
A COMPARATIVE STUDY OF NEURAL NETWORK APPROACHES IN
NETWORK ANOMALY DETECTION

A THESIS SUBMITTED TO
THE GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES

OF
ATILIM UNIVERSITY

BY

MEHMET UĞUR ÖNEY

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR

THE DEGREE OF MASTER OF SCIENCE
IN

COMPUTER ENGINEERING

FEBRUARY 2019

Approval of the Graduate School of Natural and Applied Sciences, Atılım University.

Prof. Dr. Ali KARA
Director, The Graduate School of Natural and Applied Science

I certify that this thesis satisfies all the requirements as a thesis for the degree of Master
of Science in Computer Engineering, Atılım University.

Prof. Dr. Kamil İbrahim AKMAN
Head of Computer Engineering Department

This is to certify that we have read the thesis A Comparative Study of Neural Net-
work Approaches in Network Anomaly Detection submitted by MEHMET UĞUR
ÖNEY and that in our opinion it is fully adequate, in scope and quality, as a thesis for
the degree of Master of Science.

Asst. Prof. Dr. Serhat PEKER
Supervisor

Examining Committee Members:

Assoc. Prof. Dr. Murat KOYUNCU
Dept. of Information Systems Engineering, Atılım University

Asst. Prof. Dr. Bilge SAY
Dept. of Software Engineering, Atılım University

Asst. Prof. Dr. Çiğdem TURHAN
Dept. of Software Engineering, Atılım University

Asst. Prof. Dr. Erol ÖZÇELİK
Dept. of Psychology, Çankaya University

Asst. Prof. Dr. Serhat PEKER
Dept. of Software Engineering, Atılım University

Date:

Ugur Oney
01.02.2019

I hereby declare that all information in this document has been obtained and
presented in accordance with academic rules and ethical conduct. I also declare
that, as required by these rules and conduct, I have fully cited and referenced all
material and results that are not original to this work.

Name, Last Name: MEHMET UĞUR ÖNEY

Signature :

iv

ABSTRACT

A COMPARATIVE STUDY OF NEURAL NETWORK APPROACHES IN
NETWORK ANOMALY DETECTION

Öney, Mehmet Uğur

Computer Engineering

Supervisor : Asst. Prof. Dr. Serhat PEKER

February 2019, 62 pages

Network intrusion detection is an important research field, and artificial neural net-
works have become increasingly popular in this subject. Despite this, the research
concerning comparison of artificial neural network architectures in the network in-
trusion detection is a relatively insufficient. To make up for this, this study aims to
examine the neural network architectures in network intrusion detection to determine
which architecture produces high accuracy and low false positive rate, and what are
the effects of the architectural components such as optimization functions, activation
functions, the momentum of the learning rate. For this purpose, we have generated
6480 neural networks and, we evaluated them KDD99 dataset and, near-real-time
simulation environment. This thesis provides a roadmap to guide future research on
network intrusion detection using artificial neural networks.

Keywords: artificial neural network, network anomaly, attack identification, intrusion
detection

v

ÖZ

AĞ ANOMALİLERİNİN TESPİTİNDE KULLANILAN YAPAY SİNİR
AĞLARININ KARŞILAŞTIRILMASI

Öney, Mehmet Uğur

Bilgisayar Mühendisliği

Tez Yöneticisi : Dr. Öğr. Üyesi. Serhat PEKER

Şubat 2019 , 62 sayfa

Ağ saldırı tespit sistemleri günümüz bilişim sistemlerinde kritik bir yer teşkil ederken
önemli bir araştırma alanı olarak yükselmeye ve yapay sinir ağlarının kullanımı bu
alanda giderek daha popüler hale gelmeye başlamıştır. Buna rağmen, bu alanda ya-
pay sinir ağı mimarileri ve bu mimarilerin bileşen parametreleri hakkında kapsamlı
bir karşılaştırmalı çalışmasının eksikliği vardır. Bu çalışmada, ağ saldırı tespit sis-
temleri alanında kullanılan yapay sinir ağları mimarileri ve bu mimarilerin bileşenleri
olan optimizasyon fonksiyonları, aktivasyon fonksiyonları, öğrenme kat sayısı ve mo-
mentum değişiminin doğruluk ve hatalı uyarı üretme oranlarına göre kıyaslayarak
ileride yapılacak olan mühendislik ve akademik çalışmalar için bir temel oluştur-
ması amaçlanmıştır. Bu doğrultuda, 6480 adet yapay sinir ağı oluşturularak kıyaslama
veri kümesi olarak kabul edilen KDD99 ve yakın gerçek zamanlı simülasyon ortamı
yardımıyla her bir yapay sinir ağı değerlendirilmiştir. Bu tezin, yapay sinir ağları kul-
lanılarak geliştirilecek ağ saldırı tespit sistemleri araştırmalarına rehberlik edecek bir
yol haritası sağlayacaktır.

Anahtar Kelimeler: yapay sinir ağları, ağ anomali, atak tespit, saldırı tespit

vi

Dedicated to
my inspiring parents and sister,

vii

ACKNOWLEDGMENTS

This thesis would not have been possible without the inspiration and support of a
number of wonderful individuals — my thanks and appreciation to all of them for
being part of this journey and making this thesis possible. I owe my deepest gratitude
to my supervisors Dr. Serhat Peker. Without his enthusiasm, encouragement, support
and endless optimism this thesis would hardly have been completed.

I would also like thank to my thesis jury members Dr. Murat Koyuncu, Dr. Bilge Say,
Dr. Çiğdem Turhan and Dr. Erol Özçelik for their advice and guidance in helping to
shape this dissertation.

I am forever thankful to my colleagues for their friendship and support, and for creat-
ing a cordial working environment. Specially, I would also like thank to my colleague
Volkan Nergiz for his helps.

Importantly, I would like to thank my beloved, Başak Akın for the support, advice,
hours of struggling through this challenging process, and for all her love.

Finally, my deep and sincere gratitude to my mom Atiye Öney and my father Fazlı
Öney for their continuous and unparalleled love, help and support. I am grateful to
my sister Dr. Merve Dilara Öney, M.D. for always being there for me as a friend. I am
forever indebted to my parents for giving me the opportunities and experiences that
have made me who I am. They selflessly encouraged me to explore new directions in
life and seek my destiny. This journey would not have been possible if not for them,
and I dedicate this milestone to them.

viii

TABLE OF CONTENTS

ABSTRACT . v

ÖZ . vi

ACKNOWLEDGMENTS . viii

TABLE OF CONTENTS . ix

LIST OF TABLES . xii

LIST OF FIGURES . xiii

LIST OF ALGORITHMS . xiv

LIST OF ABBREVIATIONS . xv

CHAPTERS

1 INTRODUCTION . 1

1.1 Purpose of the Study and Research Questions 3

1.2 Significance of the Study 4

1.3 Thesis Organization . 4

2 LITERATURE SURVEY . 5

2.1 Network Intrusion Detection 5

2.2 Artificial Neural Networks 7

ix

2.2.1 Artificial Neural Network Architectures 8

2.2.2 Parameters of an Artificial Neural Network 10

2.3 Usage of the Artificial Neural Networks in Intrusion Detection 13

3 METHODOLOGY . 18

3.1 Network Intrusion Detection Model 20

3.2 Dataset . 22

3.2.1 KDD99 Dataset 23

3.3 Data Preprocessing . 24

3.3.1 Feature Extraction 25

3.4 Neural Network Generator 26

3.4.1 Network Attack Simulator 29

3.5 Software Used . 31

3.6 Evaluation Measures . 32

3.6.1 True Negative Rate 32

3.6.2 True Positive Rate 32

3.6.3 False Positive Rate 33

3.6.4 False Negative Rate 33

3.6.5 Precision, Recall, and F-Measure 33

3.7 Experiment . 34

4 RESULTS . 36

4.1 Results of the Architectural Comparison 36

x

4.2 Top 10 of the Neural Networks 39

4.3 Effects of the Parameters 42

5 DISCUSSION AND CONCLUSION 45

5.1 Discussion of Results . 46

5.2 Limitations and Further Research 48

CURRICULUM VITAE . 62

xi

LIST OF TABLES

TABLES

Table 2.1 List of common Neural Network architectures. 9

Table 2.2 Activation Functions . 12

Table 2.3 Distribution of studies based on neural network architecture. 16

Table 3.1 List of Neural Network architectures in the NIDS domain. 21

Table 3.2 Common NIDS Benchmark Datasets 22

Table 3.3 Attacks listed in the KDD99 dataset 24

Table 3.4 Extracted features. 27

Table 3.5 Neural Network Architectures . 28

Table 3.6 Confusion Matrix . 32

Table 4.1 Top 10 rated network. 40

xii

LIST OF FIGURES

FIGURES

Figure 2.1 Distribution of studies based on neural network architecture. 16

Figure 2.2 Distribution of studies based on dataset. 17

Figure 3.1 Overview of the methodology . 19

Figure 3.2 Simulator network topology . 30

Figure 4.1 Architecture average training time. 37

Figure 4.2 Architecture average detection time. 38

Figure 4.3 Architecture average False Positive Rate. 38

Figure 4.4 Architecture average Accuracy. 39

Figure 4.5 Top 10 Neural Network’s accuracy. 41

Figure 4.6 Top 10 Neural Network’s false positive rate. 41

Figure 4.7 Compression of optimizers. 42

Figure 4.8 Compression of learning decay rates. 43

Figure 4.9 Compression of dropout rates. 44

Figure 4.10 Hidden layer activation function performance counters. 44

xiii

LIST OF ALGORITHMS

ALGORITHMS

Algorithm 1 Back-propagation . 13

xiv

LIST OF ABBREVIATIONS

Adam Adaptive Moment Estimation

AEN Auto Encoder Networks

ANN Artificial Neural Network

API Application Programming Interface

CAIDA Center for Applied Internet Data Analysis

CNN Convolutional Neural Network

CPU Central Processing Unit

CRISP-DM Cross Industry Standard Process for Data Mining

CSAS Cyber Security Attack Simulator

DARPA Defense Advanced Research Projects Agency

DDOS Denial of Service Attack

EEN Evolutionary Neural Network

FAR False Alarm Rate

FFNN Feed-Forward Neural Network

FN False Negative

FNR False Negative Rate

FP False Positive

FPR False Positive Rate

GPU Grafical Processing Unit

KDD Knowledge Discovery and Data Mining

NIDS Network Intrusion Detection System

NNG Neural Network Generater

PRA Platform Result Analyzer

RNN Recurrent Neural Network

SGD Stochastic Gradient Decent

SOM Self-Organizing Map

TCP Transmission Control Protocol

TN True Negative

xv

TNR True Negative Rate

TP True Positive

TPR True Positive Rate

xvi

CHAPTER 1

INTRODUCTION

Every passing year, malicious attacks and threats on the networks are increasing. As a

result of this, protecting the systems and determining attacks are gaining importance.

A single case of an intrusion can steal, damage or delete the valuable data from the

computer system of an organization. Attacks which prevent access to the data can

discredit the organizations, even more, lead to financial consequences and eventually

end up losing the customer. On the other hand, stealing critical information of a

private organization or governmental organizational may cause huge losses. For these

reasons, network intrusion detection systems (NIDS) are one of the essential parts of

computer networks.

The conventional security system which is used in computer networks is starting to

fail to detect sophisticated attacks and malware. Because of this reason, NIDS has

become a vital component of the computer network security infrastructure. However,

several issues are needed to be considered during the construction of a network in-

trusion detection system. Data collection, data preprocessing and recognition of the

intrusion are the necessary parts of a network intrusion system. Among them, de-

tection of an intrusion is the most indispensable. Finding the patterns of an intrusive

action and classification capability of this action are the hearth of the system [102].

Creating a model from the data is not a simple process. The volume of the data

and continuously changing attack behavior are the main difficulties in this domain.

For this reason, researchers have been starting to consider machine learning [97].

One of the popular machine learning platform is artificial neural networks (ANN)

[102]. ANNs have the ability to learn by example, and generalize from limited, noisy,

1

and incomplete data which is commonly encountered in the NIDS domain. Neural

networks have also been applied in the wide spectrum of data-intensive applications

[59].

However, finding the best suited ANN topology for a problem is an important issue

for the researchers and the engineers [39]. An ANN topology contains critical com-

ponents like architectural structure of the neural network, optimization algorithms,

activation functions, learning momentum and prevention of overfitting. Finding the

best combination of this component and testing in well-prepared benchmark data is

a time-consuming process. In this research, we aim to create a guideline and per-

formance comparison basis for the researchers and practitioners employing ANNs in

NIDS field.

Network intrusion detection systems (NIDS) are the intrusion alarms of the computer

network security [11]. These systems intend to monitor and inform the cybersecurity

officers or sometimes take automatic actions like changing the particular rules of other

prevention systems in the network. It should be considered that attacks on a network

can be one of many different types. These attacks can be performed from outside

of the computer network or can be done by a person who is a legitimate user of the

system.

Determining the number of alarms generated by the NIDS and the accuracy of those

alarms are essential. The number of false alarms affects the systems and cybersecurity

officer’ behaviors and also may damage the NIDS reliability and trustworthiness.A

NIDS should be adapted to new kind of attacks like zero-day attacks1. Consequently,

there are two major principals which are anomaly detection and signature detection.

Signature-based detection heavily depends on the previous attacks structures. Sim-

ulated attacks or actualized attacks are examined and features of these attacks are

extracted for future detections. NIDS monitors and compares the traffic with the

known attacks’ signatures. In this model, the false alarm rate of the system is low,

and accuracy of the detection is high. However, different attack strategies or new kind

of attacks can eliminate the NIDS and successfully conduct the intrusion without cre-

1 A zero-day vulnerability is a computer-software vulnerability that is unknown to those who would be inter-
ested in mitigating the vulnerability.

2

ating an alarm notification.

