
i

A TASK FLOW DESIGN TOOL FOR SERIOUS GAMES: AN EXTENDED

VERSION OF UML-AD (UML-ADE)

A THESIS SUBMITTED TO

THE GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES

OF

ATILIM UNIVERSITY

BY

EDA TOPALOĞLU

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE

DEGREE OF MASTER OF SCIENCE

IN

INFORMATION TECHNOLOGY SERVICE MANAGEMENT

JULY 2014

ii

Approval of the Graduate School of Natural and Applied Sciences, Atılım
University.

Prof. Dr. İbrahim Akman

Director

I certify that this thesis satisfies all the requirements as a thesis for the degree of
Master of Science.

Assoc. Prof. Dr. Murat Koyuncu

Head of Department

This is to certify that we have read the thesis “A Task Flow Design Tool For Serious
Games: An Extended Version of UML-AD (UML-ADE)” submitted by Eda
Topaloğlu and that in our opinion it is fully adequate, in scope and quality, as a thesis
for the degree of Master of Science.

Asst. Prof. Dr. Nergiz Ercil Çağıltay

Supervisor

Examining Committee Members

Assoc. Prof. Dr. Murat Koyuncu _____________________

Assoc. Prof. Dr. Hadi Hakan Maraş _____________________

Asst. Prof. Dr. Nergiz Ercil Çağıltay _____________________

Asst. Prof. Dr. Atilla Bostan _____________________

Asst. Prof. Dr. Gökhan Şengül _____________________

Date: 18.07.2014

iii

I declare and guarantee that all data, knowledge and information in this document

has been obtained, processed and presented in accordance with academic rules and

ethical conduct. Based on these rules and conduct, I have fully cited and referenced

all material and results that are not original to this work.

Name, Last name: Eda Topaloğlu

Signature:

iv

ABSTRACT

A TASK FLOW DESIGN TOOL FOR SERIOUS GAMES: AN EXTENDED

VERSION OF UML-AD (UML-ADE)

Topaloğlu, Eda

M.S., Information Technology Service Management

Supervisor: Asst. Prof. Dr. Nergiz Ercil Çağıltay

July 2014, 77 pages

By improving technology, serious game is widely used by several areas such as

defense, science, exploration, health care, emergency management, military

management, city planning, engineering, religion and politics. However,

development and design of these serious games is more important than playing them.

Therefore, in order to create successful serious games, involving domain experts and

end-users into the development process is important and necessary. During the

development process, communication among those people is a very critical factor to

better design and development of the game features according to the expected

outcomes. In this study, UML Activity Diagram (UML-AD) is analyzed to represent

the scenario flow of a serious game and document the serious game design.

Additionally, for the design of serious game, an extension of UML-AD, named as

UML-Activity Diagram Extended (UML-ADE), is proposed. The main purpose of

the UML-ADE model is to improve the level of understandability of the UML-ADE

with both the domain-experts, technicians and end-users. Therefore, the

understandability level of the proposed UML-ADE model by technicians is

investigated, evaluated experimentally. Results of this study show that the

understandability level of proposed UML-ADE model is significantly higher than

that of UML-AD.

Keywords— Serious Game; Unified Modelling Language; Activity Diagram;

Activity Diagram Extended; Defect Difficulty Level; Defect Detection Performance

v

ÖZ

CİDDİ OYUNLAR İÇİN İŞ AKIŞ TASARIM ARACI:

GENİŞLETİLMİŞ UML-AD (UML-ADE)

Topaloğlu, Eda

Yüksek Lisans, Bilgi Teknolojileri Hizmet Yönetimi

Tez Yöneticisi: Yrd. Doç. Dr. Nergiz Ercil Çağıltay

Temmuz 2014, 77 sayfa

Gelişen teknolojiyle birlikte ciddi oyunlar, savunma, bilim, keşif, sağlık hizmetleri,

acil durum yönetimi, askeri yönetim, şehir planlama, mühendislik, din ve siyaset gibi

bir çok alanda yaygın olarak kullanılmaktadır. Ancak, ciddi oyunların geliştirilmesi

ve tasarımı onları oynamaktan daha önemlidir. Bu nedenle, başarılı bir ciddi oyun

geliştirebilmek için, yazılım geliştirme sürecinde alan uzmanları ve son kullanıcıların

dahil edilmesi önemli ve gereklidir. Yazılım geliştirme süreci boyunca, istenen

sonuçlara göre iyi bir oyun tasarımı ve gelişimi sağlamak için, insanların birbirleri ile

olan iletişimi kritik bir faktördür. Bu çalışmada, ciddi oyundaki senaryo akışını

göstermek ve tasarımını dokümante etmek amacıyla UML Aktivite Diyagramı

(UML-AD) analiz edilmiştir. Ayrıca, ciddi oyun tasarımı için UML-AD genişletilmiş

ve Genişletilmiş UML Aktivite Diyagramı (UML-ADE) önerilmiştir. UML-ADE

modelinin temel amacı, alan uzmanları, teknik kişiler ve son kullanıcılar ile birlikte

UML-ADE’nin anlaşılabilirlik seviyesini geliştirmektir. Bu kapsamda, teknik kişiler

tarafından UML-ADE modelinin anlaşılabilirliği araştırılmış ve deneysel yöntemle

değerlendirilmiştir. Bu çalışmanın sonucu UML-ADE modelinin anlaşılabilirliğinin

UML-AD modelinden yüksek olduğunu göstermektedir.

Anahtar Kelimeler— Ciddi Oyun; Birleşik Modelleme Dili, Aktivite Diyagram;

Genişletilmiş Aktivite Diyagram; Hata Zorluk Derecesi; Hata Bulma Performansı

vi

To My Family

vii

ACKNOWLEDGMENTS

First and foremost, I express sincere appreciation to my supervisor Asst. Prof. Dr.

Nergiz Ercil Çağıltay for her guidance, continuous support and insight throughout

my thesis study.

I would like to thank Asst. Prof. Dr. Gül Tokdemir and Asst. Damla Topallı for their

valuable support and guidance, helping to improve my thesis work.

I would also express my appreciation to examination committee members; Assoc.

Prof. Dr. Murat Koyuncu, Assoc. Prof. Dr. Hadi Hakan Maraş, Asst. Prof. Dr. Nergiz

Ercil Çağıltay, Asst. Prof. Dr. Atilla Bostan, Asst. Prof. Dr. Gökhan Şengül, for their

valuable time, comments and suggestions.

I would also like to thank Atılım University students’ and colleagues, who willingly

participated in my study, for their valuable time and contributions.

This study is conducted for improving the scenario designs of the educational

materials which are developed for neurosurgery education project (ECE: Tubitak

1001, Project No: 112K287) purposes. I would like to thank the support of

TUBITAK 1001 program for realizing this study.

Last but not the least; I would like to express my appreciation to my parents for their

endless love, support and patience. They have always believed in me and encouraged

me all through my life.

viii

TABLE OF CONTENTS

ABSTRACT ... iv

ÖZ .. v

ACKNOWLEDGMENTS ... vii

TABLE OF CONTENTS .. viii

LIST OF TABLES .. xi

LIST OF FIGURES ... xii

LIST OF ABBREVIATIONS .. xiii

CHAPTER 1 ... 1

 INTRODUCTION ... 1

1.1. Educational Serious Game .. 3

1.2. Health Serious Game ... 3

1.3. Problems of Serious Games .. 4

CHAPTER 2 ... 7

 BACKGROUND OF THE STUDY ... 7

2.1. Serious Game Design Tools .. 7

2.1.1. GameFlow .. 7

2.1.2. Game-Flow-Design .. 7

2.1.3. Meta-Design... 8

2.1.4. Meta-Edit ... 8

2.1.5. IDE (Integrated Development Environment) .. 8

2.1.6. <e-Adventure> ... 9

2.1.7. Workflow ... 9

2.2. UML (Unified Modeling Language) ... 9

2.2.1. Use Case Diagram ... 10

2.2.2. UML Activity Diagram ... 10

2.2.3. Activity Diagram Nodes and Edges... 12

2.2.4. Action Nodes ... 12

2.2.5. Control Nodes .. 12

2.2.6. Object Nodes.. 13

ix

2.2.7. Details of Simple Control Flows ... 13

2.2.8. Concurrent Flows ... 16

2.2.9. Data Flows ... 17

2.2.10. Action Notation .. 19

2.2.11. Swimlane in UML-AD ... 19

CHAPTER 3 ... 22

 PROPOSED METHODOLOGY ... 22

CHAPTER 4 ... 25

 RESEARCH METHODOLOGY .. 25

4.1. Research Questions ... 25

4.2. Instruments .. 26

4.2.1. The User Requirements Documents for the Scenarios 26

4.2.2. Conceptual Data Model Diagrams ... 26

4.2.3. Defect Report User Interface ... 26

4.2.4. Questionnaires ... 28

4.2.5. Notation Explanation Document ... 28

4.2.6. Experimental Data Model Diagrams ... 28

4.3. Research Procedures .. 34

4.4. Participants .. 35

4.5. Measures for UML-AD and UML-ADE ... 36

4.5.1. Defect Difficulty Level .. 36

4.5.2. Participant Performance ... 37

CHAPTER 5 ... 38

 RESULTS .. 38

5.1. Detected Defects in UML-ADE and UML-AD .. 38

5.2. Difficulty Levels of Defects .. 40

5.3. Reviewers’ Defect Detection Performance ... 41

CHAPTER 6 ... 44

 DISCUSSIONS / CONCLUSION .. 44

6.1. Limitations and Future of Study .. 45

 REFERENCES .. 47

 APPENDIX A: User Requirements Document For Scenario 1 (English) 53

 APPENDIX B: User Requirements Document For Scenario 2 (English) 54

 APPENDIX C: User Requirements Document For Scenario 1 (Turkish) 55

x

 APPENDIX D: User Requirements Document For Scenario 2 (Turkish) 56

 APPENDIX E: UML-AD Model Used For Scenario 1 (Turkish) 58

 APPENDIX F: UML-ADE Model Used For Scenario 1 (Turkish) 59

 APPENDIX G: UML-AD Model Used For Scenario 2 (Turkish) 60

 APPENDIX H: UML-ADE Model Used For Scenario 2 (Turkish) 61

 APPENDIX I: UML-AD Model Used For Scenario 1 (English) 62

 APPENDIX J: UML-ADE Model Used For Scenario 1 (English) 63

 APPENDIX K: UML-AD Model Used For Scenario 2 (English) 64

 APPENDIX L: UML-ADE Model Used For Scenario 2 (Engilish) 65

 APPENDIX M: Questionnaire 1 Used In UML-AD (English) 66

 APPENDIX N: Questionnaire 1 Used In UML-ADE (English) 67

 APPENDIX O: Questionnaire 1 Used In UML-AD (Turkish) 68

 APPENDIX P: Questionnaire 1 Used In UML-ADE (Turkish) 69

 APPENDIX R: Notation Explanation Document For UML-AD (English) 70

 APPENDIX S: Notation Explanation Document For UML-ADE (English) 72

 APPENDIX T: Notation Explanation Document For UML-AD (Turkish) 74

 APPENDIX U: Notation Explanation Document For UML-ADE (Turkish) 76

xi

LIST OF TABLES

Table 4.1 – Conceptual Model Defects for Scenario 1 .. 28

Table 4.2 – Conceptual Model Defects for Scenario 2 .. 31

Table 4.3 – Participants of Experiment .. 35

Table 5.1 – Defect Difficulty Levels Scenario 1.. 40

Table 5.2 – Defect Difficulty Levels Scenario 2.. 40

Table 5.3 – Questionnaire Responses .. 42

Table 6.1 – Summary of Results .. 45

xii

LIST OF FIGURES

Figure 2.1 – History of UML ... 11

Figure 2.2 – Action, accept event & send signal in UML - AD 12

Figure 2.3 – Control Nodes in UML-AD ... 13

Figure 2.4 – Object Nodes in UML-AD .. 13

Figure 2.5 – Simple Control Flows in UML-AD ... 14

Figure 2.6 – Concurrent Flows in UML-AD ... 16

Figure 2.7 – Data Flows in UML-AD .. 18

Figure 2.8 – UML-AD Action Notation .. 19

Figure 2.9 – UML-AD Vertical Swimlane Notation for 3 Actors 20

Figure 2.10 – UML-AD Horizontal Swimlane Notation for 3 Actors 20

Figure 3.1 – UML-ADE Player Task Notation .. 23

Figure 3.2 – UML-AD Player Task Notation .. 24

Figure 4.1 – Defect Report User Interface ... 27

Figure 4.2 – UML-AD Model with Defects... 30

Figure 4.3 – UML-ADE Model with Defects .. 31

Figure 4.4 – UML-AD Model with Defects... 33

Figure 4.5 – UML-ADE Model with Defects .. 34

Figure 4.6 – Diagram for research procedure .. 34

Figure 5.1 – Detected Defects Distribution in Both Groups for Scenario-1 39

Figure 5.2 – Detected Defects Distribution in Both Groups for Scenario-2 39

Figure 5.3 – Defect Detection Performance Distribution in Both Groups for

Scenario-1 .. 41

Figure 5.4 – Defect Detection Performance Distribution in Both Groups for

Scenario-2 .. 42

xiii

LIST OF ABBREVIATIONS

AD - Activity Diagram

ADE - Activity Diagram Extended

DF - Defect Difficulty Level

M-UML - Mobility of Unified Modeling Language

OCL - Object Contraint Language

PP - Participant Performance

SFD - Scenario Flow Diagram

UML - Unified Modeling Language

1

CHAPTER 1

INTRODUCTION

History of game is based on ancient times. From the archaeologists’ studies we

understand that games were part of social lives in earlier time [1]. Nowadays, there

are millions of game variations such as racing games, adventure games, serious

games, health games, intelligence games, sport games, music games, action games,

strategic games, puzzle games and games for kids, love and fun games [2][5].

