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ABSTRACT

On Permutation Polynomials over Finite Fields

Dabboor Asad, Maha M.M.

M.S., Department of Mathematics

Supervisor : Assist. Prof. Dr. Burcu Gülmez Temür

March 2017, 90 pages

In this thesis, we study on permutation polynomials defined over finite fields. We have

made a survey of some recent research results on constructions and classifications of

some types of permutation polynomials over finite fields.

Keywords: Permutation polynomial, finite field, linearized polynomial
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ÖZ

Sonlu Cisimler Üzerinde Permutasyon Polinomları

Dabboor Asad, Maha M.M.

Yüksek Lisans, Matematik Bölümü

Tez Yöneticisi : Yrd. Doç. Dr. Burcu Gülmez Temür

28 Mart,2017, 90 sayfa

Bu tezde sonlu cisimlerdeki permutasyon polinomları üzerine çalıştık. Sonlu cisimler

üzerinde tanımlanmış bazı permutasyon polinom tiplerinin oluşturulması ve sınıflandı-

rılması ile ilgili son zamanlarda yapılmış birtakım araştırma sonuçlarını derledik.

Anahtar Kelimeler: Permutasyon polinomu, sonlu cisim, doğrusallaştırılmış polinom
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CHAPTER 1

INTRODUCTION

Let Fq denote the finite field of characteristic p with q elements, where q = pn, n ∈ N.

Let m > 1 be an integer and let TrFqm/Fq(x) denote the trace function from Fqm to Fq,

that is, TrFqm/Fq(x) = x + xq + ...+ xqm−1
. A polynomial of the form L(x) =

∑m−1
i=0 aixqi

∈

Fqm[x] is called a linearized polynomial over Fqm . Note that the trace function is a

special case of linearized polynomial.

A polynomial f ∈ Fq[x] is called a permutation polynomial over Fq if the mapping

x 7→ f (x) induces a bijective map from Fq to itself. A permutation polynomial f (x)

over a finite field Fq is called a complete permutation polynomial if f (x) + x is also a

permutation polynomial.

Permutation polynomials over finite fields is an interesting and important topic as they

play an essential role in both arithmetical and combinatorial aspects of finite fields.

The explicit constructions of permutation polynomials have been a special interest for

many applications of finite fields such as cryptography, coding theory, combinatorial

design theory, finite geometry and computer science.

In this thesis, our aim is to present some recent studies constructing new classes of

permutation polynomials over finite fields. The thesis is organized as follows. In

Chapter 2, all definitions and some basic results that will be used throughout the

thesis are given.

In Chapter 3, the results of the paper ‘Constructing Permutation Polynomials over

Finite Fields’ written by X. Qin and S. Hong are given. In this paper, the authors con-

struct permutation polynomials of the following forms: First they construct
∑k

i=1(Li(x)+
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γi)hi(B(x)) over Fqm where Li(x) and B(x) are linearized polynomials, next using ele-

mentary symmetric polynomials they construct xh(λ j(x)) and xh(µ j(x)) where λ j(x) is

the j-th elementary symmetric polynomial of x, xq, . . . .xqm−1
and µ j(x) = TrFqm/Fq(x j)

and finally using linear translators they construct L1(x) + L2(γ)h( f (x)) over Fqm .

In Chapter 4, the results of the paper ‘New Results on Permutation Polynomials over

Finite Fields’ written by X. Qin, G. Qian and S. Hong are given, they construct new

permutation polynomials of the forms

L(x) +
∑k

j=1 γ jh j( f j(x)) and x +
∑k

j=1 γ j f j(x) and then using linearized polynomial,

permutation polynomials of the form L(x) +
∑l

i=1 γiTrFqm/Fq(hi(x)) where L(x) is a

linearized polynomial are characterized.

In Chapter 5, the results of the paper ‘On one Class of Permutation Polynomials over

Finite Fields of Characteristic Two’ written by L.A. Bassalygo and V.A. Zinoviev are

given. In this paper the authors classify all permutation polynomials of type xq3+q2+q+2

over the field Fq4 , where q = 2m,m ≥ 2.

In Chapter 6, the results of the paper ‘Permutation and Complete Permutation Poly-

nomials’ written by L.A. Bassalygo and V.A. Zinoviev are given the authors here

enumerate all permutation polynomials of the form xq+2 + bx over the field Fq2 and

xq2+q+2 + bx over the field Fq3 .
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CHAPTER 2

PRELIMINARIES

In this section we will give all the definitions and some basic results that will be

needed throughout the thesis.

Definition 2.0.1 [8] A field K is a set together with two binary operations, denoted

by + and · such that:

1. K is an abelian group whith respect to + ( with identity element denoted by 0 or

0K).

2. K \ {0K} = K∗ is an abelian group under ·.

3. The distributive laws hold; that is, for all a, b, c ∈ R we have a·(b+c) = a·b+a·c

and (b + c) · a = b · a + c · a.

Definition 2.0.2 [8] Let E be a field and L a subset of E. L is called a subfield of E

if L is itself a field under the operations of E. In this context, E is called an extension

field of K. If E , L, we say that L is a proper subfield of E.

Definition 2.0.3 [8] A field containing no proper subfield is called a prime field.

Definition 2.0.4 [8] Let E be an extension field of L. E can be considered as a a

vector space over L. The degree of the extension E over L denoted by [E : L] is

defined to be the dimension of E as a vector space over L, namely [E : L] = dimLE.
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Definition 2.0.5 [8] Let E be a field , L be a subfield of E and let S be a subset of E.

The smallest subfield of E (in the sense of inclusion) containing L and the set subset

S is denoted by L(S ) and called the extension of L by adjoining the elements of S .

Remark 2.0.6 [8] If S = {β1, . . . , βn} then L(S ) = L(β1, . . . , βn). If S = {β}, then L(β)

is said to be a simple extension of L, and β a defining element for L(β).

Definition 2.0.7 [8] Let p > 0 be a prime number and q = pn be a power of p. Then

the finite field Fq is a field with q elements.

Definition 2.0.8 [8] A polynomial over Fq is an expression of the form

f (x) =

n∑
i=0

aixi = a0 + a1x + · · · + anxn,

where n is a nonnegative integer, ai ∈ Fq, 0 ≤ i ≤ n, and x is an indeterminate over

Fq, here we say that f (x) ∈ Fq[x] , where Fq[x] is the ring of polynomials over Fq.

Theorem 2.0.9 [8] Let f ∈ L[x] be an irreducible polynomial over a field L. Then

there is a simple algebraic extension L(β) where β is a root of f .

Remark 2.0.10 [8] If β is a root of the irreducible polynomial f over a field L with

n = deg f . Then [L(β) : L] = n = deg f and {1, β, . . . , βn−1} is a basis of L(β) as a

vector space over L.

Definition 2.0.11 [8] If F is an arbitrary field and there exists a positive integer n

such that nr = 0 for every r ∈ F, then the least such integer n is called the character-

istic of F and F is said to have (positive) characteristic n. If no such positive integer

n exists, F is said to have characteristic 0.

Corollary 2.0.12 [8] A finite field has prime characteristic.

Remark 2.0.13 [8]

1. From here till the end Fqm denotes the finite field of characteristic p with qm

elements where q = pn, p is prime, and m, n ∈ N.
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2. For the field Fqm the prime subfield is the field Fp, where p is the characteristic

of Fqm with q = pn.

Definition 2.0.14 [8] Let E be a field and L a subfield of E. An element δ ∈ E is said

to be algebraic over L if

anδ
n + · · · + a1δ + a0 = 0,

for some ai ∈ L, 1 ≤ i ≤ n not all zero with n > 0 is an integer.

Definition 2.0.15 [8] Let E be a field extension of a field L. Then E is said to be an

algebraic extension over L if every α ∈ E is algebraic over L.

Proposition 2.0.16 [8] Every finite extension of a field L is algebraic over L.

Theorem 2.0.17 [8][Existence and Uniqueness of Finite Fields ] For every prime

number p and every positive integer n, there exists a finite field with pn elements. Any

finite field with q = pn elements it is unique up to isomorphism.

Remark 2.0.18 [8] For the finite field Fq, the extension field Fq(β) of Fq where β is a

root of the irreducible polynomial f ∈ Fq[x], we have Fq(β) = Fqn , where n = deg f .

Theorem 2.0.19 [8][Subfield Criterion] Let Fq be the finite field with q = pn ele-

ments. Then every subfield of Fq has order pr where r is a positive divisor of n.

Conversely, if r is a positive divisor of n, then there is exactly one subfield of Fq with

pr elements. Moreover this subfield will be the field Fpr .

Theorem 2.0.20 [8] For every finite field Fq the multiplicative group F∗q of nonzero

elements of Fq is cyclic.

Definition 2.0.21 [8] A generator of the cyclic group F∗q is called a primitive element

of Fq.

Theorem 2.0.22 [8] Let Fq be a finite field and Fs a finite extension field. Then Fs

is a simple algebraic extension of Fq and every primitive element of Fs can serve as

5



a defining element of Fs over Fq. In other word Fs = Fq(δ) where δ is a primitive

element of Fs.

Definition 2.0.23 [8] Let f ∈ K[x] be of positive degree and F an extension field of

K. Then f is said to split in F if f can be written as a product of linear polynomials

over F.

Definition 2.0.24 [8] Let f ∈ K[x] and let F be a field extension of K. let deg f = n ≥

1. F is called a splitting field of f over K if f splits in F and F = K(α1, . . . , αn), i.e, F

is the smallest extension of K containing all the roots of f .

Theorem 2.0.25 [8] If f is an irreducible polynomial in Fq[x] of degree n, then f

has a root β in Fqn . Furthermore, all the roots of f are simple and are given by the n

distinct elements β, βq, βq2
, . . . , βqn−1

of Fqn .

Lemma 2.0.26 [13] Let f (x) be an irreducible polynomial over Fq of degree m, then

f (x) remains irreducible over Fqs if and only if gcd(s,m) = 1.

Corollary 2.0.27 [8] Let f be an irreducible polynomial in Fq[x] of degree n. Then

the splitting field of f over Fq is given by Fqn .

Definition 2.0.28 [8] Let Fqm be an extension of Fq and let β ∈ Fqm. Then the elements

β, βq, βq2
, . . . , βqm−1

are called the conjugates of β with respect to Fq.

Definition 2.0.29 [8] Let m > 1 be a given integer. By TrFqm/Fq(a) we denote the trace

from Fqm to Fq of a , that is

TrFqm/Fq(a) = a + aq + ... + aqm−1
.

For m ≥ 1, TrFqm/Fp(a) is called the absolute trace of a and is denoted as Trqm(a),

where Fp is the prime subfield of Fqm .

Theorem 2.0.30 [8] Let L = Fq and E = Fqm . Then the trace function TrE/L satisfies

the following properties:
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1. TrE/L(a + b) = TrE/L(a) + TrE/L(b) for all a, b ∈ E;

2. TrE/L(ca) = cTrE/L(a) for all c ∈ L, a ∈ E;

3. TrE/L is a linear transformation from E onto L, where both E and L are viewed

as vector spaces over L;

4. TrE/L(aq) = TrE/L(a) for all a ∈ E, i.e, all conjugates of a ∈ E with respect to L

have the same trace.

Remark 2.0.31 [8] Note that the trace function TrFqm/Fq : Fqm → Fq is a group

homomorphism under addition . Let K = Ker(TrFqm/Fq), then since Im(TrFqm/Fq) =

Fq, by the first isomorphism theorem Fqm/K � Fq, hence |Fqm/K| = |Fq|, so |K| = qm−1,

which implies that |{α ∈ Fqm : TrFqm/Fq(α) = 0}| = qm−1.

Theorem 2.0.32 [8][Transitivity of Trace] Let L be a finite field , E be a finite exten-

sion of L, and F a finite extension of E, then for all α ∈ F

TrF/L(α) = TrE/L(TrF/E(α)).

Theorem 2.0.33 [8] Let E be a finite field extension of L = Fq. Then for α ∈ E we

have TrE/L(α) = 0 if and only if α = δq − δ for some δ ∈ E.

Remark 2.0.34 Theorem 2.0.33 is special case of Hilbert’s Theorem 90 for traces

(see [7]).

Definition 2.0.35 [8] A polynomial of the form

L(x) =

m−1∑
i=0

aixqi
∈ Fqm[x]

is called a linearized polynomial over Fqm .

Lemma 2.0.36 [10] Let B(x), L(x) ∈ Fq[x] be linearized polynomials. Then for any

a ∈ Fq and x, y ∈ Fqm , aB(x) = B(ax), B(x + y) = B(x) + B(y) and B(L(x)) = L(B(x)).
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Definition 2.0.37 [8] Let Fq denote the finite field of characteristic p with q elements

(q = pn, p is prime, n ∈ N), and let F∗q := Fq \ {0}. The polynomial f ∈ Fq[x] is called

a permutation polynomial of Fq if and only if for a ∈ Fq :

1. the function f : a 7→ f (a) is onto;

2. the function f : a 7→ f (a) is one-to-one.

Remark 2.0.38 For the permutation polynomials over finite fields it is enough to

prove that the function f : a 7→ f (a) is one to one or onto because a one to one

mapping over finite set will be onto and vice versa.

Definition 2.0.39 [4] A polynomial f (x) ∈ Fq[x] is called a complete permutation

polynomial over Fq if and only if the following hold

1. f (x) is a permutation polynomial over Fq, and

2. f (x) + x is a permutation polynomial over Fq.

Definition 2.0.40 [4] A polynomial f (x) ∈ Fq[x] is called a b-complete permutation

polynomial over Fq if and only if:

1. f (x) is a permutation polynomial over Fq, and

2. f (x) + bx is a permutation polynomial over Fq, where b ∈ F∗q

Remark 2.0.41 If f (x) is a b-complete permutation polynomial over Fqm , where b ∈

F∗qm , then b−1 f (x) is complete permutation polynomial over Fqm .

Theorem 2.0.42 [8] The monomial axn ∈ Fq[x] is a permutation polynomial over Fq

if and only if gcd(n, q − 1) = 1.

Theorem 2.0.43 [8] Let Fq be of characteristic p. Then the linearized polynomial

L(x) =

m∑
i=0

aixpi
∈ Fq[x]

is a permutation polynomial of Fq if and only if L(x) only has the root 0 in Fq.

8



Definition 2.0.44 [8] The Dickson polynomial of degree k over a field F, denoted as

Dk(s, r), where r ∈ F, is the polynomial defined by

Dk(s, r) =

b k
2 c∑

i=0

k
k − i

(
k − i

i

)
(−r)isk−2i.

Theorem 2.0.45 [8] The Dickson polynomial Dk(s, r), r ∈ F∗q, is a permutation poly-

nomial over Fq if and only if gcd(k, q2 − 1) = 1.

Corollary 2.0.46 [1] Let F be a field of characteristic p ≥ 0. For f (x) ∈ F[x], g(y) ∈

F[y], we have:

1. If p - (deg f )(deg g) and r, s ∈ F[x, y] are non-constant factors of f (x) + g(y)

then (r, s) , (1) in F[x, y]. In particular, if F is algebraically closed, r and s

have a common zero.

2. If gcd(deg f , deg g) = 1 then f (x) + g(y) is irreducible.

Definition 2.0.47 [8] Let G be a finite abelian group (written multiplicatively) of

order |G| with identity element 1G. A character χ of G is a homomorphism from G into

the multiplicative group U of complex numbers of absolute value 1.

Remark 2.0.48 [8]

1. The character defined by χ0(g) = 1 for all g ∈ G is called the trivial character

χ0.

2. Characters of the additive group of Fq are called additive characters of Fq.

Moreover characters of the multiplicative group F∗q of Fq are called multiplica-

tive characters of Fq.

Definition 2.0.49 [8] Consider the additive group of Fq. Let p be the characteristic

of Fq. Let Tr : Fq → Fp be the absolute trace function from Fq onto Fp. Then the

function χ1(a) = e2πiTr(a)/p for all a ∈ Fq is an additive character of Fq, and called the

canonical character.

9



Theorem 2.0.50 (Weil’s Theorem) [8] Let g ∈ Fq[x] be of degree m ≥ 1 with

gcd(m, q) = 1 and let χ be a nontrivial additive character of Fq. Then

|
∑
a∈Fq

χ (g(a)) | ≤ (n − 1)
√

q.

Definition 2.0.51 [8] Let χ be a nontrivial additive character of Fq and let α, β ∈ Fq.

Then the sum

K(χ;α, β) =
∑
a∈F∗q

χ(αa + βa−1)

is called a Kloosterman sum.

Theorem 2.0.52 [8] If χ is a nontrivial additive character of Fq and α, β ∈ Fq are

not both zero, then the Kloosterman sum K(χ;α, β) satisfies

|K(χ;α, β)| ≤ 2
√

q.

Theorem 2.0.53 (Hasse-Weil bound) [5] With N the number of Fq-rational points

of an irreducible non-singular algebraic curve with genus g defined over Fq,

|N − q − 1| ≤ 2g
√

q.

Remark 2.0.54 [8] the genus g of the curve defined by the equation f (x, y) = 0,

where f is an absolutely irreducible polynomial f ∈ Fq[x, y] with deg( f ) = d, is

given by the inequality

g ≤
(d − 1)(d − 2)

2
.
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CHAPTER 3

CONSTRUCTING PERMUTATION POLYNOMIALS OVER

FINITE FIELDS

3.1 Permutation polynomials constructed by the linearized polynomials.

In this section we present the results of the paper ”Constructing Permutation Polyno-

mials Over Finite Fields” written by Xiaoer Qin and Shaofang Hong. In this paper,

the authors construct several new permutation polynomials over finite fields using lin-

earized polynomials, elementary symmetric polynomials and using linear translators.

The following theorem is the first main result of the paper.

Theorem 3.1.1 For 1 ≤ i ≤ k ,let γi ∈ Fqm and let Li(x), B(x) ∈ Fq[x] be lin-

earized polynomials. Let hi(x) ∈ Fqm[x] be such that hi(B(Fqm)) ⊆ Fq. Then F(x) :=∑k
i=1(Li(x) + γi)hi(B(x)) is a permutation polynomial over Fqm if and only if each of

the following is true:

1.
∑k

i=1(Li(x) + B(γi))hi(x) permutes B(Fqm)

2. For any y ∈ B(Fqm),
∑k

i=1 Li(x)hi(y) = 0 and B(x) = 0 with x ∈ Fqm are both true

if and only if x = 0

Proof. We will first prove that the two conditions are sufficient for F(x) to be a per-

mutation polynomial. Assume that the conditions (1) and (2) hold. Now, assume that

there exist α and β ∈ Fqm satisfying F(α) = F(β). Since B is a linearized polynomial

11



this will imply that B(F(α)) = B(F(β)). That is,

B(
k∑

i=1

(Li(α) + γi)hi(B(α))) = B(
k∑

i=1

(Li(β) + γi)hi(B(β))). (3.1)

By applying Lemma 2.0.36 to both sides of (3.1) it follows that

k∑
i=1

(Li(B(α)) + B(γi))hi(B(α)) =

k∑
i=1

(Li(B(β)) + B(γi))hi(B(β)). (3.2)

By condition (1),
∑k

i=1(Li(x)+ B(γi))hi(x) permutes B(Fqm), then from (3.2) we get that

B(α) = B(β). Define t := B(α) = B(β). We then have t ∈ B(Fqm) and B(α − β) = 0.

Since F(α) = F(β), one has

k∑
i=1

Li(α − β)hi(t) = 0.

By applying condition (2) to α − β, it follows that α − β = 0, hence α = β. Therefore

F(x) is a permutation polynomial over Fqm .

For the converse, suppose that F(x) is a permutation polynomial over Fqm .

We first prove that if F(x) is permutation polynomial then condition(1) holds.

Let B(x) act on F(x) over x ∈ Fqm , and since B(x) is linearized polynomial by Lemma

2.0.36 it follows that

B(F(x)) =

k∑
i=1

(Li(B(x)) + B(γi))hi(B(x)). (3.3)

Since F(x) permutes the elements of the field Fqm , we get the following equalities of

cardinalities,

| {B(F(x)) : x ∈ Fqm} |=| {B(x) : x ∈ Fqm} |=| B(Fqm) | . (3.4)

This concludes that
∑k

i=1(Li(x) + B(γi))hi(x) permutes B(Fqm). Therefore condition (1)

holds.

Next, we will prove that if F(x) is a permutation polynomial then condition (2) holds.

Assume that
∑k

i=1 Li(x)hi(y) = 0 and B(x) = 0, for some y ∈ B(Fqm) and x ∈ Fqm . Since

y ∈ B(Fqm), we can assume that there exist α and β ∈ Fqm satisfying B(α) = B(β) = y,

which implies B(α − β) = 0. Therefore α − β and x are both in the kernel ker(B) of
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B(x). Thus α−β+ x = z, for some z ∈ ker(B). Substituting x = α−β+z in the equation∑k
i=1 Li(x)hi(y) = 0, we get

k∑
i=1

Li(α − β + z)hi(y) = 0. (3.5)

On the other hand, recall that z ∈ ker(B), that is B(z) = 0, hence B(β − z) = B(α) = y.

Using the discussion above we get the following

F(α) − F(β − z) =

k∑
i=1

(Li(α) + γi)hi(B(α)) −
k∑

i=1

(Li(β − z) + γi)hi(B(β − z))

=

k∑
i=1

(Li(α) + γi)hi(y) −
k∑

i=1

(Li(β − z) + γi)hi(y)

=

k∑
i=1

Li(α − β + z)hi(y). (3.6)

Hence from (3.5) and (3.6), it follows that F(α) = F(β − z). From the fact that F(x)

is a permutation polynomial of Fqm , we obtain α − β + z = 0. Namely, x = 0. Thus

condition (2) holds.

This completes the proof.

�

The following corollary can be considered as a special case of Theorem 3.1.1.

Corollary 3.1.2 Let L1(x), L2(x) ∈ Fq[x] be linearized polynomials. Let h(x) ∈ Fq[x]

and γ ∈ Fqm . Then F(x) := L1(x) + (L2(x) + γ)h(TrFqm/Fq(x)) is a permutation poly-

nomial over Fqm if and only if each of the following is true:

1. L1(x) + (L2(x) + TrFqm/Fq(γ))h(x) ∈ Fq[x] is a permutation polynomial over Fq .

2. For any y ∈ Fq, L1(x) + L2(x)h(y) = 0 and TrFqm/Fq(x) = 0 with x ∈ Fqm are both

true if and only if x = 0.