On the other hand, anomaly detection based NIDS easily orient itself for the new

kind of attack types. Anomaly detection based systems monitor the network traffic

and create a basis for them as a normal. In the event of an intrusion, changes in the

features of the normal traffic drive evidence of an attack — conversely, these kind of

detection systems are known with their high false positive rate. Any changes in the

usage behavior can trigger an alarm.

Artificial Neural Networks (ANN) can transfer either signature-based detection method-

ology or anomaly based detection methodology into practice, because of the struc-

tures and natures. The ANN is a universal function approximator as proven by the

universal approximation theorem [39]. However, the proof is not constructive regard-

ing the number of the neurons needed, the network topology and the other parameters

that directly affect the performance of the network. Because of that finding, a domain-

specific topology or a design for the network is a challenging problem.

In this research, we compare the artificial neural network architectures and its com-

ponents to find an optimal solution for the NIDS domain.

1.1 Purpose of the Study and Research Questions

This research investigates the performance of the neural network architectures and

their parametric combinations in the NIDS domain. A comparative experiment was

performed to figure out each neural network architecture’s performance counters,

their limitations, and open issues. Accordingly, in this study, the following research

questions were formed:

• RQ1. Which type of Neural Network architecture has better accuracy and low-

est false positive rate in the NIDS domain?

• RQ2. Which kind of Neural Network architectures has the lowest training and

detection cost without sacrificing performance criteria like accuracy and false

positive rate?

3

• RQ3. What are the effects of the activation functions, dropout values, optimiza-

tion functions, the momentum of the learning and depth of the network over the

performance?

1.2 Significance of the Study

Deciding on an artificial neural network architectural topology and finding the proper

parameters for a dedicated topic is a time-consuming process. This study provides

a baseline by comparing ANN architectures and their components using a near-real-

time simulation environment and KDD99 dataset which is an acceptable benchmark

dataset for the NIDS domain.

The main contributions of this thesis are summarized as follows:

• A performance comparison of artificial neural network architectures in the NIDS

domain.

• A performance comparison of artificial neural networks’ components such as

optimization algorithms, activation functions, momentum, and dropout.

• An evaluation of the ANN topologies in a near-real-time NIDS environment.

1.3 Thesis Organization

The rest of the thesis is organized as follow: In Chapter 2, neural network architec-

tures and components and parameters which are used in creating a neural network are

explained. Later, this chapter describes the Network Intrusion Detection Systems and

their types. Furthermore, usage of the neural networks in the NIDS are investigated

in that chapter. In order to address the research questions, an experiment test bench

and a methodology were conducted in Chapter 3. In Chapter 4, experiment results

are reported; and finally, the conclusion, implications, and limitations of the study

and the suggested directions for further work are discussed in Chapter 5.

4

CHAPTER 2

LITERATURE SURVEY

2.1 Network Intrusion Detection

A network intrusion detection system (NIDS) is a software that automates the network

intrusion detection methods [13]. Consequently, NIDS is an essential part of any

network architecture. They provide a layer of monitoring for the systems and produce

alerts when hostile traffic or suspicious activity is detected. NIDS architecture can be

analyzed from various points such as where traffic was captured, the location of the

system, measurements, and others. Nevertheless, the intrusion detection problem can

be seen as a classification problem that assigns the type of attack or normal for the

given network event. There are two major methods for detecting intrusions, signature-

based (sometimes call misuse-based) and anomaly-based intrusion detection.

Signature-based detection is comparing network traffic data with a base model which

created with previously detected intrusion events. This method has high prediction

accuracy and low false positive rate for known threats. However, it is very ineffec-

tive at detecting unknown attacks. Most common methods used for signature-based

detection are pattern recognition and rule implication.

On the other hand, the anomaly detection method uses a profile that describes normal

traffic behavior. This profile is usually generated from legitimate traffic of the net-

work. Any traffic activity that deviates from the normal profile is considered as an

anomaly. This method can recognize unfamiliar intrusion. However, the most criti-

cal drawback of this method is the high false alarm rate. Common methods used in

anomaly detection are statistical analysis and machine learning.

5

Various research about the taxonomy for NIDS were proposed in the literature [56]

[11] [27]. Commonly accepted elements are summarized as follow;

• Detection method: Two main methods are considered for detection: Signature-

based and anomaly-based.

• Model acquisition: Models are based on human supervisor knowledge or sim-

ulated environment generation.

• Usage frequency: Detection takes place on a near-real-time data (continuous

monitoring) or a defined sized batch data (periodic monitoring).

• Architecture: Position of the NIDS in a network architecture can be in a single

point for the centralization or several junction points for distributed collection.

Lastly, measuring the performance of NIDS can be summarized in a five main counter

[56]. These counters gives information about feasibility for the perception of NIDS

performance in an actual deployment environment.

• Prediction accuracy: An indicator for the quality of detection.

• False positive rate: An indicator for the trustworthiness of the system.

• Processing time: Needed time to process the data and detect the intrusion.

• Adaptability: An indicator for the detecting new type of attacks or metamor-

phosed attacks.

• Resource consumption: An indicator for usage of the system resource like

memory, CPU, and bandwidth.

Over the years, network intrusion detection systems have been developed. Machine

learning methods have been particularly effective in detecting intrusions, including

techniques such as fuzzy sets [54][29][91][1], artificial immune system [44][95][24],

support vector machines (SVMs) [72] [90][20][38], or k-nearest neighbour algorithm

(k-NN) [64][61][87][2].

6

The current state of the network intrusion detection systems has been recently sur-

veyed for anomaly detection. Recent surveys [73][55][18][11][45] conclude that

ANNs remain highly popular with researchers and have recently shown promising

potentials for low false positive rate, especially when equipped with advanced tech-

niques such as auto encoder network.

2.2 Artificial Neural Networks

The artificial neural network is a computing system that is inspired by biological

neural networks. The biological neural network is an interactive system of neurons,

which defines a recognizable pathway. An ANN can be described as a collection of

interconnecting processing units in a topology. ANN’s each processing unit is called

an artificial neuron. Every neuron contains a step function as an activation function.

These functions are also called the transfer functions. These functions are an abstrac-

tion of representing the action potential in the real neuron. This activation function

can decide whether an input vector of the number belongs to a specific class or not.

In ANN, most of the activation functions are nonlinear functions. This configuration

allows the network to compute nontrivial problems using a small number of neurons.

The topological structure of the neurons affects the ANN’s performance and learning

capabilities.

ANNs are parallel computing systems consisting of a considerable amount of simplis-

tic processors with multiple interconnections [42]. ANN is a universal function ap-

proximator as proven by the universal approximation theorem [39]. An ANN can be

describes as a weighted directed graph. Each node connects each other with weighted

edges. Every node in the graph has a binary threshold unit as a computational model

which is proposed by McCulloch et al. [67]. Each unit computes the weighted sum of

the input edges and generates an output value between 0 and 1. This binary threshold

unit calls the activation function.

Learning ability of an ANN can be described as updating graph edges weights so that

a created network can efficiently execute a particular task. This process occurs in

the training phase. Weighs are updated according to available patterns in the training

7

data. Learning methodologies can be grouped by the following three main categories:

supervised, unsupervised and semi-supervised also sometimes called hybrid learning.

In supervised learning, the network is provided the correct answers alongside asso-

ciated training data. After each calculation, weights are updated according to the

distance between the actual response and accurate answers. This distance function

is called optimization function. In unsupervised learning, the network does not need

any correct answers for training. It extracts the underlying structure of the data and

correlations between patterns of the data. Then these patterns and structures collect

into categories. Semi-supervised learning uses both methodologies. They are gath-

ered the correlation patterns into the categories and acknowledged these categories

with correct answers or a supported data.

2.2.1 Artificial Neural Network Architectures

An artificial neural network architecture or topology defines the connection way of

neuron in a network [34]. These interconnections can be defined with the following

four properties:

• the type of the connection,

• the order of the connection,

• whether the structure is fully connected or not,

• symmetry1 of the connection.

Neurons cluster into layers in a neural network. Each cluster is a collection of the

node that has similar behavior, function or a hierarchy. The stack of the layers creates

a neural network. The connection between the layers can discriminate four types:

• interlayer connection is a relationship between adjacent layers,

• intralayer connection is a relationship between the same layers,

1 A symmetry of an object is a transformation that leaves certain properties of that object intact.

8

• self-connection is a connection which has the same origin point and termination

point,

• super-layer connection is a relationship between the neuron which is nigher

have interlayer or intralayer connection.

Common neural network architectures are listed in Table 2.1.

Table 2.1: List of common Neural Network architectures.

Neural Network Architecture Abbreviation
1 Convolutional Neural Network CNN
2 Recurrent Neural Network RNN
3 Feed Forward Neural Network FFNN
4 AutoEncoder Networks AEN
5 Self-Organizing Map SOM
6 Evolutionary Neural Network EEN

Convolutional Neural Network features pooling layers, and each interconnected layer

is a composition of convolutional cells [58]. Every segment of the network serves a

different purpose. Convolutional cells proceed input data, and pooling layers simplify

it with non-linear functions. Pooling layers tend to shrink when the network goes

deep. This method reduces unnecessary features in the input data.

On the other hand, Recurrent Neural Networks are not a stateless network [32]. They

have intralayer connections and have links between passes, relationships through

time. Neurons are fed data from the previous layer and also from themselves from

the previous state with self-connection. Because of the structure, the order of the data

matters.

One of the most basic neural network architecture is the Feed-Forward Neural Net-

works. FFNN feeds data from the input layer to the output layer [80]. FFNNs are

mostly designed as fully connected graphs, and they have an interconnection between

adjacent layers.

Autoencoders are slightly similar to Feed-Forward Neural Networks as a topology,

but fundamentally they have different architectures. Autoencoders are encoding the

input data into the hidden layers and decoding the data from the hidden layers to the

9

output layer [17]. With this capability, Autoencoder networks can compress the high

dimensional input data into the low dimensional form. Autoencoder networks’ de-

coding layers’ weights the same as encoding layers’ weights. Because of this reason,

they have a symmetric network structure.

A self-organizing map (SOM) is a type of artificial neural network that is trained us-

ing unsupervised learning to produce a low-dimensional (typically two-dimensional),

discretized representation of the input space of the training samples, called a map,

and is therefore a method to do dimensionality reduction. In SOM, the input is pre-

sented to the network, after which the network evaluates which of its neurons most

nearly match that input. Then selected neurons are adjusted according to input value

for better fitting [53]. This process drags the neuron in a cluster.

Evolutionary Neural Network or in other term, Neuroevolution is a composition of

neural networks and genetic algorithms [9]. The basic idea behind the neuroevolution

is finding the best fitted neural network topology and parameters for the domain with

the help of genetic algorithms [89]. The genetic algorithm creates a batch of a neural

network and decides which of the neural network best fits the problem using various

fitness functions.

2.2.2 Parameters of an Artificial Neural Network

ANN is a universal function approximator as proven by the universal approximation

theorem [39]. However, the proof is not constructive regarding the number of the

neurons needed, the network topology and the other parameters that directly affect

the performance of the network. Because of that finding, a domain-specific topology

or a design for the network is a challenging problem.

One of the parameters of an artificial neural network is the activation functions. The

activation function is a binary threshold unit which computes the weighted sum of the

input edges and generates an output value according to the behavior of the function.

Mathematically,

10

y = θ

(
n∑
j=1

wjxj − u

)
, (2.1)

where θ (·) is a unit step function and wj is the edges’ weight. Linear activation func-

tions, logistic functions and Gaussian function are the most frequently used activation

function families in a neural network [42]. Activation functions which are chosen for

this research are listed in Table 2.2.

One of the other essential components of a neural network is the optimization al-

gorithm. The optimization algorithm subsequently repeats propagation and weight

update phases. When the input vector enters the network, computed output is com-

pared with the expected result by using a loss function (2.2). The loss function over

n training can be formulated as an average of losses over individual examples.

E =
1

2n

∑
x

‖(y (x)− y′ (x))‖2 (2.2)

The resulting difference which is called an error value is calculated for each of the

neuron’s output value. Then these values are propagated (2.3) from the end of to

network through to entering layer. This process continues until each neuron updated

with the new value according to the error value.

∆wij = −η ∂E
∂wij

(2.3)

Algorithmic reppresentation of back-propagation can be shown as Algorithm 1.

Most common optimization functions in the artificial neural network are Stochastic

Gradient Descent, Adam Optimizer, and their variants.

Stochastic Gradient Descent (SGD) is an iterative stochastic approximation of gradi-

ent descent [69]. The function is called stochastic because the sampling system in the

optimizer is selected randomly.

Adam is another important optimization function in artificial neural networks. Adap-

tive Moment Estimation is developed on the RMSProp optimizer [51]. This function

11

Table 2.2: Activation Functions

Name Plot Equation

linear f (x) = x

elu f (x) =

{
α (ex − 1) for x ≤ 0

x for x > 0

relu f (α, x) =

{
0 for x < 0

x for x ≥ 0

selu f (α, x) = λ

{
α (ex − 1) for x ≤ 0

x for x > 0

sigmoid f (x) = σ (x) 1
1+e−x

softsign f (x) = x
1+|x|

softmax f (α, x) =

− ln (1−α(x+α))

α
for α < 0

x for α = 0
eαx−1
α

+ α for α > 0

softplus f (x) = ln (1 + ex)

tanh f (x) = tanh (x) =
(ex−e−x)
(ex+e−x)

computes running averages of both the gradients and the second moments of the gra-

dients.

As an addition to an optimization functions, Momentum value can be added to both

optimization function. Momentum value prevents oscillation which is caused by large

updates in the optimization functions [81].