Game is an activity that people of all ages play [3]. In today's world, computer

games, especially for children have become one of the most interesting and

entertaining technology environments [4]. On the other hand, the Internet becomes

an indispensable part of our lives. Playing via the Internet, online multi-user

computer games with people of different ages, cultures and geographies in order to

ensure interaction and communication has played an important separation [4].

Internet access and applications has a great contribution to diverse application areas

and the spread of computer games [4]. Games nowadays provide environments such

that thousands of people come together for a common goal of virtual worlds [4].

Most of the children playing computer games consider computer games as an activity

of leisure entertainment [4]. According to Mangir (1993), games have potential to

improve children ability, creative potential of mind, the language skills and social

skills as well as emotional and motor skills [10]. In addition, children learn the basic

social rules such as obeying game rules, sharing with friends, helping each other and

establishing positive relationships with the environment, rules, and taking

responsibility to respect the rights of others [10]. For adults, game is an

entertainment to relax themselves during their leisure times [3]. Besides these

features of computer games, in the literature, several studies show benefits of game-

based learning environments [4]. These studies show how computer games are

2

represented educational content by using the most effective and appropriate learning

environments to integrate adaptation and concentration [4].

Furthermore, by improving technology, some games are developed for patients who

lose a variety of movement skills. These games are effective to rehabilitate the

patients and improve patients’ cerebral function. Hence, these games are designed

not only for entertainment and learning but also rehabilitation purposes [50]. These

groups of games are called as serious games that are designed for entertainment and

important purposes [5]. Another definition of ‘serious gaming’ offered by Zyda

(2005) is, “a mental contest, played with a computer in accordance with specific

rules, that uses entertainment to further government or corporate training,

education, health, public policy, and strategic communication objectives” [5]. When

the studies in the literature are analyzed, many different types of serious games can

be found as follows [5][2]:

 Educational games

 Healthy games

 Edutainment

 Training and Simulation

 Games for Good

 Games for Change

 Virtual Reality

 Alternative Purpose Games

 Digital Game-Based learning

 Immersive Learning Simulations

 Social Impact Games

 Persuasive Games

 Synthetic Learning Environments

Serious game is used at several areas such as defense, scientific, exploration, health

care, emergency management, military management, city planning, engineering,

religion, and politics [6][58]. It can also be used at every level of education, at all

kinds of schools and universities around the world [6]. Serious games have potential

to improve lots of different development skills such as strategic thinking, planning,

3

communication, collaboration, group decision making, negotiating and data-

handling skills [19]. Games provide opportunities for learners to experiment and to

make mistakes in a protect environment without risk of life, limb or identity [5].

Also, studies show that, serious games increase inventive thinking, high productivity

and effective communication [7]. In some serious games, players work together to

accomplish tasks and goals as a virtual team which unfold over time as a story and

create a permanent memory for the players [5]. We can group application areas of

these serious games in two categories: educational and health. Below the games

according to these categories are summarized.

1.1. Educational Serious Game

Educational serious game can be called as edutainment [8]. It is an effective tool for

improving learning in both adults and children. All digital games, simulations and

virtual worlds involve learning, but there is in balance between learning what the

game is designed to teach and learning the game [8]. Serious game is the accepted

term for games with an educational intent. They need to be engaging, although not

necessarily fun, while the learning can be implicit or explicit. Educational games are

designed to teach students about certain subjects, expand concepts, reinforce

development, understand an historical event or culture, or assist them in learning a

skill as they play [8]. These games provide an immediate and challenging visual

feedback within a fun safe virtual environment [8].

1.2. Health Serious Game

The number of serious games in the health sector is also growing day by day. These

games have great potential for patients to prevent and rehabilitate them [9]. Serious

games are pedagogical platforms [9]. Therapy of cancer, diabetes, asthma, burns, and

brain injuries profits from serious games. Serious games in health help to increase

motivation, reduce anxiety on patients by entertaining and promote physical activity.

Video game technologies are increasingly used nowadays. In health care, they

provide examples of innovative ways to improve skills for patients [9][59]. Some of

the advantages of serious health games can be summarized as below:

 Training and simulation

4

 Cognitive functioning

 Control mental and emotional states

 Recovery and rehabilitation

 Diagnosis and treatment of mental illness/mental conditions

 Distraction therapy

1.3. Problems of Serious Games

In contrast to the studies showing several advantages of serious games, some studies

also report failure and uncertain situation in game-like environments [11].

Motivating students is one of the serious problems in education, because learning

tasks can be very boring, complex, too easy, or repeated [11]. Another serious

problem is enforcement. When students are enforced for gaming, it can create

negative effects on students [11]. Studies also show that, there are some factors,

affecting the success of those serious games. We believe the design characteristics of

games are one of the important factors to improve their benefits in education and

health fields.

Every game has rules and components, which define the game [3]. Everything that is

in the rules is part of the game whereas everything that is not in the rules does not

belong in the game [3]. Additionally, every game has a goal, which means the

victory condition or requirement or the strategy needed to win the game [3]. Every

game has different properties. For instance, in some games, narrative and storytelling

are preferred. Because, it is believed that the narrative and storytelling are more

permanent in children’s memory. Educational video games are useful activities that

supply problem solving, narrative feature, learning-by-doing, and ability [13]. These

game design factors are important to improve benefits of games in the educational

and health environments. In order to create successful serious games, it is important

to involve domain experts who can define the specific features and requirements of

the end-users [12]. There should be a balance between education and entertainment

for the effectiveness of design educational games [13]. Hence, the input of domain

experts is important from inception to design and from initial development to testing

[13] processes of serious games. End-user Development refers to methods,

techniques, and tools that support end users to create, adapt, or evolve the game

5

design [16]. End-user Development approves the importance of involvement of

different domain experts in the design of effective interactive systems, because

domain experts have specific knowledge of the domain which is needed for serious

game software development [14] [15]. Also, domain experts should be active during

design, development and evaluation phases of such software projects. Additionally,

according to a study, different techniques and tools such as programming libraries

and authoring tools can be used during the technical development process of

educational games [17]. Authoring tools are aimed to make development process

more accessible [17]. On the other hand, the technical development of serious games

requires the involvement of programmers, visual arts, designers, sound designers and

writers [18]. Programmers create the game codes [18]. Sound designers develop

everything from music and ambient sounds to character speech and sound effects

[18]. Writing involves producing high-level narrative and character treatments,

developing back-story, and writing dialogue [18]. All game artists are skilled at basic

visual design, including coursework in drawing and painting fundamentals,

sculpture, anatomy, physiology, and life drawing [18]. Hence, we understand that in

the development process of serious games, several people such as domain experts,

end-users, and technical people should be involved in. During the development

process communication among those people is a very important factor to better

reflect their concerns in the game design and user interface.

Today, there are several tools that can be used to better reflect the serious game

design and improve the level of communication among the technicians & domain

experts such as UML, Game-Flow-Design, Meta-Design, Meta-Edit, Workflow,

Story Flow Diagram, and Storyboard [20] [21] [22] [23] [24] [25]. However there are

not many studies showing how to use these tools to better design serious games as

well as evaluating if these tools are appropriate for representing the game design.

Additionally, there are not many studies evaluating the effectiveness of these tools

for serious game design. In this study these design tools are in general described and

one of the tools that is used commonly for serious game design, namely the UML

Activity Diagram to represent the scenario flow of a serious game is analyzed.

Additionally, the limitations of UML Activity Diagram (UML-AD) representation

for the serious game design are discussed. Based on these limitations, an extended

6

version of UML-AD is proposed and named as UML Activity Diagram Extended

(UML-ADE). The benefit of UML-ADE representations according to the UML-AD

is also analyzed experimentally.

The next chapters of thesis are organized as follows. Chapter 2 reviews the literature

about serious game design and tools that can be used to represent story/scenario flow

of these games, and discusses their limitations to better represent this information.

Chapter 3 describes the proposed methodology of this study and defines the proposed

extended version of UML-AD (UML-ADE). Chapter 4 describes the research

methodology of this study and discusses the proposed extended version of UML-AD

(UML-ADE). Chapter 5 represents the results of this study to better understand the

effect of UML-ADE for serious game design, to improve the level of communication

among people involved in the game development process. And finally, Chapter 6

represents the discussion/conclusion of the study.

7

CHAPTER 2

BACKGROUND OF THE STUDY

In the literature there are several tools that can be used to document the serious game

design and used for communication purposes between the domain experts and the

technical developers. Among those, the widely used ones are described below.

2.1. Serious Game Design Tools

There are several tools developed to support creating better design for serious games.

These tools are used for different purposes in game design such as representing the

game flow, helping the domain experts to create their own games without coding and

helping both the domain experts and the technical people for improving their

communication level. Among those, the Game-Flow and Game-Flow-Design are the

tools developed to design the flow in the game.

2.1.1. GameFlow

The aim of Game-Flow is to develop and validate a model of player enjoyment in

games, which are based on flow [31]. This tool involves extending the 8 elements of

flow to model player enjoyment in games by using the heuristics in the games

usability and user-experience literature [31]. The 8 core elements are concentration,

challenge, skills, control, clear goals, feedback, immersion, and social [31]. For each

element, the Game-Flow model includes an overall goal and a set of central criteria

that can be used to design and evaluate games with respect to player enjoyment [31].

2.1.2. Game-Flow-Design

Game-Flow-Design is a tool to provide a detailed design technique for modeling

individual computer game levels [21]. The purpose of this tool is to outline the flow

8

of game play between scenes and within scenes in a given game level and modeling

game in scripted games [21]. Computer game-flow design tool extends the use-case

diagrams of UML technique that are commonly used to make them more applicable

for the computer game design [21].

2.1.3. Meta-Design

Meta-Design supplies End User Development (EUD) activities, which create socio-

technical conditions to adapt the users [22]. Recently a definition for Meta-Design

has been proposed in [28] [29]: “Meta-design characterizes objectives, techniques,

and processes for creating new media and environments allowing ‘owners of

problems’ (that is, end-users) to act as designers. A fundamental objective of meta-

design is to create socio-technical environments that empower users to engage

actively in the continuous development of systems rather than being restricted to the

use of existing systems”.

2.1.4. Meta-Edit

Meta-Edit is a domain-specific language, which allows modeling tools without

writing a single line of code [23]. Meta-Edit tool provides a meta-modeling language

and tool suite to define the method concepts, their properties, associated rules,

symbols, checking reports, and generators [23]. The tool increases productivity for

product families.

2.1.5. IDE (Integrated Development Environment)

IDE is for authoring and debugging non-linear scenarios to train games [34]. IDE

platform supplies software development and normally consists of a source code

editor, a compiler and/or interpreter, build automation tools, usually a debugger, and

visualization module for 3D environment [34]. It is believed that the IDE has a

Visual Programming Language (VPL) and its respective logic engine (interpreter), a

scenario-authoring tool (source editor), and a scenario testing and debugging tool

(debugger) [34]. The games developed by using these tools have user interface

design limitations with the capabilities of the tool. In other words, the professional

programming flexibility can never be provided through these tools. Additionally, it

requires more time and effort of domain experts.

