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ABSTRACT 

 This study describes an Optimization via Simulation (OvS) model developed to 

analyze a (R, s, S) policy under stochastic environment and lost sales. In this model, 

Distribution Centers (DCs) are the stores that fulfill customer orders and Suppliers 

serve the products to supply the DCs replenishment orders. The inventory level of each 

DC and each Supplier is replenished periodically at one point in time for each period. 

The goal of this research is to substantially develop a realistic inventory model and to 

expand research on periodic review system. We also try to point out several important 

issues: what the optimal values of initial inventory, reorder point and order-up-to level 

are in (R, s, S) policy for each DC and each Supplier; whether the OvS can 

successfully integrate the supplier selection and (R, s, S) policy for supply chain 

environment; how to apply statistical analysis skills to clarify this policy with a greater 

level of detail. According to the results of statistical analysis including cost components 

analysis, quantity based analysis, order based analysis, probability based analysis, and 

lead time based analysis, proposed model help to properly control echelon inventory so 

that good customer service is maintained. Also, it can be easily applied for the actual 

situation of the supply chain inventory system and companies may obtain a remarkable 

amount of saving while increasing the competitive edge. 

Keywords: Supply chain management, Inventory control system, Supplier selection, 

(R, s, S) policy, Optimization via simulation, Genetic algorithm. 
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          TEK ÜRÜNLÜ PERİYODİK STOK KONTROLÜ VE TEDARİKÇİ SEÇİMİ: 

SİMÜLASYON OPTİMİZASYONU YAKLAŞIMI 

Aslı BORU 

Yüksek Lisans, Endüstri Mühendisliği Bölümü  

Tez Yöneticisi: Yrd. Doç. Dr. Mustafa GÖÇKEN 
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ÖZET 

 Bu çalışmada stokastik çevreyi ve kayıp satışı dikkate alan (R, s, S) politikasını 

analiz etmek için Simülasyon Optimizasyonu (OvS) modeli oluşturulmaktadır. Bu 

modelde, Dağıtım Merkezleri (DCler) müşteri siparişlerini karşılayan depolardır ve 

tedarikçiler ise DClerin yenileme siparişlerini karşılamak için imkan sağlamaktadır. Her 

DC ve her tedarikçinin stok seviyesi her periyot için belirli bir zaman diliminde periyodik 

olarak yenilenmektedir. Bu araştırmanın amacı, gerçekçi bir envanter modeli 

geliştirmek ve periyodik gözden geçirmeye dayalı sistemlerin araştırılmasını 

genişletmektir. Ayrıca, birkaç önemli konuyu: (R, s, S) politikasında her bir dağıtım 

merkezi ve her bir tedarikçi için başlangıç stoğu, yeniden sipariş noktası, maksimum 

sipariş miktarı seviyesinin optimum değerinin ne olduğu; OvS modelinin tedarikçi 

seçimi ve (R, s, S) politikasıyla birlikte başarıyla tedarik zincirine entegre olup olmadığı; 

daha detaylı bir analizle bu politikayı incelemek için istatistiksel analizlerin nasıl 

uygulanması gerektiğini açıklığa kavuşturmaya çalışmaktadır. Maliyet bileşen analizleri, 

miktar bazında analizler, sipariş bazında analizler, olasılık bazında analizler ve tedarik 

süresi bazında analizleri de içeren istatistiksel analizlerin sonuçlarına göre, oluşturulan 

model müşteri hizmetinin iyi bir şekilde devam ettirilebilmesi için uygun stok kontrolünü 

sağlamaktadır. Ayrıca, bu model tedarik zincirlerinin stok kontrolüne kolayca 

uygulanabilmekle beraber şirketlerin rekabet gücünü arttırırken kayda değer bir 

tasarrufta sağlamaktadır. 

Anahtar Kelimeler: Tedarik zinciri yönetimi, Stok kontrol sistemi, Tedarikçi seçimi, (R, 

s, S) politikası, Simülasyon optimizasyonu, Genetik algoritma. 
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CHAPTER 1 

1. INTRODUCTION 

 Under intense competition, marginal profit is becoming thinner and thinner in 

recent years and hence companies should improve supply chain management to 

overcome today’s management challenges. Supply chain management includes 

important decisions related with the management of supply chain assets and products, 

funds and information flows to maximize total supply chain profitability or minimize total 

supply chain cost (Chopra and Meindl, 2007). One of the most significant decisions 

influencing the performance of a supply chain is inventory management because it is 

pivotal in efficient and effective organization. In addition, it is crucial in the control of 

products that have to be stored. The main goal of inventory management is balancing 

the conflicting economics of not wanting to hold too much stock (Adeyemi and Salami, 

2010). At this point, the exact determination of optimal inventory is needed because 

shortage of inventory increases the number of lost sales, while holding excess 

inventory can result in pointless storage costs. In this case, the determination of the 

inventory level to be held in supply chain members becomes inevitable so as to 

achieve goals for the supply chain.  

 To apply most effective inventory management, the inventory control system 

should provide enough information to allow managers to make decision on inventory. 

Hence, many researchers investigate to observe different impacts of the inventory 

control systems in terms of cost reduction. In this case, determining well-selected set of 

suppliers makes a strategic difference to an company's ability to ensure continued 

improvement in control policies. Although there are plenty of researches for the 

supplier selection model, only limited studies focused on the inventory control policies 

integrated with supplier selection, especially under stochastic demand and lead times. 

Also, existing literature on supply chain modeling are generally focused on 

mathematical modeling. However, mathematical modeling may not meet the 

expectation due to the high complexity of the problems and only small scale systems 

are amenable to this model. Also, optimization-based approaches generally require too 

many assumptions and simplifications to be applicable and effective. On the other 

hand, simulation based techniques can give reasonable solutions without analytical 

assumptions and simplifications. Also, simulation has an ability to capture specific 

features of the real object and to incorporate a greater level of detail (Paul and Chanev, 

1998). Simulation provides illustrative insight into certain managerial problems where 

analytic solutions of the problem are not possible or where the actual environment is 
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difficult to observe within acceptable time. Simulation seems a remarkable recourse to 

model and analyze performances for such large-scale cases (Thierry et al., 2008). 

However, simulation models do not provide the capability of finding the optimum set of 

decision variables in terms of predefined objective function(s). This is made by 

optimization models that allow decision makers to find the best possible alternatives. 

Also, their impact on the system performance can be evaluated using simulation 

models. Therefore, integrating simulation and optimization into supply chain framework 

provides decision makers with a comprehensive solution toolbox (Omar et al., 2013) 

and known as OvS. OvS along with modern computing power is an answer to modeling 

complex supply chain problem and addressing aforementioned criticisms. OvS can 

model a system with as much details, realities, and complexities as the modeler wants 

and is satisfied with; hence, with fast computational resources, OvS could solve any 

real stochastic complex optimization problem (Kabirian, 2009). In this study, we used 

OvS model to determine the optimal values of reorder point, order-up-to level and initial 

inventory in DCs and Suppliers, and properly selecting the set of Suppliers for DCs. 

Thus, we presented (R, s, S) policy and supplier selection simultaneously in a two 

echelon supply chain under stochastic environment and lost sales system. 

 In this chapter, Sections 1.1 presents an overview of supply chain and the role 

of inventory in supply chain environment. Section 1.2 describes inventory control 

system. Section 1.3 presents inventory related cost. Section 1.4 describes general 

supplier selection methodologies. Section 1.5 presents the major contributions of this 

research and Section 1.6 provides an overview of this thesis. 

1.1. Role of Inventory within the Supply Chain 

 Supply chain can be defined as a sequenced network of business partners 

which includes manufacturers, distributors, warehouses, retailers, suppliers and even 

customers themselves (Chopra and Meindl, 2007). Supply chains are the lifeblood of 

any organizations. To remain competitive, companies must provide high quality, high 

responsiveness and low cost in today’s competitive environment. So they should know 

that managing supply chain plays a key role to organize total supply chain effectively. 

However, it includes high level of uncertainty in supply and demand, contradictory 

objectives, information ambiguity, and a great number of decision variables and 

constraints (Arisha and Abo-Hamad, 2010). Also, inventory management is a common 

problem to all organization in any supply chain management system because the cost 

of inventories accounts for approximately 30% of the value of the product and it directly 
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affects customer service level in a supply chain and plays a central role in improving 

supply chain performance.  

 Determining exact inventory level at each echelon in the supply chain without 

shortages and excesses while minimizing the total supply chain cost is a main concern 

for the inventory and supply chain managers. Finding optimal inventory is a key point to 

provide cost effective system because inventory shortage yields to lost sales, on the 

other hand excess inventory can cause pointless storage costs. Hence, inventory 

management at each supply chain member becomes inevitable in order to minimize 

the cost for the supply chain. Understanding of the whole supply chain perfectly is 

needed to develop an effective system because every company has different 

processes and different forms of inventories. Therefore, first of all we need to know 

why do companies hold inventory? The reasons for holding inventories can be 

summarized under 5 sub-heading: 

1. It enables the company to achieve economies of scale, 

2. It regularly balances demand and supply, 

3. It provides specialization in manufacturing, 

4. It enables protection from uncertainties in demand and order cycle, 

5. It behaves as a buffer between critical interfaces within distribution channel (Lambert 

et al., 1998). These purposes, to a major extent, reflect the environment in which a 

company operates. 

 In inventory  control,  to  provide  effective  system  to  customers  the  problem  

of  determining the optimal type of inventory arises. There are many ways to categorize 

inventories but we recommend six broad decision categories for creating more effective 

and more responsive supply chains. 

1. Cycle stock is the amount of inventory on hand, at any point, results from batches 

where demand is ordered or produced in batches instead of one unit at a time. 

2. Congestion stock is inventory at hand because of products competing for limited 

capacity (When multiple products share the same production equipment, inventories of 

these products build up as they wait for the equipment to become available). 

3. Safety stock is inventory at hand, on the average, to protection against the 

uncertainty of supply and the uncertainty of demand in the short run. 
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4. Anticipation inventory includes stock accumulated in advance of an expected peak in 

sales. It can also occur because of seasonality of supply. 

5. Pipeline (or work-in process) inventory consists of goods in transit between levels of 

multi-echelon distribution system or between two adjacent workstations in a factory. 

6. Decoupling stock is used in multi-echelon supply chains to allow for the separation of 

decision making at different echelons.  

 Note that these six functional categories were defined to concentrate attention 

on the organizational purposes of the inventories, especially with regard to control and 

manageability rather than on accounting measures (Silver et al., 1998). Defining which 

one to use depends on the properties of the company. After specifying inventory 

category, three important issues or problems should be answered in inventory 

management system.  

 1. How often the inventory level should be determined? 

 2. When a replenishment order should be placed? 

 3. How large the replenishment order quantity should be?  

 Regarding with the first issue, the less frequently the status is determined, the 

longer is the period over which the system must protect against unforeseen variation in 

demand to satisfy customer demand (Silver et al., 1998). On the other hand, if the 

status is determined more frequently, it may unnecessarily increase the cost of the 

system. Clearly, answer of this problem specifies the review period (R) which is the 

time that elapses between two consecutive moments at which we know the stock level. 

In literature, one of the two basic types of review systems: periodic review or 

continuous review is used in inventory management. It should be noted that continuous 

review provides same customer service level and it requires less safety stock but the 

load is less predictable under continuous review since replenishment decision can be 

made at practically any moment in time. On the other hand, periodic review provides a 

reasonable prediction of the workload on the staff involved and it is generally less 

expensive in terms of reviewing costs and reviewing errors (Silver et al., 1998). Hence, 

in most cases periodic review is particularly appealing. Regarding with the second 

problem, reorder point is stated in terms of the inventory level at which a replenishment 

order ought to be placed for updating the current stock of inventory. Thus, reorder point 

can be defined as the time of replenishment order. At this point, trade-off between the 

costs of ordering somewhat early and the costs of providing inadequate customer 



    

5 

service should be found. The answer of the third problem directly depends on the 

previous two issues and is expressed in terms of what is called ‘order quantity’. Details 

can be found in (Silver et al., 1998). Note that all these questions are also interrelated 

with customer demands. Hence, demand distribution should be determined carefully. 

For example, Poisson distribution is generally preferred for slow moving items. On the 

other hand, the normal and gamma distributions have a better performance for fast 

moving items.  

1.2. Inventory Control System  

 Existing inventory control systems differ in size and complexity, in the costs 

associated with operating the system, in the nature of the stochastic processes 

associated with the system, and the nature of the information available to decision 

makers at any given point in time. Under intense pressure, supply chain members try to 

find robust models and to improve replenishment polices in order to tackle with today’s 

inventory management challenges. One of the most critical issues is to decide on the 

inventory level to be maintained at supply chain members while minimizing the total 

supply chain cost. At this point, deterministic inventory models such as economic order 

quantity model can be applied but these models use known and certain customer 

demand. In real word problems, customer demands are not certain and hence 

stochastic based inventory models should be used to control dynamic inventory 

system. In literature, two basic types of inventory control systems: a continuous system 

and a periodic system are used and numerous numbers of possible alternatives are 

presented by using this basic system. Note that if constant demand is used, periodic 

review and continuous review can produce similar results. At this point, differences 

occur when customer demand is uncertain. Thus, periodic review and continuous 

review have different advantages under stochastic environment. The most obvious 

differences between these two systems are operational expense. Continuous review 

needs considerable manpower and computerized sources to control inventory level 

accurately. However, periodic review system does not require ongoing transaction 

control and needs inventory replenishment only when the periodic review date occurs. 

