-dimensional 

patterns in the input. The sizes of the filters in a convolutional layer is constant and patterns 

in the input can be detected within the size of the filter. However, by going deeper into the 

neural network, i.e. layers farther from the input layer, each filter detects patterns defined 

by the patterns detected by the previous layer’s filters. This enables the CNN to combine 

the recognized patterns and detect more complex features.  Although the output of a neuron 

in a convolutional layer can have different dimensions from its input, the number of 
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dimensions is similar to that in the input, i.e. a neuron processing a two-dimensional input 

outputs a two-dimensional array [50, 51].  

During convolution, the number of values that the filter moves per each step is defined as 

the strides, which can have different values for the horizontal and vertical movements. All 

the values within the filter are multiplied with their corresponding weights and processed in 

the neuron, which arranges its outputs according to the arrangement received during the 

convolutions of its filters. Skipping more than one value per each convolution can cause the 

loss of detecting important patterns, which can negatively affect the performance of the 

CNN, despite the reduction in the size of the neuron’s output, which can simplify the 

computations in following layers. To reduce the size of the output from a neuron without 

losing important information, pooling layers can be placed after a convolutional layer to 

subsample the values outputted from the convolutional layers [52], as shown in Figure 2.5.  

 

Figure ‎2.5: A sample convolutional neural network [53]. 

A pooling layer also consists of filters that are convoluted throughout its input, which is the 

output of the neuron. However, these filters have a different approach to process the input 

values, as they are not forwarded to a neuron and has no weights. Despite the existence of 

different types of pooling layers, Max-Pooling layer is one of the widely used pooling 

layers that are used to reduce the size of the processed data without losing important 

information. As shown in Figure 2.6, the filter in a max-pooling layer searches for the 

maximum value within its dimensions, and outputs that value to represent that region. By 

selecting the highest value, the most important feature in that region is selected, so that, it is 

less likely to lose important information as in increasing the strides of the filter in the 

convolutional layer [52]. 
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Figure ‎2.6: Sample input and output of a Max-Pooling layer. 

 

As Figure 2.5 shows, when a max-pooling layer is used, the values less than the maximum 

values are neglected. Hence, only the feature the has maximum matching with the 

convolutional filter is selected within the window of the pooling layer. However, in some 

applications, it is still important to consider the other values in that window and maintain 

the size reduction produced using pooling layers. Thus, average-pooling layers are used in 

neural networks that are required for such applications, where the value outputted from 

each pooling filter is equal to the average of the values in that filter, as shown in Figure 2.7. 

 

Figure ‎2.7: Sample inputs and outputs of an average-pooling layer. 

 

Max-Pooling layer 

with (2×2) filter size 

and (2×2) strides. 

Average-Pooling layer 

with (2×2) filter size 

and (2×2) strides. 
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2.5. DEEP Q-LEARNING 

The use of artificial neural networks to approximate the function that defines the 

environment and predict the Q values per each action for a certain state, so that, the agent 

can select the most appropriate action is known as Q-Learning. The aim of this learning 

approach is to provide the neural network with the actual rewards collected from the 

environment, so that, it can predict these rewards in future operations [17]. However, as the 

neural network does not have any knowledge about the environment that the agent is 

interacting with, the training process relies on executing random actions at the beginning of 

the training [54]. As the neural network starts to gain more knowledge about the 

environment, the decisions of the agent can start to be less random and more dependent on 

the predictions of the neural network. To control such behavior, a value is defined to 

control the randomness in the decisions made by the agent. This value is denoted as the 

epsilon and it normally starts with a high value, i.e. more random actions, and reduced as 

the neural network gains more knowledge about the environment [55]. 

To select between the execution of a random action or based on the outputs of the neural 

network, the epsilon value is compared to a randomly generated value. If the random value 

is less than the epsilon, the action selected by the agent is the action that produces the 

highest reward, based on the predictions of the neural network. Otherwise, the action is 

selected randomly and executed against the environment [56]. In both cases, the reward 

collected from the environment upon the execution of the selected action at the current state 

is used with the maximum Q value predicted by the neural network for the new state the 

agent becomes in, to produce a new Q value that is used to train the neural network [57].  

