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ABSTRACT 

A COMPARISON BETWEEN SOFT COMPUTING METHODS AND 

CONVENTIONAL (PID) CONTROLLER APPLIED TO A DC MOTOR 

SYSTEM 

 

Fathi Mohamed A. Darbi 

M.S. Mechatronics Engineering Department 

Supervisor : Assoc. Prof. Dr. Fuad Aliew  

May 2014 99 pages 

 

 

      This research will compare the Soft computing techniques its advantages with the 

optimal proportional-integral derivative (PID) controller parameters, for control of a 

different parameters of a DC motor. The research approach is to establish superior 

features, including easy implementation, stable convergence characteristic and good 

computational efficiency.  

The methods for designing of PID Controllers will been compared and analyzed with 

the intelligent tuning techniques like Fuzzy Sets, Neural Networks and Genetic 

algorithms, Soft computing method was more efficient in improving the step 

response characteristics such as, reducing the steady-states error; rise time, settling 

time and maximum overshoot in position control of a DC motor. 

Keywords: Fuzzy Logic, Artificial Neural Network (ANN), Non-Linear Systems  

Modeling, Controller, Matlab/Simulink, Real Time Control. 
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ÖZ 

 

DC MOTOR SİSTEMİNE UYGULANAN PID KONTROLÜN VE YAZILIM 

HESAPLAMA METHODLARININ KARŞILAŞTIRILMASI 

 

Fathi Mohamed A. Darbi 

Mekatronik Mühendisliği Departmanı Yüksek Lisans Programı 

Danışman : Doç. Dr. Fuad Aliew 

Mayıs 2014 99 sayfa 

 

 

 

         Bu araştırma, DC motorun farklı kontrol parametreleri için; yazılım hesaplama 

tekniklerini ve avantajlarının optimal PID kontrolcü parametrelerini 

karşılaştıracaktır. Araştırma yaklaşımı; kolay uygulama, kararlı yakınsama 

karakteristiği ve iyi hesaplama verimliliğinin dahil olduğu üst düzey özellikleri içerir. 

Bulanık kümeler, yapay sinir ağları ve genetik algoritmalar gibi PID kontrolcü 

tasarım methodları, akıllı ayarlama teknikleri ile analiz edilecek ve 

karşılaştırılacaktır. Basamak tepkisinin karakteristiğinin geliştirilmesi, yazılım 

hesaplama yöntemleri için daha verimlidir. Örneğin, DC motorun pozisyon 

kontrolünde; kararlı hal hataları, yükselme zamanı, ayarlama zamanı ve maksimum 

sapmanın düşürülmesidir. 

Anahtar Kelimeler: Bulanık Mantık, Yapay Sinir Ağı (ANN), Doğrusal Olmayan 

Sistemlerin Modellemesi, Kontrolcü, Matlab/Simulink, Gerçek Zamanlı Kontrol. 
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CHAPTER 1 

INTRODUCTION 

 

Mechatronics systems often use DC motors to drive their work loads, where DC 

motors are used to provide rotary or linear motion to a variety of electromechanical 

devices and servo systems. Depending on application (e.g. robots, electric vehicles, 

low-to-medium power machine-tools etc.) and desired dynamic and steady state 

performances [6]. DC motor is a nonlinear system that has played an important role 

in the improvement of the industrial revolution, making it the heart of different 

applications in robotics and mechatronics beside AC motor systems [25]. 

DC motors are one of the main components of automatic systems; any automatic 

system should have an actuator module that makes the system to actually perform its 

function. The most common actuator used to perform this task is the DC motor. 

Historically, DC motors also played a vital role in the development of the many 

devices and drive systems; which make them one of the most important components 

in our life that we cannot live without it. Due to their importance, the design of 

controllers for these systems has been an interesting area for researchers from all 

over the world. 

However, even with all of their useful applications and usage, DC motor systems still 

suffer from several non-linear behaviors and parameters affecting their performance 

which may lead for the motor to require more complex controlling schemes, or 

having higher energy consumption and faulty functions in some cases. For these 

purposes the controller design of DC motor system is an interesting area that still 

offers multiple topics for research, especially after the discovery of Fuzzy Logic, 

Artificial Neural Networks (ANN) and their possible usage for intelligent control 

purposes. From this point of view and the importance of having high efficient DC 

motor systems, the use of Fuzzy Logic and Artificial Neural Networks (ANN)  

played a vital role in designing smart controllers that can eliminate or cope with the 
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non-linear effects found in DC motor systems and improve the functions they are 

used for [27]. 

1.1 Aim and Scope 

PID Controller is important part in industrial plants and control engineering because 

it is simple and robust. Improvement and development the performance of PID 

Controller is the aim of a lot of researchers. In this research we will using soft 

computing techniques and classical techniques for tuning parameters of PID 

Controller and compare between them applied to DC Motor. 

The Soft computing techniques like Fuzzy Sets and Neural Networks its advantages 

with the optimal proportional-integral derivative (PID) controller parameters, for 

control of a different parameters of a DC motor. However, the Fuzzy Sets techniques 

for tuning parameters of PID Controller has some problems of computation 

complexity and the performance. To solve these problems, we will reconstruct the 

Fuzzy PID Controller Based on feed-forward Neural Network using Back-

propagation algorithm. 

 

1.2 PID Controller 

A proportional–integral–derivative controller (PID controller) is a generic control 

loop feedback mechanism (controller) widely used in industrial control systems – a 

PID is the most commonly used feedback controller. A PID controller calculates an 

"error" value as the difference between a measured process variable and a desired 

setpoint. The controller attempts to minimize the error by adjusting the process 

control inputs. In the absence of knowledge of the underlying process, PID 

controllers are the best controllers. However, for best performance, the PID 

parameters used in the calculation must be tuned according to the nature of the 

system – while the design is generic, the parameters depend on the specific system.  
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Figure 1 Block diagram of PID controller 

The PID controller calculation (algorithm) involves three separate parameters, and is 

accordingly sometimes called three-term control: the proportional, the integral and 

derivative values, denoted P, I, and D. The proportional value determines the 

reaction to the current error, the integral value determines the reaction based on the 

sum of recent errors, and the derivative value determines the reaction based on the 

rate at which the error has been changing. The weighted sum of these three actions is 

used to adjust the process via a control element such as the position of a control 

valve or the power supply of a heating element. Heuristically, these values can be 

interpreted in terms of time: P depends on the present error, I on the accumulation of 

past errors, and D is a prediction of future errors, based on current rate of change. 

By tuning the three constants in the PID controller algorithm, the controller can 

provide control action designed for specific process requirements. The response of 

the controller can be described in terms of the responsiveness of the controller to an 

error, the degree to which the controller overshoots the setpoint and the degree of 

system oscillation. Note that the use of the PID algorithm for control does not 

guarantee optimal control of the system or system stability.  

Some applications may require using only one or two modes to provide the 

appropriate system control. This is achieved by setting the gain of undesired control 

outputs to zero. A PID controller will be called a PI, PD, P or I controller in the 

absence of the respective control actions. PI controllers are fairly common, since 

derivative action is sensitive to measurement noise, whereas the absence of an 
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integral value may prevent the system from reaching its target value due to the 

control action [28]. 

 

1.2.1 PID Control Theory 

The PID controller is probably the most-used feedback control design. PID is an 

acronym for Proportional-Integral-Derivative, referring to the three terms operating 

on the error signal to produce a control signal. If      is the control signal sent to the 

system,      is the measured output and      is the desired output, and tracking error 

               , a PID controller has the general form 

                                     
 

  
    

 

 
                                                 (1) 

The desired closed loop dynamics is obtained by adjusting the three parameters   , 

   and   , often iteratively by "tuning" and without specific knowledge of a plant 

model. Stability can often be ensured using only the proportional term. The integral 

term permits the rejection of a step disturbance (often a striking specification in 

process control). The derivative term is used to provide damping or shaping of the 

response. PID controllers are the most well established class of control systems: 

however, they cannot be used in several more complicated cases, especially if MIMO 

systems are considered. 