Periodic review system provides replenishment order predictability since review period 

is fixed and hence inventory managers can plan inventory level at a minimum cost. In 

related with product control, continuous review system is best one for fast moving 

products, while periodic review system is best used for slow moving products. Finally, 

continuous review provides high levels of customer serviceability by providing timely 

on-hand balance status and safety stock protection against random variations in 
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demand (Ross, 2015). Two of the most commonly used continuous review policy are 

(s, Q) and (s, S).  

 In (s, Q) policy, fixed order quantity is placed when the inventory level 

decreases to the reorder point s or lower. The advantages of the fixed order quantity (s, 

Q) policy include: that it is quite simple for the stock clerk to understand, that errors are 

less likely to occur, and that the production requirement for supplier are predictable. 

The primary disadvantages of an (s, Q) policy is that in its unamended form it may not 

be able to efficiently cope with the situation in which individual transactions are large; in 

particular, if the transaction that triggers the replenishment in an (s, Q) policy is large 

enough, then a replenishment of size Q won’t even increase the inventory level above 

the reorder point (Silver et al., 1998). 

 In (s, S) policy, the inventory level is closely and continuously controlled, 

replenishment order is placed to increase the inventory level to the  level  S  whenever 

this inventory  level  reaches  or  drops below  the  level  s. This policy is especially 

advantageous for critical inventory products such as replacement parts or raw 

materials and supplies (Taylor III, 2013).  

 Inventory levels are checked after a fixed review period of time R in periodic 

review policies. Note that the size of each replenishment order can change depending 

on the order quantity between successive orders and the resulting inventory at the time 

of ordering. For retailers, periodic review policies can be simple to implement since 

they do not require the capability of continuously monitoring inventory. Suppliers may 

also prefer them due to the regular replenishment orders (Chopra and Meindl, 2007). 

 (R, S) policy known as a replenishment cycle system, is in common use, 

especially in companies not using computer control system. Due to the periodic review 

characteristics, this policy is commonly used to order point systems in terms of 

coordinating the order replenishments of related products. Also, the (R, S) policy 

provides a regular opportunity to set the level S, a desirable property if the order 

quantity is varying with time. The main drawback of the (R, S) policy is that the holding 

costs are higher than in continuous review policies (Silver et al., 1998). 

 (R, s, S) policy can be defined as a combination of (s, S) and (R, S) systems. 

The idea is that every review period R units of time we control the inventory level. At 

the beginning of each review period, the inventory level is replenished until the order-

up-to level (S) whenever it decreases to a value smaller than or equal to the reorder 
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point(s). If the inventory level is above s, nothing is done until at least the next review 

period.  

 To determine the best values of the inventory control parameters, many 

methods are developed for inventory control policies. Especially, determining reorder 

point and order-up-to level are major challenges for an inventory control system. 

Obtaining the optimal values of reorder point and order-up-to level are computationally 

expensive. That is to say, neither simple procedures nor algorithms are available to 

give the optimal values of reorder point and order-up-to level in any particular practical 

situation (Babai et al., 2010). Hence, many of researches have been interested in 

finding the optimal inventory parameters in traditional inventory control policies using 

various solution methods. For example, Schneider and Ringuest (1990) developed 

power approximations to determine the reorder point and the order-up-to level using a 

specified level of service. Zheng and Federgruen (1991) derived a simple and efficient 

algorithm to determine optimal (s, S) policies considering a number of new properties 

of the infinite horizon cost function. In addition, a new upper bound for optimal order-

up-to levels and a new lower bound for optimal reorder points are determined. Although 

the reduction in computation is problem-dependent, Feng and Xiao (2000) show that 

their proposed method saves more than 30% of computational effort when compared 

with the study of Zheng and Federgruen (1991). Janssen et al. (1996) proposed three 

methods to determine the reorder points subject to a service level constraint. Moors 

and Strijbosch (2002) presented an efficient descriptive method to determine the fill 

rate for given values of reorder point and order-up-to level under the assumption of 

gamma distributed demand.  

 It was deemed crucial to define reorder point and order-up-to level to satisfy 

objective function (e.g., minimizing total supply chain cost or maximize profit) in either 

periodic or continuous review control system. Many different viewpoints must be taken 

into account by considering uncertainty and dynamic nature of the system. 

1.3. Inventory Related Cost  

 Inventory related costs can be grouped under three subheadings: ordering 

costs, holding (or carrying) costs, and stockout costs. Holding cost can be defined as 

the cost of holding products in storage. This cost directly depends on the inventory 

level and changes with the level of inventory. The greater the level of inventory over 

time, the higher the holding cost. Holding cost consist of many types of cost elements: 

direct storage costs, such as ventilation, security, illumination; cost of losing the use of 

funds tied up in inventory; interest on loans used to invest in inventory; depreciation; 
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obsolescence as markets for products in inventory decrease; product deterioration and 

spoilage; taxes; breakage; and pilferage (Taylor III, 2013).  

 Stockout costs, also defined as a shortage cost, occur whenever demand 

cannot be met due to insufficient level of on hand inventory. Stockout costs are related 

to inability to satisfy demand. Silver et al. (1998) defined the term stockout as a 

stockout occasion or event and the number of unit backordered or lost is a measure of 

the impact of the stockout. If this stockout results in a permanent loss of sales for 

products demanded but not provided, stockout cost includes the loss of profits. In 

addition, stockout can cause a loss of goodwill and customer dissatisfaction and that 

may cause a permanent loss of future sales and customers. Stockout can occur 

because it is costly to hold inventory in stock. Consequently, stockout cost has an 

inverse relationship to holding cost; as the inventory level increases, the holding cost 

increases, while stockout cost decreases (Taylor III, 2013). 

 Ordering cost is the cost related with inventory replenishment. In literature, 

ordering cost is generally used as variable ordering costs and/or fixed ordering costs. 

Variable ordering costs change with the number of replenishment orders made. If the 

number of the replenishment orders increases, the ordering cost directly increases 

depending on the ordering number. On the other hand, fixed ordering cost is not 

affected by the size of the order and is incurred each time the replenishment order is 

placed. Holding cost generally reacts inversely to ordering costs. When the order size 

increases, fewer replenishment orders are required, and hence reducing ordering 

costs. On the other hand, the order size decreases, higher replenishment orders are 

required, therefore, higher holding cost. Briefly, as the replenishment order size 

increases, ordering costs decrease and carrying costs increase (Taylor III, 2013).  

 Although existing literatures related to review systems includes holding, 

stockout and ordering cost in diverse model formulations, so little is said about costs 

components. Hence, we divided total supply chain cost into five types of costs:  

1) Order cost per use (i.e., the one-time cost that is accrued each time any DC/Supplier 

is used, regardless of the usage duration),  

2) Average holding cost (i.e., the costs of carrying the products in inventory),  

3) Order processing cost (i.e., charged proportional to the order processing time which 

is the length of time between the time when an order for a particular product is placed 

and when it actually becomes ready to satisfy demand),  
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4) Lost sales cost (i.e., the costs associated with demands occurring whenever 

demand cannot be met),  

5) Processing cost (i.e., charged proportional to the processing time that is the time 

needed to prepare products for serving).  

 Inventory must be kept at the optimal level in each supply chain member to 

minimize total supply chain cost. The main challenge is neither to bare inventories to 

the bone to minimize costs nor to have plenty around to meet all customer demands. 

1.4. Supplier Selection 

 In today’s competitive environment, how to determine suitable suppliers is one 

of the most strategic consideration for managers in whole supply chain. It is the 

process of finding the right set of suppliers for establishing an effective and efficient 

supply chain. Although many models have been employed for determining suppliers, 

each model has its own advantages and disadvantages under different situations. One 

of the most important contributions is made by Boer et al. (2001) where an extensive 

search is made in the academic literature to support the supplier selection process. 

The study also covers all phases in the supplier selection process from initial problem 

definition, over the formulation of criteria, the qualification of potential suppliers, to the 

final choice among the qualified suppliers. Setak et al. (2012) also reviewed supplier 

selection considering 170 paper during 2000-2010 and showed their contribution to 

supply chain environment. After analyzing various studies, the most commonly used 

methods and criteria are represented. In the light of previous studies, it can be said that 

since 2008, researchers generally used hybrid methods because the advantages of 

two or more models can be integrated to solve the problem (Setak et al., 2012). 

 Although various evaluation criteria are available in literature (e.g. delivery 

performance, quality), total cost is one of the most common criteria for supplier 

selection. However, determining total supply chain cost is a complex challenge. 

Although the remarkable literature on inventory control includes cost components in 

diverse model formulations, so little is said about the models to be used in evaluating 

impact of these costs. On the other hand, competitiveness of the supply chain requires 

accurate information to provide a framework for which cost component should be used 

to determine suppliers. In general, the dynamic interaction between the suppliers and 

the supply chain members is not taken into account and hence, supplier selection 

models are often over-simplified. In this case, OvS can be sucessfully applied because 

of providing realistic modeling of supplier selection.  
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 Ding et al. (2003) used key performance indicators for supplier selection. Four 

key performance indicators including transportation costs, purchasing costs, inventory 

costs and total backlogged demands are evaluated by a OvS model using a GA to 

efficiently determine the supplier. In the study, GA’s chromosome is made of eight 

genes in which each gene denotes a supplier and its corresponding transportation link. 

Actually, four potential suppliers are evaluated with potential transportation links. Also, 

roulette wheel selection is used to determine chromosomes for the two-point crossover. 

Crossover rate is set as 0.9 and mutation rate is set as 0.001. In same manner, Ding et 

al. (2005) solved supplier selection problems using OvS methodology where GA is 

used for supplier selection decisions, discrete-event model is used for operational 

performance evaluation. In the study, two segments are used to form the chromosome. 

First segment denotes the supplier portfolio while second segment represents the 

parameters for supply chain operational decisions. Roulette wheel selection and two-

point crossover operator are used in GA. Also, crossover rate is set as 0.9 and 

mutation rate is set as 0.01.  

 Many researchers have shown the importance of supplier selection by 

displaying the effect that decisions throughout the whole supply chain have, from 

supplier to final customers. However, despite the growing attention toward the supplier 

selection, the area of inventory management still seems to lack a clear linkage between 

inventory control on the one hand and supplier selection aspects on the other hand. 

Therefore, researchers have continued to develop models including different aspects of 

the supplier selection and inventory control system. 

1.5. Research Objectives and Contributions 

 In this study, we present inventory control system and supplier selection while 

simultaneously considering five types of costs (average holding cost, order cost per 

use, lost sales cost, order processing cost and processing cost). By considering 

proposed cost function and stochastic parameters, neither simple procedures nor 

algorithms are available to obtain the optimal values of reorder point and order-up-to 

level in (R, s, S) policy. Also, existing literature on supply chain modeling is generally 

focused on mathematical modeling. However, mathematical modeling may not meet 

the expectation due to the high complexity of the problems and only small scale 

systems are amenable to this model. Also, optimization-based approaches generally 

require too many assumptions and simplifications to be applicable and effective. 

Therefore, although abundant literature is available related with deterministic 

mathematical models where optimum results are found under some strict assumptions 
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and simplification, this is not the case for dynamic/stochastic inventory models. A 

fundamental challenge in stochastic environment is computability and tractability. At 

this point, OvS can be used with much details, realities, and complexities as the 

modeler wants in order to solve any real stochastic complex inventory problem. 

Therefore, most of the current commercial simulation software packages contain the 

optimization modules. Rather than making statistical estimation, these optimization 

modules incorporate some search methods to determine the optimal values of input 

parameters (Wang and Shi, 2013).  

 Existing literatures related to OvS methods show that most commercial OvS 

solvers use metaheuristics that have generally been designed and proven to be 

effective on difficult and deterministic optimization problems (Tsai and Fu, 2014). 

Especially, GA is applicable to almost any optimization problem, because the 

operations of selection, crossover, and mutation can be defined in a very generic way 

that does not depend on specifics of the problem (Banks et al., 2000).  

 To respond to customer demand, each DC and each Supplier holds inventory 

and operates under (R, s, S) policy to replenish. In such an inventory control system, 

determining the optimal replenishment parameters is crucial to minimize total supply 

chain cost throughout period. Especially, determining reorder point and order-up-to 

level is major challenges for inventory control system where right amount of inventory 

must be hold. The reorder point provides sufficient stock to satisfy demand until the 

next order’s arrival. The determination of the order-up-to level allows us to see the 

maximum inventory level in system. Hence, the optimal values of reorder point and 

order-up-to level in DCs and Suppliers, and properly selecting the set of Suppliers for 

DCs are determined by means of OvS. Also, initial inventories of DCs and Suppliers 

are considered in this study because initial inventory level can influence the efficiency 

of the inventory control policies. It is necessary to carefully consider the initial inventory 

level when determining parameters of the supply chain model. When initial inventory 

level is zero, even a small increase in incoming orders may create a costly outcome. 