When the agent finishes an episode, the neural network is trained using the data collected 

by the agent during the episode, i.e. the states, actions and rewards, and the epsilon value is 

reduced by a predefined ration, known as the gamma value. This process is repeated until 

the defined number of training episodes is reached, in which the neural network is expected 

to have gained enough knowledge to produce accurate Q value that can assist the agent to 

select the optimal action per each state it faces [18, 58]. The ability of the neural networks 

to provide approximations for states that it has never been through, during the training, 

allows the employment of these networks in the Deep Q-Learning (DQN) approach, so that, 
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the agent still has approximate Q values to make the appropriate decision. Comparing this 

approach to the use of tables that contains the states and their corresponding Q values 

shows the benefits of the approximated computations, as Q values for states that are 

included in the Q table can be recognized by the agent [59, 60]. Thus, DQN has been 

widely used in approximating the functions of complex environments, such as those faced 

by autonomous vehicles drivers. 

2.6. EMPLOYMENT OF DRL IN SOFTWARE-DEFINED NETWORKING 

As illustrated earlier in this chapter, the software in the SDN controller is required to handle 

very complex and dynamic states and present the appropriate decisions to the devices 

responsible for forwarding the packets to their destinations. Hence, static rules can impose 

dramatic restrictions on the operation of the network, as such rules are not able to handle 

changes in the topology of the network. Moreover, according to the ability of DRL to 

interact with states that have not been included in the training i.e. the agent has not been 

through before, several methods are proposed in the literature as the backbone of the SDN 

controller. Zhang et al. [24] propose a DRL-based method for the SDN’s controller to 

manage the traffic in Vehicular ad hoc Networks (VANETs). The main challenge in such 

networks is the continuous movement of the nodes in the network, i.e. the vehicles. Hence, 

this method emphasizes on finding the route that has the highest probability of delivering 

the packet to its destination, without being affected by the movement of the nodes in the 

network. To train the DRL technique for such a task, the Packet Delivery Rate (PDR) is 

used as the reward of the DQN. The results show that the best performance has been 

achieved by the proposed method when the CNN is used to predict the reward values for 

each network state and use it to select the best route. Similarly, the method proposed by Lin 

et al. [23] also considers the PDR in the computations of the reward value but also include 

the delay of packets before reaching their destinations and the overall throughput of the 

network. However, both methods do not consider the resources consumption of the nodes 

in the network, which can exhaust certain nodes depending on their positioning and the 

flow of the traffic in the network. 
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Stampa et al. [25] propose a method that aims to reduce the time each packet travel, in 

order to reach its destination. Hence, this method attempts to reduce the number of hops, 

i.e. nodes, that forward the packet and attempt to find the shortest route, so that, the highest 

reward is collected. However, focusing only on the number of hops neglects balancing the 

load over the nodes in the network. For instance, communicating packets between the red 

and blue nodes in the sample WSN shown in Figure 2.8 without considering balancing the 

load can exhaust the resources of the red node. To avoid such exhaustion, it is important to 

forward some of these packets through the green nodes despite the longer path. Considering 

such balance can significantly increase the lifetime of the network. 

 

Figure ‎2.8: A sample wireless sensor network. 
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3. METHODOLOGY 

The method proposed in this thesis relies on DQN to manage the traffic in a WSN, so that, 

the loading is balanced among the nodes to extend the lifetime of the network. This DQN 

predicts the reward value, which represents the lifetime of the network when the packet is 

forwarded to every possible node in that network. Hence, the node that maximizes the 

lifetime of the network when the packet is forwarded to it is selected as the packet’s next 

hop. The use of the networks’ lifetime guarantees balanced loading on the nodes in the 

network, as the use of longer paths or exhausting the power source of one of the nodes can 

both reduce the lifetime of the network. However, it is important to consider the constraints 

of communications in such networks, which are the limited transmission power of the 

nodes and the packets delivery rate. 

Different types of neural networks are evaluated for the proposed method, where the 

information collected about the nodes in the network as well as the packet is delivered to 

the neural network in order to select the next hop. Each neural network is trained to predict 

the reward value using RL, where the lifetime of the network is used to represent the 

quality of the decisions. Moreover, decisions that are not in compliance with the constraints 

of the network are punished, i.e. negative reward values are assigned to them. The neural 

networks used for the DQN are a Feed-Forward Neural Network. 2D-CNN and 3d-CNN. 

