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ABSTRACT 

 

 

DEVELOPMENT OF A COLLABORATIVE DELIVERY SYSTEM WITH  

UNMANNED AERIAL VEHICLES AND DELIVERY TRUCKS 

 

Aboharba, Salah 

 

PhD in Modeling and Design of Engineering Systems (MODES) 

Supervisor: Asst. Prof. Dr. Kutluk Bilge Arıkan 

Co-Supervisor: Assoc. Prof. Dr. Mehmet Turan 

 

May 2018, 91 pages 

This thesis studies the new application for an unmanned aerial vehicle in the delivery 

system. Considering a problem of the limited flight time of UAV due to the small 

battery package that challenges the distribution of the goods directly from the main 

warehouse difficult, therefore, a collaborative delivery system with UAVs and 

delivery trucks is proposed. This research focuses on the optimization of the routing 

problems where a delivery truck is utilized as the base for the UAV when it performs 

a delivery task. First, the mathematical formulation is developed, with two stages, 

namely the UAV power consumption model and integer linear programming model, 

followed by the problem being solved with the K-means algorithm (to partition 

customers into groups and find the best location for the delivery truck) and with an 

ant colony optimization algorithm and nearest neighbor algorithm to tackle the 

routing problem for the UAV for each group.  All the algorithms are implemented in 

MATLAB to find the location of the delivery truck, to minimize the distance traveled 

and minimize delivery time taking into account the power consumption of UAVs. 

Finally, comparisons between this system and truck usage is presented. The results 

show that the delivery time in the collaborative delivery system is reduced compared 

with truck only usage. Moreover, the issue of limited flight time is solved by 

applying this system. In addition, a method is developed to weight between the 
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highest demand and shortest distance for the UAV to select a path at minimum 

power consumption when the demand of the customers is not equal. This method is 

enforced in nearest neighbor algorithm and ant colony optimization algorithm and 

the results show that  nearest neighbor algorithm is more efficient then ant colony 

optimization algorithm. 

Keywords: UAV; delivery optimization routing problem; integer linear 

programming; K-means cluster algorthm; nearest neighbor algorithm; ant colony 

optimization algorithm.  
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ÖZ 

 

İNSANSIZ HAVA ARACI VE FIRLATMA KAMYONUNUNDAKİ 

FIRLATMA SİSTEMİNİN BİRLİKTE ÇALIŞMASININ GELİŞTİRİLMESİ 

 

Aboharba, Salah 

Mühendislik Sistemlerinin Modellenmesi ve Tasarımında Doktora (MODES) 

                   Tez Yoneticisi: Yar. Doç. Dr. Kutluk Bilge Arıkan 

     Ortak Tez Yoneticisi: Doç. Dr. Mehmet Turan 

 

Mayıs 2018, 91 sayfa 

 

Bu tez, insansız hava aracının (İHA) paket dağıtma amacıyla farklı bir şekilde 

kullanımını incelemektedir. İHA'nın paketleri doğrudan ana depodan alarak 

dağıtmasını zorlaştıran kısıtlı batarya kapasitesi ve sınırlı uçuş süresi problemleri 

göz önünde bulundurularak, İHA ve dağıtım kamyonu işbirliği yapan bir sistem 

önerilmektedir. Bu çalışma, paketleri de taşıyan bir kamyon ve bu kamyonu üs 

olarak kullanan İHA’nın dağıtım güzergâhı optimizasyonuna odaklanmıştır. 

Öncelikle, güç tüketimi ve tam sayılı doğrusal programlama modelleri geliştirilmiş 

ve ardından paketlerin teslim edileceği müşterileri gruplara ayırmak ve kamyon için 

en uygun bekleme konumunu hesaplamak üzere K-ortalama algoritmasından 

faydalanılmıştır. Her bir müşteri kümesi içerisinde İHA’nın izleyeceği rota ise 

karınca kolonisi optimizasyon algoritması ve en yakın komşuluk algoritması ile 

hesaplanmıştır. Teslimat kamyonu için en uygun konumun hesaplanması, kat edilen 

mesafenin minimize edilmesi, güç sarfiyatını dikkate alarak teslimat süresinin 

minimize edilmesi için kullanılan tüm algoritmalar MATLAB ortamında 

uygulanmıştır. İHA-kamyon iş birlikteliğine sahip bu sistem ile tek başına 

kamyonun dağıtım amaçlı kullanımı karşılaştırılmıştır. Sonuçlar, önerilen sistem ile 

dağıtımın daha kısa sürede tamamlandığını sunmaktadır. Aynı zamanda İHA’nın 

sınırlı uçuş süresi sorununun işbirlikçi sistem kullanılarak giderildiği de 

gösterilmektedir. Bunlara ek olarak, müşteri taleplerinin eşit olmadığı durumlarda, 

İHA’nın güç tüketimini en aza indirecek rotayı hesaplamak adına, en yüksek talep 
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ve en kısa mesafe isteklerini oranlayarak kullanan bir yöntem de geliştirilmiştir. Bu 

yöntemde de karınca kolonisi optimizasyonu ve en yakın komşuluk algoritması 

uygulanmış olup sonuçlar en yakın komşuluk algoritmasının daha etkili olduğunu 

göstermektedir. 

 

Anahtar Kelimeler: İHA, teslimat güzergâhı optimizasyonu, tamsayı doğrusal 

programlama, K-ortalama gruplandırma algoritması, en yakın komşu algoritması, 

karınca kolonisi optimizasyonu 
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CHAPTER 1  

  

INTRODUCTION 

 

 

1.1 Introduction 

 

Small Unmanned Aerial Vehicles (UAVs), also called drones, are one of the research 

areas that have received considerable attention in recent years. This autonomous 

aerial vehicle can fly at low altitudes and evade obstacles at low altitudes more 

easily. Small UAVs have already been utilized in many civilian applications such as 

weather monitoring, search and rescue, pollutant estimation, traffic surveillance and 

disaster monitoring and management  [1-5].  

In this chapter, a brief history of UAVs and their classification are given first, 

followed by usage of UAVs for logistic purposes. Then, the motivations and 

objectives of this study is clarified. Next, the statement of the problem will be 

discussed, followed finally by the outline of the thesis. 

 

1.2 Unmanned Aerial Vehicles (UAVs) 

 

A UAV (or ‘flying robot’) may be defined as an aircraft that flies without an 

on-board pilot. In fact, UAVs can be controlled remotely from the ground by a pilot, 

or they can be controlled autonomously by an on-board computer programmed to 

perform a specific task  [6, 7].  UAVs were first created by Lawrence and 

Sperry (USA) in 1916. They were called the ‘Aviation Torpedo,’ as shown in 

Figure (1.1), and they utilized a gyroscope to stabilize the body. The ‘Aviation 

Torpedo’ was able to fly a distance of over 30 miles  [7,  8].  At the end of the 1950s, 

UAVs began to gain advantage during the Cold War with full-scale research and 

expansion continuing well into the 1970s, after which time researchers started 
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developing cheaper and smaller UAVs powered with small engines such as those 

found in motorcycles and which were able to carry a camera to transmit images to a 

base. It was in this period that the prototype of the UAV was born. In 1991, the USA 

utilized UAVs for practical use in the Gulf War, after which UAVs in military 

applications progressed quickly. 

 

 

 

Figure  1.1: Aviation Torpedo Ref. [7] 

  

The most famous UAV for military use is the Predator, shown in Figure (1.2). 

During this period, NASA was started to focus on UAV research for civil use. The 

most typical example from this time was the ERAST (Environmental Research 

Aircraft and Sensor Technology) project. It started in the 1990s and was a full-scale 

research attempt for a UAV that contained the development of the technology 

required to fly at high altitudes of up to 30,000 m along with extended flight 

technology, sensors, engines, and so on  [7- 9]. 
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Figure  1.2 : Predator Military UAV Ref. [8] 

 

1.2.1 Classification of Unmanned Aerial Vehicles (UAVs) 

 

There are different ways to classify UAVs, according to their range of action, 

aerodynamic configuration, size and payload, as shown in Figure (1.3). 

 

Rang of action

Classification of UAVs

Fixed-wing Rotary-wing Flapping-wing

Aerodynamic Configuration size

High-Altitude 

Long-Endurance

Medium-Altitude

 Long-Endurance

Medium-Range Close Range

Micro UAV Nano Air Vehicles

payload

 

Figure  1.3: Unmanned aerial vehicles classification 
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There are two common categories of UAV based on the aerodynamic configuration 

used in many applications: fixed-wing and rotary-wing. Fixed-wing UAVs 

Figure (1.4 (a)) are unmanned aircraft that utilize forward propulsion over a fixed 

wing to gain lift. A high forward velocity is needed to generate this lift; 

consequently, this type is not appropriate for use in restricted environments, in 

which UAVs require maneuverability to perform tasks. 

  

 

Figure  1.4: (a) Fixed-wing Ref. [10]  (b) Helicopter Ref. [7]  (c) Multi rotor Ref. [11] 

 

On the other hand, there are four types of rotary-wing aircraft based on the number 

of rotors. Those with one rotor are called helicopters Figure (1.4-b) and utilize a 

single large rotor to produce lift but requiring a tail rotor for directional control and 

stability. The second type is the multi rotors which utilize multiple rotors to produce 

and control the motion of vehicles  Figure (1.4-c). The third type is the coaxial, 

which has two rotors constructed on the same shaft and rotating in opposite 

directions, as shown in Figure (1.5-a). Finally, the Quad-rotor has four rotors fitted in 

a cross link configuration, as shown in Figure (1.5-b). The multi-copter is a type of 

rotary-wing UAV with 4, 6 or more rotors powered by DC motors. It has several 

features, including its small size, high maneuverability, vertical takeoff and landing 

and its ability to carry loads of 50% to 100% of its body weight. However, it is 

powered by a lithium polymer (Li-Po) battery, which makes the flight time limited. 
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Figure  1.5: (a) Coaxial  Ref. [7]      (b)  Quadrotor  Ref. [12] 

 

The most popular rotary craft is the quadrotor, which has numerous advantages over 

classical helicopters. One of the advantages is that the rotors are small and can be 

enclosed, making them safer for indoor flights. Moreover, they have higher payload 

capacity and better maneuverability in comparison to the classical helicopter. It is 

also possible to accomplish more stationary hovering with four thrust effects at a 

distance from the center of gravity than with one thrust force effect through the 

center of gravity, as is the case with classical helicopters. The main disadvantage of 

the quadrotor is its high energy consumption due to its use of four motors  [13]. In 

addition, advantages will be enhanced by adding more rotors (multirotor) to the 

aircraft, but this will increase energy consumption. 

 

1.2.2 UAVs in Logistic. 

 

In recent years, unmanned aerial vehicles (UAVs, also known as drones) have been 

becoming utilized in many commercial and military applications providing limitless 

advantages such as reliably and effectively saving time and effort of doing work. The 

multi-copter is a rotary craft type of UAV that has good features, including plain 

mechanical structure, high maneuverability and a perfect relationship between the 

payload capacity and total weight. This feature makes it an ideal candidate to 
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transport goods in 3D space. On the other hand, efforts have been made over many 

years to reduce emissions in logistics systems by introducing greener fuel 

sources  [14]. One of these efforts includes a truck powered by electricity using an 

in-vehicle routing problem  [15]. In addition, high-density traffic on roads, especially 

during peak times, produces situations in which traditional delivery trucks cannot 

easily reach a location. Therefore, this necessitates the introduction of UAVs for 

delivery tasks to make more feasible and improve the delivery process. 

There are many logistic companies working to utilize UAVs in delivery systems to 

make delivery processes more efficient at lower cost and in less time. Regular 

delivery trucks cannot easily reach some locations, especially in the rural areas; 

therefore, a drone would be an appropriate solution in such cases. DHL first tested 

UAVs to deliver blood samples across a river, followed by delivery of medication to 

a small island called Juist. In 2016, DHL tested a third-generation delivery drone 

called the “parcelcopter” shown in Figure (1.6-a), which can fly at speeds of up to 

70 km/h to a distance of 8.3 km with a payload of up to 2.2 kg. Moreover, it can 

make deliveries in 8 minutes. A standard delivery vehicle would take approximately 

30 minutes for the same distance [16]. Amazon has tested a delivery drone (as shown 

in Figure (1.6-b) that can fly at altitudes of up to 122 m with a payload of up to 

2.3 kg at a top speed of 88 km/h. The drone is fully autonomous and utilizes GPS 

when making a delivery; however, the location should be within a 24-kilometer 

range  [17].  

A drone delivery system, made by Australian drone company Flirtey,  Figure (1.7), 

has been tested successfully to transport 4.5 kg of medical supplies to a countryside 

health clinic in UA. The test was approved by the Federal Aviation Authority in 

participation with NASA. The test demonstrated that drones could be useful for the 

delivery of packages, especially in the countryside and in remote areas that are 

difficult to reach with ground vehicles. However, the flight time of drones is 

limited  [18]. The national postal service in Singapore has started testing drones for 

delivery. Drone have been flown 2.3 km to deliver letters to a small island called 

Pulau Ubin, located northeast of the main island of Singapore, with a trip taking 

approximately 5 minutes  [19]. 
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Figure  1.6: Delivery drone, (a) DHL parcelcopter for fast delivery Ref. [16] 

  (b) Amazon delivery drone Ref. [17] 

 

 In the same manner, the authors in  [20] make some calculations to compare the cost 

of using drones in delivery systems. They state that the operating costs of using 

drones are on the order of 10 cents per 2 kg of weight in a 10-kilometer, in contrast 

to 60 cents per item used over a decade ago in their traditional delivery systems. 

Therefore, it is economically feasible to deliver small packages using drones. The 

consequence of this is that the delivery of goods becomes faster, more effective and 

efficient at lower cost. UAVs are an ideal candidate, owing to their vertical takeoff 

and landing, good maneuverability and the possibility of carrying cargo at 50% to 

100% of the UAV body weight  [21]. 
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Figure  1.7: Flirtey drone delivery Ref. [18] 

 

In contrast, the traditional delivery truck can carry many delivery packages and has a 

long operation time, but it is slow and heavy, as shown in Table (1.1). In addition, in 

some cases, the truck cannot reach customers easily due to high traffic congestion or 

bumpy roads in rural areas. 

 

Table  1.1: Comparing between  delivery truck and UAV 

 weight speed capacity Operation 

time 

Truck heavy low high long 

UAV light high low short 

 

1.3 Motivations and Objectives 

 

In the last few years, the use of Unmanned Aerial Vehicles (UAV), also known as 

drones, has been greatly increased in many military and civilian applications due to 

numerous features, which has them perform human work at high levels of reliability 

and with greater effectiveness. The multi-copter is rotary-wing type with numerous 

characteristics, such as small size, takeoff and landing in a small area, good 

relationship between total weight and payload, simple mechanical structure and high 

maneuverability. These characteristics make it an ideal candidate for the distribution 

of goods in 3D space.  
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This work started in 2015 when many logistics companies were working to introduce 

UAVs into their delivery systems to improve logistics tasks. This inspired new 

challenges needed to investigate how to make route planning more efficient. These 

challenges came from several limitations of UAVs. For instance, the flight time is 

limited due to small battery power, which makes UAVs unable to complete missions 

as well as possibility of crashing to the ground if batteries are not recharged or 

replaced during a journey. Due to UAVs being a new application in delivery systems, 

only a small amount of study in the literature exists that investigates this problem in 

the routing side. Hence, handling the problem of limited flight time will make it 

possible to use UAVs to distribute goods. 

 

 This thesis focuses on the routing problem for multiple vehicles, namely delivery 

trucks and drones working together to deliver packages. The aims of the thesis are: 

- To develop a collaborative delivery system with a UAV and delivery truck on 

the routing side to solve the limited flight time issue. 

