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ABSTRACT

This study describes an Optimization via Simulation (OvS) model developed to
analyze a (R, s, S) policy under stochastic environment and lost sales. In this model,
Distribution Centers (DCs) are the stores that fulfill customer orders and Suppliers
serve the products to supply the DCs replenishment orders. The inventory level of each
DC and each Supplier is replenished periodically at one point in time for each period.
The goal of this research is to substantially develop a realistic inventory model and to
expand research on periodic review system. We also try to point out several important
issues: what the optimal values of initial inventory, reorder point and order-up-to level
are in (R, s, S) policy for each DC and each Supplier; whether the OvS can
successfully integrate the supplier selection and (R, s, S) policy for supply chain
environment; how to apply statistical analysis skills to clarify this policy with a greater
level of detail. According to the results of statistical analysis including cost components
analysis, quantity based analysis, order based analysis, probability based analysis, and
lead time based analysis, proposed model help to properly control echelon inventory so
that good customer service is maintained. Also, it can be easily applied for the actual
situation of the supply chain inventory system and companies may obtain a remarkable

amount of saving while increasing the competitive edge.

Keywords: Supply chain management, Inventory control system, Supplier selection,

(R, s, S) policy, Optimization via simulation, Genetic algorithm.



TEK URUNLU PERiIYODIK STOK KONTROLU VE TEDARIKGi SECiMi:
SIMULASYON OPTiMIZASYONU YAKLASIMI

Asli BORU
Yuksek Lisans, Endustri Mihendisligi B&lim
Tez Yéneticisi: Yrd. Dog. Dr. Mustafa GOCKEN
Aralik 2015, 97 sayfa

OZET

Bu calismada stokastik ¢evreyi ve kayip satisi dikkate alan (R, s, S) politikasini
analiz etmek icin Simullasyon Optimizasyonu (OvS) modeli olusturulmaktadir. Bu
modelde, Dagitim Merkezleri (DCler) musteri siparislerini karsilayan depolardir ve
tedarikciler ise DClerin yenileme siparislerini karsilamak i¢in imkan saglamaktadir. Her
DC ve her tedarikginin stok seviyesi her periyot igin belirli bir zaman diliminde periyodik
olarak vyenilenmektedir. Bu arastirmanin amaci, gercekci bir envanter modeli
gelistirmek ve periyodik gb6zden gecirmeye dayali sistemlerin arastiriimasini
genisletmektir. Ayrica, birkag énemli konuyu: (R, s, S) politikasinda her bir dagitim
merkezi ve her bir tedarikgi igin baslangi¢ stogu, yeniden siparis noktasi, maksimum
siparis miktari seviyesinin optimum degerinin ne oldugu; OvS modelinin tedarikgi
secimi ve (R, s, S) politikasiyla birlikte basariyla tedarik zincirine entegre olup olmadigi;
daha detayh bir analizle bu politikayl incelemek icin istatistiksel analizlerin nasil
uygulanmasi gerektigini agikliga kavusturmaya calismaktadir. Maliyet bilesen analizleri,
miktar bazinda analizler, siparis bazinda analizler, olasilik bazinda analizler ve tedarik
suresi bazinda analizleri de iceren istatistiksel analizlerin sonuglarina goére, olusturulan
model musteri hizmetinin iyi bir sekilde devam ettirilebilmesi icin uygun stok kontroltinu
saglamaktadir. Ayrica, bu model tedarik zincirlerinin stok kontroliine kolayca
uygulanabilmekle beraber sirketlerin rekabet gulcini arttinrken kayda deger bir

tasarrufta saglamaktadir.

Anahtar Kelimeler: Tedarik zinciri yénetimi, Stok kontrol sistemi, Tedarikgi se¢imi, (R,

s, S) politikasi, Simiilasyon optimizasyonu, Genetik algoritma.
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CHAPTER 1
1. INTRODUCTION

Under intense competition, marginal profit is becoming thinner and thinner in
recent years and hence companies should improve supply chain management to
overcome today’s management challenges. Supply chain management includes
important decisions related with the management of supply chain assets and products,
funds and information flows to maximize total supply chain profitability or minimize total
supply chain cost (Chopra and Meindl, 2007). One of the most significant decisions
influencing the performance of a supply chain is inventory management because it is
pivotal in efficient and effective organization. In addition, it is crucial in the control of
products that have to be stored. The main goal of inventory management is balancing
the conflicting economics of not wanting to hold too much stock (Adeyemi and Salami,
2010). At this point, the exact determination of optimal inventory is needed because
shortage of inventory increases the number of lost sales, while holding excess
inventory can result in pointless storage costs. In this case, the determination of the
inventory level to be held in supply chain members becomes inevitable so as to

achieve goals for the supply chain.

To apply most effective inventory management, the inventory control system
should provide enough information to allow managers to make decision on inventory.
Hence, many researchers investigate to observe different impacts of the inventory
control systems in terms of cost reduction. In this case, determining well-selected set of
suppliers makes a strategic difference to an company's ability to ensure continued
improvement in control policies. Although there are plenty of researches for the
supplier selection model, only limited studies focused on the inventory control policies
integrated with supplier selection, especially under stochastic demand and lead times.
Also, existing literature on supply chain modeling are generally focused on
mathematical modeling. However, mathematical modeling may not meet the
expectation due to the high complexity of the problems and only small scale systems
are amenable to this model. Also, optimization-based approaches generally require too
many assumptions and simplifications to be applicable and effective. On the other
hand, simulation based techniques can give reasonable solutions without analytical
assumptions and simplifications. Also, simulation has an ability to capture specific
features of the real object and to incorporate a greater level of detail (Paul and Chanev,
1998). Simulation provides illustrative insight into certain managerial problems where

analytic solutions of the problem are not possible or where the actual environment is



difficult to observe within acceptable time. Simulation seems a remarkable recourse to
model and analyze performances for such large-scale cases (Thierry et al., 2008).
However, simulation models do not provide the capability of finding the optimum set of
decision variables in terms of predefined objective function(s). This is made by
optimization models that allow decision makers to find the best possible alternatives.
Also, their impact on the system performance can be evaluated using simulation
models. Therefore, integrating simulation and optimization into supply chain framework
provides decision makers with a comprehensive solution toolbox (Omar et al., 2013)
and known as OvS. OvS along with modern computing power is an answer to modeling
complex supply chain problem and addressing aforementioned criticisms. OvS can
model a system with as much details, realities, and complexities as the modeler wants
and is satisfied with; hence, with fast computational resources, OvS could solve any
real stochastic complex optimization problem (Kabirian, 2009). In this study, we used
OvS model to determine the optimal values of reorder point, order-up-to level and initial
inventory in DCs and Suppliers, and properly selecting the set of Suppliers for DCs.
Thus, we presented (R, s, S) policy and supplier selection simultaneously in a two
echelon supply chain under stochastic environment and lost sales system.

In this chapter, Sections 1.1 presents an overview of supply chain and the role
of inventory in supply chain environment. Section 1.2 describes inventory control
system. Section 1.3 presents inventory related cost. Section 1.4 describes general
supplier selection methodologies. Section 1.5 presents the major contributions of this

research and Section 1.6 provides an overview of this thesis.
1.1. Role of Inventory within the Supply Chain

Supply chain can be defined as a sequenced network of business partners
which includes manufacturers, distributors, warehouses, retailers, suppliers and even
customers themselves (Chopra and Meindl, 2007). Supply chains are the lifeblood of
any organizations. To remain competitive, companies must provide high quality, high
responsiveness and low cost in today’s competitive environment. So they should know
that managing supply chain plays a key role to organize total supply chain effectively.
However, it includes high level of uncertainty in supply and demand, contradictory
objectives, information ambiguity, and a great number of decision variables and
constraints (Arisha and Abo-Hamad, 2010). Also, inventory management is a common
problem to all organization in any supply chain management system because the cost

of inventories accounts for approximately 30% of the value of the product and it directly



affects customer service level in a supply chain and plays a central role in improving

supply chain performance.

Determining exact inventory level at each echelon in the supply chain without
shortages and excesses while minimizing the total supply chain cost is a main concern
for the inventory and supply chain managers. Finding optimal inventory is a key point to
provide cost effective system because inventory shortage yields to lost sales, on the
other hand excess inventory can cause pointless storage costs. Hence, inventory
management at each supply chain member becomes inevitable in order to minimize
the cost for the supply chain. Understanding of the whole supply chain perfectly is
needed to develop an effective system because every company has different
processes and different forms of inventories. Therefore, first of all we need to know
why do companies hold inventory? The reasons for holding inventories can be

summarized under 5 sub-heading:

1. It enables the company to achieve economies of scale,

2. It regularly balances demand and supply,

3. It provides specialization in manufacturing,

4. It enables protection from uncertainties in demand and order cycle,

5. It behaves as a buffer between critical interfaces within distribution channel (Lambert
et al., 1998). These purposes, to a major extent, reflect the environment in which a

company operates.

In inventory control, to provide effective system to customers the problem
of determining the optimal type of inventory arises. There are many ways to categorize
inventories but we recommend six broad decision categories for creating more effective

and more responsive supply chains.

1. Cycle stock is the amount of inventory on hand, at any point, results from batches

where demand is ordered or produced in batches instead of one unit at a time.

2. Congestion stock is inventory at hand because of products competing for limited
capacity (When multiple products share the same production equipment, inventories of

these products build up as they wait for the equipment to become available).

3. Safety stock is inventory at hand, on the average, to protection against the

uncertainty of supply and the uncertainty of demand in the short run.



4. Anticipation inventory includes stock accumulated in advance of an expected peak in

sales. It can also occur because of seasonality of supply.

5. Pipeline (or work-in process) inventory consists of goods in transit between levels of

multi-echelon distribution system or between two adjacent workstations in a factory.

6. Decoupling stock is used in multi-echelon supply chains to allow for the separation of

decision making at different echelons.

Note that these six functional categories were defined to concentrate attention
on the organizational purposes of the inventories, especially with regard to control and
manageability rather than on accounting measures (Silver et al., 1998). Defining which
one to use depends on the properties of the company. After specifying inventory
category, three important issues or problems should be answered in inventory

management system.
1. How often the inventory level should be determined?
2. When a replenishment order should be placed?
3. How large the replenishment order quantity should be?

Regarding with the first issue, the less frequently the status is determined, the
longer is the period over which the system must protect against unforeseen variation in
demand to satisfy customer demand (Silver et al., 1998). On the other hand, if the
status is determined more frequently, it may unnecessarily increase the cost of the
system. Clearly, answer of this problem specifies the review period (R) which is the
time that elapses between two consecutive moments at which we know the stock level.
In literature, one of the two basic types of review systems: periodic review or
continuous review is used in inventory management. It should be noted that continuous
review provides same customer service level and it requires less safety stock but the
load is less predictable under continuous review since replenishment decision can be
made at practically any moment in time. On the other hand, periodic review provides a
reasonable prediction of the workload on the staff involved and it is generally less
expensive in terms of reviewing costs and reviewing errors (Silver et al., 1998). Hence,
in most cases periodic review is particularly appealing. Regarding with the second
problem, reorder point is stated in terms of the inventory level at which a replenishment
order ought to be placed for updating the current stock of inventory. Thus, reorder point
can be defined as the time of replenishment order. At this point, trade-off between the

costs of ordering somewhat early and the costs of providing inadequate customer



service should be found. The answer of the third problem directly depends on the
previous two issues and is expressed in terms of what is called ‘order quantity’. Details
can be found in (Silver et al., 1998). Note that all these questions are also interrelated
with customer demands. Hence, demand distribution should be determined carefully.
For example, Poisson distribution is generally preferred for slow moving items. On the
other hand, the normal and gamma distributions have a better performance for fast

moving items.
1.2. Inventory Control System

Existing inventory control systems differ in size and complexity, in the costs
associated with operating the system, in the nature of the stochastic processes
associated with the system, and the nature of the information available to decision
makers at any given point in time. Under intense pressure, supply chain members try to
find robust models and to improve replenishment polices in order to tackle with today’s
inventory management challenges. One of the most critical issues is to decide on the
inventory level to be maintained at supply chain members while minimizing the total
supply chain cost. At this point, deterministic inventory models such as economic order
guantity model can be applied but these models use known and certain customer
demand. In real word problems, customer demands are not certain and hence
stochastic based inventory models should be used to control dynamic inventory
system. In literature, two basic types of inventory control systems: a continuous system
and a periodic system are used and numerous numbers of possible alternatives are
presented by using this basic system. Note that if constant demand is used, periodic
review and continuous review can produce similar results. At this point, differences
occur when customer demand is uncertain. Thus, periodic review and continuous
review have different advantages under stochastic environment. The most obvious
differences between these two systems are operational expense. Continuous review
needs considerable manpower and computerized sources to control inventory level
accurately. However, periodic review system does not require ongoing transaction
control and needs inventory replenishment only when the periodic review date occurs.
Periodic review system provides replenishment order predictability since review period
is fixed and hence inventory managers can plan inventory level at a minimum cost. In
related with product control, continuous review system is best one for fast moving
products, while periodic review system is best used for slow moving products. Finally,
continuous review provides high levels of customer serviceability by providing timely

on-hand balance status and safety stock protection against random variations in



demand (Ross, 2015). Two of the most commonly used continuous review policy are
(s, Q) and (s, S).