In order to route a packet through the network, it is important for the controller to recognize 

the state of the packet and the network, so that, the appropriate decision, i.e. action, is 

selected by the RL model in the controller. The main information required by the controller 

are: 

 Remaining energy: To accomplish the required load balancing, it is important for 

the controller to monitor the energy remaining in each node. Accordingly, 

alternative routes can be selected to avoid exhausting certain nodes.  

 Positioning: The positioning of the nodes is required to select the next hops that is 

capable of delivering the packet to its destination and within the range of the node 

that the packet is currently at. Hence, the node that is in the required direction to 
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accomplish the route and can receive the packet using the limited transmission 

power of the node. 

 Source and Destination: The source and destination nodes must be known to the 

controller in order to define the appropriate path for the packet, based on the 

positioning of the nodes in the network and the remaining energy in each node.  

3.1. USING THE FEED-FORWARD NEURAL NETWORK (FFNN) 

As illustrated in Section 2.4, the input of an FFNN is a one-dimensional vector. Hence, the 

state of the network is summarized in such a vector, which represents the following 

features: 

1. The energy remaining per each host. 

2. The distance between each host and the source host, where the source host can 

be recognized as the host corresponding to the position of the values 0. 

3. The distances between each host and the destination host, where the destination 

host has a distance of 0 in this set. 

4. The distances between each host and the host the packet is currently at. 

5. The hosts that the packet has been through, where a value of 1 is correspondent 

to the host that the packet has passed through.  

Accordingly, the number of features in the vector is equal to 5×N, where N is the number 

of nodes in the WSN. However, as the size of the input layer of the neural network must be 

equal to the number of features in the vector and according to the possibly varying number 

of nodes in a WSN, the value of N is set to 100, so that, the trained neural network can be 

used with WSNs of up to 100 nodes. The values correspondent to nodes that do not exist, 

i.e. WSNs with less than 100 nodes, are set to -1, so that, the neural network can recognize 

the absence of these nodes. Hence, the number of neurons in this neural network is set to 

500, while the output layer contains 100 neurons. The value outputted from each neuron in 

the output layer represents the reward value predicted if the packet is forwarded to that 

node. Thus, forwarding the packet to the node corresponding to the neuron with the highest 

output is expected to maximize the lifetime of the network. The structure of the FFNN 

implemented for the proposed method is shown in Table 3.1. 
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Table ‎3.1: Structure of the FFNN implemented for the proposed method. 

_________________________________________________________________ 

Layer (type)                 Output Shape              Param #    

================================================================= 

dense_1 (Dense)              (None, 512)               256512     

_________________________________________________________________ 

dense_2 (Dense)              (None, 256)               131328     

_________________________________________________________________ 

dense_3 (Dense)              (None, 128)               32896      

_________________________________________________________________ 

dense_4 (Dense)              (None, 100)               12900      

================================================================= 

Total params: 433,636 

Trainable params: 433,636 

Non-trainable params: 0 

_________________________________________________________________ 

 

3.2. USING THE 2D CONVOLUTIONAL NEURAL NETWORK (2D-CNN) 

According to the limitation imposed using the FFNN, regarding the limited number of 

possible nodes in the WSN, convolutional neural networks are employed for the proposed 

method.  According to the ability of CNNs to accept three-dimensional inputs, the values 

can be positioned according to the positioning of the nodes in the network. Hence, the input 

to the neural network is presented in a three-dimensional array of size 100×100×5. In other 

words, the input consists of five layers, each with 100×100 values. The values in each layer 

represent a certain feature, which are: 

1. The remaining energy of each node. 

2. A value of one corresponding to the position of the source host. 

3. A value of one corresponding to the position of the destination host. 

4. Value of ones positioned at the positions of the nodes that are within the range of the 

node that the packet is currently at. 
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5. Route description for the hosts that the packet has been through up to the current hop, 

where the source node is assigned with zero while the current host is assigned with 

one. Other hosts that the packet has passed through are assigned with value depending 

on the sequence of hosts in the route, lower values are assigned to the hosts the packet 

has passed through earlier. These values are calculated by using the algorithm shown in 

3.1. 

Input: Hops’ list of a packet; Position of nodes. 

Output: Two-dimensional representation of the hops list. 

Step1: H ← Read hops list. L ← Length(H) 

R ← Full(100×100, -1). //A 100×100 array the value -1 for the output. 

Step2: For i = 1 to L: 

 p = H(i).position //Find the position the node of the current hop. 

 R[p] ← i/L 

Step3: Return R 

Figure ‎3.1: Hops representation algorithm. 