Also, optimum initial inventory level should be determined to prevent all customers/DCs 

from placing their first order at the same time in (R, s, S) policy. It seems intuitive that 

OvS provides a significant opportunity to find optimum inventory control parameters 

because OvS has ability of capturing the advantages of both simulation and 

optimization based methods simultaneously. Also, OvS is not constrained by analytical 

assumptions and simplifications. OvS can give reasonable solutions for evaluating 

different configurations of inventory control system and supplier selection while 

minimizing the total supply chain cost including inventory related cost. 
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1.6. Overview 

 The remainder of this thesis is created as follows. Chapter 2 discusses the 

relevant contributions from the literature. In particular, three main research areas are 

reviewed: (1) (R, s, S) inventory control system and supplier selection; (2) lost sales; 

and (3) single product. Chapter 3 describes the proposed OvS methodology that 

includes the details of both the optimization phase and the simulation phase. In 

Chapter 4, a detailed analysis of inventory control systems is given. Finally, Chapter 5 

provides concluding remarks for the results obtained in this research. 
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CHAPTER 2 

2. LITERATURE REVIEW 

2.1. (R, s, S) Inventory Control System and Supplier Selection 

 (R, s, S) is a combination of (s, S) and (R, S) policies. The (s, S) policy is the 

special case where R=0, and the (R, S) is the special case where s=S-1. Alternatively, 

one can think of the (R, s, S) policy as a periodic version of the (s, S) policy. Under 

quite general conditions, the system that minimizes the total of review, replenishment, 

carrying, and shortage cost will be a member of the (R, s, S) family (Silver et al., 1998). 

In review period, the inventory level of each echelon in supply chain is replenished until 

the order-up-to level (S) whenever it is smaller than or equal to the reorder point(s). 

Once we place an order, a replenishment lead time elapses before the order is 

available for satisfying customer demands. Therefore, we want to place a 

replenishment order when the inventory level is still enough to protect us over 

replenishment lead time. If the order is placed when the inventory level is at exactly 

reorder point, then a stockout will not occur by the end of the lead time if and only if the 

total demand during the replenishment lead time is less than reorder point. If demand 

over the lead time is exactly equal to reorder point, and lead time demand distribution 

is symmetric, we would expect to stockout in half of all replenishment cycles. If reorder 

point is higher than the expected lead time demand, we will stockout less often but will 

carry more inventory (Silver et al., 1998).   

 In literature, the optimality of (R, s, S) policy is proven assuming linear holding 

and stockout cost, and fixed ordering costs (Kiesmüller et al., 2011). Moors and 

Strijbosch (2002) derived exact formula for the average stockout in a replenishment 

cycle of (R, s, S) policy where stationary gamma demand process and deterministic 

lead time are used. Hu et al. (2005) presented multi-retailer system with centralised 

ordering and demand backordered in (R, s, S) policy. Tlili et al. (2012) presented a two-

echelon inventory control system including an outside supplier, a warehouse and two 

retailers. In the study, (R, s, S) is used to control inventory level of the warehouse and 

retailers. Cabrera et al. (2013) analyzed the stochastic capacity constraint under 

periodic review (R, s, S) that directly affects distribution network design. The best (R, s, 

S) policy can enable manager to produce a lower holding cost and stockout costs than 

does another system. However, obtaining the optimal values of the three inventory 

control parameters is more intense than that for other systems (Silver et al., 1998). In 

most situations, the effects of two decision variable review period and order-up-to level, 
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are not independent, that is the best value of review period depends on the order-up-to 

level value and vice versa. However, it is quite reasonable for practical purposes when 

dealing with B products to assume that review period has been predetermined without 

knowledge of the order-up-to level value (Silver et al., 1998). Note that B item is one of 

the class in ABC classification where items are divided into 3 classes, namely, A (very 

important), B (moderately), and C (least important). Hence, review period is assumed 

to be predetermined in this study. Also, neither simple models nor procedures are 

available to find the optimal reorder point and order-up-to level in any particular 

practical situation (Babai et al., 2010). Many of the researchers have been interested in 

finding the optimal inventory parameters in traditional inventory control policies using 

various solution methods. For example, (Babai et al., 2011) proposed simple a method 

to determine the order-up-to-level for cost oriented inventory control policy where 

stochastic lead-times and compound Poisson demand process are used and, unmet 

demands are backordered. The solution quality is also evaluated for fast and slow 

moving products in single echelon inventory control system. Silver et al. (2012) 

presented the selection of the order-up-to level and reorder point in a periodic review 

inventory control policy where a negative binomial demand is used and management 

desires two constraints the fill rate and target average time to be met. In the study, 

constant replenishment lead time is considered and complete backordering is occurred 

during a stockout situation.  

 Most literature on inventory control systems showed that different solution 

methodologies are available to determine optimal parameters of inventory control 

policy but they do not completely meet the expectations in each inventory control 

policy. Based on analysis of the previous studies, we conclude that more research is 

needed to better understand how the lost-sales affect the total supply chain in periodic 

review setting. At this point, defining the optimal replenishment policy, characterizing its 

structural properties, and developing robust methods that has ability to solve inventory 

control problem with supplier selection are very important in lost sales environment. 

However, not many solution methodologies exist to investigate all these problems 

simultaneously in two or more echelon inventory system for single product, especially 

under stochastic demand and lead time. The underlying reason is that many individual 

decisions that have different degrees of importance are avalaible along a supply chain. 

Of the diverse operations involved in supply chain, purchasing is one of the most 

important activities since it provides a major opportunity to decrease total supply chain 

cost. Supplier selection is a critical task within the purchasing function. Hence, 

determining the right suppliers is important to the procurement process (Mendoza, 
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2007). In literature, a number of methods have been created to evaluate and to select 

the most suitable suppliers in supply chain. One of the most important contributions is 

made by Boer et al. (2001) illustrated a review of decision methods reported in the 

previous studies. We also highlight some of key articles to give an insight into this field. 

Haq and Kannan (2006) considered not only multi echelon inventory control model but 

also supplier selection in built to order supply chain system using fuzzy analytical 

hierarchy process and GA. In the study, unlimited supplier capacity and deterministic 

demand are considered.  

 Mendoza and Ventura (2010) used mixed integer nonlinear programming model 

to solve stationary inventory control policy and supplier selection under serial supply 

chain system where inventory replenished periodically. The objective of the proposed 

model is to minimize total supply chain cost while coordinating the inventory at the 

each stage and properly defining the set of suppliers that are the best to meet capacity 

limits and quality requirements. However, the mathematical model built in that paper 

was based on a stationary inventory policy with a constant demand. Moreover, the 

constant lead time and the same order quantity for different suppliers were assumed in 

the paper. These assumptions could be restrictive in reality, and it may not be 

appropriate to order the same quantity each time from different suppliers due to the 

different ordering costs and replenishment lead times.  

 Guo and Li (2014) investigated inventory control system with supplier selection 

in a serial supply chain where a central warehouse and N retailers are used to form two 

echelon system. The supplier selection is assumed to occur in the first stage of the 

serial supply chain, and is made by considering capacity, ordering cost, unit price, 

holding and backorder cost. In the study, mixed integer nonlinear programming model 

is used to define the best policy for the supplier selection and continuous review 

inventory control in a serial supply chain system under stochastic lead time and 

stochastic demand. They primarily focus on calculating the expected values of the total 

ordering size. In the study, all stockouts are considered as backorders and partial 

replenishment of an order at the warehouse is not allowed.  

 Keskin et al. (2010) developed OvS approach to improve the supply chain 

performance by taking into account the total operational cost of logistics, which include 

not only the inventory control and transportation costs, but also the purchasing costs 

and fixed management costs. OvS approach is created by means of discrete event 

simulation and scatter search based metaheuristic optimization method. In the study, 
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vendor can only be able to meet an order from its interrelated plant if its inventory level 

is greater than or equal to order quantity and inventory level is continuously reviewed.  

2.2. Lost Sales 

 In literature, many studies related with the inventory control systems assume 

that unsatisfied demand is backordered. On the other hand, customer behavior 

analyses demonstrate that most of the unfulfilled demand is lost. Due to the changing 

competitive environment in the supply chain, customers are not willing to wait anymore 

and most of the customer demand is considered as lost sales in many practical 

settings. Nevertheless, so little work has been published about lost sales models. The 

reason is that lost-sales characteristic is much more complicated to solve and to 

analyze than the backorder models. The lost sale case shows a completely different 

stochastic process from the backorder case and it seems much more difficult to treat 

analytically. Namely, lost sales models cannot have negative inventory level and 

hence, different types of research approach are required to clarify lost sales systems 

(Hadley and Whitin, 1963; Bijvank and Vis, 2011).  

 Kalpakam and Arivarignan (1989) presented the analysis of a single-product 

inventory control policy in which different types of customers are used to generate unit 

demands considering exponentially distributed lead times with lost sales. Janakiraman 

and Roundy (2004) proved some sample-path properties of lost sales in a single-

location inventory control system with stochastic demand and periodic review system. 

In the study, orders do not cross. Considering an additional assumption associated with 

replenishment lead times, they presented the convexity of the expected discounted 

sum of lost sales cost and holding cost for cost models in the planning horizon with 

respect to the order-up-to level.  

 Sezen (2006) used simulation to analyze the effects of changing the length of 

review period on two-echelon periodic review system. In the study, normally distributed 

demand function is produced with deterministic mean and standard deviation. Lead 

time is shorter than the review period and order splitting is not allowed. Simulation 

scenarios are created considering the product type and review period length. The 

results show that performance of the inventory system is interrelated with review 

period. Also, determining the appropriate review period length is highly dependent on 

the variability of demand patterns. Xu et al. (2010) presented the optimal system for the 

finite and infinite horizon problem with lost sales while minimizing the expected 

discounted cost. Also, lost sales problems are analyzed with Erlang demands.  
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 Annadurai and Uthayakumar (2010) used controllable lead time and illustrated 

the impacts of increasing logarithmic and power investments to decrease the lost sales 

rate. The lost sales rate, review period, and lead time are taken as decision variables 

and basic periodic review system is formulated mathematically with the capital 

investment.  

 Bijvank and Johansen (2012) developed and compared lost-sales inventory 

models with various replenishment systems. Proposed model is developed allowing 

constant lead time and compound Poisson demand. Also, closed-form expressions are 

derived to approximate the performance measures of interest for lost-sales inventory 

control with the pure base-stock policies.  

 Bijvank and Vis (2012) presented lost sales inventory control policy with service 

level criterion at a single retailer location. Optimal replenishment and (R, s, S) policies 

are used considering a single-product inventory control system in discrete time. Also, 

new approximation procedure is proposed to define the order-up-to level for the (R, s, 

S) policies under lost sales environment. Based on previous studies we conclude that 

creating lost-sales inventory models are difficult and require a different type of research 

approach. 

2.3. Single Product  

 The keeping of inventories represents one of the largest investment made in 

any form of the business. It is highly desirable to manage the stocks held by a business 

more effectively than has been the case ever before (Hung, 1985). In literature, 

researchers are used various numbers and types of variables to create their models. 

Hence, it is difficult to review all the studies dealing with this subject in a systematic 

manner. Some of the key articles about single product are summarized to show 

importance of the inventory in supply chain. Kalymon (1971) presented a single product 

multi period inventory model and determined the form and bounds of optimal polices for 

both a finite and infinite planning horizon. In the study, complete backlogging is used, 

and deterministic delivery lags are permitted. Also, future period’s prices are 

determined by a Markovian stochastic process. Federgruen and Heching (1999) 

analyzed single product with periodic review model using value iteration method to 

maximize total expected discounted profit. Excess demand is fully backlogged and 

independent demands are used in consecutive periods.  

 Rosenblatt et al. (1998) presented cyclic schedule and determined an 

acquisition policy for single product to minimize costs that include total periodic 
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purchasing, inventory carrying, ordering, and supplier management costs. In the study, 

M suppliers, each with its own cost parameters, are taken into account and the demand 

is fully met by considering the capacity constraints. Graves (1999) proposed a single-

product inventory control system considering a deterministic lead-time and 

nonstationary demand processes. Li et al. (2008) provided bounds for the order 

quantity and order threshold in single product periodic review policy under an infinite 

horizon. The study shows that proposed heuristic gives satisfying results under 

specified conditions and outperforms many heuristics in the literature for the random 

yield problem. Halman et al. (2009) presented the first fully polynomial-time 

approximation for the single product periodic review system considering independent 

discrete stochastic demands with zero lead time under finite time horizon. Kiesmüller et 

al. (2011) studied a periodic review single product replenishment policy where three 

different discrete demand distributions, Poisson, negative binomial, and a discretized 

version of the gamma distribution are considered. Cheong and White (2013) 

considered discrete state and action infinite horizon, expected total discounted cost 

Markov decision process model of a single product. In the study, periodic review 

system is used with stationary and deterministic demand, lost-sales, and random yield. 

