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ABSTRACT 

The Internet of Things (IoT) is one of the most popular technologies of today. In 

recent years, the use of the IoT in daily life is being increased and it is foreseen to increase 

further over time. In addition to being able to communicate in an autonomous way without 

the need for any user, IoT devices can obtain data via the sensors on them, or they can 

process the incoming data. The IoT concept can be used in factory automation, intelligent 

traffic management systems, smart city systems, home automation systems and many 

other areas. The health sector is also one of the areas where IoT systems are used. With 

IoT systems, health data of patients can be acquired autonomously remotely. Patients 

under follow-up may choose to remain at home or in nursing homes due to unfavorable 

hospital conditions, crowds and cost reasons. As a solution to these situations, IoT systems 

can be considered to collect health data and transmit them to a health center. There are 

different network protocol stacks that can work with IoT systems. In the case of transmission 

of the health data in question, it is important that this protocol stack can carry health data in 

the most accurate and fastest way. In this study, the usability of these protocol stacks in 

health data transmission was examined and the performances of the available protocol 

stacks were analyzed. 

Keywords: Internet of Things, Wireless Sensor Networks, 6LoWPAN, Medium Access 

Control, Radio Duty Cycle, CoAP 

 

 

 

 

 



iv 
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ÖZET 

Nesnelerin interneti, günümüzde oldukça popüler olan teknolojilerden birisidir. Son 

yıllarda, nesnelerin internetinin günlük hayattaki kullanımları artmaktadır ve zaman 

içerisinde daha da artması öngörülmektedir. IoT cihazları, herhangi bir kullanıcıya gerek 

kalmaksızın, otonom şekilde iletişim yapabilmenin yanı sıra, üzerlerinde bulunan sensörler 

aracılığı ile veri elde edebilir, veya kendilerine gelen verileri işleyebilirler. Nesnelerin 

interneti konsepti, fabrika otomasyonları, akıllı trafik yönetim sistemleri, akıllı şehir 

sistemleri, ev otomasyon sistemleri ve daha birçok alanda kullanılabilmektedir. Sağlık 

sektörü de IoT sistemlerinin kullanıldığı alanlardan birisidir. IoT sistemleri ile, hastaların 

sağlık verileri otonom olarak uzaktan elde edilebilir. Takip altında olması gereken hastalar, 

elverişsiz hastane koşulları, kalabalık ve maliyet gibi olumsuz nedenler yüzünden evde veya 

bakım evlerinde kalmayı tercih edebilir. Bu durumlara çözüm olarak, sağlık verilerini 

toplayarak bir sağlık merkezine iletebilen IoT sistemleri düşünülebilir. IoT sistemleri ile 

çalışabilen farklı ağ protokol yığınları mevcuttur. Söz konusu olan sağlık verilerinin iletimi 

olduğunda, bu protokol yığınının, sağlık verilerini en doğru ve en hızlı şekilde taşıyabilmesi 

önemlidir. Bu çalışma kapsamında, bu protokol yığınlarının, sağlık verileri iletimininde 

kullanılabilirliği incelenmiştir ve kullanılabilir olan yığınların ise performansları analiz 

edilmiştir. 

Anahtar Kelimeler: Nesnelerin İnterneti, Kablosuz Algılayıcı Ağları, Ortama Erişim 

Kontrolü, Radyo Görev Döngüsü, 6LoWPAN, CoAP 
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1. INTRODUCTION 

1.1. Internet of Things 

Internet of Things (Atzori, Iera, and Morabito 2010; Bandyopadhyay and Sen 2011; 

Kortuem et al. 2010; Li, Da Xu, and Zhao 2015; Mainetti, Patrono, and Vilei 2011), with the 

simplest definition, can be expressed as the objects that can be used in daily life connected 

to the internet and exchanging data. The devices that can be used in these environments 

are low cost, constrained devices. The fact that these devices are connected directly to the 

internet will bring a cost burden. Usually, the approach used includes nodes that collect 

sensors and send data to a gateway device. This gateway device is directly connected to 

the Internet network. Thus, it acts as a bridge between Internet and IoT devices. Data 

presented to the Internet can be viewed, processed and stored. Such an IoT structure is 

presented visually in Figure 1.1.  

 

Figure 1.1 - An Example of IoT Environment 

 

1.2. Suitable IoT Environment for Collecting Health Data 

The collection of health data from individuals is one of the subjects that have been 

studied in the literature for a long time. In most studies, sensors connected to individuals 

transmit data via cables. In more recent studies, health data have been transmitted in a 

wireless environment. Different technologies were used to transfer health data wirelessly. 

The different technologies used have brought different problems to be solved. Bluetooth, 

which is one of the technologies that can be used to transmit health data in wireless 

environment, is very limited in terms of communication range. When Wi-Fi technology is 
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preferred with a different approach, high energy consumption is concerned. For these 

reasons, low power consumption technologies with high communication range have been 

investigated. Among the wireless options, the most noticeable is the 802.15.4 radio. In 

addition to its low power consumption, the 802.15.4 radio has a higher communication 

range than its alternatives.  

1.3. Health Sensors & IoT Environment 

Recent advances in electronics and integrated circuits has pioneered the 

development of wearable or implantable little and smart medical devices on human body. 

Through these devices, physiological data on human body can be gathered. Once these 

devices are equipped with wireless communication unit, they realize data gathering and 

communication features in a network environment. For example, with a pulse oximeter, 

heartbeat, oxygen saturation level in the blood and change of blood volume level on the 

skin of people can be measured. With an ECG sensor, heart functions of people can be 

tracked. With an EMG sensor, muscle functions of people can be tracked. With an EEG 

sensor, brain activities of people can be tracked. With a BP sensor, organ damage and 

cardiovascular movements of people can be tracked. With an accelerometer sensor, 

activities of people can be tracked.  Such a wireless communication network can be used, 

for example, in a dispensary (home for elderly people who can no longer care for 

themselves) to keep track of patients. When the physiological data of patients is transferred 

to a patient monitoring center (for example to a hospital) over the Internet, the health status 

of the patients can be monitored remotely.  

Some of these sensors have been developed in research laboratories or industry, 

and they can be used in Internet of Things ambient. In this work, the most efficient standard 

Internet of Things protocol configurations and algorithms transferring vital signs of 

individuals equipped with health physiological sensors to a patient monitoring center 

problem has been studied. Namely, vital signs of individuals will be transferred to a gateway 

over CoAP/UDP/IPv6/6LowPAN/802.15.4 protocol stack using RPL (Gaddour and Koubâa 

2012) routing protocol within an Internet of Things environment, and from gateway to a 

patient monitoring center. CoAP (Bormann, Castellani, and Shelby 2012; Shelby, Hartke, 

and Bormann 2014), 6LowPAN (Chen et al. 2011), RPL protocols are standardized by IETF, 

and 802.15.4 protocol is standardized by IEEE for low power and lossy IPv6 networks. 

These protocols will shape the future Internet of Things applications. In addition to 

successful application operation metric, energy, delay, reliability and throughput metrics has 

been used in performance evaluations. In brief, within the scope of this work, transferring 

vital signs of individuals to a patient monitoring center by the most efficient Internet of Things 

network protocol configurations and algorithms has been studied.    
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2. PROBLEM STATEMENT 

In the IoT environment, different network layer protocols can be used for 

communication purposes and different network topologies may occur depending on the 

circumstances. Selection of wrong network protocol stack may make the network 

environment more lossy. In order to deliver vital health data in such an environment, it is 

important to ensure a minimum latency. In a network environment where health data is 

transported, packet losses can lead to critical results. In order to avoid these critical results, 

network protocols should be designed so that the traffic is as lossless as possible. Different 

network layer protocols can be applied in order to create a network with low loss rate and 

high reliability. There may even be a network layer protocol combination that can provide a 

low loss rate in all topologies.  