The output of the CNN is a two-dimensional array, where the reward values are mapped on 

the position corresponding to each node, so that, the node closed to the highest reward 

value is selected to forward the packet. The structure of the 2D-CNN implemented for this 

method is shown in Table 3.2. 

Table ‎3.2: Structure of the 2D-CNN implemented for the proposed method. 

_________________________________________________________________ 

Layer (type)                 Output Shape              Param #    

================================================================= 

conv2d_1 (Conv2D)            (None, 100, 100, 32)      544        

_________________________________________________________________ 

conv2d_2 (Conv2D)            (None, 100, 100, 16)      2064       

_________________________________________________________________ 
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conv2d_3 (Conv2D)            (None, 100, 100, 8)       1160       

_________________________________________________________________ 

conv2d_4 (Conv2D)            (None, 100, 100, 4)       804        

_________________________________________________________________ 

conv2d_5 (Conv2D)            (None, 100, 100, 1)       101        

================================================================= 

Total params: 4,673 

Trainable params: 4,673 

Non-trainable params: 0 

_________________________________________________________________ 

 

3.3. USING THE 3D CONVOLUTIONAL NEURAL NETWORK (3D-CNN) 

Unlike 2D-CNNs, the three-dimensional filters in the 3D-CNNs allow detecting features 

that have values distributed in several layers of the input array. However, as these values 

represent a single node and according to the need for a two-dimensional output, producing 

a single reward value per each node, an Average-Pooling layer is used to summarize the 

values per each node into a single value. Hence, a single value is produced in the hidden 

layers of the neural network that can be used to predict the reward value if that node is 

selected. The values in the layers are similar to those collected in 2D-CNN, but the filters in 

the Average-Pooling layer are set to summarize the features detected by the first hidden 

layer into a single value, i.e. the size of the filter is set to (1, 1, 5). According to the 

existence of weight values between the input and the first hidden layers, the effect of each 

feature value, e.g. the remaining power and route description, are adjusted in the value 

produced by the average-pooling filters, according to the requirements detected by the 

neural network during training. The structure of the implemented 3D-CNN is shown in 

Table 3.3 
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Table ‎3.3: Structure of the 3D-CNN implemented for the proposed method. 

_________________________________________________________________ 

Layer (type)                 Output Shape              Param #    

================================================================= 

conv3d_1 (Conv3D)            (None, 100, 100, 4, 32)   160        

_________________________________________________________________ 

average_pooling3d_1 (Average (None, 100, 100, 1, 32)   0          

_________________________________________________________________ 

conv3d_2 (Conv3D)            (None, 100, 100, 1, 16)   8208       

_________________________________________________________________ 

conv3d_3 (Conv3D)            (None, 100, 100, 1, 8)    4616       

_________________________________________________________________ 

conv3d_4 (Conv3D)            (None, 100, 100, 1, 4)    3204       

_________________________________________________________________ 

conv3d_5 (Conv3D)            (None, 100, 100, 1, 1)    401        

================================================================= 

Total params: 16,589 

Trainable params: 16,589 

Non-trainable params: 0 

_________________________________________________________________ 

 

3.4. TRAINING THE DQN MODELS 

Initially, the neural network has no knowledge about the rewards it can get for each action. 

Hence, the packets are forwarded in a random manner, so that, the reward returned by the 

network based on the selected action, i.e. next hop, is used to train the neural network. 

After a few iterations, the neural network starts to gain knowledge about the environment 

and how to deliver the packets from one node to another. However, this knowledge can be 

limited to the approaches recognized during the use of random actions. For example, the 

neural network may start to learn to deliver the packet to the destination node using the 

shortest path but still unable to extend the lifetime of the network. Thus, a fraction of the 

decisions is still required to be executed randomly in order to balance exploration and 



 

 

26 

exploitation. Thus, a variable with a value equal to one is set at the first iteration and 

compared to randomly generated numbers in the interval [0,1], so that, if the random 

number is greater than the value of the variable, the action is selected based on the output of 

the neural network. Otherwise, the action is selected randomly. This value of this variable 

is reduced by multiplying it to 0.99 after each iteration, so that, the number of actions 

selected based on the predictions of the neural network is increased as the knowledge of the 

neural network increases.  