9

In this concern, there are some tools that can be used by both the domain experts and

the technicians to improve their level of communication considering the game

design. For example Game-Flow-Design, e-Adventure, Workflow, and UML

Activity Diagrams can be considered in this category.

2.1.6. <e-Adventure>

The <e-Adventure> tool is an instructor-oriented platform for the development of

educational point-to-point adventure videogames [32]. The <e-Adventure> platform

supports the educational features through its built-in assessment and adaptation

mechanisms and allows instructors to define aspects of games, which are

educationally relevant. [33]. <e-Adventure> platform also allows authors to specify

assessment rules which are in different states and identifies relevant patterns of

behavior to be matched on the state space of game [33].

2.1.7. Workflow

Workflow process includes how something gets done, how the applications work

together and what the process might be for different kinds of projects [35]. In

educational games, the workflow supposes availability of an extensible game

framework to supply an easy design of word and logic educational games and

includes the instructor role as a role of key importance of the way games will be

incorporated into an instructional design. [36]. It is believed that to provide effective

workflow, development of simple single-user educational games can easily be

parameterized, instantiated and executed [36].

Among these tools the UML is one of the widely used one for several different

purposes. For this reason in the next section this tool is described in detail.

2.2. UML (Unified Modeling Language)

UML system is used for modeling and simulation that presents a meta-model [20]. It

is stated that UML is for visualizing, specifying, constructing, and documenting the

products of a software-intensive system [26]. UML supports objects, relationships,

use cases, scenarios, application, classes, and components [26]. Also, it is believed

that the UML is based on Domain Specific Language (DSL) for the meta-model [20].

10

UML tools support experimentation and evaluation of different design options [27].

UML model includes use case diagrams, class diagrams, object diagrams, component

diagrams, deployment diagrams, activity diagrams, sequence diagrams, state

machine diagrams, and collaboration diagrams [26][27].

UML representations have been used in serious game design successfully. For

instance Cirulis and Ginters report that the UML has diagrams and graphical

elements in Virtual and Augmented Reality (VR/AR) worlds [30]. According to

them, UML choice allows developing an agent-based simulator easily for the object-

oriented framework, engineering, maintenance and extension [30]. In this study

agent- based simulations are used to integrate prepared learning scenarios in VR/AR

world [30]. According to Cirulis and Ginters the UML is for modeling and planning

purposes, and object oriented approach for programming and creation of VR scene

[30].

2.2.1. Use Case Diagram

It is believed that the Use Case Diagram is a scenario between user and system that

defines event flows as a text format [39]. This diagram is related with what the

system does [39]. Use Case is preferred to document the behavior of software

systems and specifies the requirements of software systems [40]. It is thought that

Use Case is used to show the system behaviors to determine requirements and

analyze stages [39].

2.2.2. UML Activity Diagram

It is believed that UML Activity Diagram (UML- AD) supports verification of flow

of action models and translates an activity diagram into input format [37]. Also, the

purpose of this tool is to model system-level functions and procedural flow that is

part of larger activity [38]. It is thought that the UML Activity Diagram represents

the performance of actions and sub activities that is a special case of state diagram

[41]. Since the UML-AD is the most commonly used one, in this study, the features

of UML-AD are analyzed in detail below.

An Activity Diagram can be defined by one of the Unified Modeling Language

(UML) [42]. UML (Unified Modeling Language) is the last version that is used and

11

modified to know as an activity diagram and flow modeling in Figure 2.1 [48]. The

Activity Diagram models the actual workflow and control flow of behavior in a

system [43]. It is thought that the Activity Diagram is the expanded version of the

use-case diagram and similar to flow chart, but the small difference is that the

Activity Diagram has concurrent operations [44]. It is believed that the purpose of

the Activity Diagram is to determine activity flow of a system, analyze use-case

diagrams, define the sequence from one activity to another, or describe parallel,

branched and concurrent flow of the system [44]. The Activity Diagrams describe

work processes and functional processes that have division of work between user and

system explicit and short description of function [45].

Figure 2.1 – History of UML

In the last two years UML diagram has been used in mobile systems for widely

distributed and heterogeneous systems [54][55][56]. Location, mobile object, mobile

location, move action and clone action are concepts of UML diagram in mobility.

These concepts are built-in mechanisms that are defined by using UML stereotypes,

tagged values, and Object Contraint Language (OCL) constraints [55][56]. For

modeling mobility, two variants that are responsibility-centered and location-

centered are included [56]. Also, UML modeling becomes increasingly important

about modeling of agent-based systems [55]. Klein et al. [57] proposed an extension

to UML for mobile agents. Mobile agent system is software and has several agents

and technical and functional features to develop mobile-agent applications [55].

Mobile agents system provides agent programmers, native resources, agents’

acceptance, and logical locations, code/data transferring and computational

environment. UML diagram models the several aspects of a software system.

Because the UML-AD shows the control flow between actions in activity, in UML-

AD diagram, a mobile action/activity includes at least one mobile agent in a different

platform [54]. Mobile agents and static locations are not well suited enough for

12

mobile computing modeling. In order to deal with this problem, UML diagram has

been proposed. UML profile includes view of organizational, life cycle, interaction

and mobility areas of mobile agents’ model [55]. Therefore, UML is widely used in

mobile agent systems as well.

Additionally, UML-AD is used as an effective design and Meta model in object

oriented program testing, because use of code is complex and important to test, and

software test techniques consider insufficient static view of code [46][60]. It is

believed that this model supplies simplicity and understandable flow of logic and

concurrent activities to generate test cases [46]. Below the main features of the

activity diagrams are summarized [46] [47] [48].

2.2.3. Activity Diagram Nodes and Edges

Activity is a coordination of executions of subordinate behaviors. Subordinate

behaviors are defined by using control and data flow model. Each activity diagram

shows exactly one activity and an activity is modeled as a graph of activity nodes

that are connected by edges. There are three different node types in an activity-

action, object and control nodes.

2.2.4. Action Nodes

Action nodes are an individual step in an activity. These are basic elements that

supply control or data flow to or from other nodes. They determine where the action

appears within different namespaces. Action nodes receive an event, control, send

signal and provide data. As seen in Figure 2.2, action nodes are represented by a

rectangle.

Figure 2.2 – Action, accept event & send signal in UML - AD

2.2.5. Control Nodes

Control Nodes only controls the flow edges and illustrates the control flow of

13

the activity. It starts an activity node after the previous one is finished. In Figure 2.3,

control nodes relationship is represented.

Figure 2.3 – Control Nodes in UML-AD

2.2.6. Object Nodes

It connects only object nodes and data. In Figure 2.4, object nodes relationship is

represented.

Figure 2.4 – Object Nodes in UML-AD

2.2.7. Details of Simple Control Flows

Simple control flows in UML-AD is used to represent flows in a design. Main factors

in this representation are explained below according to the numbers shown in Figure

2.5.

 Action: The action starts when a token has arrived at all its incoming flows.

When it ends, tokens are sent on all the outgoing flows. In UML-AD, an action is

represented by a rectangle like shape (). Action is a single step and

has an input and output information. Action has the following components, body,

language, local post conditions, and local preconditions.

 Body - Specifies the action in detail.

 Language - The language of the expression in Body.

 Local Post conditions - Constraints that must be satisfied when execution

14

ends. The goal achieved by the action.

 Local Preconditions - Constraints that must be satisfied before execution

begins.

Figure 2.5 – Simple Control Flows in UML-AD

 Control Flow is connector that shows the flow of control between actions. To

interpret the diagram, a token flows from one action to the next. Control flow in

UML-AD is represented by arrow shape ().

 Initial Node: There is at least one initial node for each activity in UML-AD.

When the activity starts, a token flows move to the initial node. Initial node means

that the flow starts when the activity is called. Also, in an activity, there can be more

than one initial node. Initial node in an UML-AD is represented by a black-circle

shape ().

15

 Activity Final Node: In an UML-AD, there can be more than one activity

final node. It represents the end to the activity. All flow activity stops. If several

parallel flows are presented within an activity, all flows are stopped at the time and

the activity final node is reached. Activity final node in an UML-AD is represented

by a white-black-circle shape ().

 Decision Node is a conditional branch in a flow. A decision node has one

incoming flow and multiple outgoing flows. It accepts tokens in incoming edges.

Each outgoing flow has a condition attached to it, which is written in brackets. If a

condition is true, the flow proceeds along the appropriate outgoing flow. If no other

condition is true, an ‘else’ outgoing flow can be defined along which the flow can

proceed. Decision node in an UML-AD is represented by a diamond shape ().

 Guard is used on the outgoing flows of a decision node. Guard in an UML-

AD is represented by brackets (). In the brackets, flow information is written.

 Merge Node is required to merge flows that were split with a decision node.

A control node brings multiple incoming edges and one out coming edge. It is not

used to synchronize concurrent flows. Also, it brings together multiple alternate

flows. Merge node in UML-AD is represented by a diamond shape ().

 Comment provides additional information. Comment in an UML-AD is

represented by a rectangle shape which has a fold ()

 Call Behavior Action: An action that is defined in more detail on another

activity diagram. It can be represented with different levels of detail. Call behavior

16

action in an UML-AD is represented by a rectangle like shape, which has warning

sign for detail diagrams (). Call behavior action has the

following components as Is Synchronous and Behavior.

 Is Synchronous - If true, the action waits until the activity terminates.

 Behavior - The activity invoked.

 Call Operation Action: An action that calls an operation on an instance of a

class. User can use to invoke operations in a model. Each call operation has a unique

name that is synchronized with the operation. Call operation action in an UML-AD is

represented by 2 rectangles like shapes with transition ().

2.2.8. Concurrent Flows

Concurrent flows in UML-AD are used to represent flows in a design. Main factors

in this representation are explained below according to the numbers shown in Figure

2.6.

Figure 2.6 – Concurrent Flows in UML-AD

17

 Fork Node divides an incoming flow into multiple concurrent outgoing

flows. A fork has one input and two or more outputs. It is shown as a horizontal and

vertical line. Fork node in an UML-AD is represented by a black rectangle shape

which, has one input arrow and at least two output arrows ().

 Join Node combines concurrent flows into a single flow. Join node has two or

more incoming and one out going flows. It synchronizes multiple flows. Join node is

a consolidation of two or more parallel flows. It is shown as a horizontal and vertical

line. When the synchronization takes places, the flow proceeds only after all

incoming flows. Join node in an UML-AD is represented by a black rectangle shape,

which has more than one input arrow and one output ().

 Send Signal Action sends a message or signal to another activity or to a

concurrent thread in the same activity. According to the flow it originates from node

in the activity diagram. Send signal action in an UML-AD is represented by right

arrow like shape ().

 Accept Event Action: Accepting events is an important element for business

processes in activity diagrams. It waits for a message or signal before the action can

continue. After, the event is accepted. Accept event action in an UML-AD is

represented by left arrow like shape ().

2.2.9. Data Flows

Data flows in UML-AD are used to represent flows in a design. Main factors in this

representation are explained below according to the numbers shown in Figure 2.7.

18

Figure 2.7 – Data Flows in UML-AD

 Object Nodes: An object node describes the data participating in an activity

diagram and indicates an instance of classifier. Object nodes are used where objects

are flowing form and to somewhere. Object node in an UML-AD is represented by a

rectangle shape ().Object nodes have components as ordering,

selection, upper bound, and type.

 Ordering - How multiple tokens are stored.

 Selection - Invokes a process, which can be defined in another diagram that

filters the data.

 Upper Bound - 0 indicates that data must pass directly along the flow; *

indicates that data can be stored in the flow.

 Type - the type of objects stored and transmitted.

 Input Pin: Input pin shows the input parameters on an action. It represents

data that an action can receive when it executes. Input pin in UML-AD is represented

by a rectangle like shape within a small input square ().

19

 Output Pin: Output pin shows the output parameters on an action. It

represents data that an action produces when it executes. Object flow edges deliver

the output values to other actions. Output pin in an UML-AD is represented by a

rectangle like shape within a small output square ().

 Activity Parameter Node: It represents which data can be received or

produced by the activity. It includes input and output parameters in an activity.

Activity parameter node in an UML-AD is represented by a rectangle shape (

).

2.2.10. Action Notation

In UML-AD, the system tasks and player tasks can be represented by action notation

as shown in Figure 2.8.