12

Algorithm 1: Back-propagation
Data: ProblemSize, InputPatterns, iterationsmax, learnrate

Result: Updated Network

Network ←− ConstructNetworkLayers();

Networkweights ←− InitializeWeights(Network, ProblemSize);

for i = 1toiterationsmax do

Patterni ←− SelectInputPattern(InputPatterns);

Outputi ←− ForwardPropagate(Patterni, Network);

BackwardPropagateError(Patterni, Outputi, Network);

UpdateWeights(Patterni, Outputi, Network, learnrate);

end

return Network

Lastly, Dropout is a regularization method for decreasing overfitting in neural net-

works by preventing memorizing on training data [86]. Dropout applies to shoot out

cells (except output layer) in an artificial neural network.

2.3 Usage of the Artificial Neural Networks in Intrusion Detection

The research on intrusion detection began with Denning’s literature [28]. In [28],

the author introduced a model for a real-time intrusion detection expert system that

aims to detect a wide range of security violations ranging from attempted break-ins

by outsiders to system penetrations and abuses by insiders, which laid the foundation

of intrusion detection system. Later, many research efforts on anomaly detection have

been carried out using various techniques.

Ding et al. [30] used the Adam algorithm in their model for preventing the detec-

tion model falling into the local minimum and speeding up the training phase. They

performed the test and training with KDD99 dataset. Their proposed model achieved

the training accuracy of 95.57%. However, there is no significant improvement in the

detection of rare attack types.

Ghanbari et al. [36] proposed a model for detecting the distributed denial of service

attack (DDOS). The proposed neural network model use convolutional neural net-

13

work architecture and is trained and tested with the Center for Applied Internet Data

Analysis (CAIDA) dataset. They reach the true positive rate of 80.77%; however,

they concluded that their model is based on supervised learning, which is not suitable

for real-world applications.

Liu et al. [65] also applied the convolutional neural network for the intrusion detec-

tion domain. In their research, they used the KDD99 dataset for the training and test

their models. They used a static convolutional neural network model to compare the

various activation methods such as sigmoid, tangent hyperbolic and rectified linear

unit. Study shows that a neural network model that used the sigmoid as an activation

function performs better than other activation functions.

Tran et al. [96] show that a convolutional neural network with large-scale raw input

data provided decent experimental results from a straightforward yet minimalistic

architecture. Nevertheless, their study did not compare this result with another neural

network architecture like multi-layered feed forward neural network.

Farahnakian et al. [33] evaluated the performance of the autoencoder in network

intrusion detection with KDD99 dataset. Also, they investigated the effects of the

hidden layer count on the proposed system performance. Their experiment resulted

with 94.01% accuracy rate. However, their research does not give information about

the detailed structure of the generated neural network, and they used only 10% of the

KDD99 dataset.

Powers et al. [78] present a hybrid artificial immune system using SOM network for

network intrusion detection. They used the KDD99 dataset in their research. In their

research, they classified just a generic type attack individually rather than using and

classifying the whole attack families. In addition, they train their networks with 28

features.

Wang et al. [101], created another hybrid artificial neural network for the NIDS. In

this research, they compared feed-forward neural networks with recurrent neural net-

works and also with their system. Their comparison does not give information about

the compared neural network structures and architectural differences or parameters.

One of the comprehensive comparison study was done by Kwon et al. [55] in 2017.

14

They compared the structure of the autoencoder network with recurrent neural net-

works. This research pointed out that the autoencoder detection accuracy is higher

than the RNN network in a static test dataset.

Chiba et al. [21] have another important study about the comparison of neural net-

work architecture. In this study, they generate 48 neural networks by changing the

components parameters and compare them in a KDD99 environment. However, their

research is limited with the feedforward neural networks.

Bontemps et al. [16] created a recurrent neural network for the NIDS domain. They

also used KDD99 dataset. However, they prepared their dataset as a time series. Their

research showed that the RNN with time series prediction rate is higher than the RNN

with the static dataset.

In this study’s literature review, we applied a review process based on the systematic

literature review framework defined by Kitchenham [52]. According to this frame-

work, our review was performed in three phases: planning, conducting and reporting,

and for the planning phase, the corresponding articles published between years 2008

and 2018 were searched in the popular electronic databases. Forward and backward

snowballing [43] was also used for extending the research.

At the end of our the literature review, distribution of research papers by neural net-

work architectures are illustrated in Figure 2.1 and listed in Table 2.3.

Among neural network architectures, neural networks (18 out of 43 research papers

or 42%) find to be the most widely used methods in the NIDS field. SOM and Feed

Forward Neural Network methods (10 out of 43 research papers and 5 out of 43

research papers respectively) are other popular neural network architectures applied

in NIDS. It is inferred that although many research papers were published, few of

them (3 out of 43 research papers or approximately 7% for each) employed RNN,

CNN and, Hybrid Neural Network models.

On the other hand, the distribution of articles by datasets is represented in Figure

2.2. It is apparent that the KDD99 dataset is the most commonly used one in NIDS

field. It has been used in 19 (44%) out of 43 articles in total. Following are NSL-

KDD and DARPA’98 datasets which have been used in 12 (28%) and 2 (5%) articles

15

Figure 2.1: Distribution of studies based on neural network architecture.

Table 2.3: Distribution of studies based on neural network architecture.

Architecture Studies

Convolutional Neural Network [96] [100] [36] [65]
Recurrent Neural Network [10] [16] [93] [79]

Feed Forward Neural Network [83] [3] [4] [70] [66] [31]
AutoEncoder Networks [94] [48] [12] [6] [33] [99]
Hybrid Neural Network [101] [37] [77]
Deep Neural Network [55] [98] [62] [50] [104] [7] [8] [82]

[60] [49] [5] [82]
Self-Organizing Map

[78] [46] [40] [22] [41] [14] [75] [25]
[26] [103]

respectively. Additionally, researchers of 3 articles (7%) preferred to use their own

dataset to train and test the algorithms.

16

Figure 2.2: Distribution of studies based on dataset.

17

CHAPTER 3

METHODOLOGY

In this study, we focus on the comparison of the neural network architectures in the

network intrusion detection system. We choose the most frequently used neural net-

work architectures in the network intrusion detection system domain [73]. For this

purpose, we adopted a systematic and structured methodology which consists of three

main steps:

1. Pre-processing, cleaning, and transforming the relevant data,

2. Developing models using comparable analytical techniques,

3. Evaluating and assessing the validity and the utility of the models against each

other and the goals of the study,

Overview presentation of our methodology has been exhibited in Figure 3.1.

First, Neural Network Generator (NNG) Preprocessor reads raw data with tracker

interfaces. These interfaces specified for each source type which are big data tracker,

Rest API tracker, and file tracker. KDD99 data stored in the big data environment

for this study because of data size and accessibility. Each tracker reads data and

transfers them to a matrix. NNG Preprocessor application was developed on C++

v17 programming language with R-Interpreter and Python-Interpreter.

In second phase, preprocessor starts to decode data. The computational graph which

will be created by NNG needs numerical data and collected data contains protocol-

specific values in it. As a result of that, decoding data is a crucial step for the rest of

the experiment.

18

Figure 3.1: Overview of the methodology

NNG Extractor application extracts the basic features. The matrix, which is passed

from NNG Preprocessor, is created from raw TCP/IP dump data. Extractor gath-

ers each packages’ duration information, protocol type, port information, connection

flag, and sends/receives byte counts. Extractor also labels each feature for the type. If

data feature is extracted from a time frame, extractor application marks this feature as

a ”Cont” otherwise data mark as ”Disc”. NNG Extractor application was developed

on Python 3.6 programming language with Pandas v0.23.4 as a data analysis library,

NumPy v1.15.4 as a scientific computing library, and SciKit v0.20.1 for regression

calculation library.

After the extraction processes, data arrives to the NNG Engine. The NNG Engine

creates neural network computational graphs according to given architecture and then

evaluates the networks with the test data. Each generation of the network changes pa-

rameters stored in a matrix of activation functions, depth of the network, optimization

algorithm, learning rate, learning momentum, and dropout rate. NNG Engine assures

that all generated neural networks used the same preprocessed dataset as an input and

the entire dataset was firstly split into two equal partitions. Then, the first half of the

dataset was split into two parts (first 80% for training and the remaining 20% for val-

idation). The remaining half part of the entire dataset (50%) is used for testing. NNG

Engine was developed on Python v3.6 programming language with TensorFlow v1.12

as low-level computational graph API, and Keras v2.2.4 as high-level neural networks

API.

19

Finally, NNG collects the performance and statistical data for the tested network.

Each statistical data is stored in a comma separated value file for the future analysis

with the name of the created network. Performance data of the network is also stored

as a binary. This data contains information about each epoch of the network and the

metric values.

The rest of the chapter is organized as follow: In Section 3.1, construction of the

network intrusion detection system is described. In Section 3.2 and 3.3, the general

properties of the KDD99 datasets, preprocessing stage and feature extraction from

dataset are explained. In Section 3.4 the generation of the neural network models

according to properties and given architectures are defined, and Section 3.5 gives

information about the used software and libraries in the study, and finally, evaluation

of the result and experiment platform are discussed in Section 3.6 and 3.7.

3.1 Network Intrusion Detection Model

To perform the comparison of the neural network in the network intrusion detection

domain, we have adopted a top-down approach for constructing the neural networks

for the experiment. Our method consists of five main phases; determination of the

neural network architecture, determination of the parameters which are needed for

the neural network architecture, generation of all possible combinations of the ar-

chitectures with these parameters, building each architecture and collecting the test

results, and evaluating these results.

Phase 1: Determination of the Neural Network Architectures

In this phase, we systematically reviewed the literature of the NIDS domain, and we

defined the frequently used neural network architectures. At the end of the review,

we determined the list of neural network architectures which are shown in Table 3.1.

Phase 2: Determination of the parameters of the Neural Networks

In this phase, we determine the components of the neural networks according to the

architectures which affect the neural network performance. These components are as

follows:

20

Table 3.1: List of Neural Network architectures in the NIDS domain.

Neural Network Architecture Abbreviation
1 Convolutional Neural Network CNN
2 Recurrent Neural Network RNN
3 Feed Forward Neural Network FFNN
4 AutoEncoder Networks AEN
5 Self-Organizing Map SOM
6 Evolutionary Neural Network EEN

• Optimizers are specific algorithms which determine the distance between neu-

ral networks output and the labeled value. As an optimizer algorithm, we decide

to choose the most suitable algorithms which are Stochastic Gradient Descent

(SGD) and Adam optimizer in the domain. Adam and SGD optimizers are the

most popular optimization algorithms and are common ways to optimize neural

networks [93].

• Activation functions calculate the output value of a neuron. On the activation

function side, we choose the most popular [84] nine functions for the NIDS

domain. These functions are; elu, relu, selu, linear, sigmoid, softsign, softmax,

softplus, tanh.

• Learning rate of the optimizer algorithms determines the size of the steps that

are needed to reach the local minimum. In this research, learning rates of the

networks are determined as commonly accepted rage of 0.01 to 0.001[19][85].

• Momentum defines the oscillation of the learning rate in each epoch. We decay

the network with the rate of 0.0 and 1x10−6[19].

• Dropout rate is a regulation technique that prevents the overfitting problem

in the neural network. Neurons are removed with the rate of 0.0, 0.25 and

0.50[86].

• Depth of the network is defined by the number of hidden layers of the network.

We determined the depth of the network as 1, 2, 5, 10, 25 hidden layers depth.

We limited the neural network depth with 25 layer because of the limitation of

the hardware.

Phase 3: Generation of the all possible combinations of the architectures

21

Next, we generate all possible combinations of the neural networks according to net-

work architecture and its parameters. According to phase 1 and phase 2, all possible

combinations of the neural networks count is 6 * 2 * 9 * 2 * 2* 3 * 5 = 6480 combi-

nations.

Phase 4: Building each architecture and collecting the test results In this phase,

we developed an application named Neural Network Generator (NNG) which pick a

neural network combination from the lookup table and create a computational graph

for this architecture. After the creation of the architecture, NNG test the network with

the test data and collect the performance counter of the architecture.

Phase 5: Evaluating these results

Finally, the collected performance counters are evaluated according to evaluation

measurements in the Section 3.6.

3.2 Dataset

Network intrusion detection datasets were created with data packets from networks,

command sequences from user input, or low-level system information, such as sys-

tem call sequences, log files, and CPU/memory usage. We list some commonly used

benchmarks in Table 3.2. All of these datasets have been used in either misuse detec-

tion or anomaly detection.

Table 3.2: Common NIDS Benchmark Datasets

Data source Dataset name Abbreviation

Network traffic

DARPA 1998 TCPDump Files DARPA98
DARPA 1999 TCPDump Files DARPA99
KDD99 Dataset KDD99
10% KDD99 Dataset KDD99-10
Internet Exploration Shootout Dataset IES

User behavior
UNIX User Dataset UNIXDS
DARPA 1998 BSM Files BSM98

System callsequences
DARPA 1999 BSM Files BSM99
University of New Mexico Dataset UNM

DARPA’98 dataset has a number of issues associated with its design and execution

22

that remain unsettled. Some methodologies used in the evaluation are questionable

and may have biased its results. One problem is that the evaluators have published

relatively little concerning some of the more critical aspects of their work, such as

validation of their test data [68]. Because of that, we focus on one benchmark: the

KDD99 dataset.

3.2.1 KDD99 Dataset

KDD99 is a widely used and publicly available dataset for the network intrusion de-

tection systems. The KDD99 dataset is prepared by Stolfo et al. [88]. This dataset

drove from DARPA’98 NIDS evaluation program [92]. DARPA’98 is compressed bi-

nary data that is collected from 7 weeks of network traffic as a raw TCP dump. Thies

data contains about 5 million connection records with each about 100 bytes. This 4

gigabytes of compressed data is split into two parts. First two weeks of data is pre-

pared for the testing purpose and contains approximately 4,900,000 single connection

vectors with 41 features. Each vector is labeled as either normal or a specific attack

type. These attacks types can be categorized into 4 groups as following :

1. Denial of Service Attack (DoS): is an attack in which attackers try to deny

legitimate users access to a service.