Zeballos et al. (2013) analyzed single product inventory control system under finite 

horizon using a simulation with an embedded optimization model. They analyzed the 

effect of the different sources of financing and determined that short-term debt affect 

the optimal ordering policy when working capital constraints, payment delays and lead 

time are taken into account. 
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CHAPTER 3 

3. MATERIAL AND METHODS 

3.1. Optimization via Simulation 

 Dynamic nature of the inventory is the major obstacle for inventory control 

practitioners and makes most mathematical methods either over simplistic or 

computationally intractable. To overcome the limitation of existing mathematical 

methods, OvS can be used due to the capability for handling variability (Ding et al., 

2005). OvS methodology include two fundamental tools: (1) An optimization tool is 

used to determine the optimal result (2) A simulation tool is utilized to evaluate the 

performance of the candidate solutions. Optimization tool provides the capability of 

finding the optimum set of decision variables, which are the conditions under which the 

simulation is run, in terms of predefined objective function(s). The output of the 

simulation tool is iteratively utilized by the optimization tool to give feedback on 

searching for the optimal solution (Ding et al., 2005). Therefore, at first the values of 

decision variables must be set and then simulation is run to estimate the performance 

of that particular configuration. Basically, techniques for OvS vary greatly depending on 

the exact problem. We used the total supply chain cost as the objective function to be 

minimized. In equation (1) objective function is given: 

         𝑚𝑖𝑛𝜃𝜖Θ
  𝑓(𝜃)        (1)                                            

where 𝜃 is the decision parameters including the parameters of the stochastic system 

of interest, the feasible region Θ ⊂ ℝ𝑑 is the set of possible values of the parameter 𝜃, 

and the objective function values 𝑓(𝜃) specify the expected system performance when 

system parameter values are defined by 𝜃𝜖Θ (Andradóttir, 1998). OvS strategies 

depend on the nature of f and Θ as seen in Table 3.1. When the feasible set of design 

parameter vector values Θ is a discrete set, appropriate optimization methods include 

statistical methods and metaheuristics. If Θ is continuous and f is differentiable, then 

gradient based methods or metamodels based optimization can be used. White-box 

methods consist in changing the simulation part by adding routines which provide 

gradient, subgradient or higher derivatives (Pflug, 1996). On the other hand, black box 

methods use not more information than normal simulation output. Black box methods 

are easily implemented. They consist of a simulation module, which is responsible for 

providing estimates for the objectives function and optimization module, which uses 

these values to find the minimizer by iteration. The optimization module must use a 

method, which does not require derivatives (Pflug, 1996).  



    

20 

Table 3.1. Classification of the OvS model. 

 OvS 

𝚯 discrete set 
𝚯 continuous set, 

 f differentiable 

|𝚯| large of ∞ |𝚯| finite, 

small 
 

Local/Global 

Optimization 

Global 

Optimization 

Local 

Optimization 

Local 

Optimization 

Local 

Optimization 

Black-Box/ 

White-Box 

Methods 

Black-Box 

Methods 

Black-Box 

Methods 

White-Box 

Methods 

Black-Box 

Methods 

Methods Metaheuristics 
Statistical 

Methods 

Gradient 

Based Search 
Metamodels 

 

3.1.1. Metaheuristics 

 Metaheuristics are known as one of the most practical method to solve many 

complex optimization problems. The practical advantages of these methods are their 

effectiveness and general applicability because many optimization methods have failed 

to be either efficient or effective. Therefore, metaheuristics are generally preferred over 

other optimization methods to find the solutions with many local optima and little 

inherent structure to guide the search (Ólafsson, 2006). In the light of the previous 

studies, it is said that four metaheuristics (simulated annealing, GA, scatter search and 

tabu search) have basically been used to create OvS methods (Fu et al., 2005).  

 In metaheuristic methods, obtaining an initial set of solution(s) is considered as 

a first step. Then, initial solution(s) are improved by certain principles. At this point, the 

structure of the search includes many common elements across various methods. In 

each step, a solution (or a set of solutions) θ𝑘, which specifies the current state of the 

algorithm is found by search algorithm. Note that simulated annealing and tabu search 

are solution-to-solution search methods. Thus, θ𝑘, is a single solution or point θ𝑘∈Θ in 

some solution space Θ. On the other hand, GA and scatter search are set-based, that 

is, θ𝑘 represents a set of solutions θ𝑘⊆Θ in each step. However, the basic structure of 

the search is same for solution to solution and set-based methods.  

 Given a neighborhood N(θ𝑘) of the solution (set), a candidate solution (set) 

{ θ𝑘}⊂N(θ𝑘) is selected and evaluated. Thus, the performances of the candidate 
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solution(s) are calculated or estimated. Then, they are compared with the performance 

of θ𝑘  and occasionally with each other. Considering this evaluation, the candidate can 

be either accepted (θ𝑘+1 = θ𝑐) or rejected (θ𝑘+1 = θ𝑘). Basic metaheuristics framework 

can be defined as follows: 

Table 3.2. The basic metaheuristics framework. 

Obtain an initial solution (set) θ0 and set k=0. 

Repeat: 

Identify the neighborhood N(θ𝑘) of the current solution(s). 

Select candidate solution(s) {θ𝑐}⊂N(θ𝑘) from the neighborhood. 

Accept the candidate(s) and set θ𝑘+1 = θ𝑐 or reject it and set θ𝑘+1 = θ𝑘. 

Increment k=k+1. 

Until stopping criterion is satisfied. 

             

 Note that this framework is applicable for numerous metaheuristics (Ólafsson, 

2006). 

3.1.2. Statistical methods 

 To find the optimal solution, all possible combinations can be evaluated if the 

number of possible solutions is low. On the other hand, stochastic problems have 

appeared in real-world environment and one replication alone may not be enough to 

precisely evaluate the performance of each solution. Hence, the number of replications 

for each solution is required to determine the optimal solution (Figueira and Almada-

Lobo, 2014). Statistical methods, which include the well-known ranking and selection, 

importance sampling, and multiple comparison procedure, focus on this aspect.  

3.1.2.1. Ranking and selection  

 The concept of ranking and selection methods that can be classified into 

indifference-zone ranking and subset selection was firstly presented by defining a 

problem where the aim is to determine the best population. Typically, a certain number 

of observations are collected from each population and the best population is selected 

using statistics. It should be noted that the best population may not be selected 

because the observations are taken as a realizations of random variables. The major 

drawback of ranking and selection methods is its permanent requirement for common 

and known variance among populations. When a system that does not physically exist 

is being modeled, the system output’s variance is generally not known. Also, existing 
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system may not allow the researchers to know its output’s variance due to the practical 

infeasibility of data collection or potentially high cost. Moreover, providing common 

output variance across different system designs can be difficult although the variance is 

known (Swisher et al., 2003).  

3.1.2.2. Importance sampling 

 Importance sampling is a very powerful simulation tool that has been used in 

evaluating low probability error events. The basic principle of importance sampling is 

that of making the low probability events occur more frequently by modifying the 

probability density function of the input random process, so that the simulation of these 

events can be made without needing a very large number of samples. Meanwhile, the 

unbiasness of the estimate of the error probability is obtained as a result of the proper 

weighting of these events. In the previous considerations of importance sampling 

approaches, the probability density function of the input random variables is improved 

by means of increasing the variance of the input random variables. An optimization that 

minimizes the simulation estimation variance with respect to the input variance is 

performed (Lu and Yao, 1988).  

3.1.2.3. Multiple comparison procedures  

 Multiple comparison procedures treat the comparison problem as an inference 

problem on the performance parameters of interest. Multiple comparison procedures 

account for the error that occurs when making simultaneous inferences about 

differences in performance among the systems (Goldsman and Nelson, 1994). Multiple 

comparison procedures signify the use of certain pairwise comparisons to make 

inferences in the form of confidence intervals (Fu, 1994). The main aim of multiple 

comparison procedure is to quantify the differences between systems’ performance. It 

is seen that the aim of multiple comparison procedure is completely different from 

ranking and selection because the aim of ranking and selection is to make a decision 

(Lu and Yao, 1988). 

3.1.3. Gradient based search 

 Gradient based search to simulation optimization find an appropriate gradient 

for the simulation model to use as a move direction in an improving search. The key 

factor to an effective gradient based search in simulation optimization is the quality of 

the gradient estimator (Medal, 2008). Basic gradient based search methods are finite 

differences, perturbation analysis, likelihood ratio method, and frequency domain 

experimentation.   
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 Finite differences are defined as a crudest method of estimating the gradient. 

There can be a need for multiple observations for each derivative to provide a more 

reliable estimate of the derivatives (Azadivar, 1992).  

 Perturbation analysis considers what would have happened if various 

parameters were different, that is, the effect of a parameter change on the performance 

measure is of interest while the experiment is evolving (Farenhorst-Yuan, 2010).  

 Likelihood ratio is also known as the score function. In this method, the gradient 

of the expected value of an output variable with respect to an input variable is defined 

as the expected value of a function of a) input parameters, and b) simulation 

parameters (Carson and Maria, 1997).  

 In frequency domain experimentation, determined input parameters are 

oscillated sinusoidally at different frequencies during one long simulation run (Carson 

and Maria, 1997). 

 Finite differences and frequency domain experimentation methods change the 

input and analyze the resulting output, while likelihood ratio and perturbation analysis 

contain an "add-on" to the simulator itself that includes additional accumulations and 

calculations. Nonetheless, the underlying simulator is not changed, and hence 

likelihood ratio and perturbation analysis can also be applied for on-line gradient 

estimation and optimization (Fu, 1994). 

3.1.4. Metamodel methods 

 Two general methods are used for metamodel-based OvS: global metamodel fit 

and iterated local metamodels. In global metamodel fit method, the entire region of 

interest (in terms of θ) is discovered, and the experimental results are employed to fit a 

global approximation. Then, iterative process is used to explore the global 

approximation in the process of optimization. For local fitting strategies, the fitting and 

optimization steps alternate: as the optimization search moves, new local regions of 

space are discovered, and new metamodel approximations are fitted (Barton, 2009).  

3.2. Proposed OvS  

 Most of the current commercial simulation software packages contain the 

optimization modules and metaheuristics are the most commonly used methods 

embedded in simulation software. When combining the metaheuristics with simulation 

models, the latter can be seen as a black box, i.e., some input parameters are given to 

the black box, then the simulation models will give some feedbacks or responses, 
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which can be used to guide the search process in metaheuristics (Wang and Shi, 

2013). An excellent survey of the use of metaheuristics for OvS was presented by 

Ólafsson (2006). GA is one prominent example, but others such as simulated 

annealing, tabu search and many variations are available. Analyses of previous studies 

show that GA is a challenging alternative method to cope with noisy outputs and 

complex systems especially in combinatorial optimization problems.  

 In the study, simulation models are created by using Simio (Version: 

7.121.12363) that allows users to enter input values and to run multiple replications for 

evaluating the system performance. Processor is Intel ® Core™ i5-3470 CPU @ 3.20 

GHz and system type is 64 bit operating system.  

 GA is developed to assign new values for selected decision variables (i.e., 

generating candidate solutions). In each cycle, simulation output is returned to the GA 

as the most recent fitness function to be evaluated, and GA once more tries to find 

better decision variables to increase model performance.  

 Detailed structures of the proposed OvS method can be found in following two 

subtitles: the optimization phase (GA) and the simulation phase. In optimization phase, 

GA is used to optimize inventory control parameters and supplier selection. In the 

simulation phase, performances of candidate solutions are evaluated. 

 

Figure 3.1. The illustration of the simulation and optimization phase. 
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3.2.1. Optimization phase (Genetic Algorithm) 

 In this phase, it is very important that an optimization algorithm should provide 

the capability of finding optimal or near-optimal solutions in the early stages of the 

search process (Wang and Shi, 2013). In literature, many different solution 

methodologies such as population-based, single-solution based and set-based are 

available as metaheuristic methods but population based GA can be considered as the 

most commonly used method. GA is an optimization method, originally motivated by 

the Darwinian principle of evolution through (genetic) selection. It uses a highly abstract 

version of evolutionary processes to improve solutions (McCall, 2005).  

 The population to population approach provides a multiple directional search 

and tries to make the search escape from the local optima. Also, information related 

with objective function is only used to guide them through the solution space in GA. For 

this reason, it requires less mathematical requirements about the problems. Unlike 

many other optimization methods, GA can be successfully used to solve any 

optimization problem, even if the problem is of a stochastic nature. GA provides the 

maximum ‘‘black-box’’ approach. For example, preliminary considerations related with 

the goal function or initial values of the control parameters need not to be taken. This 

feature is important in the simulation models where prior knowledge of the simulation 

models behavior may not exist (Paul and Chanev, 1998). Hence, many authors have 

employed GA to solve complicated inventory problems (Table 3.3). In literature, a 

number of distinct components are available to construct GA and this is considered as 

a particular strength since standard components can be re-used, with trivial adaptation 

in many different GA (McCall, 2005). In GA, solution space is searched by building and 

evolving a population of solutions. The evolution is carried out by means of producing 

new solutions from two or more solutions in current population. The main advantage of 

GA over those based on sampling the neighborhood of a single solution (e.g., tabu 

search and simulated annealing) is that it may explore a larger area of solution space 

with smaller number of objective function evaluations (Zeng and Yang, 2009).  

 To explain general GA methodology in OvS, we assumed that there are k 

possible solutions to the OvS problem and 𝑋 = {𝑥1, 𝑥2, … , 𝑥𝑘} denote the solutions, 

where the ith solution 𝑥𝑖 = {𝑥𝑖1, 𝑥𝑖2, … , 𝑥𝑖𝑚} provides specific setting for the m decision 

variables. The simulation output at solution 𝑥𝑖 is denoted by 𝑌(𝑥𝑖); this could be the 

output of a single replication, or the average of several replications. At each iteration 

that is also known as a generation GA operates on a “population” of p solutions. 