Applying Laplace transformation results in the transformed PID controller equation 

                          
 

 
                                                                      (2) 

                      
 

 
                                                                                (3) 

With the PID controller transfer function 

                      
 

 
                                                                                  (4) 

In other words, The PID control scheme is named after its three correcting terms, 

whose sum constitutes the manipulated variable     . Hence: 

                                                                                                         (5) 

Where 
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     The input to the process is called the manipulated variable.    ,     , and      

are the contributions to the output from the PID controller from each of the three 

terms, as defined below [28]. 

1.2.2 Proportional term 

The proportional term (sometimes called gain) makes a change to the output that is 

proportional to the current error value. The proportional response can be adjusted by 

multiplying the error by a constant   , called the proportional gain. 

The proportional term is given by: 

                                                                                                                       (6) 

Where 

                 : Proportional term of output 

               :Proportional gain, a tuning parameter 

                                                                                                             (7) 

                The desired value is called the setpoint 

                The measurement of process value or process variable 

             : Time or instantaneous time (the present) 

A high proportional gain results in a large change in the output for a given change in 

the error. If the proportional gain is too high, the system can become unstable. In 

contrast, a small gain results in a small output response to a large input error, and a 

less responsive (or sensitive) controller. If the proportional gain is too low, the 

control action may be too small when responding to system disturbances 

In the absence of disturbances, pure proportional control will not settle at its target 

value, but will retain a steady state error (known as droop) that is a function of the 

proportional gain and the process gain. Specifically, if the process gain – the long-

term drift in the absence of control, such as cooling of a furnace towards room 

temperature – is denoted by   and assumed to be approximately constant in the error, 

then the droop is when this constant gain equals the proportional term of the output, 

    , which is linear in the error,  =   , so  = /  . This is when the proportional 

term, which is pushing the parameter towards the set point, is exactly offset by the 

process gain, which is pulling the parameter away from the set point. If the process 
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gain is down, as in cooling, then the steady state will be below the set point, hence 

the term "droop". 

Only the drift component (long-term average, zero-frequency component) of process 

gain matters for the droop – regular or random fluctuations above or below the drift 

cancel out. The process gain may change over time or in the presence of external 

changes, for example if room temperature changes, cooling may be faster or slower. 

Droop is proportional to process gain and inversely proportional to proportional gain, 

and is an inevitable defect of purely proportional control. Droop can be mitigated by 

adding a bias term (setting the setpoint above the true desired value), or corrected by 

adding an integration term (in a PI or PID controller), which effectively computes a 

bias adaptively. 

Despite the droop, both tuning theory and industrial practice indicate that it is the 

proportional term that should contribute the bulk of the output change. 

1.2.3 Integral term 

The contribution from the integral term (sometimes called reset) is proportional to 

both the magnitude of the error and the duration of the error. Summing the 

instantaneous error over time (integrating the error) gives the accumulated offset that 

should have been corrected previously. The accumulated error is then multiplied by 

the integral gain and added to the controller output. The magnitude of the 

contribution of the integral term to the overall control action is determined by the 

integral gain,   . 

The integral term is given by: 

                          
 

 
                                                                                      (8) 

Where 

                : Integral term of output 

              :  Integral gain, a tuning parameter 

                                                                                                             (9) 

             : Time or instantaneous time (the present) 
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             : Variable of integration; takes on values from time 0 to the present   

1.2.4 Derivative term 

The rate of change of the process error is calculated by determining the slope of the 

error over time (i.e., its first derivative with respect to time) and multiplying this rate 

of change by the derivative gain   . The magnitude of the contribution of the 

derivative term (sometime called rate) to the overall control action is termed the 

derivative gain,   . 

The derivative term is given by: 

                      
 

  
                                                                                                           

Where 

                 : Derivative term of output 

               : Derivative gain, a tuning parameter 

                           

              : Time or instantaneous time (the present) 

The derivative term slows the rate of change of the controller output and this effect is 

most noticeable close to the controller setpoint. Hence, derivative control is used to 

reduce the magnitude of the overshoot produced by the integral component and 

improve the combined controller-process stability. However, differentiation of a 

signal amplifies noise and thus this term in the controller is highly sensitive to noise 

in the error term, and can cause a process to become unstable if the noise and the 

derivative gain are sufficiently large. Hence an approximation to a differentiator with 

a limited bandwidth is more commonly used. Such a circuit is known as a Phase-

Lead compensator. 

The proportional, integral, and derivative terms are summed to calculate the output 

of the PID controller. Defining      as the controller output, the final form of the 

PID algorithm is: 
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where the tuning parameters are: 

Proportional gain,    

Larger values typically mean faster response since the larger the error, the larger the 

proportional term compensation. An excessively large proportional gain will lead to 

process instability and oscillation. 

Integral gain,    

Larger values imply steady state errors are eliminated more quickly. The trade-off is 

larger overshoot: any negative error integrated during transient response must be 

integrated away by positive error before reaching steady state. 

Derivative gain,    

Larger values decrease overshoot, but slow down transient response and may lead to 

instability due to signal noise amplification in the differentiation of the error. 

1.3 Overview of tuning methods 

There are several methods for tuning a PID loop. The most effective methods 

generally involve the development of some form of process model, then choosing P, 

I, and D based on the dynamic model parameters. Manual tuning methods can be 

relatively inefficient, particularly if the loops have response times on the order of 

minutes or longer. 

The choice of method will depend largely on whether or not the loop can be taken 

"offline" for tuning, and the response time of the system. If the system can be taken 

offline, the best tuning method often involves subjecting the system to a step change 

in input, measuring the output as a function of time, and using this response to 

determine the control parameters. 
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Table 1 Selection of Tuning Method 

Disadvantages Advantages Method 

Requires          experienced 

personnel. 
No math required. Online method. 

Manual 

Tuning 

Process upset, some trial 

and-error, very aggressive 

tuning. 

 

Proven Method. Online method. 

 

 

Ziegler– 

Nichols 

Some cost and training 

involved. 

 

Consistent tuning. Online or offline 

method. May include valve and sensor 

analysis. Allow simulation before 

downloading 

 

Software 

Tools 

Some math. Offline 

method. 

Only good for first-order 

processes. 

 

Good process models. 

 

Cohen- 

Coon 

1.3.1 Manual tuning 

If the system must remain online, one tuning method is to first set    and    values 

to zero. Increase the    until the output of the loop oscillates, then the    should be 

set to approximately half of that value for a "quarter amplitude decay" type response. 

Then increase    until any offset is correct in sufficient time for the process. 

However, too much    will cause instability. Finally, increase   , if required, until 

the loop is acceptably quick to reach its reference after a load disturbance. However, 

too much    will cause excessive response and overshoot. A fast PID loop tuning 

usually overshoots slightly to reach the setpoint more quickly; however, some 

systems cannot accept overshoot, in which case an over-damped closed-loop system 

is required, which will require a    setting significantly less than half that of the    

setting causing oscillation [28], [29]. 
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Table 2 Effects of increasing a parameter independently 

Parameter Rise time Overshoot Settling 

time 

Steady-

state error 

Stability 

   Decrease Increase Small 

change 

Decrease Degrade 

   Decrease Increase Increase Decrease 

significantly 

Degrade 

   Minor 

change 

Decrease Decrease No effect in 

theory 

Improve if 

   small 

1.3.2 Ziegler–Nichols method 

Another heuristic tuning method is formally known as the Ziegler–Nichols method, 

introduced by John G. Ziegler and Nathaniel B. Nichols. Ziegler and Nichols 

proposed rules for determining values of the proportional gain    integral time   , 

and derivative time   , based on the transient response characteristics of a given 

plant. Such determination of the parameters of PID controllers or tuning of PID 

controllers can be made by engineers on-site by experiments on the plant. (Numerous 

tuning rules for PID controllers have been proposed since the Ziegler-Nichols 

proposal. They are available in the literature and from the manufacturers of such 

controllers.) 

There are two methods called Ziegler-Nichols tuning rules: the first method and the 

second method [3].  