Proof. The result follows by theorem3.1.1 if we take k = 2, B(x) = TrFqm/Fq(x) ∈

Fq[x], γ1 = 0, γ2 = γ , h1(x) = 1 and h2(x) = h(x). � In the following examples we

will show how to apply Corollary 3.1.2.
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Example 3.1.3 Let Fqm = F8m where m is an odd integer . Let h(x) = x3 − ax, L1(x) =

a2x and L2(x) = x2, with a ∈ F∗8 . Then L1(x) + L2(x)h(x) = D5(x, a) is a permutation

polynomial over F8 by Theorem 2.0.45 since gcd(5, q2 − 1) = 1, here D5(x, a) denotes

the Dickson polynomial of degree 5 over F8 . Let y ∈ F8 be an arbitrary element,

x ∈ Fm
q with TrFqm/F8(x) = 0 and L1(x) + L2(x)h(y) = 0 . If h(y) = 0 , then L1(x) = 0.

From L1(x) = a2x = 0 , we drive that x = 0 . If h(y) , 0 ,it then follows from

L1(x) + L2(x)h(y) = 0 that x = 0 or x =
a2

y3 − ay
, 0.

Assume that x =
a2

y3 − ay
. Since m is odd and

a2

y3 − ay
, 0, implies TrFqm/F8(x) =

TrFqm/F8(
a2

y3 − ay
) =

ma2

y3 − ay
, 0.

By Corollary 3.1.2, we get that L1(x)+L2(x)h(TrFqm/F8(x)) is a permutation polynomial

over Fqm .

Example 3.1.4 Let Fqm = F9m with m > 1 and gcd(m, 3) = 1 . Let h(x) = b2x2, L1(x) =

x3, L2(x) = a2x , where a, b ∈ F∗9, γ = 0.

Then

• L1(x) + L2(x)h(x) = x3 + a2x(b2x2) = x3 + a2b2x3 = (1 + a2b2)x3 permutes F9

because gcd(3, 9 − 1) = gcd(3, 8) = 1.

• For any y ∈ F9, assume that L1(x) + L2(x)h(y) = 0 and TrFqm/F9(x) = 0 with

x ∈ Fqm , that is, x3 + a2x(b2y2) = 0, which implies x(x2 + a2(b2y2)) = 0, then

either x = 0 or x2 +a2b2y2 = 0 . If x , 0, then x2 +a2b2y2 = 0, i.e, x2 = −a2b2y2.

Let α ∈ F9 be a root of the irreducible polynomial x2 + 1 over F3.

So x2 = α2a2b2y2 which implies x = ±αaby. Note that x ∈ F9 and since

gcd(m, 3) = 1 then TrFqm/F9(x) = ±αabym , 0. which gives a contradiction.

Hence x = 0 and by Corollary 3.1.2 we conclude that

L1(x) + L2(x)h(TrFqm/F9(x)) = x3 + a2b2x(TrFqm/F9(x))2 is a permutation polyno-

mial over Fqm .

Corollary 3.1.5 Let F(x) := L(x) + xh(TrFqm/Fq(x)) with L(x) ∈ Fq[x] being a lin-

earized polynomial and h(x) ∈ Fq[x] . Then F(x) is a permutation polynomial over

Fqm if and only if each of the following is true:
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1. L(x) + xh(x) is a permutation polynomial over TrFqm/Fq(x).

2. For any y ∈ Fq, we have that x ∈ Fqm satisfies L(x)+xh(y) = 0 and TrFqm/Fq)(x) =

0 if and only if x = 0.

Proof. Setting k = 2, L1(x) = L(x), L2(x) = x, γ1 = γ2 = 0, h1(x) = 1, h2(x) = h(x),

and B(x) = TrFqm/Fq(x), the result follows by Corollary 3.1.2. �

Corollary 3.1.6 Let L(x) = a0x + a1xq + ... + am−1xqm−1
∈ Fq[x] be a linearized

polynomial which permutes Fqm . Let h(x) ∈ Fq[x] and γ ∈ Fqm . Then the poly-

nomial F(x) := L(x) + γh(TrFqm/Fq(x)) permutes Fqm if and only if the polynomial

(a0 + a1 + ... + am−1)x + TrFqm/Fq)(γ)h(x) permutes Fq.

Proof. Setting k = 2, L1(x) = L(x), L2(x) = 0, γ1 = 0, γ2 = γ, h1(x) = 1, h2(x) = h(x)

and B(x) = TrFqm/Fq(γ)(x), then applying Corollary 3.1.2, the polynomial F(x) is a

permutation polynomial over Fqm if and only if

1. L(x)+TrFqm/Fq(γ)h(x) is a permutation polynomial over Fq.However, for x ∈ Fq,

we get that L(x) = a0x+a1x+ · · ·+am−1x = (a0 +a1 + ...+am−1)x. The condition

becomes (a0 + a1 + ... + am−1)x + TrFqm/Fq(γ)h(x) permutes Fq.

2. Assume that L(x) = 0 and TrFqm/Fq(x) = 0 with x ∈ Fqm . Since L(x) is a permu-

tation polynomial of Fqm , then L(x) = 0 if and only if x = 0 for any x ∈ Fqm .

Hence condition (2) in Corollary 3.1.2 already holds.

It then follows that F(x) is a permutation polynomial over Fqm if and only if

(a0 + a1 + ... + am−1)x + TrFqm/Fq(γ)h(x) is a permutation polynomial over Fq as

desired.

�

3.2 Permutation polynomials constructed by the elementary symmetric poly-

nomials

In this section, the authors construct new classes of permutation polynomials using

the elementary symmetric polynomials.
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Definition 3.2.1 Let m and j be integers such that 1 ≤ j ≤ m − 1 .

Let σ j(x1, ..., xm) denote the jth elementary symmetric polynomial in m variables

x1, ..., xm. That is,

σ j(x1, ..., xm) =
∑

1≤i1<...<i j≤m

xi1 ...xi j ∈ Fqm[x1, x2, ..., xm].

We can define the polynomial λ j(x) as

λ j(x) := σ j(x, xq, ..., xqm−1
) =

∑
0≤i1<...<i j≤m−1

xqi1 +...+qi j
∈ Fqm[x].

Lemma 3.2.2 Let α ∈ Fqm and a ∈ Fq . Then λ j(x) ∈ Fq[x], λ j(α) ∈ Fq, λ j(αq) = λ j(α)

and λ j(aα) = a jλ j(α) .

Proof. Since all coefficients of the polynomial λ j(x) are 1, then we get that λ j(x) ∈

Fq[x]. Let α ∈ Fqm , then λ j(α) =
∑

0≤i1<...<i j≤m−1 α
qi1 +...+qi j

, take the q power of the two

sided we get

λ j(α)q =

 ∑
0≤i1<...<i j≤m−1

αqi1 +...+qi j


q

=
∑

0≤i1<...<i j≤m−1

αqi1+1+...+qi j+1

=
∑

1≤i1<...<i j≤m

αqi1 +...+qi j
,

since α ∈ Fqm , then αqm
= α = αq0

, thus we get

λ j(α)q =
∑

1≤i1<...<i j≤m

αqi1 +...+qi j
=

∑
0≤i1<...<i j≤m−1

αqi1 +...+qi j
= λ j(α),

hence λ j(α) ∈ Fq. Also by the similar argument, one has

λ j(αq) =
∑

0≤i1<...<i j≤m−1

αqi1+1+...+qi j+1
= λ j(α).

Now take a ∈ Fq, since aq = a, then we have

λ j(aα) =
∑

0≤i1<...<i j≤m−1

(aα)qi1 +...+qi j
=

∑
0≤i1<...<i j≤m−1

aqi1 +...+qi j
αqi1 +...+qi j

=
∑

0≤i1<...<i j≤m−1

aqi1
· · · aqi j

αqi1 +...+qi j

=
∑

0≤i1<...<i j≤m−1

a jαqi1 +...+qi j
= a j

∑
0≤i1<...<i j≤m−1

αqi1 +...+qi j

= a jλ j(α).

�
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Lemma 3.2.3 For any integer j satisfying that 1 ≤ j ≤ m − 1 and gcd( j, q − 1) = 1,

λ j : Fqm → Fq is onto .

Proof. First we need to show that there exists α ∈ Fqm such that λ j(α) , 0. From the

definition of λ j(x) we observe that the degree of λ j is

deg(λ j(x)) = qm− j + · · · + qm−1 ≤ q + · · · + qm−1 =
qm − 1
q − 1

− 1 < qm = |Fqm |,

which implies that the number of roots of λ j(x) in Fqm is less than qm, so there exist an

element α ∈ Fqm such that λ j(α) , 0.Now choose an α ∈ Fqm such that a := λ j(α) , 0.

Let b ∈ Fq be arbitrary. Since gcd( j, q − 1) = 1, by Theorem 2.0.42 the polynomial

ax j is a permutation polynomial over Fqm . It follows that for any b ∈ Fqm , there exists

an element d ∈ Fq such that b = ad j. Since λ j(α) = a, letting δ := dα we get

λ j(δ) = λ j(dα) = d jλ j(α) = ad j = b

Hence λ j(x) is onto . �

We can now characterize permutation polynomials of the form xh(λ j(x)) by the fol-

lowing Theorem.

Theorem 3.2.4 Let m and j be positive integers such that 1 ≤ j ≤ m−1 and gcd( j, q−

1) = 1. Let h(x) ∈ Fq[x]. Then xh(λ j(x)) is a permutation polynomial over Fqm if and

only if h(0) , 0 and xh(x) j permutes Fq

Proof. Define F(x) := xh(λ j(x)). Assume that h(0) , 0 and xh(x) j permutes Fq. Since

xh(x) j permutes Fq, it follows that δh(δ) j , 0, for any δ ∈ F∗q. Moreover, h(δ) , 0 for

δ ∈ F∗q, and since we assumed that h(0) , 0 we get h(δ) , 0 for all δ ∈ Fq.

Choose arbitrary elements α, β ∈ Fqm such that F(α) = F(β), that is,

αh(λ j(α)) = βh(λ j(β)). (3.7)

Then λ j(F(α)) = λ j(F(β)), which implies by (3.7) that λ j(αh(λ j(α))) = λ j(βh(λ j(β))).

Using Lemma 3.2.2, and since h(x) ∈ Fq, λ j(x) ∈ Fq we deduce that

λ j(α)h(λ j(α)) j = λ j(β)h(λ j(β)) j. (3.8)
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Now, since xh(x) j permutes Fq, it follows from (3.8) that λ j(α) = λ j(β). Let y =

λ j(α) = λ j(β), then the equation (3.7) is equivalent to (α − β)h(y) = 0, which implies

that α = β as h(δ) , 0 for all δ ∈ Fq. Hence F(x) is a permutation polynomial over

Fqm .

Conversely, suppose that F(x) is a permutation polynomial over Fqm . We will first

prove that h(0) , 0. By Lemma 3.2.3, the mapping λ j is onto since gcd( j, q − 1) = 1.

For 1 ≤ j ≤ m − 1, we have

degλ j(x) = qm− j + · · · + qm−1 ≤ q + · · · + qm−1.

Thus for any a ∈ F∗q, the equation λ j(x) = a has at most q + · · · + qm−1 roots in Fqm .

Then the equation λ j(x) = 0 has at least qm − (q − 1)(q + · · · + qm−1) = q roots in Fqm .

Hence λ j(x) = 0 has a nonzero root in Fqm . Now, choose α ∈ F∗qm such that λ j(α) = 0.

Then αh(0) = αh(λ j(α)) = F(α). Since F(x) is a permutation polynomial over Fqm

and α is nonzero, then F(α) , 0, that is , αh(0) , 0. Thus h(0) , 0.

We will now prove that xh(x) j permutes Fq. Let H(x) := xh(x) j. By Lemma 3.2.2 it

follows that

λ j(F(x)) = λ j(x)h(λ j(x)) j. (3.9)

In addition, by Lemma 3.2.3, λ j(x) is a mapping from Fqm onto Fq, for all integers

j with 1 ≤ j ≤ m − 1 .This means that for all a ∈ Fq there exist b ∈ Fqm such that

λ j(b) = a, which implies that

{xh(x) j : x ∈ Fq} = {λ j(x)h(λ j(x)) j : x ∈ Fqm}. (3.10)

It then follows from (3.9) and (3.10) and the assumption that F(x) permutes Fqm , that

|{xh(x) j : x ∈ Fq}| = |{λ j(x)h(λ j(x)) j : x ∈ Fqm}|

= |{λ j(F(x)) : x ∈ Fqm}|

= |{λ j(x) : x ∈ Fqm}| = q.

Hence the polynomial H(x) : Fq → Fq is a one-to-one mapping, and since Fq is finite

H(x) is also onto, therefore H(x) = xh(x) j permutes Fq.

�
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Definition 3.2.5 Define µ j(x) :=
∑m−1

i=0 x jqi
= TrFqm/Fq(x j), for 1 ≤ j ≤ qm − 1 . Then

µ j(x) ∈ Fq[x], µ j(α) ∈ Fq and µ j(aα) = a jµ j(α) for all a ∈ Fq and α ∈ Fqm .

Remark 3.2.6 Note that µ j(x) is a mapping from Fqm onto Fq if gcd( j, qm − 1) = 1,

that is because x j permutes Fqm if gcd( j, qm − 1) = 1, so

Im(µ j(x)) = {TrFqm/Fq(x j) : x ∈ Fqm}

= {TrFqm/Fq(x) : x ∈ Fqm}

= Fq

Replacing λ j(x) by µ j(x) we can characterize a permutation polynomials of the form

xh(µ j(x)) as the following.

Theorem 3.2.7 Let m and j be positive integers such that 1 ≤ j ≤ qm − 1 and

gcd( j, qm − 1) = 1 . Let h(x) ∈ Fq[x] . Then xh(µ j(x)) is a permutation polynomial

over Fqm if and only if h(0) , 0 and xh(x) j permutes Fq .

Proof. It is enough to prove that if xh(µ j(x)) is a permutation polynomial over Fqm ,

then h(0) , 0. The other part of the proof is very similar to that of Theorem 3.2.4.

Suppose that xh(µ j(x)) is a permutation polynomial over Fqm . From the fact that |{a ∈

Fqm : TrFqm/Fq(a) = 0}| = qm−1 , there exist a nonzero element δ ∈ Fqm such that

TrFqm/Fq(δ) = 0. Since gcd( j, qm − 1) = 1, x j permutes Fqm , so there is a nonzero

element c ∈ Fqm such that c j = δ. Therefore TrFqm/Fq(c
j) = 0, i.e, µ j(c) = 0. Then

ch(0) = ch(µ j(c)). Since xh(µ j(x)) is a permutation polynomial over Fqm and c is a

nonzero, then ch(0) , 0. Thus h(0) , 0. So the theorem is proved. �

3.3 Permutation polynomial constructed by linear translators

Definition 3.3.1 Let f : Fqm → Fq , a ∈ Fq and α be a nonzero element in Fqm . If

f (x + uα) − f (x) = ua for all x ∈ Fqm and u ∈ Fq , then we say that α is an a-linear

translator of the function f . In particular, a = f (α) − f (0).
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Theorem 3.3.2 Let L1(x) ∈ Fqm[x] be a linearized permutation polynomial of Fqm and

L2(x) ∈ Fqm[x] be a linearized polynomial of Fqm .

Let b ∈ Fq, γ ∈ Fqm , h : Fq → Fq, f : Fqm → Fq be surjective and L−1
1 L2(γ) be a

b-linear translator of f . Then L1(x) + L2(γ)h( f (x)) is a permutation polynomial of

Fqm if and only if either L2(γ) = 0 or x + bh(x) is a permutation polynomial of Fq .

Proof. We define k(x) := x + bh(x) and K(x) := L1(x) + L2(γ)h( f (x)).

Note that if L2(γ) = 0, then K(x) is a permutation polynomial over Fqm since L1(x) is

a permutation polynomial over Fqm . Assume that L2(γ) , 0 and k(x) is a permutation

polynomial of Fq. In order to show that K(x) is a permutation polynomial of Fqm , let

x1, y1 be arbitrary elements in Fqm such that K(x1) = K(y1), that is,

L1(x1) + L2(γ)h( f (x1)) = L1(y1) + L2(γ)h( f (y1)). (3.11)

Since L(x) is a linearized polynomial then (3.11) can be written as L1(x1 − y1) =

aL2(γ), where a := h( f (y1)) − h( f (x1)) ∈ Fq. As L1(x) is a permutation polynomial

over Fqm , there exists a unique element α ∈ Fqm such that L1(α) = aL2(γ). Thus, α =

aL−1
1 L2(γ) and since L1(x1−y1) = aL2(γ),we get L1(α) = L1(aL−1

1 L2(γ)) = L1(x1−y1).

Now, since L1(x) is a permutation polynomial over Fqm it follows immediately that

α = x1 − y1, i.e.,

x1 = y1 + aL−1
1 L2(γ). (3.12)

Substituting the expression of x1 in (3.11) implies that

L1(aL−1
1 L2(γ)) + L2(γ)h( f (y1 + aL−1

1 L2(γ))) = L2(γ)h( f (y1)), (3.13)

which is equivalent to

aL2(γ) + L2(γ)h( f (y1 + aL−1
1 L2(γ))) = L2(γ)h( f (y1)). (3.14)

Dividing both sides of (3.14) by L2(γ) we get

a + h( f (y1 + aL−1
1 L2(γ))) = h( f (y1)). (3.15)

As L−1
1 L2(γ) is the b-linear translator of f , we have f (y1 + aL−1

1 L2(γ)) − f (y1) = ab.

Hence we can rewrite (3.15) as

a + h( f (y1) + ab) = h( f (y1)). (3.16)
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Now, multiplying (3.16) by b and adding f (y1) to both sides, we get

f (y1) + ab + bh( f (y1) + ab) = f (y1) + bh( f (y1)). (3.17)

Recall that k(x) = x + bh(x), then (3.17) is equivalent to

k( f (y1) + ab) = k( f (y1)). (3.18)

Next, we claim that a = 0. In order to prove this claim we will consider the cases

where b = 0 and b , 0 separately. If b = 0, then by (3.16), one has a = 0 as claimed.

If b , 0, then it follows from the assumption that k(x) is a permutation polynomial of

Fq and (3.18) that a = 0. The claim is proved. Then by the claim and (3.12), it follows

immediately that x1 = y1. This concludes that K(x) is a permutation polynomialof

Fqm .

Conversely, assume that K(x) is a permutation polynomial of Fqm . Suppose that

L2(γ) , 0. Here we will also consider the cases where b = 0 and b , 0 separately. If

b = 0, then k(x) = x, is already a permutation polynomial of Fq, then we have done.

If b , 0, then choose arbitrary elements u1, u ∈ Fq such that

k(u1) = k(u1 + bu). (3.19)

Since f is surjective, there exists an element v1 ∈ Fqm such that u1 = f (v1). Then

(3.19) is equivalent to

k( f (v1)) = k( f (v1) + bu). (3.20)

After replacing y1 by v1 and a by u in (3.18) and using the equivalence of (3.18) and

(3.13), the equation in (3.20) becomes

L1(v1) + L2(γ)h( f (v1)) = L1(v1 + uL−1
1 L2(γ)) + L2(γ)h( f (v1 + uL−1

1 L2(γ))). (3.21)

Recall that K(x) = L1(x) + L2(γ)h( f (x)). It follows from (3.21) that K(v1) = K(v1 +

uL−1
1 L2(γ)), but K(x) is a permutation polynomial of Fqm , so v1 = v1 + uL−1

1 L2(γ),

which implies uL−1
1 L2(γ) = 0. Since L1(x) is a permutation polynomial and L2(γ) , 0,

we have L−1
1 L2(γ) , 0. Hence u = 0. Thus k(x) is a permutation polynomial of Fq.

This completes the proof of the theorem.

�
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Corollary 3.3.3 Let L(x) ∈ Fqm[x] be a linearized permutation polynomial of Fqm .

Let b ∈ Fq, γ ∈ Fqm , h : Fq → Fq, f : Fqm → Fq be surjective and γ be a b-linear

translator of f . Then F(x) := L(x) + L(γ)h( f (x)) is a permutation polynomial of Fqm

if and only if x + bh(x) is a permutation polynomial of Fq .

Proof. If we set k = 2 and L1(x) = L2(x), then L−1
1 L2(γ) = γ, and apply Theorem

3.3.2 it follows that F(x) = L(x) + L(γ)h( f (x)) is a permutation polynomial of Fqm if

and only if either L(γ) = 0 or x + bh(x) is a permutation polynomial of Fq. But since

L(x) is a permutation polynomial over Fqm , if L(γ) = 0 then γ = 0, but γ is a b-linear

translator of f and by definition γ is a nonzero element. Hence L(γ) , 0. Therefore

F(x) = L(x) + L(γ)h( f (x)) is a permutation polynomial of Fqm if and only if x + bh(x)

is a permutation polynomial of Fq as desired. �
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CHAPTER 4

NEW RESULTS OF PERMUTATION POLYNOMIALS OVER

FINITE FIELDS

4.1 Permutation polynomial constructed by linear translators

In this section, we will give the results of the paper ”New Result On Permutation

Polynomials Over Finite Fields” where the authors construct permutation polynomials

of the forms L(x) +
∑k

j=1 γ jh j( f j(x)) and x +
∑k

j=1 γ j f j(x) using linear translators.

Theorem 4.1.1 Let k be a positive integer. Let L : Fqm → Fqm be a linearized polyno-

mial such that dim(Ker(L)) = k and Ker(L) ∩ Im(L) = {0} . Let {γ1, ..., γk} be a basis

of Ker(L) over Fq and h1(x), ..., hk(x) ∈ Fq[x] be permutation polynomials of Fq. For

any integers i and j with 1 ≤ i, j ≤ k let bi j ∈ Fq and γi be a bi j-linear translator of

f j : Fqm ,→ Fq. Then F(x) := L(x) +
∑k

j=1 γ jh j( f j(x)) is a permutation polynomial of

Fqm if and only if det(bi j)1≤i, j≤k , 0 .