Per each iteration, the training of the neural network is continued until the energy of one of 

the network’s nodes is drained. Then, the lifetime of the network is used to update the 

reward values of the neural network. However, as the delivery of each packet in the 

network is not related to other packets, the lifetime of the network is used to update the 

reward values of each packet solely, i.e. the packets deliveries are considered parallel 

operations rather than serial and the reward value is assigned for the last action or hop. This 

value is reduced using the discount factor (Gamma), which is set to 0.9, as higher values for 

the discount factor have shown better performance in [23]. 

The predictions of the neural network are updated using the formula shown in Equation 3.1, 

where Q is the predicted reward value for executing action a in state s. R is the actual 

reward value retrieved from the environment after executing the action, maxQ’ is the 

maximum reward expected from the agent after being in the new state s’, i.e. after 

forwarding the packet to the next hop.  

𝑁𝑒𝑤 𝑄(𝑠, 𝑎) = 𝑄(𝑠, 𝑎)+∝ (𝑅(𝑠, 𝑎) + 𝛾𝑚𝑎𝑥𝑄′(𝑠′, 𝑎′) − 𝑄(𝑠, 𝑎)) (3.1) 

As the value computed using this formula represents only the reward value of the node the 

packet is forwarded to, the reward values for the other nodes are maintained as predicted by 

the neural network. Using such an approach, any prior knowledge is maintained and the 

knowledge extraction can continue even when random actions are selected. However, to 

present the knowledge required by the neural network to avoid forwarding packets to 

positions that do not nodes in them, reward values of -1, i.e. punishments, are placed in the 

positions that have no nodes in them. This training procedure is conducted after the first 

node in the network is exhausted. However, instant training occurs when one of the 

following conditions occurs: 
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 The packet is forwarded to a node that is out of the transmission range of the current 

node. 

 The packet is forwarded to a node that does not have sufficient power to receive or 

forward the packet unless it is the destination node. 

 The packet is forwarded to a node that is in the list of hops that the packet has been 

through, to avoid infinite loops. 

 The number of hops the packet passes through exceed 10 times the number of nodes 

in the network. 
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4. EXPERIMENTAL RESULTS 

The proposed method is implemented using the different neural networks models employed 

for the DQN. To train these neural networks, a set of 100 randomly generated WSNs is 

used, with a number of nodes varying from 8 to 32 randomly distributed in a region with 

1000×1000 square meters. However, to ensure the generation of the same networks for all 

the evaluated methods, random seeds are used with similar values, so that, the exact same 

random numbers are generated per each experiment. Each node is initiated with the energy 

of 1 joule, where the transmission or receival of a packet consumes 5×10
-9

 joule. The 

packets are set to be of 1024 bytes in size with 2Mbps data rate. The maximum distance a 

node can transmit a packet is set to 300 meters. Hence, a packet that is transmitted to a 

farther node is considered a failed transmission. Moreover, each node consumes 10
-10

 

joule/sec when it is in idle mode, i.e. no packets are sent from or to that node. Figure 4.1 

shows examples of the randomly generated WSNs with the randomly generated sample 

traffic. 

 
Figure ‎4.1: Samples of the randomly generated WSNs and traffic. (a): 8-node network; (b): 14-

node network; 20-node network; 30-node network.  

 

(a) (b) 

(c) (d) 
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The experiments are implemented using Python programming language [61] using a 

computer with Intel® Core™ i7-7700 processor with 2.8GHz frequency and 16GB of 

random access memory. Python’s Keras library [62] is used to implement the neural 

networks used for the DQN, using Google’s Tensorflow machine learning library [63] 

backend. The Keras library produces the matrices and their operations to be conducted 

using Tensorflow, so that, the same efficiency acquired from Tensorflow can be 

implemented using simpler representation in Keras. Each DQN is trained using 100 

randomly generated WSNs and evaluated using 10 other networks. The packets are 

generated randomly, i.e. random source and destination hosts, until one of the nodes in the 

WSN exhausts its power. 