Denote the population of solution on the jth iteration as 𝑃(𝑗) = {𝑥1(𝑗), 𝑥2(𝑗), … , 𝑥𝑝(𝑗)}.  
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 There may be multiple copies of the same solution in 𝑃(𝑗), and 𝑃(𝑗) may 

contain solutions that were discovered on previous iterations. From iteration to 

iteration, this population evolves in such a way that good solutions tend to survive and 

give birth to new and hopefully better solutions, while inferior solutions tend to be 

removed from the population (Banks et al., 2000). The basic GA is given here (Banks 

et al., 2000; Beasley et al., 1993): 

 Step 1. The GA starts with an initial population that consists of a set of 

individuals corresponds to a set of solutions. The details about initial population 

formation can be found in (Maaranen et al., 2007) that basically answer to the question 

whether the initial population plays a role in the performance of GA and if so, how it 

should be generated. 

 In this study, the iteration counter is firstly set as a  𝑗 = 0, and an initial 

population of p solutions 𝑃(0) = {𝑥1(0), 𝑥2(0), … , 𝑥𝑝(0)} is selected. GA randomly 

generates an initial population of chromosomes. In GA, potential solution of the 

problem is defined as a set of parameters that are joined together to create a 

chromosome. The chromosome structure of the considered problem is depicted in 

Figure 3.2. First part of the chromosome represents supplier selection for DCs. Length 

of the supplier selection part is equal to the number of DCs. The second part of the 

chromosome represents determination of the initial inventory, reorder point and order-

up-to level of each DC and each Supplier, respectively. 

 

Figure 3.2. Chromosome structure of GA. 

 Step 2. The simulation experiments are run to obtain performance estimates 

𝑌(𝑥) for all p solutions 𝑥(𝑗) in 𝑃(𝑗). Thus, the fitness value of each alternative solution 

is automatically taken from simulation model to form a new generation in GA. The 

fitness evaluation operation of GA calculates the fitness value of each individual 

according to the objective function that minimizes total supply chain cost. Fitness value 

of chromosome k, 𝑓𝑘, is computed by using the objective function value as given below: 

#of DCs...DC3DC2DC1

……213

Total 

Length*
...Supplier1...DC2DC1DC1DC1

...1250...1200120501000

Supplier Number Initial Inventory
Reorder Point

Order up to Level

Supplier Selection Determining Replenishment Policy Levels

* Total Length = Number of DCs x 3 (i.e., Initial inventory, Reorder Point, and Order-up-to Level) + Number of Suppliers x 3 
(i.e., Initial inventory, Reorder Point, and Order-up-to Level)
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        𝑓𝑘 =  
1

𝑇𝑆𝐶𝐶𝑘  

        (2)                                            

 Here 𝑇𝑆𝐶𝐶𝑘 is the objective function value of the kth chromosome. After 

calculating fitness value, the plan for selecting chromosomes to create the next 

generation is displayed by selection strategy. Selection operator leads GA to select 

chromosomes from the population as parents to use in crossover. There exist many 

selection schemes for GA and each has a different characteristics. Ideal selection 

operator should be simple to code and efficient for both nonparallel and parallel 

architectures. Also, it ought to adjust the selection pressure to adapt to different 

domains. In recent years, tournament selection is substantially being used as GA 

selection since it satisfies all of the above criteria. Thus, tournament selection is simple 

to code and is efficient for both nonparallel and parallel architectures. Furthermore, it 

could adjust the selection pressure in order to tune selection performance for different 

domains. The selection pressure is increased (decreased) by simply increasing 

(decreasing) the tournament size. Briefly, all of these factors increase the usage of 

tournament selection as a selection strategy for GA (Miller and Goldberg, 1995). 

Hence, the tournament selection is used in this study as it is simpler and produces 

reasonably good results. It randomly picks two chromosomes from the population and 

selects higher fitness value as a parent.  

 Step 3. A population of p solutions is selected from those in 𝑃(𝑗) in such a way 

that those with smaller 𝑌(𝑥) values are more likely, but not certain, to be selected. This 

population of solutions is denoted as 𝑃(𝑗 + 1). 

 Step 4. The solutions are recombined in 𝑃(𝑗 + 1) via crossover and mutation. 

Crossover generates new solutions by selecting individuals from mating pool 

(population after reproduction stage) and exchanging their parts. It is emphasized in 

literature that crossover is the most important procedure in GA to obtain new high 

quality solutions. It should be noted that the performance of the GA decreases when 

the number of crossover points increases. Adding additional crossover points disrupts 

the building blocks. Therefore, most of the researchers preferred single point 

crossovers (Figure 3.3). In single point crossover, two individuals are taken and their 

chromosome strings are randomly cut to produce two “head" segments and two “tail" 

segments. Then, the tail segments are swapped over to create two new full length 

chromosomes. Crossover proceeds in three steps. 

1. A pair of two individual strings is selected randomly for the mating.  

2. A cross site is selected randomly on the string length. 
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3. At the last step, position values are changed between the two strings following the 

cross site (Sivanandam and Deepa, 2008). It should be noted that crossover is 

generally not applied for all pairs of individuals selected for mating. In literature, 

crossover rate is typically applied between 0.6 and 1.0 and it is taken as 0.8 in this 

study. The crossover operator is illustrated in Figure 3.3.   

 

Figure 3.3.  Crossover operator of GA. 

 After applying crossover, mutation is randomly performed with a small rate. 

Mutation is a random search and protect against premature convergence to local 

maxima. Mutation rate is very important. If it is too low, danger of premature 

convergence is occurred. On the other hand, too high mutation rate causes losing a lot 

of valuable genetic information and directly decreases the performance of the 

algorithm. 

 Mutation generally works on a single chromosome and produces another 

chromosomes through exchange of the values of two string positions or modification of 

the value of a string position to prolong the diversity of population. Many forms of 

mutation exist in nature and the details can be found in (Falco et al., 2002). In this 

study, we set mutation rate as 0.05. In this way, a small amount of random search is 

provided. Mutation operator is illustrated in Figure 3.4. 

 

Figure 3.4. Mutation operator of GA. 
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 Step 5. Finally, we set j =  j  + 1  and  go  to Step  2. The GA is terminated  

after a specified number of iterations. At termination, the solution  𝑥* that has the 

smallest 𝑌(𝑥) value in the last population is chosen as the best. The values of 

parameters of GA are given in Table 3.4. 

Table 3.4. The values of parameters of GA. 

Parameters of GA Values 

Population Size 50 

Number of Iterations 150 

Crossover Rate 0.8 

Mutation Rate 0.05 

 

3.2.2. Simulation phase 

 Existing mathematical methods could not use all variables with stochastic 

properties within whole supply chain; hence these methods can only present the 

optimal values for partial supply chains. It is not possible to handle all the dynamically 

changing supply chain variables using mathematical methods. At this point, simulation 

is known as the most effective method for dealing with stochastic variables existing 

within whole supply chain. In addition, it can work for the global optimization of planning 

an whole supply chain with finding local optimum values within each component (Lee et 

al., 2002). The outcomes for different alternatives are evaluated via simulation and 

therefore, unnecessary errors and costs are minimized. In simulation, numerical and 

logical models based on real-world problems are created and various scenarios are 

imitated by means of computers to solve problems. Computer simulation technology 

ensures an efficient tool to make a plan for analyzing, solving, and evaluating many 

different alternatives. Hence, it is especially important for complex problems with high 

risks or that are impossible for real-world testing (Kuo and Yang, 2011). There are 

great differences between existing inventory systems. They change according to the 

size and complexity; the types of products, the cost elements related with operating the 

system, and in the nature of the information available to decision makers at any given 

point in time (Hadley and Whitin, 1963). In this case, simulation seems a remarkable 

recourse to model and analyze the performance for inventory control systems. 

Simulation has an ability to capture specific features of the real object and to 

incorporate a greater level of detail (Paul and Chanev, 1998). Also, researchers can 

easily change the simulation model parameters and tries to analyze the proposed 
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system performance under different sets of parameters. In simulation phase, defining 

control parameters is very important because it directly affects system performance.  

 In this study, DCs and Suppliers adopt the (R, s, S) inventory policy and 

simulation starts with initial inventory at DCs and Suppliers because the initial 

conditions of a simulation are crucial aspects of simulation modeling. In review period, 

the inventory level of each DC and each Supplier is replenished until the order-up-to 

level whenever it decreases to a value smaller than or equal to the reorder point. The 

chances of lost sales are directly proportional to value of the inventory control 

parameters. The higher the inventory levels in supply chain, the lower the chance of 

lost sales. However, customer order quantity can be lower than inventory level in 

specified review period and hence excess holding cost can be incurred. Managers 

should decide how inventory level should be built up to meet not only the customer 

demand, but also other factors such as cost minimization. In this respect, simulation 

provides an illustrative insight into the problem where the actual environment is difficult 

to observe within acceptable time. 

3.3. Single Product Inventory Control Problem  

           In this study, DCs are the stores that fulfill customer orders and Suppliers serve 

the products to supply the DCs replenishment orders. Thus, our supply chain conjures 

up images of single product from Suppliers to DCs and DCs to customers along a 

chain. Inventory levels of DCs and Suppliers are all inspected at every R time units 

where R is a fixed constant and assumed to be 5 days. However, only this value 

considered to be constant and assumed to be the same for all Suppliers and DCs 

placed in the supply chain. Each DC and each Supplier has their own initial inventory, 

reorder point, and order-up-to level values, separately. The lower and upper bound 

value of the initial inventory is considered to be 800 and 2000 for each DC and each 

Supplier, respectively. The lower and upper bound value of the reorder point is 

considered to be 50 and 200 for each DC and each Supplier, respectively. The lower 

and upper bound value of the order-up-to level is considered to be 200 and 750 for 

each DC and each Supplier, respectively. The distribution of the customer order 

quantity at the DCs has a Poisson distribution with a rate parameter of 50. Also, we 

assumed that average customer arrival at each DC is 1 per day. Each DC 

replenishment order may vary depending on the order quantity between successive 

orders and the resulting inventory at the time of ordering. The DC replenishment lead 

time is assumed to be stochastic. Each DC requires a triangular processing time with 

endpoints (1, 3) and mode at 2 minutes to reflect the processing of the product into the 



    

34 

stores and on the shelves. DCs receive orders (i.e., each DC will receive orders from 

customers over time) and need order processing time to process them. The order 

processing time that is uniformly distributed on the interval [2, 5] hours is the length of 

time between the time when an order for a particular product is placed and when it 

actually becomes ready to satisfy demand. In this respect, order processing time 

should be thought as the time spent processing order before it is filled (i.e., some 

routine paperworks and arrangements). Also, transportation times (i.e., from Suppliers 

to DCs) are uniformly distributed on the interval [1.25, 3] days. Thus, DC’s 

replenishment lead time includes order processing time at Suppliers, transportation 

time from Supplier to DCs, and processing time at DCs. It should be noted that 

inventory level continues to decrease over the duration of the lead time since the order 

placed at a review period will not be received until the end of the lead time; hence the 

inventory level will continue to decrease until the lead time expires. DCs can take many 

number of customer orders within a review period. Note that the cumulative demand 

over period n denoted by 𝐷𝑖𝑛 (i denotes DC in the system, i=1,2,3,…,I and n is the set 

of periods where an order is placed) and calculated as follow: 

𝐷𝑖𝑛 = ∑ 𝐷𝑖𝑡

𝑛

𝑡=1

 
       (3)                                            

where t denotes any time over period n (1 < 𝑡 ≤ 𝑛) and 𝐷𝑖𝑡 represents customer 

demand at time t for 𝐷𝐶𝑖. If 𝐷𝑖𝑡 is lower than the current inventory level of 𝐷𝐶𝑖 ( 𝑋𝑖𝑡), 

demand is fully satisfied. If 𝐷𝑖𝑡 quantity exceeds 𝑋𝑖𝑡, possible order fulfillment takes 

place. Unmet customer order quantity at time t ( Xit
− = Xit

 −  Dit
  ) is lost. At the 

beginning of each review period, the inventory level of each DC is replenished until the 

order-up-to level (S) whenever it decreases to a value smaller than or equal to the 

reorder point(s). In this system, the interval time between review periods is fixed but 

DCs replenishment order quantity can vary according to customer orders. 

 𝑄𝑖𝑛 =  {
𝑆 − 𝑋𝑖𝑛     𝑖𝑓 𝑋𝑖𝑛 ≤ 𝑠
0                𝑖𝑓 𝑋𝑖𝑛 > 𝑠

} 
       (4)                                            

where 𝑋𝑖𝑛 is the inventory level of each DC at review period. 𝑄𝑖𝑛 denotes the 

replenishment order quantity for each DC and is replenished only from its 

predetermined Supplier.  