You can show more details about Ziegler-Nichols method in chapter (3). 
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CHAPTER 2 

DC MOTOR 

 

2.1 Quanser Motion Servo Plant (SRV02) Model (006 S) 

The Quanser SRV02 rotary servo plant, pictured in Figure 2, consist of a DC motor 

that is encased in a solid aluminum frame and equipped with a planetary gearbox. 

That is, the motor has its own internal gearbox that drives external gears. The basic 

SRV02 units comes with an potentiometer sensor that can be used to measure 

angular position of the load gear. The SRV02 device can also be fitted with an 

encoder to obtain a digital position measurement [32].   

 

Figure 2 Top view of Servo Plant with higher gear configuration 
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2.2 Mathematical Modelling of  Position Control for DC motor (SRV02)  

 

 

 

 

 

Figure 3 Armature circuit in the time-domain 

Using Kirchhoff’s voltage law, we obtain the following equation: 

                                                       
   
  

                                                       

Since        , we can disregard the motor inductance leaving us with: 

                                                   
       

  
                                                                        

We know that the back emf created by the motor is proportional  to the motor shaft  

velocity     such that: 

                                                       
        

  
                                                    

We now shift over to the mechanical aspect of the motor and begin by applying 

Newton’s     law of motion to the motor shaft: 

                                                             
  

    
                                                              

Where  

  
    

                                                                                                                                          

Is the load torque seen thru the gears. And    is the efficiency of the gearbox 
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We now apply the     law of motion at the load of the motor: 

                                                                                                                     (16) 

Where      is the viscous damping coefficient as seen at the output. 

Substituting (15) into (16), we are left with: 

                                                                                                  (17) 

We know that         and           (where    is the motor efficiency),We 

can re-write (17) as: 

                                              
                                                (18)                           

Finally, we can combine the electrical and mechanical equations by substituting (14) 

into (18), yielding our desired transfer function: 

                                    
     

     
 

        

                         
   

                        

Where: 

             
 
                                                                                                   

This can be interpreted as the being the equivalent moment of inertia of the motor 

system as seen at the output [32]. 

2.3 Specifications of DC motor (SRV02) 

                        Motor normal input voltage 

                        Motor armature resistance 

                     Motor armature inductance 

                   Motor torque constant 

                          Motor efficiency 

                            Back-emf constant 

                             High-gear total gearbox ratio      

                              Gearbox efficiency 

                
    Equivalent high-gear moment of inertia with external load  
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                                High-gear viscous damping coefficient found 

experimentally 

                            Maximum input current 

                     Maximum motor speed 

The specifications of the DC motor (SRV02) model (006 S) is found in [Appendix B 

and C]. 

 

 

       

 

 

 

 

 
 

Figure 4 Block diagram of Transfer Function of DC motor position Control 

 

We have two poles in our system: 

              &                 .183 

Both of them locate in left hand side of S-Plane diagram as shown in Figure 5, that's 

mean the system is stabile. 

 

Figure 5 Root Locus Diagram of DC Motor System 
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CHAPTER 3 

DESIGN OF PID CONTROLLER BY USING ZIEGLER-

NICHOLS METHOD 

 

3.1 Ziegler–Nichols method 

Another heuristic tuning method is formally known as the Ziegler–Nichols method, 

introduced by John G. Ziegler and Nathaniel B. Nichols. Ziegler and Nichols 

proposed rules for determining values of the proportional gain    integral time   , 

and derivative time   , based on the transient response characteristics of a given 

plant. Such determination of the parameters of PID controllers or tuning of PID 

controllers can be made by engineers on-site by experiments on the plant. (Numerous 

tuning rules for PID controllers have been proposed since the Ziegler-Nichols 

proposal. They are available in the literature and from the manufacturers of such 

controllers.) 

There are two methods called Ziegler-Nichols tuning rules: the first method and the 

second method. We shall give a brief presentation of these two methods. 

First Method: In the first method, we obtain experimentally the response of the 

plant to a unit-step input, as shown in Figure 6. If the plant involves neither 

integrator(s) nor dominant complex-conjugate poles, then such a unit-step response 

curve may look S-shaped, as shown in Figure 7.This method applies if the response 

to a step input exhibits an S-shaped curve. Such step-response curves may be 

generated experimentally or from a dynamic simulation of the plant. 

The S-shaped curve may be characterized by two constants, delay time   and time 

constant  . The delay time and time constant are determined by drawing a tangent 

line at the inflection point of the S-shaped curve and determining the intersections of 

the tangent line with the time axis and line        , as shown in Figure 7. The 

transfer 
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Figure 6 Unit-step response of a plant 

 

 

Figure 7 S-shaped response curve 

 

Table 3 Ziegler- Nichols Tuning Rule Based on Step Response of plant First Method 

Type of Controller          

P  

 
 

  0 

PI 
   

 

 
 

 

   
 

0 

PID 
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Function            may then be approximated by a first-order system with a 

transport 

                                                  
    

    
 

     

    
                                                                         

Ziegler and Nichols suggested to set the values of     ,   and    according to the 

formula shown in Table 3. 

Notice that the PID controller tuned by the first method of Ziegler-Nichols rules 

gives 

                                                            
 

   
                                                  

                                                                
 

 
   

 

   
                                               

                                                                
   

 
  

 

 
                                                          

Thus, the PID controller has a pole at the origin and double zeros at       . 

Second Method: In the second method, we first set      and.      Using the 

proportional control action only (see Figure 8), increase    from 0 to a critical value 

    at which the output first exhibits sustained oscillations. (If the output does not 

exhibit sustained oscillations for whatever value    may take, then this method does 

not apply.) Thus, the critical gain     and the corresponding period     are 

experimentally 

 

 

 

 

Figure 8 Closed-loop system with a proportional controller 

Plant                   
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Figure 9 Sustained Oscillation with period      

Determined (see Figure 9). Ziegler and Nichols suggested that we set the values of 

the parameters     ,   and    according to the formula shown in Table 4. 

Table 4 Ziegler-Nichols Tuning Rule Based on Critical     and Critical Period      

(Second Method) 

Type of Controller          

P          0 

PI          

   
    

0 

PID                        

Notice that the PID controller tuned by the second method of Ziegler-Nichols rules 

gives 

           
 

   
      

                                                                         
 

       
                              

                                 

   
 
   

 
 

 
 

Thus, the PID controller has a pole at the origin and double zeros at         . 
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Note that if the system has a known mathematical model (such as the transfer 

function), then we can use the root-locus method to find the critical gain     and the 

frequency of the sustained oscillations    , where           . These values can 

be found from the crossing points of the root-locus branches with the    axis. 

(Obviously, if the root-locus branches do not cross the    axis, this method does not 

apply.) 

Comments: Ziegler-Nichols tuning rules (and other tuning rules presented in the 

literature) have been widely used to tune PID controllers in process control systems 

where the plant dynamics are not precisely known. Over many years, such tuning 

rules proved to be very useful. Ziegler-Nichols tuning rules can, of course, be applied 

to plants whose dynamics are known. (If the plant dynamics are known, many 

analytical and graphical approaches to the design of PID controllers are available, in 

addition to Ziegler-Nichols tuning rules.)[3]. 

3.2 Position Control Design by Ziegler-Nichols method 

The control system shown in figure 10 in which a PID is used to control the system. 

The PID controller has the transfer function 

                                                               
 

   
                                                   

Although many analytical methods are available for the design a PID controller for 

the present system, let us apply a Ziegler-Nichols tuning rule for the determination of 

the values of parameters   ,    and     

 

 

 

 

 

 



Figure 10 The Controller System 

 

 

      

                   
 

 

                

+ 
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3.2.1 Ziegler-Nichols rules for tuning PID controllers 

In this research we will use second method of Ziegler-Nichols tuning rules. By 

setting      and      , we obtain the closed-loop transfer function as following: 

    

    
 

        
                          

                                                                      

The plant characteristic equation is: 

                             

The value of    that makes the system Critical stable so that sustained oscillation 

occurs can be obtained by use the following: 

Let      

The standard second-order transfer function 

    

    
 

   
 

             
                                                                                                    

The characteristic equation is 

            
    

Comparing the plant characteristic equation given in (24) with the standard second-

order characteristic equation (25), we find  

            

   
      

 
      

        

               

    
    

      
      

With gain    set to equal           The characteristic equation becomes 
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To find the frequency of the sustained oscillation. We substitute      into this 

characteristic equation as follow: 

                           

                  

               

         

       

From which we find the frequency of the sustained oscillation to be         . 