2. User to Root Attack (U2R): is an exploit which allows an attacker to access a

normal user’s or a superuser’s account on the system.

3. Remote to Local Attack (R2L): is a vulnerability that an attacker can send pack-

ets to the target machine over a network in spite of attacker’s privileges.

4. Probing Attack: is an information gathering attempt from network and devices

on that network.

5. Normal : is an information that shows the normal network traffic flow.

Test part of the research contains 13 attack types. The names and detailed information

about the attacks are listed in Table 3.3.

23

Table 3.3: Attacks listed in the KDD99 dataset

10% KDD99
Category Attack Type Train Test

DOS

back 2203 1098
land 21 9
neptune 107201 58001
pod 264 87
smurf 280790 164091
teardrop 979 12

Probe

ipsweep 1247 306
nmap 231 84
portsweep 1040 354
satan 1589 1633

R2L

ftp_write 8 3
guest_password 53 4367
imap 12 1
multihop 7 18
phf 4 2
spy 2 0
warezclient 1020 0
warezmaster 20 1602

U2R

loadmodule 9 2
buffer_overflow 30 22
rootkit 10 13
perl 3 2

Normal 97278 60593
Total 494021 292300

3.3 Data Preprocessing

Data preprocessing is required in every knowledge discovery system, including NIDS,

which tries to classify network traffic as normal or attack. Standard preprocessing

steps for this study include data cleaning, integration, feature extraction, data normal-

ization, and information decoding.

In this study, the data preprocessing stage is executed with an application named

NNG Preprocessor, developed in Python, to feed the feature extraction unit of the

test bench. Preprocessor works on raw data. This raw data retrieved from a dataset

KDD99 or are collected a simulation environment. Either way, read data is captured

24

package data form of TCP/IP dump. NNG Preprocessor reads raw data with tracker

interfaces. These interfaces are specified for each source type which are big data

tracker, Rest API tracker, and file tracker. KDD99 data is stored in the cloud envi-

ronment for this study because of data size and accessibility. Each tracker reads data

and converts the data to a matrix. After the matrix conversion process, preprocessor

starts to decode data. The computational graph which will be created by NNG needs

numerical data and collected data contains protocol-specific values in it. As a result,

decoding data is a crucial step for the rest of the experiment.

Finally, NNG Preprocessor passes the prepared data to an application named NNG

Extractor for the feature extraction.

3.3.1 Feature Extraction

Collected dataset’s features can be categorized into three following groups:

1. Basic features contain all the attributes that can be extracted from TCP/IP con-

nections.

2. Traffic features contain computed attributes in the network traffic with respect

to a window interval of 2 seconds. However, some of the slow probing at-

tacks like low rate port scanning use much larger time interval. For this reason,

host, and service attributes re-calculate according to connection windows of

100 connection rather than time window of 2 seconds.

3. Content features R2L and U2R attacks do not contain any sequential pattern

to follow. This kind of attack usually uses a single connection to gather infor-

mation from the network. Because of this, features extract from the suspicious

behaviors in the data portions.

Kayacik et al.[47] investigate the relevance of each feature in KDD99 intrusion de-

tection datasets. They create a feature set that contains 41 distinct feature about the

data. Six of these features are extracted from TCP/IP connection data and the rest of

them are extracted from traffic and content information. NNG Extractor application

25

determines and starts to extract 41 predefined features from the data matrix based on

the entropy of the feature.

Entropy comes from information theory. Shows the amount of information obtained.

In other words, the higher the entropy, the more information content it has. Informa-

tion indicates the importance of property or quality, and determines which attribute is

most important to distinguish between classes to be knowledgeable. This piece of in-

formation is also calculated by the training data. Information can help in choosing the

best distinction; If the value is high, then this section is good, otherwise the section is

not good enough.

NNG Extractor application firstly extracts the basic features. The matrix is which

passed from NNG Preprocessor is created from raw TCP/IP dump data. Extractor

gathers each packages’ duration information, protocol type, port information, con-

nection flag, and send/receive byte counts. Extractor also labels each feature for the

type. If the data feature is extracted from a time frame, extractor application mark

this feature as a "Cont" otherwise data is marked as "Disc". Full features are listed in

the Table 3.4.

3.4 Neural Network Generator

The experiments were performed with an application named Neural Network Genera-

tor (NNG), developed in Python with TensorFlow and Keras libraries. These libraries

are explained in Section 3.5. The application creates neural network computational

graphs according to given architecture and then evaluates the networks with the test

data. Each generation of the network changes parameters stored in a matrix of activa-

tion functions, depth of the network, optimization algorithm, learning rate, learning

momentum, and dropout rate.

Firstly, NNG gets the definition of the neural network architecture from the lookup

map. This lookup map holds the description of the neural network architecture with

the appropriate parameters which is needed to create the computational graph. Neural

network architectures which are used by the NNG are listed in Table 3.5.

26

Table 3.4: Extracted features.

Feature Description Type
duration Duration of the connection. Cont.
protocol type Connection protocol (e.g. tcp, udp) Disc.
service Destination service (e.g. telnet, ftp) Disc.
flag Status flag of the connection Disc.
source bytes Bytes sent from source to destination Cont.
destination bytes Bytes sent from destination to source Cont.
land 1 if connection is from/to the same host/port; 0 otherwise Disc.
wrong fragment number of wrong fragments Cont.
urgent number of urgent packets Cont.
hot number of "hot" indicators Cont.
failed logins number of failed logins Cont.
logged in 1 if successfully logged in; 0 otherwise Disc.
compromised number of "compromised” conditions Cont.
root shell 1 if root shell is obtained; 0 otherwise Cont.
su attempted 1 if "su root” command attempted; 0 otherwise Cont.
root number of "root” accesses Cont.
file creations number of file creation operations Cont.
shells number of shell prompts Cont.
access files number of operations on access control files Cont.
outbound cmds number of outbound commands in an ftp session Cont.
is hot login 1 if the login belongs to the "hot” list; 0 otherwise Disc.
is guest login 1 if the login is a "guest” login; 0 otherwise Disc.
Count number of connections to the same host as the current connection in the past two seconds Cont.
srv count number of connections to the same service as the current connection in the past two seconds Cont.
serror rate % of connections that have “SYN” errors Cont.
srv serror rate % of connections that have “SYN” errors Cont.
rerror rate % of connections that have “REJ” errors Cont.
srv rerror rate % of connections that have “REJ” errors Cont.
same srv rate %of connections to the same service Cont.
diff srv rate % of connections to different services Cont.
srv diff host rate % of connections to different hosts Cont.
dst host count count of connections having the same destination host Cont.
dst host srv count count of connections having the same destination host and using the same service Cont.
dst host same srv rate % of connections having the same destination host and using the same service Cont.
dst host diff srv rate % of different services on the current host Cont.
dst host same src port rate % of connections to the current h o s t having the same src port Cont.
dst host srv diff host rate % of connections to the same service coming from different hosts Cont.
dst host serror rate % of connections to the current host that have an S0 error Cont.
dst host srv serror rate % of connections to the current h o s t and specified service that have an S0 error Cont.
dst host rerror rate % of connections to the current host that have an RST error Cont.
dst host srv rerror rate % of connections to the current h o s t and specified service that have an RST error Cont.

As an optimizer parameter for the computational graph, we chose Adam optimizer

and Stochastic Gradient Descent (SGD) optimizer. Adam and SGD optimizers are

the most popular optimization algorithms and are a common way to optimize neural

networks [93]. The Stochastic Gradient Descent algorithm minimizes the cost func-

tion by updating the parameters in the reverse direction. On the other hand, Adam

optimizer computed derivative of the mini-batch of parameters and took the weighted

average of this calculation. Adam optimizer drove from RMSprop optimizer algo-

rithm. Adam optimizer has many variations of itself like Nadam, Adamax.

The learning rate of the optimizer algorithms determines the size of the steps that we

27

Table 3.5: Neural Network Architectures

Neural Network Architecture Short Description
Convolutional Neural Network
(CNN)

A Convolutional Neural Network is comprised of
one or more convolutional layers and then followed
by one or more fully connected layers as in a stan-
dard multilayer neural network.

Recurrent Neural Network (RNN) A recurrent neural network is a class of artificial
neural network where connections between nodes
form a directed graph along a sequence.

Feed Forward Neural Network
(FFNN)

A feedforward neural network is an artificial neural
network wherein connections between the nodes do
not form a cycle.

AutoEncoder Networks (AEN) An autoencoder is a type of artificial neural net-
work used to learn efficient data codings in an un-
supervised manner.

Self-Organizing Map (SOM) A self-organizing map or self-organizing feature
map is a type of artificial neural network that is
trained using unsupervised learning to produce a
low-dimensional, discretized representation of the
input space of the training samples, called a map,
and is, therefore, a method to perform dimension-
ality reduction.

Evolutionary Neural Network
(ENN)

Neuroevolution, or neuro-evolution, is a form of
artificial intelligence that uses evolutionary algo-
rithms to generate artificial neural networks(ANN),
parameters, topology, and rules.

needed to reach the local minimum. Besides the fix learning rate1, computing the

adaptive learning rate for each parameter is also a regularly used method in the neural

networks. In this method, a learning momentum variable is used. This variable stores

an exponential decay average of the past squared gradient. This way, oscillation of

the learning rate in each step will decrease with respect to the momentum variable.

Another parameter of the network are the activation functions. An activation function

calculates the output value of a neuron. Details of the activation functions that are

chosen for the network creation explained in Section 2.2.1.

The depth of the network parameter determines the count of the hidden layers. NNG

creates neural networks. This parameter has a significant effect on the training time

1 Fix step size is hyperparameter which determines to what extent newly acquired information overrides old
information.

28

and detection time of the network.

The last used parameter in the network is the dropout rate. Dropout is a regulation

technique that prevents the overfitting problem in the neural network [86].

Moreover, NNG determines the CPU or GPU specs of the test platform and decides

the consecutive thread count for the platform. This determined consecutive thread

count will be an important part of the computational graph. If the number of threads

is higher than the hardware can lift, the current platform will start to experience prob-

lems with performance. Correspondingly, NNG generates computational graph ac-

cording to selected neural network parameters and add this created neural network

to the appropriate thread. This created computational graph organizes the neural net-

work in terms of a forward propagation step. This step computes the output of the

neural network. Process followed by a backward pass or back propagation step which

is used to compute the gradients or compute the derivatives.

At the same time, NNG arranges the input interface for the dataset. For each thread,

NNG uses this input interface to construct a dataset for the prepared the computational

graph. NNG can get input from either the recorded dataset or simulation environment.

Each input interface opens a channel for the relevant thread. Then, preprocessed data

redirected to neural networks’ input channel. Finally, NNG collects the performance

data and statistical data for the tested network. Each statistical data are stored in a

comma separated value file for future analysis with the name of the created network.

Performance data of the network is stored in binary. This data contains information

about each epoch of the network and the metric values. Performance data contains

variables such as time for each epoch, training accuracy, moving mean for each step,

Poisson Distribution result and cross entropy changes according to time.

3.4.1 Network Attack Simulator

The most challenging aspect of simulation of network-based intrusion detection re-

search is proving the reliability and dependability of simulated datasets in comparison

to real-life datasets. On the other hand, well designed simulation environment offers

repeatability, programmability and extensibility of the validation instrument [15].

29

A Virtual Lab named Cyber Security Attack Simulator (CSAS) have been imple-

mented in order to create an isolated platform to simulate, test and analyze different

types of security threats. The infrastructure was built by means of a VMware virtual-

ization software (or, for repeatability of the study, any virtualization platform can be

used for this stage) on one physical machine. In order to connect the virtual machine

to the network, we mapped the external internet connection of our host machine to the

internal VM network. The CSAS allows us to configure different network topologies

for defining different attack scenarios. The virtual testbed is an isolated environment

to mainly fabricate and collect simulated attack data. As, network technologies are

growing rapidly, we primarily employed open platforms to include different efforts

and different packages whenever there is a need [76]. Moreover, using open source

tools and applications facilitate the repeatability of the study. We used open source

systems and applications, e.g., GNS3, Ubuntu, Pfsense firewall in this study.

Figure 3.2: Simulator network topology

We initially defined the network topology as shown in Figure 3.2 using GNS3. At-

tacker and target machines are Ubuntu Docker appliance for GNS3. Pfsense is an

appliance of the GNS3. VMnet8 is our exit point to the internet. We disabled all

incoming and outgoing traffic from the VMnet8 using firewall rules during the exper-

imental phase.

In this experiment, CSAS uses the remaining half of the segmented dataset. First, this

data is converted into a time series to be used by the created ANN. In this way, they

30

can be tested in a real environment. It moves in the form of traffic time series in real-

life network structures. They are also available in non-clean data in this traffic. The

topologies tested with static data are transferred over CSAS. They continue testing in

a structure close to the actual environment. This data is generated from data that the

ANNs have never seen before. A system contained in the VNet8 network in the test

environment has been established to provide data to the environment. This data can

be accessed from a firewall to access the NIDS location. The data generated by the

data provider in the VNet8 environment is such that it will provide attack data to the

servers and clients behind the backbone.

As a result of these tests, the data is collected and added to the results of the tests

carried out with static data.

3.5 Software Used

In this study, Neural Network Generator (NNG) application was developed on Python

v3.6 programming language with TensorFlow v1.12 as low-level computational graph

API, and Keras v2.2.4 as high-level neural networks API. NNG also uses the Tensor-

Board for the collect the statistical data about the computational graph. NNG Ex-

tractor application was developed on Python 3.6 programming language with Pandas

v0.23.4 as a data analysis library, NumPy v1.15.4 as a scientific computing library,

and SciKit v0.20.1 for regression calculation library. NNG Preprocessor application

was developed on C++ v17 programming language with R-Interpreter and Python-

Interpreter. Submodules, calculate and normalize the data, of the NNG Preprocessor,

were developed on R programming language. Finally, R programming language also

was used in Platform Result Analyzer (PRA) to calculate the evaluation results.