 To satisfy the DC replenishment order, the firm should select the most suitable 

Supplier 𝑗, 𝑗 ∈ 𝐽 (j denotes number of Suppliers in the system, j=1,2,3,…, J). It is worth 

remembering that DCs face stochastic customer demands for a single product and the 

Suppliers receive only the replenishment orders from each DC as follows: 
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𝐷𝑗𝑡 =  ∑ 𝑄𝑖𝑛

𝐼

𝑖=1

 
       (5)                                            

where 𝐷𝑗𝑡 represents replenishment order quantity of DCs at time t for Supplier j. Then, 

the cumulative demand over period n (𝐷𝑗𝑛) calculated as follow: 

𝐷𝑗𝑛 = ∑ 𝐷𝑗𝑡

𝑛

𝑡=1

 
       (6)                                            

 𝐷𝑗𝑛 directly depends on the supplier selection because each replenishment 

order of the DC is only fulfilled from selected Supplier. For example, suppose that 

Supplier1 is selected for 𝐷𝐶1 and 𝐷𝐶3 over period n. The replenishment order quantity 

of the 𝐷𝐶1 is 50 units and replenishment order quantity of the 𝐷𝐶3 is 60 units. 

Replenishment orders of other DCs for Supplier1 are assumed to be zero. Thus, 

Supplier1 receives 110 units (𝐷1𝑛) over period n. The DC’s replenishment orders are 

satisfied if the current inventory level of Supplier j (𝑋𝑗𝑡) is greater than or equal to the 

DC’s replenishment order quantity. If Supplier does not have enough inventories to 

fulfill order, possible order fulfillment takes place depending upon 𝑋𝑗𝑡. Excess DC’s 

replenishment order quantity is lost (𝑋𝑗𝑡
− = 𝐷𝑗𝑡 −  𝑋𝑗𝑡). At the beginning of each review 

period, the inventory level of each Supplier is replenished until the order-up-to level 

whenever it decreases to a value smaller than or equal to the reorder point. If inventory 

level is higher than the reorder point, we do not place any order for Supplier j at review 

period. 

𝑄𝑗𝑛 =  {
𝑆 − 𝑋𝑗𝑛     𝑖𝑓 𝑋𝑗𝑛 ≤ 𝑠

0                𝑖𝑓 𝑋𝑗𝑛 > 𝑠
} 

       (7)                                            

where 𝑋𝑗𝑛 is the inventory level of each Supplier at review period n. 𝑄𝑗𝑛 denotes the 

replenishment order quantity for each Supplier and is replenished from unlimited 

sources. The Suppliers’ replenishment lead times are also assumed to be stochastic 

and includes processing time and order processing time. Processing time to prepare 

products (i.e., the processing of the product into the stores and on the shelves) for 

serving DCs is assumed to be a random variable that has triangular distribution with 

endpoints (3, 7) and mode at 5 minutes at each Supplier. Suppliers receive orders (i.e., 

Suppliers can only receive orders from DCs at each review periods according to their 

inventory positions) and need order processing time to process them.  



    

36 

 

Figure 3.5. General structure of the proposed supply chain. 

 As for the DCs, the order processing time that is uniformly distributed on the 

interval [2, 5] hours is the length of time between the time when an order for a 

particular product is placed and when it actually becomes ready to satisfy demand. In 

this respect, order processing time should be thought as the time spent processing 

order before it is filled (i.e., some routine paperworks and arrangements). Note that, 

transportation time is not considered for Suppliers during the replenishment lead time. 

Also, there is always enough time for receiving an order before the next review period 

because replenishment lead time will always be shorter than the review period. It 

should be noted that inventory level continues to decrease over the duration of the lead 

time since the order placed at a review period will not be received until the end of the 

lead time; therefore the inventory level will continue to decrease until the lead time 

expires. Suppliers can take just one order for each DC but can accept orders from 

more than one DC at a time within a review period. The general structure of the 

considered supply chain is given in Figure 3.5. Three different sources of customers 

place orders on DCs. The three chain DCs can utilize five different Suppliers for a 

particular item. Both DCs and Suppliers use similar inventory models (i.e., (R, s, S)) to 

replenish their inventory positions to satisfy demands from customers and DCs, 

respectively. To estimate the performance of a given system design average holding 
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cost, lost sales cost, fixed and variable ordering costs are specified as seen in Table 

3.5. 

Table 3.5. Inventory related costs. 

Suppliers DCs 

Average Holding Cost (hj): Uniform (2,5) Average Holding Cost (hi): Uniform (2,5) 

Lost Sales Cost (kj): Uniform (80, 100) Lost Sales Cost (ki): Uniform (80, 100) 

Processing Cost (𝑝𝑗): Uniform (50, 75) Processing Cost (𝑝𝑖): Uniform (5,10) 

Order Cost Per Use (𝑐𝑗): Uniform (50,100) Order Cost Per Use (𝑐𝑖): Uniform (50,100) 

Order Processing Cost Rate: Uniform (2,5) Order Processing Cost Rate: Uniform (2,5) 

Cost Per Use: Uniform (100,150) Cost Per Use: Uniform (10,20) 

 

 Any non-negative inventory level is charged a holding cost (hiXin
+ ) proportional 

to the remaining inventory quantity over period n. A lost sales cost ki𝑋𝑖𝑛
−  is charged 

proportional to the unmet customer order quantity at DCi over period n. 𝑝𝑖𝑃𝑖 is charged 

proportional to the processing time to use any DC for processing activity. Order cost 

per use, 𝑐𝑖 is the cost charged, or accrued, to the cost of any order that is placed at any 

DC irrespective of the time spent in there. Order processing cost, 𝑂𝑖 includes order 

processing cost rate, which is proportional the order processing time, which is the 

length of time between the time when an order for a particular product is placed and 

when it actually becomes ready to satisfy demand, and cost per use, which is the one-

time cost that is accrued each time any DC is used, regardless of the usage duration. 

Thus, we formulated total supply chain cost for DCs over periods (TSCC𝑖𝑛) as follows: 

TSCCin = hiXin
+ + I{Xin ≤ s} (kiXin

− + 𝑝𝑖𝑃𝑖 +  𝑐𝑖 + 𝑂𝑖)        (8)                                            

where, I{. } specify indicator function of the set. Similarly, total supply chain cost for 

Suppliers over periods (TSCCjn) is calculated. Any non-negative inventory level at 

Supplier j is charged a holding cost (hjXjn
+ ) proportional to the remaining inventory 

quantity over period n. A lost sales cost kj𝑋𝑗𝑛
−  is charged proportional to the unmet 

order quantity at Supplier j over period n. 𝑝𝑗𝑃𝑗 is charged proportional to the processing 

time to use any Supplier for processing activity. Order cost per use, 𝑐𝑗 is the cost 

charged, or accrued, to the cost of any order that is placed at any Supplier irrespective 

of the time spent in there. Order processing cost, 𝑂𝑗 includes order processing cost 
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rate, which is proportional the order processing time that should be thought as the time 

spent processing order before it is filled (i.e., some routine paperworks and 

arrangements), and cost per use which is the one-time cost that is accrued each time 

any Supplier is used, regardless of the usage duration. Thus, we formulated TSCCjn as 

follows: 

TSCCjn = hjXjn
+ + I{Xjn ≤ s}(kjXjn

− + 𝑝𝑗𝑃𝑗 + 𝑐𝑗 + 𝑂𝑗 )        (9)                                            

 Finally, total cost of each DC and each Supplier are summed up to calculate 

total supply chain cost over periods (TSCCn) as follows: 

∑ (TSCCn)

𝑃𝑒𝑟𝑖𝑜𝑑𝑠 𝐶𝑜𝑛𝑠𝑖𝑑𝑒𝑟𝑒𝑑

𝑛=1

=  ∑ (∑ TSCCin

I

i=1

+ ∑ TSCCjn

J

j=1
 )

𝑃𝑒𝑟𝑖𝑜𝑑𝑠 𝐶𝑜𝑛𝑠𝑖𝑑𝑒𝑟𝑒𝑑

𝑛=1

 

(10) 

 In this study, proposed method aims at minimizing TSCCn. It is also worth noting 

that optimization of all inventory control parameters of both Suppliers and DCs and the 

most suitable Supplier selection is performed simultaneously.  

The proposed OvS model assumptions are determined as follows:  

1) Single product flows through the two echelon supply chain. 

2) DCs and Suppliers operate under the (R, s, S) policy where R is fixed (i.e., 5 days). 

3) Inventory order policy parameters that are initial inventory, order-up-to level, reorder 

point for a given DC and Supplier remain the same across the entire finite time horizon. 

4) Poisson demand process and stochastic lead time are used. 

5) Each customer order is supplied only by a single predetermined DC and each DC 

replenishment order is supplied only by a single Supplier which is determined after the 

optimization phase among the candidate Suppliers. Each Supplier replenishes its 

inventory from unlimited sources. 

6) If the demand quantity exceeds the current inventory level, possible order fulfillment 

takes place and unmet demand is lost.  

7) There is always enough time for receiving an order before the next review period 

because replenishment lead time both for DCs and Suppliers is shorter than the review 

period. 

8) Only transportation times between Suppliers and DCs are considered.  
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9) Simulation model is run for one year. 

10) Inventory levels are not allowed to be negative.  

 To analyze proposed OvS model with a greater level of detail, descriptive 

statistics including cost component analysis (average holding cost, order cost per use, 

lost sales cost, order processing cost and processing cost), probability based analysis 

per each period (P1 and P2), quantity based analysis per each period (TMOQ, TLOQ, 

and PLOQ), order based analysis per each period (NTMO, NTLO, and NPLO) and lead 

time based analysis per each replenishment lead time (order met probabilities, average 

holding unit, and length of the lead time) are given in following chapter. 
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CHAPTER 4 

4. RESULTS AND DISCUSSION 

           The supply chain considered in the current study is a single product two echelon 

supply chain consisting of Suppliers which is the source of supply for DCs which are 

source of supply for customer demands. To provide effective solution methodology for 

these supply chain system, we presented OvS model minimizing TSCCn. The proposed 

OvS model has the ability of capturing the advantages of both simulation and 

optimization based method where GA is used and the convergence of the search 

process for (R, s, S) settings are plotted in Figure 4.1. 

 

Figure 4.1. Convergence of the GA towards the best solution in proposed model. 

4.1. Cost based analysis 

           OvS model determined the best possible values of the initial inventory, reorder 

point, and order-up-to level for each DC and each Supplier while minimizing cost 

related fitness function. One of the repercussions of this convergence is that if the 

inventory control parameters defined effectively, then the total supply chain cost could 

be automatically improved. Besides considering inventory control parameters, the most 

suitable supplier is determined for each DC. Supplier3, Supplier4, and Supplier5 are 

selected to satisfy DCs replenishment order in proposed model. Also, overall average 

service levels are summarized for each DC and each Supplier in Table 4.1. Taking a 

glance at overall average service levels of Suppliers reveals that there seems no 

problem with Suppliers. Note that average service level specifies the ratio of current 

inventory level in each DC/Supplier to number of units ordered by the customers/DCs 

over total number of incoming orders and can be calculated as follow: 
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𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑠𝑒𝑟𝑣𝑖𝑐𝑒 𝑙𝑒𝑣𝑒𝑙 =
∑ min( 1,

𝐶𝑢𝑟𝑟𝑒𝑛𝑡 𝐼𝑛𝑣𝑒𝑛𝑡𝑜𝑟𝑦 𝐿𝑒𝑣𝑒𝑙

𝐼𝑛𝑐𝑜𝑚𝑖𝑛𝑔 𝑂𝑟𝑑𝑒𝑟 𝑄𝑢𝑎𝑛𝑡𝑖𝑡𝑦
)𝑃𝑒𝑟 𝐴𝑟𝑟𝑖𝑣𝑎𝑙

𝑎=0

Total Number of Incoming Orders
              

     (11)                                            

Table 4.1. Average service levels and optimal values of inventory control parameters. 

Supply 
Chain 

Component 

Initial 
Inventory 

Reorder 
Point (s) 

Order-Up-To 
Level (S) 

Average 
Service 
Level 

DC1 1897 82 656 0.789633 

DC2 1897 82 503 0.69926 

DC3 1985 82 503 0.704517 

Supplier1 - - - - 

Supplier2 - - - - 

Supplier3 1880 144 679 0.996853 

Supplier4 936 193 576 0.993674 

Supplier5 1667 193 652 0.993619 

 

                     With optimal inventory control parameters, DCs and Suppliers fulfill a strategic 

role of achieving the supply chain objectives of lower costs. In this respect, key to the 

managing of DCs and Suppliers lie in the evaluation of the optimal cost model for any 

given structure. Thus, information on where cost components are incurred and whether 

the cost components are rising or falling is required. In this study, we used total supply 

chain cost including five different cost components (average holding cost, order cost 

per use, lost sales cost, order processing cost and processing cost). To substantially 

analyze a realistic inventory model, a detailed descriptive statistics including cost 

component analysis per each period, probability based analysis per each period (P1 

and P2), quantity based analysis per each period (TMOQ, TLOQ, and PLOQ), order 

based analysis per each period (NTMO, NTLO, and NPLO) and lead time based 

analysis per each replenishment lead time (order met probabilities, average holding 

unit, and length of the lead time) are given. To the best of our knowledge, there is no 

study is available about (R, s, S) policies including such a detailed analysis.  
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                    The majorities of the studies in the literature are briefly analyzed the cost, 

demand and lead time behavior in supply chain. For example, Movahed and Zhang 

(2015) analyzed demand and lead time uncertainties and provided an effective guide 

for decision-makers to find the optimal value of inventory policy parameters. An 

important remark to the conclusions drawn previous studies is that such a detailed 

statistical analysis of (R, s, S) policies was not taken into account and calculating such 

statistics can only be possible through simulation based models such as OvS models. 