In (s, Q) policy, fixed order quantity is placed when the inventory level
decreases to the reorder point s or lower. The advantages of the fixed order quantity (s,
Q) policy include: that it is quite simple for the stock clerk to understand, that errors are
less likely to occur, and that the production requirement for supplier are predictable.
The primary disadvantages of an (s, Q) policy is that in its unamended form it may not
be able to efficiently cope with the situation in which individual transactions are large; in
particular, if the transaction that triggers the replenishment in an (s, Q) policy is large
enough, then a replenishment of size Q won’t even increase the inventory level above

the reorder point (Silver et al., 1998).

In (s, S) policy, the inventory level is closely and continuously controlled,
replenishment order is placed to increase the inventory level to the level S whenever
this inventory level reaches or drops below the level s. This policy is especially
advantageous for critical inventory products such as replacement parts or raw

materials and supplies (Taylor IIl, 2013).

Inventory levels are checked after a fixed review period of time R in periodic
review policies. Note that the size of each replenishment order can change depending
on the order quantity between successive orders and the resulting inventory at the time
of ordering. For retailers, periodic review policies can be simple to implement since
they do not require the capability of continuously monitoring inventory. Suppliers may

also prefer them due to the regular replenishment orders (Chopra and Meindl, 2007).

(R, S) policy known as a replenishment cycle system, is in common use,
especially in companies not using computer control system. Due to the periodic review
characteristics, this policy is commonly used to order point systems in terms of
coordinating the order replenishments of related products. Also, the (R, S) policy
provides a regular opportunity to set the level S, a desirable property if the order
quantity is varying with time. The main drawback of the (R, S) policy is that the holding

costs are higher than in continuous review policies (Silver et al., 1998).

(R, s, S) policy can be defined as a combination of (s, S) and (R, S) systems.
The idea is that every review period R units of time we control the inventory level. At
the beginning of each review period, the inventory level is replenished until the order-

up-to level (S) whenever it decreases to a value smaller than or equal to the reorder



point(s). If the inventory level is above s, nothing is done until at least the next review

period.

To determine the best values of the inventory control parameters, many
methods are developed for inventory control policies. Especially, determining reorder
point and order-up-to level are major challenges for an inventory control system.
Obtaining the optimal values of reorder point and order-up-to level are computationally
expensive. That is to say, neither simple procedures nor algorithms are available to
give the optimal values of reorder point and order-up-to level in any particular practical
situation (Babai et al., 2010). Hence, many of researches have been interested in
finding the optimal inventory parameters in traditional inventory control policies using
various solution methods. For example, Schneider and Ringuest (1990) developed
power approximations to determine the reorder point and the order-up-to level using a
specified level of service. Zheng and Federgruen (1991) derived a simple and efficient
algorithm to determine optimal (s, S) policies considering a number of new properties
of the infinite horizon cost function. In addition, a new upper bound for optimal order-
up-to levels and a new lower bound for optimal reorder points are determined. Although
the reduction in computation is problem-dependent, Feng and Xiao (2000) show that
their proposed method saves more than 30% of computational effort when compared
with the study of Zheng and Federgruen (1991). Janssen et al. (1996) proposed three
methods to determine the reorder points subject to a service level constraint. Moors
and Strijbosch (2002) presented an efficient descriptive method to determine the fill
rate for given values of reorder point and order-up-to level under the assumption of

gamma distributed demand.

It was deemed crucial to define reorder point and order-up-to level to satisfy
objective function (e.g., minimizing total supply chain cost or maximize profit) in either
periodic or continuous review control system. Many different viewpoints must be taken

into account by considering uncertainty and dynamic nature of the system.
1.3. Inventory Related Cost

Inventory related costs can be grouped under three subheadings: ordering
costs, holding (or carrying) costs, and stockout costs. Holding cost can be defined as
the cost of holding products in storage. This cost directly depends on the inventory
level and changes with the level of inventory. The greater the level of inventory over
time, the higher the holding cost. Holding cost consist of many types of cost elements:
direct storage costs, such as ventilation, security, illumination; cost of losing the use of

funds tied up in inventory; interest on loans used to invest in inventory; depreciation;



obsolescence as markets for products in inventory decrease; product deterioration and

spoilage; taxes; breakage; and pilferage (Taylor Ill, 2013).

Stockout costs, also defined as a shortage cost, occur whenever demand
cannot be met due to insufficient level of on hand inventory. Stockout costs are related
to inability to satisfy demand. Silver et al. (1998) defined the term stockout as a
stockout occasion or event and the number of unit backordered or lost is a measure of
the impact of the stockout. If this stockout results in a permanent loss of sales for
products demanded but not provided, stockout cost includes the loss of profits. In
addition, stockout can cause a loss of goodwill and customer dissatisfaction and that
may cause a permanent loss of future sales and customers. Stockout can occur
because it is costly to hold inventory in stock. Consequently, stockout cost has an
inverse relationship to holding cost; as the inventory level increases, the holding cost

increases, while stockout cost decreases (Taylor lll, 2013).

Ordering cost is the cost related with inventory replenishment. In literature,
ordering cost is generally used as variable ordering costs and/or fixed ordering costs.
Variable ordering costs change with the number of replenishment orders made. If the
number of the replenishment orders increases, the ordering cost directly increases
depending on the ordering number. On the other hand, fixed ordering cost is not
affected by the size of the order and is incurred each time the replenishment order is
placed. Holding cost generally reacts inversely to ordering costs. When the order size
increases, fewer replenishment orders are required, and hence reducing ordering
costs. On the other hand, the order size decreases, higher replenishment orders are
required, therefore, higher holding cost. Briefly, as the replenishment order size

increases, ordering costs decrease and carrying costs increase (Taylor Ill, 2013).

Although existing literatures related to review systems includes holding,
stockout and ordering cost in diverse model formulations, so little is said about costs

components. Hence, we divided total supply chain cost into five types of costs:

1) Order cost per use (i.e., the one-time cost that is accrued each time any DC/Supplier

is used, regardless of the usage duration),
2) Average holding cost (i.e., the costs of carrying the products in inventory),

3) Order processing cost (i.e., charged proportional to the order processing time which
is the length of time between the time when an order for a particular product is placed

and when it actually becomes ready to satisfy demand),



4) Lost sales cost (i.e., the costs associated with demands occurring whenever

demand cannot be met),

5) Processing cost (i.e., charged proportional to the processing time that is the time

needed to prepare products for serving).

Inventory must be kept at the optimal level in each supply chain member to
minimize total supply chain cost. The main challenge is neither to bare inventories to

the bone to minimize costs nor to have plenty around to meet all customer demands.
1.4. Supplier Selection

In today’s competitive environment, how to determine suitable suppliers is one
of the most strategic consideration for managers in whole supply chain. It is the
process of finding the right set of suppliers for establishing an effective and efficient
supply chain. Although many models have been employed for determining suppliers,
each model has its own advantages and disadvantages under different situations. One
of the most important contributions is made by Boer et al. (2001) where an extensive
search is made in the academic literature to support the supplier selection process.
The study also covers all phases in the supplier selection process from initial problem
definition, over the formulation of criteria, the qualification of potential suppliers, to the
final choice among the qualified suppliers. Setak et al. (2012) also reviewed supplier
selection considering 170 paper during 2000-2010 and showed their contribution to
supply chain environment. After analyzing various studies, the most commonly used
methods and criteria are represented. In the light of previous studies, it can be said that
since 2008, researchers generally used hybrid methods because the advantages of
two or more models can be integrated to solve the problem (Setak et al., 2012).

Although various evaluation criteria are available in literature (e.g. delivery
performance, quality), total cost is one of the most common criteria for supplier
selection. However, determining total supply chain cost is a complex challenge.
Although the remarkable literature on inventory control includes cost components in
diverse model formulations, so little is said about the models to be used in evaluating
impact of these costs. On the other hand, competitiveness of the supply chain requires
accurate information to provide a framework for which cost component should be used
to determine suppliers. In general, the dynamic interaction between the suppliers and
the supply chain members is not taken into account and hence, supplier selection
models are often over-simplified. In this case, OvS can be sucessfully applied because

of providing realistic modeling of supplier selection.



Ding et al. (2003) used key performance indicators for supplier selection. Four
key performance indicators including transportation costs, purchasing costs, inventory
costs and total backlogged demands are evaluated by a OvS model using a GA to
efficiently determine the supplier. In the study, GA’s chromosome is made of eight
genes in which each gene denotes a supplier and its corresponding transportation link.
Actually, four potential suppliers are evaluated with potential transportation links. Also,
roulette wheel selection is used to determine chromosomes for the two-point crossover.
Crossover rate is set as 0.9 and mutation rate is set as 0.001. In same manner, Ding et
al. (2005) solved supplier selection problems using OvS methodology where GA is
used for supplier selection decisions, discrete-event model is used for operational
performance evaluation. In the study, two segments are used to form the chromosome.
First segment denotes the supplier portfolio while second segment represents the
parameters for supply chain operational decisions. Roulette wheel selection and two-
point crossover operator are used in GA. Also, crossover rate is set as 0.9 and

mutation rate is set as 0.01.

Many researchers have shown the importance of supplier selection by
displaying the effect that decisions throughout the whole supply chain have, from
supplier to final customers. However, despite the growing attention toward the supplier
selection, the area of inventory management still seems to lack a clear linkage between
inventory control on the one hand and supplier selection aspects on the other hand.
Therefore, researchers have continued to develop models including different aspects of

the supplier selection and inventory control system.
1.5. Research Objectives and Contributions

In this study, we present inventory control system and supplier selection while
simultaneously considering five types of costs (average holding cost, order cost per
use, lost sales cost, order processing cost and processing cost). By considering
proposed cost function and stochastic parameters, neither simple procedures nor
algorithms are available to obtain the optimal values of reorder point and order-up-to
level in (R, s, S) policy. Also, existing literature on supply chain modeling is generally
focused on mathematical modeling. However, mathematical modeling may not meet
the expectation due to the high complexity of the problems and only small scale
systems are amenable to this model. Also, optimization-based approaches generally
require too many assumptions and simplifications to be applicable and effective.
Therefore, although abundant literature is available related with deterministic

mathematical models where optimum results are found under some strict assumptions
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and simplification, this is not the case for dynamic/stochastic inventory models. A
fundamental challenge in stochastic environment is computability and tractability. At
this point, OvS can be used with much details, realities, and complexities as the
modeler wants in order to solve any real stochastic complex inventory problem.
Therefore, most of the current commercial simulation software packages contain the
optimization modules. Rather than making statistical estimation, these optimization
modules incorporate some search methods to determine the optimal values of input
parameters (Wang and Shi, 2013).

Existing literatures related to OvS methods show that most commercial OvS
solvers use metaheuristics that have generally been designed and proven to be
effective on difficult and deterministic optimization problems (Tsai and Fu, 2014).
Especially, GA is applicable to almost any optimization problem, because the
operations of selection, crossover, and mutation can be defined in a very generic way

that does not depend on specifics of the problem (Banks et al., 2000).