- To present a drone routing problem that minimizes delivery time and power 

consumption by considering payload weight and distance travelled. 

- To improve the power consumption of a drone by proposing a method of 

weighting between shortest distances and highest weights when a drone 

selects its customers. 

   

1.4 Problem Statement  

 

One of the difficulties encountered in the use of drones in a delivery system is the 

limited flight time of drones due to small battery power, which makes it difficult to 

carry out every delivery directly from a warehouse, as shown in Figure (1.8-a). There 

are n customers needing service by drone from the warehouse; nevertheless, a 

number of them could not be served because of the limited flight range, thereby 

making the drone incapable of serving these customers. This problem can be 

overcome by constructing new warehouses close to customers, but this will increase 

the cost of delivery and would be unsuitable in many areas, especially rural areas. 

The appropriate solution to this problem is to develop a collaborative system 

between a drone and a delivery truck, where a delivery truck is loaded with packages 

and carrying a multi-copter to a point closer to customers, which suggests that the 
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delivery truck would function as a sub-warehouse and a base for drones, as shown in 

Figure (1.8-b). 

In this scenario, the delivery truck is loaded with packages in the main warehouse 

and at the same time carries the drones. The delivery truck then proceeds to the point 

close to customers. The drone will take off, fly to the given customer, deliver the 

package and return to the base (delivery truck). When the drone is at the base, the 

battery will swiped with recharged one and a new package is loaded for the next 

mission. The drone may serve one or two customers per trip depending on the 

payload and flight time. This problem is studied as a routing optimization problem 

for both the drone and delivery truck. First, the problem is modeled to find the best 

stop locations for the delivery truck by partitioning customers into groups and 

finding the center for each group. Second, for each group the problem is modeled as 

a drone delivery optimization problem to minimize the distance traveled by the 

drone, the delivery time and the power consumption so as to serve every customer 

taking into account the payload weight and limited flight time of the drone. 
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Figure  1.8: Delivery directly from warehouse, numbers of customers cannot be 

reached due to limited flight time. (b) All customers can be reached by patriating the 

customers into groups and using a collaborative system between UAV and a delivery 

truck. 

 

1.5 Contribution 

 

The contribution of this thesis may be summarized as follows: 

1 – The issue of the limited flight time of the UAV is addressed by collaboration 

between a drone and a delivery truck when customers are divided into groups and 

served by a drone, while a truck is used as a base for the drone and assigned to the 

location close to customers (middle of the group). 

2 – We develop an integer linear programming model (ILPM) for the drone routing 

problem (DRP) with two objective functions, the first one is to minimize the time of 

delivery with taking into account the distance traveled and the speed of the drone. 

The second objective function is to minimize the power consumption by taking into 

account the payload weight of the drone and the distance traveled. 
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3 – We introduce a method for the drone to select between two criteria, namely 

highest demand and shortest distance when it moves to serve the customer, which 

will minimize the power consumed by the drone. This method can be followed to 

construct a new distance matrix which would be utilized to improve the NNA and 

ACOA to minimize the power consumption. 

 

1.6 Thesis Outline 

 

The thesis organizes in six chapters as following:  

In the first chapter, an introduction is presented including a short history of UAVs, 

their classification, logistical uses, followed by the motivations and objectives of the 

presented work. Then the problem statement is described, followed finally by the 

contribution and structure of the thesis being presented. 

 

Chapter Two commences with some background needed to understand and solve the 

routing problem, such as the optimization problem, NP-hard, integer linear 

programming, and graph theory. This is followed by a presentation of the literature 

survey with confirmation of published work in relation to the present work, namely 

the problem of limited flight time, collaboration with two vehicles and the drone 

routing problem, all of which are discussed. 

 

Chapter Three presents the mathematical formulations began by the power 

consumption model for UAVs, followed by integer linear programming for the 

collaborative system.  

 

Chapter Four presents the methodology to find solutions. Three algorithms are 

proposed, and discussed, namely K-means clustering to divide customers into groups 

and find the best location for a delivery truck, nearest neighbors and ant colony 

optimization to find and solve the drone routing problem. 

 

Chapter Five presents the results found from simulating drone power consumption 

and integer linear programming models by implementing all the algorithms in 

MATLAB. 
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Chapter Six presents the discussion of results, conclusions and future work for this 

thesis. 
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CHAPTER 2  
 

BACKGROUND INFORMATION AND LITERATURE SURVEY 

 

 

2.1 INTRODUCTION 

 

In many applications, the UAV needs to work together with another vehicle to 

complete its work successfully. This cooperation may be between two UAVs or it 

may be between a UAV and a ground vehicle (GV). This issue occurs from the 

application itself, such as in search and rescue in an extensive area, in dangerous 

places, or from the limitations of a UAV, such as limited flight time. In this chapter, 

some background about the routing problem is given first to realize the optimization 

problem, followed by a review of the previous study in the area of limited flight time 

due to the small battery power of the UAV, collaboration with two vehicles, and the 

drone routing problem (DRP) in the delivery system. 

 

2.2 Combinatorial Optimization Problem 

 

The routing problem studied in this thesis is an optimization problem. An 

optimization problem can be formulated as either maximizing or minimizing. Our 

problem in this thesis is only considered as a minimization problem which can be 

modeled in general form as: 

 

                               min  𝑓(𝑥)                                                                   (2.1) 

                              𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜  𝑥 ∈ 𝑆 

where,  𝑓 is called an objective function and the variables 𝑥𝑖, with 𝑖 = 1,2, … . . , 𝑛 are 

called decision variables. 𝑆 is the solution space in which there is a set of feasible 

solutions in the solution space that can be determined by a number of constraints. 
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The feasible solution set is usually implicitly described by a set of equalities and 

inequalities. The optimization problem can be modeled in a number of different ways 

with respect to the decision variables, objective function and depiction of the solution 

space. This will require different algorithms to solve the problem and subsequently, 

various calculation effects. 

The combinatorial optimization problem is an optimization problem in which a set of 

feasible solutions is limited. Nevertheless, it generally becomes exponentially large 

in relation to the problem data. The feasible solutions for the combinatorial problem 

is usually discrete or can be reduced to discrete. For small sized problems, efficient 

algorithms can be used to find an optimal solution, while for large problems, only a 

suboptimal solution can be found in a reasonable time using heuristic or 

metaheuristic algorithms  [22]. 

 

2.3 NP-hard Problems 

 

The NP is a problem with decisions (problems with ‘yes’ or ‘no’ answers) which the 

answer can be verified in a polynomial time. The routing problems are NP-hard 

problems and they are not solved optimally in reality because the solution grows 

exponentially with the number of customers. If we suppose that there are n customer 

services for one vehicle, then the total number of feasible solutions is (n – 1)!, which 

grows exponentially  [23].  For n = 5, the feasible solution is 24, while for n = 8, the 

feasible solutions is 5040. There are two main approaches to solve the routing 

problem, namely the exact and approximate methods  [24]: 

 

2.3.1 Exact Method 

 

The exact method guarantees that an optimal solution is found in a limited amount of 

time; however, it is suitable only for small-sized problems. Time grows 

exponentially when the size of a problem increases and the search for a solution no 

longer becomes feasible. The algorithms normally used to provide exact solutions 

include branch and bound or branch and cut. 
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2.3.2 Approximate Methods 

 

Approximate methods contain heuristic and meta-heuristic approaches to find near 

optimal solutions. A heuristic method is a procedure that is likely to discover a very 

good feasible solution, but not necessarily an optimal solution. The main advantage 

of heuristic methods is their speed and ability to handle large problems that cannot be 

solved by exact methods. The most used algorithm to implement a heuristic approach 

in the routing problem is the nearest neighbor algorithm. 

On the other hand, the meta-heuristic is a more generic method than the heuristic. 

Moreover, it is a non-exact solution method; however, it can be utilized to solve a 

problem in an acceptable time to find a near optimal solution for a large or very large 

problem. The main difference it has with the heuristic method is that the meta-

heuristic is an independent method that can be applied to any wide range problems 

containing multiple local optima, while the heuristic method is created to solve a 

particular problem. It also becomes trapped in the first local optima. There are many 

algorithms used to implement meta-heuristic methods, such as ant colony 

optimization (ACO), particle swarm optimization (PSO), simulated annealing (SA) 

and genetic algorithms (GA) [25]. 

 

2.4 Integer Linear Programming 

 

Integer linear programming is used to solve optimization problems with discrete 

decisions and it has an application in many fields, such as electrical power systems, 

control engineering and operation research. In the model (2.1), if the decision 

variables are allowed to be fractional, the model is referred to as integer linear 

programming (ILP) and when some, but not all, of them are restricted to be integers, 

the model is called mixed integer linear programming (MILP). A special type of 

integer linear programming is known as a zero-one programming problem in which 

the decision variables can take a value of 0 or 1 [26]. For instance, in the drone 

routing problem, if the drone moves from customer 𝑖 to customer 𝑗, the decision 

variable 𝑥𝑖𝑗 = 1; otherwise, it equals 0. 
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2.5 Graph Theory 

 

To demonstrate the routing problem and design an effective algorithm, the  formulate 

graph theory should be introduced  which used as the main tools to solve the routing 

problem, therefore, some key points and notations need to be proposed. The graph 

𝐺(𝑉, 𝐸) is a mathematical structure governing a set of vertices or nodes in set V and 

arc set E or paths linking the vertices. The arc 𝑒 =  {𝑖, 𝑗}  ∈   𝐸 represents the vertices 

𝑖 and 𝑗, which are adjacent to each other. 

For the undirected graph, there is no singularity between the two nodes related to an 

edge, and so edges {𝑖, 𝑗} and {𝑗, 𝑖} are coinciding, where, as in a directed graph, edges 

have direction. A directed edge is also called an arc. Arc 𝑎 = (𝑖, 𝑗) has a direction 

that points from its initial vertex 𝑖, also referred to as the arc tail, to its end vertex 𝑗, 

also referred to as the arc head. The degree of a vertex is the number of edges that 

connect to that vertex; in a directed graph, a vertex has in-degrees and out-degrees 

that are the number of arcs pointing to that vertex and away from it, respectively. A 

path in a graph G is a consecutive sequence of edges [{𝑣1, 𝑣2}, … . . , {𝑣𝑛−1 , 𝑣𝑛}] from 

edge set E that connects a distinct set of vertices {𝑣1, … , 𝑣𝑛}  ∈ 𝑉 at their end points. 

Vertex b is reachable from a if there exists a path in the graph that starts from a and 

ends at b and the two vertices a and b are connected if they are both reachable from 

one another. Clearly, connectivity is implied by reachability in an undirected graph. 

G is described as a connected graph if every pair of vertices in V are connected and it 

becomes a complete graph if every vertex in V is adjacent to every other vertex in 

the graph.  

A cycle is a path that starts and ends at the same vertex.  A graph G is a tree if it is 

connected and does not have any cycles. A spanning tree of a connected undirected 

graph G, is a tree that contains every vertex of G and all of whose edges are in E. 

[27, 28]. 

 

2.6 Literature Survey 

 

Many researchers are working to improve the energy efficiency of drones, which will 

increase their endurance. This issue was addressed by considering the drone itself in 

terms of mechanical design, reducing the payload or by considering the surroundings 

of the drone to perform missions. In this section, we summarize the previous study in 

the field of the limited flight time of the drone, followed by collaboration with drones 
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and other vehicles in a number of applications. Finally, the drone routing problem is 

investigated in the field of delivery systems. 

 

2.6.1 Limited Flight Time 

 

There are many studies that present how to improve energy efficiency or reduce the 

energy consumption of UAVs. Some of them are proposed approaches to increase 

the efficiency of energy consumption; nevertheless, these are appropriate for a team 

of UAVs, while others studied the power systems of drones and the improvement of 

the mechanical design was studied to solve this problem. In Ref. [29] a new rotor 

configuration, called a “Triangular Quadrotor,” is proposed to improve power 

efficiency. This configuration utilizes one large rotor for lifting and three small rotors 

for control. The design, however, is still in a prototype stage. The authors in  Ref. 

[30] introduce an algorithm that is used to increases energy efficiency for a swarm of 

flying robots utilized for surveillance. The swarm is incrementally deployed by 

launching one robot at a time. The robots are launched individually, separated by 

adjustable times between them, which reduces the energy consumption of the swarm 

by up to 30.8%. However, this increases the search time. This system works for 

teams of UAVs utilized for indoor exploration. Ref. [31] proposes a model to 

estimate the endurance of UAVs used for aerial exploration within indoor 

environments, and a ceiling attachment is introduced as a means of preserving energy 

while maintaining a bird’s eye view. Other studies in Ref.  [32, 33] and  [34] 

proposed an automated battery management platform system used to extend the 

operational time of battery powered UAVs. This system is used to quickly swap a 

consumed battery with a replenished battery while the other batteries are 

simultaneously recharged. The change/recharge system can be maintained for long 

duration missions; however, the UAVs must be landed on the platform more than 

once during their missions. In Ref. [35], the authors propose a technique that extends 

the endurance of UAVs by dumping consumed batteries out of the UAV while in 

flight. It was found that endurance can be extended by 17% compared with fixed 

weight models, but the battery dumping system would add extra weight. 

Nevertheless, the system could be simplified by dividing the battery into even packs, 

which would extend flight time. Ref. [36] introduces a method that extends the 
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endurance of a rotorcraft by decreasing the payload; this is achieved by sub-dividing 

the battery into multiple smaller capacity batteries which are sequentially discharged 

and released. However, this is limited by the additional weight of the switching 

circuitry and release mechanism. Additionally, the battery efficiency will decrease 

and the size reduce. In the above studies, most work to improve the flight time by a 

percentage unless in Ref. [32, 33], and  [34] they introduce an automated battery 

platform system that can solve the problem by replacing or charging the battery 

many times during a mission. Nevertheless, this system is inappropriate in the 

delivery task where drones are needed for freight with new packages in addition to 

replacing the battery. 

   

2.6.2 Collaborations with UAVs and Another Vehicles 

 

In the past few years, many researchers have studied the advantages of cooperation 

between flying robots and ground vehicles. The collaborative system between UAVs 

and ground robots is rapidly spreading as an innovative tool suitable for use in many 

applications, such as search and rescue operations, safety problems and civil 

protection as in Ref.  [37, 38]. Ref. [39] presents a cooperative system between 

UGVs and small air vehicles utilized in an observation missions area when the UGV 

cannot observe it.  In Ref. [40],  the researcher group at Cincinnati University and 

AMP electric vehicles developed a delivery truck-drone system utilized for delivery 

to rural areas Figure (2.1-a). The drone collaborates with the delivery truck; the 

drone takes off, delivers the package to the customer and returns to land on the top of 

electric trucks to pick up another package, while the driver serves other customers on 

the main route. 
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Figure  2.1  (a) Delivery drone collaborative with AMP electric vehicle Ref. [40]   

 (b) Delivery drone launches from UPS truck Ref. [41] 

 

In Ref. [41],  the UPS and Workhorse groups successfully tested a UAV that releases 

from the top of a delivery truck Figure (2.1-b) and can autonomously serve a 

customer, after which it then returns to the vehicle while the truck driver continues 

serving other customers on the road.  In Ref. [42] and [43],  new mixed integer linear 

programming formulations called “Flying Sidekick Traveling Salesman Problem” 

(FSTSP) and “Traveling Salesman Problem with Drone” (TSP-D) were proposed, 

respectively, where the delivery truck is working collaboratively with the drone. In 

Ref. [42], two issues are studied to minimize the time required to complete all 

deliveries by two vehicles. In the first case, the drone is working in coordination with 

the delivery truck and customers are served by either a truck or a drone. Some 

customers are served by truck due to exceeding the drone’s payload capacity, the fact 

that delivering packages requires signatures, customers’ being out of flight time. In 

the second case, parallel drone scheduling TSP is considered when customers are 

located within a drone’s flight range from the depot. Therefore, the truck serves 

customers along a TSP route while the drone serves other customers directly from 

the depot. The two problems are solved by the Clarke-Wright saving heuristic and 

the nearest neighbor heuristic. The results shows that delivery times, when using the 

cooperative system, are reduced in contrast to using only a delivery truck. Ref.  [43] 

is similar to the FSTSP in collaboration between drone and truck, with the difference 

being a TSP tour constructed first using Kruskal’s minimum spanning tree algorithm 

and second the tour being split into drone tour and truck tour as a sub-tour being 

solved by a fast greedy heuristic and exact partitioning algorithm. Ref. [42] and [43], 

are quite similar to the present study in the collaboration between drone and truck 

while the main difference is the problems in Ref. [42] and [43] considered as a TSP 

by adding a drone to serve customers by both truck and drone. On the other hand, 

this research focuses on the problem of DRP by adding a truck as the sub warehouse. 