Hence, the period of sustained oscillation is 

    
  

 
 

  

    
       

Referring to Table (4), we determine   ,    and    as follows: 

              

                

                    

The transfer function of the PID controller is: 

           
 

   
      

            
 

      
         

      
                    

      
 

      
                   

 
 

The PID controller has a pole at the origin and double zero at s = -4 
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Figure 11 Block diagram of the plant with PID Controller designed by use of 

Ziegler-Nichols tuning rule (second method) 

The closed-loop transfer function           is given by 

    

    
 

                   

                               
 

The unit-step response of this system can be obtained easily with MATLAB. See 

MATLAB program (1), the resulting unit-step response curve is shown in figure (12)  

MATLAB program (1) 

num = [0     0.01     0.067     0.184]; 

den = [0.00546      0.2294       0.067     0.184];  

step (num,den) 

                  

 
   

 

PID Controller Plant 
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Figure 12 Unit-Step Response for the plant and PID Controller 

From the figure (12) for unit step response for the plant and PID controller we note 

the overshoot, rise time and settling time are increase. We need to reduce it. 

By increase     =10 ,       and          

           
 

   
         

      
              

 
 

The PID controller has a pole at the origin and double zero at          

          

    

    
 

                     

                                
 

 

the resulting unit-step response curve is shown in figure (13)  

MATLAB program (2) 
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num =[ 0   0.338   3.347   0.3347 ]; 

den = [ 0.00546   0.5574   3.347   0.3347 ]; 

step(num,den) 

 

 

 

Figure 13 Unit-Step Response for the plant and PID Controller 
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I found good response as show in the figure (15). when the parameters of PID 

controller are:     = 10  &      = 0.1 and    = 0.101 



Figure 14 Simulink diagram of DC motor 



Figure 15 Position Control Response using Ziebler-Nichols tuning rule 

Rise time (seconds): 0.147       &      Overshoot (%):  0.08 

Settling time (seconds): 0.211      &    Accuracy Error (%): 0.077 
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CHAPTER 4 

FUZZY LOGIC 

 

4.1 Introduction 

Fuzzy logic has rapidly become one of the most successful of today’s technologies 

for developing sophisticated control systems. The reason for which is very simple. 

Fuzzy logic addresses such applications perfectly as it resembles human decision 

making with an ability to generate precise solutions from certain or approximate 

information. It fills an important gap in engineering design methods left vacant by 

purely mathematical approaches (e.g. linear control design), and purely logic-based 

approaches (e.g. expert systems) in system design. While other approaches require 

accurate equations to model real-world behaviours, fuzzy design can accommodate 

the ambiguities of real-world human language and logic. It provides both an intuitive 

method for describing systems in human terms and automates the conversion of 

those system specifications into effective models [30]. 

Why Fuzzy Logic ? 

 Fuzzy self-tuning PID parameters controller can automatically adjust PID 

parameters in accordance with the error and the rate of error-change. 

 Ability to translate imprecise vague knowledge of human experts. 

 Simple, easy to implement technology. 

  Rules contribute to inferences even when facts do not exactly match 

antecedent and Rule-based systems may be analyzed and improved. 

  Technology is easy to transfer from product to product. 

  Robust and Smooth controller behavior. 

 Ability to control unstable systems [39]. 

4.2 Fuzzy sets  

According to Cantor a set   is a collection of definite, distinguishable objects of our 

intuition which can be treated as a whole. The objects are the members of  . The 

concept ’objects of our intuition’ gives us great freedom of choice, even sets with 
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infinitely many members. Objects must be ’definite’: given an object and a set, it 

must be possible to determine whether the object is, or is not, a member of the set. 

Objects must also be ’distinguishable’: given a set and its members, it must be 

possible to determine whether any two members are different, or the same. 

The members completely define a set. To determine membership, it is necessary that 

the sentence   is a member of  , where x is replaced by an object and   by the name 

of a set, is either true or false. We use the symbol   and write      if object   is a 

member of the set  . The assumption that the members determine a set is equivalent 

to saying: Two sets   and    are equal,    =  , iff (if and only if) they have the same 

members. The set whose members are the objects   ,   , . . . ,    is written 

             [35]. 

Fuzzy set: in a universe of discourse   is characterized by a membership function 

      that takes values in the interval [0, 1]. 

In classical sets the membership function of a classical set can only take zero and one 

In fuzzy set the membership function is a continuous function with range [0, 1].[26] 

4.3 Operations on fuzzy sets 

We extend the classical set theoretic operations from ordinary set theory to fuzzy 

sets. We note that all those operations which are extensions of crisp concepts reduce 

to their usual meaning when the fuzzy subsets have membership degrees that are 

drawn from {0, 1}. For this reason, when extending operations to fuzzy sets we use 

the same symbol as in set theory.  

Let   and   are fuzzy subsets of a nonempty (crisp) set  . 

4.3.1 Union of Two Fuzzy Sets 

The union of two fuzzy sets A and B defined over the same universe of discourse X 

is a new fuzzy set A B also on X with membership function which is the maximum 

of the grades of membership function of every x to A and B: 
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Figure 16 union of two fuzzy sets 

4.3.2 Intersection of Two Fuzzy Sets 

The intersection of two fuzzy sets A and B is a new fuzzy set A B also on X with 

membership function which is the minimum of the grades of membership function of 

every x in X to the sets A and B: 

                                                                                                  

 

Figure 17 intersection of two fuzzy sets 

4.3.3 Complement of a Fuzzy Sets 

The complement of a fuzzy set A is a new fuzzy set A also on X with membership 

function: 
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Figure 18 complement of a fuzzy sets 

4.4 Membership Functions 

We will usually consider one of the following membership functions: 

 Triangular: tri                  
   

   
 
   

   
                                            

 Trapezoidal: trap                    
   

   
 
   

   
                               

 Gaussian: gauss             
 

 
 
   

 
 
 

                                                                                                

 Generalised Bell: gbell        
 

   
   

 
 
                                                             

 

 

Figure 19 Shape of different Membership Function 
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4.5 Fuzzy Systems 

A Fuzzy System can be contrasted with a conventional (crisp) system in three main 

ways: 

 A Linguistic Variable is defined as a variable whose values are sentences in a 

natural or artificial language. Thus, if tall, not tall, very tall, very very tall, 

etc. are values of height, then height is a linguistic variable. 

 Fuzzy Conditional Statements are expressions of the form If A THEN B, 

where A and B have fuzzy meaning, e.g. If x is small THEN y is large, where 

small and large are viewed as labels of fuzzy sets.  

 A Fuzzy Algorithm is an ordered sequence of instructions which may contain 

fuzzy assignment and conditional statements, e.g., x = very small, IF x is 

small THEN y is large. The execution of such instructions is governed by the 

compositional rule of inference and the rule of the preponderant alternative. 

[33] 

4.6 Fuzzy Logic Control System 

In contrast to conventional control techniques, fuzzy logic control (FLC) is best 

utilized in complex ill-defined processes that can be controlled by a skilled human 

operator without much knowledge of their underlying dynamics. 

The basic idea behind FLC is to incorporate the "expert experience" of a human 

operator in the design of the controller in controlling a process whose input – output 

relationship is described by collection of fuzzy control rules (e.g., IF-THEN rules) 

involving linguistic variables rather than a complicated dynamic model. 

The utilization of linguistic variables, fuzzy control rules, and approximate reasoning 

provides a means to incorporate human expert experience in designing the controller. 

FLC is strongly based on the concepts of fuzzy sets, linguistic variables and 

approximate reasoning.  

We will introduce the basic architecture and functions of fuzzy logic controller. 

A typical architecture of FLC is shown below, which comprises of four principal 

comprises: a fuzzifier, a fuzzy rule base, inference engine, and a defuzzifier. 
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Figure 20 Structure of fuzzy logic controller 

If the output from the defuzzifier is not a control action for a plant, then the system is 

fuzzy logic decision system. 