Proof. Assume that det(bi j)1≤i, j≤k , 0, and F(α) = F(β), for arbitrary elements α, β ∈

Fqm , which implies that

F(α) = L(α) +

k∑
j=1

γ jh j( f j(α)) = L(β) +

k∑
j=1

γ jh j( f j(β)),

since L(x) is linearized polynomial over Fqm , then the equation above is equivalent to

L(α − β) =

k∑
j=1

γ j(h j( f j(β)) − h j( f j(α))). (4.1)
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Note that h j( f j(β)) − h j( f j(α)) ∈ Fq for 1 ≤ j ≤ k, and since γ j ∈ Ker(L), we get

L

 k∑
j=1

γ j(h j( f j(β)) − h j( f j(α)))

 =

k∑
j=1

L
(
γ j(h j( f j(β)) − h j( f j(α)))

)
=

k∑
j=1

(h j( f j(β)) − h j( f j(α)))L
(
γ j

)
= 0,

which implies that
∑k

j=1 γ j(h j( f j(β))− h j( f j(α))) ∈ Ker(L). By equation (4.1) we have∑k
j=1 γ j(h j( f j(β)) − h j( f j(α))) ∈ Im(L), but Ker(L) ∩ Im(L) = {0}. So

k∑
j=1

γ j(h j( f j(β)) − h j( f j(α))) = 0. (4.2)

Hence L(α − β) = 0, that is, α − β ∈ Ker(L). Now, since {γ1, . . . , γk} is a basis of

Ker(L) over Fq, and α − β ∈ Ker(L), there exist a1, . . . , ak ∈ Fq such that

α − β = a1γ1 + · · · + akγk, (4.3)

that is,

α = β + a1γ1 + · · · + akγk, (4.4)

As γ1, . . . , γk are linearly independent over Fq, by (4.2) we have

h j( f j(β)) − h j( f j(α)) = 0, for 1 ≤ j ≤ k. (4.5)

Substituting α = β + a1γ1 + · · · + akγk in (4.5) we get

h j( f j(β)) − h j( f j(β + a1γ1 + · · · + akγk)) = 0 for 1 ≤ j ≤ k. (4.6)

But h j(x) is a permutation polynomial of Fq, so (4.6) is equivalent to

f j(β + a1γ1 + · · · + akγk) − f j(β) = 0 for 1 ≤ j ≤ k. (4.7)

On the other hand, from the fact that γi is a bi j-linear translator of f j, for all 1 ≤ i, j ≤

k, we get the following equalities,

f j(β + a1γ1 + · · · + ak−1γk−1 + akγk) − f j(β + a1γ1 + · · · + ak−1γk−1) = akbk j;

f j(β + a1γ1 + · · · + ak−2γk−2 + ak−1γk−1) − f j(β + a1γ1 + · · · + ak−2γk−2) = ak−1bk−1 j;

f j(β + a1γ1 + · · · + ak−3γk−3 + ak−2γk−2) − f j(β + a1γ1 + · · · + ak−3γk−3) = ak−2bk−2 j;
...

f j(β + a1γ1) − f j(β) = a1b1 j.
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By summing up the equations above we deduce that

f j(β + a1γ1 + · · · + akγk) − f j(β) = a1b1 j + a2b2 j + · · · + akbk j.

which implies the equation (4.7) is equivalent to

a1b1 j + a2b2 j + · · · + akbk j = 0, for 1 ≤ j ≤ k. (4.8)

Therefore (a1, . . . , ak) ∈ Fk
q is a solution of the following system of linear equations

x1b11 + x2b21 + · · · + xkbk1 = 0

x1b12 + x2b22 + · · · + xkbk2 = 0
...

x1b1k + x2b2k + · · · + xkbkk = 0.

(4.9)

As det(bi j)1≤i, j≤k , 0, the rank of the coefficient matrix of (4.9) is equal to k. Thus the

system (4.9) of linear equations has only the trivial solution. Namely, (a1, . . . , ak) =

(0, . . . , 0), which implies α = β by (4.4). Hence F(x) is a permutation polynomial of

Fqm .

Conversely, assume that F(x) is a permutation polynomial of Fqm , and let (a1, . . . , ak) ∈

F∗q be a solution of the system (4.9), then (4.8) holds. Note that the equation (4.8) is

equivalent to (4.6), then (4.6) is also satisfied. That is,

h j( f j(β)) − h j( f j(β + a1γ1 + · · · + akγk)) = 0, for 1 ≤ j ≤ k,

where β ∈ Fqm . Choose an element α ∈ Fqm such that α := β + a1γ1 + · · · + akγk.

Substituting α in the above equation it follows that

k∑
j=1

γ j(h j( f j(β)) − h j( f j(α))) = 0. (4.10)

Recall that γ1, . . . , γk ∈ Ker(L), and since α − β = a1γ1 + · · · + akγk, then

L(α − β) = L(a1γ1 + · · · + akγk) = a1L(γ1) + · · · + akL(γk) = 0, (4.11)

combining (5.12) and (4.11) we get,

L(α − β) =

k∑
j=1

γ j(h j( f j(β)) − h j( f j(α))).
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Since L(x) is linearized polynomial we have,

L(α) +

k∑
j=1

γ jh j( f j(α)) = L(β) +

k∑
j=1

γ jh j( f j(β)).

Note that F(α) = L(α)+
∑k

j=1 γ jh j( f j(α)) and F(β) = L(β)+
∑k

j=1 γ jh j( f j(β)), therefore

F(α) = F(β). However, F(x) is a permutation polynomial of Fqm , which implies that

α = β, then from the expression of α, it follows that a1γ1 + · · · + akγk = 0. Since

{γ1, . . . , γk} is a basis of Ker(L) over Fq, we get a1 = · · · = ak = 0, which implies the

system (4.9) has only the trivial solution. Therefore det(bi j)1≤i, j≤k , 0, as desired. �

Corollary 4.1.2 Let m ≥ 2 be a positive integer with gcd(p,m) = 1, γ1, ..., γm−1 ∈

Fqm \ Fq be linearly independent over Fq and h1(x), ..., hm−1(x) ∈ Fq[x] be a permuta-

tion polynomial of Fq .For any integers i and j with 1 ≤ i, j ≤ m−1 ,let bi j ∈ Fq and γi

be a bi j-linear translator of f j : Fqm → Fq .Then F(x) := TrFqm/Fq(x)+
∑m−1

j=1 γ jh j( f j(x))

is a permutation polynomial of Fqm if and only if det(bi j)1≤i, j≤m−1 , 0 .

Proof. We will just apply Theorem 4.1.1 by taking L(x) = TrFqm/Fq(x). Recall that

TrFqm/Fq : Fqm → Fq is onto, so Im
(
TrFqm/Fq(x)

)
= Fq. Let a be an element such that

a ∈ Ker(TrFqm/Fq) ∩ Fq, it follows that TrFqm/Fq(a) = 0, and a ∈ Fq. Since a ∈ Fq, then

TrFqm/Fq(a) = ma, which implies ma = 0, but from the hypothesis that gcd(p,m) = 1,

it follows that a = 0. Hence Ker(TrFqm/Fq) ∩ Fq = {0}. Therefore Ker(TrFqm/Fq) =

Fqm \ F∗q. Since dim(Ker(TrFqm/Fq)) = m − 1, and the elements γ1, ..., γm−1 are linearly

independent, then the set {γ1, ..., γm−1} forms a basis of Ker(TrFqm/Fq) over Fq. Hence

the Corollary is concluded by applying Theorem 4.1.1. �

Corollary 4.1.3 Let p be an odd prime and k be a positive integer.Let {γ1, ..., γk} be

a basis of Fqk over Fq and h1(x), ..., hk(x) ∈ Fq[x] be permutation polynomials of Fq.

For any integers i and j with 1 ≤ i, j ≤ k, let bi j ∈ Fq and γi be a bi j-linear translator

of f j : Fq2k → Fq. Then F(x) := x− xqk
+

∑k
j=1 γ jh j( f j(x)) is a permutation polynomial

of Fq2k if and only if det(bi j)1≤i, j≤k , 0.

Proof. Setting m = 2k and L(x) = x − xqk
be a linearized polynomial over Fq2k , we

have Ker(L) = Ker(x − xqk
) = Fqk , hence the set {γ1, ..., γk} is a basis of Ker(L). Now

for any a ∈ Ker(x− xqk
)∩ Im(x− xqk

), we get a = aqk
and a = b−bqk

for some b ∈ Fq2k .
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It follows that a = (b − bqk
)qk

= bqk
− bq2k

= bqk
− b = −a, which implies that 2a = 0,

but since p is an odd prime, then a = 0. Therefore Ker(x − xqk
) ∩ Im(x − xqk

) = {0}.

By Theorem 4.1.1 the Corollary is concluded. �

Corollary 4.1.4 Let m ≥ 2 be a positive integer with gcd(p,m) = 1, γ1, ..., γm−1 ∈

Fqm \ Fq be linearly independent over Fq . Let h j : Fq −→ Fq be a permutation of

Fq and H j : Fqm −→ Fqm , β j ∈ Fqm for 1 ≤ j ≤ m − 1. Then F(x) := TrFqm/Fq(x) +∑m−1
j=1 γ jh j(TrFqm/Fq(H j(TrFqm/Fq(x)) + β jx)) is a permutation polynomial of Fqm if and

only if det(TrFqm/Fq(γiβ j))1≤i, j≤m−1 , 0 .

Proof. We will apply Corollary 4.1.2 by setting f j(x) = TrFqm/Fq(H j(TrFqm/Fq(x))+β jx),

1 ≤ j ≤ m − 1. Then for all x ∈ Fqm and all a ∈ Fq

f j(x + aγi) − f j(x) =TrFqm/Fq(H j(TrFqm/Fq(x + aγi)) + β j(x + aγi))

− TrFqm/Fq(H j(TrFqm/Fq(x)) + β jx)

= TrFqm/Fq(H j(TrFqm/Fq(x) + aTrFqm/Fq(γi)) + β j(x + aγi))

− TrFqm/Fq(H j(TrFqm/Fq(x)) + β jx),

but γi ∈ Ker(TrFqm/Fq), for 1 ≤ i ≤ m − 1, then TrFqm/Fq(γi) = 0, which implies

f j(x + aγi) − f j(x) = aTrFqm/Fq(γiβ j).

Therefore γi is a TrFqm/Fq(γiβ j)- linear translator of f j(x) for 1 ≤ i, j ≤ m − 1. Hence

by Corollary 4.1.2 F(x) is a permutation polynomial of Fqm if and only if

det(TrFqm/Fq(γiβ j))1≤i, j≤m−1 , 0, as desired. �

Corollary 4.1.5 Let p be an odd prime and k be a positive integer. Let α ∈ Fqk be

a primitive element of Fqk . Let h1(x), ..., hk(x) ∈ Fq[x] be permutation polynomi-

als of Fq,H1(x), ...,Hk(x) ∈ Fq2k[x] and β1, ..., βk ∈ Fq2k . Then F(x) := x − xqk
+∑k

j=1 α
j−1h j(TrFq2k /Fq(H j(x− xq)+β jx)) is a permutation polynomial of Fq2k if and only

if det(TrFq2k /Fq(α
i−1β j))1≤i, j≤k , 0 .

Proof. From the fact that α is a primitive element of Fqk , by Theorem 2.10 [8] it

follows that Fqk = Fq(α), hence the set {1, α, . . . , αk−1} forms a basis of Fqk over Fq.
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Set f j(x) = TrFq2k /Fq(H j(x − xq) + β jx), f j : Fq2k → Fq, 1 ≤ j ≤ k, then for all x ∈ Fq2k

and all a ∈ Fq,

f j(x + aαi−1) − f j(x) =TrFq2k /Fq(H j(x + aαi−1 − (x + aαi−1)q) + β j(x + aαi−1))−

TrFq2k /Fq(H j(x − xq) + β jx)

=TrFq2k /Fq(H j(x − xq) + aβ jα
i−1 + β jx)−

TrFq2k /Fq(H j(x − xq) + β jx)

=aTrFq2k /Fq(β jα
i−1).

So αi−1 is a TrFq2k /Fq(β jα
i−1)-linear translator of f j, for 1 ≤ i, j ≤ k. Applying Corol-

lary 4.1.3 for f j and γ j = α j−1 for 1 ≤ j ≤ k, gives that the polynomial F(x) is a

permutation polynomial of Fq2k if and only if det(TrFq2k /Fq(α
i−1β j))1≤i, j≤k , 0. �

Example 4.1.6 Let p be an odd prime and t1, t2 be positive integers satisfying that

gcd(ti, q − 1) = 1 for i = 1, 2 . Let α ∈ Fq2 \ Fq, then 1, α are linearly indepen-

dent,otherwise there is r, s ∈ Fq such that r ·1+ sα = 0 which implies α = −rs−1 ∈ Fq,

but α ∈ Fq2 \ Fq, hence the set {1, α} is a basis of Fq2 over Fq. Let β1, β2 ∈ Fq4 and

H1(x),H2(x) ∈ Fq4[x]. Then it follows immediately from Corollary 4.1.5 that the poly-

nomial F(x) := xq2
− x+ (TrFq4/Fq(H1(xq2

− x)+β1x))t1 +α(TrFq4/Fq(H2(xq2
− x)+β2x))t2

is a permutation polynomial of Fq4 if and only if

det

 TrFq4/Fq(β1) TrFq4/Fq(β2)

TrFq4/Fq(αβ1) TrFq4/Fq(αβ2)

 , 0.

Example 4.1.7 Let p be an odd prime and let α ∈ Fq4 be a primitive element of Fq4

and Dti(x, 1) be a Dickson polynomial where i = 1, 2, 3 and t1, t2, t3 be positive integers

such that gcd(ti, q2 − 1) = 1, hence Dti(x, 1) is a permutation polynomial over Fq2 . Let

β1, β2β3 ∈ Fq4 and H1(x),H2(x),H3(x) ∈ Fq4[x]. Then by applying Corollary 4.1.4 the

polynomial F(x) := xq3
+xq2

+xq+x+
∑3

i=1 α
iDti

(
TrFq4/Fq(Hi(xq3

+ xq2
+ xq + x) + βix), 1

)
is a permutation polynomial of Fq4 if and only if

det


TrFq4/Fq(αβ1) TrFq4/Fq(αβ2) TrFq4/Fq(αβ3)

TrFq4/Fq(α
2β1) TrFq4/Fq(α

2β2) TrFq4/Fq(α
2β3)

TrFq4/Fq(α
3β1) TrFq4/Fq(α

3β2) TrFq4/Fq(α
3β3)

 , 0.
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Theorem 4.1.8 Let k and l be positive integers with l ≤ k . For any integers i and j

with 1 ≤ i, j ≤ k let γi ∈ Fqm , bi j ∈ Fq and γi be a bi j-linear translator of f j : Fqm → Fq

such that γ1, ..., γk are linearly independent over Fq . Let A = (bi j)1≤i, j≤k be a k × k

matrix over Fq and I be the k × k identity matrix over Fq . Then each of the following

is true :

1. F(x) := x +
∑k

j=1 γ j f j(x) is a permutation polynomial of Fqm if and only if

rank(I + A) = k .

2. F(x) := x +
∑k

j=1 γ j f j(x) is a ql-to-1 mapping of Fqm if rank(I + A) = k − l.

Proof.

1. Assume that rank(I + A) = k. Choose arbitrary elements α, β ∈ Fqm , such that

F(α) = F(β), that is

α +

k∑
j=1

γ j f j(α) = β +

k∑
j=1

γ j f j(β), (4.12)

which implies

α − β =

k∑
j=1

γ j

(
f j(β) − f j(α)

)
. (4.13)

Set a j := f j(β) − f j(α) ∈ Fq, then it follows from (4.13) that α = β +
∑k

j=1 γ ja j.

In (4.12) if we substitute α = β +
∑k

j=1 γ ja j, then it follows that

β +

k∑
j=1

γ ja j +

k∑
j=1

γ j f j(β +

k∑
j=1

γ ja j) = β +

k∑
j=1

γ j f j(β), (4.14)

which is equivalent to
k∑

j=1

γ j

a j + f j(β +

k∑
i=1

γiai) − f j(β)

 = 0. (4.15)

From the hypothesis γi be a bi j-linear translator of f j for 1 ≤ i, j ≤ k,

f j(β + γ1a1 + · · · + γk−1ak−1 + γkak) − f j(β + γ1a1 + · · · + γk−1ak−1) = akbk j

f j(β + γ1a1 + · · · + γk−2ak−2 + γk−1ak−1) − f j(β + γ1a1 + · · · + γk−2ak−2) = ak−1bk−1 j

...

f j(β + γ1a1) − f j(β) = a1b1 j,
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by summing up the equations it follows that f j(β+
∑k

j=1 γ ja j)− f j(β) =
∑k

i=1 aibi j.

Hence equation (4.15) becomes the following

k∑
j=1

γ j

a j +

k∑
i=1

aibi j

 = 0. (4.16)

But from the hypothesis the elements γ1, ..., γk are linearly independent over Fq,

which implies that the equation (4.16) equivalent to

a j +

k∑
i=1

aibi j = 0, for 1 ≤ j ≤ k. (4.17)

It follows that (a1, . . . , ak)T ∈ Fq be a solution of the system of linear equations

x1 + x1b11 + x2b21 + · · · + xkbk1 = 0

x1b12 + x2 + x2b22 + · · · + xkbk2 = 0
...

x1b1k + x2b2k + · · · + xk + xkbkk = 0

which is equivalent to the system

(I + A)T X = 0, (4.18)

where X = (x1, . . . , xk)T . By using the fact that rank(I + A) = k, the system

(4.18) has only the trivial solution. Therefore a1 = a2 = · · · = ak = 0. Recall

α = β +
∑k

j=1 γ ja j, then it follows that α = β. Hence the polynomial F(x) is a

permutation polynomial if rank(I + A) = k.

Conversely, assume that F(x) is a permutation polynomial of Fqm . In order to

show that rank(I + A) = k, suppose (a1, a2, . . . , ak)T ∈ Fk
q is a solution of the

system (4.18) of linear equations, it follows that (4.17) is satisfied. Since (4.17)

and (4.14) are equivalent, then we have

β +

k∑
j=1

γ ja j +

k∑
j=1

γ j f j(β +

k∑
j=1

γ ja j) = β +

k∑
j=1

γ j f j(β),

where β ∈ Fqm . Setting

α := β +

k∑
j=1

γ ja j, (4.19)
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we get

α +

k∑
j=1

γ j f j(α) = β +

k∑
j=1

γ j f j(β), (4.20)

that is, F(α) = F(β). Since F(x) is a permutation polynomial, we get α = β.

From (4.19) it follows that
∑k

j=1 γ ja j = 0. From the hypothesis γ1, . . . , γk are

linearly independent over Fq, which implies a1 = a2 = · · · = ak = 0, that

is (a1, a2, . . . , ak)T = (0, 0, . . . , 0)T . Therefore the system of linear equations

(4.18) has only the trivial solutions. Thus rank(I + A) = k.

2. Suppose that rank(I + A) = k − l. Let (r1, . . . , rk)T ∈ Fk
q be an arbitrary solution

of the system of linear equations (4.18), then r j +
∑k

i=1 ribi j = 0, for 1 ≤ j ≤ k.

and let β ∈ Fqm . By using the definition of F(x) we get

F(β +

k∑
j=1

γ jr j) = β +

k∑
j=1

γ jr j +

k∑
j=1

γ j f j(β +

k∑
j=1

γ jr j),

Since γi is a bi j− linear translator of f j, for 1 ≤ i, j ≤ k, then

f j(β +
∑k

j=1 γ jr j) − f j(β) =
∑k

i=1 ribi j, thus f j(β +
∑k

j=1 γ jr j) = f j(β) +
∑k

i=1 ribi j.

Hence

F(β +

k∑
j=1

γ jr j) = β +

k∑
j=1

γ jr j +

k∑
j=1

γ j( f j(β) +

k∑
i=1

ribi j)

= β +

k∑
j=1

γ j f j(β) +

k∑
j=1

γ j(r j +

k∑
i=1

ribi j)

− β +

k∑
j=1

γ j f j(β) +

k∑
j=1

γ j(0)

= β +

k∑
j=1

γ j f j(β)

= F(β). (4.21)

On the other hand, since rank(I + A) = k− l, the dimension of the solution space

of the system of linear equations over Fq (4.18), is l, hence there are exactly ql

solutions of (4.18). Since γ1, . . . , γk are linearly independent over Fq, also the

number of elements in the set

|{

k∑
j=1

γ jr j : (r1, . . . , rk)T solutions of (4.18) }| = ql.

31



By the discussion above and (4.21) we see that F(x) is a ql−to-1 mapping of

Fqm . So part (2) is proved.

�

Corollary 4.1.9 [6] Let γ ∈ Fqm be a b-linear translator of f : Fqm → Fq . Then each

of the following is true :

1. F(x) := x + γ f (x) is a permutation polynomial of Fqm , if b , −1.

2. F(x) := x + γ f (x) is a q − to − 1 mapping of Fqm , if b = −1.

Proof. This corollary follows immediately from Theorem 4.1.8 since if b , −1, the

linear equation (1 + b)x = 0 has only the trivial solution over Fq, on the other hand, if

b = −1, then the number of solutions of the linear equation (1 + b)x = 0 over Fq is q

and in this case F(x) is q−to-1 mapping of Fqm . �

Corollary 4.1.10 [6] Let γ, δ ∈ Fqm be linearly independent over Fq. Suppose γ is a

b1-linear translator of f1 : Fqm → Fq and a b2-linear translator of f2 : Fqm → Fq and

moreover δ is a d1-linear translator of f1 : Fqm → Fq and a d2-linear translator of

f2 : Fqm → Fq. Then F(x) := x + γ f1(x) + δ f2(x) is a permutation polynomial of Fqm ,

if b1 , −1 and d2 −
d1b2

1 + b1
, −1 or by symmetry, if d2 , −1 and b1 −

d1b2

1 + d2
, −1.