           The analysis of cost components showed that the largest share in Figure 4.2 for 

DC1 is the lost sales cost (81%). Except for the first period the values of cost 

components can be said to be uniformly distributed across the periods with DC1. The 

reason for period 1’s being an exception is DCs’ having adequate levels of initial 

inventories at that period. P1 for both Suppliers and DCs are calculated by using 

equation (12).  

∫ min (1,
𝐶𝑢𝑟𝑟𝑒𝑛𝑡 𝐼𝑛𝑣𝑒𝑛𝑡𝑜𝑟𝑦 𝐿𝑒𝑣𝑒𝑙

𝐼𝑛𝑐𝑜𝑚𝑖𝑛𝑔 𝑂𝑟𝑑𝑒𝑟 𝑄𝑢𝑎𝑛𝑡𝑖𝑡𝑦
)𝑑𝑡

𝑛

𝑛−1

 
           

(12)                                          

 Calculating such a statistic allows one to obtain hidden but valuable information 

about the dynamics of the supply chain which is ignored most of the time. Also, P2 for 

both Suppliers and DCs are calculated by using equation (13) for comparison 

purposes.  

∫ min(1,
𝐶𝑢𝑟𝑟𝑒𝑛𝑡 𝐼𝑛𝑣𝑒𝑛𝑡𝑜𝑟𝑦 𝐿𝑒𝑣𝑒𝑙

𝐼𝑛𝑐𝑜𝑚𝑖𝑛𝑔 𝑂𝑟𝑑𝑒𝑟 𝑄𝑢𝑎𝑛𝑡𝑖𝑡𝑦
)𝑑𝑡

𝑛

0

 
    (13)                                            

          Note that P1 and P2 values should be close to 1 across the periods for all 

supply chain members to have the potential to meet all incoming orders over time. It is 

noticeable that except for the first period the value of P1 and P2 uniformly distributed 

across the periods with all DCs. Note that, at period 1 all incoming orders are met (i.e., 

P1 is 1) for all DCs due to having adequate levels of initial inventories at that period. 

But, this is not the case for DC1 at period 2 where P1 is 0.737 (i.e., All incoming orders 

are met 73.7 percent of the time over period 2 or incoming orders are met with 0.737 

probability). Finally, P2 value is 0.869 for DC1 at period 2. In other words, 86.9 percent 

of the time (i.e., over two months) all incoming orders at DC1 are met. Likewise, the 

same value can be interpreted as all incoming orders at DC1 within the first two months 

are met with 0.869 probability. 
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          Comparing P2 with P1 provides very useful information for decision makers. It is 

apparently seen that it can be quite misleading to consider just P2 values since it is 

being a biased indicator due to its taking account of initial conditions. Note that P1 

values are calculated just for each period and thus can be seen just a fine tuned 

version of P2 values. Being much more realistic indicators P1 values should be relied 

on while making decisions.  

           Figure 4.3 summarizes analysis of number of orders together with order 

quantities. Except for the first period the values of TMOQ uniformly distributed across 

the periods with DC1. Similar conclusions can be drawn related to TLOQ, PLOQ, 

NTMO, NTLO, and NPLO. Note that, at period 1 there is no totally lost and/or partially 

lost orders with DC1 due to adequate levels of initial inventories. 

          The analysis of cost components showed that the largest share in Figure 4.4 is 

the lost sales cost (87%) whose value is higher than DC1. Except for the first period the 

values of cost components can be said to be uniformly distributed across the periods 

with DC2. 

          Similar conclusions can be drawn related to TMOQ, TLOQ, PLOQ, NTMO, 

NTLO, and NPLO in Figure 4.5. Except for the first period the value of this statistics 

uniformly distributed across the periods for DC2. It is seen that DC1 and DC2 have 

some difference in cost and order analysis. The source of these variations may be due 

to stochastic order processing times, stochastic transportation times, or other 

stochastic parameters. The strongest candidate among these is stochastic customer 

order quantity. 

 The analysis of cost components showed that the largest share in Figure 4.6 for 

DC3 is the lost sales cost (86%) whose value is slightly higher than DC1 and lower 

than DC2. The values of P1, P2, TMOQ, TLOQ, PLOQ, NTMO, NTLO, and NPLO are 

uniformly distributed across the periods for DC3 except for the first period. It is 

apparently seen that the value of each cost component exhibits substantially different 

cost structures in accordance with the periodic review system at each DC. From Figure 

4.7, the value of P1 and P2 across the periods for DC1 is higher than those of DC2 and 

DC3 except for the first period. Having the same customer order arrival rates this result 

seems a bit cumbersome for the DCs’ managers. Then the source of variation may be 

due to stochastic environment. The strongest candidate is the level of inventory control 

parameters.  
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From Table 4.1, initial inventory levels are seen to be very close each other and 

also reorder point levels are all the same for all DCs. But, DC1’s order-up-to level (i.e., 

656) is higher than those of DC2 and DC3. Note that, DC2 and DC3 have the same 

level of order-up-to level (i.e., 503) which justifies our forecast. TMOQ per period with 

DC1 is higher than those of DC2 and DC3. Again the reason for this good statistic with 

DC1 originates from DC1’s having a higher level of order-up-to level than those of the 

others. It is noticeable that except for the first period the values of TMOQ uniformly 

distributed across the periods with all DCs, being higher with DC1 for each period than 

those of the others. Similar conclusions can be drawn related to TLOQ, PLOQ, NTMO, 

NTLO, and NPLO.  

 The analysis of periodic review system showed that the largest share in the pie 

chart for all DCs is the lost sales cost. It should be noted that even the minimum one is 

accounted for 81% of the total DC cost (i.e., the total lost sales cost with DC1). Thus, 

shortage is the most strategic issue despite various cost types involved in DCs. It is 

well known that competition among DCs has become fiercer and fiercer in recent 

years. Hence, if lost sales cost could be reduced effectively, total supply chain cost for 

DCs may not be changed but at worst customer satisfaction will be improved.   

 

Figure 4.8. The comparison of total lost sales cost and total lost sales cost during lead 

time. 

 It is seen in Figure 4.8 that the high proportion of the lost sales cost occurs 

during replenishment lead time periods. At this point, the longer the length of lead time, 

the higher the proportion of lost sales would be. Remember that, the length of the 

review period is the single deterministic component and is considered to be 5 days for 

all DCs and Suppliers.  
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 Contrary to DCs, Suppliers lost sales costs are extremely lower since they have 

shorter lead-times (Suppliers’ lead times do not include transportation time). After 

evaluating DCs, we give a detailed analysis about Suppliers. Suppliers with periodic 

review system have no totally lost sales. Note that Supplier1 and Supplier2 are not 

preferred by DCs with periodic review system. It is apparently seen in Figure 4.9 that 

processing cost is the most strategic issue despite various cost types involved in 

Supplier3. Note that share of the lost sales cost is dramatically lower than DCs. On the 

other hand, share of the average holding cost particularly increases with respect to 

DCs. Figure 4.9 also summarizes analysis of number of orders, order quantities, P1 

and P2 for Supplier3. It is noticeable that after period 4 the values of TMOQ can be 

said to be uniformly distributed across the periods among Suppliers. TLOQ and NTLO 

are all zero across the periods. Note that, although PLOQ and NPLO are generally 

zero across the periods with Supplier3, DC replenishment orders are partially met in 

period 3. However, unmet order quantity is negligible which is justified by the higher 

values of both P1 across the periods and P2 over all periods. Also, it should be noted 

that the value of P1 and P2 uniformly distributed across the periods for Supplier3. 

 The analysis of cost components showed that the largest share in Figure 4.10 

for Supplier4 is the processing cost. Except for the first, second and third period the 

values of cost components can be said to be uniformly distributed across the periods 

with Supplier4. Similar conclusions can be drawn related to TMOQ, TLOQ, PLOQ, 

NTMO, NTLO, and NPLO. It is noticeable that after period 2 the values of TMOQ can 

be said to be uniformly distributed across the periods among Supplier4. TLOQ and 

NTLO are all zero across the periods. Note that, although PLOQ and NPLO are 

generally zero across the periods with Supplier4, in period 2 DC replenishment orders 

have been unmet. However, unmet order quantity is negligible which is justified by the 

higher values of both P1 across the periods and P2 over all periods. Also, the value of 

P1 and P2 are uniformly distributed across the periods for Supplier4. It is seen in 

Figure 4.11 Supplier5 is slightly different from Supplier3 and Supplier4. Number of 

partially lost order is higher than others. Except for the first, second, third, fifth and 

eighth period the values of cost components can be said to be uniformly distributed 

across the periods with Supplier5. TLOQ and NTLO are all zero across the periods. 

Note that, although PLOQ and NPLO are generally zero across the periods with 

Supplier5, in period 3, 5 and 8 DC replenishment orders are partially met.  
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It is noticeable that after period 3 the values of TMOQ can be said to be 

uniformly distributed across the periods among Supplier5. It is apparently seen that the 

largest share in the pie chart for all Suppliers is the processing cost. The minimum one 

is accounted for about 59% of the total supply chain cost for Suppliers with proposed 

model. Note that share of the lost sales cost in the pie chart is dramatically lower than 

DCs. On the other hand, share of the average holding cost particularly increases with 

respect to DCs. After period 4, the value of TMOQ across the periods for Supplier3 is 

higher than those of Supplier4 and Supplier5. The reason for this slight difference may 

be because of stochastic order processing times, stochastic transportation times, and 

levels of inventory control parameters. The strongest candidate among these is the 

level of inventory control parameters. From Table 4.1, Supplier3 has a higher level of 

initial inventory and order-up-to level than those of the others but its reorder point is 

lowest with proposed model.  

 

Figure 4.12. Cost analysis of DCs and Suppliers. 

 It is clearly seen in Figure 4.12, total cost for DCs is extremely higher than 

Suppliers. This results show that creating review system for DCs is more critical than 

Suppliers since incorrect selection can be more costly for DCs. After general analysis 

of supply chain member, we also analyzed each cost component for the whole supply 

chain as given in Table 4.2-4.3. 

 The success of DCs and Suppliers clearly depends on the extent of cost 

savings and the customer service level. To achieve significant savings, companies 

should integrate inventory control and supplier selection instead of treating them 

separately. This could be achieved through the use of OvS based models. In this study, 

we have presented an answer to the question of how periodic review system is become 
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more appropriate in lost sales inventory systems while considering total supply chain 

cost. 

Table 4.2. The cost analysis of the DCs. 

 

Average 

Holding 

Cost 

Order 

Cost Per 

Use 

Lost 

Sales 

Cost 

Order 

Processing 

Cost 

Processing 

Cost 

DC1 13669 26875.7 345373 36460.1 3457.4 

DC2 10111 26962.9 492530 36302.3 3075.6 

DC3 11022 27005.4 483175 36501 3077 

Total Supply 

Chain Cost 

for DCs 

34802 80844 1321078 109263.4 9610 

 

Table 4.3. The cost analysis of the Suppliers. 

 

Average 

Holding 

Cost 

Order 

Cost Per 

Use 

Lost 

Sales 

Cost 

Order 

Processing 

Cost 

Processing 

Cost 

Supplier3 25831 1470 3709 2021.9 60261 

Supplier4 17523 4891.6 6261.46 4891.6 55887 

Supplier5 26513 1673.9 6533 2189 52454 

Total Supply 

Chain Cost 

for Suppliers 

69867 8035.5 16503.5 9102.5 168602 

 

          To present a convenient way to visually compare all supply chain member on 

five statistics, we also used box plot that includes the minimum and maximum range 

values, the upper (75th) and lower quartiles (25th), and the median (50th). The 25th 

and 75th percentiles are given as a box centered about the 50th percentile (median). 

The median is the middle observation in a ranked dataset and is a measure of the 

central tendency of the data. An advantage of the median is its resistance against 

outlying values for 3≥n, where n is the number of observations. The major purpose of 
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this graph is to permit an appropriate way to visually compare all supply chain member 

on these five statistics at the same time. The manager can look for differences between 

members and then conduct further investigations to establish plausible explanations for 

differences. Note that outliers are represented by “*” and the line connected supply 

chain member shows the mean that is directly affected by an extreme outlying 

observation. Whereas the mean can be skewed by an extreme outlying observation, 

the median is unaffected and therefore remains robust.   

 

Figure 4.13. Evaluation of P1 for DCs. 

          The value of P1 for DC1 is higher than those of DC2 and DC3 (Figure 4.13). This 

result shows that DC1 can satisfy customer order with higher probability in each period. 

Note that P1 value should be close to 1 across the periods for all supply chain 

members to have the potential to meet all incoming orders over time. 
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Figure 4.14. Evaluation of P1 for Suppliers. 

 The value of P1 for Supplier3 and Supplier4 is approximately same but 

Supplier5 is a bit different from other Suppliers (Figure 4.14). It is seen that Supplier5’ 

box length that shows the variability of P1 is higher and hence Supplier3 and Supplier4 

are better than Supplier5 when box plot is taken into account. 

 

Figure 4.15. Evaluation of P2 for DCs. 

 The value of P2 for DC1 is higher than those of DC2 and DC3 (Figure 4.15). 