In addition, the formulation differs because the problems in Ref. [42, 43]  involve 

missions and routing solutions where delivery is made by both vehicles. Mission 

resolving is required to determine which vehicle, truck or drone, is to serve which 

customers. Apart from this issue, routing resolving is required to distinguish the 
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order of customers each vehicle serves. Hence, our problem is modeled as a routing 

issue. First, customers are divided into groups and then for each group, the drone 

routing problem is studied to serve customers with minimum distance, service time 

and power consumption while a delivery truck plays the role of a sub-depot. In 

addition, the K-means clustering algorithm and the ant colony optimization algorithm 

are used to solve this problem and compared with the nearest neighbor heuristic 

algorithm. 

 

2.6.3 Drone Routing Problem (DRP) 

 

The drone routing problem is a new issue related to utilizing the drone in the logistics 

of distributing goods to customers Ref.  [44], and it is somewhat similar to the 

vehicle routing problem (VRP). The VRP was first applied in the field of logistics 

distribution by Dantzig and Ramser in the early 1960s Ref. [45]. The purpose of the 

VRP is to determine the minimum cost such that the distance travelled or time of 

delivery of the routes for several vehicles which leave from the depot with a certain 

capacity to serve a number of customers and return to the depot. The DRP is 

different from the VRP such that the DRP uses a small autonomous aerial vehicle 

powered by a small battery, which adds some limitations to the problem, such as 

limited flight times and limited carrying capacity, which means that in general it can 

only carry a small number of packages per route. This also adds more constraints 

when we model the problem, such as reuse of the drone, maximum flight time, and 

the number of customers on the route. This allows the drone to perform multi-trips 

with a fixed number of customers, possibly one, two or three customers. 

There are many studies in the literature with respect to traveling salesman problems 

and vehicle routing problems. Nevertheless, all these studies consider the truck as the 

vehicle in the problem except for one study using the drone, which is somewhat 

related to our problem. The VRP and TSP have been important problems in the field 

of logistics and distribution of goods to customers and they are closely related to 

each other. The travelling Salesman Problem (TSP) is the most widely utilized of 

routing problems. The aim of the problem is to minimize the cost (distance travelled) 

when a salesman has to travel to a number of cities and return to the starting 

node Ref. [46]. An expanded version of this problem is the multiple Travelling 

Salesman Problem (mTSP), in which m salesmen have to travel to n cities such that 
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each city is visited by exactly one salesman. All salesmen begin at the same node, 

travel to specific cities and return to the starting point. The aim is to minimize the 

sum of the cost (distances travelled) by every salesman. In fact, the VRP is reduced 

to several TSPs. For a general overview about formulations, types and solution 

procedures of the VRP there are a number of books  [47, 48], and papers [49, 50] 

dealing with this matter. There are numerous researchers who expand the VRP to 

consider minimum fuel consumption Ref. [51,  52] and safe environment impact.  

Ref. [53] and  [54] introduce a problem called the Green Vehicle Routing Problem 

(G-VRP) and the Green Capacitated Vehicle Routing Problem with Fuel 

Consumption Optimization Model, which use a truck powered by greener fuel 

sources, such as electricity, hydrogen or natural gas to reduce pollutants and 

emissions. Another study considers a number of parameters with VRP, such as time 

windows Ref. [55], pick-up and delivery Ref. [56], and truck and trailer routing 

problems Ref.  [57,  58].  However, all of these studies consider the delivery truck as 

the vehicle in the problem and, as mentioned previously, there is a difference 

somewhat between VRP and DRP. 

Another related study named “Vehicle Routing Problems for Drone Delivery”  

concentrated on of drone routing is conducted by Ref. [59]. The main difference 

between two studies is the cost function and solution approach, as Ref. [59] suggests 

a function that minimizes the budget cost by considering the UAV reuse and energy 

consumption and solved by simulated annealing algorithm to find a suboptimal 

solutions. Our study focuses on the minimization of power consumption and delivery 

time by considering payload weight and distance travelled using the nearest neighbor 

and ant colony optimization algorithms, and improving these algorithms by using 

methods with weighting between the shortest distance and highest demand weight of 

the customer to minimize power consumption. 
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CHAPTER 3  
 

MATHEMATICAL  MODEL 

 

 

3.1 INTRODUCTION 

 

In this chapter a mathematical formulation for the collaborative system is derived 

with two parts; the drone power consumption model and integer linear programming 

model. In the first part the theories of rotor aerodynamics of rotor wing helicopter 

[60] is utilized to obtain the model, which will used to calculate the power consumed 

in the second part. For the optimization problem, the integer linear programming is 

used to derive the model with multiple objective functions and numerus of 

constraints.  

   

3.2 Drone Power Consumption Model. 

 

The drone is powered by a lithium-ion polymer (LiPo) small battery which strongly 

limits the class of missions that a drone can successfully carry out. The power 

consumed by the drone is effected by distance traveled, payload carried, environment 

condition and the speed of the drone. The data obtain from the power consumption 

model is used in the optimization part for calculation. Refer to Ref. [60] "the main 

purpose of the rotor in the hover are to provide a vertical lifting force in opposition to 

the weight of the helicopter". This force need a power required induced in the air 

called an ideal power and given by:   

 

𝑃 = 𝑇𝑣ℎ                                                                                             (3.1) 
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Where, 𝑇 is the thrust generated by the rotor to endure the vehicle in hover and it is 

equal the weight of the vehicle, 𝑣ℎ is the induced velocity in the air at hover 

condition, and by using momentum theory Ref. [60] [61] it is given by: 

𝑣ℎ =  √
𝑇

2 𝜌 𝐴𝑝
                                                                                      (3.2) 

By substituting equation (3.2) in (3.1) 

𝑃 = 𝑇√
𝑇

2 𝜌𝐴𝑝
  =   

𝑇3/2

√2 𝜌 𝐴𝑝
                                                                    (3.3) 

Where,  𝑃 is the hover power, 𝑇 is the rotor thrust,  𝜌 is the air density and  𝐴𝑝  is the 

propeller disk area.  The thrust,  𝑇  for a single rotor is equal to the drone weight 

when the drone in hovering phase Ref. [60], that is: 

𝑇 = (𝑚𝐷 +  𝑚𝐿)𝑔                                                                              (3.4) 

Where, 𝑚𝐷 and 𝑚𝐿 are the weight of the drone frame (including battery and 

propeller) and the weight of payload respectively and  𝑔  is the gravity in  
𝑚

𝑠2  

equation becomes: 

𝑃 = (𝑚𝐷 +  𝑚𝐿)3/2 √
𝑔3

2 𝜌 𝐴𝑝
                                                                (3.5) 

Equation (3.5) gives the power consumed by one rotor, on the other hand, the total 

weight of the drone frame and payload is distributed evenly on 𝑛𝑟 rotors, so we can 

calculate the power consumption in hover for  𝑛𝑟  rotors as following: 

𝑃 = 𝑃𝑛 =  (𝑚𝐷 +  𝑚𝐿)3/2 √
𝑔3

2 𝜌 𝐴𝑝 𝑛𝑟
                                                 (3.6) 

 

We considered the DJI Phantom 3 quadrotor Ref.  [62] with specification agree to 

drone that used in delivery system, the physical parameters of DJI Phantom 3  are 

listed in table (3.1) and for missing ones, we reckoned on the values reported in Ref. 

[63], for similar drone. Equation (3.6) can approximate to a linear equation [59] as 

following:  

𝑃(𝑚𝐿) = 𝜇 𝑚𝐿 + 𝛼                                                                            (3.7) 
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where, 𝜇  is the power consumed rate per unit weight for payload, and 𝛼 is the power 

required to keep the body drone in the air. The power required for hovering is 

considered as an upper limited power consumed by the drone Ref. [60]. At the 

forward speed an event called translational lift will occur, when the air passes 

horizontally through the rotor system due to forward speed. This will improves the 

rotor efficiency and the required power at the rotor is considerably lower than in the 

hover case Ref. [60]. 

 

Table  3.1:  The physical parameters values of the drone 

Parameter Description Value Units 

𝒎𝑫 mass 1.3 𝑘𝑔 

𝒗 speed 16 𝑚

𝑠
 

 Max flight time 23 min. 

g Gravity 9.81 𝑚

𝑠2
 

𝝆 Air density 1.225 𝑘𝑔

𝑚3
 

𝑨𝒑 propeller disk area 0.2 𝑚2 

𝒏𝒓 Number of rotor 4  

 

 

3.3 Integer Linear Programming Model. 

   

The main goal of this section is to drive a minimization power consumption model 

for the collaborative system with a drone and a delivery truck. The integer linear 

programming model (ILPM) is needed, where we will first model the system of 

dividing the customers into groups based on distance between customers, number of 

customers and payload of the delivery truck. Next, the drone routing problem (DRP) 

will be modeled with two objective functions. The DRPs are related to vehicle 

routing problems (VRPs) where it is the main problems in logistics, distribution and 

transportation system. The VRP is a combinatorial optimization problem and is 

modeled as an integer linear programming problem aimed to minimize the total cost 

of the logistic system such as, delivery time, distance when the customers are served 
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with the fleet of vehicles to get the optimal routes with minimum index. The 

collaborative delivery problem is considered under the following assumption: 

- The number of groups equal to the number of delivery truck. 

- Each customer assigned to only one delivery truck. 

- The demand is stable and as a result equal for all customers.  

- The total demand in the group does not exceed the capacity of a delivery 

truck. 

- Each customer must be served only once 

To model the problem a complete directed graph is developed G = (V, E): where V  

is a vertex set (nodes), and  E  is the arc set (paths between nodes). There are two 

types of vertexes, 𝑉𝑐 = 1, … , 𝑛  is the customers set, where 𝑛 is the number of 

customers, and 𝑉𝑇 = 1, … , 𝑚 is the candidate location for delivery truck (sub-depot), 

where 𝑚 is the number of the delivery truck. The 𝐷𝑖𝑗 is the distance matrix between 

customers 𝑖 ∈ 𝑉𝑐  and the trucks location  ∈ 𝑉𝑇 . The customers are partitioned into 

sub-sets ⊆ 𝑉𝑐  , each sub set has a center location represent the vertex for the delivery 

truck denotes by 0, and 𝑛1, 𝑛2, … , 𝑛𝑛 representing the number of customers in the set.  

Each location 𝑖 ∈ 𝑁0 , where the set  𝑁0 = 𝑁  \0 , each customer has a demand 𝑑𝑖, 

and each truck has a capacity 𝑄𝑇. There is also another distance matrix 𝑑𝑖𝑗 

representing the nonnegative cost of traveling between vertices in the subset 𝑁0  

which associated with the arc between customers and truck location.  The cost matrix 

is symmetric, that is 𝑑𝑖𝑗 =  𝑑𝑗𝑖 , 𝑓𝑜𝑟 𝑎𝑙𝑙 ∀(𝑖, 𝑗) ∈ 𝑁0.  The following decision 

variable is required to complete the model: 

 

𝑔𝑖𝑗 =  {
1  , 𝑖𝑓 𝑎 𝑐𝑢𝑠𝑡𝑜𝑚𝑒𝑟 𝑖 𝑡ℎ 𝑎𝑙𝑙𝑜𝑐𝑎𝑡𝑒𝑠 𝑡𝑜 𝑡ℎ𝑒 𝑡𝑟𝑢𝑐𝑘 𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛  𝑗 𝑡ℎ

0 , 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 𝑖 ∈ 𝑉𝑐  , 𝑗 ∈ 𝑉𝑇  

 

ℎ𝑗 =  {
1  , 𝑖𝑓 𝑡ℎ𝑒 𝑡𝑟𝑢𝑐𝑘 𝑖𝑠 𝑙𝑜𝑐𝑎𝑡𝑒𝑑 𝑎𝑡 𝑝𝑙𝑎𝑐𝑒 𝑗 ∈  𝑉𝑇

0  , 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

 

𝑥𝑖𝑗 =  {
1  , 𝑖𝑓 𝑡ℎ𝑒 𝑑𝑟𝑜𝑛𝑒 𝑚𝑜𝑣𝑒𝑠 𝑓𝑟𝑜𝑚 𝑐𝑢𝑠𝑡𝑜𝑚𝑒𝑟 𝑖 𝑡𝑜 𝑗

0  , 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
  ∀(𝑖, 𝑗) ∈ 𝑁0 



27 
 

 

First, the model is created to divide the customers into subsets or groups. The 

objective function (3.8) is to minimize the distance between the customers and the 

corresponding truck location: 

min      ∑ ∑ 𝐷𝑖𝑗

𝑚

𝑗∈𝑉𝑇

𝑛

𝑖∈𝑉𝑐  

 𝑔𝑖𝑗                                                                                 (3.8) 

 

Subject to: 

∑ 𝑔𝑖𝑗

𝑚

𝑗=1

= 1        ,      ∀𝑖 = 1, … , 𝑛                                                                 (3.9) 

∑ 𝑑𝑖 𝑔𝑖𝑗  ≤  𝑄𝑇  ℎ𝑗                                                                                          (3.10) 

∑ ℎ𝑗

𝑚

𝑗=1

= 𝑁𝑗      ,        ∀𝑗 ∈ 𝑉𝑇                                                                            (3.11) 

𝑔𝑖𝑗  ∈  {0, 1} ,      ℎ𝑗 ∈  {0,1} ,        ∀𝑖 ∈ 𝑉𝑐  ,    ∀𝑗 ∈ 𝑉𝑇                                (3.12) 

 

Constraint (3.9) insures that each customer is allocated to exactly one truck. 

Constraint (3.10) insures that the total demand assigned to each truck does not 

exceed the capacity of the truck.  Constraint (3.11) insures that only 𝑁𝑗 groups will 

be selected, and the integer condition is provided by constraint (3.12). 

Second, the DRP is modeled to minimize the delivery time and power consumption. 

The first, objective function is to minimize the time spent to travels from a delivery 

truck (sub-depot) serving customers and arrival to delivery truck (base) eq. (3.13). 