In an environment where critical health data is transmitted, besides the lossless 

transmission of data, another important issue is energy consumption. Health sensors and 

the IoT device must be located on the person to collect and transmit health data. This 

situation may be uncomfortable for the person. Therefore, the device(s) to be installed 

should be minimized as much as possible. Moreover, the person is connected to these 

devices may be unable to deal with operations such as battery replacement. The reduction 

of energy consumption can provide a smaller sized battery usage. In addition, low energy 

consumption will require less battery replacement. For these reasons, when selecting a 

protocol stack, power consumption is also an important issue to be taken into consideration. 

In addition to these criteria, it is necessary to transfer the health data to be 

transferred to a server in a correct and meaningful way. Packet losses should be minimized 

as well as packet corruptions should be prevented. 

Patients whom health data to be collected, may be in the form of crowded groups. 

In such environments, the throughput that the IoT network can carry is also considered. 

Knowing how many patients can receive data from an IoT network is important for a 

designed health data collection system. Exceeding the expected number of patients can 

lead to an increase in data traffic volume and, consequently, a network traffic congestion 

that cannot be avoided. 

In summary, in the IoT environment, the protocol stack needed to transport health 

data in the fastest, most lossless, most energy efficient and most efficient way should be 

investigated. In the relevant IoT environment, it is not enough to provide these conditions in 

the best way possible. Health data may have different needs. These requirements should 

be investigated and the ideal IoT protocol stack should be determined based on these 

requirements.  
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3. LITERATURE REVIEW 

The transmission and processing of the data received from the health sensors in the 

IoT environment is a subject that is becoming increasingly widespread and is expected to 

increase further in the future. This will inevitably lead to improvements and advancements 

in the field of healthcare (Lo, Ip, and Yang 2016; Martínez-Caro et al. 2018). There are 

many studies in the literature on the transmission of health data through the Internet of 

Things. Some of these studies use the 6LoWPAN infrastructure, while others use standard 

Internet protocol infrastructure with technologies such as Wi-Fi, Bluetooth. Although studies 

are mostly proof-of-concept, there are also studies that include performance analysis or 

new network protocols.  

One of these studies (Swaroop et al. 2019), compares GSM, Bluetooth Low-Energy 

and SMS technologies while collecting health sensor data. The scope of the study is based 

on the comparison of health data collection performance over more standardized protocols. 

In the study which does not have energy consumption assessment, 6LoWPAN structure is 

not used. In another study (Irman 2018), a heart rate sensor and a button on the patient 

were used to collect health data over standard Wi-Fi network. When the patient's pulse goes 

out of range or when the patient presses the button, the health data is transmitted to the 

center. The study is more about proving that the system is working correctly. It is inevitable 

that the concept of IoT is merged with the popular technology of cloud technology. One of 

the studies combines cloud and IoT concept (Wan et al. 2018). In this study, heart rate data 

of the patients were collected and transmitted to the cloud environment. There is also 

another study on integrating IoT networks with cloud systems (Muhammad et al. 2017). The 

aim of the study is to transfer the data received from IoT devices with limited storage and 

communication to the cloud environment and to decompose the meaningful data with a 

layer. In this study, a framework that offers these features was proposed. The ability to 

monitor, process and manage patient data in a cloud environment and to be able to 

distinguish the health data obtained by classification methods (Hassanalieragh et al. 2015) 

may facilitate patient follow-up. While the cloud environment is well suited for such IoT 

applications, there may be problems such as delays due to heavy traffic. To prevent these 

problems, an intermediate layer, fog (Tran et al. 2018; Wayangankar and Prakash Jorvekar 

2018), can be created between the cloud and IoT systems. Performance analysis of the 

health data transmission of such systems were made and their usability was shown (El 

Kafhali and Salah 2018).  

A study (Ghosh, Halder, and Hossain 2016), is based on obtaining the health data 

in the real environment over the IoT network using TCP protocol. However, there are no 

constrained devices in the study. The study focuses on obtaining health data rather than 
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communicating. In the literature, the benefits, vulnerabilities and solutions of the 

transmission of health data in the IoT environment are also discussed (Nausheen and 

Begum 2018). 

A survey study (Khattak, Ruta, and Sciascio 2014), analyzes transferring health data 

with CoAP protocol within IoT scope. The study was focused on obtaining health data with 

the CoAP protocol and IEEE 802.15.4-6LoWPAN protocols without any performance 

evaluation. With the CoAP protocol, health data of patients can be monitored as web-based 

(Ugrenovic and Gardasevic 2016). In addition, there are studies suggesting the co-use of 

CoAP and HTTP protocols comparing the CoAP protocol with the HTTP protocol (Ge et al. 

2016) that requires more system sources. The comparison of CoAP with MQTT, which can 

be used in instead of CoAP, (Imane, Tomader, and Nabil 2019), is also available in the 

literature.  

There is also a comprehensive survey article (Islam et al. 2015) on the transmission 

of health data on IoT networks. The study focuses on subjets as; health sensors that can 

be used, meaningful health data, usage cases, different patient conditions, different network 

infrastructures, health data and transmission of health data in IoT environment. The study 

was not only limited to these reviews, but also examined other current technologies that 

could be used for health data, and detailed the policies of different countries on obtaining 

remote health data. In addition, problems that may be encountered are also presented. 

Another survey study (Qi et al. 2017), examines the transmission of health data in IoT 

environment from a different perspective. There are more research studies (Baker, Xiang, 

and Atkinson 2017; Dey, Ashour, and Bhatt 2017; Mainetti, Patrono, and Vilei 2011; Qi et 

al. 2015; YIN et al. 2016) in the literature. 

The security of health data is also an important issue in this area. It is possible to 

transfer secure health data using enhanced DTLS with CoAP-based authentication (Kumar 

and Gandhi 2017). The DTLS protocol is a security protocol for UDP-enabled, constrained 

devices. Using CoAP messages, a handshake is performed with a certificate-key exchange. 

Together with connection security, patient data must also be confidential. For this reason, 

there are studies (He et al. 2018) about encrypting the private data and selection of 

passwords. LiBAC (Yang, Liu, and Deng 2018) is a proposed system on the privacy and 

security of health data in the IoT network environment. 

One of the most interesting studies on the transmission of health data in the IoT 

environment is InLife (Koutsouris, Giannakopoulou, and Luca 2018). In this study, users 

with health data are expected to complete certain tasks as if they are playing a game. This 
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system, which uses scoring, encourages the user to do activities such as sports. The follow-

up of the activities is done with the health data coming through the IoT network. 

Studies in the literature show that the IoT is usable for health data transmission. In 

addition, various performance evaluations are available. However, in our knowledge, there 

is no study on the performance evaluation of the protocols on the 6LoWPAN infrastructure 

in the literature. In particular, there is no study that examines the MAC and RDC layer 

protocols, as far as we know.  
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4. MATERIALS AND METHODS 

4.1. Materials 

4.1.1. Software environment 

As it is cost effective and provides ease of use and monitoring, a software-based 

simulation environment is preferred for measurement and evaluation. Although there are 

various network simulation environments, the number of simulation environments 

supporting the Internet of things is limited. Also, not all of them support constrained IoT 

devices. Other than that, some simulators do simulate only simple communications between 

nodes. Cooja (Österlind 2006; Sehgal 2013), the most widely used simulation environment 

in this field, was chosen as the default simulation environment as it meets the needs of this 

study. 

Operating systems are available that can operate with the limited hardware of IoT 

devices and enable the use of hardware with a simple interface. These operating systems 

generally provide the same network protocol stacks. Choosing a common operating system 

that can work on IoT devices to be used in both hardware and software environments is 

important for the accuracy of the analysis. ContikiOS is an operating system that we can 

test and use in both software and hardware environments and its details are presented in 

the following sections. 

In IoT devices used in software environment, the point is that the device has the 

desired hardware (like 802.15.4 radio) support. In the Cooja simulation tool that we 

mentioned and selected, there are IoT node devices that contain the desired hardware 

features. Among them, Zolertia Z1 and WisMote devices were preferred. 