The fuzzifier has the effect of transforming crisp measured data (e.g. speed is 10 

mph) into suitable linguistic values (i.e. fuzzy sets, for example, speed is too slow). 

The fuzzy rule base stores the empirical knowledge of the operation of the process 

of the domain experts. 

The inference engine is the kernel of a FLC, and it has the capability of simulating 

human decision making by performing approximate reasoning to achieve a desired 

control strategy. 

The defuzzifier is utilized to yield a nonfuzzy decision or control action from an 

inferred fuzzy control action by the inference engine. 

The control action must be in the form of a crisp value. Defuzzification is the process 

of transforming the fuzzy set assigned to a control output variable into such a crisp 

value. There are various methods for defuzzification. The following Three are the 

most prominent in fuzzy control. 

Center of gravity (COG)  

 

Bisector of area (BOA)  

 

Mean of maximum (MOM)  

 

Defuzzifier 

Fuzzy Rule 

Base 

Inference 

Engine 

Fuzzifier Plant 

          

      

States or 

output 
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a) Center of gravity (COG) 

For discrete sets COG is called center of gravity for singletons (COGS) where the 

crisp control value is the abscissa of the center of gravity of the fuzzy set is 

calculated as follows: 

  

                    
          
        

                                                                                                 

Where    is a point in the universe of the conclusion (        ) and        is the 

membership value of the resulting conclusion set. For continuous sets summations 

are replaced by integrals. 

b) Bisector of area (BOA)  

The bisector of area (BOA) defuzzification method calculates the abscissa of the 

vertical line that divides the area of the resulting membership function into two equal 

areas. For discrete sets,      is the abscissa    that minimizes 

                               

    

     

 

 

   

                                                                        

Here      is the index of the largest abscissa      . BOA is a computationally 

complex method. 

 

c) Mean of maximum (MOM)  

In this method the crisp value is to choose the point with the highest membership. 

There may be several points in the overall implied fuzzy set which have maximum 

membership value. Therefore it's a common practice to calculate the mean value of 

these points. This method is called mean of maximum (MOM) and the crisp value is 

calculated as follows: 

                   
      

   
                                                                                   

Here   is the (crisp) set of indices   where        reaches its maximum       , and 

     is its cardinality (the number of members) [29]. 
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CHAPTER 5 

FUZZY SELF-TUNING PID CONTROLLER 

 

5.1 Literature Review 

Fuzzy self-tuning PID Controller is widely used in many applications in industry. 

Therefore, a lot of literature is available related with this topic: 

Tao C. W. in 2000 had proposed a flexible complexity reduced design approach for 

PID-like fuzzy controllers. With the linear combination of input variables as a new 

input variable, the complexity of the fuzzy mechanism of PID-like fuzzy controllers 

is significantly reduced. However, the performance of the complexity reduced fuzzy 

PID controller may be degraded since the degree of freedom is decreased by the 

combination of input variables. To alleviate the drawback and improve the 

performance of the complexity reduced PID-like fuzzy controller, a flexible 

complexity reduced design approach is introduced in which the functional scaling 

factors are heuristically generated. Since the functional scaling factors are 

heuristically created, they can be easily adjusted for the flexible complexity reduced 

PID-like fuzzy controller without a priori knowledge of the exact mathematical 

model of the plant. Moreover, heuristic scaling factors are implemented as 

functionals. Therefore, the complexity of the flexible PID-like fuzzy controller will 

not be increased. Further, the stability of the fuzzy control system with a flexible 

complexity reduced PID-like fuzzy controller is discussed [12]. 

According to Gawthrop, P.J.’s paper in 1996 ‘Self-tuning PID control structures’, 

Multiple-model self-tuning PID controllers give a neat way of handling nonlinear or 

time varying systems. The basic concepts of PID control can be generalized within 

the same structure but allowing for the control of complicated dynamic systems 

using advanced control design algorithms. The structure arises naturally from the 

system description and does not need to be imposed artificially. Recent advances in 

Local Model networks give a neat extension of the basic (generalized) PID structure 

to handle nonlinear or time varying systems [9]. 

According to Xie, W.F. (1998) , in ‘Fuzzy Adaptive Internal Model Control’, Fuzzy 
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adaptive internal model control scheme consists of two main parts - 1. Fuzzy 

dynamic model, 2. Fuzzy model-based controller. Fuzzy dynamic model is identified 

on-line by using the input and output measurement of the plant. It serves as the 

internal model and tries to track the output of plant adaptively. The fuzzy model-

based controller is designed to point wise minimize an H, -performance objective 

based on the identified fuzzy model. It aims at improving the robust performance of 

the close-loop control system. The application of fuzzy adaptive internal model 

controller in the laboratory scale Process Control Unit(PCU) from Bytronic shows 

that this kind of control scheme is appropriate for controlling the time-varying stable 

plant with time-delay. The whole control system possesses very satisfactory robust 

performance [11]. 

 

Datta, A. in 1998, developed a systematic theory for the design and analysis of 

adaptive internal model control schemes which is presented in paper ‘The Theory 

and Design of Adaptive Internal Model Control Schemes’. The ubiquitous Certainty 

Equivalence principle of adaptive control is used to combine a robust adaptive law 

with robust internal model controllers to obtain adaptive internal model control 

schemes with provable guarantees of stability and robustness. Specific controller 

structures considered include those of the model reference, “partial” pole placement, 

and Hz, optimal control types. The results here not only provide a theoretical basis 

for analytically justifying some of the reported industrial successes of existing 

adaptive internal model control schemes but also open up the possibility of 

synthesizing new ones by simply combining a robust adaptive law with a robust 

internal model controller structure [10]. 

According to Watanabe, K. in 2003, the conventional IMC consists of the forward 

model of the plant, its inverse-model and low-pass filter. In this paper, they presented 

a scheme of adaptive IMC for uncertain plants. The forward model was adaptively 

identified by using the error between the output of the real plant and the model. The 

inverse model was constructed by the transcription of the parameters of the forward 

model. The transcription requires the inverse of one parameter and it was performed 

in adaptive mechanism [14]. 
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According to Zhiqiang Gao in 2002 a closed-loop control system incorporating fuzzy 

logic has been developed for a class of industrial temperature control problems. A 

unique fuzzy logic controller (FLC) structure with an efficient realization and a small 

rule base that can be easily implemented in existing industrial controllers was 

proposed. The potential of FLC in both software simulation and hardware test in an 

industrial setting was demonstrated. This includes compensating for thermo mass 

changes in the system, dealing with unknown and variable delays, operating at very 

different temperature set points without retuning, etc. It was achieved by 

implementing, in the FLC, a classical control strategy and an adaptation mechanism 

to compensate for the dynamic changes in the system. The proposed FLC was 

applied to two different temperature processes and performance and robustness 

improvements were observed in both cases. Furthermore, the stability of the FLC 

was investigated and a safeguard was established [13]. 

According to Guihua Han in 2005, in order to satisfy the higher control performance 

requirement of the industrial steam turbine governing system, the electro-hydraulic 

servo system and turbine governor based on fuzzy PID control are researched. This 

study presented a nonlinear self-adaptive fuzzy PID controller adopting fuzzy rule 

and inference to adjust PID parameters on-line, which greatly improves the 

robustness, the dynamic and static properties of the system. Additionally, the idea of 

variable universe was employed to improve the disadvantage that the membership 

functions and the control rules could never be modified once they were defined. The 

proposed fuzzy controller showed excellent robustness against variations of system 

parameters and external disturbances by comparison with the commonly used 

classical PID controller or the fixed fuzzy controller via simulations and 

experiments, which was useful for the future theory research and practice in 

hydraulic turbine regulation [17]. 

Xiu-Zhang Jin in 2004 proposed a scheme of adaptive IMC for unstable process with 

dead time. A negative feedback element was used to make this object stable, and 

adaptive internal model control strategy was adopted to design a control system. 