The second objective function is to minimize the power consumption (PC) by the 

drone when travels from base to customers or from customer i to customer j 

considering the distance traveled, the payload weight and the speed of the drone 

(3.14).  
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min   ∑ ∑ 𝑡𝑖𝑗

𝑗∈𝑁𝑜𝑖∈𝑁0
𝑖≠𝑗

𝑥𝑖𝑗   =  𝑚𝑖𝑛 ∑ ∑ (
𝑑𝑖𝑗

𝑣
+ 𝜆𝑗)𝑥𝑖𝑗

𝑗∈𝑁𝑜𝑖∈𝑁0
𝑖≠𝑗

                               (3.13) 

Where  𝑡𝑖𝑗   represent the time spent to travel from delivery truck, service customers 

and arrival to delivery truck, 𝑑𝑖𝑗  represents the distance matrix, 𝑣 represents the 

speed of the drone, and 𝜆𝑗 represents the time required for landing, taking off and 

submitting the package for customer 𝑗. 

min   ∑ ∑ 𝑃𝐶𝑖𝑗

𝑗∈𝑁𝑜𝑖∈𝑁0
𝑖≠𝑗

 = min  ∑ ∑ 𝑃𝑚𝑖𝑗
(
𝑑𝑖𝑗

𝑣
𝑗∈𝑁𝑜𝑖∈𝑁0

𝑖≠𝑗

+  𝜆𝑗)𝑥𝑖𝑗                          (3.14) 

 

Where 𝑃𝐶𝑖𝑗 represents the power consumption when traveling between customers or 

between customers and truck, and 𝑃(𝑚𝑖𝑗) represents the power consumption in watts 

as a function of payload so it can be calculated by using equation (3.7) 

Subject to: 

∑ 𝑥𝑖𝑗

𝑛

𝑖=1
𝑖≠𝑗

+  𝑥0𝑗 = 1  ,      ∀𝑗 = 1, … , 𝑛                                                             (3.15) 

∑ 𝑥𝑖𝑗

𝑛

𝑗=1
𝑖≠𝑗

+  𝑥𝑖0 = 1  ,      ∀𝑖 = 1, … , 𝑛                                                             (3.16) 

 

∑ 𝑥0𝑗

𝑛

𝑗=1

= 1                                                                                                         (3.17) 

∑ 𝑥𝑖0

𝑛

𝑖=1

= 1                                                                                                         (3.18) 

𝑢𝑖 −  𝑢𝑗 + (𝑛 + 1)𝑥𝑖𝑗 ≤ 𝑛     , ∀(𝑖, 𝑗) ∈ 𝑁0                                                (3.19) 

 

Constraint (3.15) ensures that each customer is reached either from the delivery truck 

or from another customer.  Constraint (3.16) ensures that from each customer we 
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depart to another customer or to the delivery truck.  Constraints (3.15) and (3.16) 

ensure that the drone visits each customer exactly once.  Constraint (3.17) and (3.18) 

ensures that the drone departed from a delivery truck must return to the delivery 

truck.  Constraint (3.19) implies that the number of customers visited at each route 

never exceeds the customers n allowed in that route.  

The energy constraints are: 

𝑦𝑗  ≤  𝑦𝑖 −  𝑝(𝑚𝑖𝑗) (
𝑑𝑖𝑗

𝑣
+ 𝜆𝑖) +  𝐵(1 − 𝑥𝑖𝑗)       , ∀(𝑖, 𝑗) ∈ 𝑁0             (3.20) 

𝑦𝑖  ≥ min (𝑝(𝑚𝑖𝑗) (
𝑑𝑖𝑗

𝑣
+ 𝜆𝑖) + 𝑝(𝑚𝑗0) (

𝑑𝑗0

𝑣
))       , ∀(𝑖, 𝑗) ∈ 𝑁0     (3.21) 

 

The above constraints track the level of energy, constraint (3.20) forced the current 

energy available  𝑦𝑗 is equal to the total power consumed along the route to reach the 

customer j where B is the maximum battery capacity, while constraint (3.21) ensures 

that there is enough power to return to the sub-depot (delivery truck).  Both 

constraints ensure that at any customer the available power is never negative. 

The carrying capacity constraints are: 

𝑓𝑗  ≤  𝑓𝑖 −  𝑑𝑖𝑥𝑖𝑗 +  𝑄𝐷(1 − 𝑥𝑖𝑗)                , ∀(𝑖, 𝑗) ∈ 𝑁         , 𝑖 ≠ 𝑗         (3.22) 

0 ≤ 𝑓𝑖 ≤  𝑄𝐷       , ∀𝑖 = 𝑁                                                                       (3.23) 

 

The 𝑓𝑗  is a capacity variation illustrating the weighing capacity of the drone when 

traveling along the route up to customer j. Therefore, constraint (3.22) ensures that 

the load of the drone at customer j depends on the previous load at customer i and the 

demand  𝑑𝑖 , while constraint (3.23) restricts the load of the drone at 𝑓𝑖  never to 

exceed the maximum capacity  𝑄𝐷   of the drone as well as ensures a positive value. 

The time constraint is: 
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𝑡𝑗  ≥  𝑡𝑖 +  𝜆𝑖 +
𝑑𝑖𝑗

𝑣
−  𝑇(1 −  𝑥𝑖𝑗)                                                             (3.24) 

∑ (
𝑑𝑖𝑗

𝑣
+  𝜆𝑗)

𝑛

𝑖=0

𝑥𝑖𝑗 +  
𝑑𝑗0

𝑣
 ≤ 𝑇     , ∀𝑗 = 1, … , 𝑛  , 𝑖 ≠ 𝑗                               (3.25)     

 

The  𝑡𝑗  is the time variation illustrating the visited time by the drone when traveling 

along the route up to customer j.  Therefore, the constraint (3.24) ensures that the 

time at customer j depends on the previous time at customer i, plus the time spend to 

move from customer i to j which is expected on the speed of the drone  𝑣 and 

distance between customer i and j  𝑑𝑖 𝑗  and the time 𝜆𝑖 spent at customer i on 

landing, package delivery and taking off. While constraint (3.25) ensures that the 

time spent to reach all customers in the route when the drone departures from the 

sub-depot and return back never to exceed the maximum flight time T. This time 

includes travelling time between customers  
𝑑𝑖𝑗

𝑣
 , the service time  𝜆𝑗 and the 

departure and arrival time to the delivery truck. 

Due to limited carrying capacity the drone should make multi-trip when it do the 

delivery task, therefore, the drone will use more than one after it returns to the sub-

depot to replace the battery and load with new package, so, the reuse constraints are: 

 

∑ 𝑐𝑖𝑗

𝑛

𝑗=1

 ≤  𝑥𝑖0  ,          ∀𝑖 = 1, … , 𝑛                                                                 (3.26) 

  

∑ 𝑐𝑗𝑖

𝑛

𝑗=0

  ≤  𝑥0𝑖   ,          ∀𝑖 = 0, … , 𝑛                                                                (3.27) 

The  𝑐𝑖𝑗 is the reuse decision variable where, 𝑐𝑖𝑗 = 1 if the drone depart from 

customer 𝑖  to the sub-depot, replace the battery and loaded with package, then 

moves to customer  ; and otherwise  𝑐𝑖𝑗 = 0. Constraint (3.26) ensures that if the 

drone returns to the sub-depot from customer  , it is ready for use again to fly to 
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another customer. Constraint (3.27) ensures that if the reuse drone depart from the 

sub-depot to customer, it is previously, arrived from another customer. 

 

3.3.1 Collaboration with two UAVs to Carries Heavy Load 

 

In some applications in logistics the UAV cannot carry some heavy load due to 

overloaded, so it needs to cooperation with another flying vehicle to carry the load. 

We consider the routing problem of  M  drones to carry load from location  i  to 

location  j. Refer to equation (3.14) which represent the cost function for one drone 

to minimize the power consumption when it travels from customer  i  to customer  j . 

This equation becomes as following for M drones: 

min  ∑ ∑(𝑀(𝑃(𝑚𝑖𝑗))) (
𝑑𝑖𝑗

𝑣
+  𝜆𝑗)

𝑛

𝑗=1

𝑛

𝑖=0

 𝑥𝑖𝑗                                                    (3.28) 

 

 As we mentioned previously in section (3.2), the   𝑃(𝑚𝑖𝑗) represent the power 

consumption of UAV when moves from  i  to  j  as a function of carrying load and 

can be calculate by equation (3.7), the second part of the equation  (3.28) represent 

the time as a function of distance traveled and  speed of UAV. This is the time taken 

by the drone to moves from customer i to j . The cost function (3.28) is subjected to 

constraints (3.15), (3.16), (3.17) and (3.18), also there are two additional constraints:  

𝑦𝑗  ≥ min ((𝑀 (𝑃(𝑚𝑗0))) (
𝑑𝑗0

𝑣
))                                                               (3.29) 

∑ ∑ 𝑞𝑖𝑗  ≤  𝑀𝑄𝐷        

𝑛

𝑗=1

𝑛

𝑖=0

                                                                                 (3.30) 

Constraint (3.29) guarantees that there is enough power for the M drones to return 

back to the base after complete the mission, while constraint (3.30) guarantees that 

the load carrying from location  i  to location  j does not exceed the carrying capacity 

for M drones.    
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CHAPTER 4  

 

SOLUTION APPROACHES 

 

 

4.1 INTRODUCTION 

 

The collaborative delivery system is consisting of two vehicles, delivery truck, and 

drone.  The system is solving by use two phases as shown in Figure (4.1): 

1 – Grouping phase:  Which is the process used to partition the customers into groups 

based on similarity in some ways. After the clustering is completed the center of the 

group performed as a sup depot which is the location of the delivery truck.  The 

delivery trucks are loaded with packages, caries the drones, and moves to the center 

of the groups. 

2 – Routing phase: Which is the process used to find the optimal route for the drone 

to serve the customers in each group with minimum time, distance and power 

consumption. The drone is loaded with package on the delivery truck, take off, flying 

on the optimal route and when it complete the task return to landing on the delivery 

truck.     
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Partitioning the 

customers into 

groups

Arranging the 

customers to find the 

optimum route

GROUPING  PHASE

ROUTING PHASE

 

Figure  4.1 The collaborative delivery phases 

 

 

4.2 Partition the Customers into Groups 

 

The customers are divided into groups based on the distance between customers, 

number of customers or payload of the delivery truck. Each group has a middle point 

in a close proximity to all customers in the group. The number of groups is equal to 

the number of the delivery trucks. The delivery truck is loaded with packages in the 

main warehouse, at the same time it carries the drone, and moves to the middle point 

of the group. Once the truck stops, the drone can start the delivery assignment. The K 

means-clustering algorithm used to divide customers into groups Ref. [64] 

 

4.2.1 K-Means Clustering 

 

The K-means clustering is an algorithm applied to arrange the objects into a K 

number of groups based on their similarities Ref.  [65], where K is an integer 

positive number representing the center of a group and is called a "centroid". The 

centroids are positioned far away from each other and contain data set needed for a 

cluster.  Next step is that the objects are assigned to the nearest centroid.  Then the K 

new centroids need to be re-calculated as by center of the clusters resulting from the 
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previous step. After that K new centroids appear to assign a new task has to be done 

between the objects and the nearest new centroid. Following this, a loop is generated. 

As a result of this loop, it can be noticed that the K centroids gradually change their 

location until no more changes are done. The procedure of the algorithm is shown in 

Figure (4.2):  

 

Step (1) calculates the number of groups used
              equation (4.1).     
Step (2) places K points into the space represented
              by the customers that are clustered. These
              points represent the initial group centroid.
Step (3) calculates the distance matrix by using
              Euclidean distance formula equation (4.2).
Step (4) assigns each customer to the group that
              has the closest centroid.
Step (5) recalculates the positions of the K
              centroids using equation (4.3) after all
              customers have been assigned.
Step (6) repeats steps 3, 4, and 5 until the centroids
              no longer move.

 

Figure  4.2 The K-means clustering algorithm. 

 

 

The number of clusters (groups) 𝑃𝑗 is selected based on the customer's demand 

(requirement) and the capacity of delivery truck [66] by using Eq. (4.1) 

𝑃𝑁 =  ∑
𝑑𝑖

𝑄𝑇

𝑛

𝑖=1

                                                                                                  (4.1) 

Where 𝑃𝑁 is the number of groups (clusters), 𝑛  is the number of customers, 𝑑𝑖 is the 

demand of each customer and  𝑄𝑇  is the capacity of the delivery truck. The number 

of groups is generally equal to the number of delivery trucks, which means that 

equation (4.2) optimizes the number of delivery trucks. 
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The distance between the customers and the centroids is calculated by the Euclidean 

distance equation (4.2), and the result is a distance matrix with rows represent the 

customers and columns represent the centroids. 

 

𝐷𝑖𝑗 =  √(𝑥𝑖 − 𝒙𝑗)
2

+  (𝑦𝑖 − 𝒚𝑗)
2
      ∀𝑖 ∈ 𝑉𝑐  ,    ∀𝑗 ∈ 𝑉𝑇                    (4.2) 

 

Where (𝑥𝑖 ,𝑦𝑖) represents the customer’s location and (𝒙𝑗 ,𝒚𝑗) represents the cluster's 

centroid, the  𝐷𝑖𝑗 is calculated for all customers  𝑖 to every cluster  . Therefore, all the 

customers are assigned to the nearest centroid. Then the centroids are positioned by 

an iterative procedure and in each step, the centroid of each cluster is calculated until 

there is no change in the centroid location. The new centroid (𝒙𝑗 ,𝒚𝑗) of each group 

can compute in each iteration based on the individual of the cluster as following: 

 

𝒙𝒋 =  
1

𝑛𝑗
 ∑ 𝑥𝑚

𝑛𝑗

𝑚=1

 ,                   𝒚𝒋 =  
1

𝑛𝑗
 ∑ 𝑦𝑚

𝑛𝑗

𝑚=1

                                        (4.3) 

 

Where  𝑛𝑗 represents the number of the customers in the cluster j, and 𝑥𝑚 ,  𝑦𝑚  

represents the coordinates of the customers in the 𝑗𝑡ℎ  cluster. The K-means clustering 

algorithm aims to minimize the objective function called Mean Squared Error 

(MSE). 

 

𝐽 =  ∑ ∑‖𝑥𝑖
(𝑗)

−  𝐶𝑗‖
2

𝑛

𝑖=1

𝑘

𝑗=1

                                                                            (4.4) 

In the above objective function,   𝑥𝑖
(𝑗)

 shows the location of customer i which is 

allocated by center   𝐶𝑗   to the cluster j . The function is minimize the sum of 

squared distance between each customer and the centroid of cluster that customer 

belong to it. 
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4.3 Routing Problem for the Drone 

 

To find the optimal path with minimum distance, time, and power consumed for the 

drone when it serve the customers in each group we use two algorithms, nearest 

neighbor heuristic and the ant colony optimization to compare the solution between 

them. The first one is a heuristic algorithm while the second is the meta-heuristic 

algorithm.  The concept and procedure are discussed in the following sections: 

  

4.3.1 Nearest Neighbor Heuristic for DRP 

 

The nearest neighbor heuristic, is a simple approach for solving the RP and find the 

optimal tours for the drone. It was one of the first algorithm used to determine a 

solution to the RP. The algorithm  starts at  node 0 which represent the location of 

the delivery truck  and repeatedly visits the nearest customers until all have been 

visited. All the constraints are checked, if it satisfied the drone will return to the node 

0.  It quickly yields a short tours, but usually not an optimal [23]. The input to the 

algorithm is the customer coordinates and the coordinates of the delivery truck. 

Therefore, the distance matrix 𝑑𝑖𝑗 is calculated based on those coordinates by using 

the Euclidean distance formula (4.5). The procedure of the nearest neighbor heuristic 

algorithm with the constraints is shown in Figure (4.3). 
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Step (1) start from the location of delivery truck as a
              starting node.     
Step (2) choose the next unvisited customer which
              nearest to the starting node.
Step (3) check the number of customers can be served
              in each tour, if it satisfied return to the starting
              node (location of delivery truck).
Step (4) check the level of the battery drone, if there is
              enough power to serve next customer and
              return to the home node go there, if not return
              to the starting node.
Step (5) check the carrying capacity of the drone, if it
               satisfied return to the starting node.
Step (6) check if all customers in the group are visited,
              if not return to the starting node.
Step (7) stop.