To reach its destination, a packet passes through one or more hops, depending on the 

position of the source and destination hosts in the WSN. However, in some situations, the 

packet may not be delivered to its destination. For instances, if the source or destination 

hosts are out of the range of remaining nodes or if the network controller fails to make the 

appropriate routing decisions. Accordingly, the ratio between the number of packets to the 

total number of packets initiated in the network, i.e. the lifetime of the WSN is calculated 

based on the total number of hops H the packets travel through, the size of these packets, 

which is 1024 bytes in this setup, and the bandwidth of the network, which is 2Mbps, as 

shown in Equation 4.1. The average prediction time required by the method to predict the 

next hop for the packet is also measured to illustrate the delay imposed by the network 

controller according to the complexity of the model. For a total of H hops each required Eh 

second to be calculated, the average prediction time is calculated as shown in Equation 4.2 

The average number of hops that the network packets travel in order to reach their 

destinations is also calculated as a performance measure, as longer paths can produce more 

delay for a packet to be delivered according to the limited bandwidth in the network. For T 

total packets, each is delivered using Pt hops, the average number of hops can be calculated 

as shown in Equation 4.3. Finally, the PDR, is calculated as a performance measure of the 

routing method. Hence, for a WSN that has been able to deliver D packets to their 

destinations, out of T total packets, the PDR can be calculated shown in Equation 4.4.  
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𝑙𝑖𝑓𝑒𝑡𝑖𝑚𝑒 =
𝐻 × 1024 × 8

2 × 106
 (4.1) 

𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛 𝑇𝑖𝑚𝑒 =
∑ 𝐸ℎ

𝐻
ℎ=1

𝐻
 (4.2) 

𝐴𝑣𝑒𝑟𝑎𝑔𝑒 ℎ𝑜𝑝𝑠 =
∑ 𝑃𝑡

𝑇
𝑡=1

𝑇
 (4.3) 

𝑃𝐷𝑅 =
𝐷

𝑇
× 100% (4.4) 

 

4.1. PERFORMANCE OF THE FFNN MODEL 

After training the implemented FFNN for the DQN using 100 WSNs, its performance is 

evaluated using the other 10 WSNs. The average lifetime of these networks is 593814.16 

sec, with an average number of hops equal to 13.61 hops per packet and 83.37% PDR. 

Moreover, each prediction of the next hop has consumed an average of 278.82uS. The 

average minimum power remaining on the nodes is calculated for these networks as they 

operate and illustrated in Figure 4.2, which shows that when the minimum available power 

decreases, the FFNN attempt to avoid forwarding the packets through that node. This 

behavior is reflected by the decreasing slope of the average minimum value as time 

progresses. 



 

 

31 

 

Figure ‎4.2: Average minimum energy in the nodes of the evaluation WSNs using the FFNN model. 

Moreover, the average number of hops is also monitored during the operation of the WSNs, 

using the proposed method as the traffic flow manager. For better illustration, the values are 

summarized for every 1000 seconds, i.e. these average values are also averaged. These 

values are noticed to be increasing as time progresses, according to the use of longer paths 

to avoid consuming power from the nodes with less remaining energy, as shown in Figure 

4.3. 

 

Figure ‎4.3: Average number of hops versus time using the FFNN model. 

Additionally, the average PDR has also been monitored during the operation of the WSNs, 

which is also measured for every 1000 seconds to produce a better illustration. As shown in 
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Figure 4.4, the proposed method has been able to maintain high PDR despite the longer 

paths the packets travel when the energy of the nodes starts getting exhausted.  

 

Figure ‎4.4: Average PDR versus time using the FFNN model. 

4.2. PERFORMANCE OF THE 2D-CNN MODEL 

Similar to the previous experiment, the 2D-CNN is trained using the same 100 WSNs, 

before being evaluated using another 10 networks. The average lifetime of these networks 

is 638169.21 sec, which is large than the time achieved by the FFNN. The average number 

of hops in this experiment is 12.37 hops per packet with 82.47% PDR and 316.03uS 

average prediction time. The average minimum power remaining in the nodes is calculated 

for these networks as they operate and illustrated in Figure 4.5, which shows that when the 

minimum available power decreases, the 2D-CNN also attempts to avoid forwarding the 

packets through that node. This behavior is reflected by the decreasing slope of the average 

minimum value as time progresses. 
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Figure ‎4.5: Average minimum energy in the nodes of the evaluation WSNs using 2D-CNN model. 

Moreover, the average number of hops is also monitored during the operation of the WSNs, 

using the proposed method as the traffic flow manager. For better illustration, the values are 

summarized for every 1000 seconds, i.e. these average values are also averaged. It is 

noticeable that the average number of hops starts to increase after 400,000 seconds as the 

minimum power of the nodes starts becoming critical. However, by the end of the networks 

lifetime, this model starts to favor shorter paths, as the energy of most of the nodes 

becomes lower and avoiding them becomes more exhaustive to the overall network, as 

shown in Figure 4.6. 
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Figure ‎4.6: Average number of hops versus time using the 2D-CNN model. 