When choosing a CoAP client application to obtain data from the IoT network 

environment, a lightweight client with multi-thread support should be selected so that it does 

not affect performance analysis. The Californium CoAP client, which can provide these 

features and more, is the most prominent among many CoAP client applications. 

Considering all these issues, the IoT environment, in which we can prepare a 

prototype in the real environment, was created in simulations and the analysis were made 

based on these simulations. 

4.1.1.1. Cooja network simulator 

Cooja network simulator is a network simulator tool running on java platform, 

developed primarily for contiki operating system. By creating a simulation environment, this 

tool can simulate many IoT devices and wireless communications between them. Some 

features of Cooja simulator is listed as: 
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• Simulates multiple types of nodes with full features. 

• Has multiple modules such as node output to show serial interface of node or radio 

activity viewer to trace radio on time of a node. 

• Has plug-in support for additional features. 

• Can simulate some hardware sensors and equipment belonging to nodes.  

The details of how this tool is configured for tests and how tests are performed are 

described in the methods section. A screenshot of the Cooja simulation tool is given in 

Figure 4.1. 

 

Figure 4.1 - Cooja Network Simulator 

4.1.1.2. ContikiOS 

While selecting an IoT operating system, there were multiple choices. ContikiOS 

(Dunkels et al. 2011), OpenWSN (Watteyne et al. 2012) and RioT (Baccelli et al. 2013) are 

the most suitable operating systems for constrained IoT devices. All these operating 

systems are compatible with our current hardware environment. However, only ContikiOS 

has the full compability with Cooja, our selected simulation environment. Other than that, 

ContikiOS has more community support than other operating systems. Also, ContikiOS has 

network driver selection which allows us to change MAC, RDC layer protocols easily. 

Altough different operating systems are available for IoT networks, Contiki OS was 

choosen as it has more advantages than other IoT operating systems. Furthermore, it is 
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compatible with wide variety of IoT devices on both simulation environment and real 

hardware.  

Contiki OS is used in simulations, as well as on real hardware, by installing it on 

nodes. The use of ContikiOS on the hardware environment is described in the relevant 

section. Features of ContikiOS is listed as: 

• Full IP networking 

• Memory allocation 

• 6LoWPaN, RPL, CoAP protocol support 

• Supports Radio Duty Cycling with contikiMAC protocol 

• Allows MAC, RDC protocol changes 

• Full Cooja simulator support 

• Power efficient 

• Open source 

4.1.1.3. WisMote (Used in simulation) 

In the Cooja network tool, the number of virtualisable nodes in which the contiki 

operating system can be installed and where the desired applications can be executed is 

limited. Zolertia z1 (left on Figure 4.2), which is one of these nodes, can run the desired 

applications and protocols with contiki operating system base. Modeled on real hardware, 

this virtual node has a 16-bit processor running at 16Mhz clock speed, just like the real 

model. This node is also equipped with 8 KB ram and 92 KB flash memory. Although these 

hardware features are insufficient in some cases for the desired environment. This was the 

most powerful mote type that could be added in the default environment. However, when 

the protocols with more memory consumption are run, the hardware of this mote is 

inadequate. Especially because of insufficient RAM memory, communication problems 

were encountered due to the "number of routes to be kept" which should be reduced. For 

these reasons, mote types with more RAM memory, which could be operated in simulation 

environment, were investigated. 

In the default environment, WisMote (right on Figure 4.2), which cannot be added 

due to a bug in the 4.6.3 version of the MSP430-gcc compiler, has the desired properties 

for simulations. The error in version 4.6.3 of MSP430-gcc that makes it impossible for us to 

add this mote by default is due to incorrect entry of memory type of this mote type. As this 

issue was solved by version 4.7.0, the MSP430-gcc version to be used in the simulation 

environment was updated to 4.7.3. After this update, the node can be added to the 

simulation environment and can be run. 
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Although WisMote shares the same processor structure as the Zolertia Z1, it has 

16KB of memory as RAM memory and 256KB of memory as its flash memory. These 

memory values are in amounts that can support the protocols that we want to run in 

simulations.  

 

Figure 4.2 - Zolertia z1 (left) and WisMote (right) IoT nodes 

4.1.1.4. Californium 

Californium (Kovatsch, Lanter, and Shelby 2014) is one of many CoAP compatible 

clients and has been developed in java. Californium supports CoCoA and CoCoA+ (Betzler 

et al. 2015) application layer protocols which are improved versions of CoAP congestion 

control protocol. Broad protocol support, ease of use and detailed implementation were the 

reasons for choosing Californium. And the fact that Californium is written in java language 

brings multi-thread support together. In this way, Californium, which is already a lightweight 

application, can work as more than one client and will be able to take the results without 

any external effects. 

To establish a link between Californium CoAP client and server node inside of IoT 

environment, a border-router mote should be placed. This border-router provides a 

connection between IoT network and Internet. Border-router mote is also known as gateway 

router as shown in Figure 1.1 in section 1.1. Through border-router, californium is able to 

send and receive CoAP messages (GET, POST, PUT, etc.) to/from any server mote inside 

IoT network.  

4.1.2. Hardware Environment 

While the measurements and evaluations made in the simulation environment are 

accurate, it is necessary to test these results on the actual hardware. In addition, sample 

health data, which we can use in simulation environments, was first obtained with real 

hardware environment.  For this purpose, we selected the MySignals kit that we use to 

collect health data combined with OpenMote (Vilajosana et al. 2015) devices that supports 
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preffered operating system and IoT protocols. Detailed information and data about 

OpenMote and MySignals devices are given in next sub-chapters. 

4.1.2.1. IoT device: OpenMote 

OpenMote, which is selected as a hardware node, supports the desired operating 

system and the protocols to be used. OpenMote offers an open-hardware and open-

software environment for faster development.  

Although OpenMote nodes consist of multiple parts, it is the OpenMote-CC2538 

module that takes over the actual job. As the name suggests, this module accommodates 

the Texas Instruments CC2538 (Instruments 2015) SoC. The TI CC2538 chipset features 

a 32-bit Cortex-M3 microcontroller and one IEEE802.15.4 radio.  This microcontroller has 

32 KB RAM and 512 KB Flash Memory and clock speed is up to 32 MHz. There are also 

GPIO, ADC, I2C, SPI, UART and timer modules within the microcontroller. The radio, the 

other part of the SoC, operates at a frequency of 2.4 GHz and is fully compliant with the 

IEEE802.15.4-2006 standard. 

Another module for the OpenMote platform is the OpenBattery module, which 

provides power to the main module with the battery, as well as accelerometer, light, 

temperature and humidity sensors. 

The OpenBase module, another part of the OpenMote ecosystem, is intended to 

increase the interfaces of the main module. The OpenBase module includes USB, 10/100 

Mbps Ethernet and 10-pin JTAG connectors.  

While the OpenMote ecosystem initially had different modules, in the new revisions, 

these modules (such as OpenBattery and OpenBase) were merged into a single main 

module. All OpenMote family products are listed in Figure 4.3. 

 

Figure 4.3 - OpenMote, OpenBattery, OpenBase, OpenUSB, OpenMote Rev.A1 (left to right) 
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4.1.2.2. Health sensors and other equipments 

As hardware for health sensors, the MySignals (Figure 4.4) set has been chosen 

because of its ease of use and wide community support. It is possible to connect many 

hardware health sensors to this set, which basically uses the Arduino (Figure 4.5) 

microcontroller to read data from the sensors and process the read data.  

The data read with MySignals Health Sensor kit can be transferred to external 

environment via Arduino serial port. Although this data can be read directly from the serial 

port, it was necessary to install a bridge element for serial port communication, as the 

hardware development equipment was limited. The device selected for bridging the serial 

port communication is the Raspberry Pi microcomputer. Since this device is not used for 

any purpose other than a bridge, it is not mentioned in detail. In real hardware development, 

it is possible to connect the MySignals kit directly to the IoT device by disabling the 

Raspberry Pi and Arduino equipment. However, this requires hardware re-design. Thus, we 

used Raspberry Pi as bridge between OpenMote and Arduino devices. 