Proof. By applying Theorem 4.1.8, the polynomial F(x) is permutation polynomial if

and only if rank(I + A) = 2 where

A =

b1 d1

b2 d2


which means that if and only if

det

1 + b1 d1

b2 1 + d2

 , 0,

that is if and only if b1 , −1 and d2 −
d1b2

1 + b1
, −1 or by symmetry, if d2 , −1 and

b1 −
d1b2

1 + d2
, −1, as desired. �
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Corollary 4.1.11 [6] Let γ ∈ Fqm\Fq and M(x) := xq2
−(1+(γq−γ)q−1)xq+(γq−γ)q−1x.

Let H1,H2 : Fqm → Fqm and β1, β2 ∈ Fqm . Then F(x) := x+TrFqm/Fq(H1(M(x))+β1x)+

γTrFqm/Fq(H2(M(x))+β2x) is a permutation polynomial of Fqm if (1+TrFqm/Fq(β1))(1+

TrFqm/Fq(γβ2)) , TrFqm/Fq(γβ1)TrFqm/Fq(β2).

Proof. We will get the result by applying Theorem 4.1.8 by setting k = 2,

f1 = TrFqm/Fq(H1(M(x)) +β1x), f2 = TrFqm/Fq(H2(M(x)) +β2x), since from the hypoth-

esis γ ∈ Fqm \ Fq it follows that 1, γ are linearly independent over Fq. Note that the

polynomial M(x) is a linearized polynomial and M(s) = 0, for any s ∈ Fq. Then 1 is a

TrFqm/Fq(β1)−linear translator of f1 because, for all x ∈ Fqm and all s ∈ Fq we have

f1(x + s) − f1(x) =TrFqm/Fq(H1(M(x + s)) + β1(x + s)) − TrFqm/Fq(H1(M(x)) + β1x),

=sTrFqm/Fq(β1).

Analogously 1 is a TrFqm/Fq(β2)−linear translator of f2, γ is a TrFqm/Fq(γβ1)−linear

translator of f1, and a TrFqm/Fq(γβ2)−linear translator of f2. Thus by Theorem 4.1.8

the polynomial F(x) is permutation polynomial of Fqm if and only if

det

1 + TrFqm/Fq(β1) TrFqm/Fq(γβ1)

TrFqm/Fq(β2) 1 + TrFqm/Fq(γβ2)

 , 0,

which is equivalent to the condition

(1 + TrFqm/Fq(β1))(1 + TrFqm/Fq(γβ2)) , TrFqm/Fq(γβ1)TrFqm/Fq(β2), as desired. �

Corollary 4.1.12 Let k be a positive integer . Let L : Fqm → Fqm be a linearized

polynomial with kernel Ker(L) and {δ1, ..., δk} be a basis of Ker(L) over Fq . Let H j :

Fqm → Fqm and β j ∈ Fqm for 1 ≤ j ≤ k . Then F(x) := x +
∑k

j=1 δ jTrFqm/Fq(H j(L(x)) +

β jx) is a permutation polynomial of Fqm if and only if det(I+(TrFqm/Fq(δ jβ j)))1≤i, j≤k , 0

.

Proof. Set f j = TrFqm/Fq(H j(L(x)) + β jx). Note that {δ1, ..., δk} is linearly independent

over Fq because it is a basis of Ker(L) over Fq. Let x ∈ Fqm and s ∈ Fq, and since
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δ j ∈ Ker(L) for all 1 ≤ i, j ≤ k, we have

f j(x + sδi) − f j(x) =TrFqm/Fq(H j(L(x + sδi)) + β j(x + sδi)) − TrFqm/Fq(H j(L(x)) + β jx)

=TrFqm/Fq(H j(L(x) + L(sδi)) + β jx + sδiβ j)−

TrFqm/Fq(H j(L(x)) + β jx)

=TrFqm/Fq(H j(L(x)) + β jx) − TrFqm/Fq(H j(L(x)) + β jx)+

TrFqm/Fq(sδiβ j)

=sTrFqm/Fq(δiβ j),

hence δi is a TrFqm/Fq(δiβ j)−linear translator of f j for 1 ≤ i, j ≤ k. Now applying

Theorem 4.1.8 by taking γ j = δ j, the desired result follows immediately.

�

Corollary 4.1.13 Let θ ∈ Fqm be a primitive element of Fqm and m > 3 be integer.

Let a =
(θ − θq3

)(θq2
− θ)q−1

θq2
− θq

, b =
(θq3
− θ)(θ − θq)q2−1

θq2
− θq

, c = −1 − a − b, and N(x) :=

xq3
+ axq2

+ bxq + cx. Let H1(x),H2(x),H3(x) ∈ Fqm[x] and γ1, γ2, γ3 ∈ Fqm . Then

F(x) :=x + TrFqm/Fq(H1(N(x)) + γ1x) + θTrFqm/Fq(H2(N(x)) + γ2x)+

θ2TrFqm/Fq(H3(N(x)) + γ3x)

is a permutation polynomial of Fqm if and only if

det


1 + TrFqm/Fq(γ1) TrFqm/Fq(γ2) TrFqm/Fq(γ3)

TrFqm/Fq(θγ1) 1 + TrFqm/Fq(θγ2) TrFqm/Fq(θγ3)

TrFqm/Fq(θ
2γ1) TrFqm/Fq(θ

2γ2) 1 + TrFqm/Fq(θ
2γ3)

 , 0.

Proof. Set k = 3, and f j = TrFqm/Fq(H j(N(x)) + γ jx) for 1 ≤ j ≤ 3. Since θ ∈ Fqm

is a primitive element of Fqm , we know that Fqm = Fq(θ), so the set {1, θ, θ2, . . . , θm−1}

forms a basis of Fqm over Fq, so 1, θ, θ2 are linearly independent over Fq. Note that
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N(1) =1 + a + b + c = 0, and

N(θ) =θq3
+ aθq2

+ bθq + cθ

=θq3
+ aθq2

+ bθq − (1 + a + b)θ

=θq3
+ a(θq2

− θ) + b(θq − θ) − θ

=θq3
+

(θ − θq3
)(θq2

− θ)q−1

θq2
− θq

(θq2
− θ) +

(θq3
− θ)(θ − θq)q2−1

θq2
− θq

(θq − θ) − θ

=θq3
+

(θ − θq3
)(θq2

− θ)q

θq2
− θq

−
(θq3
− θ)(θ − θq)q2

θq2
− θq

− θ

=θq3
− θ +

θ − θq3

θq2
− θq

(θq3
− θq + θq2

− θq3
)

=0,

similarly for θ2 we get N(θ2) = 0; hence 1, θ, θ2 are roots of N(x). Take x ∈ Fqm and

s ∈ Fq, for i = 0, 1, 2, since N(x) is linearized polynomial we have

f j(x + sθi) − f j(x) =TrFqm/Fq(H j(N(x + sθi)) + γ j(x + sθi)) − TrFqm/Fq(H j(N(x)) + γ jx)

=TrFqm/Fq(H j(N(x)) + γ jx) − TrFqm/Fq(H j(N(x)) + γ jx)+

sTrFqm/Fq(γ jθ
i)

=sTrFqm/Fq(γ jθ
i);

therefore for all 1 ≤ j ≤ 3 and 0 ≤ i ≤ 2, θi is a TrFqm/Fq(γ jθ
i)−linear translator of f j.

Thus applying Theorem 4.1.8 concludes the result immediately. � The

next Corollary describes an application of Theorem 4.1.8, which gives a large family

of complete permutation polynomials of Fqm .

Corollary 4.1.14 Let p be an odd prime and k be a positive integer . For any integers

i and j with 1 ≤ i, j ≤ k , let γi ∈ Fqm , bi j ∈ Fq, γi be a bi j-linear translator of

f j : Fqm → Fq such that γ1, ..., γk are linearly independent over Fq . Let A = (bi j)1≤i, j≤k

be a k × k matrix over Fq and I be the k × k identity matrix over Fq . Then

F(x) := x +

k∑
j=1

γ j f j(x)

is a complete permutation polynomial of Fqm if and only if rank(I + A) = k and

rank(2I + A) = k .

Proof.
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Let g(x) := F(x) + x := 2x +
∑k

j=1 γ j f j(x). We are going to prove that g(x) is a

permutation polynomial of Fqm if and only if rank(2I + A) = k.

Assume that rank(2I + A) = k. To show that g(x) is a permutation polynomial choose

arbitrary elements α, β ∈ Fqm , such that g(α) = g(β), that is

2α +

k∑
j=1

γ j f j(α) = 2β +

k∑
j=1

γ j f j(β), (4.22)

which implies

2α − 2β =

k∑
j=1

γ j

(
f j(β) − f j(α)

)
. (4.23)

Set a j := f j(β) − f j(α) ∈ Fq, then it follows from (4.23) that 2α = 2β +
∑k

j=1 γ ja j. In

(4.22) if we substitute 2α = 2β +
∑k

j=1 γ ja j, then it follows that

2β +

k∑
j=1

γ ja j +

k∑
j=1

γ j f j(β +
1
2

k∑
j=1

γ ja j) = 2β +

k∑
j=1

γ j f j(β), (4.24)

let r j = 1
2a j, for 1 ≤ j ≤ k, equation (4.24) is equivalent to

k∑
j=1

γ j

2r j + f j(β +

k∑
i=1

γiri) − f j(β)

 = 0. (4.25)

From the hypothesis γi be a bi j-linear translator of f j for 1 ≤ i, j ≤ k,

f j(β + γ1r1 + · · · + γk−1rk−1 + γkrk) − f j(β + γ1r1 + · · · + γk−1rk−1) = rkbk j

f j(β + γ1r1 + · · · + γk−2rk−2 + γk−1rk−1) − f j(β + γ1r1 + · · · + γk−2rk−2) = rk−1bk−1 j

...

f j(β + γ1r1) − f j(β) = r1b1 j,

by summing up the equations it follows that f j(β +
∑k

j=1 γ jr j) − f j(β) =
∑k

i=1 ribi j.

Hence equation (4.25) becomes the following

k∑
j=1

γ j

2r j +

k∑
i=1

ribi j

 = 0. (4.26)

But from the hypothesis the elements γ1, ..., γk are linearly independent over Fq,which

implies that the equation (4.26) equivalent to

2r j +

k∑
i=1

ribi j = 0, for 1 ≤ j ≤ k. (4.27)
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It follows that (r1, . . . , rk)T ∈ Fq be a solution of the system of linear equations

2x1 + x1b11 + x2b21 + · · · + xkbk1 = 0

x1b12 + 2x2 + x2b22 + · · · + xkbk2 = 0
...

x1b1k + x2b2k + · · · + xkbkk + 2xk = 0

which is equivalent to the system

(2I + A)T X = 0, (4.28)

where X = (x1, . . . , xk)T . By using the fact that rank(2I + A) = k, the system (4.28)

has only the trivial solution. Therefore r1 = r2 = · · · = rk = 0, which implies that

a1 = a2 = · · · = ak = 0. Recall 2α = 2β +
∑k

j=1 γ ja j, then we get 2α = 2β, since p is

odd, it follows that α = β. Hence the polynomial F(x) is a permutation polynomial if

rank(I + A) = k.

Conversely, assume that g(x) is a permutation polynomial of Fqm . In order to show

that rank(2I + A) = k, suppose (r1, r2, . . . , rk)T ∈ Fk
q is a solution of the system (4.28)

of linear equations, it follows that (4.27) is satisfied. Replace r j by 1
2a j for 1 ≤ j ≤ k,

and using the equivalence of (4.27) and (4.24), then we have

2β +

k∑
j=1

γ ja j +

k∑
j=1

γ j f j(β +
1
2

k∑
j=1

γ ja j) = 2β +

k∑
j=1

γ j f j(β),

where β ∈ Fqm . Setting

2α := 2β +

k∑
j=1

γ ja j, (4.29)

we get

2α +

k∑
j=1

γ j f j(α) = 2β +

k∑
j=1

γ j f j(β), (4.30)

that is, F(α) = F(β). Since F(x) is a permutation polynomial, we get α = β. From

(4.29) it follows that
∑k

j=1 γ ja j = 0. From the hypothesis γ1, . . . , γk are linearly inde-

pendent over Fq, which implies a1 = a2 = · · · = ak = 0, it follows that r1 = r2 =

· · · = rk = 0, that is (r1, r2, . . . , rk)T = (0, 0, . . . , 0)T . Therefore the system of linear

equations (4.28) has only the trivial solutions. Thus rank(2I + A) = k.

Therefore from Theorem 4.1.8, F(x) = x +
∑k

j=1 γ j f j(x) is a complete permutation

polynomial of Fqm if and only if rank(I + A) = k and rank(2I + A) = k, as desired. �
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4.2 Permutation polynomials of the form

L(x) +
∑l

i=1 γiTrFqm/Fq(hi(x)).

Theorem 4.2.1 Let l and k be positive integers with l ≤ k . Let L(x) ∈ Fqm[x] be a

linearized polynomial such that dim(Ker(L)) = k and Ker(L) ∩ Im(L) = {0} . Let

γ1, ..., γl ∈ Ker(L) be linearly independent over Fq and h1(x), ..., hl(x) ∈ Fqm[x] . Then

F(x) := L(x) +
∑l

i=1 γiTrFqm/Fq(hi(x)) is a permutation polynomial of Fqm if and only if

there exists an integer i with 1 ≤ i ≤ l such that TrFqm/Fq(hi(x + υ) − hi(x)) , 0 for any

x ∈ Fqm and any υ ∈ Ker(L) \ {0}.

Proof. Suppose that there exists an integer i with 1 ≤ i ≤ l such that TrFqm/Fq(hi(x +

ε) − hi(x)) , 0 for any x ∈ Fqm and any ε ∈ Ker(L) \ {0}. Choose arbitrary elements α

and β such that F(α) = F(β), then

L(α) +

l∑
i=1

γiTrFqm/Fq(hi(α)) = L(β) +

l∑
i=1

γiTrFqm/Fq(hi(β)).

Since L(x) and TrFqm/Fq(x) are linearized polynomials, the equation above is equiva-

lent to

L(α − β) =

l∑
i=1

γiTrFqm/Fq(hi(β) − hi(α)), (4.31)

thus
l∑

i=1

γiTrFqm/Fq(hi(β) − hi(α)) ∈ Im(L)

However, note that TrFqm/Fq(hi(β) − hi(α)) ∈ Fq and since γi ∈ Ker(L) for 1 ≤ i ≤ l,

we get

L(
l∑

i=1

γiTrFqm/Fq(hi(β) − hi(α))) =

l∑
i=1

TrFqm/Fq(hi(β) − hi(α))L(γi) = 0,

hence
∑l

i=1 γiTrFqm/Fq(hi(β) − hi(α)) ∈ Ker(L) for 1 ≤ i ≤ l. But from the hypothesis

Ker(L) ∩ Im(L) = {0} it follows that

l∑
i=1

γiTrFqm/Fq(hi(β) − hi(α)) = 0. (4.32)

We can conclude from (4.31) and (4.32) that L(α − β) = 0, hence α − β ∈ Ker(L).

Therefore there exist υ ∈ Ker(L) such that α = β + υ.

Claim: The element υ ∈ Ker(L) is 0.
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Proof the claim: Assume that υ , 0. Since γ1, . . . , γl are linearly independent over

Fq, then it follows from (4.32) that TrFqm/Fq(h j(β)− h j(α)) = 0 for all 1 ≤ j ≤ l, which

implies TrFqm/Fq(h j(β+ υ)− h j(β)) = 0 since α = β+ υ. But from the hypothesis, there

exist i0 with 1 ≤ i0 ≤ l such that TrFqm/Fq(hi0(x + υ) − hi0(x)) , 0, let x = β, then

TrFqm/Fq(hi0(β + υ) − hi0(β)) , 0, for some 1 ≤ i0 ≤ l, this gives a contradiction. Thus

υ = 0. Now, since υ = 0, we get α = β, therefore F(x) is a permutation polynomial of

Fqm .

Conversely, suppose that F(x) is a permutation polynomial of Fqm . Let x ∈ Fqm and

υ ∈ Ker(L) \ {0}, then

F(x + υ) − F(x) =L(x + υ) +

l∑
i=1

γiTrFqm/Fq(hi(x + υ)) − L(x) +

l∑
i=1

γiTrFqm/Fq(hi(x))

=

l∑
i=1

γiTrFqm/Fq(hi(x + υ) − hi(x))

(4.33)

Since υ , 0, and F(x) is a permutation polynomial, it follows from (4.33) that

l∑
i=1

γiTrFqm/Fq(hi(x + υ) − hi(x)) , 0.

Thus there exists an integer i with 1 ≤ i ≤ l such that TrFqm/Fq(hi(x + υ) − hi(x)) , 0

for any x ∈ Fqm and any υ ∈ Ker(L) \ {0}. �

Corollary 4.2.2 Let l and m ≥ 2 be positive integers with gcd(p,m) = 1 and l < m.

Let γ1, ..., γl ∈ Fqm \ Fq be linearly independent over Fq and h1(x), ..., hl(x) ∈ Fqm[x] .

Then F(x) := TrFqm/Fq(x)+
∑l

i=1 γiTrFqm/Fq(hi(x)) is a permutation polynomial of Fqm if

and only if there exists an integer i with 1 ≤ i ≤ l such that TrFqm/Fq(hi(x+ε)−hi(x)) , 0

for any x ∈ Fqm and any ε ∈ Fqm \ Fq .

Proof. We will apply Theorem 4.2.1 by setting the linearized polynomial L(x) =

TrFqm/Fq(x). Since TrFqm/Fq : Fqm → Fq is surjective, Im(TrFqm/Fq) = Fq. Let s ∈

Ker(TrFqm/Fq) ∩ Fq, then TrFqm/Fq(s) = 0 and TrFqm/Fq(s) = ms, hence ms = 0, but

gcd(p,m) = 1 this implies s = 0, therefore Ker(L)∩Im(L) = Ker(TrFqm/Fq)∩Fq = {0},

and hence Ker(TrFqm/Fq) = Fqm \ F∗q. Then the Corollary follows immediately from

Theorem 4.2.1. �
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Corollary 4.2.3 Let p be an odd prime , l and k be positive integers with l ≤ k .

Let {γ1, ..., γk} be a basis of Fqk over Fq and h1(x), ..., hl(x) ∈ Fq2k[x] . Then F(x) :=

x− xqk
+

∑l
i=1 γiTrFq2k /Fq(hi(x)) is a permutation polynomial of Fq2k if and only if there

exists an integer i with 1 ≤ i ≤ l such that TrFq2k /Fq(hi(x + ε) − hi(x)) , 0 for any

x ∈ Fq2k and any ε ∈ F∗qk .

Proof. Let m = 2k, and L(x) = x − xqk
be a linearized polynomial over Fq2k , then as

in the proof of Corollary 4.1.3 it follows that Ker(x − xqk
) = Fqk , and Ker(x − xqk

) ∩

Im(x − xqk
) = {0}, the desired result follows from Theorem 4.2.1. �
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CHAPTER 5

ON ONE CLASS OF PERMUTATION POLYNOMIALS OVER

FINITE FIELDS OF CHARACTERISTIC TWO

In this paper the authors classified all permutation polynomials of type

x1+
q4−1
q−1 + bx

over the field Fq4 , where q = 2m,m ≥ 2.

In particular, for odd m, such polynomials were considered in the paper [13], were the

anthers proved the following theorem ( the proof is based on the Dickson polynomi-

als).

Theorem 5.0.4 [13] Let q = 2m,m ≥ 3 is odd . A polynomial of the type

f (x) = x1+
q4−1
q−1 + bx (5.1)

over Fq4 is a P.P over Fq4 if the element b looks as follows:

1) b = u(1 + β + β2) + vβ3;

2) b = u(1 + β + β3) + v(β + β2)

3) b = u(1 + β3) + v(1 + β + β2);

4) b = u(β + β3) + v(β2 + β3),


(5.2)

where u, v run through Fq, (u, v) , (0, 0) , and where β is a root of x4 + x + 1.

Remark 5.0.5 The proof of this theorem in [13] depends on the following fact that

is for b ∈ Fqs \ Fq, d =
qs−1
q−1 + 1, where s is a positive integer and gcd(d − 1, q − 1) =
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gcd(s, q − 1) = 1, then the polynomial xd + bx ∈ Fqs[x] is a permutation polynomial

over Fqs if and only if hb(y) ∈ Fq is a permutation polynomial over Fq, where hb(y) is

defined as

hb(y) = y
s∑

i=0

λiys−i,

where λ0 = 1, and λi =
∑

0≤ j1< j2<···< ji≤s−1 b j1b j2 . . . b ji for 1 ≤ i ≤ s, and bi = bqi
.

The idea of the proof is to reach hb(y) in some conditions of b, when s = 4, to the

Dickson polynomial D5(y, λ2), and verify that all b′s listed in Theorem 5.0.4 satisfy

the conditions. Since D5(y, λ2) is a permutation polynomial over Fq due to Theorem

2.0.45, then so hb(y). By the fact, this implies that for b′s in Theorem 5.0.4 the poly-

nomial xd + bx ∈ Fq4[x] is a permutation polynomial over Fq4 , where d =
q4−1
q−1 + 1, as

illustrated.

In this paper the proof is different, it depends on a following lemma from [9]. How-

ever in [13] , it was not proved that there do not exist other elements b for which

polynomials x1+
q4−1
q−1 + bx are permutation polynomials. In this paper, the authors fill

this gap and prove , firstly, these sufficient conditions are also necessary ; secondly,

these sufficient and necessary conditions are fulfilled only for b satisfying (5.2) ; and

thirdly , permutation polynomials in the form x1+
q4−1
q−1 + bx do not exist for the even

integers m ≥ 4 but for m = 2 such polynomials exist.

In this chapter we need the following result from [9].

Lemma 5.0.6 [9] The polynomial

f (x) = x1+
q−1

n + bx, n | (q − 1), n > 1,

over Fq is a permutation polynomial if and only if the following conditions are satis-

fied:

1. the element b is such that (−b)n , 1;

2. the inequality ((
b + wi

) (
b + w j

)−1
) q−1

n
, w j−i (5.3)
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holds for all i, j such that 0 ≤ i < j < n, where w is a fixed primitive root of the

nth degree of 1 in the field Fq.