Additionally, the average PDR has also been monitored during the operation of the WSNs, 

which is also measured for every 1000 seconds to produce a better illustration. As shown in 

Figure 4.7, the proposed method has been able to maintain high PDR despite the longer 

paths the packets travel when the energy of the nodes starts getting exhausted.  

 

Figure ‎4.7: Average PDR versus time using 2D-CNN model. 
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4.3. PERFORMANCE OF THE 3D-CNN MODEL 

After training the implemented 3D-CNN for the DQN using 100 WSNs, its performance is 

evaluated using the same 10 WSNs in the previous experiments. The average lifetime of 

these networks is 678251.62 sec, with an average number of hops of 9.81 hops per packet 

and 85.07% PDR, where each prediction has consumed an average of 351.71uS. The 

average minimum power remaining on the nodes is calculated for these networks as they 

operate and illustrated in Figure 4.8, which shows that this model has achieved less slope, 

compared to the previous experiments. Hence, this model has achieved a better balancing 

of energy consumption among the nodes in the network. 

 

Figure ‎4.8: Average minimum energy in the nodes of the evaluation WSNs using 3D-CNN model. 

Moreover, the average number of hops is also monitored during the operation of the WSNs, 

using the proposed method as the traffic flow manager. For better illustration, the values are 

summarized for every 1000 seconds, i.e. these average values are also averaged. A 

noticeable change in the average number of hops cannot be recognized at any range of time 

in the lifetime of the network. This behavior combined with the lower overall average of 

number of hops per packet, compared to the 2D-CNN, shows that the 3D-CNN model has 

attempted balancing the load earlier than the 2D-CNN, i.e. before the energy of the nodes 

starts to get exhausted. 
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Figure ‎4.9: Average number of hops versus time using the 3D-CNN model. 

Additionally, the average PDR has also been monitored during the operation of the WSNs, 

which is also measured for every 1000 seconds to produce a better illustration. As shown in 

Figure 4.10, the proposed method has been able to maintain high PDR until the end of the 

lifetime of the WSN.  

 

Figure ‎4.10: Average PDR versus time using 3D-CNN model. 
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5. RESULTS SUMMARY AND DISCUSSION 

The results collected from the experiments conducted in this study are summarized in Table 

5.1, which also summarizes the results of state-of-the-art studies that also use DRL for 

SDNs. This summary shows that the proposed method using the 3D-CNN DQN model has 

been able to achieve the highest lifetime of the network, whereas the FFNN has achieved 

the lowest, as also illustrated in Figure 5.1. However, despite the similar lifetime of the 

WSNs between the FFNN and the method proposed by Lin et al. [23], all DQN models 

have achieved longer lifetime, according to the use of this value as the reward for the DQN. 

Table ‎5.1: Summary of the performance measure for the existing and proposed methods. 

Method Lifetime Prediction Time(uS) Average Hops PDR(%) 

FFNN 578382 278.8 8.31 83.37 

2D-CNN 638169 316 12.37 82.47 

3D-CNN 678252 351.7 9.81 85.07 

Lin et al. [23] 578122 328.1 9.32 81.68 

Zhang et al. [24] 541840 341.9 10.53 72.55 

Stampa et al. [25] 520364 283.1 8.76 64.71 

 

 

Figure ‎5.1: Summary of the average lifetime for the proposed and existing methods. 
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The 3D-CNN model has been able to extend the lifetime of the network by 17% compared 

to the highest lifetime using the existing method, which is achieved by Lin et al. [23]. 

Moreover, this model has also been able to improve the PDR of the network with a quite 

similar average number of hops, which proves the hypothesis of this study that the use of 

the networks lifetime as the reward value can balance the overall performance of the 

network. Additionally, the highest average number of hops, shown in Figure 4.2, using the 

method proposed in this study is expected behavior, as the SDN controller is required to 

use longer paths in order to avoid exhausting the resources of a certain node. 

 

Figure ‎5.2: Average number of hops using the proposed and existing methods. 