 

Figure  4.3: Procedure of the nearest neighbor heuristic algorithm 

 

The Euclidean distance formula is: 

 

𝑑𝑖𝑗 =  √(𝑥𝑖 − 𝑥𝑗)2 + (𝑦𝑖 − 𝑦𝑗)2                                                               (4.5) 

 

4.3.2 Ant Colony Optimization Algorithm. 

 

The ant colony optimization algorithm (ACOA) is an artificial intelligence algorithm 

initially offered by Macro Dorigo in his Ph.D. research named “Optimization, 

learning and Natural Algorithms” in 1991 Ref.  [67].  The actual behavior of ants in 

nature was studied while the ants were moving from their nests to search for food. 

The ants can find the shortest paths while moving from a colony to the food sources 

and back by providing indirect communication by the means of pheromone trail. 

While moving the ants lay a constant amount of chemical substances called 

pheromone on the ground so that the other ants can follow this pheromone trail in 

probability to obtain the shortest path. 
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To clarify the real behavior of ants in nature and how they can find the shortest path, 

an example shown in the Figure (4.4) explains how to reconnect a broken line after 

an unexpected obstacle on the initial path Ref.  [68]. 

 

 

Figure  4.4: Actual behavior of ants in nature. 

 

Ants are moving from their nest in a straight line to link the food source Figure (4.4-

a). Suddenly an obstacle occurs and interrupts the previous path, therefore, the ants 

appearing just in front of the obstacle could not persist to follow the pheromone trail 

Figure (4.4-b) and consequently, they modify their direction to choose between 

turning right or left. In this case, half of the ants are expected to choose to turn right 

and the other half to turn left Figure (4.4-c). The ants which randomly select the 

shortest path around the obstacle will faster reconnect the interrupted pheromone trail 

compared to those who choose the longer path. Thus, the shorter path will get more 
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amount of pheromone trail per time unit and a larger number of ants will probably 

prefer the shortest path Figure (4.4-d). The ants are able to find the shortest path from 

the nest to the food source around their nest without using any spatial information, 

but only communicating by using pheromone. The algorithm is described as follows: 

- A few of ants search randomly for food around the nest. 

- One of them finds the food source 

-  The ant laying down pheromone trail when it goes back to the nest after 

discovering the food. 

- When other ants travel randomly and suddenly find a pheromone trail, they 

are probably not to keep moving at random but instead follow the pheromone 

trail. 

- By following the pheromone trail the ants finally find the food and when they 

go back to the nest they will reinforce the trail with more pheromones. 

-  Due to their stochastic behavior, some ants do not follow the pheromone 

trail, and thus, uncover more possible paths. 

- However, at some point, the pheromone trail starts to evaporate which leads 

to its attractive strength to reduce 

-  The shortest path is obtained.  

 

 

4.3.2.1 Ant Colony Optimization  Algorithm for DRP. 

 

The vehicle routing problem includes finding out the shortest planned route which 

has minimum total routing distance or time, or minimum combined total routing time 

and service time. The Ant Colony Optimization (ACO) is a meta-heuristic method 

that models the intelligent behavior of ant colonies. It is applied to solve the hard 

combinatorial optimization problems such as VRP Ref.  [69, 70]. In ACO for DRP,  

there are  k  ants, each ant  k  placed on a starting node (delivery truck). Each ant 

generates one solution, which means that each iteration contains  k  solutions and one 

of them is saved as the best solution, where k is the number of ants. In ACO 

algorithm the drone is simulated by an individual artificial ant and at each iteration, 

each ant k constructs its route by incrementally selecting customers until all 

customers have been visited. The ant k starts and finishes at the same location (sub-
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depot), at each step the ant moves from current customer i to next customer j based 

on the state probabilistic transition rule using one of two methods Ref.  [71] [72]: 

- Exploitation method: It leads the ant k to select the next customer which path 

has highest value of pheromone by using equation (4.6) as following: 

𝑗 = {
arg  max  {(𝜏𝑖𝑗)(𝜂𝑖𝑗)𝛽}    𝑓𝑜𝑟  𝑗 ∉ 𝑀𝑘 ,     𝑖𝑓 𝑞 ≤ 𝑞0

𝑃𝑖𝑗                                                        𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
                  (4.6) 

 

Where  𝜏𝑖𝑗  is the amount of pheromone on the route between the current location i 

and possible location  j, which represent the number of possible unvisited customers.  

𝜂𝑖𝑗   is the inverse distance between customer locations (
1

𝑑𝑖𝑗
), and 𝛽 establishes the 

importance of distance in comparison to the pheromone quantity in the selection 

algorithm (𝛽 > 0). 𝑀𝑘 is the ants working memory keeping track of customers 

already visited.  

 

- Exploration method: It leads the ant k to select the next customer randomly 

according to the probability distribution formula given by equation (4.7), 

which support the selection based on short paths and high value of 

pheromone: 

  

𝑃𝑖𝑗
𝑘 =  {

[𝜏𝑖𝑗]
𝜀

 [𝜂𝑖𝑗]
𝛽

∑ [𝜏𝑖𝑗]
𝜀

[𝜂𝑖𝑗]
𝛽

𝑗∉𝑀𝑘

              𝑖𝑓 𝑗 ∉ 𝑀𝑘

0                                   𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

                                           (4.7) 

  

Where  𝑃𝑖𝑗
𝑘   is the probability that ant k moves from customer i to customer j, and  𝜀 

is a parameter controlling the influence of  𝜏𝑖𝑗 . 

To weighting between exploitation and exploration a parameter  𝑞0 is used in 

equation (4.6). This parameter is a predetermined to find the relative importance of 

the exploitation versus exploration and it values between 0 and 1. The exploitation is 

selected when  𝑞 <  𝑞0  which governs to use equation (4.6), otherwise the 
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exploration is selected which governs to use equation (4.7). The q value is a random 

uniform variable distributed in [0,1]. 

If the number of customers, energy consumption, vehicle capacity and flight time 

constraints are satisfying, the ant k will return to the starting location (sub-depot) 

before moving to j customer. This selection process continues until an ant visits all 

customers.  

To improve the solution the pheromone trail must be updated to track the colony’s 

movements. This update is done  locally after individual solutions have been 

constructed and globally for the best solution found after a predefined number of 

solutions m has been constructed. The local update is made by reducing the amount 

of pheromone deposited on each edge (i,j) visited by an ant when moving from 

customer i to customer j. Therefore, last ants will select the arc in a current cycle 

which simulates the natural evaporation of pheromone. It is given by the following 

local trail updating formula: 

 

𝜏𝑖𝑗 =  (1 −  𝛾)𝜏𝑖𝑗 +  𝛾 𝜏0                                                                   (4.8) 

 

where (0 ≤  𝛾 ≤ 1)  is the rate of evaporation of the pheromone trail and   𝜏0  is the 

initial pheromone value for all edges. The global update is done by increasing the 

amount of pheromone deposited on all edges of complete routes obtained as the best 

solutions after all ants have completed a route. This update is given by the following 

global formula: 

 

𝜏𝑖𝑗 =  (1 −  𝛾)𝜏𝑖𝑗 +  𝛾𝐿−1                                                                  (4.9) 

 

where 𝐿  is the value of the best solution. This update guides the other ants to follow 

this best route with more probability in the sequent iteration to find the optimal 

solution with the repetition process continuing until a terminating condition is met. 

The procedure of the algorithm is show in Figure (4.5). 
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Step (1) start the ACO.     
Step (2) Input the DRP instance to be solved.
Step (3) Initialize all parameters.

Step (4) check the maximum  iteration, if it exceed go to

              step (18).

Step (5) Move ants to the start point.

Step (6) Start construct the routs from sub-depot.

Step (7) Compute ant's  probability of going to unvisited

              nodes using equation (4.6) or equation (4.7).

Step (8) Select a node according to the probability.

Step (9) Check the constrains condition, if they satisfied

              go to step (5).

Step (10) Go to the selected node.

Step (11) Have all customers been visited?   If not, go to

                step (7).

Step (12) Save the best solution.

Step (13) Have all ants constructed their routs?  If not,

                go to step (6).

Step (14) Update the pheromones trails by using

                equation (4.9).

Step (15) Evaporate the pheromone trails by using

                equation (4.8).

Step (16) Store the best cost.

Step (17) Go to step (4)

Step (18) Stop.

 

Figure  4.5: Procedure of ACOA for DRP. 
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CHAPTER 5  

 

EXPERIMENT AND RESULTS  

 

 

5.1 Introduction  

 

In this chapter the collaborative delivery system model is simulated in MATLAB by 

implement the optimization algorithms. First, the drone power consumption model is 

simulated by implement the equation (3.6) in MATLAB/SIMULINK to obtain the 

relation between the payload weight and the power consumed, also the power 

required to keep the drone frame in the air    and the power consumed rate per Kg are 

obtained from the relation. Next,   the customers are patriating into groups and the 

location of the delivery truck is selected by implement the K-means clustering 

algorithm. Then, for each group the ACOA and NNA are implemented to solve the 

drone routing problem. To tests the algorithms we generated randomly Euclidean 

instances with different size and distance square area. This random generation 

methods are commonly used in Ref. [59,  73]. Firstly, two scenarios are studying in 

detail, one with 10 customers, and the other with 32 customers. Then, different size 

instances with different square area are generated to compere between algorithms in 

the solution and run time.   

 

5.2 Power Consumption and Payload Weight Relationship. 

 

To find the relation between payload weight and power consumed by the drone the 

equation (3.6) is implement in SIMULINK which represent the model of power 

consumption of the drone as shown in figure (5.1). The data in table (3.1) is used in 

the SIMULINK model, and the payload weight is variant from 0 to 4 Kg. The result 

obtain from this model is used to drive the relation between the payload weight and 

the power consumption and shown in figures (5.2) and (5.3).  
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Figure  5.1: The power consumption model in SIMULINK. 

 

 

The result is shown in figures (5.2), (5.3), and (5.4) for three types of UAVs, 

quadrotor with 4 rotors,  hexacopter with 6 rotors and UAV with 8 rotors. The 

figures present that the linear approximate model dashed thin lines equation (3.7) is 

closely fitted to the exactly model continuous thick line equation (3.6). For drone 

with 4 rotor (quadrotor), the error percentage is variation from 0% to 4.57%  as the 

payload variant from 0.5 kg to 4 kg with difference variant in power from 0 to 11.6 

watts. The result in figure (5.2) show that the power required to keep the drone frame 
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in the air  𝛼 = 21.44 𝑤𝑎𝑡𝑡 , which obtain when the payload equal to zero, and the 

power consumed rate per kg is, 𝜇 = 69.4 𝑤𝑎𝑡𝑡/𝑘𝑔 .      

   

 

Figure  5.2: The relation between payload and power consumption for 4 rotors, obtain 

from Eq. (3.6) and Eq. (3.7). The continuous thick line represents Eq. (3.6) and 

dashed thin line represents the approximate. 
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Figure  5.3: The relation between payload and power consumption for 6 rotors, 

obtained  from Eq. (3.6) and Eq. (3.7). The continuous thick line represents Eq. (3.6) 

and dashed thin line represents the approximate. 

 

 

Figure  5.4  The relation between payload and power consumption for 8 rotors, 

obtained from Eq. (3.6) and Eq. (3.7). The continuous thick line represents Eq. (3.6) 

and dashed thin line represents the approximate. 
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5.3 Assumptions 

 

The collaborative delivery system is considered under the following conditions: 

- All the customers will service by drones exactly once, and the delivery truck works 

as a base for the drone (sub-depot). 

- The drone flies from customers i to j at constant speed without any obstacles. 

- The drone could service two customers with the same demand and the combined 

demand of two customers must be less than the drone's carrying capacity. 

For the first scenario 10 customers are considered as one group, and serve with one 

drone the location coordinates for the customers are lasted in Table (5.1). 

 

 

Table  5.1: Location coordinates for n=10 

Customers No. 1 2 3 4 5 6 7 8 9 10 

x-coordinate /km 15 5 12 14 7 13 16 8 3 3 

y-coordinate /km 10 2 3 5 5 7 9 8 9 12 

 

Next we run the K-means clustering algorithm to find the center of the group which, 

represent the coordinate location of delivery truck at (9.6,7) the result is show in 

Figure (5.5). 
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Figure  5.5: The location of delivery truck at coordinate x=9.6km and y=7km. 

 

After introduce the location of the delivery truck (the center of the group) which is 

taken as the start location to serve all customers,  the problem is solved by the drone 

to minimize the time of delivery and the power consumed, the drone will serve two 

customers at each tour, the speed is assumed constant when travel from customer i to 

j refer to Table (3.1), the speed 𝑣 = 16 
𝑚

𝑠𝑒𝑐
= 0.016 

𝐾𝑚

𝑠𝑒𝑐
=  0.960 

𝐾𝑚

𝑚𝑖𝑛
 . We assume 

the time at each customer govern the landing, deliver packages and take off is 

𝜆 = 1𝑚𝑖𝑛,  and the recovery service time for the drone to be ready for the next 

mission when it is at base (sub-depot) is 𝑡𝑟 = 2𝑚𝑖𝑛. Therefore the NNA and ACOA 

are run to find the delivery time and the optimal path with minimum power and the 

result is shown in Figures (5.6) and (5.7) and Tables (5.2), (5.3). The result obtain for 

the drone will compare with a regular delivery truck, the speed of truck is assume 

and equal   40 
𝐾𝑚

ℎ
 , the tours and the delivery time is shown in Figures (5.8)  and 

(5.9) and Table (5.4). 
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Table  5.2: The tours, distance traveled, delivery time for each customer using a 

nearest neighbor algorithm. 

Tour 

No 

Customers Distance    

(Km) 

Delivery time by drone for 

each tour   (min.) 
Delivery time   (min.) 

1 0→8→5→0 8.3293 2.9654→7.2595→10.6764 2.9654→7.2595→10.67

64 

2 0→6→4→0 10.4693 4.5417→ 7.8709→12.9055 17.2180→20.5473→25.

5819 

3 0→3→2→0 18.5300 5.8591→14.2248→21.3020 33.4410→41.8067→48.
8839 

4 0→1→7→0 14.2968 7.4348→9.9079→16.8925 58.3187→60.7918→67.

7764 

5 0→9→10→0 18.1765 8.1837→12.3087→20.9338 77.9601→82.0851→90.

7102 

Average Delivery time 8.0557 40.2394 

 

 

 

 

 
Figure  5.6: The tours obtains by NNA for the drone with 10 customers, location 0 

represent the delivery truck. 
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Figure  5.7: The tours obtains by ACOA for the drone with 10 customers, location 0 

represent the delivery truck. 

 

 

Table  5.3: The tours, distance traveled, delivery time for each customer using ant 

colony optimization algorithm by using one drone and a drone for each tour. 

Tour 

No 

Customers Distance    

(Km) 

Delivery time by drone 

for each tour   (min.) 

Delivery time by one drone  

(min.) 

1 0→8→6→0 10.3858 2.9654→9.2768→12.8184 2.9654→9.2768→12.8184 

2 0→1→7→0 14.2968 7.4347→9.9078→16.8923 22.2531→24.7262→31.7107 

3 0→10→9→

0 

18.1765 9.6251→13.7501→20.933

8 

43.3335→47.4585→54.6422 

4 0→5→2→0 13.6799 4.4168→9.1726→16.2497 61.0590→65.8148→72.8919 

5 0→4→3→0 12.3264 6.0344→9.9806→14.8397 80.9264→84.8726→89.7317 

Average Delivery time 8.2564 44.2686 
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Figure  5.8: Tours and distance traveled by the truck for n=10 obtained by (a) NNA 

 

 

 

 

Figure  5.9:  Tours and distance traveled by the truck for n=10 obtained by ACOA. 
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Table  5.4: Tours, distance traveled and delivery time using a truck only for n=10 

obtain by ACOA and NNA. 