Proof.

We will first prove that the conditions in the Lemma are sufficient. Let f (x) = x1+
q−1

n +

bx, n | (q − 1), n > 1, assuming that ((b + wi)(b + w j)−1)
q−1

n , w j−i and (−b)n , 1.

Here w is a fixed primitive nth root of unity in the field Fq, that is wn = 1.

Assume that f (c) = 0, for some c ∈ F∗q, then for some 0 ≤ i ≤ n we have

0 = bc + c
q+n−1

n = (b + c
q−1

n )c = (b + wi)c.

Now (−b)n , 1 means that −b is not an n-th root of unity which implies that b+wi , 0

for any 0 ≤ i ≤ n, hence c = 0, a contradiction. Now take two elements c1, c2 ∈ F∗q
such that f (c1) = f (c2), then (b + c

q−1
n

1 )c1 = (b + c
q−1

n
2 )c2, thus for some 0 ≤ i, j < n we

have (b + wi)c1 = (b + w j)c2. Without loss of generality we may assume i ≤ j. Thus

(b + wi)(b + w j)−1 = c2c−1
1 , hence ((b + wi)(b + w j)−1)

q−1
n = c

q−1
n

2 (c−1
1 )

q−1
n = w j−i, which is

a contradiction unless i = j. In this case c2c−1
1 = (b + wi)(b + w j)−1 = 1, thus c1 = c2.

Therefore f (x) is a permutation polynomial over Fq.

Next, we will show that the conditions are necessary . Assume that f (x) is permutation

polynomial. Assume (−b)n = 1, which means that −b is one of the n-th roots of unity

in the field Fq, so b + wi = 0 for some 0 ≤ i < n. Let c ∈ Fq such that c
q−1

n = wi,

then c , 0, and f (c) = c(c
q−1

n + b) = c(wi + b) = 0 = f (0), which contradicts with

the fact that f (x) is a permutation polynomial over Fq. Hence (−b)n , 1. Suppose

that ((b + wi)(b + w j)−1)
q−1

n = w j−i for some 0 ≤ i, j < n. Let a = (b + wi)(b + w j)−1,

and let d ∈ F∗q such that d
q−1

n = w j. Then (b + wi)(b + w j)−1 = a = dd−1a. Thus

(da−1)
q−1

n = (d(b + wi)−1(b + w j))
q−1

n = d
q−1

n .wi− j = w jwi− j = wi. On the other hand (b +

wi)da−1 = (b+w j)d, and since (da−1)
q−1

n = wi,we get f (da−1) = f (d), thus f (x) fails to

be a permutation polynomial over Fq since a , 1. Hence ((b + wi)(b + w j)−1)
q−1

n , w j−i

for some 0 ≤ i, j < n.

�
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5.1 Polynomials of the form x1+
q4−1
q−1 + bx, q = 2m , m ≥ 2

Lemma 5.1.1 The polynomial

f (x) = x1+
q4−1
q−1 + bx

over Fq4 is a permutation polynomial if and only if b ∈ Fq4 \ Fq and the following

inequality:

x(b + x)q3+q2+q+1 , y(b + y)q3+q2+q+1 (5.4)

holds for all x, y ∈ Fq , such that x , 0, y , 0, x , y .

Proof. Consider the field Fq4 and set n = q − 1. Then the condition (−b)n , 1 of

lemma 5.0.6 implies that bq−1 , 1, i.e., b ∈ Fq4 \ Fq. Set x = wi and y = w j, and then

inequality (5.3) becomes the following inequality:(
(b + x) (b + y)−1

) q4−1
q−1

, yx−1

or equivalently

x(b + x)q3+q2+q+1 , y(b + y)q3+q2+q+1

for all x, y ∈ Fq, such that x , 0, y , 0, x , y. �

Remark 5.1.2 By lemma 5.1.1 the polynomial x1+
q4−1
q−1 + bx is a permutation polyno-

mial if and only if b ∈ Fq4 \ Fq and the equation over Fq

x(b + x)q3+q2+q+1 + y(b + y)q3+q2+q+1 = 0 (5.5)

has no solutions x, y ∈ Fq, x , 0, y , 0, x , y. By direct calculations equation(5.5) is

equivalent to

b1+q+q2+q3
(x + y) + (b1+q+q2

+ b1+q+q3
+ b1+q2+q3

+ bq+q2+q3
)(x2 + y2)+

(b1+q + b1+q2
+ b1+q3

+ bq+q2
+ bq+q3

+ bq2+q3
)(x3 + y3)+

(b + bq + bq2
+ bq3

)(x4 + y4) + x5 + y5 = 0.

(5.6)

Now let z = x + y and

B1 = b + bq + bq2
+ bq3

,

B2 = b1+q + b1+q2
+ b1+q3

+ bq+q2
+ bq+q3

+ bq2+q3
,

B3 = b1+q+q2
+ b1+q+q3

+ b1+q2+q3
+ bq+q2+q3

,

B4 = b1+q+q2+q3
.


(5.7)
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by substituting z and the expressions (5.7) in (5.6), equation (5.6) reduces to the fol-

lowing equation over x and z:

z(x4 + B2x2 + (z3 + B2z)x + z4 + B1z3 + B2z2 + B3z + B4) = 0. (5.8)

Hence, using lemma 5.1.1 instead of (5.4) one can write

z(x4 + B2x2 + (z3 + B2z)x + z4 + B1z3 + B2z2 + B3z + B4) = 0

has no solutions x, y ∈ Fq, x , 0, y , 0, x , y, which implies that either z = 0 or

x4 + B2x2 + (z3 + B2z)x + z4 + B1z3 + B2z2 + B3z + B4 = 0, but z = x + y and x , 0, y , 0

and x , y , so z , 0, hence

x4 + B2x2 + (z3 + B2z)x + z4 + B1z3 + B2z2 + B3z + B4 = 0

Note that the conditions x, y ∈ Fq, x , 0, y , 0, x , y implies that x , 0, z , 0, and

more exactly to the condition z , 0 alone, as the equality x = 0 and and the equality

y = 0, i.e., z = x implies

z4 + B1z3 + B2z2 + B3z + B4 = (z + b)q3+q2+q+1 = 0

which is impossible as z ∈ Fq and b ∈ Fq4 \ Fq.

Using Remark 5.1.2, lemma 5.1.1 can be written as follows:

Lemma 5.1.3 Let q = 2m. The polynomial f (x) = x1+
q4−1
q−1 + bx, over Fq4 is a permu-

tation polynomial if and only if b ∈ Fq4 \ Fq and the equation

x4 + B2x2 + (z3 + B2z)x + z4 + B1z3 + B2z2 + B3z + B4 = 0 (5.9)

has no solutions x, z ∈ Fq such that z , 0 (for x = 0 and x = z, i.e., y = 0, this

equation has no solutions).

Substituting a new variable w = x + B1 in the equation (5.9) we obtain

(w+B1)4 + B2(w + B1)2 + (z3 + B2z)(w + B1) + z4 + B1z3 + B2z2 + B3z + B4

=w4 + B4
1 + B2w2 + B2B2

1 + z3w + z3B1 + B2zw + B2B1z + z4 + B1z3 + B2z2+

B3z + B4

=w4 + B2w2 + (z3 + zB2)w + z4 + B2z2 + Dz + E
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where

D = B1B2 + B3 and E = B4
1 + B2

1B2 + B4. (5.10)

Then equation(5.9) becomes:

w4 + B2w2 + (z3 + zB2)w + z4 + B2z2 + Dz + E = 0 (5.11)

Now substituting γ =
w
z

, we get the following equation (recall that z , 0):

γ4 + γ +
B2

z2 (γ2 + γ + 1) + 1 +
D
z3 +

E
z4 = 0 (5.12)

The cases B2 , 0 and B2 = 0 will be considered separately .

Case 1 : B2 , 0

One can rewrite the equation (5.12) as:

γ4 + γ +
B2

z2 (γ2 + γ + 1) + 1 +
D
z3 +

E
z4

= (γ2 + γ + 1)2 + (γ2 + γ + 1)(1 +
B2

z2 ) + 1 +
D
z3 +

E
z4 (5.13)

Let γ2 + γ + 1 = ξ. The existence of a solution to the equation (5.12) now reduced to

the existence of solutions of the following two equations :

ξ2 + ξ(1 +
B2

z2 ) + 1 +
D
z3 +

E
z4 = 0 (5.14)

and

γ2 + γ + 1 = ξ (5.15)

When z ,
√

B2, dividing both sides of (5.14) by (1 + B2
z2 )2, we get

 ξ

(1 + B2
z2 )

2

+
ξ

(1 + B2
z2 )

+
1 + D

z3 + E
z4

(1 + B2
z2 )2

= 0
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By using Theorem 2.0.33, we obtain that equation (5.14) has a solution if and only if

0 = Trq

1 + D
z3 + E

z4

(1 + B2
z2 )2

 = Trq

 z4+Dz+E
z4

(z2+B2)2

z4


= Trq

(
z4 + Dz + E
(z2 + B2)2

)
= Trq

(
z4 + Dz + E

(z2 + (
√

B2)2)2
)
)

= Trq

(
z4 + B2

2 + B2
2 + zD + E

z4 + B2
2

)
= Trq

(
1 +

B2
2 + E + zD

z4 + B2
2

)
= Trq

1 +
B2

2 + E + zD + D
√

B2 + D
√

B2

z4 + B2
2


= Trq

1 +
B2

2 + E + D
√

B2

z4 + B2
2

+
D(z +

√
B2)

z4 + B2
2


= Trq

1 +
B2

2 + E + D
√

B2

(z +
√

B2)4
+

D
(z +

√
B2)3

 (5.16)

Fact: If F is a finite field with characteristic two, then every element a ∈ F is a square.

Proof the fact: Take the multiplicative group F∗ = F \ {0}, the map f : F∗ → F∗ given

by f (x) = x2 is a group automorphism , because:

• f (ab) = (ab)2 = a2b2 for all a, b ∈ F∗

• Assume that f (a) = f (b), then a2 − b2 = 0, but the characteristic of F is 2,

which implies that (a − b)2 = 0, thus a = b.

hence F is one to one and onto. Therefore every element in F is a square (note that

0 = 02).

Let v = 1
z+
√

B2
and t = B2

2 + E + D
√

B2, v, t ∈ Fq. Since q = 2m, by the fact we proved,

every element in Fq is a square, so t = s2 for some s ∈ Fq, and also s = C2 for some

C ∈ Fq, it follows that B2
2 + E + D

√
B2 = t = s2 = (C2)2 = C4, then instead of (5.16)

one can write:

Trq

1 + D
z3 + E

z4

(1 + B2
z2 )2

 = Trq(1 + C4v4 + Dv3) = Trq(1 + (Cv)4 + Dv3)

= Trq(1 + Cv + Dv3) = 0,

(since Cv and (Cv)4 are conjugates, so they have the same trace). Hence, equation

(5.14) has a solution if and only if

Trq(1 + Cv + Dv3) = 0
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where C4 = B2
2 + E + D

√
B2 and v = 1

z+
√

B2
.

The subcase (C,D)=(0,0).

For this subcase equation (5.14) becomes

ξ2 + ξ
(
1 +

B2

z2

)
+

(
1 +

B2

z2

)2

= 0.

Proposition 5.1.4 Let q = 2m and m ≥ 3 be odd . Let b ∈ Fq4 \ Fq, B2 , 0 and the

following two conditions be satisfied :

B3 = B1B2, (5.17)

B4 = B4
1 + B2

1B2 + B2
2. (5.18)

Then the polynomial f (x) = x1+
q4−1
q−1 + bx is a permutation polynomial over Fq4 .

Proof. Consider the following two cases for z :

• when z ,
√

B2

Trq(1 + Cv + Dv3) = Trq(1) = m.1 , 0, since m is odd. Hence for odd m there

are no solutions for equation (5.14).

• when z =
√

B2

equation (5.14) becomes ξ2 = 0, thus ξ = 0,

which implies that

γ2 + γ + 1 = 0 (5.19)

So equation (5.12) has a solution if and only if γ ∈ Fq is a root of the polynomial

x2 + x + 1. But, since the x2 + x + 1 is an irreducible polynomial over F2, by

Lemma 2.0.26 it is remains irreducible over F2m = Fq since m is odd. So there

is no γ ∈ Fq such that γ2 + γ + 1 = 0.

Therefore the equations (5.14) and (5.15) have no solutions in Fq.

�
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Proposition 5.1.5 Let q = 2m and m ≥ 2 be even . Let b ∈ Fq4 \ Fq, B2 , 0 and the

conditions (5.17) and (5.18) be satisfied. Then the polynomial x1+
q4−1
q−1 + bx is not a

permutation polynomial over Fq4 .

Proof. Consider the two cases for z :

• When z ,
√

B2

Equation(5.14) has a solution if and only if Trq(1) = 0, and since m is even, we

have Trq(1) = m.1 = 0

So there is no permutation polynomial when m is even and z ,
√

B2.

• When z =
√

B2

Equation(5.14) becomes ξ2 = 0 =⇒ ξ = 0, then from equation(5.15)we get

γ2 + γ + 1 = 0.

We are going to find γ ∈ Fq such that γ2 + γ + 1 = 0.

By Lemma 2.0.26, the irreducible polynomial x2+x+1 over F2 will be reducible

over F2m when m is even. So it has a root in F2m = Fq since the degree of the

polynomial is two.

Hence , there is no permutation polynomial when m is even and z =
√

B2.

�

The subcase (C,D) , (0, 0).

Proposition 5.1.6 Let q = 2m, B2 , 0 and (C,D) , (0, 0) . Then the polynomial

x1+
q4−1
q−1 + bx is not a permutation polynomial over Fq4 for all m ≥ 6.

Proof. Note that proving x1+
q4−1
q−1 + bx is not permutation polynomial is equivalent to

prove that the equations (5.14) and (5.15) have a solution. We already observe that

equation (5.14) has a solution if and only if

Trq(1 + Cv + Dv3) = 0

where v , 0 and v , 1
√

B2
.Now again by Theorem 2.0.33 equation (5.15) has a solution

if and only if Trq(ξ + 1) = 0, which is if and only if Trq(ξ) = Trq(1).
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Claim: If

Trq(1 +
B2

z2 ) = 1

then one of solutions of equation (5.14) will coincide with Trq(1).

Proof the Claim: If Trq(1+Cv+Dv3) = 0 then equation (5.14) has two solutions ξ0 and

ξ1, the sum of these solutions is equal to the coefficient 1 + B2
z2 , that is ξ0 + ξ1 = 1 + B2

z2 ,

thus the solutions of (5.14) are ξ0 and ξ1 = ξ0 + 1 + B2
z2 .

Recall that Trq : Fq → F2, so Trq(1) = 0 or 1, then we get:

• if Trq(ξ0) = 0 and since Trq(1 + B2
z2 ) = 1 then Trq(ξ0 + 1 + B2

z2 ) = 1.

• if Trq(ξ0) = 1 and since Trq(1 + B2
z2 ) = 1 then Trq(ξ0 + 1 + B2

z2 ) = 0.

In both cases, either Trq(ξ0) = Trq(1) or Trq(ξ0 + 1 + B2
z2 ) = Trq(1), which implies that

γ2 + γ + ξ = 1 has a solution either for ξ = ξ0 or ξ = ξ0 + 1 + B2
z2 .

Consequently, the purpose is to prove the existence of v, v , 0 and v , 1
√

B2
such that

Trq(1 + Cv + Dv3) = 0

and

Trq(1 +
B2

z2 ) = 1

Recall that v = 1
z+
√

B2
then z = 1

v +
√

B2, thus

Trq(1 +
B2

z2 ) = Trq(1 +

√
B2

z
) = Trq(

1
1 + v

√
B2

) = 1.

Define the functions k : Fq → Fq and l : Fq → Fq, with

k(v) = 1 + Cv + Dv3, l(v) =
1

1 + v
√

B2
, where l(

1
√

B2
) = 0,

and define the function s(v) = k(v) + l(v). Now define the following sets for the three

functions k(v), l(v) and s(v)

K0 = {v ∈ Fq : Trq(k(v)) = 0} and K1 = {v ∈ Fq : Trq(k(v)) = 1},

L0 = {v ∈ Fq : Trq(l(v)) = 0} and L1 = {v ∈ Fq : Trq(l(v)) = 1},

S 0 = {v ∈ Fq : Trq(s(v)) = 0} and S 1 = {v ∈ Fq : Trq(s(v)) = 1}.
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Since k(0) = 1 and l(0) = 1, and Trq(1) = 0 or 1, then the point v = 0 does not

belong to the set K0 ∩ L1, and Trq(l( 1
√

B2
)) = Trq(0) = 0, then also the point v = 1

√
B2

does not belong to the set K0 ∩ L1, that is to reach the purpose it is enough to prove

that |K0 ∩ L1| > 0. Consider the canonical additive character χ1 over the elements of

a function f (v) from Fq to Fq, q = 2m defined by χ1( f (v)) = (−1)Tr( f (v)) for all v ∈ Fq,

thus

∑
χ1( f (v)) =

∑
v∈Fq

(−1)Tr( f (v)) = |F0| − |F1| (5.20)

where

F0 = {v ∈ Fq : Trq( f (v)) = 0} and F1 = {v ∈ Fq : Trq( f (v)) = 1},

Recall that |{c ∈ F2m : TrF2m/F2(c) = 0}| = 2m−1, and since the images of TrF2m/F2 is F2

then |{c ∈ F2m : TrF2m/F2(c) = 1}| = 2m−1, apply this fact for l(v), we get

|L0| = |L1| = 2m−1 =
q
2
. (5.21)

Now by bounds for exponential sums Theorem 2.0.50 follows that

|
∑

χ1(k(v))| ≤ 2
√

q,

so ||K0| − |K1|| ≤ 2
√

q, which implies |K0| − |K1| ≥ −2
√

q, and since |K0| + |K1| = q,

then |K0| − q + |K0| ≥ −2
√

q, thus

|K0| ≥
q
2
−
√

q. (5.22)

Also from bounds for exponential sums (Theorem 6,[2]) it follows that |
∑
χ1(s(v))| ≤

4
√

q + 1, so ||S 0| − |S 1|| ≤ 4
√

q + 1, which implies |S 0| − |S 1| ≤ 4
√

q + 1, and since

|S 0| + |S 1| = q, then |S 0| − q + |S 0| ≤ 4
√

q + 1, thus

|S 0| ≤
4
√

q + q
2

+
1
2
. (5.23)

Now as

2|K0 ∩ L1| + |K0 ∩ L0| + |K1 ∩ L1| = |K0| + |L1|,

and

|K0 ∩ L0| + |K1 ∩ L1| = |S 0|,
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one can deduce that

2|K0 ∩ L1| = |K0| + |L1| − |S 0|,

hence from the inequalities (5.21), (5.22), and (5.23) we get

2|K0 ∩ L1| ≥
q
2
−
√

q +
q
2
−

q + 1
2
− 2
√

q

=
q − 1

2
− 3
√

q.

Therefore

|K0 ∩ L1| ≥
q − 1

4
−

3
√

q
2

=
q − 1 − 6

√
q

4
.

Now we observe that
q − 1 − 6

√
q

4
> 0, q = 2m holds for m ≥ 6, which implies that

for m ≥ 6, B2 , 0 and (C,D) , (0, 0), the polynomial x1+
q4−1
q−1 + bx is not a permutation

polynomial.

�

The case B2 = 0

The subcase D , 0.

Proposition 5.1.7 Let q = 2m, b ∈ Fq4 \ Fq and

B2 = 0, B3 , 0.

Then the polynomial x1+
q4−1
q−1 + bx is not a permutation polynomial over Fq4 for m ≥ 6.

Proof. Since z , 0 we can set u = 1
z , then for B2 = 0 equation (5.12) becomes,

f (γ, u) = γ4 + γ + 1 + Du3 + Eu4 = 0.

Define a plane curve P over Fq as

P = {(γ, u) : f (γ, u) = γ4 + γ + 1 + Du3 + Eu4 = 0}.
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By applying the Hasse-Wiel bound Theorem 2.0.53, the number N of Fq-rational

points of P given by

|N − q − 1| ≤ 2g
√

q.

Since deg( f ) = 4, from Remark 2.0.54 we have g ≤ 3, which implies that N ≥

q − 6
√

q. Recall that u = 1
z , 0, and since the number of points with u = 0 does not

exceed 4. We get that, when q − 6
√

q > 4 there exist an Fq-rational point (γ, u) with

u , 0 such that f (γ, u) = 0, which implies that there exists a solution γ, z ∈ Fq, z , 0

for the equation (5.12). By simple calculations when m ≥ 6 we have q − 6
√

q > 4.

Therefore for B2 = 0,D , 0 and m ≥ 6 there is no permutation polynomial over Fq4

of the type x1+
q4−1
q−1 + bx.

�

The subcase D = 0.

Here it is obliged to consider the cases of odd and even m separately. First we need

the following remark for the proof of the next proposition.

Remark 5.1.8 1. Note that if f (x) ∈ F2m[x] , defined as

f : F2m → F2m , f (x) = x4

then f is an automorphism of the field F2m , because

(a) f (a + b) = (a + b)4 = a4 + b4 for all a, b ∈ F2m since the characteristic of

the field is 2.

(b) f (ab) = (ab)4 = a4b4 for all a, b ∈ F2m

(c) If f (a) = f (b) =⇒ a4 = b4 =⇒ a4 − b4 = 0 =⇒ (a − b)4 = 0 =⇒ a − b =

0 =⇒ a = b. Thus f is one to one and since the field is finite , it is also

onto, therefore f is an automorphism of the field F2m .

2. The polynomial x4 + x + 1 is irreducible over F2, and it is remains irreducible

over F2m for odd m, so there is no γ ∈ F2m such that γ4 + γ + 1 = 0.
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Proposition 5.1.9 Let q = 2m,m ≥ 3 be odd . Let b ∈ Fq4 \ Fq and

B2 = 0, B3 = 0,

then the polynomial x1+
q4−1
q−1 + bx is a P.P over Fq4 if and only if B4 = B4

1.