In the simulation part of the study, Virtual Lab named Cyber Security Attack Simu-

lator (CSAS) was implemented on VMWare v14 virtualization environment. On this

environment, Docker was used as a container manager, GNS3 was used as network

simulation manager and Cisco 3500 switch image, and PfSense firewall images were

used as active network components on GNS3 simulator. As an attacker and victim

platform, Ubuntu Xenial OS was chosen.

31

The experiments were performed on the Intel x64 based i7 3.5Ghz CPU, 32GB of

memory, two NVIDIA 1080x graphic card connected with SLI and 5 TB of disk

space.

3.6 Evaluation Measures

Network Intrusion Detection Systems (NIDS) are designed for detecting anomalies

and attacks in the network. Thus, the effectiveness of a NIDS can be by its capacity

to make accurate predictions[74]. Therefore, there are four possible outcomes for a

given event. These outcomes are shown in Table 3.6, also known as the confusion

matrix. True negatives, as well as true positives, correspond to correct operation of

the NIDS; that is, the classification of the NIDS was correct, and events marked as

"normal" or "attack". False positives indicate to "normal" events being predicted as

"attack"; false negatives are "attack" events incorrectly predicted as "normal" events.

Table 3.6: Confusion Matrix

Predicted class
Negative class (Normal) Positive class (Attack)

Actual class
Negative class (Normal) True negative (TN) False positive (FP)
Positive class (Attack) False negative (FN) True positive (TP)

3.6.1 True Negative Rate

True negative rate (TNR) 3.1, also known as Specificity, is the ratio of the number of

legitimate records detected as normal instances divided by the total number of normal

(legitimate) instances included in the test set.

TN

TN + FP
(3.1)

3.6.2 True Positive Rate

True positive rate (TPR) 3.2, also known as Detection Rate (DR) or Sensitivity, is

defined as the number of intrusion records detected as attacks by the NIDS divided

32

by the total number of intrusion records present in the test set.

TP

TP + FN
(3.2)

3.6.3 False Positive Rate

In the network intrusion detection system, a positive result of an event considered as

an "attack". False positive rate (FPR) 3.3, also known as false alarm rate (FAR), is

the ratio of the number of legitimate instances detected as attack instances divided by

total normal (legitimate) instances included in the test set.

FP

TN + FP
= 1− Specificity (3.3)

If the false positive rate is high in a NIDS, it can cause the administrator to inten-

tionally ignore the system warnings, which makes the system enter into an uncertain

status. Thus, a NIDS should have a high DR and a low FAR [102].

3.6.4 False Negative Rate

False negative rate (FNR) 3.4 is the ratio of the number of attack instances detected

as normal instances divided by the total attack instances included in the test set. This

term is used to describe a network intrusion device’s inability to detect the true attack.

The FNR value can be calculated by one minus TPR.

FN

TP + FN
= 1− Sensitivity (3.4)

3.6.5 Precision, Recall, and F-Measure

The Precision, Recall, and F-Measure metrics ignore the normal data that has been

correctly classified by the NIDS (TN), and focus on both the intrusion data and FAR

generated by NIDS.

33

Accuracy (3.5) can be defined as the proportion of the total number of the correct

predictions to the actual test set size.

TN + TP

TN + TP + FN + FP
(3.5)

Precision (3.6), which is another information retrieval term, is often is paired with

“Recall”. It indicates the percentage of intrusions that have occurred. It is calculated

by the number of correctly classified positive (intrusion) examples divided by the

number of examples labeled by the system as positive. A NIDS aims to obtain a high

Precision, meaning that the number of false alarms is minimized.

TP

TP + FP
(3.6)

Recall measures the missing part from the Precision; namely, the percentage from the

real intrusions covered by the classifier. Consequently, it is desired for a classifier to

have high recall value. Recall does not take into consideration the number of False

Alarms. Thus, a classifier can have at the same time both good recall and high false

alarm rate.

F-score or F-measure is considered as the harmonic mean of recall and precision. The

higher value of F-score indicates that the NIDS is performing better on recall (true

positive rate) and precision. F-Measure is preferred when only one accuracy metric

is desired as an evaluation criterion. Note that when Precision and Recall reaches

100%, the F-Measure is maximum, meaning that the classifier has 0% false alarms

and detects 100% of the attacks. Thus, the F-Measure of a classifier is desired to be

as high as possible.

3.7 Experiment

NNG assures that all generated neural networks used the same preprocessed dataset

as input and the dataset were split into two. The first half of the dataset is split into

80% for training and 20% for validation and the remaining part is used for testing.

34

In the training phase, every network is trained with constant epoch value. After the

training phase is complete, each network is tested with an unknown data which is the

remaining half of the main dataset and simulated attack data.

The time performance of an intrusion-detection system corresponds to the total time

that the NIDS needs to detect an intrusion. This time includes the processing time and

the propagation time. The processing time depends on the processing speed of the

NIDS, which is the rate at which the NIDS processes audit events. Time performance

is a critical metric for the NIDS. For this reason, each generated the network’s training

time data and detection time data stored.

Eventually, stored results and metrics are analyzed with the help of an application

named Platform Result Analyzer (PRA) which is developed on R programming lan-

guage.

35

CHAPTER 4

RESULTS

We performed 6480 comparative experiments as explained in Section 3.1 by using the

KDD99 dataset with extracted 41 features. After the evaluation of the experiments,

we selected the top ten successful networks according to the false positive rate and

accuracy metrics. We evaluate these results of the experiments in three main section.

First, we focus on the comparison of neural network architectures’ performance on

network intrusion detection domain. Second, we elaborate on how neural network

parameters affect the evaluation counters like false positive rate and accuracy of the

network in the data and, lastly, we detail the result of the top selected networks’

behavior in the Cyber Security Attack Simulator (CSAS).

4.1 Results of the Architectural Comparison

In our experiments, all Convolutional Neural Networks (CNN) architectures have

resulted in accuracy below 10%, as shown in Figure 4.4 . This is because of the

structure of the CNN. CNN architectures convolute the input data. However, in the

NIDS domain, convoluting reduces the number of features in the input data. Thus,

every created CNN architecture resulted with a low accuracy rate.

Regarding the false positive rate and accuracy, lowest detection time was reached

by CNN with a time of 0.23s, shown as in Figure 4.2. However, CNN architecture

lost significant performance because of its architecture. Convoluting the input data

caused the loss of features. Despite the detection time, lowest accuracy and highest

false positive rates belong to the CNN architecture in our experiment. Also because of

36

the architecture, the Convolutional Neural Network has the lowest training time with

248s. Overall node count in a CNN is lower than the other network architectures. This

effect suggests that the time cost of backpropagating the network for each epoch is

less than the other architectures for the NIDS domain. For the rest of the architectures,

Autoencoder, Feed Forward Neural Network, and Recurrent Neural Network, the

average training times were in the range between 343s to 934s as shown in Figure

4.1.

Figure 4.1: Architecture average training time.

Furthermore, in Figure 4.2, the training time of the Evolutionary Neural Network ar-

chitecture was over 4 hours (14523s) on average. Neuroevolution technique creates

a batch of neural networks and tests them with a fitness function with the given data.

Each batch contains more than one neural network. In this case, in our experiment

neuro-evaluator creates 20 neural networks for a batch. Thus, testing and backprop-

agating each networks’ time cost becomes higher. Meanwhile, ENN architecture

created complex networks in the NIDS domain with the selected feature. Because of

that, ENN has the highest detection time. Figure 4.2 shows the average detection time

of the neural network architectures.

On the other hand, in Figure 4.3 and Figure 4.4, the average accuracy of the Auto En-

coder Networks reached 94.71%, and the average false alarm rate was 0.35%. Auto

37

Figure 4.2: Architecture average detection time.

Figure 4.3: Architecture average False Positive Rate.

Encoder networks can compress the high dimensional input data into the low dimen-

sional form, and this kind of network architectures can decode low dimensional data

to original data. According to an architectural structure, basic working principle of

an autoencoder network is encoding the input data into the hidden layers and decod-

38

ing the data from the hidden layers to the output layer. For this reason, autoencoder

networks’ training times and detection times are less than the other complicated, deep

neural networks.

Figure 4.4: Architecture average Accuracy.

Lastly, in Figure 4.3 and Figure 4.4, for Feed Forward Neural Network architectures,

the average accuracy was 92.34%, and the false positive rate was 1.23%. Moreover,

Recurrent Neural Networks reached 91.58% for accuracy and average of 8.83% of

the false positive rate. RNNs perform better than the other networks if the input is

in stream form. However, this performance may vary according to the determination

of the time frame in the preprocessing stage. On the other hand, Feed Forward Neu-

ral Networks gave optimal performance curve with the proper choice of activation

function and optimization method.

4.2 Top 10 of the Neural Networks

For defined evaluation criteria and methodology, we sorted results according to lowest

false positive rate and highest accuracy. In this section, we present the results of the

chosen top 10 networks, listed in Table 4.1.

39

Table 4.1: Top 10 rated network.

Type Architecture Hidden Layer Output Layer Optimizer Learning Decay Dropout
Type 0 FFNN softmax softmax Adam decay 0.5
Type 1 AEN sigmoid sigmoid Adam fix 0
Type 2 AEN sigmoid sigmoid Adam fix 0.5
Type 3 AEN sigmoid sigmoid Adam decay 0
Type 4 FFNN elu softmax Adam fix 0.5
Type 5 RNN relu softmax Adam fix 0.5
Type 6 RNN relu softsign Adam decay 0.5
Type 7 FFNN softplus relu Adam fix 0
Type 8 RNN relu softsign Adam fix 0.5
Type 9 FFNN relu elu Adam decay 0.5

In Figure 4.5, all the top 10 networks accuracy distributed between 94.074% and

99.012%. The Type 7 network has the highest accuracy rate with 99.012% and the

Type 3 lowest accuracy rate with 94.074%. Type 7 network used Feed Forward Neu-

ral Network architecture and Type 7 network was created with Softplus activation

function in the hidden layers. 9 of the top 10 networks employed an activation func-

tion which is a member of the logistics in their hidden layers function family. Due

to the nature of the sigmoid activation function, it converges close to its saturation

values of 0 and 1.

Also, this network employed the Adam optimizer. Adam optimizer has the low-

est training error and is computationally faster than the SGD. Adam optimizer also

reached a steady state in fewer epochs than the SGD. Laters epochs’ oscillation cre-

ated large updates in the SGD and needed a second order momentum for reducing the

update rate.

Moreover, 7 of the top 10 networks employed a dropout method with the rate of 0.5.

This statistic indicates that these networks have an issue with overfitting. Overfit-

ting is an error when the network starts to memorize the result. The reason for the

overfitting is that input data is not sufficient for the network or the created network

has a complex structure. In our case, the problem which caused the overfitting is

the complexity. Networks that use dropout values usually have a deeper hidden layer

structure in this situation.

In the perspective of false positive rate, the Type 0 has the minimum rate with 0.085%.

This network used the Adam optimizer with Softmax activation function in the hidden

40

Figure 4.5: Top 10 Neural Network’s accuracy.

layers. Moreover, this network used a drop-out value with 0.5. The Type 0 network

is created with FFNN architecture. The Type 9 network has the maximum value with

0.819%. The distribution of the results can be seen in Figure 4.6

Figure 4.6: Top 10 Neural Network’s false positive rate.

41

4.3 Effects of the Parameters

Figure 4.7 describes the performance comparison of the optimizer functions used in

all ANNs tested in the experiment. In the pivoting of the optimizer algorithm dur-

ing the benchmarking, we see that the Adam optimizer algorithm achieves a higher

success than the SGD optimizer algorithm in all experiments. This trent continues

in the topologies of ANN. As is illustrated by Figure 4.7, Adam optimizer has the

lowest false positive rate against SGD optimizer. Furthermore, Adam optimizer has

the highest accuracy and precision value overall. Adam optimizer targets high di-

mensional or large dataset space [51]. Also, because of the memory efficiency and

ability to work with the higher dimensional data, the Adam optimizer provides the

lower training time and detection time. However, SGD optimizers fitted FFNN had

a better performance rate over Adam optimizer. Finally, deeper network with Adam

optimizers resulted with higher accuracy and lowest false positive rate against SGD

optimizer.

Figure 4.7: Compression of optimizers.

As shown by Figure 4.8, Architectures which employed a decay momentum value

for their learning rate reach slightly better performance rate against fix learning rate.

This result is also the same for the accuracy and precision value. Network with Adam

42

optimizers, perform better with the momentum parameters because of the nature of

the optimizer. On the contrary, momentum value had a significant effect on the train-

ing cost of the networks. Networks which employed a degree of momentum resulted

with 13.43% lower training time and 23.46% lower resource consumption.

Figure 4.8: Compression of learning decay rates.

Dropout applied networks resulted with a high false positive rate against the non-

applied network. Moreover, this result reflected on accuracy and precision value of

the non-applied networks as shown in Figure 4.9. The effectiveness of the dropout

was higher with deeper neural networks. However, this conclusion is heavily depen-

dent on the input dataset size.

In the hidden layer, Softplus activation function has the lowest false positive rate on

average with 10.8% as shown in Figure 4.10. However, in terms of the accuracy rate

Softmax, Softplus and Sigmoid activation function share the leading place. These

three activation functions have the same characteristics and all the three activation

function belong to the logistic function family. Due to the nature of the logistic func-

tion, it converges close to its saturation values of 0 and 1. In addition, as a result of

the experiments, the ReLu activation function showed a highest performance than the

other functions in RNN topologies.

43

Figure 4.9: Compression of dropout rates.

Figure 4.10: Hidden layer activation function performance counters.