Algorithm ACOA NNA 

Tours 10→9→2→5→3→4→6→7→1→8→10 10→9→8→5→2→3→4→6→1→7→10 

Distance 

traveled for 

each 

customer 

(Km) 

3→ 10.2801→ 13.8857→ 19.2708→  

22.0993→ 24.3353→ 27.9409→ 

29.3551→ 36.6352→ 43.0383 

 

3→ 8.0990→ 11.2613→ 14.8668→ 

21.9379→ 24.7663→ 27.0024→ 

30.6080→ 32.0222→ 45.3638 

Delivery 

time for 

each 

customer 

(min) 

6.4978→ 19.4125→ 26.8181→ 
36.8918→ 43.1323→ 48.4847→ 

55.8904→ 60.0106→ 72.9253→ 84.5252 

 

6.4978→ 16.1425→ 22.8835→ 
30.2891→ 42.8904→ 49.1309→ 

54.4834→ 61.8890→ 66.0093→ 

86.0118 

Average 

Delivery 

time 

45.4589 43.6228 

 

 

We consider the energy consumption at each customer by using a equation (3.7) to 

calculate the power consumed by the drone when travel between customers and 

delivery truck.    

  𝑃(𝑚𝐿) = 𝜇 𝑚𝐿 + 𝛼     

We assume that the maximum payload is 𝑚𝐿 = 1.5𝑘𝑔, and from figure (5.2) the 

power consumed per kilogram  𝜇 = 69.4 𝑊/𝑘𝑔 , and the power required to keep the 

drone frame in the air  𝛼 = 21.44 𝑊. As we mention previously the drone serves 

two customers with the same demands at each tour, therefore, the drone moves from 

base 0 to customer j  with maximum payload which will make the power 

consumption to the maximum level. In the same way, when the drone moves to the 

second customer after visited the first customer the payload reduced to 50 % from 

the maximum which will reduce the power also. Finally, when the drone return to the 

base (delivery truck) the payload is zero, wherefore, from equation (3.7) the power 

equal to the required power to keep the drone in the air 𝛼 .  

The energy consumed by the drone is changed depending on the payload and the 

flight time  and can calculated by: 

𝐸 = 𝑃 𝑡𝑓                                                                                                  (5.1) 
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Where, 𝐸 is the energy consumed in joules (J), 𝑃 is the power in watts [W] which 

calculated by equation (3.7), 𝑡𝑓 is the flight time in seconds [sec], the result for ten 

customers is shown in table (5.5). 

Table  5.5: The tours, distance traveled, and power consumption in each customer 

location for n=10, served by drone using a nearest neighbor algorithm. 

Tour 

No 

Customers Distance    

[km] 

Power consumption  

[W.sec] 

1 0→8→5→0 8.3293 372.2779→687.8469 →779.9111  

2 0→6→4→0 10.4693 570.1608→ 814.8265→ 886.2053 

3 0→3→2→0 18.5300 735.5548→ 1350.3→ 1529.7 

4 0→1→7→0 14.2968 933.3609→ 1115.1→ 1168.1 

5 0→9→10→0 18.1765 1027.4→1330.5→ 1419 

 

For the second scenario 32 customers  are consider with coordinate  locations show 

in Table (5.6) to find the tours, delivery time and power consumption . First, the 

problem is solved by K-means cluster algorithm to patriating the customers in to 

groups based on equation (4.1) and find the location of delivery truck. The problem 

is solve two times, first, the customers are consider as one group and in the second 

time they consider as two groups, the result  is show in Figures (5.10) and (5.11).  

   

Table  5.6:  The coordinate locations for 32 customers. 

Customers No. x-coordinate /km y-coordinate /km 

1 10 16 

2 7 18 

3 12 7 

4 18 3 

5 0 10 

6 18 4 

7 6 16 

8 5 10 

9 15 19 

10 4 2 

11 10 3 

12 10 5 

13 17 5 

14 10 7 
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15 10 9 

16 8 7 

17 13 8 

18 9 12 

19 12 15 

20 1 12 

21 9 13 

22 10 12 

23 4 6 

24 10 18 

25 5 16 

26 17 18 

27 7 16 

28 2 18 

29 13 10 

30 15 2 

31 12 2 

32 16 9 
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Figure  5.10: The location of delivery truck at coordinate x=9.844km and y=10.25km.  

 

 

Figure  5.11: The location of 32 customers and two delivery truck, one at coordinate 

x=11.88km and y=5.563km, and the other at coordinate x=7.813km and y=14.94km. 
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The solution of 32 customers and two delivery trucks are represent in Table (5.7), 

where there are two delivery trucks and 32 customers, each customer allocated to one 

delivery truck. 

  

Table  5.7:  Solution for 32 customers and two delivery truck. 

Customers No. Delivery Truck 

1 2 

2 2 

3 1 

4 1 

5 2 

6 1 

7 2 

8 2 

9 2 

10 1 

11 1 

12 1 

13 1 

14 1 

15 1 

16 1 

17 1 

18 2 

19 2 

20 2 

21 2 

22 2 

23 1 

24 2 

25 2 

26 2 

27 2 
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28 2 

29 1 

30 1 

31 1 

32 1 

 

 

 

We take the location of the delivery truck as a start node for each group and run the 

algorithms to obtain the tours and average delivery time to serve the customers by 

one drone for each group or use more than one drone for each group, the results are 

shown in Figures (5.12) and  (5.13). 

 

 

 

Figure  5.12:  The tours and total distances for two groups served by drone NNA. 
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Figure  5.13: Tours and total distances traveled for two groups served by drone 

obtained by ACOA. 

Tables (5.8) - (5.12)  show the average delivery time for two groups serve by one 

drone for each tour, one drone for two tours, one drone for 4 tours and all tours in the 

group serve by one drone. 

Table  5.8: The tours, distance traveled, and delivery time in each customer location 

for n=32, served by drone using a nearest neighbor algorithm. 

Tour 

No 

Customers Distance    

[km] 

Delivery time 

[min] 

Average Delivery time 

[min] 

Group one 

1 0→3→17→0 5.5383 2.5021→4.9752→7.7690  7.4128 

2 0→12→11→0 7.1411 3.0443→6.1276→9.4386 

3 0→14→15→0 8.2839 3.4649→6.5482→10.6290 

4 0→31→30→0 11.3010 4.7136→8.8386→13.7719 

5 0→16→23→0 16.1528 5.3100→10.6049→18.8258 

6 0→29→32→0 13.1038 5.7668→10.0609→15.6498 

7 0→13→6→0 12.8815 6.3655→8.8386→15.4182 

8 0→4→10→0 29.3188 7.9115→23.5320→32.5404 

Group two 

1 0→27→7→0 4.4360 2.3915→4.4332→6.6208 7.4783 

2 0→21→18→0 6.4449 3.3691→5.4108→8.7134 

3 0→1→24→0 8.1915 3.5316→6.6149→10.5328 

4 0→25→2→0 9.0007 4.1313→8.0776→11.3757 

5 0→22→19→0 11.4572 4.8169→9.5727→13.9346 

6 0→8→20→0 17.5772 6.9216→12.5801→20.3096 

7 0→28→5→0 24.0592 7.8429→17.4327→27.0616 

8 0→9→26→0 20.1738 9.5984→12.9277→23.0143 
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Table  5.9: The tours, distance traveled, and delivery time in each customer location 

for n=32, served by 8 drones using a ACOA. 

Tour 

No 

Customers Distance    

[km] 

Delivery time 

[min] 

Average Delivery time 

[min] 

Group one 

1 0→11→31→0 8.9797 4.3110→ 7.6403→ 11.3538 6.9908 

2 0→12→16→0 8.9285 3.0443→ 6.9905→ 11.3005 

3 0→14→15→0 8.2839 3.4649→ 6.5482→ 10.6290 

4 0→30→4→0 14.5333 5.9333→ 10.2273→ 17.1388 

5 0→3→17→0 5.5383 2.5021→ 4.9752→ 7.7690 

6 0→29→32→0 13.1038 5.7668→10.0609→15.6498 

7 0→13→6→0 12.8815 6.3655→8.8386→15.4182 

8 0→10→23→0 20.5402 10.0084→15.1751→23.3960 

Group two 

1 0→27→7→0 4.4360 2.3915→4.4332→6.6208 6.8591 

2 0→21→22→0 7.3528 3.3691→5.8422→9.6591 

3 0→25→28→0 13.1809 4.1313→ 8.8871→15.7301 

4 0→2→24→0 9.9274 4.2981→8.4231→12.3410 

5 0→1→19→0 8.8538 3.5316→6.8608→11.2228 

6 0→18→8→0 13.3275 4.3027→9.9612→15.8828 

7 0→9→26→0 20.1738 9.5984→12.9277→23.0143 

8 0→20→5→0 18.9001 8.7295→12.0587→21.6876 

 

 

Table  5.10:  The tours, distance traveled, and delivery time in each customer location 

for n=32, served by 4 drones using a ACOA. 

Tour 

No 

Customers Distance    

[km] 

Delivery time 

[min] 

Average Delivery 

time  [min] 

Group one 

1 0→11→31→0 8.9797 4.3110→ 7.6403→ 11.3538 13.6148 

2 0→12→16→0 8.9285 16.3981→ 20.3444→ 23.6543 

3 0→14→15→0 8.2839 3.4649→ 6.5482→ 10.6290 

4 0→30→4→0 14.5333 18.5623→ 20.8564→ 28.7678 

5 0→3→17→0 5.5383 2.5021→ 4.9752→ 7.7690 

6 0→29→32→0 13.1038 16.3580→20.6520→24.4189 

7 0→13→6→0 12.8815 6.3655→8.8386→15.4182 

8 0→10→23→0 20.5402 27.4267→32.5933→39.8143 

Group two 

1 0→27→7→0 4.4360 2.3915→4.4332→6.6208 14.9326 

2 0→21→22→0 7.3528 11.9899→14.4631→18.2800 

3 0→25→28→0 13.1809 4.1313→ 8.8871→15.7301 

4 0→2→24→0 9.9274 22.0281→26.1531→30.0710 

5 0→1→19→0 8.8538 3.5316→6.8608→11.2228 

6 0→18→8→0 13.3275 17.5254→23.1839→29.1055 

7 0→9→26→0 20.1738 9.5984→12.9277→23.0143 

8 0→20→5→0 18.9001 33.7438→37.0730→46.7019 
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Table  5.11:  The tours, distance traveled, and delivery time in each customer location 

for n=32, served by two drones using a ACOA. 

Tour 

No 

Customers Distance    

[km] 

Delivery time 

[min] 

Average Delivery 

time  [min] 

Group one 

1 0→11→31→0 8.9797 4.3110→ 7.6403→ 11.3538 27.1553 

2 0→12→16→0 8.9285 16.3981→ 20.3444→ 24.6543 

3 0→14→15→0 8.2839 30.1192→ 33.2025→ 35.2833 

4 0→30→4→0 14.5333 45.2166→ 49.5107→ 53.4222 

5 0→3→17→0 5.5383 2.5021→ 4.9752→ 7.7690 

6 0→29→32→0 13.1038 15.5359→19.8299→25.4189 

7 0→13→6→0 12.8815 33.7843→36.2575→42.8371 

8 0→10→23→0 20.5402 54.8455→60.0122→64.2331 

Group two 

1 0→27→7→0 4.4360 2.3915→4.4332→6.6208 27.7790 

2 0→21→22→0 7.3528 11.9899→14.4631→18.2800 

3 0→25→28→0 13.1809 24.4113 → 29.1671 → 36.0100 

4 0→2→24→0 9.9274 42.3081 → 46.4331 → 50.3510 

5 0→1→19→0 8.8538 3.5316→6.8608→11.2228 

6 0→18→8→0 13.3275 17.5254→23.1839→29.1055 

7 0→9→26→0 20.1738 40.7040 → 44.0332 → 54.1199 

8 0→20→5→0 18.9001 64.8493 → 68.1786 → 74.8075 

 

 

 

Table  5.12:  The tours, distance traveled, and delivery time in each customer location 

for n=32, served by one drone using a ACOA. 

Tour 

No 

Customers Distance    

[km] 

Delivery time 

[min] 

Average Delivery 

time  [min] 

Group one 

1 0→11→31→0 8.9797 4.3110→ 7.6403→ 11.3538 56.3664 

2 0→12→16→0 8.9285 16.3981→ 20.3444→ 24.6543 

3 0→14→15→0 8.2839 30.1192→ 33.2025→ 37.2833 

4 0→30→4→0 14.5333 45.2166→ 49.5107→ 56.4222 

5 0→3→17→0 5.5383 60.9242→ 63.3974→ 66.1912 

6 0→29→32→0 13.1038 73.9580→78.2521→83.8410 

7 0→13→6→0 12.8815 92.2065→ 94.6796→ 101.2592 

8 0→10→23→0 20.5402 113.2677→ 118.4343→ 126.6553 

Group two 

1 0→27→7→0 4.4360 2.3915→4.4332→6.6208 53.9545 

2 0→21→22→0 7.3528 11.9899→14.4631→18.2800 

3 0→25→28→0 13.1809 24.4113 → 29.1671 → 36.0100 

4 0→2→24→0 9.9274 42.3081→ 46.4331→ 50.3510 

5 0→1→19→0 8.8538 55.8826→59.2119→63.5738 

6 0→18→8→0 13.3275 69.8765→75.5349→81.4566 

7 0→9→26→0 20.1738 93.0550→ 96.3842→ 106.4709 

8 0→20→5→0 18.9001 117.2004→ 120.5296→ 130.1585 
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The power consumption for each tour in groups is show in Tables (5.13) and (5.14) 

Table  5.13: The tours, distance traveled, and power consumption in each customer 

location for n=32, served by drone using a nearest neighbor algorithm. 

Tour 

No 

Customers Distance    

[km] 

 Power consumption for 

each tour   [kJ] 

Total Power consumption  

[kJ] 

 Group one 

1 0→3→17→0 5.5383 18.847→10.905→3.594 33.3460 

2 0→12→11→0 7.1411 22.931→13.596→4.259 40.7860 

3 0→14→15→0 8.2839 26.099→13.596→5.250 44.9450 

4 0→31→30→0 11.3010 35.504→18.189→6.346 60.0390 

5 0→16→23→0 16.1528 39.997→23.347→10.575 73.9190 

6 0→29→32→0 13.1038 43.438→18.934→7.190 69.5620 

7 0→13→6→0 12.8815 47.947→10.905→8.464 67.3160 

8 0→4→10→0 29.3188 59.592→68.877→1.159 129.6280 

 Group two                     

1 0→27→7→0 4.4360 18.014→ 9.003→2.814 29.8310 

2 0→21→18→0 6.4449 25.377→9.003→4.249 38.6290 

3 0→1→24→0 8.1915 26.601→13.596→5.040 45.2370 

4 0→25→2→0 9.0007 31.119→17.401→4.243 52.7630 

5 0→22→19→0 11.4572 36.283→20.970→5.611 62.8640 

6 0→8→20→0 17.5772 52.136→24.950→9.943 87.0290 

7 0→28→5→0 24.0592 59.076→42.285→12.387 113.7480 

8 0→9→26→0 20.1738 72.299→14.680→12.976 99.9550 

 

Table  5.14:  The tours, distance traveled, and power consumption in each customer 

location for n=32, served by drone using a ACOA. 