To respond to customer demand, each DC and each Supplier holds inventory
and operates under (R, s, S) policy to replenish. In such an inventory control system,
determining the optimal replenishment parameters is crucial to minimize total supply
chain cost throughout period. Especially, determining reorder point and order-up-to
level is major challenges for inventory control system where right amount of inventory
must be hold. The reorder point provides sufficient stock to satisfy demand until the
next order’s arrival. The determination of the order-up-to level allows us to see the
maximum inventory level in system. Hence, the optimal values of reorder point and
order-up-to level in DCs and Suppliers, and properly selecting the set of Suppliers for
DCs are determined by means of OvS. Also, initial inventories of DCs and Suppliers
are considered in this study because initial inventory level can influence the efficiency
of the inventory control policies. It is necessary to carefully consider the initial inventory
level when determining parameters of the supply chain model. When initial inventory
level is zero, even a small increase in incoming orders may create a costly outcome.
Also, optimum initial inventory level should be determined to prevent all customers/DCs
from placing their first order at the same time in (R, s, S) policy. It seems intuitive that
OvS provides a significant opportunity to find optimum inventory control parameters
because OvS has ability of capturing the advantages of both simulation and
optimization based methods simultaneously. Also, OvS is not constrained by analytical
assumptions and simplifications. OvS can give reasonable solutions for evaluating
different configurations of inventory control system and supplier selection while

minimizing the total supply chain cost including inventory related cost.
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1.6. Overview

The remainder of this thesis is created as follows. Chapter 2 discusses the
relevant contributions from the literature. In particular, three main research areas are
reviewed: (1) (R, s, S) inventory control system and supplier selection; (2) lost sales;
and (3) single product. Chapter 3 describes the proposed OvS methodology that
includes the details of both the optimization phase and the simulation phase. In
Chapter 4, a detailed analysis of inventory control systems is given. Finally, Chapter 5
provides concluding remarks for the results obtained in this research.
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CHAPTER 2
2. LITERATURE REVIEW
2.1. (R, s, S) Inventory Control System and Supplier Selection

(R, s, S) is a combination of (s, S) and (R, S) policies. The (s, S) policy is the
special case where R=0, and the (R, S) is the special case where s=S-1. Alternatively,
one can think of the (R, s, S) policy as a periodic version of the (s, S) policy. Under
quite general conditions, the system that minimizes the total of review, replenishment,
carrying, and shortage cost will be a member of the (R, s, S) family (Silver et al., 1998).
In review period, the inventory level of each echelon in supply chain is replenished until
the order-up-to level (S) whenever it is smaller than or equal to the reorder point(s).
Once we place an order, a replenishment lead time elapses before the order is
available for satisfying customer demands. Therefore, we want to place a
replenishment order when the inventory level is still enough to protect us over
replenishment lead time. If the order is placed when the inventory level is at exactly
reorder point, then a stockout will not occur by the end of the lead time if and only if the
total demand during the replenishment lead time is less than reorder point. If demand
over the lead time is exactly equal to reorder point, and lead time demand distribution
is symmetric, we would expect to stockout in half of all replenishment cycles. If reorder
point is higher than the expected lead time demand, we will stockout less often but will

carry more inventory (Silver et al., 1998).

In literature, the optimality of (R, s, S) policy is proven assuming linear holding
and stockout cost, and fixed ordering costs (Kiesmiiller et al., 2011). Moors and
Strijbosch (2002) derived exact formula for the average stockout in a replenishment
cycle of (R, s, S) policy where stationary gamma demand process and deterministic
lead time are used. Hu et al. (2005) presented multi-retailer system with centralised
ordering and demand backordered in (R, s, S) policy. Tlili et al. (2012) presented a two-
echelon inventory control system including an outside supplier, a warehouse and two
retailers. In the study, (R, s, S) is used to control inventory level of the warehouse and
retailers. Cabrera et al. (2013) analyzed the stochastic capacity constraint under
periodic review (R, s, S) that directly affects distribution network design. The best (R, s,
S) policy can enable manager to produce a lower holding cost and stockout costs than
does another system. However, obtaining the optimal values of the three inventory
control parameters is more intense than that for other systems (Silver et al., 1998). In

most situations, the effects of two decision variable review period and order-up-to level,
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are not independent, that is the best value of review period depends on the order-up-to
level value and vice versa. However, it is quite reasonable for practical purposes when
dealing with B products to assume that review period has been predetermined without
knowledge of the order-up-to level value (Silver et al., 1998). Note that B item is one of
the class in ABC classification where items are divided into 3 classes, namely, A (very
important), B (moderately), and C (least important). Hence, review period is assumed
to be predetermined in this study. Also, neither simple models nor procedures are
available to find the optimal reorder point and order-up-to level in any particular
practical situation (Babai et al., 2010). Many of the researchers have been interested in
finding the optimal inventory parameters in traditional inventory control policies using
various solution methods. For example, (Babai et al., 2011) proposed simple a method
to determine the order-up-to-level for cost oriented inventory control policy where
stochastic lead-times and compound Poisson demand process are used and, unmet
demands are backordered. The solution quality is also evaluated for fast and slow
moving products in single echelon inventory control system. Silver et al. (2012)
presented the selection of the order-up-to level and reorder point in a periodic review
inventory control policy where a negative binomial demand is used and management
desires two constraints the fill rate and target average time to be met. In the study,
constant replenishment lead time is considered and complete backordering is occurred

during a stockout situation.

Most literature on inventory control systems showed that different solution
methodologies are available to determine optimal parameters of inventory control
policy but they do not completely meet the expectations in each inventory control
policy. Based on analysis of the previous studies, we conclude that more research is
needed to better understand how the lost-sales affect the total supply chain in periodic
review setting. At this point, defining the optimal replenishment policy, characterizing its
structural properties, and developing robust methods that has ability to solve inventory
control problem with supplier selection are very important in lost sales environment.
However, not many solution methodologies exist to investigate all these problems
simultaneously in two or more echelon inventory system for single product, especially
under stochastic demand and lead time. The underlying reason is that many individual
decisions that have different degrees of importance are avalaible along a supply chain.
Of the diverse operations involved in supply chain, purchasing is one of the most
important activities since it provides a major opportunity to decrease total supply chain
cost. Supplier selection is a critical task within the purchasing function. Hence,

determining the right suppliers is important to the procurement process (Mendoza,
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2007). In literature, a number of methods have been created to evaluate and to select
the most suitable suppliers in supply chain. One of the most important contributions is
made by Boer et al. (2001) illustrated a review of decision methods reported in the
previous studies. We also highlight some of key articles to give an insight into this field.
Haq and Kannan (2006) considered not only multi echelon inventory control model but
also supplier selection in built to order supply chain system using fuzzy analytical
hierarchy process and GA. In the study, unlimited supplier capacity and deterministic

demand are considered.

Mendoza and Ventura (2010) used mixed integer nonlinear programming model
to solve stationary inventory control policy and supplier selection under serial supply
chain system where inventory replenished periodically. The objective of the proposed
model is to minimize total supply chain cost while coordinating the inventory at the
each stage and properly defining the set of suppliers that are the best to meet capacity
limits and quality requirements. However, the mathematical model built in that paper
was based on a stationary inventory policy with a constant demand. Moreover, the
constant lead time and the same order quantity for different suppliers were assumed in
the paper. These assumptions could be restrictive in reality, and it may not be
appropriate to order the same quantity each time from different suppliers due to the

different ordering costs and replenishment lead times.

Guo and Li (2014) investigated inventory control system with supplier selection
in a serial supply chain where a central warehouse and N retailers are used to form two
echelon system. The supplier selection is assumed to occur in the first stage of the
serial supply chain, and is made by considering capacity, ordering cost, unit price,
holding and backorder cost. In the study, mixed integer nonlinear programming model
is used to define the best policy for the supplier selection and continuous review
inventory control in a serial supply chain system under stochastic lead time and
stochastic demand. They primarily focus on calculating the expected values of the total
ordering size. In the study, all stockouts are considered as backorders and partial

replenishment of an order at the warehouse is not allowed.

Keskin et al. (2010) developed OvS approach to improve the supply chain
performance by taking into account the total operational cost of logistics, which include
not only the inventory control and transportation costs, but also the purchasing costs
and fixed management costs. OvS approach is created by means of discrete event

simulation and scatter search based metaheuristic optimization method. In the study,
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vendor can only be able to meet an order from its interrelated plant if its inventory level

is greater than or equal to order quantity and inventory level is continuously reviewed.
2.2. Lost Sales

In literature, many studies related with the inventory control systems assume
that unsatisfied demand is backordered. On the other hand, customer behavior
analyses demonstrate that most of the unfulfilled demand is lost. Due to the changing
competitive environment in the supply chain, customers are not willing to wait anymore
and most of the customer demand is considered as lost sales in many practical
settings. Nevertheless, so little work has been published about lost sales models. The
reason is that lost-sales characteristic is much more complicated to solve and to
analyze than the backorder models. The lost sale case shows a completely different
stochastic process from the backorder case and it seems much more difficult to treat
analytically. Namely, lost sales models cannot have negative inventory level and
hence, different types of research approach are required to clarify lost sales systems
(Hadley and Whitin, 1963; Bijvank and Vis, 2011).

Kalpakam and Arivarignan (1989) presented the analysis of a single-product
inventory control policy in which different types of customers are used to generate unit
demands considering exponentially distributed lead times with lost sales. Janakiraman
and Roundy (2004) proved some sample-path properties of lost sales in a single-
location inventory control system with stochastic demand and periodic review system.
In the study, orders do not cross. Considering an additional assumption associated with
replenishment lead times, they presented the convexity of the expected discounted
sum of lost sales cost and holding cost for cost models in the planning horizon with

respect to the order-up-to level.

Sezen (2006) used simulation to analyze the effects of changing the length of
review period on two-echelon periodic review system. In the study, normally distributed
demand function is produced with deterministic mean and standard deviation. Lead
time is shorter than the review period and order splitting is not allowed. Simulation
scenarios are created considering the product type and review period length. The
results show that performance of the inventory system is interrelated with review
period. Also, determining the appropriate review period length is highly dependent on
the variability of demand patterns. Xu et al. (2010) presented the optimal system for the
finite and infinite horizon problem with lost sales while minimizing the expected

discounted cost. Also, lost sales problems are analyzed with Erlang demands.
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Annadurai and Uthayakumar (2010) used controllable lead time and illustrated
the impacts of increasing logarithmic and power investments to decrease the lost sales
rate. The lost sales rate, review period, and lead time are taken as decision variables
and basic periodic review system is formulated mathematically with the capital

investment.

Bijvank and Johansen (2012) developed and compared lost-sales inventory
models with various replenishment systems. Proposed model is developed allowing
constant lead time and compound Poisson demand. Also, closed-form expressions are
derived to approximate the performance measures of interest for lost-sales inventory

control with the pure base-stock policies.

Bijvank and Vis (2012) presented lost sales inventory control policy with service
level criterion at a single retailer location. Optimal replenishment and (R, s, S) policies
are used considering a single-product inventory control system in discrete time. Also,
new approximation procedure is proposed to define the order-up-to level for the (R, s,
S) policies under lost sales environment. Based on previous studies we conclude that
creating lost-sales inventory models are difficult and require a different type of research
approach.

2.3. Single Product

The keeping of inventories represents one of the largest investment made in
any form of the business. It is highly desirable to manage the stocks held by a business
more effectively than has been the case ever before (Hung, 1985). In literature,
researchers are used various numbers and types of variables to create their models.
Hence, it is difficult to review all the studies dealing with this subject in a systematic
manner. Some of the key articles about single product are summarized to show
importance of the inventory in supply chain. Kalymon (1971) presented a single product
multi period inventory model and determined the form and bounds of optimal polices for
both a finite and infinite planning horizon. In the study, complete backlogging is used,
and deterministic delivery lags are permitted. Also, future period’s prices are
determined by a Markovian stochastic process. Federgruen and Heching (1999)
analyzed single product with periodic review model using value iteration method to
maximize total expected discounted profit. Excess demand is fully backlogged and

independent demands are used in consecutive periods.