Because of the shortage of the classical internal model control system the 

performance of the control system will slip back if there exist large errors between 

the real plant and the model, an adaptive mechanism based single neuron which can 
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tune the parameters of the internal model and that of controller in the control system 

on line is designed. The simulation results showed that the adaptive internal model 

control system designed in their paper had good performance of overcoming 

disturbance and deviations of model parameters [16]. 

Xianwen Gao in 2006 presented an application of Fuzzy Adaptive PID Control in 

Coke Oven Temperature Control System aiming at the coke oven’s temperature 

characteristics of great inertia, pure time-delay, non-linear and time changeable 

based on the immune feedback regulating law and the adaptive ability of fuzzy logic 

ratiocination. The academic analysis and simulation results of coke oven’s simple 

model indicate the feasibility and effectiveness the control method [18]. 

P.M. Mary. in 2009 had given an improvement over the existing conventional fuzzy 

logic approach, based on a self-tuning fuzzy logic controller (FLC), for the design of 

a temperature control process, capable of providing optimal performance over the 

entire operating range of the process. Since an optimum response of the FLC could 

be expected only for a limited range of inputs, tuning the input and output gains were 

done for various range of inputs. The proposed control system had the advantages of 

self-tuning FLC schemes. To evaluate the performance of the proposed control 

system methods, the results from the simulation of the process were presented [21]. 

 

Juan Chen in 2008 proposed a modified internal model control method is based on 

internal model control (IMC) aiming at unstable processes with large time delay in 

chemical industry. The structure of new control method consists of inner-loop 

control and outer-loop control. The separately design step was used to design 

forward-feedback controller for disturbance rejection and the IMC controller for set-

point tracking. Meanwhile, a method of choosing the inner-loop controller is 

presented. Simulation results showed that the method presented was not only 

effective for the dynamics and the stability of control system but also effective for 

the process robustness. Since the robustness can be improved by tuning the filter 

time constant when the model mismatch exits between the process model and plant 

[19], [29]. 
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5.2 Principle of Fuzzy self-tuning PID controller  

The principle of fuzzy self-tuning PID is firstly to find out the fuzzy relationship 

between three parameters of PID and error    and error changes    . Fuzzy 

inference engines modify three parameters to be content with the demands of the 

control system online through constantly checking          and     
  

  
  

                 .                                                                                        (36) 

Thus, the real plant will have better dynamic and steady performance. The structure 

of fuzzy self tuning PID is just as figure 21. 

 

 

 

 

 

 

Figure 21 Fuzzy self- tuning PID structure 

The unity feedback controller can be realized by a PID controller with filter, then the 

internal model control can be found approximately through parameter-tuning of PID 

controller [29]. 

The mean advantage of Fuzzy self-tuning PID parameters controller is: 

The three parameters    ,   ,    of conventional PID control need to be constantly 

adjust adjusted online in order to achieve better control performance. Fuzzy self-

tuning PID parameters controller can automatically adjust PID parameters in 

accordance with the error and the rate of error-change [38]. 
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5.3 Control Design of Fuzzy self-tuning PID controller  

We have two input variables error     and rate of change in error      and three 

output variables   ,    and   .   

The Membership Functions for Fuzzy input variables 

Table 5 Membership functions for fuzzy input and output variables 

NB NEGATIVE BIG 

NS NEGATIVE SMALL 

ZE ZERO 

PS POSITIVE SMALL 

PB POSITIVE BIG 

 

The membership function for all inputs are shown in figures 22 and 23. By using 

MATLAB Simulation: 

 

Figure 22 Membership functions for error 'e' 
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Figure 23 Membership functions for error derivative 'ec' 

5.3.1 Fuzzy rules 

We have  two inputs variables error     and rate of change in error      and three 

output variables   ,    and   .  Result in 25 rules . These rules are defined using the 

linguistic variables, shows figure 24. 

 

Figure 24 Rule Editor 
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Table 6 Rule base for    

 

Kp NB NS ZE PS PB 

NB PB PB PB PS ZE 

NS PB PB PS ZE ZE 

ZE PB PS ZE NS NB 

PS ZE ZE NS NB NB 

PB ZE NS NB NB NB 

 

The membership functions for fuzzy output variables 

 

Figure 25 Membership functions for    
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Table 7 Rule base for    

 

Ki NB NS ZE PS PB 

NB PB PB PB PS ZE 

NS PB PB PS ZE ZE 

ZE PB PS ZE NS NB 

PS ZE ZE NS NB NB 

PB ZE NS NB NB NB 

 

 

Figure 26 Membership functions for    
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Table 8 Rule base for    

 

Kd NB NS ZE PS PB 

NB PB PB PB PS ZE 

NS PB PB PS ZE ZE 

ZE PB PS ZE NS NB 

PS ZE ZE NS NB NB 

PB ZE NS NB NB NB 

 

Figure 27 Membership functions for    
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5.3.2 Simulink Model for Position Control of DC motor using self tuned fuzzy 

PID Controller 

 

 

Figure 28 Simulink Model for Position Control of DC motor using self tuned fuzzy 

PID controller 

5.3.3 Fuzzy inference system 

 

Figure 29 Fuzzy inference system 
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Figure 30 Rule viewer 
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Figure 31 Rule surface viewer of    

 

Figure 32 Rule surface viewer of    
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Figure 33 Rule surface viewer of    

 

Figure 34 Position Control Response of fuzzy tuned PID controlled DC motor 

Rise time (seconds): 0.14     &     Overshoot (%):  0.296 

Settling time (seconds): 0.189     &    Accuracy Error (%): 0.03 

   = 8.996   &     = 0.055 and    = 0.004 
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CHAPTER 6 

  ARTIFICIAL NEURAL NETWORKES 

 

 

6.1 Introduction 

An Artificial Neural Network (ANN) is a mathematical model that tries to simulate 

the structure and functionalities of biological neural networks [24]. It is powerful 

tools for modeling and solving complex dynamic systems, especially when the 

underlying data relationship is unknown. ANN can identify and learn correlated 

patterns between input data sets and corresponding target values. After training, 

ANN can be used to predict the outcome of new independent input data. ANN 

imitate the learning process of the human brain and can process problems involving 

non-linear and complex data even if the data are imprecise and noisy. Thus it is 

ideally suited for the modeling of agricultural data which are known to be complex 

and often non-linear. ANN has great capacity in predictive modeling i.e., all the 

characters describing the unknown situation can be presented to the trained ANN, 

and then prediction of agricultural systems is guaranteed. 

 

Figure 35 Human Brain 

 

An ANN is a computational structure that is inspired by observed process in natural 

networks of biological neurons in the brain. It consists of simple computational units 

called neurons, which are highly interconnected. ANNs have become the focus of 
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much attention, largely because of their wide range of applicability and the ease with 

which they can treat complicated problems. ANNs are parallel computational models 

comprised of densely interconnected adaptive processing units. These networks are 

fine-grained parallel implementations of nonlinear static or dynamic systems. A very 

important feature of these networks is their adaptive nature, where “learning by 

example” replaces “programming” in solving problems. This feature makes such 

computational models very appealing in application domains where one has little or 

incomplete understanding of the problem to be solved but where training data is 

readily available. ANNs are now being increasingly recognized in the area of 

classification and prediction, where regression model and other related statistical 

techniques have traditionally been employed. The most widely used learning 

algorithm in an ANN is the Backpropagation algorithm. There are various types of 

ANNs like Multilayered Perceptron, Radial Basis Function and Kohonen networks. 

These networks are “neural” in the sense that they may have been inspired by 

neuroscience but not necessarily because they are faithful models of biological neural 

or cognitive phenomena. In fact majority of the network are more closely related to 

traditional mathematical and/or statistical models such as non-parametric pattern 

classifiers, clustering algorithms, nonlinear filters, and statistical regression models 

than they are to neurobiology models [20]. 

 

 

Figure 36 Biological neuron model 
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6.2 Neuron Model 

6.2.1 Simple Neuron  

The fundamental building block for neural networks is the single input neuron as 

shown in figure 37 

 

 

 

 

 

Figure 37 Artificial neuron structure 

There are three distinct functional operations that take place in this example neuron. 