44

CHAPTER 5

DISCUSSION AND CONCLUSION

Since the purpose of this research was to compare the efficiency of neural network

architectures in the NIDS domain, for this purpose, we created an experiment bench

for generating samples of the various neural network architectures with customizable

parameters and tested these neural networks using well-known benchmark dataset

KDD99. Also, we developed a simulation platform which acts like a live network, to

examine the created neural network. This simulation gives us an opinion about their

performance about how trained network behaves in the near-real-time environment.

Many review research [97] [63] [102] [73], have shown that the usage of the artifi-

cial neural networks in network intrusion detection domain is increasing. However,

despite the popularity of the ANNs and the capability of the general approximation,

constructing or determining a domain-specific topology remains a time consuming

and a challenging topic. In this research, we aim to propose a comparison guideline

for the artificial neural network topologies and components in the NIDS domain. The

results and findings of this research will help the researchers and practitioners.

Further, we collected the test results from the experiment bench according to defined

evaluation measurement criteria in Section 3.6. Accumulated outcomes are examined

and investigated according to research questions in Section 1.1.

At the end of the analysis, the neural networks which used the auto-encoder net-

work architecture have outperformed the other evaluated architectures with 94.71%

of accuracy and 0.35% false positive rate. On the other hand, Evolutionary Neural

Networks architecture reached the highest mark in the test; however, training time

45

and detection time was the highest of them all. Moreover, the feed forward neural

network architectures also had considerable results in terms of false positive rate of

1.23% and accuracy of 92.34%. Lastly, in the simulation environment, recurrent neu-

ral network architecture and auto-encoder neural network architecture resulted with

the highest percentages of accuracy and false positive rate.

Subsequently, training costs have the major value for the evaluation of the neural net-

works. ENN has the worst training and prediction time in all of the tested neural

networks, because of its architectural structure. Despite the best training and de-

tection time that were recorded in tests, worst detection accuracy and highest false

positive rate belong to CNN network architecture.

In our experiment, we observed a correlation between network size and dropout value

with the used KDD99 dataset. When the depth of the network increases, neural net-

work more tend to face with overfitting. However, decreasing the depth of the archi-

tecture cause the miss detections. Moreover, the Adam optimizer performed better

than the SGD optimizer. Adam optimizer produced lower false positive of 5.65% and

higher accuracy result of 4.29%.

Just as crucial as the optimizer; activation functions also have a significant effect on

the performance. Neural networks which employed logistic function as an activation

function tend to give a better result than the other tested activation functions.

5.1 Discussion of Results

Comparative studies [21] [23] [49] in this field focus on one type of network archi-

tecture and does not mention about the preliminary parameters of the created neural

networks. Many other studies [57] [35] [71] focus on comparing artificial neural

network performances with different techniques used in NIDS. These research gives

limited information about the employed neural network architectures. Because of

these reasons, finding the effects of the components which play the crucial role in the

performance of an ANN, cannot be determined.

Chiba et al. [21] compared parameters of the neural networks to find an architecture

46

for higher detection rate and lower false positive rate. In their research, they generated

and examined 48 different feed-forward neural networks in KDD99 dataset. After

the examination, logistic activation functions yields with the higher accuracy and

lowest false rate. Our findings support the results of this study, however, the scope of

the experiments performed by this study only cover the feed-forward neural network

architecture. Thus, comparison of the other type of architectures was missing in this

research.

Shone et al. [82] compared the deep learning architectures with the shallow network

architectures and, they proposed an autoencoder based deep learning model for the

NIDS. Their results demonstrate that the proposed architecture has the highest de-

tection rate. Shone et al.’s results concluded that the autoencoder based architectures

have the highest accuracy value. However, in this study, they used one activation

function and one optimization function. Because of this reason, the effect of the used

activation functions and optimization functions and other parameters cannot be deter-

mined with their research.

Furthermore, Dao et al. [23] also examined the performance of feed-forward neural

networks. In their experiments, they chose only an SGD optimization method and

changed the parameters around the selected optimization method. Conversely, this

study just contains a comparison of the limited number of activation function with

only one optimization function on the feed-forward neural network.

On the other hand, Kim et al. [49] completed a comparison of the depth of the neu-

ral networks. This study was also performed on the SGD optimization method, and

as an activation function, they used the hyperbolic sigmoid function. They showed

that incrementing the hidden layer count decreases the reliability of the network and

increases the computation time. Our results show that the deeper feed-forward neu-

ral network has the same behavior, but we found complex and more profound auto-

encoder neural network resulted in a better performance ratio.

The analysis was carried out according to the determined research questions and the

results gave the following important results to the practitioners and researchers:

• The auto-encoder network topology gave the highest performance among the

47

topologies tested. RNN topologies on the flow data provided a noteworthy

performance. In addition, it was observed that CNN topologies failed in the

NIDS area.

• In spite of excellent accuracy rates, the detection times of ENN topologies were

higher than the other topologies. In order to improve the detection time per-

formance of ENN structures, it is observed that more powerful machines are

needed in the current test environment. In the same way, auto-encoder networks

have been the most successful topology in experiments with high accuracy and

low FAR values in combination with short detection time.

• The activation functions of the logistic function family have reached higher val-

ues than the other functions in the NIDS field. The softplus, which is a logistic

function, has the highest performance values. Although the ReLu activation

function gave higher results in RNN architectures, it was observed that it gave

the lowest results when used in auto-encoder topology. In the same way, when

the optimizer algorithms are determined as pivot, Adam optimizer algorithm

has reached the highest performance values in all topologies used according to

SGD optimizer algorithm. In addition, the ENN topology selected Adam as

the optimal optimizer algorithm according to the NIDS domain data. Another

important effect on FAR is the dropout value. Using the dropout value, ANN

topologies achieved a better performance than those who did not use dropout.

5.2 Limitations and Further Research

Testing all variations of the neural network was time expensive and was a slow pro-

cess. For this reason, increasing the variance of the testing parameters like optimizer

function and depth of the networks could be considered as a future work with a more

capable, modern GPU supported experimentation environment. Of equal importance,

a simulation environment which has a higher bandwidth and throughput, which is

also capable of creating a higher ratio of data will show more detailed results.

48

Bibliography

[1] M. Saniee Abadeh, J. Habibi, and C. Lucas. “Intrusion Detection Using a

Fuzzy Genetics-Based Learning Algorithm”. In: Journal of Network and Com-

puter Applications 30.1 (Jan. 2007). 00200, pp. 414–428. DOI: 10.1016/

j.jnca.2005.05.002.

[2] Abdulla Amin Aburomman and Mamun Bin Ibne Reaz. “A Novel SVM-

kNN-PSO Ensemble Method for Intrusion Detection System”. In: Applied

Soft Computing 38 (Jan. 2016). 00121, pp. 360–372. DOI: 10.1016/j.

asoc.2015.10.011.

[3] Iftikhar Ahmad, Azween B Abdullah, and Abdullah S Alghamdi. “Applica-

tion of Artificial Neural Network in Detection of DOS Attacks”. In: Proceed-

ings of the 2nd International Conference on Security of Information and Net-

works. ACM, 2009, pp. 229–234. ISBN: 1-60558-412-6.

[4] Iftikhar Ahmad, Azween B Abdullah, and Abdullah S Alghamdi. “Applica-

tion of Artificial Neural Network in Detection of Probing Attacks”. In: Indus-

trial Electronics & Applications, 2009. ISIEA 2009. IEEE Symposium On.

Vol. 2. IEEE, 2009, pp. 557–562. ISBN: 1-4244-4681-3.

[5] Md Zahangir Alom, VenkataRamesh Bontupalli, and Tarek M Taha. “Intru-

sion Detection Using Deep Belief Networks”. In: Aerospace and Electronics

Conference (NAECON), 2015 National. IEEE, 2015, pp. 339–344. ISBN: 1-

4673-7565-9.

[6] Md Zahangir Alom and Tarek M Taha. “Network Intrusion Detection for

Cyber Security on Neuromorphic Computing System”. In: Neural Networks

(IJCNN), 2017 International Joint Conference On. IEEE, 2017, pp. 3830–

3837. ISBN: 1-5090-6182-7.

[7] Md Zahangir Alom and Tarek M Taha. “Network Intrusion Detection for Cy-

ber Security Using Unsupervised Deep Learning Approaches”. In: Aerospace

49

https://doi.org/10.1016/j.jnca.2005.05.002
https://doi.org/10.1016/j.jnca.2005.05.002
https://doi.org/10.1016/j.asoc.2015.10.011
https://doi.org/10.1016/j.asoc.2015.10.011

and Electronics Conference (NAECON), 2017 IEEE National. IEEE, 2017,

pp. 63–69. ISBN: 1-5386-3200-4.

[8] Khaled Alrawashdeh and Carla Purdy. “Reducing Calculation Requirements

in FPGA Implementation of Deep Learning Algorithms for Online Anomaly

Intrusion Detection”. In: Aerospace and Electronics Conference (NAECON),

2017 IEEE National. IEEE, 2017, pp. 57–62. ISBN: 1-5386-3200-4.

[9] Christine M Anderson-Cook. “Practical Genetic Algorithms”. In: Journal of

the American Statistical Association 100.471 (Sept. 2005). 04437, pp. 1099–

1099. DOI: 10.1198/jasa.2005.s45.

[10] Peter J Angeline, Gregory M Saunders, and Jordan B Pollack. “An Evolu-

tionary Algorithm That Constructs Recurrent Neural Networks”. In: IEEE

transactions on Neural Networks 5.1 (1994), pp. 54–65.

[11] Stefan Axelsson. Intrusion Detection Systems: A Survey and Taxonomy. 2000,

p. 27.

[12] R Can Aygun and A Gokhan Yavuz. “Network Anomaly Detection with Stochas-

tically Improved Autoencoder Based Models”. In: Cyber Security and Cloud

Computing (CSCloud), 2017 IEEE 4th International Conference On. IEEE,

2017, pp. 193–198. ISBN: 1-5090-6644-6.

[13] Rebecca Bace and Peter Mell. NIST Special Publication on Intrusion Detec-

tion Systems. 00696. USA: National Institute of Standards and Technology,

2001, p. 53.

[14] Rachid Beghdad. “Critical Study of Neural Networks in Detecting Intrusions”.

In: Computers & security 27.5-6 (2008), pp. 168–175.

[15] Sunny Behal and Krishan Kumar. “Trends in Validation of DDoS Research”.

In: Procedia Computer Science 85 (2016). 00018, pp. 7–15. DOI: 10.1016/

j.procs.2016.05.170.

[16] Loïc Bontemps, James McDermott, and Nhien-An Le-Khac. “Collective Anomaly

Detection Based on Long Short-Term Memory Recurrent Neural Networks”.

In: International Conference on Future Data and Security Engineering. Springer,

2016, pp. 141–152.

50

https://doi.org/10.1198/jasa.2005.s45
https://doi.org/10.1016/j.procs.2016.05.170
https://doi.org/10.1016/j.procs.2016.05.170

[17] H. Bourlard and Y. Kamp. “Auto-Association by Multilayer Perceptrons and

Singular Value Decomposition”. In: Biological Cybernetics 59.4-5 (Sept. 1988).

00874, pp. 291–294. DOI: 10.1007/BF00332918.

[18] Carlos A. Catania and Carlos García Garino. “Automatic Network Intrusion

Detection: Current Techniques and Open Issues”. In: Computers & Electri-

cal Engineering. Special Issue on Recent Advances in Security and Privacy

in Distributed Communications and Image Processing 38.5 (Sept. 1, 2012),

pp. 1062–1072. DOI: 10.1016/j.compeleceng.2012.05.013.

[19] Pravin Chandra and Yogesh Singh. “An Activation Function Adapting Train-

ing Algorithm for Sigmoidal Feedforward Networks”. In: Neurocomputing

61 (Oct. 2004). 00070, pp. 429–437. DOI: 10.1016/j.neucom.2004.

04.001.

[20] Wun-Hwa Chen, Sheng-Hsun Hsu, and Hwang-Pin Shen. “Application of

SVM and ANN for Intrusion Detection”. In: Computers & Operations Re-

search 32.10 (Oct. 2005). 00308, pp. 2617–2634. DOI: 10.1016/j.cor.

2004.03.019.

[21] Zouhair Chiba et al. “A Novel Architecture Combined with Optimal Parame-

ters for Back Propagation Neural Networks Applied to Anomaly Network In-

trusion Detection”. In: Computers & Security 75 (June 2018). 00001, pp. 36–

58. DOI: 10.1016/j.cose.2018.01.023.

[22] Emilio Corchado and Álvaro Herrero. “Neural Visualization of Network Traf-

fic Data for Intrusion Detection”. In: Applied Soft Computing 11.2 (2011),

pp. 2042–2056.

[23] Vu N P Dao and Rao Vemuri. “A Performance Comparison of Different Back

Propagation Neural Networks Methods in Computer Network Intrusion De-

tection”. In: (). 00054, p. 7.

[24] D. Dasgupta and F. Gonzalez. “An Immunity-Based Technique to Charac-

terize Intrusions in Computer Networks”. In: IEEE Transactions on Evolu-

tionary Computation 6.3 (June 2002). 00505, pp. 281–291. DOI: 10.1109/

TEVC.2002.1011541.

51

https://doi.org/10.1007/BF00332918
https://doi.org/10.1016/j.compeleceng.2012.05.013
https://doi.org/10.1016/j.neucom.2004.04.001
https://doi.org/10.1016/j.neucom.2004.04.001
https://doi.org/10.1016/j.cor.2004.03.019
https://doi.org/10.1016/j.cor.2004.03.019
https://doi.org/10.1016/j.cose.2018.01.023
https://doi.org/10.1109/TEVC.2002.1011541
https://doi.org/10.1109/TEVC.2002.1011541

[25] Eduardo De la Hoz et al. “PCA Filtering and Probabilistic SOM for Network

Intrusion Detection”. In: Neurocomputing 164 (2015), pp. 71–81.