Rosenblatt et al. (1998) presented cyclic schedule and determined an

acquisition policy for single product to minimize costs that include total periodic
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purchasing, inventory carrying, ordering, and supplier management costs. In the study,
M suppliers, each with its own cost parameters, are taken into account and the demand
is fully met by considering the capacity constraints. Graves (1999) proposed a single-
product inventory control system considering a deterministic lead-time and
nonstationary demand processes. Li et al. (2008) provided bounds for the order
quantity and order threshold in single product periodic review policy under an infinite
horizon. The study shows that proposed heuristic gives satisfying results under
specified conditions and outperforms many heuristics in the literature for the random
yield problem. Halman et al. (2009) presented the first fully polynomial-time
approximation for the single product periodic review system considering independent
discrete stochastic demands with zero lead time under finite time horizon. Kiesmdller et
al. (2011) studied a periodic review single product replenishment policy where three
different discrete demand distributions, Poisson, negative binomial, and a discretized
version of the gamma distribution are considered. Cheong and White (2013)
considered discrete state and action infinite horizon, expected total discounted cost
Markov decision process model of a single product. In the study, periodic review
system is used with stationary and deterministic demand, lost-sales, and random yield.
Zeballos et al. (2013) analyzed single product inventory control system under finite
horizon using a simulation with an embedded optimization model. They analyzed the
effect of the different sources of financing and determined that short-term debt affect
the optimal ordering policy when working capital constraints, payment delays and lead

time are taken into account.
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CHAPTER 3
3. MATERIAL AND METHODS
3.1. Optimization via Simulation

Dynamic nature of the inventory is the major obstacle for inventory control
practitioners and makes most mathematical methods either over simplistic or
computationally intractable. To overcome the limitation of existing mathematical
methods, OvS can be used due to the capability for handling variability (Ding et al.,
2005). OvS methodology include two fundamental tools: (1) An optimization tool is
used to determine the optimal result (2) A simulation tool is utilized to evaluate the
performance of the candidate solutions. Optimization tool provides the capability of
finding the optimum set of decision variables, which are the conditions under which the
simulation is run, in terms of predefined objective function(s). The output of the
simulation tool is iteratively utilized by the optimization tool to give feedback on
searching for the optimal solution (Ding et al., 2005). Therefore, at first the values of
decision variables must be set and then simulation is run to estimate the performance
of that particular configuration. Basically, techniques for OvS vary greatly depending on
the exact problem. We used the total supply chain cost as the objective function to be

minimized. In equation (1) objective function is given:

Ming.e f(6) (1)
where 0 is the decision parameters including the parameters of the stochastic system
of interest, the feasible region ® c R? is the set of possible values of the parameter 6,
and the objective function values f(6) specify the expected system performance when
system parameter values are defined by 6e¢® (Andradéttir, 1998). OvS strategies
depend on the nature of f and © as seen in Table 3.1. When the feasible set of design
parameter vector values 0 is a discrete set, appropriate optimization methods include
statistical methods and metaheuristics. If ® is continuous and f is differentiable, then
gradient based methods or metamodels based optimization can be used. White-box
methods consist in changing the simulation part by adding routines which provide
gradient, subgradient or higher derivatives (Pflug, 1996). On the other hand, black box
methods use not more information than normal simulation output. Black box methods
are easily implemented. They consist of a simulation module, which is responsible for
providing estimates for the objectives function and optimization module, which uses
these values to find the minimizer by iteration. The optimization module must use a

method, which does not require derivatives (Pflug, 1996).
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Table 3.1. Classification of the OvS model.

OovSs
_ O continuous set,
0 discrete set _ _
f differentiable
|@| large of o |@| finite,
small
Local/Global Global Local Local Local
Optimization Optimization Optimization Optimization | Optimization
Black-Box/
_ Black-Box Black-Box White-Box Black-Box
White-Box
Methods Methods Methods Methods
Methods
o Statistical Gradient
Methods Metaheuristics Metamodels
Methods Based Search

3.1.1. Metaheuristics

Metaheuristics are known as one of the most practical method to solve many
complex optimization problems. The practical advantages of these methods are their
effectiveness and general applicability because many optimization methods have failed
to be either efficient or effective. Therefore, metaheuristics are generally preferred over
other optimization methods to find the solutions with many local optima and little
inherent structure to guide the search (Olafsson, 2006). In the light of the previous
studies, it is said that four metaheuristics (simulated annealing, GA, scatter search and

tabu search) have basically been used to create OvS methods (Fu et al., 2005).

In metaheuristic methods, obtaining an initial set of solution(s) is considered as
a first step. Then, initial solution(s) are improved by certain principles. At this point, the
structure of the search includes many common elements across various methods. In
each step, a solution (or a set of solutions) 0, which specifies the current state of the
algorithm is found by search algorithm. Note that simulated annealing and tabu search
are solution-to-solution search methods. Thus, 8, is a single solution or point 6,€0 in
some solution space ©. On the other hand, GA and scatter search are set-based, that
is, 8, represents a set of solutions 6,0 in each step. However, the basic structure of

the search is same for solution to solution and set-based methods.

Given a neighborhood N(6;) of the solution (set), a candidate solution (set)

{06,}c=N(B,) is selected and evaluated. Thus, the performances of the candidate
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solution(s) are calculated or estimated. Then, they are compared with the performance
of 8, and occasionally with each other. Considering this evaluation, the candidate can
be either accepted (6,.,,; = 0°) or rejected (6., = 0;). Basic metaheuristics framework

can be defined as follows:

Table 3.2. The basic metaheuristics framework.

Obtain an initial solution (set) 8, and set k=0.

Repeat:

Identify the neighborhood N(8,,) of the current solution(s).

Select candidate solution(s) {8}cN(8;) from the neighborhood.

Accept the candidate(s) and set 6,,,; = 6 or reject it and set 0;,; = 0.
Increment k=k+1.

Until stopping criterion is satisfied.

Note that this framework is applicable for numerous metaheuristics (Olafsson,
2006).

3.1.2. Statistical methods

To find the optimal solution, all possible combinations can be evaluated if the
number of possible solutions is low. On the other hand, stochastic problems have
appeared in real-world environment and one replication alone may not be enough to
precisely evaluate the performance of each solution. Hence, the number of replications
for each solution is required to determine the optimal solution (Figueira and Almada-
Lobo, 2014). Statistical methods, which include the well-known ranking and selection,

importance sampling, and multiple comparison procedure, focus on this aspect.
3.1.2.1. Ranking and selection

The concept of ranking and selection methods that can be classified into
indifference-zone ranking and subset selection was firstly presented by defining a
problem where the aim is to determine the best population. Typically, a certain number
of observations are collected from each population and the best population is selected
using statistics. It should be noted that the best population may not be selected
because the observations are taken as a realizations of random variables. The major
drawback of ranking and selection methods is its permanent requirement for common
and known variance among populations. When a system that does not physically exist

is being modeled, the system output’s variance is generally not known. Also, existing
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system may not allow the researchers to know its output’s variance due to the practical
infeasibility of data collection or potentially high cost. Moreover, providing common
output variance across different system designs can be difficult although the variance is
known (Swisher et al., 2003).

3.1.2.2. Importance sampling

Importance sampling is a very powerful simulation tool that has been used in
evaluating low probability error events. The basic principle of importance sampling is
that of making the low probability events occur more frequently by modifying the
probability density function of the input random process, so that the simulation of these
events can be made without needing a very large number of samples. Meanwhile, the
unbiasness of the estimate of the error probability is obtained as a result of the proper
weighting of these events. In the previous considerations of importance sampling
approaches, the probability density function of the input random variables is improved
by means of increasing the variance of the input random variables. An optimization that
minimizes the simulation estimation variance with respect to the input variance is
performed (Lu and Yao, 1988).

3.1.2.3. Multiple comparison procedures

Multiple comparison procedures treat the comparison problem as an inference
problem on the performance parameters of interest. Multiple comparison procedures
account for the error that occurs when making simultaneous inferences about
differences in performance among the systems (Goldsman and Nelson, 1994). Multiple
comparison procedures signify the use of certain pairwise comparisons to make
inferences in the form of confidence intervals (Fu, 1994). The main aim of multiple
comparison procedure is to quantify the differences between systems’ performance. It
is seen that the aim of multiple comparison procedure is completely different from
ranking and selection because the aim of ranking and selection is to make a decision
(Lu and Yao, 1988).

3.1.3. Gradient based search

Gradient based search to simulation optimization find an appropriate gradient
for the simulation model to use as a move direction in an improving search. The key
factor to an effective gradient based search in simulation optimization is the quality of
the gradient estimator (Medal, 2008). Basic gradient based search methods are finite
differences, perturbation analysis, likelihood ratio method, and frequency domain

experimentation.
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Finite differences are defined as a crudest method of estimating the gradient.
There can be a need for multiple observations for each derivative to provide a more
reliable estimate of the derivatives (Azadivar, 1992).

Perturbation analysis considers what would have happened if various
parameters were different, that is, the effect of a parameter change on the performance
measure is of interest while the experiment is evolving (Farenhorst-Yuan, 2010).

Likelihood ratio is also known as the score function. In this method, the gradient
of the expected value of an output variable with respect to an input variable is defined
as the expected value of a function of a) input parameters, and b) simulation

parameters (Carson and Maria, 1997).

In frequency domain experimentation, determined input parameters are
oscillated sinusoidally at different frequencies during one long simulation run (Carson
and Maria, 1997).

Finite differences and frequency domain experimentation methods change the
input and analyze the resulting output, while likelihood ratio and perturbation analysis
contain an "add-on" to the simulator itself that includes additional accumulations and
calculations. Nonetheless, the underlying simulator is not changed, and hence
likelihood ratio and perturbation analysis can also be applied for on-line gradient

estimation and optimization (Fu, 1994).
3.1.4. Metamodel methods

Two general methods are used for metamodel-based OvS: global metamodel fit
and iterated local metamodels. In global metamodel fit method, the entire region of
interest (in terms of 8) is discovered, and the experimental results are employed to fit a
global approximation. Then, iterative process is used to explore the global
approximation in the process of optimization. For local fitting strategies, the fitting and
optimization steps alternate: as the optimization search moves, new local regions of

space are discovered, and new metamodel approximations are fitted (Barton, 2009).
3.2. Proposed OvS

Most of the current commercial simulation software packages contain the
optimization modules and metaheuristics are the most commonly used methods
embedded in simulation software. When combining the metaheuristics with simulation
models, the latter can be seen as a black box, i.e., some input parameters are given to

the black box, then the simulation models will give some feedbacks or responses,
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which can be used to guide the search process in metaheuristics (Wang and Shi,
2013). An excellent survey of the use of metaheuristics for OvS was presented by
Olafsson (2006). GA is one prominent example, but others such as simulated
annealing, tabu search and many variations are available. Analyses of previous studies
show that GA is a challenging alternative method to cope with noisy outputs and
complex systems especially in combinatorial optimization problems.

In the study, simulation models are created by using Simio (Version:
7.121.12363) that allows users to enter input values and to run multiple replications for
evaluating the system performance. Processor is Intel ® Core™ i5-3470 CPU @ 3.20
GHz and system type is 64 bit operating system.

GA is developed to assign new values for selected decision variables (i.e.,
generating candidate solutions). In each cycle, simulation output is returned to the GA
as the most recent fitness function to be evaluated, and GA once more tries to find
better decision variables to increase model performance.

Detailed structures of the proposed OvS method can be found in following two
subtitles: the optimization phase (GA) and the simulation phase. In optimization phase,
GA is used to optimize inventory control parameters and supplier selection. In the

simulation phase, performances of candidate solutions are evaluated.
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Figure 3.1. The illustration of the simulation and optimization phase.