Proof. Consider the following two cases for E :

• E , 0

For E , 0,D = 0 and B2 = 0, eq(5.12), becomes γ4 + γ + 1 + E
z4 = 0, now

since z4 is an automorphism of the field F2m , and for odd m, γ4 + γ + 1 , 0 for

any γ ∈ F2m , thus for the element γ4+γ+1
E in F2m , there exist a ∈ F2m such that

γ4+γ+1
E = 1

a4 .

Hence for any γ ∈ F2m there is a solution for eq(5.12), so for this case there is

no such permutation polynomial.

• E = 0

By previous Remark 5.1.8 number 2 , the solution of eq(5.12) does not ex-

ist,thus when B2 = 0, and D = 0, the polynomial x1+
q4−1
q−1 + bx is a permutation

polynomial if and only if E = 0. Since the conditions B2 = 0,D = 0, are equiv-

alent to the conditions B2 = 0, B3 = 0, and when E = 0 then B4 = B4
1, the

proposition is holds.

�

Remark 5.1.10 For even m , the equation f (x) = x4 + x + 1 has no solutions in F2m

when m ≡ 2 (mod4), that is because the irreducible polynomial x4 + x + 1 over F2 of

degree 4 has a root α in the extension field F24 of F2, and moreover by Theorem 2.14

[8] all roots of f (x) are in F24 , hence all roots of f (x) are in F24 or any extension of

it. Since 4 not divides m when m ≡ 2 (mod4), so F24 is not a subfield of F2m , therefore

f (x) has not any root in F2m when m ≡ 2 (mod4). However such an element b does

not exist for even m by the following Lemma.

Lemma 5.1.11 Let b ∈ Fq4 where q = 2m and let B2 and B3 obtained from b according

to (5.7). Then for even m, B2 = B3 = 0 if and only if b is an element of Fq.
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Proof. Assume that B2 = B3 = 0. In the intermediate field Fq ⊆ Fq2 ⊆ Fq4 , the

polynomial x2 + x + α where α is a fixed element in Fq2 such that Trq2(α) = 1, has no

roots in Fq2 by Theorem 2.0.33 because Trq2(α) , 0, so it is irreducible polynomial

over Fq2 . Let δ be a root of the polynomial x2 + x + α, then δ will be in Fq4 , thus the

set {1, δ} is a basis of the field Fq4 as a vector space over Fq2 . Therefore any element

b ∈ Fq4 can be written in the form

b = r + tδ, for some r, t ∈ Fq2 and δ2 + δ + α = 0.

Denote

R = α + α2 + α4 + · · · + α2m−1
,

then

Rq = αq + α2q + α4q + · · · + α22m−1
,

it follows that

R + Rq = α + α2 + α4 + · · · + α2m−1
+ α2m

+ α2m+1
+ α2m+2

+ · · · + α22m−1

= Trq2(α) = 1.

Since δ2 + δ + α = 0, we get δ2 = δ + α, and

δ4 = δ2 + α2 = δ + α + α2;

δ8 = δ2 + α2 + α4 = δ + α + α2 + α4;

δ16 = δ2 + α2 + α4 + α8 = δ + α + α2 + α4 + α8;

hence by induction we deduce that

δ2m
= δ + α + α2 + α4 + · · · + α2m−1

Therefore

δq = δ + R, δq2
= δ + 1, δq3

= δ + R + 1. (5.24)

Rewriting B2 and B3 from (5.7) in terms of r and t, by using b = r + tδ and (5.24) we

obtain

B2 = tq+1(δq+1 + δq3+1 + δq+q2
+ δq2+q3

) + r2 + rt(δq2
+ δ) + t2δq2+1 + r2q

+ rqtq(δq3
+ δq) + t2qδq+q3

= tq+1(δq(δ + δq2
) + δq3

(δ + δq2
)) + r2 + rt(δ + 1 + δ) + t2((δ + 1)δ) + r2q

+ rqtq(δ + R + 1 + δ + R) + t2q(δ + R)(δ + R + 1)

= tq+1 + r2 + rt + αt2 + r2q + rqtq + αqt2q.
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Let

s = r2 + rt + αt2, (5.25)

and by similar computation for B3, we obtain

B2 = tq+1 + s + sq , and B3 = stq + sqt. (5.26)

From the condition B2 = 0, we get tB2 = tq+2 + st + sqt = 0, and since B3 = 0, then

sqt = stq, which implies tq+2 + st + stq = 0, thus

s(t + tq) = tq+2. (5.27)

First, when t + tq = 0 , i.e, t = tq and since B2 = 0, follows that t = 0 or s = sq,

if t = 0, then from B3 = 0, we get that s = sq. Hence, if t + tq = 0 we have t = 0

and s = sq, i.e, s ∈ Fq, and therefore from (5.25), r =
√

s ∈ Fq, thus the element

b = r + tδ =
√

s + 0 =
√

s ∈ Fq.

Next, when t + tq , 0, from the expression (5.27), one concludes that

s =
tq+2

t + tq .

Substituting this expression for s in (5.25), we obtain a quadratic equation over r :

r2 + rt + αt2 +
tq+2

t + tq = 0. (5.28)

By Theorem 2.0.33 this quadratic equation has a solution in Fq2 if and only if

Trq2(α +
tq

t + tq ) = 0,

Recall Trq2(α) = 1, and since Trq2(α +
tq

t + tq ) = Trq2(α) + Trq2(
tq

t + tq ), then the

condition is equivalent to

Trq2(
tq

t + tq ) = 1.

But by transitivity property of trace we have

Trq2

(
tq

t + tq

)
=Trq

(
TrFq2/Fq

(
tq

t + tq

))
=Trq

(
tq

t + tq +

(
tq

t + tq

)q)
=Trq

(
tq

t + tq +
t

t + tq

)
=Trq(1) = 0 for even m,
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which implies that the equation (5.28) over r, when t + tq , 0, i.e, for any t ∈ Fq2 \Fq,

has no solutions in Fq2 , that is when B2 = B3 = 0, we have b ∈ Fq.

�

5.2 The main results

After proving Proposition 5.1.6 and Proposition 5.1.7, it remains to consider the cases

when m = 2, 3, 4 and 5.

The direct calculations show that for m = 4, there are no permutation polynomials of

the type x1+
q4−1
q−1 + bx over Fq4 for q = 24.

But for m = 2 there are 48 such polynomials ( for b = αi, i = 3, 11, 37, 61, 63, 91 and

their cyclotomic classes Ci = {i, 2i, 22i, ..., 28i} modulo 255 = 44 − 1, where α is a

primitive element of F44).

From here , Propositions 5.1.5,5.1.6,5.1.7 and Lemma 5.1.11 , the following theorem

is valid.

Theorem 5.2.1 Let q = 2m,m ≥ 4 be even. The polynomial x1+
q4−1
q−1 + bx over Fq4 is

not a permutation polynomial for any b ∈ F∗q4 .

For m = 3 and m = 5, the direct calculations show that the polynomial x1+
q4−1
q−1 + bx is

a permutation polynomial over Fq4 if and only if the conditions of Proposition 5.1.4

are satisfied.

From here , Propositions 5.1.4, 5.1.6, 5.1.7 and 6.2.1, and since the conditions of

Proposition 6.2.1 represent a special case of the conditions in Propositions 5.1.4, the

following theorem is valid.

Theorem 5.2.2 Let q = 2m and m ≥ 3 be odd. The polynomial x1+
q4−1
q−1 + bx over Fq4

is a permutation polynomial if and only if the following conditions are satisfied

b ∈ Fq4 \ Fq, B3 + B1B2 = 0 and B4 + B4
1 + B2

1B2 + B2
2 = 0.

In [13] these conditions for B′i s in Theorem 5.2.2 were proved in a different way to be

sufficient conditions.
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For odd m, in order to find all b for which the polynomial x1+
q4−1
q−1 + bx is a permutation

polynomial we need the following remark .

Remark 5.2.3 Recall that the polynomial x4 + x + 1 is irreducible over F2, then it

remains irreducible over F2m when gcd(m, 4) = 1. Let β be a root of x4 + x + 1, then

β is a primitive element in F24 . Hence as Fq4 is a finite extension of Fq with degree 4,

the set {1, β, β2, β3} present a base of Fq4 over Fq.

Therefore for the element b of Fq4 , one can present b as a polynomial of degree 3 over

Fq :

b = x0 + x1β + x2β
2 + x3β

3, xi ∈ Fq

where β is a primitive element of F24 , i.e, it is a root of the polynomial 1 + β + β4 = 0.

Then

bq = x0 + x1β
q + x2β

2q + x3β
3q,

bq2
= x0 + x1β

q2
+ x2β

2q2
+ x3β

3q2
,

bq3
= x0 + x1β

q3
+ x2β

2q3
+ x3β

3q3
.

Note that m is odd , then m ≡ 1 (mod4) or m ≡ 3 (mod4), from the fact β is a primitive

root in Fq4 , i.e, β24
= 1, we have the following

β2m
=


β2 if m ≡ 1 (mod4),

β8 if m ≡ 3 (mod4),
β22m

=


β4 if m ≡ 1 (mod4),

β4 if m ≡ 3 (mod4),

β23m
=


β8 if m ≡ 1 (mod4).

β2 if m ≡ 3 (mod4).

Now write B1 from expression (5.7) in terms of xi, in both cases m ≡ 1 (mod4) and

m ≡ 3 (mod4) we get

B1 =4x0 + x1(β + βq + βq2
+ βq3

) + x2(β2 + β2q + β2q2
+ β2q3

) + x3(β3 + β3q + β3q2
+ β3q3

)

=x1(β + β2 + β4 + β8) + x2(β2 + β4 + β8 + β16) + x3(β3 + β6 + β12 + β24).
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Recall that β is a root of x4 + x + 1, then

β4 = 1 + β, β6 = β2 + β3,

β12 = β4 +β6 = 1+β+β2 +β3, β24 = 1+β2 +β4 +β6 = 1+β2 +1+β+β2 +β3 = β+β3.

from here follows that

B1 = x3. By similar calculations one also gets:

B2 = x0x3 + x1x2 + x2
3,

B3 = x2
0x3 + x3

1 + x1x2x3 + x1x2
3 + x3

2 + x2
2x3 + x3

3,

B4 = x4
0 + x3

0x3 + x2
0x1x2 + x2

0x2
3 + x0x3

1 + x0x1x2x3 + x0x1x2
3 + x0x3

2

+ x0x2
2x3 + x0x3

3 + x4
1 + x2

1x2x3 + x1x3
2 + x4

2 + x2x3
3 + x4

3.

Using these expressions of B1, B2, B3 and B4 we obtain the following :

the condition B1B2 = B3 is equivalent to the condition:

x0x3(x0 + x3) + x1(x1 + x3)2 + x2
2(x2 + x3) = 0 (5.29)

and the condition B4 = B4
1 + B2

1B2 + B2
2 is equivalent to :

x4
0 + x3

0x3 + x2
0x1x2 + x0x3

1 + x0x3
2 + x0x2

2x3 + x0x1x2
3+

+ x0x1x2x3 + x4
1 + x2

1x2
2 + x2

1x2x3 + x1x2x2
3 + x1x3

3 + x4
2 + x2x3

3 = 0
(5.30)

By the following Theorem we can find all solutions to this system of equations and

the number of all solutions.

Theorem 5.2.4 All solutions of the system of two equations(5.29) and (5.30) for odd

m are :

(x0 = x2, x1 = x2, x2, x3),

(x0 = x2 + x3, x1 = x2, x2, x3),

(x0 = 0, x1 = x2 + x3, x2, x3),

(x0 = x3, x1 = x2 + x3, x2, x3),

where x2, x3 run over Fq and (x2, x3) , (0, 0). The number of all solutions is 2(2q +

1)(q − 1).

Proof. Assume that x3 , 0 and define new variables:

r =
x0

x3
, , t =

x1

x3
, a =

x2

x3
.
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Rewriting the equations (5.29) and (5.30) in terms of r, t and a we get the following

equations :

r2 + r + t3 + t + a3 + a2 = 0 (5.31)

and

r4 +r3 +r2ta+rt3 +rta+rt+ra3 +ra2 + t4 + t2a2 + t2a+ ta3 + ta+ t+a4 +a = 0, (5.32)

respectively. Now, solving the system of the equations (5.31) and (5.32) will give us

all solutions of the system of equations (5.29) and (5.30).

Multiplying equation (5.31) by r2 and adding the result to equation (5.32) we get:

(r2 + r)(t3 + t + a3 + a2 + ta) + t4 + t2a2 + t2a + ta3 + ta + t + a4 + a = 0. (5.33)

Substituting r2 + r = t3 + t + a3 + a2 in (5.33) we get the following equation in terms

of t and a :

(t3 + t + a3 + a2)(t3 + t + a3 + a2 + ta) + t4 + t2a2 + t2a + ta3 + ta + t + a4 + a = 0

which is equivalent to

(t2 + t + a2 + a)(t4 + t3 + t2a2 + ta + a4 + a3 + a2 + a + 1) = 0, (5.34)

Thus we have either t2 + t + a2 + a = 0 or t4 + t3 + t2a2 + ta + a4 + a3 + a2 + a + 1 = 0.

Hence the equations (5.31) and (5.34) can be considered as two different systems of

equations. We first consider the system of the following equations:

r2 + r + t3 + t + a3 + a2 = 0

t4 + t3 + t2a2 + ta + a4 + a3 + a2 + a + 1 = 0. (5.35)

By applying the trace function to both equations in (5.35) we get

Trq(r2 + r + t3 + t + a3 + a2) = Trq(t3 + t) + Trq(a3 + a2) = 0,

and from the second equation in (5.35) we get

Trq(t4 + t3) + Trq(t2a2 + ta) + Trq(a4 + a3 + a2 + a) = Trq(1);

Trq(t + t3) + Trq(a3 + a2) = Trq(1),

but since m is odd, Trq(1) = 1 , 0, this gives a contradiction, thus the system (5.35)

has no solutions. Hence all solutions for x3 , 0, of the system of two equations (5.31)
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and (5.32) are the solutions of the second system.

Now consider the second system

r2 + r + t3 + t + a3 + a2 = 0

t2 + t + a2 + a = 0, (5.36)

By solving the second equation in (5.36) for t, we get

(t + a)2 + t + a = 0, which implies either t = a or t = a + 1,

and it follows from the first equation of (5.36) that:

if t = a, then

r = a or r = a + 1,

if t = a + 1 then

r = 0 or r = 1.

Evidently the system (5.36) has the following solutions:

(r = a, t = a),

(r = a + 1, t = a),

(r = 0, t = a + 1),

(r = 1, t = a + 1),

(5.37)

which is equivalent to

(x0 = x2, x1 = x2, x2, x3),

(x0 = x2 + x3, x1 = x2, x2, x3),

(x0 = 0, x1 = x2 + x3, x2, x3),

(x0 = x3, x1 = x2 + x3, x2, x3).

Moreover, the number of distinct solutions for x3 , 0 equals 4q(q − 1). If x3 = 0 then

from equation (5.29) it follows that

x3
1 + x3

2 = 0,

which is equivalent to

(x1 + x2)(x2
1 + x1x2 + x2

2) = 0,
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therefore either x1 + x2 = 0 or x2
1 + x1x2 + x2

2 = 0, but if we consider the equation

x2
1 + x1x2 + x2

2 = 0 as a quadratic equation in the variable x1, then by Theorem 2.0.33

this equation has no solutions for any x2 in F2m because Trq(
x2

2

x2
2

) = Trq(1) = 1 , 0

(since m is odd). Thus x1 + x2 = 0, i.e, x1 = x2. Substituting x3 = 0 and x1 = x2

in (5.30) we get x0(x0 + x2) = 0 which implies that x0 = 0 or x0 = x2. Therefore all

solutions when x3 = 0 are the following

(x0 = 0, x1 = x2, x2, x3),

(x0 = x3, x1 = x2, x2, x3).

Moreover, the number of distinct solutions for x3 = 0 equals 2(q − 1). Therefore the

number of all solutions which is the sum of the number of solutions for x3 , 0 and

for x3 = 0, is equal to 4q(q − 1) + 2(q − 1) = 2(2q + 1)(q − 1). �

Remark 5.2.5 All these solutions are the same with the solutions in [13], however

the authers did not proved in [13] that there are no other solutions. Here in this

paper the authors fill this gap and prove there are no other solutions for b foe which

a polynomial x1+
q4−1
q−1 + bx is a permutation polynomial over Fq4 . Hence the suffecient

conditions for b from Theorem 5.0.4 are also necessary. In [13] the number of their

distinct solutions is given as: 2(2q + 1)(q − 1), which coincides with the result here.

From the fact that the sufficient conditions for b from Theorem 5.0.4 are also neces-

sary the following corollary is satisfied.

Corollary 5.2.6 Let q = 2m, where m ≥ 3. The polynomial b−1x
q4−1
q−1 +1 is a complete

permutation polynomial over the field Fq4 , if and only if the number m is odd and b

satisfies the conditions of Theorem 5.0.4.

Proof. The polynomial b−1x
q4−1
q−1 +1 is a complete permutation polynomial if and only

if b−1x
q4−1
q−1 +1 and b−1x

q4−1
q−1 +1 + x are permutation polynomials over the field Fq4 . Let

d =
q4−1
q−1 + 1 = q3 + q2 + q + 2. Note that gcd(d, q4−1

q−1 ) = gcd(d, d − 1) = 1. By long

division we have gcd(d, q − 1) = gcd(d, 2m − 1) = gcd(23m + 22m + 2m + 2, 2m − 1) =

gcd(5, 2m − 1) = 1 (since m is odd).

Hence gcd(d, q4 − 1) = 1, we deduce from Theorem 2.0.42 that b−1x
q4−1
q−1 +1 is a permu-

tation polynomial over the field Fq4 . For b satisfies the condition of Theorem 5.0.4,
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then by Note 2.0.41, the polynomial b−1x
q4−1
q−1 +1 + x is a permutation polynomial over

the field Fq4 . Thus for such b′s, the polynomial b−1x
q4−1
q−1 +1 is a complete permutation

polynomial over the field Fq4 . �
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CHAPTER 6

PERMUTATION AND COMPLETE PERMUTATION

POLYNOMIALS

In this paper the authors classify all permutation polynomials of type xq+2+bx over the

field Fq2 and of type xq2+q+2 + bx over Fq3 , where q = pm > 2, p prime. Therefore, all

cases when the polynomials b−1xq+2 over Fq2 and b−1xq2+q+2 over Fq3 are the complete

permutation polynomial are enumerated.

6.1 The case of polynomial xq+2 + bx

In this section we will consider the field Fq2 , and set n = q − 1.

Proposition 6.1.1 The polynomial xq+2 + bx is a permutation polynomial over the

field Fq2 if and only if b ∈ Fq2 \ Fq and the equation

(x + y)2 + (x + y)(b + bq) + bq+1 − xy = 0, (6.1)

has no solutions x, y ∈ Fq, x , 0, y , 0, x , y.

Proof. Since the field is Fq2 , and n = q − 1, we have

1 +
q2 − 1

n
= 1 +

q2 − 1
q − 1

= 1 + q + 1 = q + 2.

Applying Lemma5.0.6 to the polynomial xq+2 + bx we get

The polynomial xq+2 + bx is a permutation polynomial over the field Fq2 if and only if

1. (−b)n , 1;
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2. ((b + wi)(b + w j)−1)q+1 , w j−i holds for all i, j, such that 0 ≤ i < j < n, where w

is a fixed primitive n-th root of unity in the field Fq2 .

The condition (−b)n , 1 implies that −b is not in Fq, so b ∈ Fq2 \ Fq. For the second

condition, setting x = wi and y = w j, the inequality in condition (2) becomes the

following

((b + x)(b + y)−1)q+1 , yx−1

which is equivalent to

x(b + x)q+1 , y(b + y)q+1,

for all x, y ∈ Fq, such that x , 0, y , 0, x , y. Thus the xq+2 + bx is a permutation

polynomial over the field Fq2 if and only if b ∈ Fq2 \ Fq and the equation over Fq

x(b + x)q+1 = y(b + y)q+1,

has no solutions x, y ∈ Fq, x , 0, y , 0, x , y. However this equation may be written

as

x(b + x)(b + x)q − y(b + y)(b + y)q = 0,

moreover since char(Fq2) = p and x, y ∈ Fq, the equation is equivalent to

x(bq + x)(b + x) − y(bq + y)(b + y) = 0.

By simple calculations we get the following

(x3 − y3) + (x2 − y2)(bq + b) + (x − y)bq+1 = 0

which is equivalent to

(x − y)(x2 + xy + y2 + (x + y)(b + bq) + bq+1) = 0,

but x , y, so conclude that

x2 + xy + y2 + (x + y)(b + bq) + bq+1 = 0,

or equivalently

(x + y)2 + (x + y)(b + bq) + bq+1 − xy = 0.

Hence the second condition of this proposition is satisfied.

�

Now, it is more convenient to consider the cases of fields of even and odd character-

istics separately.
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6.1.1 Fields of even characteristic

Proposition 6.1.2 Let q = 2m,m > 1. The polynomial xq+2 + bx is a permutation

polynomial over the field Fq2 if and only if b ∈ Fq2 \ Fq and

x2 + xz + z2 + z(b + bq) + bq+1 = 0 (6.2)

has no solutions in the field Fq for all z ∈ F∗q.

Proof. Since the field has even characteristic , using the identity xy = x2 + x(x + y)

and setting x + y = z, from Eq.(6.1) we arrive to the equation

x2 + xz + z2 + z(b + bq) + bq+1 = 0.

Note that the conditions x, y ∈ Fq, x , y are equivalent to the condition z ∈ Fq, z , 0,

and when z ∈ Fq, then x , 0, y , 0 because of

xy = z2 + z(b + bq) + bq+1 = (z + b)q+1 , 0

for z ∈ Fq, b ∈ Fq2 \ Fq. Hence from Proposition 6.1.1 the result is obtained. �

Theorem 6.1.3 Let q = 2m,m > 1. The polynomial xq+2 + bx is a permutation poly-

nomial over Fq2 if and only if b ∈ Fq2 \ Fq, the number m is odd, and b3(q−1) = 1. The

number of such different elements b is equal to 2(q − 1). All these elements can be

written in one of the following forms:

b = α(q+1)(3t+1)/3 or b = α(q+1)(3t+2)/3, t = 0, 1, . . . , 2m − 2,

where α is a primitive element of the field Fq2 .