 

Figure 4.4 - MySignals HW Health Sensor Board 

 

Figure 4.5 - Arduino UNO Microcontroller Board 
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4.1.3. Network Stack 

IoT Network stack is a layered stack system like OSI model. As requirements of an 

IoT system differs from generic network models, its layer system is slightly different than 

OSI model. At the bottom of layered stack, link layer divided into 3 parts as Radio, Radio 

Duty Cycling and MAC, from bottom to top. Adaptation layer is composed from 6LoWPAN 

and IPv6 layers while IPv6 layer also responsible for routing. Transport layer exist on top of 

adaptation layer while it's beneath application layer. The layer structure and the protocols 

used in the layers are given in Figure 4.6 with the comparison of the traditional Internet 

stack model. In the image, the left-hand stack shows the LLN (Low Power and Lossy 

Network) Internet Stack, and the right-hand stack shows the standard traditional Internet 

stack model. 

 

Figure 4.6 - Network Layers of LLN (left) and traditional Internet Stack (right) 

4.1.3.1. Physical layer: 802.15.4 radio 

IEEE 802.15.4 standard defines physical layer and media access control layer 

operations for low data rate devices. The radios comply with this standard uses three 

unlicensed frequency groups; 868.0-868.6 MHz for Europe, with single channel, 902-928 

MHz for North America with up to 10 channels and 2400-2483.5 MHz for worldwide with up 

to 16 channels. Most IoT devices and simulation environments uses worldwide frequencies 
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with 16 channels. According to 16 channels, the channel layout is as in Figure 4.7. The 

802.15.4 radio can offer a bandwidth of 250 kbit/s in practically around 10 meters range in 

general. Tradeoffs are possible to achieve lower energy requirements. Therefore 20 and 40 

kbit/s transfer rates are also defined. 

 

Figure 4.7 - 802.15.4 Radio Channels 

4.1.3.2. Radio duty cycling (RDC) 

On any environment, it's generally unpractical to change batteries. Especially if 

related environment is based on healthcare systems. For this purpose, there's some Radio 

Duty Cycle protocols for 802.15.4 based devices. Even if 802.15.4 radios power 

consumptions are low, this can be decraesed more. Radio Duty Cycle approaches aims to 

turn off the radio as much as possible. Rendezvous points are set for nodes, at the 

beginning stage of network generally. Nodes turn on their radio on scheduled intervals to 

communicate and then turn their radios off after successful communication.  

For un-scheduled communications, a node turns on its radio for a short time period 

to listen radio environment. If there's any activity on radio environment, it keeps the radio 

on in case of packet receiving. This tecnique is named as Low-power listening. If a node 

has no rendezvous point with any node, it uses Low-power probing. In this tecniuqe 

Receiver nodes turn their radios on and transmits a probe into radio environment 

periodically while powering on their radios a little longer. Sender node turns on its radio and 

listens for a probe and sends its packet as soon as it catches a probe. 

Within Contiki OS there's 3 available RDC algorithms; ContikiMAC, XMAC and 

nullRDC. Since XMAC cannot be run on the cooja simulation tool, it is not included in the 

benchmarks. 

ContikiMAC 

ConitikiMAC is an RDC layer protocol that allows nodes to sleep when there is no 

communication. Thus, it is aimed that the nodes consume less energy. ConitikiMAC sleeps 
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the nodes in such a way that they wake up and listen to the line at regular intervals. If the 

node catches any packet transmission during its wake, the node remains awake. During the 

time that it is awake, it receives the packet that is in transmission, then a link layer ACK 

packet is sent to the sender. The node that wants to transmit a packet sends it continuously 

until it receives an ACK packet.  

The ACK packet is not expected for broadcasts to be sent on all nodes. Instead, the 

packet is repeatedly sent over the entire waking time interval. In this way, the awakened 

nodes will receive the broadcast packet.  

nullRDC 

nullRDC is not actually a protocol, it refers to the absence of a protocol running on 

the RDC layer on Contiki OS. If no protocol is running in the RDC layer, the radio of the 

node will remain on continuously. In this case, it is expected that the node consumes more 

energy. Although it can consume much energy, it is unlikely that the packets sent will be 

missed by the fact that the radio is always on. In this respect, the lack of protocol in the 

RDC layer may affect the performance positively. 

4.1.3.3. Medium access control (MAC) 

MAC layer provides mechanisms to use the same radio environment without 

collisions. It backs-off if there’s traffic on environment to prevent collisions. There’s 

CSMA/CA (Carrier Sense Multiple Access with Collision Avoidance) and nullMAC available 

in Contiki OS. 802.15.4 MAC header can be up to 25 bytes. 

CSMA/CA 

With this protocol, firstly, the data to be sent is perceived to be in use. The node first 

listens to the environment and examines whether another node is transmitting in the same 

environment. If any other node is transmitting at that time, the node waits a certain time. 

When the line is detected to be empty, different actions are performed depending on 

whether RTS / CTS (Request to Send / Clear to Send) is used in the environment. 

If the environment is an environment where RTS / CTS is used, first the RTS signal 

is sent and the CTS signal from the receiver is expected. If no RTS / CTS is used in the 

environment or a CTS signal is received (in an environment where RTS / CTS is used), the 

node sends the entire frame to be transmitted. 

The sender node then waits for an acknowledgement message from the receiver 

that the frame is correct and the checksum calculation is correct. In the absence of a 

confirmation message, the node assumes that the packet collides with another packet sent. 

This causes the node to enter into the binary exponential backoff state, which will wait for a 

while before re-transmit. 
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nullMAC 

nullMAC is a simple pass-through protocol, but it does not operate like a standart 

MAC protocol. nullMAC protocol just calls the appropriate RDC functions when necessary. 

nullMAC is not responsible for retransmissions or collision avoidance/detection mechanism. 

This may result in collisions to happen. The use of the nullMAC protocol can improve 

performance in networks with fewer nodes, but may adversely affect performance on more 

crowded networks. 

4.1.3.4. Network: 6LoWPAN 

In the IoT protocol stack, the network layer can be divided into two layers, 6LoWPAN 

and IPv6. 6LoWPAN is an IETF workgroup and an abbreviation of IPv6 over a low-power 

wireless personal area network. 6LoWPAN concept aims to enable the internet protocol to 

be applied to even the smallest devices. Nodes in 6LoWPAN that use IPv6 protocols require 

a border router to access outside of the local 6LoWPAN because they use header 

compression and different MAC layer protocols. This border router encapsulates 6LoWPAN 

packets into UDP packets. 

The 802.15.4 frame size is 127 octets. After 40 octets of IPv6 and 8 octets of UDP 

headers, the available space is 79 octets. If the MAC header, which can reach 25 octets, is 

removed from this field, the user will have only 54 octets left. This applies to non-security 

scenarios. When security is used, the space remaining to the user will be further reduced. 

For a system that already has limited hardware, this is an undesirable situation. On the 

6LoWPAN layer, IPv6 headers can be compressed. Also, in this layer, fragmentation 

management is also done. In the 6LoWPAN layer, the redundant fields of the IPv6 header 

are discarded and the rest is compressed. The resulting 6LoWPAN header can be reduced 

to 2, 12 or 20 octets according to the options used. 

4.1.3.5. Network: IPv6 

The number of devices connected to the Internet increases day by day and finds 

millions. As IoT devices are added to these numbers, it is inevitable that this number will 

increase exponentially. For this reason, IPv6 is the preferred internet protocol in IoT 

environments. 