3.2.1. Optimization phase (Genetic Algorithm)

In this phase, it is very important that an optimization algorithm should provide
the capability of finding optimal or near-optimal solutions in the early stages of the
search process (Wang and Shi, 2013). In literature, many different solution
methodologies such as population-based, single-solution based and set-based are
available as metaheuristic methods but population based GA can be considered as the
most commonly used method. GA is an optimization method, originally motivated by
the Darwinian principle of evolution through (genetic) selection. It uses a highly abstract
version of evolutionary processes to improve solutions (McCall, 2005).

The population to population approach provides a multiple directional search
and tries to make the search escape from the local optima. Also, information related
with objective function is only used to guide them through the solution space in GA. For
this reason, it requires less mathematical requirements about the problems. Unlike
many other optimization methods, GA can be successfully used to solve any
optimization problem, even if the problem is of a stochastic nature. GA provides the
maximum “black-box” approach. For example, preliminary considerations related with
the goal function or initial values of the control parameters need not to be taken. This
feature is important in the simulation models where prior knowledge of the simulation
models behavior may not exist (Paul and Chanev, 1998). Hence, many authors have
employed GA to solve complicated inventory problems (Table 3.3). In literature, a
number of distinct components are available to construct GA and this is considered as
a particular strength since standard components can be re-used, with trivial adaptation
in many different GA (McCall, 2005). In GA, solution space is searched by building and
evolving a population of solutions. The evolution is carried out by means of producing
new solutions from two or more solutions in current population. The main advantage of
GA over those based on sampling the neighborhood of a single solution (e.g., tabu
search and simulated annealing) is that it may explore a larger area of solution space

with smaller number of objective function evaluations (Zeng and Yang, 2009).

To explain general GA methodology in OvS, we assumed that there are k
possible solutions to the OvS problem and X = {x;,x,,...,x;} denote the solutions,
where the ith solution x; = {x;1, x;2, ..., Xim} Provides specific setting for the m decision
variables. The simulation output at solution x; is denoted by Y (x;); this could be the
output of a single replication, or the average of several replications. At each iteration
that is also known as a generation GA operates on a “population” of p solutions.

Denote the population of solution on the jth iteration as P(j) = {x;(j), x2 (), ..., x, (N}
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There may be multiple copies of the same solution in P(j), and P(j) may
contain solutions that were discovered on previous iterations. From iteration to
iteration, this population evolves in such a way that good solutions tend to survive and
give birth to new and hopefully better solutions, while inferior solutions tend to be
removed from the population (Banks et al., 2000). The basic GA is given here (Banks
et al., 2000; Beasley et al., 1993):

Step 1. The GA starts with an initial population that consists of a set of
individuals corresponds to a set of solutions. The details about initial population
formation can be found in (Maaranen et al., 2007) that basically answer to the question
whether the initial population plays a role in the performance of GA and if so, how it

should be generated.

In this study, the iteration counter is firstly set as a j =0, and an initial
population of p solutions P(0) = {x;(0),x2(0),...,x,(0)} is selected. GA randomly
generates an initial population of chromosomes. In GA, potential solution of the
problem is defined as a set of parameters that are joined together to create a
chromosome. The chromosome structure of the considered problem is depicted in
Figure 3.2. First part of the chromosome represents supplier selection for DCs. Length
of the supplier selection part is equal to the number of DCs. The second part of the
chromosome represents determination of the initial inventory, reorder point and order-

up-to level of each DC and each Supplier, respectively.

Supplier Selection Determining Replenishment Policy Levels
A A
r Al r N
S - - . . . Total
DC1 DC2 DC3 #of DCs  DCI DC1 DC1 DC2 .. Supplierl .
Length
Supplier Number Initial Inventory Reorder Point Order up to Level
* Total Length = Number of DCs x 3 (i.e., Initial inventory, Reorder Point, and Order-up-to Level) + Number of Suppliers x 3

(i.e., Initial inventory, Reorder Point, and Order-up-to Level)

Figure 3.2. Chromosome structure of GA.

Step 2. The simulation experiments are run to obtain performance estimates
Y (x) for all p solutions x(j) in P(j). Thus, the fithess value of each alternative solution
is automatically taken from simulation model to form a new generation in GA. The
fitness evaluation operation of GA calculates the fitness value of each individual
according to the objective function that minimizes total supply chain cost. Fitness value

of chromosome k, f;, is computed by using the objective function value as given below:
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fr = - (2)

TSCCy,

Here TSCC, is the objective function value of the kth chromosome. After
calculating fitness value, the plan for selecting chromosomes to create the next
generation is displayed by selection strategy. Selection operator leads GA to select
chromosomes from the population as parents to use in crossover. There exist many
selection schemes for GA and each has a different characteristics. Ideal selection
operator should be simple to code and efficient for both nonparallel and parallel
architectures. Also, it ought to adjust the selection pressure to adapt to different
domains. In recent years, tournament selection is substantially being used as GA
selection since it satisfies all of the above criteria. Thus, tournament selection is simple
to code and is efficient for both nonparallel and parallel architectures. Furthermore, it
could adjust the selection pressure in order to tune selection performance for different
domains. The selection pressure is increased (decreased) by simply increasing
(decreasing) the tournament size. Briefly, all of these factors increase the usage of
tournament selection as a selection strategy for GA (Miller and Goldberg, 1995).
Hence, the tournament selection is used in this study as it is simpler and produces
reasonably good results. It randomly picks two chromosomes from the population and
selects higher fitness value as a parent.

Step 3. A population of p solutions is selected from those in P(j) in such a way
that those with smaller Y (x) values are more likely, but not certain, to be selected. This

population of solutions is denoted as P(j + 1).

Step 4. The solutions are recombined in P(j + 1) via crossover and mutation.
Crossover generates new solutions by selecting individuals from mating pool
(population after reproduction stage) and exchanging their parts. It is emphasized in
literature that crossover is the most important procedure in GA to obtain new high
quality solutions. It should be noted that the performance of the GA decreases when
the number of crossover points increases. Adding additional crossover points disrupts
the building blocks. Therefore, most of the researchers preferred single point
crossovers (Figure 3.3). In single point crossover, two individuals are taken and their
chromosome strings are randomly cut to produce two “head" segments and two “tail"
segments. Then, the tail segments are swapped over to create two new full length

chromosomes. Crossover proceeds in three steps.
1. A pair of two individual strings is selected randomly for the mating.

2. A cross site is selected randomly on the string length.
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3. At the last step, position values are changed between the two strings following the
cross site (Sivanandam and Deepa, 2008). It should be noted that crossover is
generally not applied for all pairs of individuals selected for mating. In literature,
crossover rate is typically applied between 0.6 and 1.0 and it is taken as 0.8 in this
study. The crossover operator is illustrated in Figure 3.3.

¢
Poa LT o w)ow oo
Parent | 4 Child 1
Jarent2 ] * Chid 2
-.Z.EI. 1200 100 175 800

: : T

Figure 3.3. Crossover operator of GA.

After applying crossover, mutation is randomly performed with a small rate.
Mutation is a random search and protect against premature convergence to local
maxima. Mutation rate is very important. If it is too low, danger of premature
convergence is occurred. On the other hand, too high mutation rate causes losing a lot
of valuable genetic information and directly decreases the performance of the
algorithm.

Mutation generally works on a single chromosome and produces another
chromosomes through exchange of the values of two string positions or modification of
the value of a string position to prolong the diversity of population. Many forms of
mutation exist in nature and the details can be found in (Falco et al., 2002). In this
study, we set mutation rate as 0.05. In this way, a small amount of random search is

provided. Mutation operator is illustrated in Figure 3.4.

Before Mutation: | 1| 3 | 100 175 800
o

AfterMutation: |1 | 5 |GG T TR T

Figure 3.4. Mutation operator of GA.
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Step 5. Finally, we set j=j +1 and go to Step 2. The GA is terminated
after a specified number of iterations. At termination, the solution x that has the
smallest Y(x) value in the last population is chosen as the best. The values of

parameters of GA are given in Table 3.4.

Table 3.4. The values of parameters of GA.

Parameters of GA Values
Population Size 50
Number of Iterations 150
Crossover Rate 0.8
Mutation Rate 0.05

3.2.2. Simulation phase

Existing mathematical methods could not use all variables with stochastic
properties within whole supply chain; hence these methods can only present the
optimal values for partial supply chains. It is not possible to handle all the dynamically
changing supply chain variables using mathematical methods. At this point, simulation
is known as the most effective method for dealing with stochastic variables existing
within whole supply chain. In addition, it can work for the global optimization of planning
an whole supply chain with finding local optimum values within each component (Lee et
al., 2002). The outcomes for different alternatives are evaluated via simulation and
therefore, unnecessary errors and costs are minimized. In simulation, numerical and
logical models based on real-world problems are created and various scenarios are
imitated by means of computers to solve problems. Computer simulation technology
ensures an efficient tool to make a plan for analyzing, solving, and evaluating many
different alternatives. Hence, it is especially important for complex problems with high
risks or that are impossible for real-world testing (Kuo and Yang, 2011). There are
great differences between existing inventory systems. They change according to the
size and complexity; the types of products, the cost elements related with operating the
system, and in the nature of the information available to decision makers at any given
point in time (Hadley and Whitin, 1963). In this case, simulation seems a remarkable
recourse to model and analyze the performance for inventory control systems.
Simulation has an ability to capture specific features of the real object and to
incorporate a greater level of detail (Paul and Chanev, 1998). Also, researchers can

easily change the simulation model parameters and tries to analyze the proposed
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system performance under different sets of parameters. In simulation phase, defining

control parameters is very important because it directly affects system performance.

In this study, DCs and Suppliers adopt the (R, s, S) inventory policy and
simulation starts with initial inventory at DCs and Suppliers because the initial
conditions of a simulation are crucial aspects of simulation modeling. In review period,
the inventory level of each DC and each Supplier is replenished until the order-up-to
level whenever it decreases to a value smaller than or equal to the reorder point. The
chances of lost sales are directly proportional to value of the inventory control
parameters. The higher the inventory levels in supply chain, the lower the chance of
lost sales. However, customer order quantity can be lower than inventory level in
specified review period and hence excess holding cost can be incurred. Managers
should decide how inventory level should be built up to meet not only the customer
demand, but also other factors such as cost minimization. In this respect, simulation
provides an illustrative insight into the problem where the actual environment is difficult

to observe within acceptable time.
3.3. Single Product Inventory Control Problem

In this study, DCs are the stores that fulfill customer orders and Suppliers serve
the products to supply the DCs replenishment orders. Thus, our supply chain conjures
up images of single product from Suppliers to DCs and DCs to customers along a
chain. Inventory levels of DCs and Suppliers are all inspected at every R time units
where R is a fixed constant and assumed to be 5 days. However, only this value
considered to be constant and assumed to be the same for all Suppliers and DCs
placed in the supply chain. Each DC and each Supplier has their own initial inventory,
reorder point, and order-up-to level values, separately. The lower and upper bound
value of the initial inventory is considered to be 800 and 2000 for each DC and each
Supplier, respectively. The lower and upper bound value of the reorder point is
considered to be 50 and 200 for each DC and each Supplier, respectively. The lower
and upper bound value of the order-up-to level is considered to be 200 and 750 for
each DC and each Supplier, respectively. The distribution of the customer order
guantity at the DCs has a Poisson distribution with a rate parameter of 50. Also, we
assumed that average customer arrival at each DC is 1 per day. Each DC
replenishment order may vary depending on the order quantity between successive
orders and the resulting inventory at the time of ordering. The DC replenishment lead
time is assumed to be stochastic. Each DC requires a triangular processing time with

endpoints (1, 3) and mode at 2 minutes to reflect the processing of the product into the
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stores and on the shelves. DCs receive orders (i.e., each DC will receive orders from
customers over time) and need order processing time to process them. The order
processing time that is uniformly distributed on the interval [2, 5] hours is the length of
time between the time when an order for a particular product is placed and when it
actually becomes ready to satisfy demand. In this respect, order processing time
should be thought as the time spent processing order before it is filled (i.e., some
routine paperworks and arrangements). Also, transportation times (i.e., from Suppliers
to DCs) are uniformly distributed on the interval [1.25, 3] days. Thus, DC'’s
replenishment lead time includes order processing time at Suppliers, transportation
time from Supplier to DCs, and processing time at DCs. It should be noted that
inventory level continues to decrease over the duration of the lead time since the order
placed at a review period will not be received until the end of the lead time; hence the
inventory level will continue to decrease until the lead time expires. DCs can take many
number of customer orders within a review period. Note that the cumulative demand
over period n denoted by D;, (i denotes DC in the system, i=1,2,3,...,I and n is the set

of periods where an order is placed) and calculated as follow:

Z ()
Din = Z Dj¢
t=1

where t denotes any time over period n (1<t <n) and D; represents customer
demand at time t for DC;. If D;; is lower than the current inventory level of DC; ( X;¢),
demand is fully satisfied. If D;; quantity exceeds X;;, possible order fulfillment takes
place. Unmet customer order quantity at time t ( X;; = X;; — Dj.) is lost. At the
beginning of each review period, the inventory level of each DC is replenished until the
order-up-to level (S) whenever it decreases to a value smaller than or equal to the
reorder point(s). In this system, the interval time between review periods is fixed but
DCs replenishment order quantity can vary according to customer orders.