[26] Emiro De la Hoz et al. “Feature Selection by Multi-Objective Optimisation:

Application to Network Anomaly Detection by Hierarchical Self-Organising

Maps”. In: Knowledge-Based Systems 71 (2014), pp. 322–338.

[27] Hervé Debar, Marc Dacier, and Andreas Wespi. “A Revised Taxonomy for

Intrusion-Detection Systems”. In: Annales Des Télécommunications 55 (Issue

7–8 2000). 01343, pp. 361–378.

[28] Dorothy E Denning. “An Intrusion-Detection Model”. In: IEEE Transactions

on software engineering 2 (1987). 04895, pp. 222–232. DOI: 10.1109/

TSE.1987.232894.

[29] J.E. Dickerson and J.A. Dickerson. “Fuzzy Network Profiling for Intrusion

Detection”. In: PeachFuzz 2000. 19th International Conference of the North

American Fuzzy Information Processing Society - NAFIPS (Cat. No.00TH8500).

PeachFuzz 2000. 19th International Conference of the North American Fuzzy

Information Processing Society - NAFIPS. 00330. Atlanta, GA, USA: IEEE,

2000, pp. 301–306. ISBN: 978-0-7803-6274-1. DOI: 10.1109/NAFIPS.

2000.877441.

[30] Shan Ding and Genying Wang. “Research on Intrusion Detection Technology

Based on Deep Learning”. In: Computer and Communications (ICCC), 2017

3rd IEEE International Conference On. IEEE, 2017, pp. 1474–1478. ISBN:

1-5090-6352-8.

[31] M Dondo and J Treurniet. Investigation of a Neural Network Implementation

of a TCP Packet Anomaly Detection System. DEFENCE RESEARCH AND

DEVELOPMENT CANADAOTTAWA (ONTARIO), 2004.

[32] Jeffrey L. Elman. “Finding Structure in Time”. In: Cognitive Science 14.2

(Mar. 1990). 09789, pp. 179–211. DOI: 10.1207/s15516709cog1402_

1.

[33] Fahimeh Farahnakian and Jukka Heikkonen. “A Deep Auto-Encoder Based

Approach for Intrusion Detection System”. In: Advanced Communication

52

https://doi.org/10.1109/TSE.1987.232894
https://doi.org/10.1109/TSE.1987.232894
https://doi.org/10.1109/NAFIPS.2000.877441
https://doi.org/10.1109/NAFIPS.2000.877441
https://doi.org/10.1207/s15516709cog1402_1
https://doi.org/10.1207/s15516709cog1402_1

Technology (ICACT), 2018 20th International Conference On. IEEE, 2018,

pp. 178–183. ISBN: 979-11-88428-01-4.

[34] Emile Fiesler. “Neural Network Classi Cation and Formalization”. In: Com-

puter Standards and Interfaces 16.3 (1994). 00000, pp. 231–240.

[35] P. García-Teodoro et al. “Anomaly-Based Network Intrusion Detection: Tech-

niques, Systems and Challenges”. In: Computers & Security 28.1 (Feb. 1,

2009). 00001, pp. 18–28. DOI: 10.1016/j.cose.2008.08.003.

[36] Maryam Ghanbari, Witold Kinsner, and Ken Ferens. “Detecting a Distributed

Denial of Service Attack Using a Pre-Processed Convolutional Neural Net-

work”. In: Electrical Power and Energy Conference (EPEC), 2017 IEEE.

IEEE, 2017, pp. 1–6. ISBN: 1-5386-0817-0.

[37] M Govindarajan and R M Chandrasekaran. “Intrusion Detection Using Neu-

ral Based Hybrid Classification Methods”. In: Computer networks 55.8 (2011),

pp. 1662–1671.

[38] Hongmei Deng, Qing-An Zeng, and D.P. Agrawal. “SVM-Based Intrusion

Detection System for Wireless Ad Hoc Networks”. In: 2003 IEEE 58th Ve-

hicular Technology Conference. VTC 2003-Fall (IEEE Cat. No.03CH37484).

2003 IEEE 58th Vehicular Technology Conference. VTC 2003-Fall (IEEE

Cat. No.03CH37484). 00111. Orlando, FL, USA: IEEE, 2003, 2147–2151

Vol.3. ISBN: 978-0-7803-7954-1. DOI: 10.1109/VETECF.2003.1285404.

[39] Kurt Hornik, Maxwell Stinchcombe, and Halbert White. “Multilayer Feed-

forward Networks Are Universal Approximators”. In: Neural networks 2.5

(1989), pp. 359–366.

[40] Laheeb M Ibrahim, Dujan T Basheer, and Mahmod S Mahmod. “A Compar-

ison Study for Intrusion Database (Kdd99, Nsl-Kdd) Based on Self Organi-

zation Map (SOM) Artificial Neural Network”. In: Journal of Engineering

Science and Technology 8.1 (2013), pp. 107–119.

[41] Dennis Ippoliti and Xiaobo Zhou. “A-GHSOM: An Adaptive Growing Hier-

archical Self Organizing Map for Network Anomaly Detection”. In: Journal

of Parallel and Distributed Computing 72.12 (2012), pp. 1576–1590.

53

https://doi.org/10.1016/j.cose.2008.08.003
https://doi.org/10.1109/VETECF.2003.1285404

[42] A.K. Jain, Jianchang Mao, and K.M. Mohiuddin. “Artificial Neural Networks:

A Tutorial”. In: Computer 29.3 (Mar. 1996). 02276, pp. 31–44. DOI: 10.

1109/2.485891.

[43] Samireh Jalali and Claes Wohlin. “Systematic Literature Studies: Database

Searches vs. Backward Snowballing”. In: Proceedings of the ACM-IEEE In-

ternational Symposium on Empirical Software Engineering and Measure-

ment. ACM, 2012, pp. 29–38. ISBN: 1-4503-1056-7.

[44] Jungwon Kim and P.J. Bentley. “Towards an Artificial Immune System for

Network Intrusion Detection: An Investigation of Clonal Selection with a

Negative Selection Operator”. In: Proceedings of the 2001 Congress on Evo-

lutionary Computation (IEEE Cat. No.01TH8546). 2001 Congress on Evolu-

tionary Computation. Vol. 2. 00361. Seoul, South Korea: IEEE, 2001, pp. 1244–

1252. ISBN: 978-0-7803-6657-2. DOI: 10.1109/CEC.2001.934333.

[45] Peyman Kabiri and Ali A Ghorbani. “Research on Intrusion Detection and

Response: A Survey.” In: IJ Network Security 1.2 (2005). 00277, pp. 84–102.

[46] Amin Karami. “An Anomaly-Based Intrusion Detection System in Presence

of Benign Outliers with Visualization Capabilities”. In: Expert Systems with

Applications (2018).

[47] H Günes Kayacık, A Nur Zincir-Heywood, and Malcolm I Heywood. “Se-

lecting Features for Intrusion Detection: A Feature Relevance Analysis on

KDD 99 Intrusion Detection Datasets”. In: Proceedings of the Third Annual

Conference on Privacy, Security and Trust. 00004. 2005, p. 6.

[48] Oğuz Kaynar et al. “Intrusion Detection with Autoencoder Based Deep Learn-

ing Machine”. In: Signal Processing and Communications Applications Con-

ference (SIU), 2017 25th. IEEE, 2017, pp. 1–4. ISBN: 1-5090-6494-X.

[49] Daniel E Kim and Mikhail Gofman. “Comparison of Shallow and Deep Neu-

ral Networks for Network Intrusion Detection”. In: Computing and Commu-

nication Workshop and Conference (CCWC), 2018 IEEE 8th Annual. IEEE,

2018, pp. 204–208. ISBN: 1-5386-4649-8.

[50] Kwangjo Kim and Muhamad Erza Aminanto. “Deep Learning in Intrusion

Detection Perspective: Overview and Further Challenges”. In: Big Data and

54

https://doi.org/10.1109/2.485891
https://doi.org/10.1109/2.485891
https://doi.org/10.1109/CEC.2001.934333

Information Security (IWBIS), 2017 International Workshop On. IEEE, 2017,

pp. 5–10. ISBN: 1-5386-2038-3.

[51] Diederik P. Kingma and Jimmy Ba. “Adam: A Method for Stochastic Opti-

mization”. In: (Dec. 22, 2014). 15852. arXiv: 1412.6980 [cs].

[52] Barbara Kitchenham. Procedures for Performing Systematic Reviews. Tech-

nical Report TR/SE-0401. 03120. Keele University, 2004, p. 33.

[53] Teuvo Kohonen. “Self-Organized Formation of Topologically Correct Feature

Maps”. In: Biological Cybernetics 43.1 (1982). 09950, pp. 59–69. DOI: 10.

1007/BF00337288.

[54] Chan Man Kuok, Ada Fu, and Man Hon Wong. “Mining Fuzzy Association

Rules in Databases”. In: ACM SIGMOD Record 27.1 (Mar. 1, 1998). 00653,

pp. 41–46. DOI: 10.1145/273244.273257.

[55] Donghwoon Kwon et al. “A Survey of Deep Learning-Based Network Anomaly

Detection”. In: Cluster Computing (2017), pp. 1–13.

[56] Aleksandar Lazarevic, Vipin Kumar, and Jaideep Srivastava. “Intrusion De-

tection: A Survey”. In: Managing Cyber Threats: Issues, Approaches, and

Challenges. Ed. by Vipin Kumar, Jaideep Srivastava, and Aleksandar Lazare-

vic. Massive Computing. 00192. Boston, MA: Springer US, 2005, pp. 19–78.

ISBN: 978-0-387-24230-9. DOI: 10.1007/0-387-24230-9_2.

[57] Aleksandar Lazarevic et al. “A Comparative Study of Anomaly Detection

Schemes in Network Intrusion Detection”. In: Proceedings of the 2003 SIAM

International Conference on Data Mining. SIAM, 2003, pp. 25–36.

[58] Y. Lecun et al. “Gradient-Based Learning Applied to Document Recogni-

tion”. In: Proceedings of the IEEE 86.11 (Nov./1998). 15840, pp. 2278–2324.

DOI: 10.1109/5.726791.

[59] Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. “Deep Learning”. In: na-

ture 521.7553 (2015), p. 436.

[60] Brian Lee et al. “Comparative Study of Deep Learning Models for Network

Intrusion Detection”. In: SMU Data Science Review 1.1 (2018), p. 8.

55

https://arxiv.org/abs/1412.6980
https://doi.org/10.1007/BF00337288
https://doi.org/10.1007/BF00337288
https://doi.org/10.1145/273244.273257
https://doi.org/10.1007/0-387-24230-9_2
https://doi.org/10.1109/5.726791

[61] Yang Li and Li Guo. “An Active Learning Based TCM-KNN Algorithm for

Supervised Network Intrusion Detection”. In: Computers & Security 26.7-8

(Dec. 2007). 00123, pp. 459–467. DOI: 10.1016/j.cose.2007.10.

002.

[62] Jingxi Liang, Wen Zhao, and Wei Ye. “Anomaly-Based Web Attack Detec-

tion: A Deep Learning Approach”. In: Proceedings of the 2017 VI Interna-

tional Conference on Network, Communication and Computing. ACM, 2017,

pp. 80–85. ISBN: 1-4503-5366-5.

[63] Hung-Jen Liao et al. “Intrusion Detection System: A Comprehensive Re-

view”. In: Journal of Network and Computer Applications 36.1 (Jan. 2013).

00507, pp. 16–24. DOI: 10.1016/j.jnca.2012.09.004.

[64] Yihua Liao and V.Rao Vemuri. “Use of K-Nearest Neighbor Classifier for

Intrusion Detection”. In: Computers & Security 21.5 (Oct. 2002). 00000,

pp. 439–448. DOI: 10.1016/S0167-4048(02)00514-X.

[65] Yuchen Liu, Shengli Liu, and Xing Zhao. “Intrusion Detection Algorithm

Based on Convolutional Neural Network”. In: DEStech Transactions on En-

gineering and Technology Research (iceta 2017).

[66] Parisa Lotfallahtabrizi and Yasser Morgan. “A Novel Host Intrusion Detec-

tion System Using Neural Network”. In: Computing and Communication Work-

shop and Conference (CCWC), 2018 IEEE 8th Annual. IEEE, 2018, pp. 124–

130. ISBN: 1-5386-4649-8.

[67] Warren S. McCulloch and Walter Pitts. “A Logical Calculus of the Ideas Im-

manent in Nervous Activity”. In: The Bulletin of Mathematical Biophysics

5.4 (Dec. 1943). 16645, pp. 115–133. DOI: 10.1007/BF02478259.

[68] John McHugh. “Testing Intrusion Detection Systems: A Critique of the 1998

and 1999 DARPA Intrusion Detection System Evaluations as Performed by

Lincoln Laboratory”. In: ACM Transactions on Information and System Se-

curity 3.4 (Nov. 1, 2000). 01170, pp. 262–294. DOI: 10.1145/382912.

382923.

[69] Song Mei, Andrea Montanari, and Phan-Minh Nguyen. “A Mean Field View

of the Landscape of Two-Layer Neural Networks”. In: Proceedings of the

56

https://doi.org/10.1016/j.cose.2007.10.002
https://doi.org/10.1016/j.cose.2007.10.002
https://doi.org/10.1016/j.jnca.2012.09.004
https://doi.org/10.1016/S0167-4048(02)00514-X
https://doi.org/10.1007/BF02478259
https://doi.org/10.1145/382912.382923
https://doi.org/10.1145/382912.382923

National Academy of Sciences 115.33 (Aug. 14, 2018). 00000, E7665–E7671.

DOI: 10.1073/pnas.1806579115.