Figure 2.8 – UML-AD Action Notation

2.2.11. Swimlane in UML-AD

UML-AD has also a notation that is swimlane. Swimlane means that activities are

prepared into vertical and horizontal zones with lines. A swimlane supplies to group

activities by the same actor on an activity, or to groups in a single thread. Each action

is assigned to the one swimlane. Swimlane has unique name and presents different

actor within the same flow [61]. With using swimlanes, activities are mapped and

new associations that can be documented in class model are identified in Figure 2.9,

UML-AD vertical swimlane notation is shown which are separated into 3 groups in

an activity.

20

Figure 2.9 – UML-AD Vertical Swimlane Notation for 3 Actors

In Figure 2.10, UML-AD horizontal swimlane notation which is separated into 3

groups in an activity is shown.

Figure 2.10 – UML-AD Horizontal Swimlane Notation for 3 Actors

Swimlanes divide activity diagrams into sections such as organizations, departments,

components, or threads [62]. Therefore, swimlane is a useful method between people

21

that combine the UML-AD’s depiction. However, in swimlane, when the numbers of

actors increase, sections increase and diagram understandability can be difficult.

Also, to draw a complex diagram can be difficult. Generally, swimlanes are preferred

in the organizational responsibility for activity diagrams, but they are not effective

and sufficient for designing advanced organizational relationships [61].

22

CHAPTER 3

PROPOSED METHODOLOGY

In this chapter, proposed methodology of this study is defined. The purpose of this

methology is to separate system task and player task in game design documentation

and to propose a new model that is UML Activity Diagram Extended (UML-ADE).

Because in this study, it is determined that he UML-AD in serious game design has

some limitations.

End-user Development refers to methods, techniques, and tools that support end

users to create, adapt, or evolve the game design [53]. End-user Development

approves the importance of involving different domain experts in design of effective

interactive systems, because domain experts have different kinds of knowledge,

which is needed to software development skills [14][15]. In other words, to reach a

success point in the serious game implementations, it is important to involve domain

experts and end-users into the development process. Hence, domain experts are

important from inception to design and from initial development to testing [13].

Accordingly, the domain experts should be active in design, development and

evaluation of software development processes.

Flow diagrams are necessary for documentation of serious game. The aim of the

using flow diagrams in serious game is to better reflect the serious game design,

describe serious games in a useful manner and improve the level of communication

among the technicians & domain experts.

As described above, the UML-AD representation is a powerful tool to visually

design the serious game features. However, in the serious games, measuring

performance, success of players and assessment are very important. The player’s

performance within the game play is usually measured through his/her progress

23

while performing the task assigned for the player. This information is used for both

guiding the player to improve his/her performance during game play as well as to

help the domain experts and educators better understand the learning process or

success level of the players according to the pre-defined game objectives. Hence, the

player task design is a critical issue for the serious game design. Most of the

measurements usually based on the players’ performance during completing

requirements defined for each task to fulfill the objectives of each task. This issue is

more important for the domain experts to better evaluate the players’ performance

during the game play.

On the other hand, in the game design, besides the tasks assigned for the player, there

are some tasks that need to be performed by the computer system itself. In the UML-

AD, these tools are all represented by the same notation. This can be represented by

using the swimlanes of UML-AD. However, we believe that this representation is

confusing especially for the domain experts and this critical issue should be

represented by a specific notation without modifying the UML-AD structure. In

other words, we believe that, player tasks and system tasks should be separated in the

serious game design. Our main hypothesis is that, by separating player’s tasks and

system tasks in the game design documentation, the understandability level of these

documents can be improved. For improving the understandability level of these

documents, player tasks and system tasks should be separated in the serious game

design. Hence, in this study, parallel to the existing notations used in the UML-AD,

in order to represent the player tasks with a specific notation. We have used double

circled action representations for the UML-ADE as shown in Figure 3.1.

Figure 3.1 – UML-ADE Player Task Notation

In other words, in the UML-ADE model we have used the standard UML-AD action

notations (Figure 3.2) to represent the system tasks and double circled action

representation (Figure 3.1) to represent the player tasks.

24

Figure 3.2 – UML-AD Player Task Notation

In this study, the impacts of proposed UML-ADE model for the understandability of

these diagrams (UML-AD and UML-ADE) by technicians are evaluated

experimentally. The next chapter of this study describes the research methodology

used for this experimental study.

25

CHAPTER 4

RESEARCH METHODOLOGY

In this chapter, the research methodology of the study is presented. The aim of the

methodology is to give the work plan of the research. It is an investigation of finding

solutions to collect new and useful information. This chapter covers measurable and

testable data collection and research flows. In this study, our main assumption is to

analyze and compare UML-AD and UML-ADE models and to better understand the

level of understandability of the UML-ADE Model according to the UML-AD

Model. Accordingly, this study is prepared to better understand reviewers’ defect

detection performance on UML-AD and UML-ADE Models. For this study, two

scenarios developed for surgical simulation modules have been prepared. Each

scenario is prepared by in two versions using UML-AD and UML-ADE.

Additionally five defects have been seeded into these diagrams and the 72

participants are asked to detect these defects according to the description document

of the scenarios. The details of the research model of this study explained below.

4.1. Research Questions

In this study we hypothesize that, the detecting defects level of UML-ADE is higher

than that of UM-AD. We claim that if reviewers detect more defects in UML-ADE

than that of UML-AD, then it could indicate that their detecting defect level of UML-

ADE is higher than that of UML-AD. Accordingly, 3 research questions are set for

this study.

RQ1. Can reviewers detect more defects in UML-ADE than UML-AD?

RQ2. Does the defects seeded in UML-ADE is easy to detect than UML-AD?

RQ3. Is reviewers’ defect detection performance higher on UML-ADE than

that of UML-AD?

26

4.2. Instruments

Several instruments are prepared for this study. These documents are the user

requirements document of the scenarios, conceptual data model diagrams represented

in UML-AD and UML-ADE models for each scenario, instructions document,

defects report form, three questionnaires, experimental model diagrams are used.

Below the details of these documents are explained in detail.

4.2.1. The User Requirements Documents for the Scenarios

For this study, two scenarios, which are developed for endoneurosurgery simulation

for educational purposes have been used. For each scenario, a user requirements

document is prepared. The original Turkish version of this document for Scenario-1

(Appendix C), for Scenario-2 (Appendix D) and the translated versions in English for

Senario-1 (Appendix A) and Scenario-2 (Appendix B) are provided in the

appendices.

4.2.2. Conceptual Data Model Diagrams

Additionally, two versions of each scenario are prepared by using UML-AD and

UML-ADE notations. The original Turkish version of the UML-AD for scenario-1

(Appendix E), UML-AD for Scenario-2 (Appendix G), UML-ADE for Scenario-1

(Appendix F) and UML-ADE for Scenario-2 (Appendix H) are provided in the

appendices. Similarly, the translated English version of the UML-AD for Scenario-1

(Appendix I), UML-AD for Scenario-2 (Appendix K), UML-ADE for Scenario-1

(Appendix J) and UML-ADE for Scenario-2 (Appendix L) are provided in the

appendices.

4.2.3. Defect Report User Interface

In order to collect appropriate data to better understand the participants’ performance

during the experimental study, a specific computer program has been used. This

program is named as Defect Report System. The system is developed as a web-based

program, which is prepared to record detailed information such as student

demographics, scenario code being studied. Additionally, their defect detection

process is also recorded. There were five defects and two scenarios designed for the

27

experimental study. In each time, the reviewer detects a defect records it in to the

provided boxes as shown in Figure 4.1. By this way, in which order the reviewer

detects a defect, how long s/he works for detecting that specific defect as well as

his/her description about the detected defect are recorded for each detected defect of

two scenarios.

Figure 4.1 – Defect Report User Interface

28

4.2.4. Questionnaires

The questionnaires are prepared separately for UML-AD (Turkish version Appendix

O, English version Appendix M) and UML-ADE (Turkish version Appendix P,

English version Appendix N). The aim of these questionnaires is to better understand

the reviewers’ feedback and opinion in this study. The questionnaires are prepared

specifically for this study and the items of this questionnaire are tested according to

clarity by 4 experts in software engineering before using in this study.

4.2.5. Notation Explanation Document

Two Notation Explanation Documents for UML-AD (Turkish version Appendix T

and English version Appendix R) and UML-ADE (Turkish version Appendix U and

English version Appendix S) diagrams are prepared.

4.2.6. Experimental Data Model Diagrams

For the experimental study, five defects for each scenario were seeded in both the

UML-AD and UML-ADE representations of each scenario. Defects are put randomly

into the each scenario.

Senario-1: The lists of these defects that are seeded in scenario 1 are listed in Table

4.1.

Table 4.1 – Conceptual Model Defects for Scenario 1

DEFECTS PROBLEM
DEFINITION

DESCRIPTION

H01 Wrong Action State Action state is not written true. In this
scenario, there is no partial time.

H02 Wrong Action State Action state is not written true. In this
scenario, user should carry away the sphere to
the outside.

H03 Wrong Transition If the user does not carry away the sphere to
the outside, total time should be controlled.

H04 Wrong Transition If the user carries away the sphere to the box,
point should be increased.

H05 Irrelevant Final state There cannot be a final state. Scenario should
control the scenario time.

29

These defects are seeded in both UML-AD and UML-ADE for Scenario 1 are

provided and can be explained as follows:

H01: As stated by scenario requirement document, there is no partial time. There is

only total time. In this action state, total time calculation should start.

H02: According to the scenario requirement document, user does not carry away the

sphere to the box. There is a wrong action state. User should carry away the sphere to

the outside. Carrying away the sphere to the outside is critical situation. If this

critical situation is successful, user has a point.

H03 - H04: According to the scenario requirement document, if the user carries

away the sphere to the outside, score increases. If not, again time control is done and

scenario returns to the beginning. Location of H03 should change with location of

H04.

H05: As stated by scenario requirement document, after the user gains 1 point,

scenario time should be controlled. There is no final state. Scenario time finishes,

score is calculated and then final state is put.

30

Figure 4.2 – UML-AD Model with Defects

Accordingly, both the UML-ADE and UML-AD versions of scenario-1

representations were modified as seeded these defects. The modified and defected

versions of UML-AD diagram for scenario-1 is given in Figure 4.2. Similarly, the

modified and defected versions of UML-ADE diagram for scenario-1 is given in

Figure 4.3.

31

Figure 4.3 – UML-ADE Model with Defects

Scenario 2: The lists of these defects that are seeded in scenario 2 are listed in Table

4.2.

Table 4.2 – Conceptual Model Defects for Scenario 2

DEFECTS PROBLEM
DEFINITION

DESCRIPTION

H01 Missing Transition Transition arrow should not be null. If there
is a transition arrow, condition should be
defined. It also must be “No” condition.

H02 Wrong Action State User cannot remove the sphere with left
haptic. User can remove the sphere with
right haptic.

H03 Wrong Action State Besides the partial time of finding box, it
must be the partial time of removing sphere.

H04 Missing Transition

If there is a transition arrow, condition
should be defined. It also must be “No”
condition.

H05 Wrong Action State Partial time of removing sphere must be
reset.

Below detailed descriptions of each defect seeded in UML-AD and UML-ADE for

Scenario 5 is provided and can be explained as follows:

32

H01: According to the scenario requirement document, conditions are determined.

Transition arrow should not be null. If there is a transition arrow, condition should be

defined. “No” condition should be written.

H02: According to the scenario requirement document, user cannot remove the

sphere with left haptic. User should find red spheres in the boxes with left haptic.

User can remove the spheres with right haptic.

H03: As mentioned by scenario requirement document, besides the partial time of

finding box, it must be the partial time of removing sphere, because partial time of

finding box has already started.

H04: According to the scenario requirement document, conditions are determined.

Transition arrow should not be null. If there is a transition arrow, condition should be

defined. “No” condition should be written.

H05: As mentioned by scenario requirement document, partial time of removing

sphere must be reset. Partial time of removing sphere cannot start.

Accordingly, both the UML-ADE and UML-AD versions of scenario 2

representations were modified as seeded these defects. The modified and defected

versions of UML-AD diagram for scenario-2 is given in Figure 4.4. Similarly, the

modified and defected versions of UML-ADE diagram for scenario-2 is given in

Figure 4.5.

33

Figure 4.4 – UML-AD Model with Defects

34

Figure 4.5 – UML-ADE Model with Defects

It should also be recorded that scenario 2 is created as more complex according to the

scenario 1.