IPv6 is a protocol developed by ietf, considering the lack of IPv4 in addressing. IPv4 

provides 32-bit addressing, while IPv6 can provide 128-bit addressing, so that every device 

on the internet is targeted to have a completely different address. Addressing is not the only 

advantage of IPv6 over IPv4. IPv6 can also eliminate the NAT problem with the addressing 

solution, provide tighter security measures, operate in constrained devices with compressed 

versions, provide more mobility and automatic address configuration. The IPv6 header 

structure, which differs from the IPv4 header structure, is given in Figure 4.8. 
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Figure 4.8 - IPv6 Header 

4.1.3.6. Network: RPL routing 

RPL (Routing over Low Power and Lossy Networks), defined in IETF RFC 6550, is 

a routing protocol spesificaly designed for IoT environment. RPL provides routing between 

nodes within an IoT environment. Also, routing between the IoT environment and the 

Internet environment is achieved by RPL routing protocol. RPL is based on distance vector 

and source routing. RPL works with the IPv6 protocol in the network layer.  

Distance vector works by considering inter-node connections as a vector. In such 

routing protocols, topology changes should be periodically informed to the neighbors. The 

distance indicated here means the cost of reaching the next node. In the distance vector 

protocol, the distance value is calculated together with the direction. The concept of 

direction represents the place where the routed packet should be delivered. Each node 

keeps the cost of the distance to all other nodes in the network to the vector. It is preferred 

for IoT networks because of having less computational complexity, lesser message 

overheads and distributed approach. 

There are 3 node types within scope of RPL routing; mesh, leaf, and feather. Mesh 

nodes can both route and forward traffic. Leaf nodes can only route its own traffic and not 

able to forward the traffic while feather node is only capable of forwarding traffic and not 

able to route its own traffic. 

The network created by RPL is called DODAG network structure. The network 

structure with a root node without any loops is called as DAG (Directed Acyclic Graph). If 

the structure has only one root node, with paths ends with it, this structure is named as 

DODAG (Destination-Oriented DAG).  

DODAG structure has 3 types of messages; DAO (Destination Advertisement 

Objects), DIO (DODAG Information Object) and DIS (DODAG Information Solicitations). 

DAO messages are transmitted in the upper direction along the DODAG structure. This 

process works until DAO messages are received by the root node. This informs the root 
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node about network topology. DIO messages, on the other hand, are used for discovering 

new nodes, to transmit configuration parameters and, communication. A node sends its 

own DIO message if it received a DIO message. Node adds information of rank value and 

link metric of the received DIO message, to its own DIO message. This allows node to 

choose its parent node. If any received DIO message has better rank value, that node which 

sends the DIO message is selected as parent node. DIS messages can be considered as 

neighbor discovery messages. A node which is not part of any DODAG structure sends DIS 

messages. If any neighbor is a part of DODAG structure, it sends DIO messages to 

determine its rank value.  After that, the node joins the DODAG structure and is able to send 

DIO and DAO messages. 

There are 4 values for RPL while managing the network; RPLInstanceID, DODAGID, 

DODAGVersionNumber, and Rank. RPLInstanceID is a unique identification number for 

RPL. DODAGID defines the root node while DODAGVersionNumber defines the version 

number as the name suggests. To make a network unique, RPL casts with RPLInstanceID, 

DODAGID, and DODAGVersionNumber. The Rank value refers to the distance of the node 

to the root node. The root node itself has the lowest rank value.  

Nodes with RPL can work with storing or non-storing mode. A node running in storing 

mode holds its own routing table and sends DAO messages as unicast to the parent node 

according to this table. Nodes running in non-storing mode do not have routing tables. 

Nodes running in this mode send DAO messages unicast to the root node. 

4.1.3.7. Transport: UDP 

UDP (User Datagram Protocol) is the protocol used to move message packets called 

datagrams between two nodes. UDP is a connectionless protocol. In other words, it does 

not require a prior agreement for the packets to be sent. In this way, it aims to minimize the 

effort to deliver the packets. UDP has a header that specifies the checksum information and 

source / destination ports for data integrity. Since no handshake is made for the data to be 

sent, the data is not guaranteed to be transmitted. This makes UDP unreliable. Since the 

main purpose of the UDP protocol is to transmit the data to the target as soon as possible, 

the minimum network load and the minimum protocol weight are targeted. The UDP header 

size is only 8 bytes, as in Figure 4.9. 

 

Figure 4.9 - UDP Header 
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4.1.3.8. Application: CoAP 

As in the OSI architecture, the application layer is the layer on which the application 

will perform the communication. The tools are available in this layer for programs to use the 

network. On restricted devices, applications that will run on this layer should consume 

system resources as little as possible. Although it is possible to run application layer 

protocols such as HTTP on restricted devices, it is more convenient to select alternative 

protocols because it consumes a lot of system resources. For this reason, the CoAP 

protocol is preferred in this layer, which works like HTTP, but consumes much less of 

system resources.     

CoAP Congestion Control Mechanism 

CoAP, defined in IETF RFC 7252, is an application layer protocol developed for 

constrained network nodes. Nodes using the CoAP protocol can communicate with each 

other. Coap is a simple low-overhead-sized protocol with multicast support. These features 

are very important for an IoT network. In this way, CoAP has proved to be an appropriate 

protocol for constrained devices. The CoAP protocol can run on almost any device that can 

run the UDP protocol. The CoAP protocol can also make improvements in energy 

consumption due to its low consumption of system resources. The CoAP protocol can also 

provide secure communication with DTLS.  

CoAP messages consist of 4 types; CON (confirmable), NON (non-confirmable), 

ACK (acknowledgement) and RST (reset). When a reliable communication is requested, 

the client sends a message of type CON to the server until it receives an ACK-type message 

from the server. After the sent CON message, the client must wait the ACK message for a 

while. The client who cannot receive the ACK message during the expected time resends 

the CON message. When the default settings are used, the timeout time expands 

exponentially after each CON message. If the server is unable to process the CON 

message, it sends the RST type message to the client instead of ACK.  

If the connection does not have to be reliable, the client can send NON messages 

to the server. The server receiving this type of message does not send the ACK message 

to the client. From the client's point of view, it is not known whether the NON message 

reached the server. Bu still, if the server cannot process a NON message, it can send the 

RST message to the client. Figure 4.10 shows how CON and NON message types work. 
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Figure 4.10 - CoAP CON (left) and NON (right) Message Types 

CoAP congestion control uses binary exponential back-off mechanism. If a CoAP 

message does not have a response within timeout value, it should be retransmitted. Also, 

timeout value is doubled when a retransmit occurs. Aforementioned timeout value is 

configurable by client-side application and it should be based on RTT.  

There are many different CoAP applications written in different programming 

languages. With most open source applications, the use and learning of the CoAP protocol 

has been made quite easy. 

4.2. Methods 

4.2.1. Obtaining health data 

The health data in question are not data that can be obtained in the simulation 

environment. For this reason, the equipments mentioned in the Materials section are used 

to obtain health data. These equipments, in which health data is collected, works with the 

Arduino microcontroller interface, as mentioned earlier. Although there are code samples 

to run on the arduino microcontroller for these health sensors, there is no comprehensive 

application code. For this reason, an arduino program was written to read the sensors for 

all health data to be obtained. The sensor data obtained may be of different data types. For 

this reason, all data must be converted into a single format when preparing the data. The 

health data prepared were encoded on the arduino in accordance with a specified bit 

sequence, and the data was sent from the serial interface on the arduino.  

Once the MySignals device we use to collect health data with the Arduino 

microcontroller is ready for use, this health data should be transferred to the IoT device. 

The OpenMote node, the IoT device we use, does not have an interface to communicate 

directly with the Arduino microcontroller. For this reason, a Raspberry Pi microcomputer 

was installed between the two devices, which would serve as a bridge. With a few hardware 

modifications to the OpenMote node or Arduino microcontroller, the need for a Raspberry 
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Pi microcomputer can be eliminated. Since hardware development is not the subject of this 

study, this issue has not been discussed. A sample setup prepared with several health 

sensors is as in Figure 4.11. Arduino and OpenMote devices are connected to USB ports 

on Raspberry Pi. On these USB ports, they can send and receive data via a virtual serial 

interface. 