[70] Ionita Mihai-Gabriel and Patriciu Victor-Valeriu. “Achieving DDoS Resiliency

in a Software Defined Network by Intelligent Risk Assessment Based on Neu-

ral Networks and Danger Theory”. In: Computational Intelligence and Infor-

matics (CINTI), 2014 IEEE 15th International Symposium On. IEEE, 2014,

pp. 319–324. ISBN: 1-4799-5338-5.

[71] Rodrigo Moraes, João Francisco Valiati, and Wilson P. Gavião Neto. “Document-

Level Sentiment Classification: An Empirical Comparison between SVM and

ANN”. In: Expert Systems with Applications 40.2 (Feb. 2013). 00337, pp. 621–

633. DOI: 10.1016/j.eswa.2012.07.059.

[72] S. Mukkamala, G. Janoski, and A. Sung. “Intrusion Detection Using Neural

Networks and Support Vector Machines”. In: Proceedings of the 2002 Inter-

national Joint Conference on Neural Networks. IJCNN’02 (Cat. No.02CH37290).

2002 International Joint Conference on Neural Networks (IJCNN). 00802.

Honolulu, HI, USA: IEEE, 2002, pp. 1702–1707. ISBN: 978-0-7803-7278-8.

DOI: 10.1109/IJCNN.2002.1007774.

[73] Mehmet Uğur ÖNEY and Serhat PEKER. “The Use of Artificial Neural Net-

works in Network Intrusion Detection: A Systematic Review”. In: 2018 Inter-

national Conference on Artificial Intelligence and Data Processing (IDAP).

00000. IEEE. 2018, pp. 1–6.

[74] José A. Onieva, Javier Lopez, and Jianying Zhou. Secure Multi-Party Non-

Repudiation Protocols and Applications. Vol. 43. Advances in Information

Security. 00023. Boston, MA: Springer US, 2009. ISBN: 978-0-387-75629-5

978-0-387-75630-1. DOI: 10.1007/978-0-387-75630-1.

[75] V K Pachghare, Parag Kulkarni, and Deven M Nikam. “Intrusion Detection

System Using Self Organizing Maps”. In: Intelligent Agent & Multi-Agent

Systems, 2009. IAMA 2009. International Conference On. IEEE, 2009, pp. 1–

5. ISBN: 1-4244-4710-0.

[76] Jianli Pan. A Survey of Network Simulation Tools: Current Status and Future

Development. 00000.

57

https://doi.org/10.1073/pnas.1806579115
https://doi.org/10.1016/j.eswa.2012.07.059
https://doi.org/10.1109/IJCNN.2002.1007774
https://doi.org/10.1007/978-0-387-75630-1

[77] Mrutyunjaya Panda, Ajith Abraham, and Manas Ranjan Patra. “A Hybrid In-

telligent Approach for Network Intrusion Detection”. In: Procedia Engineer-

ing 30 (2012), pp. 1–9.

[78] Simon T Powers and Jun He. “A Hybrid Artificial Immune System and Self

Organising Map for Network Intrusion Detection”. In: Information Sciences

178.15 (2008), pp. 3024–3042.

[79] Benjamin J Radford et al. “Network Traffic Anomaly Detection Using Recur-

rent Neural Networks”. In: arXiv preprint arXiv:1803.10769 (2018).

[80] F. Rosenblatt. “The Perceptron: A Probabilistic Model for Information Stor-

age and Organization in the Brain.” In: Psychological Review 65.6 (1958).

08443, pp. 386–408. DOI: 10.1037/h0042519.

[81] David E. Rumelhart, Geoffrey E. Hinton, and Ronald J. Williams. “Learn-

ing Representations by Back-Propagating Errors”. In: Nature 323.6088 (Oct.

1986). 16419, pp. 533–536. DOI: 10.1038/323533a0.

[82] Nathan Shone et al. “A Deep Learning Approach to Network Intrusion De-

tection”. In: IEEE Transactions on Emerging Topics in Computational Intel-

ligence 2.1 (2018), pp. 41–50.

[83] Jimmy Shun and Heidar A Malki. “Network Intrusion Detection System Us-

ing Neural Networks”. In: Natural Computation, 2008. ICNC’08. Fourth In-

ternational Conference On. Vol. 5. IEEE, 2008, pp. 242–246. ISBN: 0-7695-

3304-3.

[84] P Sibi, S Allwyn Jones, and P Siddarth. “ANALYSIS OF DIFFERENT AC-

TIVATION FUNCTIONS USING BACK PROPAGATION NEURAL NET-

WORKS”. In: . Vol. 47 (2005). 00105, p. 5.

[85] Yogesh Singh and Pravin Chandra. “A Class +1 Sigmoidal Activation Func-

tions for FFANNs”. In: Journal of Economic Dynamics and Control 28.1

(Oct. 2003). 00000, pp. 183–187. DOI: 10.1016/S0165- 1889(02)

00157-4.

[86] Nitish Srivastava et al. “Dropout: A Simple Way to Prevent Neural Networks

from Overfitting”. In: The Journal of Machine Learning Research 15 (2014),

pp. 1929–1958.

58

https://doi.org/10.1037/h0042519
https://doi.org/10.1038/323533a0
https://doi.org/10.1016/S0165-1889(02)00157-4
https://doi.org/10.1016/S0165-1889(02)00157-4

[87] Gary Stein et al. “Decision Tree Classifier for Network Intrusion Detection

with GA-Based Feature Selection”. In: Proceedings of the 43rd Annual South-

east Regional Conference on - ACM-SE 43. The 43rd Annual Southeast Re-

gional Conference. Vol. 2. 00232. Kennesaw, Georgia: ACM Press, 2005,

p. 136. ISBN: 978-1-59593-059-0. DOI: 10.1145/1167253.1167288.

[88] S.J. Stolfo et al. “Cost-Based Modeling for Fraud and Intrusion Detection:

Results from the JAM Project”. In: Proceedings DARPA Information Surviv-

ability Conference and Exposition. DISCEX’00. DARPA Information Surviv-

ability Conference and Exposition. DISCEX’00. Vol. 2. 00532. Hilton Head,

SC, USA: IEEE Comput. Soc, 1999, pp. 130–144. ISBN: 978-0-7695-0490-2.

DOI: 10.1109/DISCEX.2000.821515.

[89] Felipe Petroski Such et al. “Deep Neuroevolution: Genetic Algorithms Are a

Competitive Alternative for Training Deep Neural Networks for Reinforce-

ment Learning”. In: (Dec. 18, 2017). 00083. arXiv: 1712.06567 [cs].

[90] A.H. Sung and S. Mukkamala. “Identifying Important Features for Intru-

sion Detection Using Support Vector Machines and Neural Networks”. In:

2003 Symposium on Applications and the Internet, 2003. Proceedings. 2003

Symposium on Applications and the Internet (SAINT 2003). 00483. Orlando,

FL, USA: IEEE Comput. Soc, 2003, pp. 209–216. ISBN: 978-0-7695-1872-5.

DOI: 10.1109/SAINT.2003.1183050.

[91] Arman Tajbakhsh, Mohammad Rahmati, and Abdolreza Mirzaei. “Intrusion

Detection Using Fuzzy Association Rules”. In: Applied Soft Computing 9.2

(Mar. 2009). 00238, pp. 462–469. DOI: 10.1016/j.asoc.2008.06.

001.

[92] Mahbod Tavallaee et al. “A Detailed Analysis of the KDD CUP 99 Data Set”.

In: Computational Intelligence for Security and Defense Applications, 2009.

CISDA 2009. IEEE Symposium On. IEEE, 2009, pp. 1–6. ISBN: 1-4244-3763-

6.

[93] Jihyun Kim Thi-Thu-Huong Le and Howon Kim. “An Effective Intrusion De-

tection Classifier Using Long Short-Term Memory with Gradient Descent

Optimization”. In: International Conference On Platform Technology And

Service (2017).

59

https://doi.org/10.1145/1167253.1167288
https://doi.org/10.1109/DISCEX.2000.821515
https://arxiv.org/abs/1712.06567
https://doi.org/10.1109/SAINT.2003.1183050
https://doi.org/10.1016/j.asoc.2008.06.001
https://doi.org/10.1016/j.asoc.2008.06.001

[94] Jingjing Tian and Ping’An Li. “An Intrusion Detection Algorithm of Dynamic

Recursive Deep Belief Networks”. In: Proceedings of the 2017 International

Conference on Information Technology. ACM, 2017, pp. 180–183. ISBN: 1-

4503-6351-2.

[95] Adel Nadjaran Toosi and Mohsen Kahani. “A New Approach to Intrusion

Detection Based on an Evolutionary Soft Computing Model Using Neuro-

Fuzzy Classifiers”. In: Computer Communications 30.10 (July 2007). 00251,

pp. 2201–2212. DOI: 10.1016/j.comcom.2007.05.002.

[96] Nam Nhat Tran, Ruhul Sarker, and Jiankun Hu. “An Approach for Host-

Based Intrusion Detection System Design Using Convolutional Neural Net-

work”. In: International Conference on Mobile Networks and Management.

Springer, 2017, pp. 116–126.

[97] Chih-Fong Tsai et al. “Intrusion Detection by Machine Learning: A Review”.

In: Expert Systems with Applications 36.10 (2009), pp. 11994–12000.

[98] Nguyen Thanh Van, Tran Ngoc Thinh, and Le Thanh Sach. “An Anomaly-

Based Network Intrusion Detection System Using Deep Learning”. In: Sys-

tem Science and Engineering (ICSSE), 2017 International Conference On.

IEEE, 2017, pp. 210–214. ISBN: 1-5386-3422-8.

[99] Ali Moradi Vartouni, Saeed Sedighian Kashi, and Mohammad Teshnehlab.

“An Anomaly Detection Method to Detect Web Attacks Using Stacked Auto-

Encoder”. In: Fuzzy and Intelligent Systems (CFIS), 2018 6th Iranian Joint

Congress On. IEEE, 2018, pp. 131–134. ISBN: 1-5386-2836-8.

[100] R Vinayakumar, K P Soman, and P Poornachandran. “Applying Convolu-

tional Neural Network for Network Intrusion Detection”. In: 2017 Interna-

tional Conference on Advances in Computing, Communications and Infor-

matics (ICACCI) (2017), pp. 1222–1228.

[101] Gang Wang et al. “A New Approach to Intrusion Detection Using Artificial

Neural Networks and Fuzzy Clustering”. In: Expert systems with applications

37.9 (2010), pp. 6225–6232.

[102] Shelly Xiaonan Wu and Wolfgang Banzhaf. “The Use of Computational In-

telligence in Intrusion Detection Systems: A Review”. In: Applied Soft Com-

60

https://doi.org/10.1016/j.comcom.2007.05.002

puting 10.1 (Jan. 2010). 00633, pp. 1–35. DOI: 10.1016/j.asoc.2009.

06.019.

[103] Yaping Zhang et al. “Intrusion Detection Method Based on Improved Grow-

ing Hierarchical Self-Organizing Map”. In: Transactions of Tianjin University

22.4 (2016), pp. 334–338.

[104] Guangzhen Zhao, Cuixiao Zhang, and Lijuan Zheng. “Intrusion Detection

Using Deep Belief Network and Probabilistic Neural Network”. In: Compu-

tational Science and Engineering (CSE) and Embedded and Ubiquitous Com-

puting (EUC), 2017 IEEE International Conference On. Vol. 1. IEEE, 2017,

pp. 639–642. ISBN: 1-5386-3221-7.

61

https://doi.org/10.1016/j.asoc.2009.06.019
https://doi.org/10.1016/j.asoc.2009.06.019

CURRICULUM VITAE

PERSONAL INFORMATION

Surname, Name: Öney, Mehmet Uğur

Nationality: Turkish (TC)

Date and Place of Birth: 11.06.1984, Pazar/Rize Phone: 0 535 8851217

EDUCATION

Degree Institution Year of Graduation

B.S. Atılım University, Dept. of Computer Engineering 2008

PROFESSIONAL EXPERIENCE

Enrollment Place Year

QA Manager May Cyber Technology, Ankara, Turkey 2012-Cont

PUBLICATIONS

1. Öney, M.U., Peker, S., "The Use of Artificial Neural Networks in Network

Intrusion Detection: A Systematic Review", IDAP, 2018

2. Daneshgadeh, S., Öney M.U., Kemmerich, T., Baykal, N., "A Simulation Envi-

ronment for Cyber-Security Attack Analysis Based on Network Traffic Logs",

Chapter 10, Modeling and Simulation of Complex Networks, IET, 2018

3. Öney, M.U., Çevik, A., Çağıltay, N. and Kılıç, Ö., "Topluluk Zekâsı Yönetimi

ve Optimizasyonu". Akademik Bilisim Kutahya, 2007

62

	ABSTRACT
	ÖZ
	ACKNOWLEDGMENTS
	TABLE OF CONTENTS
	LIST OF TABLES
	LIST OF FIGURES
	LIST OF ALGORITHMS
	LIST OF ABBREVIATIONS
	INTRODUCTION
	Purpose of the Study and Research Questions
	Significance of the Study
	Thesis Organization

	LITERATURE SURVEY
	Network Intrusion Detection
	Artificial Neural Networks
	Artificial Neural Network Architectures
	Parameters of an Artificial Neural Network

	Usage of the Artificial Neural Networks in Intrusion Detection

	METHODOLOGY
	Network Intrusion Detection Model
	Dataset
	KDD99 Dataset

	Data Preprocessing
	Feature Extraction

	Neural Network Generator
	Network Attack Simulator

	Software Used
	Evaluation Measures
	True Negative Rate
	True Positive Rate
	False Positive Rate
	False Negative Rate
	Precision, Recall, and F-Measure

	Experiment

	RESULTS
	Results of the Architectural Comparison
	Top 10 of the Neural Networks
	Effects of the Parameters

	DISCUSSION AND CONCLUSION
	Discussion of Results
	Limitations and Further Research

	CURRICULUM VITAE