This result show that DC1 can satisfy customer order with higher probaility over 

periods. Note that P2 values should be close to 1 across the periods for all supply 

chain members to have the potential to meet all incoming orders over time. 
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Figure 4.16. Evaluation of P2 for Suppliers. 

 In Figure 4.16, it is noticeable that the value of P2 for Suppliers is different from 

P1 value. The variability of P2 is higher than P1. According to Figure 4.16, Supplier3 is 

better than other Suppliers. The values of P2 for Supplier4 have a higher variability and 

are also lower than others. Comparing P2 with P1 gives very valuable information for 

managers. It is clearly seen that it can be quite misleading to consider just P2 values 

because it is being a biased indicator due to its taking account of initial conditions.  

 

Figure 4.17. Evaluation of NPLO for DCs. 

 From Figure 4.17, the box plots indicate that there is no difference between 

DC2 and DC3. In fact, it is clearly visible that the boxes and the median values are on 
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the same level. On the other hand, median value of DC1 is lower than other DCs and 

also its NPLO variability is higher when box length is taken into account. 

 

Figure 4.18. Evaluation of NPLO for Suppliers. 

 The box plots indicate that there is no difference between Supplier3 and 

Supplier4 (Figure 4.18). In fact, it is clearly visible that the median values are zero. 

Supplier5 has a different structure although median is zero. NPLO for Supplier5 has a 

great variability due to wide range of box length. Therefore, Supplier3 and Supplier4 

have better performance than Supplier5 when NPLO is taken into account. 

 Due to the increased competition in the supply chain environment, customers 

are not willing to wait anymore and most of the customer demand is considered to be 

lost in many practical settings. Therefore, characterizing supply chain members’ 

structural properties, and evaluating proposed method are very important in lost sales 

environment. In this study, the values of NTLO (Figure 4.19) and TLOQ (Figure 4.20) 

for DC1 are lower than those of DC2 and DC3. Hence, customer satisfaction is higher 

than DC2 and DC3 since the customer satisfaction could be highly increased by 

reducing lost sales. Note that Suppliers have no NTLO and TLOQ. 

Supplier5Supplier4Supplier3

1,0

0,8

0,6

0,4

0,2

0,0

N
P

L
O

0 0

0



    

62 

 

Figure 4.19. Evaluation of NTLO for DCs. 

  

 

Figure 4.20. Evaluation of TLOQ for DCs. 
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Figure 4.21. Evaluation of NTMO for DCs. 

 There is no observable difference between DC2 and DC3 as seen in Figure 

4.21. The value of NTMO for DC1 is higher than those of DC2 and DC3. 

 

Figure 4.22. Evaluation of NTMO for Suppliers. 

 The box plots indicate that there are some differences between Suppliers 

(Figure 4.22). In fact, it is clearly visible that the median values are equal to 2 for 

Supplier4 and Supplier5 but Supplier5 has some variability. The median value for 

Supplier3 is lower than other Suppliers. Also, it has a great variability due to wide range 

of box length. 
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Figure 4.23. Evaluation of PLOQ for DCs. 

           Although there is no observable difference between DCs, the median value of 

PLOQ for DC2 is higher than those of DC1 and DC3 (Figure 4.23). 

 

Figure 4.24. Evaluation of PLOQ for Suppliers. 

  As seen in Figure 4.24 there is no observable difference between Suppliers 

considering median. Note that, Supplier5 has some variability and box length shows 

the variability of PLOQ. 
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Figure 4.25.  Evaluation of TMOQ for DCs. 

 The value of TMOQ for DC1 is higher than those of DC2 and DC3 (Figure 4.25). 

Higher TMOQ means high level of customer satisfaction. Similar things can be said 

with regard to the value of TMOQ for Suppliers as seen in Figure 4.26. Note that, box 

length of Supplier3 shows the variability of TMOQ. 

 

Figure 4.26. Evaluation of TMOQ for Suppliers. 

 In conclusion, supply chain members have some differences. The source of 

variation may be due to stochastic order processing times, stochastic transportation 

times, and levels of inventory control parameters. The strongest candidate among 
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these is the level of inventory control parameters. To remain competitive, companies 

must analyze all supply chain member and this study can help them to understand how 

to apply statistical analysis skills to clarify these policies with a greater level of detail. 

4.2. Lead time based analysis for each model 

 The purpose of this section is to show the lead time related statistics more in 

depth to provide more useful information. Hence, statistical analysis extended by 

calculating order met probabilities per lead time period which is one of the most 

significant statistics. The overall goal of such a detailed analysis is to extract dynamics 

of the system considered and transform it into an understandable structure for 

managerial decision making. Moreover, taking into account the stochastic lead times 

further is increased the importance of this statistic. Order met probability per lead time 

period is calculated by using equation (14).  

∫ min (1,
𝐶𝑢𝑟𝑟𝑒𝑛𝑡 𝐼𝑛𝑣𝑒𝑛𝑡𝑜𝑟𝑦 𝐿𝑒𝑣𝑒𝑙

𝐼𝑛𝑐𝑜𝑚𝑖𝑛𝑔 𝑂𝑟𝑑𝑒𝑟 𝑄𝑢𝑎𝑛𝑡𝑖𝑡𝑦
)𝑑𝑡

𝑒𝑛𝑑 𝑜𝑓 𝑙𝑒𝑎𝑑 𝑡𝑖𝑚𝑒

𝑛

 
  (14)                                            

 It should be emphasized that calculating such a statistic can only be possible 

through simulation which reinforces once again the power of simulation. Note that there 

could be no replenishment orders for some periods. Still, these statistics are collected 

for periods with replenishment orders. To the best of our knowledge such a valuable 

statistic never ever held before while analyzing such systems. Note that order met 

probabilities per lead time for Suppliers are always 1 or close to 1 in all periods. It 

should be noted that the simulation is run over one year period. Since review period 

length is five days (i.e., inventory is reviewed at every five days at both DCs and 

Suppliers) actually a total of 73 lead time per period will be come true for all DCs and 

all Suppliers. Note that, at some periods there will be no replenishment orders for both 

DCs and Suppliers and denoted as “-” in following tables. Also, order met probabilities 

per lead time period within some review periods will be zero for some DCs and 

Suppliers.  

 From Table 4.4, it is clearly seen that order met probabilities per lead time 

period are very low for almost all DCs. The best order met probability per lead time 

period is at most 20.14% (row 9) which means that 79.86% of incoming orders lost 

during 9th lead time period.  
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           Of course, these values are not self-explanatory and dependent on the length of 

the lead time period and average inventory holding unit during the length of lead time. 

Thus, evaluating order met probabilities along with the length of lead time period and 

average inventory holding unit during the length of lead time will make it much more 

comprehensible. 

 It is clear that longer lead time periods together with lower average inventory 

holding unit will result in lower order met probabilities during lead time period. But, 

longer lead time periods together with higher average inventory holding unit will result 

in higher order met probabilities during lead time period. Note that, average inventory 

holding unit depends particularly on the level of inventory at the beginning of the lead 

time period. But, it also depends on the length of the lead time period (see equation 

(14)). In this respect, Table 4.4 are all supplemental tables and should be evaluated 

together to increase comprehensibility. From row 30 of Table 4.4 it is seen that order 

met probabilities per lead time period for all DC1, DC2, and DC3 are 12.69%, 0.49%, 

and 0.04%. In other words, 12.69% percent of the lead time period incoming orders are 

met by DC1 or during lead time period 12.69% percent of the incoming orders are met 

by DC1. In addition to this, we used box plot to present lead time based analysis in a 

detailed way.  

 

Figure 4.27. The order met probabilities per replenishment lead time for periodic review 

system. 
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 From Figure 4.27, it is clearly seen that order met probabilities per lead time 

period are very low for almost all DCs in periodic review system. However, order met 

probabilities per lead time for all Suppliers in periodic review system are always 1 or 

close to 1 in all periods.  

 Note that outliers are represented by “*” and the line connected supply chain 

member in Figure 4.27 shows the mean that is directly affected by an extreme outlying 

observation. 

 Table 4.5 simply summarizes the ratio between the length of lead time period 

and the length of review period (i.e., percentages of lead time periods over the review 

periods). According to row 12 of Table 4.5 it can be said that lead time of DC1 

comprised 18.85 percent of review period 12 (i.e., 5*0,1885=0,9425 days). Likewise, 

lead time of DC2 and DC3 comprised 55.6 and 55.3 percent of review period 12 (i.e., 

5*0.5564=2.782 days and 5*0.5525=2.7625 days, respectively), respectively.  

 Consequently, the minimum percentage of lead time period for DCs comprise 

2.18% of related review period and the maximum percentage of lead time period 

comprise 61.3% of related review period. Also, the minimum percentage of lead time 

period for Suppliers comprise 1.72% of related review period and the maximum 

percentage of lead time period comprise 40.03% of related review period. Such a large 

gap between minimum and maximum values shows the importance of taking stochastic 

behavior of the system into account.  

 In Figure 4.28, box length shows the variability of length of lead time and the 

line across the box presents where the lead times are centered. It is seen that each 

member is different from each other in periodic review system due to stochastic 

environment.     

 Increased levels of inventory parameters will definitely improves not only 

average holding unit levels over lead time but also order met probabilities over lead 

time both at DCs and Suppliers at the expense of increased total cost. Figure 4.29 

summarizes the average holding unit that is hold at DCs and Suppliers during the 

replenishment lead time in periodic review system. The box length gives an indication 

of the average holding unit variability and the line across the box shows where the 

average holding unit is centered. 
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Figure 4.28. Lead time analysis for each supply chain member in periodic review 

system. 

 

Figure 4.29. The average holding unit of supply chain members in periodic review 

system. 

 Table 4.6 summarizes the average holding unit that is hold at both DCs and 

Suppliers during the lead time periods. It should be noted that DCs average holding 

unit over lead time period are all close to zero. The main reason for this situation arises 

from the fact that even maximum amount of order-up-to level cannot handle incoming 

orders to the DCs.  
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 The results of the study show that indeed proposed model has significant 

effects on the optimal policy values in DCs. Balancing the total average holding cost 

with the total lost sales cost, also balances P1 and P2 among the DCs. It is clear that 

proposed model allows managers to have the same level of total supply chain costs in 

DCs while increasing customer satisfaction by decreasing number of totally lost orders 

and the number of partially lost orders. Looking at individual cost components in OvS 

model, we observe that the decrease in the lost sales costs are offset by the increase 

in average holding costs. This is a counterintuitive result that highlights the importance 

of inventory decisions in supply chain.  
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CHAPTER 5 

5. CONCLUSIONS 

 Inventory control systems are challenging in the case of modeling because 

managing inventories is typically difficult in a stochastic and/or dynamic environment. 

Providing optimal inventory control system is a crucial foundation for achieving both 

strategically and tactically success in inventory management. On the other hand, 

modeling of inventory control system in a stochastic and/or dynamic environment 

needs too much computational effort to solve and sometimes they are not solvable in 

reasonable time. Also, existing models are analytically solvable only under simplifying 

assumptions and approximations due to inability of the representing stochastic and/or 

dynamic environments. Hence, many researchers have dedicated themselves to 

search more robust model. At this point, OvS can be used with much details, realities, 

and complexities as the modeler wants in order to solve any real inventory control 

systems. Therefore, we used OvS model to optimize inventory levels considering (R, s, 

S) inventory control system and supplier selection in a two echelon supply chain with 

lost sales system.  Our proposed OvS approach for solving the considered problem 

can be explicitly considered as a complementary tool for determining the reorder point, 

order-up-to-level, and initial inventory while ensuring cost based objective function with 

lost sales system. Although many researchers have dedicated themselves to search 

more robust model involving stochastic behaviors existing in real-world problems, they 

do not report such an extensive analysis for (R, s, S) policies. To understand better the 

scope of periodic review systems and opportunities associated with inventory 

management, we give a detailed analysis of inventory control system including cost 

component analysis (average holding cost, order cost per use, lost sales cost, order 

processing cost and processing cost), probability based analysis per each period (P1 

and P2), quantity based analysis per each period (TMOQ, TLOQ, and PLOQ), order 

based analysis per each period (NTMO, NTLO, and NPLO) and lead time based 

analysis per each replenishment lead time (order met probabilities, average holding 

unit, and length of the lead time) for proposed OvS models, which are remarkable 

model for inventory control systems in determining the best inventory control 

parameters. Extensive statistical analyses also yield third important results.  

 (1) Supplier selection is important in inventory control system. OvS model 

integrates the supplier selection and inventory control system to make a supply chain 

member more flexible and responsive to customer requests. 
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 (2) Looking at each cost component in OvS model, we observe that the 

decrease in the lost sales costs are offset by the increase in average holding costs. 

Also, if the periodic review system could be applied effectively, total supply chain cost 

could be automatically improved in lost sales system.  

 (3) The ratio between the lost sales cost and total supply chain cost in DCs is 

dependent on the length of replenishment lead time through the amount of shortages. 

 In conclusion, increasing diversity in customer expectations can be easily 

satisfied using our proposed model since it has ability to ensure right level of 

responsiveness at the lowest possible cost in each DC and each Supplier. It shall also 

be of great value not only to readers who desire to extend their research avenues into 

this exiting area, but also to those who have already investigated this topic, but in 

isolation or with limited scope. 
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