 

Figure 4.11 - Hardware Setup Used to Collect Health Data 

With this setup, the data was tested by reading on the Raspberry Pi microcomputer 

before being sent to the IoT device. After making sure that the data is seamless, the bridge 

software has been prepared to communicate the virtual serial interfaces created on the USB 

ports of the Raspberry Pi microcomputer. This application, written using NodeJS, 

communicates the virtual serial port connected to OpenMote with the virtual serial port 

connected to Arduino. After establishing a connection between Arduino and OpenMote, the 

IoT device (OpenMote) must transmit the health data received to it via the 802.15.4 radio. 

At this stage, for the ContikiOS operating system running on OpenMote, an application was 

written in C to read the serial interface and transfer the incoming data over the network. At 

this stage, the setup is ready to collect health data and forward it to the IoT network. This 

setup can be called as a server node. 
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The node that will be in the Gateway role consists of the Raspberry Pi 

microcomputer and the OpenMote IoT node. The gateway node is responsible for collecting 

health data, processing health data, and connecting the IoT network to the Internet network. 

With the applications to be run on the Raspberry Pi microcomputer within the Gateway 

node, data can be collected from the gateway node IoT device. Through this node, any 

connection to any other node (the node that collects the health data) can be considered as 

a client. This setup can be called as a gateway node. Within this setup, we can call each 

application piece that collects data as a client. 

After a server node and a gateway node were created, the client application was run 

on the gateway and the current health data was obtained. At the same time, the health data 

is also monitored via the server node (before being transmitted to the IoT network). Two 

health data were compared and no difference was found between them. In this way, it is 

checked that the IoT network transmits health data without error. As a result of these 

processes, both the collection of health data in the real environment has been tested and 

the sample health data which can be used in simulations are obtained. 

4.2.2. Determination of vital health data traffic characteristics 

Data from health sensors are mostly numeric data in float or integer format. These 

data should be minimized as the intended purpose is to transport these data as soon as 

possible and accurately. For this reason, the maximum and minimum values that these 

health data were determined first. After each sensor data was examined in this way, a bit 

sequence was created by allocating as much space as needed for each sensor data. The 

result is a 64-byte bit sequence containing all sensor data and the free space to which 

additional data and options can be added. 

In this model, there are 11 different sensors with 21 types of data in total. As a sensor 

can deliver more than one kind of data, a difference occurs in this way. Most sensor data 

can be expressed in the form of unsigned integer data. Long unsigned integer and byte data 

types are used for data that does not fit the unsigned integer data type or is smaller. Of the 

21 data types used, 1 is a long unsigned integer, 1 is a byte, and the remaining 19 are 

unsigned integer. In this structure, the total data length is 344 bits (43 bytes). The remaining 

168 bits (21 bytes) of space may be filled with patient information, other sensor data that 

may be added, or other options. These data types and lengths are given in Table 4.1.  



23 
 

 

Table 4.1 - Health Sensors and Data 

Although 64 bytes of data packets appear to be small, they can contain many health 

data without compression. In future studies, these 64 bytes can be used more effectively 

by optimization and compression methods. 

It is also possible to send all these health data as separate messages for different 

types of health data. However, sending large, unified health data is less costly than sending 

these data separately. For this reason, it is more logical that all data are transmitted as a 

single unified structure. 

Patients to collect health data may have different conditions. In this case, the needs 

of patients in different categories may be different. What is required here is the health values 

that need to be measured. Therefore, patients were divided into three categories according 

to the sensors to be measured. The patient category, which requires continuous and 

immediate observation of health status, are critical patients. Patients whose condition is not 

critical, but need to be monitored and measured at regular intervals, can be categorized as 

non-critical. In addition to these two categories, individuals who are not in any health status 

(critical or non-critical), but are followed-up for probabilities are examined under the follow-

up category. Critical and non-critical patient categories are more suitable for hospitals, 

clinics, nursing homes, while the follow-up category is suitable for nursing homes and child 

care homes.  

In addition to categorizing patients, health sensors can also be categorized 

according to needs groups. For example, for a patient who is permanently lying down, body 

position sensor data may not be important, while the same sensor may be important for an 

elderly patient to detect events such as falls. Health data that may be important for the 
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patient should be measured more frequently. For such reasons, for each category of 

patients, the sensor data is divided into categories according to their importance (and hence 

the frequency of measurement). The sensor data is divided into 4 categories according to 

the measurement frequency requirements. Patient categories and measurement frequency 

requirements based on the information obtained from doctors are listed in Results 

sectionHata! Başvuru kaynağı bulunamadı.. 

The numerical data indicated in the table indicates how many minutes the relevant 

sensor should be updated at the latest. For example, Airflow, ECG, EMG, Spo2 sensors 

require almost continuous measurement for critical patient categories. However, the 

Galvanic Skin Response, Body Scale and Glucometer sensor data is sufficient to take one 

hour. 

4.2.3. Preparation of simulation environment 

4.2.3.1. Cooja network tool & contiki os 

As mentioned earlier, the installation and operation steps of the cooja tool, which is 

determined as a simulation tool, are indicated in this chapter. The cooja simulation tool 

works on the Ubuntu operating system in the most efficient way. For this reason, a virtual 

computer was created on the computer using VMWare, and Ubuntu 16.04 operating system 

was installed on this computer. After the required application packets were installed on this 

operating system, the contiki operating system development folder, including the cooja 

network tool, was downloaded via github. Then, additional packets that the contiki operating 

system or cooja tool might need were downloaded and installed. Detailed steps on these 

procedures can be found on the contiki operating system website and related forums. 

After the Contiki operating system and the cooja network tool are operational, the 

cooja tool is started. In this step, the virtual environment of the simulation will be displayed. 

In this step, a contiki operating system with the desired application will be installed to the 

virtual node wismote mote and the node will be added to the environment. The first node to 

be added must contain the border-router software and must be in the border-router function 

as appropriate for the software in it. In addition, the serial interface that enables the border-

router node to communicate with the out-of-simulation must be activated for this node. The 

Border-router node, as mentioned earlier, is the node that will allow our IoT network to 

access the Internet. The environment in which the simulation environment operates The IoT 

network can be thought of as the virtual computer itself (which runs the Ubuntu operating 

system) as an internet network. Since the connection runs from the serial interface, there is 

a need for a bridge connection outside the simulation environment that can connect the 

simulation environment with the computer. This tool is offered within the contiki operating 

system. A virtual interface is created with the Cooja-border-router tool to create a bridge 
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connection between the simulation environment and the actual computer. After this step, 

the network connection between the main computer and the simulation environment is 

provided. 

In the next step, the wismote motes that have the software installed to transmit the 

health data from the sensors to the network environment are added to the simulation 

network environment. The desired number of nodes and network topology are visually 

established in the simulated environment. From the options, the simulation speed should 

also be selected 100% for a realistic approach. 

Energy efficiency, which is one of our performance metrics, can be calculated 

approximately by means of the cooja tool with the sleeping times of the radios of the nodes. 

These values (Radio Duty Cycle values) can be displayed with the powertracker plugin in 

the cooja tool. Other performance metrics cannot be read directly from the cooja tool. Other 

performance metrics can be obtained by receiving data from a client reading data from 

these nodes responsible for delivering health data. This client is the californium CoAP client, 

the details are given in the next section. 

4.2.3.2. Californium coap client 

The Californium application described in the Material section has been chosen as 

the default CoAP application in the tests performed. Californium is an open source 

application that can be downloaded from github. 

Based on the hello-world application in the Californium downloaded from the Github 

packets, a benchmark application has been developed. The new application was designed 

to be based on the multi-client model. For this reason, the application is designed and 

developed as multi-thread. The multi-threaded application makes it possible to run a client 

for each server. Thus, the result values to be taken will be independent of the nodes and 

will not affect each other. 