Tour 

No 

Customers Distance    

[km] 

Power consumption for 

each tour  [kJ] 

Total Power consumption  

[kW.sec] 

 Group one 

1 0→11→31→0 8.9797 32.472→14.680→4.777 51.9290 

2 0→12→16→0 8.9285 22.931→17.401→5.544 45.8760 

3 0→14→15→0 8.2839 26.099→13.596→5.250 44.9450 

4 0→30→4→0 14.5333 44.692→18.934→8.891 72.5170 

5 0→3→17→0 5.5383 18.847→10.905→3.594 33.3460 

6 0→29→32→0 13.1038 43.438→18.934→7.170 69.5420 

7 0→13→6→0 12.8815 47.947→10.905→8.464 67.3160 

8 0→10→23→0 20.5402 75.387→22.782→10.575 108.7440 

 Group two   494.2150 

1 0→27→7→0 4.4360 18.014→9.003→2.814 29.8310 

2 0→21→22→0 7.3528 25.377→10.905→4.910 41.1920 

3 0→25→28→0 13.1809 31.119→20.970→8.803 60.8920 

4 0→2→24→0 9.9274 32.375→18.189→5.040 55.6040 

5 0→1→19→0 8.8538 26.601→14.680→5.611 46.8920 

6 0→18→8→0 13.3275 32.410→24.950→7.617 64.9770 

7 0→9→26→0 20.1738 72.299→14.680→12.976 99.9550 

8 0→20→5→0 18.9001 65.754→14.680→12.386 92.8200 
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For the truck we solve the problem with 32 customers by NNA and ACOA to 

compare it with the delivery system, the tours are show in Figures (5.14) and (5.15) 

and the distance traveled, average time are show in Table (5.15). 

 

 

Figure  5.14: The tour and the distance traveled by truck Nearest Neighbors 

algorithm.  

 

 



63 
 

 

Figure  5.15: The tour and the distance traveled by truck ACOA. 

 

Table  5.15: Tours, distance traveled and delivery time using a truck only for n=32 

obtained by ACOA and NNA. 

Algorithm ACOA NNA 

Tours 16→14→12→11→31→30→4→6→13

→32→29→17→3→15→22→18→21→

1→19→26→9→24→2→27→7→25→2

8→20→5→8→23→10→16 

22→18→21→1→24→2→27→7→25→28→2

0→5→8→23→10→11→12→14→3→17→29

→15→16→31→30→4→6→13→32→19→9

→26→22 

Distance 

traveled 

for each 

customer 

[km] 

2→  4→ 6→ 8.2361→  11.2361→ 
14.3983→ 15.3983→ 16.8126→ 

20.9357→24.0979→26.0979→27.5122

→30.3406→33.3406→34.3406→35.340

6→38.5029→40.7389→46.5699→48.80

59→53.9050→56.9050→58.9050→59.9

050→60.9050→64.5105→70.5933→72.

8293→77.8293→81.9525→85.9525→9

2.3556 

 

1→ 2→5.1623 →7.1623→10.1623 →12.1623 
→13.1623 →14.1623 →17.7678 

→23.8506→26.0867→31.0867→35.2098→39

.2098→45.2925→47.2925→49.2925→51.292

5→52.7067→54.7067→57.8690→60.6974→6

7.1006→70.1006→73.2628→74.2628→75.67

71→79.8002→87.0113→92.0113→94.2473→

103.4669 

Delivery 

time for 

each 

customer 

[min] 

4.9985→ 9.9970→ 14.9955→20.3479→ 

26.8457→ 33.5867→ 37.0860→ 
41.2062→49.3878→56.1288→61.1274

→65.2476→71.4881→77.9859→81.485

1→84.9844→91.7254→97.0779→107.8

199→113.1723→122.8170→129.3148

→134.3133→137.8125→141.3118→14

8.7174→159.8370→165.1894→174.685

7→182.8672→190.8643→202.4641 

3.4993→ 6.9985→13.7395 

→18.7380→25.2358→30.2343→33.7335 
→37.2328→44.6384→55.7580→61.1104→70

.6067→78.7883→86.7853→97.9048→102.90

33→107.9018→112.9003→117.0206→122.01

91→128.7601→135.0007→146.6006→153.09

83→159.8394→163.3386→167.4589→175.64

04→188.4517→197.9479→203.3004→217.12

28 

Average 

Delivery 

time 

[min] 

94.9028 102.0096 



64 
 

In the case of carrying a heavy payload with two drones, we consider  M= 2 ,to carry 

load with 5 kg from location  i to location  j , the speed of two drones is constant and 

equal to 𝑣 = 16 
𝑚

𝑠𝑒𝑐
  , we use two drone with 4 rotors (quadrotor) the power 

consumed per rate weight for each drone is  𝜇 = 69.4 𝑊/𝑘𝑔 , and the power 

required to keep the drone frame in the air  𝛼 = 21.44 𝑊. The power consumption 

is calculated for variant distances traveled as shown in Table (5.16). 

Table  5.16  Distance traveled and power consumption for two drones (Quadrotor) 

Distance [km] 2.5 5 10 20 

Power consumption [kJ] 115.140 230.275 460.550 921.100 

 

On the other hand, refer to Figure (5.4) which represent Equation (3.6) and Equation 

(3.7) with 8 rotors.  From the relation we can find that  the power required to keep 

the drone frame in the air 𝛼 = 14.91 𝑊,   and the power consumed rate per 

kilogram 𝜇 = 49.56 𝑊/𝑘𝑔.  The speed of the drone with 8 rotors is considered as 

the two drones with = 16 
𝑚

𝑠𝑒𝑐
 .  The power consumption versus the distances traveled 

is shown in table (5.17) 

Table  5.17  Distance traveled and power consumption for one drone with 8 rotors. 

Distance [km] 2.5 5 10 20 

Power consumption [kJ] 41.048 82.097 164.19 328.39 

 

 

5.4 Improving Power Consumption for the Drone 

 

In the previous case, we consider the demand to be the same for all customers; this is 

known as regular delivery or daily delivery. In this section, power consumption is 

considered when demand is different for the customer; therefore, the nearest 

neighbor algorithm and the ACOA are improved to decrease power consumption. 

For instance, if the  drone is at the base and there are two customers that need to be 

served with the same distance, it makes no difference to go to either of them if the 

demand is identical. Nevertheless, if the demand differs, there is less power 

consumption when the drone first serves the customer with greater demand. This idea 
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comes from the fact that the drone should disburden itself of the heavier payload as 

soon as possible to carry fewer payloads throughout the tour. Equations (3.7) and 

(3.14) show that power consumption is affected by the payload and the distance 

traveled; therefore, a method should be followed to determine the minimum power 

consumption when the drone selects the next customer by comparing between two 

criteria. These two criteria are the heaviest demand and the nearest distance, and we 

can call this is the priority to select the next customer. 

To illustrate this problem with an example, we assume the drone is at the base and 

there are three customers with variant demands requiring service. The demand for 

each customer and the distances between them and the base are shown in Table 5.16. 

If the drone selects the customer based on the smallest distance, Customer 3 will be 

selected. Similarly, if the drone selects the customer based on the heaviest demand, 

Customer 1 will be selected. 

 

Table  5.18:  Demand and distances between customers and base (sub-depot) 

Customers 1 2 3 

Distance 8 16 4 

Demand 6 1 2 

 

Now we will put Customers 1 and 3 in the same decision by dividing every 

customer’s distance by the minimum distance (Customer 3), and by dividing the 

heaviest demand (Customer 1) by every customer’s demands with each customer. 

We do this by applying Equation (5.2) to Table 5.18, the results of which are shown 

in Table 5.19. The results show that Customer 3 and Customer 1 are in the same 

decision and could be taken as being realized to the heaviest criteria and closest 

criteria. 

 

𝑑𝑖𝑗
′ =  

𝑑𝑖𝑗

min 𝑑𝑖𝑗
    ,             𝑑𝑗

′ =  
max 𝑑𝑗

𝑑𝑗
                                                 (5.2) 

where, 𝑑𝑖𝑗 is the distance between node i and node j, and 𝑑𝑗 is the demand of 

customer j. 
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Table  5.19: Result after applying Equation (5.2). 

Customers 1 2 3 

Distance 2 4 1 

Demand 1 6 3 

 

For weighting between distance and demand, Equation (5.2) can be written as 

follows: 

  

(1 − 𝜎)𝑑𝑖𝑗
′ +  𝜎 𝑑𝑗

′                                                                                      (5.3) 

where, σ is a parameter of weighting between the distance (first part of the equation) 

and demand (second part of the equation). To minimize the objective function 

Equation (5.3), a suitable σ should be investigated which would lead to a least value 

for the customer for the drone selected. 

We apply Equation (5.3) to Table 5.19 and vary σ from 0 to 1 to find the minimum 

value of this equation. This will give the priority of the customer who will be served 

first so as to minimize power consumption. The classical nearest neighbor algorithm 

can be updated by using Equation (5.3) to improve power consumption, as shown in 

Figure 5.16. 

Step (1) start from the delivery truck location as a
starting node.     

Step (2) choose the next unvisited customer j 
which having the least value of Equation
(5.3).

Step (3) visit the selected customer j.
Step (4) check the constraints condition, if they

satisfied, return to the starting node.
Step (5) go to step (2) until all customers are 

completed. 
Step (6) go back to the started node. 

 

Figure  5.16: The minimize Power consumption for nearest neighbor algorithm 

(MPCNNA). 
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This algorithm is applied to the problem with n = 32 to obtain the distance traveled, 

tours and power consumption, and compared with the classical NNA when the 

demand is varying. The coordinates and demands of each customer are shown in 

Tables 5.20 and 5.21. 

 

Table  5.20: The coordinate location and demand of group one. 

Customers No. x-coordinate /km y-coordinate /km Demand  [kg] 

0 11.88 5.563 - 

3 12 7 0.1 

4 18 3 0.5 

6 18 4 1.75 

10 4 2 2 

11 10 3 0.2 

12 10 5 1.8 

13 17 5 0.15 

14 10 7 2 

15 10 9 0.75 

16 8 7 0.25 

17 13 8 1.9 

23 4 6 0.2 

29 13 10 2 

30 15 2 0.75 

31 12 2 2 

32 16 9 1.5 

  

 

Table  5.21: The coordinate location and demand of group two. 

Customers No. x-coordinate /km y-coordinate /km Demand  [kg] 

0 7.813 14.94 - 

1 10 16 0.1 

2 7 18 0.5 

5 0 10 1.75 

7 6 16 2 
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8 5 10 0.15 

9 15 19 2 

18 9 12 0.15 

19 12 15 2 

20 1 12 0.75 

21 9 13 0.25 

22 10 12 1.9 

24 10 18 0.2 

25 5 16 0.75 

26 17 18 0.75 

27 7 16 2 

28 2 18 1.5 

 

 

The results in Tables 5.22 and 5.23 show the tours, distances traveled and power 

consumed when the demand variants are obtained through MPCNNA. 

 

Table  5.22:  Tours, distances traveled, and power consumption in each customer 

location for n=32, served by drone using a nearest neighbor algorithm with variant 

demands. 

Tour 

No 

Customers Distance    

[km] 

 Power consumption for 

each tour  [kW.sec] 

Total Power consumption  

[kW.sec] 

Group one 

1 0→3→17→0 5.5383 24.056→ 22.748→3.594 50.3980 

2 0→12→11→0 7.1411 29.269→6.5342→4.259 40.0622 

3 0→14→15→0 8.2839 44.134→13.596→5.250 62.9800 

4 0→31→30→0 11.3010 60.039→18.189→6.346 84.5740 

5 0→16→23→0 16.1528 16.781→11.221→10.575 38.5770 

6 0→29→32→0 13.1038 91.465→32.344→7.190 130.9990 

7 0→13→6→0 12.8815 58.550→21.203→8.464 88.2170 

8 0→4→10→0 29.3188 92.536→150.18→11.588 254.3040 

                 103.7212               Group two                              750.1112 

1 0→27→7→0 4.4360 42.910→ 19.629→2.814 65.3530 

2 0→21→18→0 6.4449 9.9456→3.9016→4.249 18.0962 

3 0→1→24→0 8.1915 8.9547→6.5342→5.040 20.5289 

4 0→25→2→0 9.0007 48.322→13.293→4.243 65.8580 

5 0→22→19→0 11.4572 84.421→45.724→5.611 135.7560 

6 0→8→20→0 17.5772 36.285→24.950→9.943 71.1780 

7 0→28→5→0 24.0592 116.23→82.217→12.387 210.8340 

8 0→9→26→0 20.1738 114.27→14.680→12.976 141.9260 
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Table  5.23: The power consumption obtain by ACOA for 32 customers with variant 

demands and without improved. 

Tour 

No 

Customers Distance    

[km] 

Power consumption for 

each tour  [kW.sec] 

Total Power consumption  

[kW.sec] 

 Group one 

1 0→11→31→0 8.9797 45.038→32.009→4.777 81.8240 

2 0→12→16→0 8.9285 52.086→ 8.3630→5.544 65.9930 

3 0→14→15→0 8.2839 44.134→13.596→5.250 62.9800 

4 0→30→4→0 14.5333 38.515→14.464→8.891 61.8700 

5 0→3→17→0 5.5383 24.056→22.748→3.594 50.3980 

6 0→29→32→0 13.1038 91.465→32.344→7.170 130.9790 

7 0→13→6→0 12.8815 58.550→21.203→8.464 88.2170 

8 0→10→23→0 20.5402 104.56→10.949→10.575 126.0840 

Group two                        

1 0→27→7→0 4.4360 42.910→19.629→2.814 65.3530 

2 0→21→22→0 7.3528 34.496→ 22.748→4.910 62.1540 

3 0→25→28→0 13.1809 44.021→35.822→8.803 88.6460 

4 0→2→24→0 9.9274 35.425→32.009→5.040 72.4740 
5 0→1→19→0 8.8538 8.9547→7.0553→5.611 21.6210 

6 0→18→8→0 13.3275 11.806→11.991→7.617 31.4140 

7 0→9→26→0 20.1738 114.27→14.680→12.976 141.9260 

8 0→20→5→0 18.9001 102.10→28.543→12.386 143.0290 

 

Table  5.24: The tours, distance traveled, and power consumption in each customer 

location for n=32, served by drone using a IPCNNA with variant demands. 

Tour 

No 

Customers Distance    

[km] 

Power consumption for 

each tour  [kW.sec] 

Total Power consumption  

[kW.sec] 

 Group one 

1 0→12→14→0 6.3288 52.086→29.644→3.171 84.9010 

2 0→17→3→0 5.5383 36.475→4.2113→1.932 42.6183 

3 0→31→30→0 11.3010 60.039→18.189→6.346 84.5740 

4 0→29→15→0 11.6560 73.455→18.934→5.250 97.6390 

5 0→32→13→0 14.6394 53.746→10.119→6.902 70.7670 

6 0→6→4→0 13.9514 80.764→6.8771→8.891 96.5321 

7 0→10→16→0 19.1888 106.64→17.851→5.544 130.0350 

8 0→11→23→0 17.7789 12.726→16.928→10.575 40.2290 

 100.3826      Group two                                     647.2954 

1 0→27→2→0 6.5020 27.972→10.386→4.243 42.6010 

2 0→7→25→0 6.1062 40.602→9.0025→4.028 53.6325 

3 0→22→18→0 7.8348 47.315→3.9016→4.249 55.4656 

4 0→19→3→0 8.8538 53.784→5.6690→3.257 62.7100 

5 0→28→8→0 20.7980 65.608→20.980→7.618 94.2060 

6 0→9→26→0 20.1738 114.27→ 14.680→12.976 141.9260 

7 0→5→20→0 18.9001 124.32→14.680→10.136 149.1360 

8 0→21→24→0 11.1345 10.647→13.375→5.040 29.0620 
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Figure (5.17) shows the tours and total distance traveld for each group when 

applying IPCNNA. The ACOA could improve by applying Equation (5.3) to 

construct the new distance matrix 𝑑𝑖𝑗 for the two groups and applying the algorithm 

based on this distance matrix with a variant of the value of σ. The resulting power 

consumption, distance traveled and tours are shown in Table 5.24, while Table 5.25 

shows the tours, distances traveled and the power consumption for 32 customers 

without improvement of ACOA. 