Proof. In the field Fq, q = 2m, by Theorem 2.0.33 the equation (6.2) has a solution for

a fixed z ∈ F∗q if and only if

Trq

(
z2 + z(b + bq) + bq+1

z2

)
= 0,

where

Trq(a) = a + a2 + a4 + · · · + a2m−1, a ∈ Fq,
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is the trace function from Fq into F2. We have

z2 + z(b + bq) + bq+1

z2 =
z2 + z(b + bq) + bq+1 + b2 + b2 + b2q + b2q

z2

= 1 +
b + bq

z
+

(
b + bq

z

)2

+
b2 + bq+1 + b2q

z2 ,

since
b + bq

z
and

(
b + bq

z

)2

are conjugates in Fq with respect to F2, they have the same

trace, thus

Trq

(
z2 + z(b + bq) + bq+1

z2

)
= Trq(1) + Trq

(
b2(1 + bq−1 + b2(q−1))

z2

)
.

If 1 + bq−1 + b2(q−1) , 0, let c = b2(1 + bq−1 + b2(q−1)) be a nonzero element, then by

direct computation we observe that cq = c, so c ∈ F∗q. Note that the mapping z 7→ z2 is

an automorphism of the field Fq, q = 2m, there exists a nonzero element z ∈ Fq such

that z2 = b2(1 + bq−1 + b2(q−1)), for such z the following equality is valid

Trq

(
b2(1 + bq−1 + b2(q−1))

z2

)
= Trq(1).

Hence

Trq

(
z2 + z(b + bq) + bq+1

z2

)
= 0.

Thus if 1 + bq−1 + b2(q−1) , 0, equation (6.2) has a solution in F∗q, we deduce that by

Proposition 6.1.2 , the polynomial xq+2 + bx is not a permutation polynomial over Fq2 .

If 1 + bq−1 + b2(q−1) = 0, then Trq

(
b2(1 + bq−1 + b2(q−1))

z2

)
= 0, thus the solution of

equation (6.2) does not exist if and only if Trq(1) = 1, but Trq(1) = m.1, then Trq(1) =

1 if and only if m is odd. Now since

(bq−1 + 1)(1 + bq−1 + b2(q−1)) = b3(q−1) + 1,

if 1 + bq−1 + b2(q−1) = 0, then b3(q−1) + 1 = 0, hence the polynomial xq+2 + bx is a

permutation polynomial over Fq2 if and only if b ∈ Fq2\Fq,m is odd, and b3(q−1)+1 = 0.

Now let’s find the possible forms of such b’s.

Claim: If b ∈ Fq2 \ Fq and b3(q−1) = 1, then b in the following form

b = α(q+1)(3t+1)/3 or b = α(q+1)(3t+2)/3, t = 0, 1, . . . , 2m − 2,
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where α is a primitive element of the field Fq2 .

proof the claim: The multiplicative group of Fq2 is cyclic. Since α is a primitive

element of the field Fq2 , then αq2−1 = 1. For an element b of the group, b3(q−1) = 1

holds if and only if b = αm for some m ∈ Z such that (q2 − 1) divides 3(q − 1)m,

which implies that m =
(q+1)k

3 for some k ∈ Z. It is enough to check k ∈ Z satisfies this

for k modulo 3. When k = 1 and k = 2, we get b3(q−1) = 1, the condition is satisfy.

But when k = 3 we get that b(q−1) = 1, this contradicts with b ∈ Fq2 \ Fq. Therefore

b = α
q+1

3 or b = α
2(q+1)

3 .

Now we are on the position to find the possible structure of such b′s. Let r denotes a

third root of unity in Fq2 with r , 1.

Claim: r2 + r + 1 = 0 if r , 1.

proof the claim: Since r3 = 1 and r , 1, we have 0 = r3 − 1 = (r − 1)(r2 + r + 1),

which gives us r2 + r + 1 = 0 when r , 1.

Let’s analyze all of the b’s in three cases by consider the powers 3t + 1, 3t + 2 and

3t + 3 where t = 0, 1, . . . , 2m − 2.

Case 1: Say b is of the form b = α
q+1

3 (3t+1) where b ∈ Fq2 \ Fq.

Then bq−1 = α
q+1

3 (q−1)(3t+1) = α(q2−1) (3t+1)
3 = 1

3t+1
3 = 1

1
3 = r , 1, so

b2(q−1) + bq−1 + 1 = r2 + r + 1 = 0.

Thus this case will be included in the forms of b.

Case 2: Say b is of the form b = α
q+1

3 (3t+2) where b ∈ Fq2 \ Fq.

Then bq−1 = α
q+1

3 (q−1)(3t+2) = α(q2−1) (3t+2)
3 = 1

3t+2
3 = 1

1
3 = r , 1, so

b2(q−1) + bq−1 + 1 = r2 + r + 1 = 0.

Thus also this case will be included in the forms of b.

Case 3: Say b is of the form b = α
q+1

3 (3t+3) where b ∈ Fq2 \ Fq.

Then bq−1 = α
q+1

3 (q−1)(3t+3) = α(q2−1)(t+1) = 1, contradicts with b ∈ Fq2 \ Fq.

Thus this case will not included in the forms of b.

Therefore all elements of b ∈ Fq2 \ Fq, such that b3(q−1) = 1 can be written in one of

the following forms

b = α(q+1)(3t+1)/3 or b = α(q+1)(3t+2)/3, t = 0, 1, . . . , 2m − 2,

where α is a primitive element of the field Fq2 . Note that there is 2m − 1 elements b

for each Case 1 and Case 2 , hence the number of all different elements b is equal to
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(2m − 1) + (2m − 1) = 2(2m − 1) = 2(q − 1).

The proof of the theorem is complete. �

Corollary 6.1.4 Let q = 2m, where m > 1. The polynomial b−1xq+2 is a complete

permutation polynomial over the field Fq2 , if and only if the number m is odd and b

satisfies the condition of Theorem(6.1.3).

Proof. The polynomial b−1xq+2 is a complete permutation polynomial if and only

if b−1xq+2 and b−1xq+2 + x are permutation polynomials over the field Fq2 . Since the

integers 2m+2 and 22m−1 are relatively prime when m is odd, i.e, gcd(q+2, q2−1) = 1,

we deduce from Theorem 2.0.42 that b−1xq+2 is a permutation polynomial over the

field Fq2 . If b satisfies the conditions of Theorem 6.1.3, the polynomial xq+2 + bx is

a permutation polynomial over the field Fq2 . Which implies by Remark 2.0.41, the

polynomial b−1xq+2 + x is a permutation polynomial over the field Fq2 . Thus for such

bs, the polynomial b−1xq+2 is a complete permutation polynomial over the field Fq2 .�

6.1.2 Fields of odd characteristic

Proposition 6.1.5 Let q = pm and p ≥ 3 prime. The polynomial xq+2 + bx is a

permutation polynomial over Fq2 if and only if b ∈ Fq2 \ Fq and the equation

3(x + y)2 + 4(x + y)(b + bq) + 4bq+1 + (x − y)2 = 0,

has no solutions x, y ∈ Fq, x , 0, y , 0, x , y.

Proof. Since q = pm, p ≥ 3, for this case we can use the equation 4xy = (x + y)2 − (x−

y)2. Eq.(6.1) is equivalent to

4(x + y)2 + 4(x + y)(b + bq) + 4bq+1 − 4xy = 0

or

4(x + y)2 + 4(x + y)(b + bq) + 4bq+1 − (x + y)2 + (x − y)2 = 0,

which becomes

3(x + y)2 + 4(x + y)(b + bq) + 4bq+1 + (x − y)2 = 0,

then the result comes immediately from Proposition 6.1.1 . �

69



Proposition 6.1.6 Let q = pm and p ≥ 3. The polynomial xq+2 + bx is a permutation

polynomial over Fq2 if and only if b ∈ Fq2 \ Fq and the equation

3z2 + 4z(b + bq) + 4bq+1 + u2 = 0, (6.3)

has no solutions u, z ∈ Fq, u , 0.

Proof. Set x + y = z, x − y = u. Then the equality in Proposition 6.1.5

3(x + y)2 + 4(x + y)(b + bq) + 4bq+1 + (x − y)2 = 0

is equivalent to

3z2 + 4z(b + bq) + 4bq+1 + u2 = 0

and the conditions x, y ∈ Fq, x , 0, y , 0, x , y are equivalent to the conditions

u , 0, z,−z, more specifically only to the condition u , 0, since when u = ±z the last

equation becomes

z2 + z(b + bq) + bq+1 = (z + b)q+1 = 0

which is not possible since z ∈ Fq and b ∈ Fq2 \ Fq. Therefore, Proposition 6.1.5

adopted to this case will be as follows : The polynomial xq+2 + bx is a permutation

polynomial over Fq2 if and only if b ∈ Fq2 \ Fq and the equation

3z2 + 4z(b + bq) + 4bq+1 + u2 = 0,

has no solutions u, z ∈ Fq, u , 0. �

We will first consider the case when p = 3.

Theorem 6.1.7 Let q = 3m. The polynomial xq+2 + bx is a permutation polynomial

over the field Fq2 if and only if b ∈ Fq2\Fq and bq−1 = −1. The number of such different

elements b equals q−1, and all these elements can be presented in the following form:

b = α
q+1

2 (2t+1), t = 0, 1, . . . , q − 2,

where α is a primitive elements of the field Fq2 .

Proof. From the fact that the characteristic of the field Fq is 3, that is q = 3m, Eq.(6.3)

becomes

z(b + bq) + bq+1 + u2 = 0. (6.4)

Consider the following two cases:
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• If b+bq , 0, then for any u ∈ Fq, u , 0, Eq(6.4) has a solution z = −u2−bq+1

b+bq , hence

by Proposition 6.1.6, the polynomial xq+2 + bx is not a permutation polynomial

over Fq2 in this case.

• If b + bq = 0, then bq = −b and bq+1 = −b2, Eq.(6.4) implies that u2 − b2 = 0,

thus (u − b)(u + b) = 0, which implies u = ±b, but this impossible for b ∈

Fq2 \ Fq and u ∈ Fq, so Eq.(6.4) has no solutions, therefore by Proposition 6.1.6

the polynomial xq+2 + bx is a permutation polynomial over Fq2 if and only if

b ∈ Fq2 \ Fq and bq−1 = −1.

Now let’s find the possible structure of b with b ∈ Fq2 \ Fq, bq−1 = −1. let α be a

primitive element of the field Fq2 , then ord(α) = q2 − 1. Note that q2 − 1 is an even

integer , then one has α
q2−1

2 = −1. For an element b of the multiplicative group of Fq2 ,

bq−1 = −1 so b2(q−1) = 1 holds if and only if b = αm for some m ∈ Z such that (q2 − 1)

divides 2(q− 1)m, thus m =
(q+1)k

2 for some k ∈ Z. It is enough to check k ∈ Z satisfies

this for k modulo 2. When k = 1, we get b = α
(q+1)

2 , and bq−1 = −1, the condition for

b is satisfy. But when k = 2, b = αq+1 implies that bq−1 = 1 , −1, the condition for b

fails for k = 2. Therefore b = α
q+1

2 .

Let’s analyze all of the b’s in two cases by consider the powers 2t+1, and 2t+2 where

t = 0, 1, . . . , q − 2.

Case 1: If b = α
q+1

2 (2t+1), t = 0, 1, . . . , q − 2, then bq−1 = α
q+1

2 (q−1)(2t+1) = (−1)2t+1 = −1.

Thus this case included in the form of b because b ∈ Fq2 \ Fq, and bq−1 = −1., Case

2: If b = α
q+1

2 (2t+2), t = 0, 1, . . . , q − 2, then bq−1 = α(q+1)(q−1)(t+1) = 1, this implies that

b ∈ Fq. this case will not be included in the forms of b.

Hence all elements of b such that b ∈ Fq2 \ Fq, and bq−1 = −1, can be presented in the

form:

b = α
q+1

2 (2t+1), t = 0, 1, . . . , q − 2,

where α is a primitive element of the field Fq2 . Therefore the number of distinct ele-

ments b is q − 1.

The proof of the theorem is complete.

�
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Corollary 6.1.8 Let q = 3m. The polynomial b−1xq+2 is a complete permutation poly-

nomial over the field Fq2 if and only if b satisfies the condition of Theorem6.1.7.

Proof. The polynomial b−1xq+2 is a complete permutation polynomial over the field

Fq2 if and only if b−1xq+2 and b−1xq+2 + x are permutation polynomials over the field

Fq2 . Since the integers 3m +2 and 32m−1 are mutually prime, i.e, gcd(q+2, q2−1) = 1,

then by Theorem 2.0.42 the polynomial b−1xq+2 is a permutation polynomial over Fq2 .

If b satisfies the conditions of Theorem 6.1.7, the polynomial xq+2+bx is a permutation

polynomial over the field Fq2 . Which implies by Remark 2.0.41, b−1xq+2 + x is a

permutation polynomial over Fq2 . Hence for such b′s, the polynomial b−1xq+2 is a

complete permutation polynomial over the field Fq2 . �

Next, we will consider the case when p > 3.

Proposition 6.1.9 Let q = pm and p > 3. The polynomial xq+2 + bx is a permutation

polynomial over Fq2 if and only if b ∈ Fq2 \ Fq and the equation

4b2 − 4bq+1 + 4b2q − 3u2 = v2 (6.5)

has no solutions u, v ∈ Fq, u , 0.

Proof. For the case p > 3, taking into account that the discriminant of the quadratic

equation (6.3) over z is equal to

∆ = 42(b + bq)2 − 4.3(4bq+1 + u2) = 4(4b2 + 4b2q + 8bq+1 − 12bq+1 − 3u2)

= 4(4b2 + 4b2q − 4bq+1 − 3u2)

= 22(4b2 − 4bq+1 + 4b2q − 3u2)

Eq.(6.3) in Proposition 6.1.6 has no solution if and only if the discriminant ∆ of the

equation is not a square in Fq, i.e. if and only if 4b2 − 4bq+1 + 4b2q − 3u2 = v2 has no

solutions u, v ∈ Fq, u , 0, which completes the proof. �

Before giving the next theorem we need the following definitions and lemma .

Definition 6.1.10 [8] Let q be odd and let η be the real valued function on F∗q with

η(c) =


1 if c is the square of an element of F∗q

−1 otherwise
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Then η is a multiplicative character of Fq, and it is called the quadratic character of

Fq.

Definition 6.1.11 [8] For any finite field Fq the integer-valued function v on Fq is

defined by v(b) = −1 for b ∈ F∗q and v(0) = q − 1.

Lemma 6.1.12 [8] For odd q, let a ∈ Fq, α, β ∈ F∗q, and η be the quadratic character

of Fq. Then

N(αx2
1 + βx2

2 = a) = q + v(a)η(−αβ).

where N(αx2
1 + βx2

2 = a) denotes the number of solutions of the indicated equation in

F2
q.

Theorem 6.1.13 Let q = pm and p > 3. The polynomial xq+2 + bx is a permutation

polynomial over the field Fq2 if and only if b ∈ Fq2 \ Fq,

1 − bq−1 + b2(q−1) = 0

and the equation w2 + 3 = 0 has no solutions in Fq.

Proof. If 4b2 − 4bq+1 + 4b2q , 0, let a = 4b2 − 4bq+1 + 4b2q, then Eq.(6.5) has always

a solution u, v ∈ Fq, u , 0, as from lemma 6.1.12,

N(3u2 + v2 = a , 0) = q + v(a)η(−3) =


q − 1, if −3 is a square in Fq

q + 1, otherwise

that is the number of solutions u, v in Fq, is not less than q − 1, and the number of

solutions for u = 0 is not greater than two, so the Eq.(6.5) has at least q−1−2 = q−3

solutions u, v ∈ Fq, u , 0. (note that q − 3 > 0, since q = pm, p > 3). Therefore

xq+2 + bx is not a P.P over Fq, in this case. If 4b2 − 4bq+1 + 4b2q = 0, then Eq.(6.5)

becomes

v2 = −3u2,

therefore this equation has a solution u, v ∈ Fq, u , 0 if and only if −3 = a2 for some

a ∈ Fq, i.e. if and only if the quadratic equation w2 + 3 = 0 has a solution a in the field

Fq.
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Hence xq+2 + bx is a permutation polynomial over Fq2 if and only if b ∈ Fq2 \ Fq,

1 − bq−1 + b2(q−1) = 0 and the equation w2 + 3 = 0 has no solution in Fq.

The proof of the theorem is complete. �

Theorem 6.1.14 Let q = pm, and p > 3. The polynomial xq+2 + bx is a permutation

polynomial over the field Fq2 , if and only if p = 6k − 1, m is odd, and b is of the form

b = α
q+1

6 (6t+1) or b = α
q+1

6 (6t+5), t = 0, 1, . . . , q − 2, (6.6)

where α is a primitive element of Fq2 .

Proof. By Theorem 6.1.13 we have the equality 1 − bq−1 + b2(q−1) = 0. Now since

1 − bq−1 + b2(q−1) =
1 + b3(q−1)

1 + bq−1 ,

the equation 1 − bq−1 + b2(q−1) = 0 has a solution, if and only if 1 + b3(q−1) = 0 which

is if and only if b3(q−1) = −1, taking the squares of both sides we get (b2)3(q−1) = 1,

and since b ∈ Fq2 \ Fq, then b2 , 1 (because if b2 = 1 and since 2 divides q − 1

then b ∈ F∗q). Let b2 = c ∈ Fq2 \ Fq, then ord(c) | 3(q − 1) but c ∈ Fq2 \ Fq so also

ord(c) | (q2−1). So there exist nonzero integers t, r ∈ Z∗ such that 3(q−1) = ord(c) · t

(note that gcd(3, t) = 1 as c does not belong to Fq ) and (q − 1)(q + 1) = ord(c) · r,

then ord(c) =
3(q−1)

t =
(q−1)(q+1)

r , thus q + 1 = 3 ·
r
t
, since t | 3r and gcd(3, t) = 1 which

implies that
r
t

is an integer number, hence 3 divides q + 1.

So we proved that 1 − bq−1 + b2(q−1) = 0 has a solution, if and only if 3 divides q + 1.

We can present the elements b where b3(q−1) = −1 by taking a primitive element

α ∈ Fq2 . For an element b of the cyclic multiplicative group F∗q2 , b3(q−1) = −1 so

b6(q−1) = 1 holds if and only if b = αm for some m ∈ Z such that (q2 − 1) divides

6(q − 1)m, which implies that m =
(q+1)k

6 for some k ∈ Z. It is enough to check k ∈ Z

satisfies the condition of b for k modulo 6. When k = 1 and k = 5 the condition for b

satisfy. But when k = 2 and k = 4 implies that b3(q−1) = 1 , −1. And k = 3 implies

bq−1 = −1, then we get 1 − bq−1 + b2(q−1) = 3 , 0 for p > 3. Therefore b = α
q+1

6 or

b = α
5(q+1)

6 .

Let’s analyze all of the b’s in sex cases by consider the powers 6t + 1, 6t + 2, 6t + 3,

6t + 4, 6t + 5 and 6t + 6 where t = 0, 1, . . . , q − 2.

74



Case 1: Say b is of the form b = α
q+1

6 (6t+1), then b3(q−1) = (−1)6t+1 = −1. Thus this case

will be included in the forms of b.

Case 2: Say b is of the form b = α
q+1

6 (6t+2), then b3(q−1) = (−1)6t+2 = 1. Thus this case

will not be included in the forms of b.

Case 3: Say b is of the form b = α
q+1

6 (6t+3), then bq−1 = (−1)2t+1 = −1, which implies

1 − bq−1 + b2(q−1) = 3 , 0 for p > 3. Thus this case will not be included in the forms

of b.

Case 4: Say b is of the form b = α
q+1

6 (6t+4), then b3(q−1) = (−1)6t+4 = 1. Thus this case

will not be included in the forms of b.

Case 5: Say b is of the form b = α
q+1

6 (6t+5), then b3(q−1) = (−1)6t+5 = −1. Thus this case

will be included in the forms of b.

Case 6: Say b is of the form b = α
q+1

6 (6t+6), then b3(q−1) = (−1)6t+6 = 1. Thus this case

will not be included in the forms of b.

Note that there is q − 1 elements b for each Case 1 and Case 5 , hence the number of

all different elements b is equal to (q − 1) + (q − 1) = 2(q − 1).

Any prime number p > 3 has the form p = 6k ± 1. Moreover the equation w2 + 3 = 0

has a solution in the field Fp if and only if p = 6k + 1 (from ch.5,[12]).

We have the following two cases for m :

• If m is odd

– If p = 6k + 1, the equation w2 + 3 = 0 has a solution in Fq.

– If p = 6k − 1 the equation w2 + 3 = 0 has no solution in Fp, then it has no

solution for every extension Fpm , where gcd(2,m) = 1.

• If m is even

Let m = 2k, if the equation w2 + c = 0, c ∈ Fpk has no solution in Fpk then

it is irreducible, let α be a root of w2 + c in some extension field of Fpk , then

since deg(w2 + c) = 2 , Fpk(α) = Fp2k , so α ∈ Fp2k . Therefore the equation

w2 + c = 0, c ∈ Fpk , always has a solution in the quadratic extension Fp2k . Then

the equation w2 + 3 = 0 has a solution in Fq.

From the discussion above and by Theorem 6.1.13, the polynomial xq+2 + bx is a P.P

over Fq2 , if and only if p = 6k−1, m is odd, and b is of the form b = α
q+1

6 (6t+1) or b =
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α
q+1

6 (6t+5), t = 0, 1, . . . , q − 2, where α is a primitive element of Fq2 , as desired.

�

When m is odd since the numbers pm+2 and p2m−1 are mutually prime and p = 6k−1,

we obtain the following result.