Latency, Reliability and Throughput performance metric values are gathered by 

creating a separate Californium CoAP client thread for each server. Once the values are 

obtained, they are formatted to form a meaningful graph. 

4.2.4. Performance metrics 

Some performance metrics have been identified in order to determine the extent to 

which the collected health data is useful and to measure the performance at the stage of 

obtaining useful data. Some of these metrics have helped us to determine whether the 

resulting health data were useful. Some metrics have enabled us to perform performance 

analysis of different network stacks. These metrics and their descriptions are explained in 

order of importance. 
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4.2.4.1. Latency 

Since the study involved critical health data, it should be ensured that these data are 

delivered to the corresponding point as soon as possible. Latency metric tells us how long 

it takes delivering packets to destination. This metric represents the maximum delay time 

between two successful packets. Thus, the knowledge of how long the health data is 

renewed at the latest is obtained. In the study, patients were categorized according to the 

importance of the sensors to be measured. Similarly, health data are also divided into 

groups according to their importance in patient categories. Each health data may require 

different rates of renewal for different patient groups. For example, ECG measurements of 

a critical patient should be performed at frequent intervals. For this reason, this metric will 

be used to determine in which scenarios the health data will be used in the patient groups. 

Patient categories and measurement frequency requirements based on the information 

obtained from doctors are listed in the Results and Discussion section. 

4.2.4.2. Energy efficiency 

While transporting vital health data, it is important that the system can continue to 

work. In order to achieve this, the energy needs of the systems that collect and transmit 

health data should be provided. These energy needs should be met with batteries as a 

wireless system is considered. As well as the health data collection and transmission 

systems to be used, the battery should be as light and portable as possible. In addition, 

undesirable situations such as frequent battery replacement should be minimized. In order 

to achieve this, power consumption must be kept to a minimum. Since the scope of this 

work is on finding the best environment for transporting health data, energy efficiency has 

been selected as an important performance metric. This metric can provide us with 

information about how long a node can work. Energy efficieny metric is calculated by total 

radio-on time. The WisMote used in the simulation environment and the OpenMote nodes 

used in the real environment use the TI CC2520 and TI CC2538 radio chips respectively. 

The hourly energy consumption data obtained from the data sheets of these radio chips are 

given in Table 4.2.  

 

Table 4.2 - Power Consumption of two different 802.15.4 Radio ICs 
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4.2.4.3. Reliability 

One of the metrics required for the transmission of health data is reliability. One or 

more health data packets should not be lost during transmission. The fact that samples of 

health data can be taken more will prove the accuracy of the measurement. While this metric 

is not as critical as latency or energy efficiency, it will directly affect the transmission 

performance of health data. The measurement of this metric is calculated by the rate at 

which the packets sent are successfully transmitted to the recipient. The high transmission 

success rate will show the performance of the relevant environment / scenario. 

4.2.4.4. Throughput 

Regarding the transmission of health data, it is wrong to think that there will be data 

from a single patient on the system. It should also be possible to have simultaneous data 

from multiple patients. In this case, throughput is an important performance metric. This 

metric is calculated based on the sum of the packet sizes successfully transmitted over the 

network. Larger throughput is better because it means more data can be carried on the 

network which means support for more patient data. With the data of this metric, the total 

throughput of the network or the average throughput of the nodes can be calculated. 

4.2.5. Network topology 

While the network topology is planned within the scope of the study, the environment 

such as hospital or nursing home has been considered. It is assumed that each patient is 

in a different room and nodes that transmit health data are fixed or move in a narrow space. 

In this structure, patients are located in 6x5 separated rooms with around 40 meters 

between them. From these patients, health data were considered to be transmitted to a root 

node at the endpoint. An example of the respective topology is given in Figure 4.12. 
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Figure 4.12 - Network Topology 

In the Cooja network simulator environment, there is no transmission after 6 nodes 

in linear topology. For this reason, designed network topology is prepared in accordance 

with this limitation. 

The traffic flow in the environment is from all nodes to the root node. Request 

messages sent by the root node are assumed to be insignificant due to their small size. 

While transmitting the health data, each node transmits health data packets to the parent 

node to deliver it to the root node. Also, each node (if its a parent of another node) forwards 

the received health data packets towards the root node through their parent nodes. 
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5. RESULTS AND DISCUSSION 

5.1. Latency 

Within the scope of the study, first of all, the usability of different health sensors for 

different patient categories was examined. In order to achieve this, the health data groups 

needed by each patient category were examined considering their latency values. As 

mentioned earlier, the required health data should be obtained at a certain time interval. 

That is why the latency metric is chosen as the distinctive metric. Before comparing the 

performances of different scenarios, the patient categories and health data for which the 

relevant scenario could be used were separated.  

 

Table 5.1 - Health Sensor Data Acquisition Interval Thresold Values (in minutes) by Patient 
Categories 

Table 5.1 lists the sensor data needed by the patients divided into categories. The 

data in this table indicate that the importance of the data required by different patient groups 

also varies. In this way, it may be necessary for the patient group to have a higher refresh 

rate for a health data. In this table, with the help of the information obtained from the doctors, 

the health data is divided into different refresh rate intervals according to their importance. 

The health data specified by red color are the data that require the most frequent refresh 

rate in critical patient groups. Therefore, the refresh rate of these data is determined as one 
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minute at the latest. Secondary health data is shown in orange color and the regeneration 

interval is determined as maximum 15 minutes. Examples of this type of data include 

measurements of the patients under follow-up to detect body positions (for detecting events 

such as falls) or fever measurements of critically ill patients. The health data in the third 

category, which is indicated by yellow color, means the health data that should be renewed 

with a maximum delay of 30 minutes. The fourth and last health data category is expressed 

in green color. These data are relatively less important. Therefore, the measurement 

frequency is defined as 60 minutes. 

 

Table 5.2 - Maximum Delay Between Packets (in minutes) in different scenarios 

According to the data obtained from the simulation results, maximum delay between 

two packets values in different scenarios are given in Table 5.2. In the table, four different 

scenarios are presented with different PDR (Packet Delivery Ratio) values. Up to 30 clients 

were used in the simulations and consequently in the results table. In this table, according 

to the minimum threshold values, the appropriate data is colored according to the threshold 

values. An appropriate threshold value also applies to all threshold values greater than 

itself. For example, the data indicated in red represents 1 minute with the lowest threshold 

range. Since this threshold range is less than 15, 30 and 60 minutes with other threshold 

ranges, it is suitable for all patient groups and health data. The results can also be analyzed 
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with the graphics obtained for 4 different scenarios (different MAC and RDC layer 

protocols).  

In Figure 5.1, the result graph of the scenario using nullMAC and nullRDC is given. 

The result graph of the scenario using CSMA and nullRDC is given in Figure 5.2, while the 

result graph of the scenario using nullMAC and contikiMAC is shown in Figure 5.3. Finally, 

the result graph in which the CSMA and contikiMAC protocols are used is in Figure 5.4. 

Latency thresold indicators based on Table 5.1 are also shown graphs.  

 

Figure 5.1 - Latency (Maximum Delay Between Two Packets) graphic of nullMAC / nullRDC 
scenario 

In Figure 5.1 latency values are given for protocol stack with nullMAC protocol in 

MAC layer and nullRDC protocol in RDC layer with PDR values 100,95 and 90. In this graph, 

only thresold 1 and thresold 2 values are indicated. As there’s no result to exceed or close 

to the thresold 3 (30min) or thresold 4 (60 min), these thresold values are not indicated. 