 

 

Figure  5.17: Tours and distances traveled obtaining by IPCNNA. 

 

Table  5.25 : Tours, distances  traveled, and power consumption in each customer 

location for n=32, served by drone using imporved  IPCACOA to minimize the 

power consumption. 

Tour 

No 

Customers Distance    

[km] 

Power consumption for 

each tour  [kW.sec] 

Total Power consumption  

[kW.sec] 

 Group one 

1 0→6→4→0 5.8083 34.756→5.2503→1.932 41.9383 

2 0→32→29→0 11.3010 60.039→18.189→6.346 84.5740 
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3 0→14→17→0 14.6394 53.746→10.119→6.902 70.7670 

4 0→16→15→0 11.9186 38.845→14.689→5.544 59.0780 

5 0→31→30→0 13.9514 80.764→6.8771→8.891 96.5321 

6 0→10→23→0 22.3171 60.247→23.861→10.575 94.6830 

7 0→12→11→0 7.1411 29.269→6.5342→4.259 40.0622 

8 0→13→3→0 21.7852 64.716→ 101.95→11.588 178.2540 

 108.8621                Group two        665.8886 

1 0→27→7→0 7.5024 37.284→11.214→4.243 52.7410 

2 0→21→22→0 7.2158 25.483→11.069→3.048 39.6000 

3 0→25→28→0 7.8348 47.315→3.9016→4.249 55.4656 

4 0→2→24→0 12.1524 21.657→14.007→5.040 40.7040 

5 0→1→19→0 18.9001 124.32→14.680→9.943 148.9430 

6 0→18→8→0 20.1738 114.27→14.680→12.976 141.9260 

7 0→9→26→0 20.7980 65.608→20.980→7.618 94.2060 

8 0→20→5→0 8.8538 53.784→5.6690→3.257 62.7100 

   

To get the minimum value of power consumed by the drone, the parameter  𝜎  in 

Equation (5.3) should be variating between 0 and 1. The results after running the two 

algorithms are show in Tables (5.26) and (5.27). 

 

Table  5.26: The variant of σ with total power consumption and distance for two 

groups using IPCNNA. 

Value of  𝝈 Group1  Group 2 

Power 

consumption 

[kW.sec] 

Distance 

[km] 

Power 

consumption 

[kW.sec] 

Distance 

[km] 

0 676.68 106.2832 743.20 117.2083 

0.1 697.70 104.5896 747.36 117.0445 

0.2 657.26 97.4771 805.64 117.7637 

0.3 659.17 100.3825 722.42 108.3132 

0.4 647.30 100.3825 682.91 113.8367 

0.5 647.30 100.3825 655.76 100.3033 

0.6 647.30 100.3825 655.76 100.3033 

0.7 647.30 100.3825 655.76 100.3033 

0.8 647.30 100.3825 655.76 100.3033 

0.9 781.09 114.8030 756.27 125.6118 

1 761.18 122.0873 802.58 126.0750 
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Table  5.27: The variant of σ with total power consumption and distance for two 

groups using IPCACOA. 

Value of  𝝈 Group1  Group 2 

Power 

consumption 

[kW.sec] 

Distance 

[km] 

Power 

consumption 

[kW.sec] 

Distance 

[km] 

0 696.38 93.2712 706.69 98.5737 

0.1 639.43 93.2712 729.97 98.5737 

0.2 634.13 102.3609 702.14 98.2658 

0.3 665.89 108.8621 652.39 98.2658 

0.4 667.12 108.8621 657.79 103.4310 

0.5 665.89 108.8621 688.15 103.4310 

0.6 667.12 108.8621 657.79 103.4310 

0.7 701.33 108.8621 657.79 103.4310 

0.8 667.12 108.8621 726.75 119.3864 

0.9 652.55 115.9163 716.04 130.6265 

1 652.55 115.9163 715.01 130.6265 
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CHAPTER 6  

 

DISCUSSION and CONCLUSION 

 

 

6.1 Discussion 

 

In this section, the result obtained from the previous section is analyzed and 

discussed.  The results obtained in  Tables (5.12)  and (5.15) for the problem with 32 

customers show that the average delivery time using the collaborative system is lass 

by 41.87% than using truck only.  This value is obtained without taken into account 

the traffic status of roads when the truck moves to serve the customers, which will 

increased the average delivery time for the truck. In the same way, the Tables (5.9 -

5.12) show that if the number of drones is increased the average delivery time is 

decreased as an inverse exponential as shown in Figure (6.1).  This gives that the 

collaborative system is faster than the delivery truck  and more suitable to utilize in 

delivery packages. In addition, the problem of limited flight time is solved by using 

this system as show in Figure (5.14) the distance between some customer is faraway 

and cannot serve by the drone directly. As follows, the distance between customer 10 

and 26 is 20.616 km, and this distance will take 42.95 min which cannot be 

completed by the drone in one journey due to out of flight time, in comparison if the 

distance is divide in two segments as show in Figure (5.13) the drone can reach each 

customer without any difficulty.            
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Figure  6.1: The relation between average delivery time and number of drones 

 

Figure (6.2) show the relations between the power consumption and the time of 

delivery for the drone with variant payloads (1, 1.5 and 2 kg ) of one tour with total 

distance 8.9797 km as show in Table (5.14). The Figure clarifies that the power 

consumption is at high level  when moves from the base to the first customers and  

then, it reduced when moves to second customer depending on decreasing  of the 

payload which reduced by half. Finally, the power is at low level when the drone 

returns to the base, for three different payloads, 1, 1.5 and 2 kg the power consumed 

when the drone moves from the second customer to the base are the same value 

(4.777 kJ).  Because there is no any payload to carry, and this power represent only 

the power required to keep the drone in the air. This gives that serve the customer 

with high demand first will reduce the power consumption, but a comparison must be 

take into account between short distance and high demand to find the priority for 

served.  

The three algorithms are tested for many instance generated randomly in a certain 

area, first, the K means algorithm is tested for difference instances and difference 

areas and the result is  shown in Table (6.1). The result shows that the run time is 

acceptable pending for big instance and wide area.   
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Table  6.1  :The result obtain by runing the K-means algorathm for difference 

instances. 

Scenario No. of groups Run time (sec) 

Area (Km
2
) No. of customers 

5 50 2 9.65 

10 50 2 23.81 

5 100 3 51.61 

10 100 3 73.61 

10 200 4 151.25 

20 200 4 126.35 

20 500 10 423 

40 500 10 339.64 

  

 

The NNA and ACOA are tested for different size of customer locations as shown in 

Table (6.2).  The result shows that ACOA is better than NNA with accepted run time 

and gap between them is 11.78% at customer size equal to 25 and 0.78% at customer 

size equal to 100. That is means the gap is decreases as the size is increase. On the 

other hand, the ACOA is a stochastic algorithm and need to run may times and take 

the average for the result.     

 

Table  6.2: The result of run time and cost obtain by NNA and ACOA for different 

size of customers. 

No. of customers ACOA NNA 

Run time (sec) Cost Cost 

25 483.73 51.53 57.6 

50 227.75 103.6 107.25 

75 853.5 161.63 166.42 

100 1026.62 203.82 205.41 

 

 

In addition, the ACOA is tested to solve variant size of problem as shown in Table 

(6.3) and the result shows the effect of ants on the runtime and the solution, as we 

increase the number of ants the runtime is increasing and a small change occurs in  

the solution. In small size we can select a few ants to solve the problem with short 

runtime, on the other hand, we can select the number of ants equal to the number of 

customers for large size to get an acceptable runtime. 
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Table  6.3: The effect of ants on the runtime and the solution 

NO. of customers NO. of ants Iteration Runtime (min) Cost 

10 15 100 0.5003 212.3215 

10 0.3632 212.3215 

5 0.2156 212.3215 

30 45 100 3.9561 494.345 

30 2.7015 491.8693 

15 1.394 496.0931 

60 90 100 17.5233 900.647 

60 11.1277 904.3654 

30 5.5659 905.627 

 

 

 

 

 

 
Figure  6.2:  Power consumption vs. delivery time for drone with variant payload (1, 

1.5 and 2 kg). 

 

6.1.1 The Affected on Power Consumption of Carrying Payload with two 

Drones 

 

The power consumption facing variant distances for  two cases Tables (5.16) and 

(5.17), two drones with 4 rotors and one drone with 8 rotors are shown in Figure 

(6.3). The result clarify that the power consumption is lass when we use one drone 
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with 8 rotors than use two drones. This come from increasing the number of rotors in 

Equation (3.6), and this will increases the effective of disc area.  

 

Figure  6.3 Power consumption vs. distance for 1 drone with 8 rotors, red line and 2 

Quadrotors blue line. 

 

6.1.2 The Impact of Variant Demand on Power Consumption 

 

The payload of the drone affects the power consumed, as shown in Equation (3.7). 

Customer demands differ from one another in irregular delivery, which impacts 

power consumption. Therefore, a comparison should be made between distance and 

demand for each customer to minimize the power to be consumed when the drone 

moves between the sub-depot and customers. As shown in Table 5.22, the total 

power consumed to serve 32 customers with varying demands is 1479.6413 kJ. This 

value was acquired by the NNA. Similarly, the total power consumed to serve the 

same number of customers acquired by IPCNNA is 1303.06 kJ, as shown in 

Table 5.24. This means that the power consumed is reduced by 11.93% when using 

minimized power consumption for the nearest neighbor algorithm (IPCNNA). The 

total distance traveled is 200.6858 km when using IPCNNA compared to 

205.0617 km using NNA, which was reduced by 2.134%. It might be concluded 

from this that the IPCNNA is more efficient and more effective when we minimize 
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power consumption. On the other hand, an investigation into parameter 𝜎 in 

Equation (5.3) should be performed to determine the proper value of the power 

consumption minimization, as shown in Figure 6.4. The minimum power may be 

obtained at σ equaling 0.4 to 0.8 for Group 1 (blue line), and equaling 0.5 to 0.8 for 

Group 2 (red line). 

 

 

Figure  6.4: The total power consumption vs. the value of σ (blue line for group 1, 

and red line for group 2) obtained  by IPCNNA. 

 

In addition, the distance is affected by the value of parameter σ, thus, the minimum 

distance is acquire at σ equaling 0.3 to 0.8 for Group 1, as shown in Figure 6.5 with 

the blue line, and equaling 0.5 to 0.8 for Group 2 with the red line. 
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Figure  6.5: The distance traveled vs. the value of σ (blue line for group 1, and red 

line for group 2) obtained by IPCNNA. 

 

Results from Figures 6.4 and 6.5 show that the power consumption and distance 

traveled are minimize at some value of parameter σ and this is difference from case 

to case depends on the distance between customers and weight of customer demand, 

as shown for Group 1 and Group 2.  

Another improvement of power consumption occurs in the ACOA. The results in 

Table 5.23 show that the power consumption for Group 1 with different demand 

weights is 634.13 kJ and for Group 2 it is 644.95 kJ, compared with 667.92 kJ for 

Group 1 and 651.98 kJ obtained with ACOA without improvement, as shown in 

Table 5.25. This clarifies that the power decreases by 5.1% for Group 1, and for 

Group 2, it decreases by 1.08%. This occurs due to the ACO being a stochastic 

algorithm, which implies that the ACO could not improve the power consumption all 

the time; however, it depended on the difference in the demand weight and the 

distance between customers. Moreover, the distance traveled increased by 10.32% 

for Group 1 and 7.57% for Group 2 when using IPCACOA compared with using 

ACOA without improvement. The variant of parameter σ in Equation (5.3) for the 

power consumption and distance traveled are shown in Figures 6.6 and 6.7. 

 



80 
 

 

Figure  6.6: The power consumption vs. the value of σ (blue line for group 1, and red 

line for group 2) obtaining by IPCACOA. 

 

As we have mentioned above, the ACOA is a stochastic algorithm that needs several 

runs for each testing instance to evaluate the stability of the solution. Figure 6.6 

shows that the power consumption changes up and down for the two groups as the 

value of parameter σ increase from 0 to 1. This comes from the order of each tour 

that may change in each iteration, which will influence the power consumption. The 

figure also shows that the minimum power consumption obtained at σ equaling 0.2 

for Group 1 and σ equaling 0.3 for Group 2. On the other hand, Figure 6.7 shows the 

relation between the distance traveled and the value of parameter σ as it increases. 

The distance will have a small increase and in some value of σ it remains stable, as 

shown in the figure. When σ is between 0.3 and 0.7, the distance is 108.8621 km for 

Group 1 and 103.4310 km for Group 2. 
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Figure  6.7: The distance traveled vs. the value of σ (blue line for group 1, and red 

line for group 2) obtaining by IPCACOA. 

 

6.2 Conclusion 

 

In this thesis, a collaborative delivery system with a UAV and a delivery truck is 

proposed to solve the problem of limited flight times when UAVs are used to deliver 

packages. A mathematical formulation in two stages is presented. In the first stage, 

the drone power consumption model was driven by using the theories of 

aerodynamics of the rotor-wing aircraft. This model is used to obtain the relation 

between the payload weight and the power consumed by the drone. From this 

relation, we found that the power consumption rate per kilogram was =

69.4 𝑤𝑎𝑡𝑡𝑠/𝑘𝑔 , and the power required to keep the drone frame in the air was 

𝛼 = 21.44 𝑤𝑎𝑡𝑡𝑠. Second, the integer linear programming model is driven for the 

routing problem with an objective function to find the best location for the delivery 

truck, and two objective functions to minimize the delivery time, distance traveled 

and power consumption for the drone. Then, the K-means algorithm is used to divide 

the customers into groups and find the best location for the  delivery trucks. 

Moreover, the routing problem for the UAV is solved for each group with an ant 

colony optimization algorithm and nearest neighbor algorithm. The model was 

simulated in MATLAB and the results show that the average delivery time was 

reduced by 58% when using the combined system instead of the truck only for a 
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problem with 32 customers. On the other hand, increasing the number of UAVs to 

serve one group will decrease the average delivery time as an inverse exponential. 

The results also show that the problem of limited flight time is solved by using this 

system when the customers partitioned into groups and each group has a middle 

location for the delivery truck. 

The results also show that the power consumption model derived in the first part of 

the mathematical formulation is more realistic when taking into account the payload 

of the drone. This directly impacts the power consumption and therefore the flight 

time of the drone. Moreover, the power consumption can be minimized by serving 

high-demand customers first and taking into account a comparison that must be made 

between the short distances and high demands to determine priority when demands 

are not equal. 

This priority is made by using the criterion equation (Equation (5.3)) with weighting 

between the heaviest demand and the shortest distance, which applies in the NNA 

and ACOA to calculate a new distance matrix to improve the power consumed by the 

drone. The results show that using IPCNNA will reduce the power by 11.93% 

relative to the results obtained from NNA. Moreover, the distance traveled is reduced 

by 2.134% when using the same algorithm for the same instance of the problem with 

variant demands. This shows that the IPCNNA is more efficient if we minimize the 

power consumption and distance traveled when demands differ. On the other hand, 

using this criterion to improve ACOA will reduce the power by 3.1%, but the 

distance traveled will increase by 8.945%, which occurs due to the ACOA being a 

stochastics. 

 

6.3 Future Research  

 

It has been observed that the collaborative delivery system is a new study with the 

potential to solve the issues of limited flight time. Therefore, several types of 

research can be carried out in the future: 

-  using multiple delivery trucks combined with UAVs to allow UAVs to 

launch from one truck and return to another truck, which may increase the 

system’s working time. 
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- Considering another parameter that effect the power consumption such as, 

weather condition. 

- Adding time windows  to the customers could be ensure that the packages are 

delivered within a specific time.  
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