Corollary 6.1.15 Let q = pm, and p > 3. The polynomial b−1xq+2 is a complete

permutation polynomial over the field Fq2 if and only if p = 6k − 1, m is odd and b

satisfies the condition of Theorem 6.1.14.

Proof. The polynomial b−1xq+2 is a complete permutation polynomial over the field

Fq2 if and only if b−1xq+2 and b−1xq+2 + x are permutation polynomials over the field

Fq2 . Since the integers pm +2 and p2m−1 are mutually prime, i.e, gcd(q+2, q2−1) = 1,

then by Theorem 2.0.42 the polynomial b−1xq+2 is a permutation polynomial over Fq2 .

If p = 6k − 1, m is odd and b satisfies the condition of Theorem 6.1.14, xq+2 + bx

is a permutation polynomial over the field Fq2 . Which implies by Remark 2.0.41, the

polynomial b−1xq+2 + x is a permutation polynomial over Fq2 . Hence for such bs, and

for p = 6k−1, m is odd , the polynomial b−1xq+2 is a complete permutation polynomial

over the field Fq2 . �

6.2 The case of polynomial xq2+q+2 + bx

Proposition 6.2.1 The polynomial xq2+q+2 + bx is a permutation polynomial over the

field Fq3 if and only if b ∈ Fq3 \ Fq, and the equation

(x + y)3 − 2(x + y)xy + ((x + y)2 − xy)B1 + (x + y)B2 + B3 = 0, (6.7)

has no solution x, y ∈ Fq, x , 0, y , 0, x , y.

Proof. Since the field is Fq3 , setting n = q − 1, we get

1 +
q3 − 1

n
= 1 +

q3 − 1
q − 1

= 1 + q2 + q + 1 = q2 + q + 2.

Applying Lemma 5.0.6 in this case we get that:

The polynomial xq2+q+2 + bx is a permutation polynomial over the field Fq3 if and only

if
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1. (−b)n , 1;

2. ((b + wi)(b + w j)−1)q2+q+1 , w j−i holds for all i, j, such that 0 ≤ i < j < n, where

w is a fixed primitive root of the nth degree of 1 in the field Fq.

The condition (−b)n , 1 implies that −b does not belong to Fq, thus b ∈ Fq3 \ Fq. In

order to see the second condition, we set x = wi and y = w j, and then the inequality

in condition (2) becomes the following

((b + x)(b + y)−1)q2+q+1 , yx−1

which is also equivalent to

x(b + x)q2+q+1 , y(b + y)q2+q+1,

for all x, y ∈ Fq, such that x , 0, y , 0, x , y. Thus xq2+q+2 + bx is a permutation

polynomial over the field Fq3 if and only if b ∈ Fq3 \ Fq and the equation over Fq

x(b + x)q2+q+1 = y(b + y)q2+q+1,

has no solutions x, y ∈ Fq, x , 0, y , 0, x , y. However this equation may be written

as

x(b + x)(b + x)q(b + x)q2
− y(b + y)(b + y)q(b + y)q2

= 0,

and since characteristic Fq3 is p, where q = pm, and x, y ∈ Fq, the equation is equiva-

lent to

x(b + x)(bq + x)(bq2
+ x) − y(b + y)(bq + y)(bq2

+ y) = 0.

By simple computations this equation turns into the following

(x − y)b1+q+q2
+ (x2 − y2)(b1+q + b1+q2

+ bq+q2
) + (x3 − y3)(b + bq + bq2

) + x4 − y4 = 0.

Now, taking

B1 = b + bq + bq2
, B2 = b1+q + b1+q2

+ bq+q2
, B3 = b1+q+q2

,

and rewriting the last equation we obtain:

(x − y)B3 + (x2 − y2)B2 + (x3 − y3)B1 + x4 − y4 = 0;

which gives

(x − y)
(
(x + y)3 − 2(x + y)xy +

(
(x + y)2 − xy

)
B1 + (x + y)B2 + B3

)
= 0,
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but x , y, so we conclude that

(x + y)3 − 2(x + y)xy +
(
(x + y)2 − xy

)
B1 + (x + y)B2 + B3 = 0.

Hence xq2+q+2 + bx is a permutation polynomial over the field Fq3 if and only if b ∈

Fq3 \Fq, and the equation (x+y)3−2(x+y)xy+((x+y)2−xy)B1+(x+y)B2+B3 = 0, has

no solution x, y ∈ Fq, x , 0, y , 0, x , y, as desired. �

6.2.1 Fields of even characteristic

Theorem 6.2.2 Let q = 2m and m > 1. The polynomial xq2+q+2 + bx is a permutation

polynomial over the field Fq3 if and only if b ∈ Fq3 \ Fq, and b + bq + bq2
= 0. The

number of such different elements b equals q2 − 1.

Proof. To apply proposition 6.2.1, first note that, for q = 2m, the identity xy = x2 +

x(x + y) holds . Set x + y = z, xy = u, then equation (6.7) is equivalent to

uB1 = z3 + z2B1 + zB2 + B3, (6.8)

with the condition z , 0 alone, because if x, y ∈ Fq, x , 0, y , 0, and x , y, then

z = x + y , 0 and u , 0, but form the fact that z ∈ Fq and b ∈ Fq3 \ Fq we deduce that

u , 0 (as if u = 0 then from (6.8) we get that

z3 + z2B1 + zB2 + B3 = 0, (6.9)

by some simple calculations we get

z3 + z2B1 + zB2 + B3 =(z + b)(z + bq)(z + bq2
)

= (z + b)1+q+q2
= 0

which implies that z = b, this is impossible for z ∈ Fq and b ∈ Fq3 \ Fq), therefore we

have just a condition z , 0. Next, we will consider the following two cases for B1 :

1. If B1 = 0, then using the same argument as above, equation (6.8) has no solution

z in Fq for any u ∈ F∗q. Therefore xq2+q+2 + bx is a permutation polynomial over

Fq3 if b ∈ Fq3 \ Fq, and B1 = b + bq + bq2
= 0.
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2. If B1 , 0, then equation (6.8) becomes

u =
z3 + z2B1 + zB2 + B3

B1
, (6.10)

using the identities x2 + x(x + y) = xy = u, z = x + y, and (6.10) follows that,

xq2+q+2 +bx is a permutation polynomial over Fq3 if b ∈ Fq3 \Fq and the equation

in x

x2 + xz +
z3 + z2B1 + zB2 + B3

B1
= 0 (6.11)

has no solution in Fq for any z ∈ F∗q. Considering equation (6.11) as a quadratic

equation in x over Fq, when z ∈ F∗q is fixed, by Theorem 2.0.33 equation (6.11)

has a solution in Fq if and only if

Trq

(
z3 + z2B1 + zB2 + B3

B1z2

)
= 0.

Because

Trq

(
z3 + z2B1 + zB2 + B3

B1z2

)
=Trq

(
z

B1
+ 1 +

B2

B1z
+

B3

B1z2

)
=Trq(1) + Trq

(
z

B1
+

B2

B1z
+

B2
2

B2
1z2

+
B2

2 + B1B3

B2
1z2

)
,

and since
B2

B1z
and

B2
2

B2
1z2

are conjugates in the field F2 they have the same trace

then

Trq

(
z3 + z2B1 + zB2 + B3

B1z2

)
=Trq(1) + Trq

(
z2

B2
1

+
B2

2 + B1B3

B2
1z2

)
=Trq(1) + Trq

(
v +

B
v

)
where v =

(
z

B1

)2

, and B =
B2

2 + B1B3

B4
1

.
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Claim: There exists v ∈ F∗q such that Trq(1) + Trq

(
v +

B
v

)
= 0, i.e., Trq(1) =

Trq

(
v +

B
v

)
.

Proof the claim: By using the definition of the Kloosterman sum under the

canonical additive character χ and the elements 1 and B with p = 2 we get

K(χ1, 1, B) =
∑
v∈F∗q

χ(v + Bv−1)

=
∑
v∈F∗q

e
2πi
2 Trq(v+ B

v )

=
∑
v∈F∗q

(−1)Trq(v+ B
v ),

we have the following two cases:

• If Trq(1) = 0 and Trq(v + B
v ) = 1 for all v ∈ Fq then

|K(χ1, 1, B)| = |
∑
v∈F∗q

(−1)Trq(v+ B
v )|

= q − 1,

but for q ≥ 8 this contradicts with the bound that |K(χ1, 1, B)| ≤ 2
√

q (The-

orem 2.0.52), because q − 1 ≥ 2
√

q for q ≥ 8. hence there exist at least

one v , 0 such that Trq(v + B
v ) = 0 = Trq(1).

• If Trq(1) = 1 and Trq(v + B
v ) = 0 for all v ∈ Fq then by the same argument

in the above case

|K(χ1, 1, B)| = |
∑
v∈F∗q

(−1)Trq(v+ B
v )|

= q − 1.

But again from Theorem 2.0.52, we have |K(χ1, 1, B)| ≤ 2
√

q this is a

contradiction because q − 1 ≥ 2
√

q for q ≥ 8. Hence there exists at least

one v , 0 such that Trq(v + B
v ) = 1 = Trq(1).

For q = 4 one can directly check that there exists v , 0 such that Trq(1) =

Trq(v + B
v ) = 0. Therefore when B1 , 0 the polynomial xq2+q+2 + bx is not a

permutation polynomial over the field Fq3 .
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Moreover the number of distinct elements b ∈ Fq3 \ Fq, satisfying B1 = 0, that is

b + bq + bq2
= 0, is equal to

|{b ∈ Fq3 \ Fq : TrFq3/Fq(b) = 0}|.

From the fact that |{α ∈ Fqs : TrFqs/Fq(α) = 0}| = qs−1, we get that

|{b ∈ Fq3 \ Fq : TrFq3/Fq(b) = 0}| = |{b ∈ Fq3 : TrFq3/Fq(b) = 0}| − |{b ∈ Fq : TrFq3/Fq(b) = 0}|

= q3−1 − |{0}|

= q2 − 1.

�

Corollary 6.2.3 Let q = 2m and m > 1. Then the polynomial b−1xq2+q+2 is a complete

permutation polynomial over the field Fq3 if and only if b satisfies the condition of

Theorem 6.2.2.

Proof. The polynomial b−1xq2+q+2 is a complete permutation polynomial if and only if

b−1xq2+q+2 and b−1xq2+q+2 + x are permutation polynomials over the field Fq3 . Since the

numbers 22m + 2m + 2 and 23m − 1 are mutually prime i.e, gcd(q2 + q + 2, q3 − 1) = 1,

then by Theorem 2.0.42 the polynomial b−1xq2+q+2 is a permutation polynomial over

the field Fq3 . If b satisfies the condition of Theorem 6.2.2, we get xq2+q+2 + bx is a

permutation polynomial over the field Fq3 . Which implies by Remark 2.0.41 the poly-

nomial b−1xq2+q+2 + x is a permutation polynomial over the field Fq3 , hence b−1xq2+q+2

is a complete permutation polynomial over the field Fq3 . �

6.2.2 Fields of odd characteristic

Let q = pm, p ≥ 3. Then we have the following proposition.

Proposition 6.2.4 Let q = pm, and p ≥ 3. The polynomial xq2+q+2 + bx is a permuta-

tion polynomial over the field Fq3 , if and only if b ∈ Fq3 \ Fq, and the equation

(x − y)2 (2(x + y) + B1) + 2(x + y)3 + 3(x + y)2B1 + 4(x + y)B2 + 4B3 = 0, (6.12)

has no solution x, y ∈ Fq, x , 0, y , 0, x , y.
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Proof. Let q = pm, p ≥ 3. Using the identity 4xy = (x + y)2 − (x − y)2, equation (6.7)

is equivalent to

(x − y)2 (2(x + y) + B1) + 2(x + y)3 + 3(x + y)2B1 + 4(x + y)B2 + 4B3 = 0, (6.13)

Then by Proposition 6.2.1, xq2+q+2 + bx is a permutation polynomial over the field Fq3 ,

if and only if b ∈ Fq3 \Fq, and the equation (x− y)2 (2(x + y) + B1) + 2(x + y)3 + 3(x +

y)2B1 + 4(x + y)B2 + 4B3 = 0, has no solution x, y ∈ Fq, x , 0, y , 0, x , y, as

desired. �

Proposition 6.2.5 Let q = pm, and p ≥ 3. The polynomial xq2+q+2 + bx is a permuta-

tion polynomial over the field Fq3 , if and only if b ∈ Fq3 \ Fq, and the equation

u2(2z + B1) + 2z3 + 3z2B1 + 4zB2 + 4B3 = 0 (6.14)

has no solution u ∈ F∗q, z ∈ Fq.

Proof. Set z = x + y and u = x − y. Then the equation

(x − y)2 (2(x + y) + B1) + 2(x + y)3 + 3(x + y)2B1 + 4(x + y)B2 + 4B3 = 0,

is equivalent to

u2(2z + B1) + 2z3 + 3z2B1 + 4zB2 + 4B3 = 0.

The conditions x, y ∈ Fq, x , 0, y , 0, x , y from Proposition 6.2.4 are equivalent

to the condition u , 0 alone, because when x , 0, y , 0, x , y, then u , 0 and

u , z,−z, however if u = ±z then by direct calculations we get

z2(2z + B1) + 2z3 + 3z2B1 + 4zB2 + 4B3 = z3 + z2B1 + zB2 + B3

= (z + b)(z + b)q(z + b)q2

= (z + b)1+q+q2
= 0,

which is impossible for z ∈ Fq, and b ∈ Fq3 \ Fq. �

Proposition 6.2.6 Let q = pm, p ≥ 3. The polynomial xq2+q+2 + bx is a permutation

polynomial over the field Fq3 if and only if

b ∈ Fq3 \ Fq, D , 0
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and the equation

Y2 = X3 +
C
D2 X2 −

1
D4 (6.15)

has no solutions Y, X ∈ F∗q.

Proof. By equation(6.14) we have u2(2z + B1) = −2z3 − 3z2B1 − 4zB2 − 4B3.

• If 2z + B1 = 0 =⇒ z = −B1
2 , the equation

u2(2z + B1) = −2z3 − 3z2B1 − 4zB2 − 4B3

becomes

0 =2(
−B3

1

23 ) + 3
B2

1

22 B1 + 4(
−B1

2
B2) + 4B3;

=
−B3

1

4
+ 3

B3
1

4
− 2B1B2 + 4B3;

=
1
2

B3
1 − 2B1B2 + 4B3;

=B3
1 − 4B1B2 + 8B3.

So it is reduced to the condition

B3
1 − 4B1B2 + 8B3 = 0 (6.16)

for the element b. Therefore if the element b satisfies (6.16), the polynomial

xq2+q+2 + bx is not a permutation polynomial over Fq3 , because for any u ∈ F∗q,

equation(6.14) has the solution z = −B1
2 .
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• If B3
1 − 4B1B2 + 8B3 , 0 and therefore z , −B1

2 , we have

u2 = −
2z3 + 3z2B1 + 4zB2 + 4B3

2z + B1

= −
4z3 + 6z2B1 + 8zB2 + 8B3

4z + 2B1

= −
4(z3 + 3z2 B1

2 + 3z( B1
2 )2 − 3z( B1

2 )2 + ( B1
2 )3 − ( B1

2 )3) + 8zB2 + 8B3

4(z + B1
2 )

= −
4(z + B1

2 )3 + 4(−3z B2
1

4 −
B3

1
8 ) + 8zB2 + 8B3

4(z + B1
2 )

= −(z +
B1

2
)2 −

z(8B2 − 3B2
1) + 8B3 −

B3
1

2

4(z + B1
2 )

= −(z +
B1

2
)2 −

z(8B2 − 3B2
1) + B1

2 (8B2 − 3B2
1) − B1

2 (8B2 − 3B2
1) + 8B3 −

B3
1

2

4(z + B1
2 )

= −(z +
B1

2
)2 −

(8B2 − 3B2
1)(z + B1

2 ) − 4B1B2 + 3 B3
1

2 + 8B3 −
B3

1
2

4(z + B1
2 )

= −(z +
B1

2
)2 −

B3
1 − 4B1B2 + 8B3

4(z + B1
2 )

−
(8B2 − 3B2

1)
4

.

(6.17)

Denote

v = z +
B1

2
; D = −

B3
1 − 4B1B2 + 8B3

4
; C = −

(8B2 − 3B2
1)

4
.

In terms of v,D and C, equation(6.17) becomes

u2 = −v2 +
D
v

+ C.

Dividing both sides of equation u2 = −v2 + D
v + C by D4v2 we get

u2

D4v2 =
−1
D4 +

D
v3D4 +

C
v2D4 .

Now, setting Y =
u

vD2 and X =
1

vD
we have

Y2 = X3 +
C
D2 X2 −

1
D4 .

Thus the problem of existence a solution of equation (6.14) is reduced to the existence

of solutions of the the equation Y2 = X3 + C
D2 X2 − 1

D4 , for Y, X ∈ F∗q. Hence by

Proposition 6.2.5 the polynomial xq2+q+2 + bx is a permutation polynomial over the
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field Fq3 if and only if b ∈ Fq3 \Fq, and the equation Y2 = X3 + C
D2 X2 − 1

D4 , D , 0 has

no solutions Y, X ∈ F∗q. �

Theorem 6.2.7 Let q = pm, and p ≥ 3. The polynomial xq2+q+2 + bx is a per-

mutation polynomial over the field Fq3 if and only if q = 3 or q = 7 and b =

αk, where k = 2, 4, 5, 17, and their cyclotomic cosets Cr of positive integers mod-

ulo 26, where α is a primitive element of F33 (or respectively b = αk, where k =

30, 38, 39, 45, 87, 95, 96, 144, and their cyclotomic cosets Cr of positive integers mod-

ulo 342, where α is a primitive element of F73 ).

Proof. Consider the plane curve C over Fq defined by

C = {(X,Y) : X3 +
C
D2 X2 −

1
D4 − Y2 = 0}

This plane curve is absolutely irreducible because the polynomial

f (X,Y) = X3 +
C
D2 X2 −

1
D4 − Y2 = g(X) + h(Y),

where g(X) = X3 + C
D2 X2 − 1

D4 and h(Y) = −Y2, note that gcd(deg g(X), deg h(Y)) =

gcd(3, 2) = 1, then by Corollary in 2.0.46 the polynomial f (X,Y) is irreducible over

Fq and so it is irreducible over any extension of Fq, which implies that C is abso-

lutely irreducible. By Hasse-Weil bound Theorem 2.0.53, the number N of Fq-rational

points of the plane curve satisfies N ≥ q + 1− 2
√

q. The number of points with Y = 0,

or X = 0 does not exceed 5, then when q + 1 − 2
√

q > 5, i.e, N > 5, there exist a

solution Y, X ∈ F∗q of the equation (6.15). For q ≥ 11 we have q + 1 − 2
√

q > 5, there-

fore by Proposition 6.2.6 the polynomial of the type xq2+q+2 + bx is not permutation

polynomials over Fq3 in the case q ≥ 11.

Now we will consider the cases q = 3, 5, 7, 9,

• For q = 5, q = 9.

claim: The permutation polynomial over Fq3 of the type xq2+q+2 + bx does not

exist for q = 5 and q = 9.

Proof the claim: We will prove that there exists a solution Y , 0, X , 0 for

equation(6.15).
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– If C , 0

We know that for q = 9,F9 � F3(α) = {0, 1, 2, α, 2α, 1 + α, 1 + 2α, 2 +

2α, 2 + α}, where α is a root of the irreducible polynomial x2 + 1 over F3,

that is −1 = α2. And for q = 5, −1 = 22, so −1 is a quadratic residue in

both F5 and F32 . Now, setting X = −C/D2, equation(6.15) becomes:

Y2 =
−C3

D6 +
C
D2

C2

D4 −
1

D4 =
−1
D4 =

b2

D4

where b2 = −1, for some b ∈ F5 respectively b ∈ F32 (since -1 is a

quadratic residue in the fields F5 and F32), which implies that Y = ± b
D2 ∈

F∗q.

Thus, since there is a solution X = −C/D2,Y = ± b
D2 ∈ F∗q for equation(6.15),

there is no permutation polynomial in this case.

– If C = 0.

Set X = ( 2
D4 )

1
3 this is an element in F∗q for q = 5 and q = 9, because the

mapping w 7−→ w3 is bijection in the fields F5 and F32 , which implies that

for the element 2
D4 ∈ F∗q, there exist b ∈ F∗q such that b3 = 2

D4 . Hence

equation(6.15) becomes Y2 = 2
D4 −

1
D4 = 1

D4 , thus Y = ± 1
D2 .

Thus, since there is a solution X = ( 2
D4 )

1
3 ,Y = ± 1

D2 ∈ F∗q for equation(6.15),

also there is no permutation polynomial in this case.

Therefore, there is no permutation polynomial over Fq3 of the type xq2+q+2 + bx

for q = 5 and q = 9.

• For q = 3

Let α be a primitive element of F33 given by f (x) = x3 +2x2 +1. The polynomial

x14 + bx is a permutation polynomial over F33 for the elements b = αk, where k

runs through the following cyclotomic cosets Cr of positive integer modulo 26:

C2 = {2, 6, 18}, C4 = {4, 12, 10},

C5 = {5, 15, 19}, C17 = {17, 23, 25}. (6.18)

• For q = 7.

Let α be a primitive element of F73 given by f (x) = x3 + x2 + x + 2. The

polynomial x58 + bx is a permutation polynomial over F73 for the elements b =
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αk,where k runs through the following cyclotomic cosets Cr of positive integers

modulo 342:

C30 = {30, 210, 102}, C38 = {38, 266, 152}, C39 = {39, 273, 201},

C45 = {45, 315, 153}, C37 = {87, 267, 159}, C95 = {95, 323, 209},

C96 = {96, 330, 258}, C144 = {144, 324, 216}. (6.19)

�

Corollary 6.2.8 Let q = pm and p ≥ 3. Then the polynomial b−1xq2+q+2 is not a

complete permutation polynomial over the field Fq3 for any b ∈ F∗q3 .

Proof. Since the gcd(14, 33 − 1) , 1, and gcd(58, 73 − 1) , 1, by Theorem 2.0.42 the

polynomial x14 (respectively x58 ) is not a permutation polynomial over the field F33

(respectively over the field F73 ). �
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