4.3. Research Procedures

This study is organized as an experimental study. The experiments are conducted in

Turkish which is the native language of participants. We test and understand that the

number of defects detected by each reviewer is higher in UML-ADE than UML-AD

for each scenario. The research procedure is shown in Figure 4.6.

Figure 4.6 – Diagram for research procedure

35

As seen from Figure 4.6, before one week from the experimental study, the

participants of this study are provided the user requirements documents prepared for

each scenario. Hence the participants had a chance to review the requirements

document and understand the main system requirements. For the experimental study,

the 72 participants were randomly divided into two groups and each participant is

provided with the instructions document for the study. During the experimental

study, the first group is provided with the UML-AD representations of each scenario

with 5 defects seeded on them. Similarly, the second group is provided with the

UML-ADE representations of each scenario with the same 5 defects seeded on them.

The participants are asked to examine the UML diagrams according to the

requirements document and detect the defects. When the participant detects a defect,

s/he asked to record it on the defect report user interface.

In order to better understand the reviewers’ performance during the defect detection

process, the performance of each reviewer is calculated according to the “Defect

detection performance formula, Formula 2” provided by Cagiltay et al. (2013) [52].

Similarly, the recognized difficulty level of each defect is calculated by using the

“Defect Detection Difficulty Level Formula, Formula 1” provided by Cagiltay et al.

(2013) [52]. Hence, in order to answer the research questions, the data collected

through this research is analyzed both descriptively and statistically.

4.4. Participants

For the experimental study, 72 reviewers were participated voluntarily. Those

participants were students in their fourth year in the departments of Computer

Engineering, Software Engineering and Information Systems Engineering. Detailed

information about the participants for the experiment is shown in Table 4.3.

Table 4.3 – Participants of Experiment

Gender

UML Name

Total

UML-AD UML-ADE

Female 8 9 17

Male 27 28 55

Total 35 37 72

36

As seen from Table 4.3, 72 participants have been voluntarily involved in this study.

For the UML-AD, there were 35 participants. For the UML-ADE, there were 37

participants. In this study, there is no gender separation into the groups. In each

diagram, participants have responsible for Scenario 1 and Scenario 2. Because the

scenarios were given randomly to the participants, there is a slipping for 1 participant

from UML-AD to UML-ADE. In the next section all results found through this study

are provided.

4.5. Measures for UML-AD and UML-ADE

The main purpose of these measures is to analyze the defect detection process of

UML-AD and UML-ADE. Accordingly, the two measures which were developed by

Cagiltay et al. [52] and proposed to supply better understand performance of

reviewers and the difficulty levels of defects are used in this study to better

understand the understandability levels of UML-AD and UML-ADE. These two

measures are named as the defect detection difficulty level and defect detection

performance [52]. The defect detection difficulty level (DF) measures how difficult a

defect to be detected according to the other defects for UML-AD and UML-ADE.

Defect detection performance (PP) measure is also used to understand the

performance of UML-AD and UML-ADE during the defect detection process [52].

4.5.1. Defect Difficulty Level

There are several measures for the information and performance of subjects.

However, in this study, any past information cannot be asked to the reviewers,

because these measures cannot be implemented into the formulas in this study.

In this study, we mention that familiarity and ability of the reviewers have been

included through two factors in Cagiltay et al. [52]’s study. These factors are time

spent which detects a defect and identifying the defect at the first place or at a later

time. In Formula 1, the defect detection difficulty level measure is proposed.

37

Formula 1 – Defect Detection Difficulty Level Formula [52]

This formula is applied for each scenario. In this formula, Oj refers to the score of all

participants gained from the defect detection order. Dj refers to the duration spent of

all participants during the finding for each defect. Sj means the success of the finding

for each defect. The defect detection order may also be related to the order. The

defect information about the defect is presented in the user requirement document.

4.5.2. Participant Performance

In this measurement, the defect detection performance of each participant i (PPi) is

calculated. PPi is the cumulative difficulty level of defects detected by Pi. To

calculate participant performance, the defect detection difficulty level value of each

defect (DFj) and a performance measure formula are used [52]. This formula is

shown in Formula 2.

Formula 2 – Defect Detection Performance Formula [52]

PPi: Defect Detection Performance of the ith participant

DFj: Difficulty level of the jth defect calculated by Formula 1

n: Total number of defects detected by participant i

s: Total number of defects seeded in the UML-ADE/UML-AD

DFj: Defect detection difficulty level of the jth defect

Dj : Average duration spent by all participants for finding defect j

Oj : Average score of all participants for detecting jth defect

Sj : Success rate of detecting defect j (Number of people who detected
defect j/Total number of participants)

j

jj

j
S

OD
DF




38

CHAPTER 5

RESULTS

The results of the study are analyzed to answer the research questions. Accordingly,

firstly the reviewers’ performance during the defect detection process is analyzed.

Hence, in order to better understand the reviewers’ defect detection performance on

both UML-ADE and UML-AD representations, we have evaluated number of defects

detected by each participant, the defect difficulty value for each defect calculated by

the formulas provided in [51][52].

5.1. Detected Defects in UML-ADE and UML-AD

An independent sample t-test was conducted to evaluate the hypothesis that the

reviewers’ work on the scenario-1 representation of UML-ADE detect more defects

than that of the ones work on UML-AD. The test was significant, df=70, p=0.011.

Reviewers working on UML-ADE detected more defects (M=3.19, SD=1.49) than

the reviewers working on UML-AD (M=2.26, SD=1.52). Figure 5.1 shows the

distribution of both groups.

39

Figure 5.1 – Detected Defects Distribution in Both Groups for Scenario-1

An independent sample t-test was conducted to evaluate the hypothesis that the

reviewers’ work on the scenario-2 representation of UML-ADE detects more defects

than that of the ones work on UML-AD. The test was significant, df=70, p=0.022.

Reviewers working on UML-ADE detected more defects (M=2.77, SD=1.49) than

the reviewers working on UML-AD (M=2.00, SD=1.21). Figure 5.2 shows the

distribution of both groups.

Figure 5.2 – Detected Defects Distribution in Both Groups for Scenario-2

3735N =

1:AD 2:ADE

21

9
5

%
 C

I
S

T
1

_
D

D

4,0

3,5

3,0

2,5

2,0

1,5

3735N =

1:AD 2:ADE

21

9
5
%

 C
I
S

T
2
_
D

D

3,5

3,0

2,5

2,0

1,5

1,0

40

5.2. Difficulty Levels of Defects

In order to answer this research question, the recognized defect difficulty levels of

each defect is calculated by the Formula 1 provided in [52]. The values of these

calculated defect difficulty levels for scenario 1 and scenario 2 are provided in Table

5.1 and Table 5.2 respectively.

Table 5.1 – Defect Difficulty Levels Scenario 1

Defect UML-AD UML-ADE

D1 2812 1221

D2 1728 1313

D3 1085 768

D4 1647 941

D5 1922 841

Average 1839 1017

As seen from Figure 5.1, the average recognized difficulty level value for the defects

seeded in UML-AD of scenario 1 (1839) is higher than that of UML-ADE (1017).

This result indicates that the reviewers recognized the same defects seeded in the

UML-AD as harder to detect according to the same defects seeded in the UML-ADE.

Table 5.2 – Defect Difficulty Levels Scenario 2

Defect UML-AD UML-ADE

D1 733 439

D2 3049 1728

D3 1836 968

D4 1202 1374

D5 6880 2998

Average 2740 1501

Similarly, when recognized difficulty levels of defects seeded in UML-ADE and

UML-AD representations of scenario 2 as seen from Table 5.2, the reviewers

recognized the defects seeded in UML-ADE (average 1501) easily according to the

ones seeded in UML-AD (average 2740). Because of the very limited number of

defects, a statistical analysis was not conducted for this data.

41

5.3. Reviewers’ Defect Detection Performance

An independent sample t-test was conducted to evaluate the hypothesis that for the

design of scenario-1, the reviewers’ defect detection performance on UML-ADE is

higher than that of UML-AD by the Formula 2 provided in [52]. The test was

significant, df=70, p=0.007. Reviewers working on UML-ADE performed higher

(M=.62, SD=.30) than the reviewers working on UML-AD (M=.42, SD=.30). Figure

5.3 shows the distribution of both groups.

Figure 5.3 – Defect Detection Performance Distribution in Both Groups for

Scenario-1

An independent sample t-test was conducted to evaluate the hypothesis that for the

design of scenario-2, the reviewers’ defect detection performance on UML-ADE is

higher than that of UML-AD. The test was significant, df=70, p=0.007. Reviewers

working on UML-ADE performed higher (M=.49, SD=.32) than the reviewers

working on UML-AD (M=.29, SD=.27). Figure 5.4 shows the distribution of both

groups.

3735N =

1:AD 2:ADE

21

9
5

%
 C

I
S

0
1
_

P
E

R
F

,8

,7

,6

,5

,4

,3

,2

42

Figure 5.4 – Defect Detection Performance Distribution in Both Groups for

Scenario-2

The questionnaire results also support these results. As seen from Table 5.3, the

reviewers found the UML-ADE representations easier to understand (3.79) than

UML-AD (3.07). Similarly their responses on the level of their understanding of

game that is represented with the UML-ADE notations is higher (3.79) than that of

UML-AD (3.37). Their responses on the complexity of the representations in UML-

AD is higher (2.77) that that of UML-ADE (2.47).

Table 5.3 – Questionnaire Responses

Questionnaire Item UML-ADE UML-AD

“I think diagram given to us is easy to understand” 3.79 3.07

“How complicated is the given diagram, evaluate from 1 to 5

 (1: very easy - 5: very difficult) 2.47 2.77

“I think I understand the system very well by looking to the given

........” 3.79 3.37

Additionally, the True Positive (TP) and False Negative (FN) values are also

calculated to better understand the performance of the reviewers. TP indicates the

correctly identified defects by each reviewer and FN value indicates the incorrectly

rejected defects by each reviewer. Accordingly, True positive rate, which is also

called sensitivity measure indicating how well a reviewer can detect a defect, is also

calculated by using the following formula [63].

3735N =

1:AD 2:ADE

21
9

5
%

 C
I

S
0
2

_
P

E
R

F

,7

,6

,5

,4

,3

,2

,1

43

 An independent sample t-test was conducted to evaluate the hypothesis that the

sensitivity value for the reviewers who work on the UML-ADE version of the system

design is higher than that of the reviewers who work on the UML-AD version. The

test was significant, t(142) = 2.26, p= 0.26. Sensitivity value for the reviewers who

work on the UML-ADE version (M=0.69, SD=0.30) on the average is higher than

that of the reviewers who work on the UML-AD version (M=0.57, SD=0.33). In

other words, the probability of the defect detection rate of the reviewers working on

the UML-ADE version is significantly higher than that of the ones working on UML-

AD.

44

CHAPTER 6

DISCUSSIONS / CONCLUSION

In this study, an enhanced version of UML-AD representation is proposed in order to

improve the level of understandability of these diagrams. Main assumption of this

study is that UML-ADE model can be more understandable and easier than the

UML-AD model. Accordingly, through two real-life scenarios this assumption is

tested experimentally. The research findings of this study can be summarized as

below:

 Reviewers’ who are working on UML-ADE model could detect more

defects and understand the system easily.

 Reviewers’ recognition on the difficulty level of defects in UML-ADE is

lower than that of UML-AD.

 Reviewers’ performance in the Scenario 1 is higher than that of the

Scenario 2. Since the Scenario 2 was designed as more complicated

according to the Scenario 1, this was an expected result.

In general the findings of this study can be summarized as in Table 6.1. As seen from

this table, the mean of number of detected defects for scenario 1 (2.26 for UML-AD,

3.19 for UML-ADE) is higher than that of Scenario 2 (2.00 for UML-AD, 2.77 for

UML-ADE). This results show the answer of RQ1.

45

Table 6.1 – Summary of Results

Scenario-1 Scenario-2

Number of Detected defects

UML-AD 2.26 2.00

UML-ADE 3.19 2.77

Defect Detection Performance of the

Reviewers

UML-AD 0.42 0.29

UML-ADE 0.62 0.49

Recognized Defect Difficulty Levels

UML-AD 1839 2740

UML-ADE 1017 1501

Similarly, as seen from Table 6.1, it can be seen that, the recognized defect difficulty

levels for Scenario 2 (UML-AD: 2740, UML-ADE: 1501) are higher than that of

Scenario 1 (UML-AD: 1839, UML-ADE: 1017) for both UML representations.