First, the scalar input   is multiplied by the scalar weight   to form the product   , 

again a scalar. Second, the weighted input    is added to the scalar bias   to form 

the net input  . (In this case, you can view the bias as shifting the function   to the 

left by an amount  . The bias is much like a weight, except that it has a constant 

input of 1.) Finally, the net input is passed through the transfer function  , which 

produces the scalar output  . The names given to these three processes are: the 

weight function, the net input function and the transfer function [41] 

                                                                                                                  (37) 

6.2.2 Neuron with Vector Input 

The simple neuron can be extended to handle inputs that are vectors. A neuron with a 

single R-element input vector is shown below. Here the individual input elements    

              

are multiplied by weights   

      ,      ….,      

and the weighted values are fed to the summing junction. Their sum is simply    , 

the dot product of the (single row) matrix   and the vector  . (There are other 

  

 

  

Simple Neuron Input 
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weight functions, in addition to the dot product, such as the distance between the row 

of the weight matrix and the input vector, as in Radial Basis Networks.) 

 

 

 

 

 

 

Figure 38 Multi input neuron 

Where  

  = number of elements in input vector 

The neuron has a bias  , which is summed with the weighted inputs to form the net 

input  . (In addition to the summation, other net input functions can be used, such as 

the multiplication that is used in Radial Basis Networks.) The net input    is the 

argument of the transfer function   [41]. 

                                                                                                               

This expression can be written as 

                                                                                                                                   

6.2.3 Multiple Layers of Neurons 

A network can have several layers. Each layer has a weight matrix  , a bias vector  , 

and an output vector  . To distinguish between the weight matrices, output vectors, 

etc., for each of these layers in the figures, the number of the layer is appended as a 

superscript to the variable of interest. You can see the use of this layer notation in the 

three-layer network shown in figure 39 

 

    

 

   

   

   

   

    

     

     

Input 

. . 

. 

  

  

          

 Neuron w Vector Input 
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Figure 39 Three layer neural network 

                                                                                     (40) 

The network shown above has    inputs,    neurons in the first layer,    neurons in 

the second layer, etc. It is common for different layers to have different numbers of 

neurons. A constant input 1 is fed to the bias for each neuron. 

Note that the outputs of each intermediate layer are the inputs to the following layer. 

Thus layer 2 can be analyzed as a one-layer network with    inputs,    neurons, and 

an    ×     weight matrix   . The input to layer 2 is   ; the output is   . Now that 

all the vectors and matrices of layer 2 have been identified, it can be treated as a 

single-layer network on its own. This approach can be taken with any layer of the 

network. 

The layers of a multilayer network play different roles. A layer that produces the 

network output is called an output layer. All other layers are called hidden layers. 

The three-layer network shown earlier has one output layer (layer 3) and two hidden 

layers (layer 1 and layer 2). Some authors refer to the inputs as a fourth layer. 

The architecture of a multilayer network with a single input vector can be specified 

with the notation   −    −    −...−   , where the number of elements of the input 

vector and the number of neurons in each layer are specified [41]. 
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6.3 Transfer Functions 

Many transfer functions can be used in the Neural Network, the most common 

transfer functions used with ANNs are shown in figures 40, 41, 42 and 43 

 

 

 

 

Figure 40 The Linear transfer function 

 

 

 

 

 

Figure 41 The Log-Sigmoid transfer function 

The output (a) of a log-sigmoid transfer function is calculated according to the 

expression: 

                                                                 
 

     
                                                                

 

 

 

 

 

Figure 42 Hard-Limit transfer function 
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Figure 43 Tan-Sigmoid Transfer Function 

The output (a) of a hyperbolic tangent sigmoid transfer function is calculated 

according to the expression [41]: 

                                                                     
      

      
                                                          

6.4 Backpropagation With Feedforward Network 

Back-propagation has reawakened the scientific and engineering community to the 

modeling and processing of many quantitative phenomena using neural-networks. 

The learning algorithm is applied to the multilayer feed forward networks consisting 

of processing elements with continuous differentiable activation functions. Such 

networks associated with the back-propagation learning algorithm are also called 

back-propagation networks. Given a training set of input-output pairs 

                           the algorithm provides a procedure for changing the 

weights in the back-propagation network to classify the given input patterns 

correctly. The basis for this weight update algorithm is simply the gradient descent 

method as used for simple perceptrons with differentiable units. 

For a given input-output pair            , the back-propagation algorithm performs 

two phases of data flow. First, the input pattern      is propagated from the input 

layer to the output layer and, as a result of this forward flow of data, it produces an 

actual output      . Then the error signals resulting from the difference between      

and      are backpropagated from the output layer to the previous layers for them to 

update their weights. Consider a three-layer network as shown in Figure 44 to 

illustrate the details of the backpropagation learning algorithm. Here we have m 

processing elements in the input layer,   processing elements in the hidden layer, and 
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n processing elements in the output layer. First, let us consider an input-output 

training pair       , where the superscript   is omitted for notation simplification. 

Give an input  , a processing element   in the hidden layer receives a net input of 

                                                                   

 

   

                                                               

And produces an output of 

                                                               

 

   

                                                 

The net input for a processing element   in the output layer is then 

                                                  

   

   

       

   

   

      

 

   

                                 

And it produces an output of 
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Figure 44 Three layer back-propagation network 

The above equations indicate the forward propagation of input signals through the 

layers of neurons till output layer. 

The cost function is defined as: 

                                          
 

 
        

 

 

   

 
 

 
             

                     

 

   

     

                                                  
 

 
           

   

   

    

 
 

   

                                           

Error signal is propagated back up to input layer and according to the gradient- 

descent method, the weights in the hidden-to-output connections are updated by 

                                                                
  

    
                                                               

Using Eqs. (45)-(48) and the chain rule for         , we have 
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Where      is the error signal and its double subscript indicates the ith node in the 

output layer. The error signal is defined 

                               
  

     
   

  

   
  

   
     

           
                               

Where      is the net input to processing element i of the output layer and 

                         

For the weight update on the input-to-hidden connections, the weight update on the 

link weight connecting processing element j in the input layer to processing element 

q in the hidden layer 

                   
  

    
     

  

     
  
     
    

     
  

   
  

   
     

  
     
    

          

From Eq. (47) & (48), it is clear that each error term                     is a 

function of   . Evaluating the chain rule, we have 

                                                
            

           

 

   

                              

Using Eq. (51), we can rewrite Eq. (53) as 

                                                      
              

 

   

                                   

Where     is the error signal of processing element   in the hidden layer and is 

defined as 

                               
  

     
   

  

   
  

   
     

                

 

   

                       

Where      is the net input to the hidden processing element   [Eq. (43)]. The error 

signal of a processing element in a hidden layer is different from the error signal of a 
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processing element in the output layer, as in Eqs. (51) & (55). Because of this 

difference, the above weight update procedure is called the generalized delta learning 

rule [36]. 

6.4.1 Back-propagation Learning Algorithm Steps 

Consider a network with Q feed forward layers, q= 1,2,.....,Q, and let       and     

Denote the net input and output of the ith in the qth layer, respectively. The network 

has m input nodes and n output nodes. Let     
 denote the connection weight from 

     to    . 

Input: A set of training pairs                          , where the input vectors 

are augmented with the last elements as -1, that is,     
   

     

Step 0: Choose     and      (maximum tolerable error). Initialize the weights to 

small random values. Set     and    . 

Step 1 (Training loop): Apply the     input pattern to the input layer      : 

          
   

                for all  .                                                                         (56) 

Step 2: Propagate the signal forward through the network using 

                                                               

 

   
                                          

Step 3: Compute the error value and error signals    
 for the output layer: 

                                                      
 

 
    

   
    

 
 

                                               

 

   

 

                                                
    

   
    

         
                                                   

Step 4: Propagate the errors backward to update the weights and compute the error 

signals       for the preceding layers: 
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Step 5 : Check whether the whole set of training data has been cycled once. If    , 

then       and go to step 1; otherwise, go to step 6. 

Step 6: Check whether the current total error is acceptable: If         , then 

terminate the training process and output the final weights; otherwise,        , 

and initiate the new training epoch by going to step 1. 