Although the FFNN has only been able to slightly extend the lifetime of the WSN, 

compared to the method proposed by Lin et al. [23], this model has been able to reduce the 

average number of hops required to deliver the packets an improve the PDR, as shown in 

Figure 5.2 and 5.3. However, the main drawback of using the FFNN is the limited number 

of possible nodes in the WSN, which must be less than or equal to the number of neurons in 

the output layer. Otherwise, the implementation and training of a new neural network are 

required to handle larger WSNs, which may increase the time required to predict the 

optimal node a packet must be sent to. In the 2D- and 3D-CNNs, the same neural network 

can be used regardless of the number of nodes in the network and the dimensions of the 

regions the network is placed in. The values are mapped into a fixed-size array, according 

to their actual position in that region. Hence, the prediction time is constant for these 
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methods. Figure 5.4 shows the average prediction time required by the proposed and 

existing methods. 

 

 

Figure ‎5.3: Summary of the PDR for the existing and proposed methods. 

 

 

Figure ‎5.4: Average prediction time required by the existing and proposed methods to predict the 

optimal next hop. 
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6. CONCLUSIONS AND FUTURE WORK 

 The use of smaller highly-mobile devices to collect information and execute commands 

remotely has presented the era of the Internet of Things. Normally, these devices are of 

limited resources, such as processing power, memory and energy sources. However, to 

maintain the flexibility of networks used to exchange the information in these WSNs, the 

IoT devices are required to deliver traffic initiated by other nodes in the network. Thus, it is 

important to optimize the flow of the traffic in the network, so that, communications are 

established using minimum resources consumption. SDN has emerged as a new solution to 

such challenges, where a controller is designated for the network to control the flow of the 

packets and maintain communications. 

In this study, a new method is proposed to be used in the controller of an SDN. The 

proposed method uses DQNs to predict the reward values for a packet is forwarded to each 

of the nodes in the network. Information about the packet as well as the nodes in the 

network is provided to the DQN, so that, the node that maximizes the lifetime of the 

network is selected to forward the packet to it. The use of the lifetime value as the reward 

to train the DQN can balance the overall performance of the WSN, as extending the 

lifetime requires optimizing the resources consumption from the nodes. Several DQN 

models are implemented using FFNN, 2D-CNN and 3D-CNN, where the state of the 

networks and the information of the packet being forwarded are summarized in a one-

dimensional vector for the FFNN, whereas these values are summarized in a three-

dimensional array for the CNN models. 

The results of the experiments conducted to evaluate the performance of the proposed 

method show that the 3D-CNN has the best performance, as it has achieved the longest 

lifetime. This performance is according to the use of three-dimensional average pooling 

filters to summarize the features detected for each node into a single value that can be used 

to represent the overall state of that node. This model has been able to extend the lifetime of 

the WSNs by 17% to 678251.6S, compared to the longest lifetime of 578122.2S using the 

existing state-of-art-methods. However, to ensure the extension of the WSN’s lifetime, i.e. 

balanced resources consumption, the average number of hops required to deliver the 
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packets has relatively higher value of 9.81 hops per packet, compared to 8.76 in the existing 

methods. However, the PDR of the network has significantly increased to 85.07%. 

The FFNN has achieved the shortest lifetime of 578381.6S among the proposed models, 

according to the limited information can be represented in the one-dimensional vector, 

compared to the three-dimensional arrays in the CNN models. However, this method has 

been able to achieve the lowest number of hops per packet, i.e. shorter paths, with 83.37% 

PDR. The 2D-CNN model has shown a reasonable lifetime of 638169.2S with 82.47% 

PDR. However, this model has shown longer paths, with an average of 12.37 hops per 

packet, which is longest among the evaluated models. The results show that the 2D-CNN 

starts to use longer paths as the energy available in the nodes start to get exhausted, up to a 

certain level where most of the nodes start to have critical energy levels. At that point, this 

model falls back to choosing the shortest paths, as most of the nodes have low energy 

values and the selection of longer paths can increase the consumption of the already limited 

resources in the network. 

In future work, the RL model is going to be provided with the ability to drop packets, so 

that, a packet that is sent to a node which is out of reach is dropped immediately without 

being forwarded to any other nodes. However, to implement such modes, it is important to 

include the PDR in the computations of the reward value. Otherwise, the DQN is going to 

learn that dropping the packets returns the highest reward, as it does not consume any 

additional resources. The use of such a model is expected to extend the networks lifetime 

furthermore, as packets can be dropped immediately instead of being forwarded to nodes 

that cannot deliver the packet to its destination. 
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