Parallel to these results the recognized difficulty levels of defects in scenario 2 (2740

for UML-AD, 1501 for UML-ADE) is higher than that of Scenario-1 (1839 for

UML-AD, 1017 for UML-ADE). As reported earlier, this is because the second

scenario was designed as more complicated according to the first one. Hence when

the scenario becomes more complicated the recognized defect difficulty level values

become higher and reviewers’ performance becomes lower.

Another important result of this study shows that, reviewers’ performance for the

UML-ADE representations of both scenarios is higher than that of UML-AD

representations of both scenarios. This indicated that the UML-ADE representation is

easier to detect defect according to the UML-AD representation for this study. The

results show the answer of RQ3 promise to use the UML-ADE representation for

describing the tasks of the users and systems separately for improving the

understandability level of the UML Activity diagram representations of software

systems.

6.1. Limitations and Future of Study

In this study, the scenarios are conducted with the 4th year students of Computer

Engineering, Software Engineering and Information Systems Engineering. Hence

this study reflects the performance of technicians on these representations. On the

other hand the performance of domain experts in these representations should also be

46

studied. Additionally, this study is conducted on scenarios that are developed for the

surgical simulation purposed. Hence as future studies, the hypothesis can also be

analyzed on different domains.

Also, in this study, 72 participants are used who are in fouth year of Computer

Engineering, Information System Engineering and Software Engineering in Atılım

University because of not reaching enough domain experts.

47

REFERENCES

[1] Radoff J., "History of social games." Jon Radoff's Internet Wonderland,
2010.

[2] Grace L., "Game Type and Game Genre." Retrieved February 22 (2005):

2009, http://aii.lgrace.com/documents/Game_types_and_genres.pdf

[3] Kramer W., "What makes a game good." The Games Journal, 2000.

[4] Doğusoy B., İnal Y., "Çok Kullanıcılı Bilgisayar Oyunları ile Öğrenme."

VII. Ulusal Fen Bilimleri ve Matematik Eğitimi Kongresi GÜ, Gazi Eğitim
Fakültesi, pp. 7-9, 2006.

[5] Arevolo W., Latham L., “Key Reasons Why You Should Consider a

'Learning by Gaming' Strategy”, Gartner research, 2006.

[6] Derryberry. A., “Serious games: online games for learning”, 2007.

[7] Wagner, M., “What are the advantages and disadvantages of serious

games”, December, 2005.

[8] Ulicsak M., “Games in Education: Serious Games: A Futurelab Literature

Review”, FutureLab, 2010.

[9] Wiemeyer, J., & Kliem, A., “Serious games in prevention and

rehabilitation—a new panacea for elderly people?”, European Review of
Aging and Physical Activity, 9(1), pp. 41-50, 2012.

[10] Mangır M., Aktaş Y., “Çocuğun gelişiminde oyunun önemi”., Yaşadıkça

Eğitim Dergisi 26(16), pp. 14-19, 1993.

[11] Leen, E., “Changing attitudes with new learning methods Serious games and

e-learning”, CAVA Conference, Innovation in Learning Institute University
of Erlangen-Nuremberg, March, 2012.

[12] International Scholarships & Fellowships, 3 funded PhD Positions in the

Domain of Serious Games, October, 2011, http://www.scholarships-
links.com/getpdf.php?id=2867

[13] Marchiori, J. E., Serrano A., Blanco, A., Martínez-Ortíz, I., Fernández-
Manjón, B., “Integrating domain experts in educational game authoring: a
case study”. In Digital Game and Intelligent Toy Enhanced Learning
(DIGITEL), 2012 IEEE Fourth International Conference, pp. 72-76, IEEE,
March, 2012.

48

[14] Fischer, G., Giaccardi, E., “Meta-design: A framework for the future of
end-user development”. In End user development, pp. 427-457, Springer
Netherlands, 2006.

[15] Fogli, D., “End-User Development for E-Government Website Content
Creation”, End-User Development. Springer Berlin Heidelberg, pp. 126-
145, 2009.

[16] Costabile, M. F., Dittrich, Y., Fischer, G., Piccinno, “A End-User
Development “, In Proceedings of the 3rd International Symposium on EUD
(IS-EUD 2011), Torre Canne, Italy, June 7 (Vol. 10)., June, 2011.

[17] Troyer, D. O., Paret, E., “Challenges in Designing Domain-Specific
Modeling Language for Educational Games”,
http://wise.vub.ac.be/sites/default/files/publications/DSML_submitted.pdf

[18] Hunicke, R., “Put Your Game Development Education to Work”, Game
Developer’s 2003 Game Career Guide, 2003.

[19] Kirriemuir, J., McFarlane, A., “Literature Review in Games and Learning”,
2004, Report 8.

[20] Kleins, A., Teilans, A., Merkuryev, Y., Krasts, O., “A Metamodel Based
Approach for UML Notated Domain Specific Modelling Language”,
Computer Modelling and Simulation (UKSim), 2011 UkSim 13th
International Conference on. IEEE, 2011.

[21] Taylor, M. J., Gresty, D., Baskett M., “Computer Game-Flow Design”,
Computers in Entertainment (CIE), 4(1): 5, January, 2006.

[22] Costabile, M. F., Fogli, D., & Mussio, P., & Piccinno, A., “A meta-design
approach to End-User Development”, Visual Languages and Human-
Centric Computing, 2005 IEEE Symposium on. IEEE, pp. 308-310, 2005.

[23] Tolvanen, J. P., Rossi, M., “MetaEdit+: Defining and Using Domain-
Specific Modeling Languages and Code Generators”, Companion of the
18th annual ACM SIGPLAN conference on Object-oriented programming,
systems, languages, and applications. ACM, pp. 92-93, October, 2003.

[24] Ruohomäki, V., “A simulation game for the development of administrative
work processes”, The Simulation and Gaming Yearbook 3, pp. 264-270.
1995, http://lib.tkk.fi/Diss/2002/isbn9512260948/article3.pdf

[25] Moreno-Ger, P., Blesius, C., & Currier, P., & Sierra, J., L., & Fernández-
Manjón B., “Rapid Development of Game-like Interactive Simulations for
Learning Clinical Procedures”, En Proceedings of Game Design and
Technology Workshop and Conference, 2007, http://www.e-ucm.es/drafts/e-
UCM_draft_86.pdf

49

[26] Mishra, S., “Visual Modeling & Unified Modeling Language (UML):
Introduction to UML”, November, 2008.

[27] Tenzer, J., Stevens, P., “GUIDE: Games with UML for interactive design
exploration”, Knowledge-Based Systems, 20(7), pp. 652-670, 2007.

[28] Fischer, G., Giaccardi, E., & Ye, Y., & Sutcliffe, A. G., & Mehandjiev, N.,
“Meta-Design: a Manifesto For End-User Development”, CACM, 47(9), pp.
33-37, 2004.

[29] Fischer, G., Giaccardi, E., “Meta-Design: A Framework for the Future of
End-User Development”, To appear in Lieberman, H., Paternò, F., Wulf, V.
(Eds), End User Development - Empowering people to flexibly employ
advanced information and communication technology, Kluwer Academic,
Dordrecht, The Netherlands, 2005.

[30] CIRULIS, A., & GINTERS, E., “Control of Simulation Elements in Virtual
World”, WSEAS International Conference. Proceedings. Mathematics and
Computers in Science and Engineering. Eds. N. A. Baykara, and N. E.
Mastorakis. No. 11. World Scientific and Engineering Academy and
Society, June, 2009.

[31] SWEETSER, P., & WYETH, P., “GameFlow: A Model for Evaluating
Player Enjoyment in Games”, Computers in Entertainment (CIE) 3(3): 3-3.
July, 2005.

[32] Moreno-Ger, P., & Martínez-Ortiz, I., & Sierra, J. L., & Fernández-Manjón,
B., “A Content-Centric Development Process Model”, IEEE Computer, vol.
41, pp. 24-30, 2008.

[33] Torrente, J., & Moreno-Ger1, P., & Fernández-Manjón, B., & Sierra, J., L.,
“Instructor-oriented Authoring Tools for Educational Videogames”,
Advanced Learning Technologies, 2008. ICALT'08. Eighth IEEE
International Conference on. IEEE, 2008.

[34] Erdem, A. T., & Utku, B., & Abacı, T., & Eroğlu Erdem, Ç., “Advanced
Authoring Tools for Game-Based Training”, Formerly with Momentum
Digital Media Technologies, Proceedings of the 2009 Summer Computer
Simulation Conference. Society for Modeling & Simulation International,
2009.

[35] Golding, M., & Ray, J., Sams Teach Yourself Adobe® Creative Suite 3, All
in One, “The Game Plan: Developing a Workflow”, Chapter 3, pp. 45-65,
2008.

[36] Bontchev, B., “A Framework for Educational Word Games”, Proceedings
of the Int. Conf. on Intelligent Computational Systems (ICICS’2012), ISBN,
pp. 978-81., January, 2012.

50

[37] Eshuis, R., & Wieringa, R., “Tool support for verifying UML activity
diagrams”, Software Engineering, IEEE Transactions
on (Volume:30, Issue: 7), pp. 437-447, July, 2004.

[38] Bell, D., “UML basics Part II: The activity diagram”, IBM Global Services
Relational Software, 2003.

[39] Tuncel, S., “UML Unified Modeling Language”, March, 2013,
https://dosya.sakarya.edu.tr/Dokumanlar/2013/424/58009950_05_ym_umlu
secase.pdf

[40] Cockburn, A., “Writing Effective Use Cases, Pearson Education”, 2001.

[41] UML Revision Task Force, “OMG Unified Modeling Language
Specification”, version 1.4, (Final Draft) February, 2001.

[42] “OMG Unified Modeling Language Superstructure Specification”, version
2.1.1. Document formal/2007-02-05, Object Management Group, February
2007.

[43] Flater, D., & Martin, P., & Crane M., “Rendering UML Activity Diagrams
as Human-Readable Text”, In IKE, pp. 207-213, November, 2007.

[44] Preeti, D. G., “Activity Diagrams - Advantages, Disadvantages and
Applications of Use”, July, 2011.

[45] Paech, B., “On the Role of Activity Diagrams in UML”, The Unified
Modeling Language.«UML»’98: Beyond the Notation. Springer Berlin
Heidelberg, pp. 267-277. 1998.

[46] Patel, P., & Patil, N., N., “Test case formation using UML activity
diagram”, Proceedings of Communication Systems and Network
Technologies (CSNT), 2013 International Conference on. IEEE, 2013.

[47] Siebenhaller, M., & Kaufmann, M., “Drawing Activity Diagrams”,
Proceedings of the 2006 ACM symposium on Software visualization. ACM
February, 2006.

[48] Conrad, B., “UML 2 Activity and Action Models”, in Journal of Object
Technology, vol. 2, no. 4, pp. 43-54, July-August, 2003.

[49] Bohm, C., & Jacopini, G., “Flow Diagrams, Turing Machines and
Languages with Only Two Formation Rules”, Communications of the
ACM, 9(5), pp. 336-371, 1966.

[50] Cagiltay, E. N., Tokdemir, G., “Story/Scenario Flow Diagrams: A Simple
Modeling Tool for Learning via Task Driven Play”, 2012.

[51] Cagiltay, N., & Topallı, D., A Database Design Methodology For Complex
Systems, 2013.

51

[52] Cagiltay, N.E., Tokdemir, G., Kilic, O., Topalli, D., “Performing and
Analyzing non-Formal Inspections of Entity Relationship Diagram (ERD)”,
Journal of Systems and Software, 2013. DOI: 10.1016/j.jss.2013.03.106, in
Press,
http://www.sciencedirect.com/science/article/pii/S0164121213001015

[53] Costabile, M. F., Fogli, D., Mussio, P., & Piccinno, “A. End-user
development: The software shaping workshop approach”. In End user
development, pp. 183-205, Springer Netherlands. 2006.

[54] Saleh K., El-Morr C., “M-UML: an extension to UML for the modeling of
mobile agent-based software systems”, Information and Software
Technology, pp. 219-227, July, 2003.

[55] Belloni A. E., Marcos A. C., “Modeling of Mobile-Agent Applications with
UML”, In Proceedings of the Fourth MA-UML XMI UML XMI OO Code
Code PSM PIM Argentine Symposium on Software Engineering (ASSE
2003) , Vol. 32, pp. 1666-1141.