End BP [36]. 

6.5 Reconstructing of Fuzzy PID Controller Based on feed-forward Neural   

      Network using Back-propagation algorithm 

The combination of widely-used PID controller with Fuzzy system generates fuzzy 

PID controller which possesses excellent control quality. However, the fuzzy PID 

controller has some problems of computation complexity and the performance. To 

solve these problems, the research expounds the process of training Back-

propagation neural network through its universal function approximating ability and 

PID controller’s input and output couple. This research reveal that the fuzzy PID 

controller can be effectively replaced by the trained Back-propagation neural 

network. Therefore, the method can simplify the computation complexity and 

improving the performance of fuzzy PID controller [37]. 

 

 

 

 

 

 

 

Figure 45 Reconstructing of Fuzzy PID Controller based on BP Neural Network 
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6.6 Simulink Model for Position Control of DC motor using Neural  Network  

 

Figure 46 Simulink Model for Position Control of DC motor using Neural Network 

6.7 Artificial Neural Network Model 

The feed forward neural network configuration as shown in figure 47 consists of 

three layers namely input layer, one hidden layer and one output layer. The input 

layer has two inputs as theta error    and the rate of change in theta error      of DC 

motor and three output neurons as            , which are the input gains of PID 

controller for PID automatic tuning. The hidden layer is considered to have twenty-

five neurons.  

 

Figure 47 ANN feed-forward model 

We can use MATLAB command to build and train our neural networks, we use  this  

command “gensim(net,st)” to generate neural network SIMULINK diagram. The 

function used the gensim function; this function can be used after successful training 

of the neural network, the block generated then can be used to build the total system, 

shows figure 48  and shows the full code of the neural network in Appendix A.  
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Figure 48 NN Model  Block of Fuzzy self- tuning PID controller 
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Figure 49 Training tool window of the NN controller model 
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Figure 50 Performance plot of the NN controller 

 

Figure 51 Training State 
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Figure 52 Regression plot 

 

Figure 53 Position Control Response of Neural Network tuned PID controlled DC 

motor 

Rise time (sec): 0.136   &   Overshoot (%): 0.68     

Settling time (sec): 0.176   &   Accuracy Error (%): 0.03 

   = 9.084   &     = 0.056 and    = 0.004 
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CHAPTER 7 

 

6. REAL TIME CONTROL IMPLEMENTATION 

 

The real time controller is implemented in Matlab/Simulink by using Real-Time 

Windows Target. The Quanser SRV02 rotary servo plant Model (006 S), pictured in 

Figure 54, consist of a DC motor that is encased in a solid aluminum frame and 

equipped with a planetary gearbox. That is, the motor has its own internal gearbox 

that drives external gears. The basic SRV02 units comes with an potentiometer 

sensor that can be used to measure angular position of the load gear. The SRV02 

device can also be fitted with an encoder to obtain a digital position measurement.  

Data Acquisition card that is used for this purpose was Sensoray 626. 

 

Figure 54 Top view of Servo Plant with higher gear configration 
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Figure 55 Experimental setup 

 

Figure 56 Top view of Servo Plant with higher gear configuration 
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7.1 Implementation of PID Controller in Real Time  

There is small gab between simulink and real time, for this reason. We need to 

redesign PID controller in real time, using Ziegler-Nichols tuning rule. 

 

Figure 57 Simulink diagram of DC motor in real time 



Figure 58 Position Control Response using Ziegler-Nichols tuning rule in real time 

Rise time (sec): 0.066    &   Accuracy Error (%): 0.025           

Settling time (sec): 0.086   &   Overshoot (%):  0      

   = 6   &     = 0.1 and    = 0.101 
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7.2 Implementation of Fuzzy self-tuning PID Controller in Real Time  

There is small gab between simulink and real time, for this reason. We need to 

redesign PID controller in real time based on Fuzzy self-tuning. 

 

Figure 59 Simulink Model for Position Control of DC motor using self tuned fuzzy 

PID controller in real time 

 

Figure 60 Position Control Response using Fuzzy self-tuning PID Controller in real 

time 

Rise time (sec): 0.045 & Settling time (sec): 0.06 & Accuracy Error (%): 0.025 

Overshoot (%):  0      &        = 34.74,     = 0.25 and    = 0.446 
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7.3 Implementation of Neural Network tuning PID Controller in Real Time 



Figure 61 Simulink Model for Position Control of DC motor using Neural Network 

in real time 

The real time implementation of Neural Network is not available in our laboratory, 

because Sensoray 626 Data Acquisition Card is not compatible to latest MATLAB 

versions such as (R2011a-R2012a), I need to work with these latest Matlab versions 

because it's support the block of neural network Matlab Function in real time. 

The old Matlab versions such as (R2008b – R2009a) is compatible to sensoray 626 

data acquisition card, but unfortunately doesn't support the block of neural network 

Matlab Function in real time. For this reason I need to work with latest Matlab 

version such as (R2011a-R2012a) to implement the Neural Network in real time. 

In this case I compelled to apply neural network in Simulink/Matlab environment, 

show Artificial Neural Network simulation in chapter 6. 

 

Figure 62 Sensoray 626 Data Acquisition Card 
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CHAPTER 8 

RESULTS & CONCLUSIONS AND  FUTURE WORK 

8.1 A Comparison between Soft Computing Methods and Classical Methods for  

       tuning PID Controller in Simulink 



Figure 63 Subsystem Simulink Model for Position Control of DC motor using Fuzzy 

Logic, Neural Network and Ziegler-Nichols for tuning PID Controller 



Figure 64 Position Control Response of DC motor using Fuzzy Logic, Neural 

Network and Ziegler-Nichols for tuning PID controller 
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Figure 65 Clarification of Position Control Respnse of DC motor using Fuzzu Logic, 

Neural Network and Ziegler-Nichols for tuning PID controller 

Table 9 Comparison between Soft Computing Methods and Classical Methods for 

tuning PID Controller in Simulink 

Controller Angular 

Position 

(deg) 

Rising 

Time (sec) 

Settling 

Time (sec) 

Overshoot 

(%) 

Accuracy 

Error (%) 

Ziegler-

Nichols based 

PID 

Controller 

40 0.147 0.211 0.08 0.077 

Fuzzy Logic 

based PID 

Controller 

40 0.14 0.189 0.29 0.03 

ANN based 

PID 

Controller 

40 0.136 0.176 0.68 0.03 
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8.2 A Comparison between Soft Computing Methods and Classical Methods for    

       tuning PID Controller in Real Time 

 

Table 10 Comparison between Soft Computing Methods and Classical Methods for 

tuning PID Controller in Real Time 

Controller Angular 

Position 

(deg) 

Rising Time 

(sec) 

Settling 

Time (sec) 

Overshoot 

(%) 

Accuracy 

Error 

(%) 

Ziegler-

Nichols based 

PID 

Controller 

40 0.066 0.086 0 0.025 

Fuzzy Logic 

based PID 

Controller 

40 0.045           0.06 0 0.025 

8.3 Conclusion 

From the results obtained for both the Classical Methods for tuning PID controller 

such as (Ziegler-Nichols) and Soft Computing Methods for tuning PID controller 

such as (Fuzzy Logic & Neural Network), it is clear that the overall performance of 

Soft Computing Methods for tuning PID controller proposed was better than the 

Classical Methods for tuning PID controller.  Soft Computing Methods for tuning 

PID controller has shown good results and improvements of the system behavior. 

Soft Computing Methods for tuning PID controller was able to deal with all the non-

linear parameters found on the system. The efficiency of Soft Computing methods 

(Fuzzy Logic and Neural Network for tuning parameters of PID controller) was also 

better in terms of the the step response characteristics such as, reducing the steady-

states error; rise time, settling time and maximum overshoot, as shown in Figures 

(15), (34), (53), (58), (60), (64), (65) and tables (9), (10) 

 



72 
 

8.4 Future Work 

(1) Using Genetic Algorithm technique for tuning PID Controller applied to A DC 

Motor. 

(2) Design of Control Systems by using Soft Computing techniques for A Robot 

Arm. 
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