0 = {5 —Xin  Uf Xin < S} (4)

n 0 if Xip >s

where X;, is the inventory level of each DC at review period. Q;, denotes the
replenishment order quantity for each DC and is replenished only from its

predetermined Supplier.

To satisfy the DC replenishment order, the firm should select the most suitable
Supplier j,j € J (j denotes number of Suppliers in the system, j=1,2,3,..., J). It is worth
remembering that DCs face stochastic customer demands for a single product and the

Suppliers receive only the replenishment orders from each DC as follows:
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! 5)
Dj = z Qin
i=1

where D;; represents replenishment order quantity of DCs at time t for Supplier j. Then,

the cumulative demand over period n (D;,,) calculated as follow:

< (6)
Djn = Z D]t
t=1

Dj, directly depends on the supplier selection because each replenishment
order of the DC is only fulfilled from selected Supplier. For example, suppose that
Supplierl is selected for DC; and DC; over period n. The replenishment order quantity
of the DC; is 50 units and replenishment order quantity of the DC; is 60 units.
Replenishment orders of other DCs for Supplierl are assumed to be zero. Thus,
Supplierl receives 110 units (D,,) over period n. The DC’s replenishment orders are
satisfied if the current inventory level of Supplier j (X;.) is greater than or equal to the
DC’s replenishment order quantity. If Supplier does not have enough inventories to
fulfill order, possible order fulfillment takes place depending upon X;.. Excess DC'’s
replenishment order quantity is lost (X;; = D;, — X;.). At the beginning of each review
period, the inventory level of each Supplier is replenished until the order-up-to level
whenever it decreases to a value smaller than or equal to the reorder point. If inventory
level is higher than the reorder point, we do not place any order for Supplier j at review

period.

S—Xpn ifXn<s 7)
Qjn = {0 if Xpn > s}
where X;, is the inventory level of each Supplier at review period n. Q;, denotes the
replenishment order quantity for each Supplier and is replenished from unlimited
sources. The Suppliers’ replenishment lead times are also assumed to be stochastic
and includes processing time and order processing time. Processing time to prepare
products (i.e., the processing of the product into the stores and on the shelves) for
serving DCs is assumed to be a random variable that has triangular distribution with
endpoints (3, 7) and mode at 5 minutes at each Supplier. Suppliers receive orders (i.e.,
Suppliers can only receive orders from DCs at each review periods according to their

inventory positions) and need order processing time to process them.
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Figure 3.5. General structure of the proposed supply chain.

As for the DCs, the order processing time that is uniformly distributed on the
interval [2, 5] hours is the length of time between the time when an order for a
particular product is placed and when it actually becomes ready to satisfy demand. In
this respect, order processing time should be thought as the time spent processing
order before it is filled (i.e., some routine paperworks and arrangements). Note that,
transportation time is not considered for Suppliers during the replenishment lead time.
Also, there is always enough time for receiving an order before the next review period
because replenishment lead time will always be shorter than the review period. It
should be noted that inventory level continues to decrease over the duration of the lead
time since the order placed at a review period will not be received until the end of the
lead time; therefore the inventory level will continue to decrease until the lead time
expires. Suppliers can take just one order for each DC but can accept orders from
more than one DC at a time within a review period. The general structure of the
considered supply chain is given in Figure 3.5. Three different sources of customers
place orders on DCs. The three chain DCs can utilize five different Suppliers for a
particular item. Both DCs and Suppliers use similar inventory models (i.e., (R, s, S)) to
replenish their inventory positions to satisfy demands from customers and DCs,

respectively. To estimate the performance of a given system design average holding
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cost, lost sales cost, fixed and variable ordering costs are specified as seen in Table
3.5.

Table 3.5. Inventory related costs.

Suppliers DCs

Average Holding Cost (h;): Uniform (2,5) Average Holding Cost (h;): Uniform (2,5)
Lost Sales Cost (k;): Uniform (80, 100) Lost Sales Cost (k;): Uniform (80, 100)
Processing Cost (p;): Uniform (50, 75) Processing Cost (p;): Uniform (5,10)
Order Cost Per Use (c;): Uniform (50,100) | Order Cost Per Use (c;): Uniform (50,100)
Order Processing Cost Rate: Uniform (2,5) | Order Processing Cost Rate: Uniform (2,5)

Cost Per Use: Uniform (100,150) Cost Per Use: Uniform (10,20)

Any non-negative inventory level is charged a holding cost (h;X;:) proportional
to the remaining inventory quantity over period n. A lost sales cost k;X;, is charged
proportional to the unmet customer order quantity at DC; over period n. p;P; is charged
proportional to the processing time to use any DC for processing activity. Order cost
per use, c; is the cost charged, or accrued, to the cost of any order that is placed at any
DC irrespective of the time spent in there. Order processing cost, 0O; includes order
processing cost rate, which is proportional the order processing time, which is the
length of time between the time when an order for a particular product is placed and
when it actually becomes ready to satisfy demand, and cost per use, which is the one-
time cost that is accrued each time any DC is used, regardless of the usage duration.

Thus, we formulated total supply chain cost for DCs over periods (TSCC;,,) as follows:

TSCCin = hIX:’l + I{Xin < S} (kIXI_n + piPi + C; + 01) (8)

where, I{.} specify indicator function of the set. Similarly, total supply chain cost for

Suppliers over periods (TSCCj,) is calculated. Any non-negative inventory level at
Supplier j is charged a holding cost (thjJ;) proportional to the remaining inventory
quantity over period n. A lost sales cost k;X;,, is charged proportional to the unmet
order quantity at Supplier j over period n. p;P; is charged proportional to the processing
time to use any Supplier for processing activity. Order cost per use, ¢; is the cost

charged, or accrued, to the cost of any order that is placed at any Supplier irrespective

of the time spent in there. Order processing cost, 0; includes order processing cost
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rate, which is proportional the order processing time that should be thought as the time
spent processing order before it is filed (i.e., some routine paperworks and
arrangements), and cost per use which is the one-time cost that is accrued each time
any Supplier is used, regardless of the usage duration. Thus, we formulated TSCC;,, as

follows:
TSCCjn = hjXiy, + {Xjn < s}(kXjn +pjP; + ¢ + 0;) (9)
Finally, total cost of each DC and each Supplier are summed up to calculate
total supply chain cost over periods (TSCC,) as follows:

Periods Considered (10)
Periods Considered

I
J
(TSCCy) = (Z TSCCin + ) TSCCj)
n=1 i=1 =1
n=1
In this study, proposed method aims at minimizing TSCC,,. It is also worth noting
that optimization of all inventory control parameters of both Suppliers and DCs and the

most suitable Supplier selection is performed simultaneously.

The proposed OvS model assumptions are determined as follows:

1) Single product flows through the two echelon supply chain.

2) DCs and Suppliers operate under the (R, s, S) policy where R is fixed (i.e., 5 days).

3) Inventory order policy parameters that are initial inventory, order-up-to level, reorder

point for a given DC and Supplier remain the same across the entire finite time horizon.
4) Poisson demand process and stochastic lead time are used.

5) Each customer order is supplied only by a single predetermined DC and each DC
replenishment order is supplied only by a single Supplier which is determined after the
optimization phase among the candidate Suppliers. Each Supplier replenishes its

inventory from unlimited sources.

6) If the demand quantity exceeds the current inventory level, possible order fulfillment

takes place and unmet demand is lost.

7) There is always enough time for receiving an order before the next review period
because replenishment lead time both for DCs and Suppliers is shorter than the review

period.

8) Only transportation times between Suppliers and DCs are considered.
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9) Simulation model is run for one year.
10) Inventory levels are not allowed to be negative.

To analyze proposed OvS model with a greater level of detail, descriptive
statistics including cost component analysis (average holding cost, order cost per use,
lost sales cost, order processing cost and processing cost), probability based analysis
per each period (P1 and P2), quantity based analysis per each period (TMOQ, TLOQ,
and PLOQ), order based analysis per each period (NTMO, NTLO, and NPLO) and lead
time based analysis per each replenishment lead time (order met probabilities, average

holding unit, and length of the lead time) are given in following chapter.
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CHAPTER 4

4. RESULTS AND DISCUSSION

The supply chain considered in the current study is a single product two echelon
supply chain consisting of Suppliers which is the source of supply for DCs which are
source of supply for customer demands. To provide effective solution methodology for
these supply chain system, we presented OvS model minimizing TSCC,,. The proposed
OvS model has the ability of capturing the advantages of both simulation and
optimization based method where GA is used and the convergence of the search

process for (R, s, S) settings are plotted in Figure 4.1.

Periodic review system
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Cost
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Number of Iterations

Figure 4.1. Convergence of the GA towards the best solution in proposed model.
4.1. Cost based analysis

OvS model determined the best possible values of the initial inventory, reorder
point, and order-up-to level for each DC and each Supplier while minimizing cost
related fitness function. One of the repercussions of this convergence is that if the
inventory control parameters defined effectively, then the total supply chain cost could
be automatically improved. Besides considering inventory control parameters, the most
suitable supplier is determined for each DC. Supplier3, Supplier4, and Supplier5 are
selected to satisfy DCs replenishment order in proposed model. Also, overall average
service levels are summarized for each DC and each Supplier in Table 4.1. Taking a
glance at overall average service levels of Suppliers reveals that there seems no
problem with Suppliers. Note that average service level specifies the ratio of current
inventory level in each DC/Supplier to number of units ordered by the customers/DCs

over total number of incoming orders and can be calculated as follow:
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Current Inventory Level 11
'Incoming Order Quantity) ( )

ZgizArrival min( 1

Average service level =
9 Total Number of Incoming Orders

Table 4.1. Average service levels and optimal values of inventory control parameters.

Supply Initial Reorder  Order-Up-To  “verage
Chain Inventory Point (s) Level (S) Service
Component Level
DC1 1897 82 656 0.789633
DC2 1897 82 503 0.69926
DC3 1985 82 503 0.704517
Supplierl - - - -
Supplier2 - - - -
Supplier3 1880 144 679 0.996853
Supplierd 936 193 576 0.993674
Supplierb 1667 193 652 0.993619

With optimal inventory control parameters, DCs and Suppliers fulfill a strategic
role of achieving the supply chain objectives of lower costs. In this respect, key to the
managing of DCs and Suppliers lie in the evaluation of the optimal cost model for any
given structure. Thus, information on where cost components are incurred and whether
the cost components are rising or falling is required. In this study, we used total supply
chain cost including five different cost components (average holding cost, order cost
per use, lost sales cost, order processing cost and processing cost). To substantially
analyze a realistic inventory model, a detailed descriptive statistics including cost
component analysis per each period, probability based analysis per each period (P1
and P2), quantity based analysis per each period (TMOQ, TLOQ, and PLOQ), order
based analysis per each period (NTMO, NTLO, and NPLO) and lead time based
analysis per each replenishment lead time (order met probabilities, average holding
unit, and length of the lead time) are given. To the best of our knowledge, there is no

study is available about (R, s, S) policies including such a detailed analysis.
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The majorities of the studies in the literature are briefly analyzed the cost,
demand and lead time behavior in supply chain. For example, Movahed and Zhang
(2015) analyzed demand and lead time uncertainties and provided an effective guide
for decision-makers to find the optimal value of inventory policy parameters. An
important remark to the conclusions drawn previous studies is that such a detailed
statistical analysis of (R, s, S) policies was not taken into account and calculating such

statistics can only be possible through simulation based models such as OvS models.