[56] Baumeister H., Koch N., Kosiuczenko P., Wirsing M., “Extending Activity
Diagrams to Model Mobile Systems”, Objects, Components, Architectures,
Services, and Applications for a Networked World. Springer Berlin
Heidelberg, pp. 278-293, 2003.

[57] C. Klein, A. Rausch, M. Sihling, Z. Wen, “Extension of the unified
modeling language for mobile agents”, in: K. Siau, T. Halpin (Eds.), Unified
Modeling Language: Systems Analysis, Design and Development Issues,
Idea Group Publishing, 2001, pp. 116–128, (Chapter VIII).

[58] Rego, P., Moreira, P. M., & Reis, L. P., “Serious games for rehabilitation: A
survey and a classification towards a taxonomy”, In Information Systems
and Technologies (CISTI), 2010 5th Iberian Conference on (pp. 1-6). IEEE,
June 2010.

[59] Göbel, S., Hardy, S., Wendel, V., Mehm, F., & Steinmetz, R., “Serious
games for health: personalized exergames”, In Proceedings of the
international conference on Multimedia, pp. 1663-1666, ACM, October,
2010.

[60] OMG, UML Unified Method: Notation Guide, Version 1.3, 1999.

[61] Schmidt, J. W., Wienberg, A., “A Comparison of Event-driven Process
Chains and UML Activity Diagram for Denoting Business Processes”,
Harburg: Technische Universität Hamburg-Harburg, 2001.

[62] Rodrigues, R. W., “Formalising UML activity diagrams using finite state
processes”, In Proc. of the 3rd Intl. Conf. on the Unified Modeling
Language, York, UK, October 2000.

52

[63] Peng, Y., Wanga, G., Wangb, H., “User preferences based software defect
detection algorithms selection using MCDM”, Information Sciences 191
(2012) 3–13, 2012.

53

APPENDIX A: User Requirements Document For Scenario 1 (English)

This scenario passes in a room. Player acts backward and forward with using 1 haptic

device in the room. Configuration folder is read by system. In this folder, there are

sphere size, distance, wall shape, lines, and sphere color frames. Also, the first sphere

is created by system. Processes that are in the scenario start within the player press

the starting button. Player’s the main task is to collect red spheres from the different

point of the room and carry them to the outside. In this scenario, scenario time and

score calculation is defined. Scenario time is total times that all identified spheres are

carried to the outside after they are caught. The score calculation increases with the

player carries the every sphere to the outside. Scenario time and score calculation

starts when the scenario starts. Scenario time control is done. If the scenario time

does not finish, player should catch the every sphere in the room. If the player

catches the every sphere in the room, s/he should carry it to the outside. When the

player carries the sphere to the outside, score calculation increases 1 point and

scenario time is control again. If the total time is not over that is for scenario,

scenario processes continues repeatedly with returning the beginning. If the total

time is over that is for the scenario, total score is calculated for the player catches the

sphere and carries it to the outside and the scenario finishes.

54

APPENDIX B: User Requirements Document For Scenario 2 (English)

This scenario passes in a room. Player acts backward and forward with using 2 haptic

devices in the room. Configuration folder is read by system. In this folder, there are

sphere size, distance, wall shape, lines, and sphere color frames. Also, the first sphere

and first box are created by system. Processes that are in the scenario start within the

player press the starting button. Player’s the main task is to find red spheres from the

boxes that have different angles with left or right haptic and eliminate them.

In the scenario, when the game starts, total time and number of sphere calculation

also starts. Total time continues until the player success to eliminate the 30 spheres

from the boxes that have different angles. Player should find the large circle with left

haptic. This large circle helps player to eliminate the sphere with right haptic. If the

player does not find the large circle, this process is repeated until the circle is found.

If the player finds the large circle, partial time of finding box and player should find

the spheres from the boxes that have different angles. When the player does not find

process continues until sphere is found. If the player finds the spheres from the boxes

that have different angles, partial time of finding box is recorded and partial time of

removing sphere starts. Partial time of removing sphere is time that the player

eliminates the red sphere with the right haptic in the box. When the sphere is

eliminated each, partial time of removing the sphere is reset. Player should eliminate

the red sphere in the true box with right haptic. If the player eliminates the red

sphere, the red sphere is lost; the number of sphere increases, partial time of

removing the sphere is recorded and reset, partial time of finding box is reset, and

until the number of sphere is 30, the red sphere occurs another box. If the player does

not eliminate the red sphere, the sphere cannot be lost, partial time of removing

sphere starts and player eliminates the red sphere in the true box with right haptic.

When the player successes to eliminate the 30 spheres, total time are recorded and

scenario is completed. If the player does not success to eliminate the 30 spheres,

scenario returns the ‘partial time of finding box’ process and scenario processes

continues repeatedly.

55

APPENDIX C: User Requirements Document For Scenario 1 (Turkish)

Bu senaryo bir oda içinde geçmektedir. Oyuncu oda içinde 1 dokunsal cihazı (haptic)

kullanarak ileri geri hareket edebilir. Sistem tarafından konfigürasyon dosyası

okunur. Bu dosyanın içinde küre boyutu, mesafe, duvar biçimi, çizgiler, küre rengi,

kare boyutu gibi parametreler yer alır. Ayrıca sistem tarafından ilk küre oluşturulur.

Senaryodaki işlemler oyuncunun başlama tuşuna basmasıyla başlar. Oyuncunun

temel görevi oda içinde farklı noktalarda çıkan kırmızı küreleri toplayıp alanın dışına

çıkarmaktır. Senaryoda senaryo süresi ve puan hesaplaması tanımlanmıştır. Senaryo

süresi, senaryo içinde tanımlı olan tüm kürelerin yakalanarak alan dışına çıkarılması

için geçen toplam süredir. Puan hesaplaması ise, oyuncunun her küreyi alan dışına

çıkarmasıyla artmaktadır. Senaryonun başlamasıyla birlikte senaryo süresi ve puan

hesaplaması da başlar. Süre kontrolü yapılır. Eğer senaryo süresi bitmemiş ise,

oyuncu oda içerisinde beliren her küreyi yakalamalıdır. Oyuncu oda içerisinde

beliren her küreyi yakaladığı takdirde, küreyi alan dışına götürmelidir. Oyuncunun

küreyi alan dışına götürebilmesi durumunda, puan hesaplaması 1 artar ve senaryo

süresi yeniden kontrol edilir. Eğer oyuncu küreyi yakalayamazsa veya küreyi

yakalayıp alan dışına götüremezse, başa dönülerek tekrar süre kontrolü yapılır. Eğer

senaryo için ayrılan toplam süre bitmemiş ise, senaryo işlemleri başa dönerek tekrarlı

bir şekilde devam eder. Senaryo için ayrılan toplam süre bittiğinde, oyuncunun

küreyi yakalayıp alan dışına çıkarma işlemleri için topladığı puan hesaplanır ve

senaryo sonlandırılır.

56

APPENDIX D: User Requirements Document For Scenario 2 (Turkish)

Bu senaryo bir oda içinde geçmektedir. Oyuncu oda içinde 2 dokunsal cihazı (haptic)

kullanarak ileri geri hareket edebilir. Sistem tarafından konfigürasyon dosyası

okunur. Bu dosyanın içinde küre boyutu, mesafe, duvar biçimi, çizgiler, küre rengi,

kare boyutu gibi parametreler yer alır. Ayrıca sistem tarafından ilk küre ve ilk kutu

oluşturulur. Senaryodaki işlemler oyuncunun başlama tuşuna basmasıyla başlar.

Oyuncunun temel görevi sol veya sağ haptic ile farklı açılara sahip kutular

içerisinden çıkan kırmızı küreleri bulup, sağ haptic ile yok etmektir.

Senaryoda oyun başlayınca toplam süre ve küre sayısı hesaplaması başlar. Toplam

süre, oyuncunun farklı açıdaki kutulardan çıkan 30 kırmızı küreyi yok etmeyi

başarana kadar devam eder. Oyuncu sol haptic ile ekranda büyük bir çember

bulmalıdır. Bu büyük çember, oyuncunun sağ haptic ile kutu içerisindeki küreyi yok

etmesine yardımcı olur. Oyuncu büyük çemberi bulamaması durumunda, çember

bulunana kadar bu süreç tekrarlanır. Oyuncu büyük çemberi bulursa, kutu bulma

kısmi süresi başlar vefarklı açılardaki kutulardan çıkan küreleri bulması gerekir.

Kutu bulma kısmi süresi oyuncunun sol ve sağ haptic ile doğru kutu içerisindeki

kırmızı küreleri bulma süresidir. Oyuncu farklı açılardaki kutulardan çıkan küreleri

bulamadığında, süreç bulana kadar devam eder. Oyuncu farklı açılardaki kutulardan

çıkan küreleri bulduğunda ise, kutu bulma kısmi süresi kaydedilir ve küre yok etme

kısmi süresi başlar. Küre yok etme süresi ise, oyuncunun sağ haptic ile baktığı

kutunun içindeki kırmızı küreyi yok etme süresidir. Küre her yok edilişte küre yok

etme kısmi süresi de sıfırlanır. Oyuncu sağ haptic ile baktığı doğru kutunun içindeki

kırmızı küreyi yok etmelidir. Oyuncunun kırmızı küreyi yok etmesi durumunda,

kırmızı küre kaybolur, küre sayısı artar, küre yok etme kısmi süresi kaydedilip

sıfırlanır, kutu bulma kısmi süresi sıfırlanır ve küre sayısı 30 olana kadar, kırmızı

küre başka bir kutudan çıkar. Oyuncunun kırmızı küreyi yok etmeme durumunda ise,

küre kutudan kaybolmaz, küre yok etme kısmi süresi başlar ve oyuncu sağ haptic ile

baktığı kutunun içindeki kırmızı küreyi yok eder. Oyuncu 30 küreyi başarılı bir

şekilde kaybetmeyi başarırsa toplam süre kaydedilir ve senaryo tamamlanır. Oyuncu

57

30 küreyi başarılı bir şekilde kaybetmeyi başaramazsa, senaryo tekrar kutu bulma

kısmi süresinin başlama aşamasına döner ve senaryo işlemleri tekrarlı bir şekilde

devam eder.

58

APPENDIX E: UML-AD Model Used For Scenario 1 (Turkish)

59

APPENDIX F: UML-ADE Model Used For Scenario 1 (Turkish)

60

APPENDIX G: UML-AD Model Used For Scenario 2 (Turkish)

61

APPENDIX H: UML-ADE Model Used For Scenario 2 (Turkish)

62

APPENDIX I: UML-AD Model Used For Scenario 1 (English)

63

APPENDIX J: UML-ADE Model Used For Scenario 1 (English)

64

APPENDIX K: UML-AD Model Used For Scenario 2 (English)

65

APPENDIX L: UML-ADE Model Used For Scenario 2 (Engilish)

66

APPENDIX M: Questionnaire 1 Used In UML-AD (English)

QUESTIONNAIRE ABOUT UML-AD DESIGN

Some expressions about UML-AD diagram that you currently worked on are given below. About these

expressions, choose one of the five alternatives (from 1 to 5).

S
T

R
O

N
G

L
Y

 N
O

T

A
G

R
E

E

N
O

T
 A

G
R

E
E

D
O

N
’T

 K
N

O
W

A
G

R
E

E

 S
T

R
O

N
G

L
Y

A

G
R

E
E

 1 2 3 4 5

1.
I think UML-AD diagram given to us is easy to

understand.

2. How complicated is the given UML-AD diagram?
Evaluate it from 1 to 5 (1: very easy - 5: very
difficult)

3.
I think I understand the system very well by

looking to the given UML-AD.

4. What is your opinion or suggesstion about UML-AD design or intelligibility?

__
__
__
__

5. If you design the Collection Spheres in the Room game (Scenario no. 1), how can you design? Draw.

6. If you design the Catching Spheres in the Box game (Scenario no. 2), how can you design? Draw.

67

APPENDIX N: Questionnaire 1 Used In UML-ADE (English)

QUESTIONNAIRE ABOUT UML-ADE DESIGN

Some expressions about UML-ADE diagram that you currently worked on are given below. About

these expressions, choose one of the five alternatives (from 1 to 5).

S
T

R
O

N
G

L
Y

 N
O

T

A
G

R
E

E

N
O

T
 A

G
R

E
E

D
O

N
’T

 K
N

O
W

A
G

R
E

E

 S
T

R
O

N
G

L
Y

A

G
R

E
E

 1 2 3 4 5

1.
I think UML-ADE diagram given to us is easy to

understand.