The analysis of cost components showed that the largest share in Figure 4.2 for
DC1 is the lost sales cost (81%). Except for the first period the values of cost
components can be said to be uniformly distributed across the periods with DC1. The
reason for period 1's being an exception is DCs’ having adequate levels of initial
inventories at that period. P1 for both Suppliers and DCs are calculated by using
equation (12).

f” i Current Inventory Level .
min(1, - -
n-1 Incoming Order Quantity (12)

Calculating such a statistic allows one to obtain hidden but valuable information
about the dynamics of the supply chain which is ignored most of the time. Also, P2 for
both Suppliers and DCs are calculated by using equation (13) for comparison

purposes.

no Current Inventory Level (13)
f min(1, - —)dt
0 Incoming Order Quantity

Note that P1 and P2 values should be close to 1 across the periods for all
supply chain members to have the potential to meet all incoming orders over time. It is
noticeable that except for the first period the value of P1 and P2 uniformly distributed
across the periods with all DCs. Note that, at period 1 all incoming orders are met (i.e.,
P1 is 1) for all DCs due to having adequate levels of initial inventories at that period.
But, this is not the case for DC1 at period 2 where P1 is 0.737 (i.e., All incoming orders
are met 73.7 percent of the time over period 2 or incoming orders are met with 0.737
probability). Finally, P2 value is 0.869 for DC1 at period 2. In other words, 86.9 percent
of the time (i.e., over two months) all incoming orders at DC1 are met. Likewise, the
same value can be interpreted as all incoming orders at DC1 within the first two months

are met with 0.869 probability.
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Comparing P2 with P1 provides very useful information for decision makers. It is
apparently seen that it can be quite misleading to consider just P2 values since it is
being a biased indicator due to its taking account of initial conditions. Note that P1
values are calculated just for each period and thus can be seen just a fine tuned
version of P2 values. Being much more realistic indicators P1 values should be relied
on while making decisions.

Figure 4.3 summarizes analysis of number of orders together with order
quantities. Except for the first period the values of TMOQ uniformly distributed across
the periods with DC1. Similar conclusions can be drawn related to TLOQ, PLOQ,
NTMO, NTLO, and NPLO. Note that, at period 1 there is no totally lost and/or partially
lost orders with DC1 due to adequate levels of initial inventories.

The analysis of cost components showed that the largest share in Figure 4.4 is
the lost sales cost (87%) whose value is higher than DC1. Except for the first period the
values of cost components can be said to be uniformly distributed across the periods
with DC2.

Similar conclusions can be drawn related to TMOQ, TLOQ, PLOQ, NTMO,
NTLO, and NPLO in Figure 4.5. Except for the first period the value of this statistics
uniformly distributed across the periods for DC2. It is seen that DC1 and DC2 have
some difference in cost and order analysis. The source of these variations may be due
to stochastic order processing times, stochastic transportation times, or other
stochastic parameters. The strongest candidate among these is stochastic customer

order quantity.

The analysis of cost components showed that the largest share in Figure 4.6 for
DC3 is the lost sales cost (86%) whose value is slightly higher than DC1 and lower
than DC2. The values of P1, P2, TMOQ, TLOQ, PLOQ, NTMO, NTLO, and NPLO are
uniformly distributed across the periods for DC3 except for the first period. It is
apparently seen that the value of each cost component exhibits substantially different
cost structures in accordance with the periodic review system at each DC. From Figure
4.7, the value of P1 and P2 across the periods for DC1 is higher than those of DC2 and
DC3 except for the first period. Having the same customer order arrival rates this result
seems a bit cumbersome for the DCs’ managers. Then the source of variation may be
due to stochastic environment. The strongest candidate is the level of inventory control

parameters.
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From Table 4.1, initial inventory levels are seen to be very close each other and
also reorder point levels are all the same for all DCs. But, DC1’s order-up-to level (i.e.,
656) is higher than those of DC2 and DC3. Note that, DC2 and DC3 have the same
level of order-up-to level (i.e., 503) which justifies our forecast. TMOQ per period with
DC1 is higher than those of DC2 and DC3. Again the reason for this good statistic with
DC1 originates from DC1’s having a higher level of order-up-to level than those of the
others. It is noticeable that except for the first period the values of TMOQ uniformly
distributed across the periods with all DCs, being higher with DC1 for each period than
those of the others. Similar conclusions can be drawn related to TLOQ, PLOQ, NTMO,
NTLO, and NPLO.

The analysis of periodic review system showed that the largest share in the pie
chart for all DCs is the lost sales cost. It should be noted that even the minimum one is
accounted for 81% of the total DC cost (i.e., the total lost sales cost with DC1). Thus,
shortage is the most strategic issue despite various cost types involved in DCs. It is
well known that competition among DCs has become fiercer and fiercer in recent
years. Hence, if lost sales cost could be reduced effectively, total supply chain cost for

DCs may not be changed but at worst customer satisfaction will be improved.

600000,00

500000,00

400000,00

300000,00
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200000,00

100000,00 —

0,00

DC1 DC2 DC3

m Total lost sale cost m Total lost sale cost during lead time Difference

Figure 4.8. The comparison of total lost sales cost and total lost sales cost during lead

time.

It is seen in Figure 4.8 that the high proportion of the lost sales cost occurs
during replenishment lead time periods. At this point, the longer the length of lead time,
the higher the proportion of lost sales would be. Remember that, the length of the
review period is the single deterministic component and is considered to be 5 days for

all DCs and Suppliers.
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Contrary to DCs, Suppliers lost sales costs are extremely lower since they have
shorter lead-times (Suppliers’ lead times do not include transportation time). After
evaluating DCs, we give a detailed analysis about Suppliers. Suppliers with periodic
review system have no totally lost sales. Note that Supplierl and Supplier2 are not
preferred by DCs with periodic review system. It is apparently seen in Figure 4.9 that
processing cost is the most strategic issue despite various cost types involved in
Supplier3. Note that share of the lost sales cost is dramatically lower than DCs. On the
other hand, share of the average holding cost particularly increases with respect to
DCs. Figure 4.9 also summarizes analysis of number of orders, order quantities, P1
and P2 for Supplier3. It is noticeable that after period 4 the values of TMOQ can be
said to be uniformly distributed across the periods among Suppliers. TLOQ and NTLO
are all zero across the periods. Note that, although PLOQ and NPLO are generally
zero across the periods with Supplier3, DC replenishment orders are partially met in
period 3. However, unmet order quantity is negligible which is justified by the higher
values of both P1 across the periods and P2 over all periods. Also, it should be noted

that the value of P1 and P2 uniformly distributed across the periods for Supplier3.

The analysis of cost components showed that the largest share in Figure 4.10
for Supplier4 is the processing cost. Except for the first, second and third period the
values of cost components can be said to be uniformly distributed across the periods
with Supplier4. Similar conclusions can be drawn related to TMOQ, TLOQ, PLOQ,
NTMO, NTLO, and NPLO. It is noticeable that after period 2 the values of TMOQ can
be said to be uniformly distributed across the periods among Supplier4. TLOQ and
NTLO are all zero across the periods. Note that, although PLOQ and NPLO are
generally zero across the periods with Supplier4, in period 2 DC replenishment orders
have been unmet. However, unmet order quantity is negligible which is justified by the
higher values of both P1 across the periods and P2 over all periods. Also, the value of
P1 and P2 are uniformly distributed across the periods for Supplier4. It is seen in
Figure 4.11 Supplier5 is slightly different from Supplier3 and Supplier4. Number of
partially lost order is higher than others. Except for the first, second, third, fifth and
eighth period the values of cost components can be said to be uniformly distributed
across the periods with Supplier5. TLOQ and NTLO are all zero across the periods.
Note that, although PLOQ and NPLO are generally zero across the periods with

Supplier5, in period 3, 5 and 8 DC replenishment orders are partially met.
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It is noticeable that after period 3 the values of TMOQ can be said to be
uniformly distributed across the periods among Supplier5. It is apparently seen that the
largest share in the pie chart for all Suppliers is the processing cost. The minimum one
is accounted for about 59% of the total supply chain cost for Suppliers with proposed
model. Note that share of the lost sales cost in the pie chart is dramatically lower than
DCs. On the other hand, share of the average holding cost particularly increases with
respect to DCs. After period 4, the value of TMOQ across the periods for Supplier3 is
higher than those of Supplier4 and Supplier5. The reason for this slight difference may
be because of stochastic order processing times, stochastic transportation times, and
levels of inventory control parameters. The strongest candidate among these is the
level of inventory control parameters. From Table 4.1, Supplier3 has a higher level of
initial inventory and order-up-to level than those of the others but its reorder point is
lowest with proposed model.
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Figure 4.12. Cost analysis of DCs and Suppliers.

It is clearly seen in Figure 4.12, total cost for DCs is extremely higher than
Suppliers. This results show that creating review system for DCs is more critical than
Suppliers since incorrect selection can be more costly for DCs. After general analysis
of supply chain member, we also analyzed each cost component for the whole supply

chain as given in Table 4.2-4.3.

The success of DCs and Suppliers clearly depends on the extent of cost
savings and the customer service level. To achieve significant savings, companies
should integrate inventory control and supplier selection instead of treating them
separately. This could be achieved through the use of OvS based models. In this study,

we have presented an answer to the question of how periodic review system is become
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more appropriate in lost sales inventory systems while considering total supply chain

cost.
Table 4.2. The cost analysis of the DCs.
Average Order Lost Order )
) ] Processing
Holding | Cost Per Sales Processing Cost
0s
Cost Use Cost Cost
DC1 13669 26875.7 | 345373 36460.1 3457.4
DC2 10111 26962.9 | 492530 36302.3 3075.6
DC3 11022 27005.4 | 483175 36501 3077
Total Supply
Chain Cost 34802 80844 | 1321078 | 109263.4 9610
for DCs
Table 4.3. The cost analysis of the Suppliers.
Average Order Lost Order _
) ) Processing
Holding | Cost Per Sales Processing
Cost
Cost Use Cost Cost
Supplier3 25831 1470 3709 2021.9 60261
Supplier4 17523 4891.6 | 6261.46 4891.6 55887
Supplier5 26513 1673.9 6533 2189 52454
Total Supply
Chain Cost 69867 8035.5 | 16503.5 9102.5 168602
for Suppliers

To present a convenient way to visually compare all supply chain member on
five statistics, we also used box plot that includes the minimum and maximum range
values, the upper (75th) and lower quartiles (25th), and the median (50th). The 25th
and 75th percentiles are given as a box centered about the 50th percentile (median).
The median is the middle observation in a ranked dataset and is a measure of the
central tendency of the data. An advantage of the median is its resistance against

outlying values for 3=2n, where n is the number of observations. The major purpose of
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this graph is to permit an appropriate way to visually compare all supply chain member
on these five statistics at the same time. The manager can look for differences between
members and then conduct further investigations to establish plausible explanations for
differences. Note that outliers are represented by “*” and the line connected supply
chain member shows the mean that is directly affected by an extreme outlying
observation. Whereas the mean can be skewed by an extreme outlying observation,

the median is unaffected and therefore remains robust.
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Figure 4.13. Evaluation of P1 for DCs.

The value of P1 for DC1 is higher than those of DC2 and DC3 (Figure 4.13). This
result shows that DC1 can satisfy customer order with higher probability in each period.
Note that P1 value should be close to 1 across the periods for all supply chain

members to have the potential to meet all incoming orders over time.
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Figure 4.14. Evaluation of P1 for Suppliers.

The value of P1 for Supplier3 and Supplier4 is approximately same but
Supplier5 is a bit different from other Suppliers (Figure 4.14). It is seen that Supplierb’
box length that shows the variability of P1 is higher and hence Supplier3 and Supplier4
are better than Supplier5 when box plot is taken into account.
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Figure 4.15. Evaluation of P2 for DCs.

The value of P2 for DC1 is higher than those of DC2 and DC3 (Figure 4.15).
This result show that DC1 can satisfy customer order with higher probaility over
periods. Note that P2 values should be close to 1 across the periods for all supply

chain members to have the potential to meet all incoming orders over time.
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Figure 4.16. Evaluation of P2 for Suppliers.

In Figure 4.16, it is noticeable that the value of P2 for Suppliers is different from
P1 value. The variability of P2 is higher than P1. According to Figure 4.16, Supplier3 is
better than other Suppliers. The values of P2 for Supplier4 have a higher variability and
are also lower than others. Comparing P2 with P1 gives very valuable information for
managers. It is clearly seen that it can be quite misleading to consider just P2 values

because it is being a biased indicator due to its taking account of initial conditions.
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Figure 4.17. Evaluation of NPLO for DCs.

From Figure 4.17, the box plots indicate that there is no difference between

DC2 and DC3. In fact, it is clearly visible that the boxes and the median values are on
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the same level. On the other hand, median value of DC1 is lower than other DCs and

also its NPLO variability is higher when box length is taken into account.
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Figure 4.18. Evaluation of NPLO for Suppliers.

The box plots indicate that there is no difference between Supplier3 and
Supplier4 (Figure 4.18). In fact, it is clearly visible that the median values are zero.
Supplier5 has a different structure although median is zero. NPLO for Supplier5 has a
great variability due to wide range of box length. Therefore, Supplier3 and Supplier4

have better performance than Supplier5 when NPLO is taken into account.

Due to the increased competition in the supply chain environment, customers
are not willing to wait anymore and most of the customer demand is considered to be
lost in many practical settings. Therefore, characterizing supply chain members’
structural properties, and evaluating proposed method are very important in lost sales
environment. In this study, the values of NTLO (Figure 4.19) and TLOQ (Figure 4.20)
for DC1 are lower than those of DC2 and DC3. Hence, customer satisfaction is higher
than DC2 and DC3 since the customer satisfaction could be highly increased by

reducing lost sales. Note that Suppliers have no NTLO and TLOQ.
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Figure 4.20. Evaluation of TLOQ for DCs.
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Figure 4.21. Evaluation of NTMO for DCs.

There is no observable difference between DC2 and DC3 as seen in Figure
4.21. The value of NTMO for DC1 is higher than those of DC2 and DC3.
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Figure 4.22. Evaluation of NTMO for Suppliers.

The box plots indicate that there are some differences between Suppliers
(Figure 4.22). In fact, it is clearly visible that the median values are equal to 2 for
Supplier4 and Supplier5 but Supplier5 has some variability. The median value for
Supplier3 is lower than other Suppliers. Also, it has a great variability due to wide range

of box length.
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Figure 4.23. Evaluation of PLOQ for DCs.

Although there is no observable difference between DCs, the median value of
PLOQ for DC2 is higher than those of DC1 and DC3 (Figure 4.23).
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Figure 4.24. Evaluation of PLOQ for Suppliers.

As seen in Figure 4.24 there is no observable difference between Suppliers
considering median. Note that, Supplier5 has some variability and box length shows
the variability of PLOQ.
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Figure 4.25. Evaluation of TMOQ for DCs.

The value of TMOQ for DC1 is higher than those of DC2 and DC3 (Figure 4.25).

Higher TMOQ means high level of customer satisfaction. Similar things can be said

with regard to the value of TMOQ for Suppliers as seen in Figure 4.26. Note that, box

length of Supplier3 shows the variability of TMOQ.
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Figure 4.26. Evaluation of TMOQ for Suppliers.

In conclusion, supply chain members have some differences. The source of

variation may be due to stochastic order processing times, stochastic transportation

times, and levels of inventory control parameters. The strongest candidate among
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these is the level of inventory control parameters. To remain competitive, companies
must analyze all supply chain member and this study can help them to understand how
to apply statistical analysis skills to clarify these policies with a greater level of detail.

4.2. Lead time based analysis for each model

The purpose of this section is to show the lead time related statistics more in
depth to provide more useful information. Hence, statistical analysis extended by
calculating order met probabilities per lead time period which is one of the most
significant statistics. The overall goal of such a detailed analysis is to extract dynamics
of the system considered and transform it into an understandable structure for
managerial decision making. Moreover, taking into account the stochastic lead times
further is increased the importance of this statistic. Order met probability per lead time
period is calculated by using equation (14).

min(1

fe”d of lead time Current Inventory Level (14)
n "Incoming Order Quantity

It should be emphasized that calculating such a statistic can only be possible
through simulation which reinforces once again the power of simulation. Note that there
could be no replenishment orders for some periods. Still, these statistics are collected
for periods with replenishment orders. To the best of our knowledge such a valuable
statistic never ever held before while analyzing such systems. Note that order met
probabilities per lead time for Suppliers are always 1 or close to 1 in all periods. It
should be noted that the simulation is run over one year period. Since review period
length is five days (i.e., inventory is reviewed at every five days at both DCs and
Suppliers) actually a total of 73 lead time per period will be come true for all DCs and
all Suppliers. Note that, at some periods there will be no replenishment orders for both

DCs and Suppliers and denoted as “-” in following tables. Also, order met probabilities
per lead time period within some review periods will be zero for some DCs and

Suppliers.

From Table 4.4, it is clearly seen that order met probabilities per lead time
period are very low for almost all DCs. The best order met probability per lead time
period is at most 20.14% (row 9) which means that 79.86% of incoming orders lost

during 9" lead time period.
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Of course, these values are not self-explanatory and dependent on the length of
the lead time period and average inventory holding unit during the length of lead time.
Thus, evaluating order met probabilities along with the length of lead time period and
average inventory holding unit during the length of lead time will make it much more
comprehensible.

It is clear that longer lead time periods together with lower average inventory
holding unit will result in lower order met probabilities during lead time period. But,
longer lead time periods together with higher average inventory holding unit will result
in higher order met probabilities during lead time period. Note that, average inventory
holding unit depends particularly on the level of inventory at the beginning of the lead
time period. But, it also depends on the length of the lead time period (see equation
(14)). In this respect, Table 4.4 are all supplemental tables and should be evaluated
together to increase comprehensibility. From row 30 of Table 4.4 it is seen that order
met probabilities per lead time period for all DC1, DC2, and DC3 are 12.69%, 0.49%,
and 0.04%. In other words, 12.69% percent of the lead time period incoming orders are
met by DC1 or during lead time period 12.69% percent of the incoming orders are met
by DC1. In addition to this, we used box plot to present lead time based analysis in a

detailed way.
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Figure 4.27. The order met probabilities per replenishment lead time for periodic review

system.
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From Figure 4.27, it is clearly seen that order met probabilities per lead time
period are very low for almost all DCs in periodic review system. However, order met
probabilities per lead time for all Suppliers in periodic review system are always 1 or
close to 1 in all periods.

ek

Note that outliers are represented by and the line connected supply chain
member in Figure 4.27 shows the mean that is directly affected by an extreme outlying

observation.

Table 4.5 simply summarizes the ratio between the length of lead time period
and the length of review period (i.e., percentages of lead time periods over the review
periods). According to row 12 of Table 4.5 it can be said that lead time of DC1
comprised 18.85 percent of review period 12 (i.e., 5*0,1885=0,9425 days). Likewise,
lead time of DC2 and DC3 comprised 55.6 and 55.3 percent of review period 12 (i.e.,
5*0.5564=2.782 days and 5*0.5525=2.7625 days, respectively), respectively.

Consequently, the minimum percentage of lead time period for DCs comprise
2.18% of related review period and the maximum percentage of lead time period
comprise 61.3% of related review period. Also, the minimum percentage of lead time
period for Suppliers comprise 1.72% of related review period and the maximum
percentage of lead time period comprise 40.03% of related review period. Such a large
gap between minimum and maximum values shows the importance of taking stochastic

behavior of the system into account.

In Figure 4.28, box length shows the variability of length of lead time and the
line across the box presents where the lead times are centered. It is seen that each
member is different from each other in periodic review system due to stochastic

environment.

Increased levels of inventory parameters will definitely improves not only
average holding unit levels over lead time but also order met probabilities over lead
time both at DCs and Suppliers at the expense of increased total cost. Figure 4.29
summarizes the average holding unit that is hold at DCs and Suppliers during the
replenishment lead time in periodic review system. The box length gives an indication
of the average holding unit variability and the line across the box shows where the

average holding unit is centered.
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Figure 4.28. Lead time analysis for each supply chain member in periodic review

system.
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Figure 4.29. The average holding unit of supply chain members in periodic review

system.

Table 4.6 summarizes the average holding unit that is hold at both DCs and
Suppliers during the lead time periods. It should be noted that DCs average holding
unit over lead time period are all close to zero. The main reason for this situation arises
from the fact that even maximum amount of order-up-to level cannot handle incoming

orders to the DCs.
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The results of the study show that indeed proposed model has significant
effects on the optimal policy values in DCs. Balancing the total average holding cost
with the total lost sales cost, also balances P1 and P2 among the DCs. It is clear that
proposed model allows managers to have the same level of total supply chain costs in
DCs while increasing customer satisfaction by decreasing number of totally lost orders
and the number of partially lost orders. Looking at individual cost components in OvS
model, we observe that the decrease in the lost sales costs are offset by the increase
in average holding costs. This is a counterintuitive result that highlights the importance

of inventory decisions in supply chain.
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CHAPTER 5
5. CONCLUSIONS

Inventory control systems are challenging in the case of modeling because
managing inventories is typically difficult in a stochastic and/or dynamic environment.
Providing optimal inventory control system is a crucial foundation for achieving both
strategically and tactically success in inventory management. On the other hand,
modeling of inventory control system in a stochastic and/or dynamic environment
needs too much computational effort to solve and sometimes they are not solvable in
reasonable time. Also, existing models are analytically solvable only under simplifying
assumptions and approximations due to inability of the representing stochastic and/or
dynamic environments. Hence, many researchers have dedicated themselves to
search more robust model. At this point, OvS can be used with much details, realities,
and complexities as the modeler wants in order to solve any real inventory control
systems. Therefore, we used OvS model to optimize inventory levels considering (R, s,
S) inventory control system and supplier selection in a two echelon supply chain with
lost sales system. Our proposed OvS approach for solving the considered problem
can be explicitly considered as a complementary tool for determining the reorder point,
order-up-to-level, and initial inventory while ensuring cost based objective function with
lost sales system. Although many researchers have dedicated themselves to search
more robust model involving stochastic behaviors existing in real-world problems, they
do not report such an extensive analysis for (R, s, S) policies. To understand better the
scope of periodic review systems and opportunities associated with inventory
management, we give a detailed analysis of inventory control system including cost
component analysis (average holding cost, order cost per use, lost sales cost, order
processing cost and processing cost), probability based analysis per each period (P1
and P2), quantity based analysis per each period (TMOQ, TLOQ, and PLOQ), order
based analysis per each period (NTMO, NTLO, and NPLO) and lead time based
analysis per each replenishment lead time (order met probabilities, average holding
unit, and length of the lead time) for proposed OvS models, which are remarkable
model for inventory control systems in determining the best inventory control

parameters. Extensive statistical analyses also yield third important results.

(1) Supplier selection is important in inventory control system. OvS model
integrates the supplier selection and inventory control system to make a supply chain

member more flexible and responsive to customer requests.

79



(2) Looking at each cost component in OvS model, we observe that the
decrease in the lost sales costs are offset by the increase in average holding costs.
Also, if the periodic review system could be applied effectively, total supply chain cost
could be automatically improved in lost sales system.

(3) The ratio between the lost sales cost and total supply chain cost in DCs is
dependent on the length of replenishment lead time through the amount of shortages.

In conclusion, increasing diversity in customer expectations can be easily
satisfied using our proposed model since it has ability to ensure right level of
responsiveness at the lowest possible cost in each DC and each Supplier. It shall also
be of great value not only to readers who desire to extend their research avenues into
this exiting area, but also to those who have already investigated this topic, but in
isolation or with limited scope.
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