2. How complicated is the given UML-ADE
diagram? Evaluate it from 1 to 5 (1: very easy - 5:
very difficult)

3.
I think I understand the system very well by

looking to the given UML-ADE.

4. What is your opinion or suggesstion about UML-ADE design or intelligibility?

__
__
__
__

5. If you design the Collection Spheres in the Room game (Scenario no. 1), how can you design? Draw.

6. If you design the Catching Spheres in the Box game (Scenario no. 2), how can you design? Draw.

68

APPENDIX O: Questionnaire 1 Used In UML-AD (Turkish)

UML TASARIMI HAKKINDA ANKET

Aşağıda üzerinde çalışma yaptığınız UML-AD diyagram ile ilgili bazı yargılar verilmiştir. Bu yargılar

hakkında verilen seçeneklerden (1’den 5’e kadar) size uygun olan birini seçiniz.

K
E

S
İN

L
İK

L
E

K
A

T
IL

M
IY

O
R

U
M

K
A

T
IL

M
IY

O
R

U
M

K
A

R
A

R
S

IZ
IM

K
A

T
IL

IY
O

R
U

M

K
E

S
İN

L
İK

L
E

K

A
T

IL
IY

O
R

U
M

 1 2 3 4 5

1.
Verilen UML-AD Diyagramını kolay ve anlaşılabilir

buldum.

2. Verilen UML-AD sizce ne kadar karışıktı, 1-5 arasında
değerlendiriniz (1: az karışık - 5: çok karışık)

3.
Verilen diyagrama bakarak geliştirilecek oyunu çok iyi

anladığımı düşünüyorum.

4. UML-AD diyagramın tasarımı ya da anlaşılabilirliği ile ilgili eklemek istedikleriniz /

önerileriniz nelerdir?
__
__
__
__

5. Odadaki Küreleri Toplama oyununu (1. Senaryo) siz tasarlasanız nasıl bir tasarım olurdu? Çiziniz.

6. Kutudaki Cisimleri Yakala oyununu (2. Senaryo) siz tasarlasanız nasıl bir tasarım olurdu? Çiziniz.

69

APPENDIX P: Questionnaire 1 Used In UML-ADE (Turkish)

UML TASARIMI HAKKINDA ANKET

Aşağıda üzerinde çalışma yaptığınız UML-ADE diyagram ile ilgili bazı yargılar verilmiştir. Bu

yargılar hakkında verilen seçeneklerden (1’den 5’e kadar) size uygun olan birini seçiniz.

K
E

S
İN

L
İK

L
E

K
A

T
IL

M
IY

O
R

U
M

K
A

T
IL

M
IY

O
R

U
M

K
A

R
A

R
S

IZ
IM

K
A

T
IL

IY
O

R
U

M

K
E

S
İN

L
İK

L
E

K

A
T

IL
IY

O
R

U
M

 1 2 3 4 5

1.
Verilen UML-ADE Diyagramını kolay ve anlaşılabilir

buldum.

2. Verilen UML-ADE sizce ne kadar karışıktı, 1-5 arasında
değerlendiriniz (1: az karışık - 5: çok karışık)

3.
Verilen diyagrama bakarak geliştirilecek oyunu çok iyi

anladığımı düşünüyorum.

4. UML-ADE diyagramın tasarımı ya da anlaşılabilirliği ile ilgili eklemek istedikleriniz /

önerileriniz nelerdir?
__
__
__
__

5. Odadaki Küreleri Toplama oyununu (1. Senaryo) siz tasarlasanız nasıl bir tasarım olurdu? Çiziniz.

6. Kutudaki Cisimleri Yakala oyununu (2. Senaryo) siz tasarlasanız nasıl bir tasarım olurdu? Çiziniz.

70

APPENDIX R: Notation Explanation Document For UML-AD (English)

UML-AD EXPLANATION DOCUMENT

UML-AD diagrams are drawn with using ArgoUML tool that is presented to you. In

these diagrams, various control flows are used. Control flows mean the flow of a

model. According to UML-AD control flows, you should analyze these diagrams.

UML-AD Control Flows:

1. () Initial Node: This is initial point. Activity starts with initial point.

2. () Action: This node is used to define the all actions. There

is no showing message when from an activity to another activity flow.

3. () Control Flow: This node supplies connection between action.

Control action is used to pass from one action to another action.

4. () Decision Node: This node is used to define a condition in an

activity. There is a one incoming flow and multiple outgoing flows. There is a

situation that is depended on every outgoing flow and to explain this

situation, brackets are used.

5. () Activity Final Node: This node is final point. When the activity

finishes, final point is reached. There can be more than one final node.

6. () Fork Node: One incoming flow is separated to more

than one outgoing flow that is simultaneous.

71

() Join Node: More than one incoming flow can combine with one

outgoing flow that is simultaneous. This node defines to combine the parallel actions

and continue with a one action.

Available Defects: During the design of UML diagrams, for the scenario that is

given for you, there are some defects about situations that is shown in below.

 Wrong Transition

 Missing Transition

 Irrelevant Finite State

 Wrong Action State

 Missing Final State

It is expected for you to find defects with marking them on diagrams and save them

to the system. You should press “Submit Defect” button after you save every defect

to the system. So, time of finding defects is shown in the screen. When the finding

defect process is completed, you should press the “Submit All” button and complete

this study.

72

APPENDIX S: Notation Explanation Document For UML-ADE (English)

UML-ADE EXPLANATION DOCUMENT

UML-ADE diagrams are drawn with using ArgoUML tool that is presented to you.

In these diagrams, various control flows are used. Control flows mean the flow of a

model. According to UML-ADE control flows, you should analyze these diagrams.

UML-ADE Control Flows:

1. () Initial Node: This is initial point. Activity starts with initial point.

2. () Action: This node is used to define the all actions. There

is no showing message when from an activity to another activity flow.

3. () User Action: This node is used to define actions that are

done by user. There is no showing message when from an activity to another

activity flow.

4. () Control Flow: This node supplies connection between action.

Control action is used to pass from one action to another action.

5. () Decision Node: This node is used to define a condition in an

activity. There is a one incoming flow and multiple outgoing flows. There is a

situation that is depended on every outgoing flow and to explain this

situation, brackets are used.

6. () Activity Final Node: This node is final point. When the activity

finishes, final point is reached. There can be more than one final node.

73

7. () Fork Node: One incoming flow is separated to more

than one outgoing flow that is simultaneous.

8. () Join Node: More than one incoming flow can combine

with one outgoing flow that is simultaneous. This node defines to combine

the parallel actions and continue with a one action.

Available Defects: During the design of UML diagrams, for the scenario that is

given for you, there are some defects about situations that is shown in below.

 Wrong Transition

 Missing Transition

 Irrelevant Finite State

 Wrong Action State

 Missing Final State

It is expected for you to find defects with marking them on diagrams and save them

to the system. You should press “Submit Defect” button after you save every defect

to the system. So, time of finding defects is shown in the screen. When the finding

defect process is completed, you should press the “Submit All” button and complete

this study.

74

APPENDIX T: Notation Explanation Document For UML-AD (Turkish)

UML-AD AÇIKLAMA DOKÜMANI

Size sunulacak olan UML-AD diyagramları ArgoUML aracı kullanılarak çizilmiştir.

Bu diyagramlarda çeşitli kontrol akışları kullanılmıştır. Kontrol akışları bir modelin

akışını temsil eder. UML-AD kontrol akışlarına göre diyagramları analiz etmelisiniz.

UML-AD Kontrol Akışları:

1. () Initial Node: Başlangıç noktasıdır. Aktivitede akış başlangıç

noktasıyla başlar.

2. () Action: Tüm eylemler belirtmek için kullanılır. Bir

aktiviteden diğer aktivite akışında herhangi mesaj gösterilmez.

3. () Control Flow: Eylemler arasındaki bağlantıyı sağlar. Kontrol akışı,

bir eylemden diğer eyleme geçişte kullanılır.

4. () Decision Node: Bir aktivitede koşul belirtmek için kullanılır. Bir

tane gelen akım, birden fazla giden akım vardır. Her giden akıma bağlı bir

durum vardır ve bu durumu belirtmek için köşeli parantez kullanılır.

5. () Activity Final Node: Bitiş noktasıdır. Aktivite bittiğinde bitiş

noktasına ulaşılır. Birden fazla bitiş noktası olabilir.

6. () Fork Node: Bir gelen akım, birden fazla eş zamanlı

giden akıma ayrılır. Eş zamanlı birden fazla giden akım, eylemlerin aynı anda

yapıldığını belirtir.

75

7. () Join Node: Birden fazla gelen akım, tek bir tane eş

zamalı giden akımla birleşir. Paralel olarak yapılan eylemlerin birleşip tek

eylemle devam ettiğini belirtir.

Mevcut Hatalar: Size verilen senaryo için çizilmiş UML diyagramların tasarımı

sırasında aşağıda belirtilen durumlar ile ilgili bazı hatalar yapılmıştır:

 Yanlış Geçişler (Wrong Transition)

 Eksik Geçişler (Missing Transition)

 Gereksiz Bitiş Noktası (Irrelevant Finite State)

 Yanlış Eylem Durumu (Wrong Action State)

 Eksik Bitiş Noktası (Missing Final State)

Sizlerden bu hataları bulup diyagramlar üzerinde işaretleyerek sisteme kaydetmeniz

beklenmektedir. Her hatayı sisteme kaydettikten sonra "Submit Defect" butonuna

basmanız gerekmektedir. Böylelikle hataları bulduğunuz süre ekranda görülecektir.

Hata bulma işlemini tamamladığınızda "Submit All" butonuna basarak çalışmayı

tamamlayınız.

76

APPENDIX U: Notation Explanation Document For UML-ADE (Turkish)

UML-ADE AÇIKLAMA DOKÜMANI

Size sunulacak olan UML-ADE diyagramları ArgoUML aracı kullanılarak

çizilmiştir. Bu diyagramlarda çeşitli kontrol akışları kullanılmıştır. Kontrol akışları

bir modelin akışını temsil eder. UML-AD kontrol akışlarına göre diyagramları analiz

etmelisiniz.

UML-AD Kontrol Akışları:

1. () Initial Node: Başlangıç noktasıdır. Aktivitede akış başlangıç

noktasıyla başlar.

2. () System Action: Sistemin yaptığı eylemleri belirtmek için

kullanılır. Bir eylemden diğer eylem akışında herhangi mesaj gösterilmez.

3. () User Action: Kullanıcının yaptığı eylemleri belirtmek

için kullanılır. Bir eylemden diğer eylem akışında herhangi mesaj

gösterilmez.

4. () Control Flow: Eylemler arasındaki bağlantıyı sağlar. Kontrol akışı,

bir eylemden diğer eyleme geçişte kullanılır.

5. () Decision Node: Bir aktivitede koşul belirtmek için kullanılır. Bir

tane gelen akım, birden fazla giden akım vardır. Her giden akıma bağlı bir

durum vardır ve bu durumu belirtmek için köşeli parantez kullanılır.

77

6. () Activity Final Node: Bitiş noktasıdır. Aktivite bittiğinde bitiş

noktasına ulaşılır. Birden fazla bitiş noktası olabilir.

7. () Fork Node: Bir gelen akım, birden fazla eş zamanlı

giden akıma ayrılır. Eş zamanlı birden fazla giden akım, eylemlerin aynı anda

yapıldığını belirtir.

8. () Join Node: Birden fazla gelen akım, tek bir tane eş

zamanlı giden akımla birleşir. Paralel olarak yapılan eylemlerin birleşip tek

eylemle devam ettiğini belirtir.

Mevcut Hatalar: Size verilen senaryo için çizilmiş UML diyagramların tasarımı

sırasında aşağıda belirtilen durumlar ile ilgili bazı hatalar yapılmıştır:

 Yanlış Geçişler (Wrong Transition)

 Eksik Geçişler (Missing Transition)

 Gereksiz Bitiş Noktası (Irrelevant Finite State)

 Yanlış Eylem Durumu (Wrong Action State)

 Eksik Bitiş Noktası (Missing Final State)

Sizlerden bu hataları bulup diyagramlar üzerinde işaretleyerek sisteme kaydetmeniz

beklenmektedir. Her hatayı sisteme kaydettikten sonra "Submit Defect" butonuna

basmanız gerekmektedir. Böylelikle hataları bulduğunuz süre ekranda görülecektir.

Hata bulma işlemini tamamladığınızda "Submit All" butonuna basarak çalışmayı

tamamlayınız.