When the results are examined, in general, the reduction of the pdr value (decrease in the 

packet delivery rate) leads to increase in latency. When we look at the graph more widely, 

it is seen that the latency values of nullMAC / nullRDC protocol combination are usually less 

than 15min (thresold 2). However, there are also cases where the latency values are less 

than 1 min (thresold 1) and above 15 min (thresold 2). If the results are analyzed on 

average, it can be said that the combination of nullMAC / nullRDC protocol can be suitable 

for situations where the latency tolerance is less than or equal to 15min. 
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Figure 5.2 - Latency (Maximum Delay Between Two Packets) graphic of CSMA / nullRDC scenario 

Scenario results for latency metric with using the CSMA and nullRDC protocols are 

given in Figure 5.2. As can be seen from the graph, when the number of nodes is 16 or less, 

the latency values are under thresold 1 (1min). Nevertheless, as a result of the increasing 

number of nodes, the latency values for all PDR values are gradually increasing. However, 

in all the results, the combination with the lowest latency values is the CSMA / nullRDC 

protocol combination.  

The latency metric results in Figure 5.3 belong to the nullMAC and contikiMAC 

protocol combination. The latnecy values in these results are higher than the results of the 

protocol combinations we have previously examined. The significant increase in the latency 

values in this combination might be due to the contikiMAC protocol, which sleeps the radio 

to conserve energy. However, the latency values usually remain below thresold 3 (30 min) 

when the PDR value is low. In almost all PDR values and number of nodes, the latency 

values are above thresold 1 (1min). According to the results, when the number of nodes 

does not exceed 18, this protocol combination is suitable for threshold 3 (30min). In cases 

where the number of nodes is greater, this configuration will be compatible only for threshold 

4 (60min).  

The last combination of protocols, CSMA / contikiMAC, is given in Figure 5.4. This 

combination gave similar latency values to nullMAC / contikiMAC combination. This 

combination is compatible with threshold 3 (30min) in network scenarios with up to 24 

nodes. This combination is not suitable for situations where the threshold value should be 

less than 1 minute (threshold 1).  
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Figure 5.3 - Latency (Maximum Delay Between Two Packets) graphic of nullMAC / contikiMAC 
scenario 

 

Figure 5.4 - Latency (Maximum Delay Between Two Packets) graphic of CSMA / 

contikiMAC scenario 

According to the data in the table and graphs, it is clear which categorized health 

data can be transmitted in different scenarios. 
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5.2. Energy Efficiency 

When collecting health data, the sensors and equipment on the patients should be 

as light and comfortable as possible. To achieve this, the batteries, which are the heaviest 

equipment, are minimized as much as possible. Naturally, small batteries will be weaker in 

capacity. The consequence of this is that the frequency of battery change increases. Just 

as heavy equipment is undesirable, frequent battery change is undesirable for patients. 

Therefore, the second metric that is important is energy efficiency. If the equipment used is 

designed to use the minimum energy, long working times can be achieved with light 

batteries. As the focus of the study was not on the health sensors themselves or on 

microcontrollers, this energy saving was tried to be provided on IoT devices.  

In IoT devices, the most energy consuming unit is the 802.15.4 radio itself. As a 

solution to this, RDC protocols have been proposed to ensure that the radio is switched off 

when not in use. Among these protocols, contikiMAC, one of the most commonly used, is 

the RDC protocol used in simulations in the study. WisMote was used in the simulation 

environment. The radio integrated circuit on this node is the TI CC2520 model. The 

OpenMote nodes we tested in the real environment have a TI CC2538 radio integrated 

circuit. The energy consumption values of both radio integrated circuits are indicated in 

Table 4.2 in the previous Section: 4.2.4.2. These values were obtained from the data sheet 

of the respective radio integrated circuit. The active energy consumption of the active RX 

and active TX modes is different. There will be an RX node across the network, 

corresponding to each TX node. Therefore, the average of these values was used for the 

times when the radio was switched on. The energy consumption data in Table 5.3 were 

obtained according to these energy consumption values and radio on / off times.   
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Table 5.3 - Average Energy Consumption per Node 

The energy consumption in the table is indicated in mAh and refers to the average 

energy consumption of the nodes. Scenarios where at least one or more of the nodes 

cannot send data for 60 minutes have been highlighted in gray and underlined. As can be 

seen from the data, the use of the RDC protocol significantly reduced energy consumption, 

as expected. Charts based on the table are given below. The result data can also be 

examined with these graphs. 

Graphics are grouped under different PDR (Packet Delivery Ratio) values. The 

values where the PDR value is 100 are given in Figure 5.5, the values where the PDR value 

is 95 are shown in Figure 5.6 and the values in which the PDR is 90 are given in Figure 5.7. 

In these graphs, it is shown how much energy is spent to send the packet with the protocol 

stack used. In addition, the graph containing the energy consumption average of the nodes 

is added in Figure 5.8. 
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Figure 5.5 - Average Energy Consumption per node for PDR=100 

According to the energy consumption data obtained when the PDR value is 100 

(Figure 5.5), the energy consumption per node increases in parallel with the increase in the 

number of nodes. The change in the RDC layer protocol, which plays an active role in 

energy consumption, is evident in these results. When contikiMAC is used in the RDC layer, 

there is a clear difference in energy consumption. With the contikiMAC, it was observed that 

the use of the CSMA protocol in the MAC layer increased energy consumption. However, 

when nullRDC is used in the RDC layer, the use of CSMA in the MAC layer can reduce 

energy consumption slightly. 

When the PDR value is 95 (Figure 5.6), it is seen that there is an increase in energy 

consumption in the protocol configuration using nullRDC protocol in RDC layer and nullMAC 

protocol in MAC layer. The reason for this energy consumption increase might be re-

transmissions for packets that cannot be transmitted as a result of a decrease in PDR value.  

The energy consumption results in the case that the PDR value is 90 (Figure 5.7) is 

close to that of the PDR value 95. The difference between Figure 5.6 and Figure 5.7 , is not 

close to the difference between Figure 5.5 and Figure 5.6.  
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Figure 5.6 - Average Energy Consumption per node for PDR=95 

 

 

Figure 5.7 - Average Energy Consumption per node for PDR=90 
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Figure 5.8 - Average Energy Consumption per node for All Network Stacks 

When the results are examined, it is clear that the factor that affects the most energy 

consumption is the RDC protocol. When the RDC protocol is not used, energy consumption 

is higher. However, the only factor affecting energy consumption is not the RDC protocol. 

The MAC layer protocol or different PDR values also cause changes in energy 

consumption. In addition, the increase in the number of nodes usually leads to an increase 

in energy consumption. 

In order to give these results a meaning closer to real life usage, it was calculated 

how long the 802.15.4 radio can be operated with a battery. Only the 802.15.4 radio is 

thought to be powered by a relatively small and lightweight CR2032 battery. The energy 

consumption of health sensors and microcontrollers is ignored. The average capacity of the 

CR2032 battery is 220 mA. According to this value, it was calculated how many days the 

802.15.4 radio could be running. The data are given in Table 5.4. 

In addition, the average battery life of each node was calculated for the respective 

scenario in the bottom line of the table. According to these averages, the graph for battery 

life for different scenarios and PDR values is given in Figure 5.9.  
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Table 5.4 - Battery Life per Node (in Days) 

 

 

Figure 5.9 - Average Battery Life of Nodes in Different Network Stacks 

When no RDC protocol is used, the radio will remain on continuously. As a result, 

no energy savings will be made, the 802.15.4 radio will always operate at full power. In all 
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scenarios where the RDC protocol is not used, the energy consumption is constant since 

the radio is not turned off at all. As can be seen from the table and graph, in these scenarios 

where RDC is not used, the energy consumption will be high and the battery life will be 

short. In these cases, it is necessary to change the battery approximately 2 times a day.  

When the scenarios using contikiMAC RDC protocol are examined, there is a 

serious improvement in the battery life. Against the scenarios where the RDC protocol is 

not used, when the contikiMAC RDC protocol is used, the frequency of battery change is 

approximately 4.5 - 8 days. Thus, the patient's health data can be observed for a long time 

with a single battery.  

5.3. Reliability 

Another metric that affects performance while collecting health data from patients is 

reliability. Network packets that contain health data from patients can be lost in this lossy 

network environment. Reliability is a metric that expresses how low these packet losses 

are. Naturally, low packet loss would mean high reliability. In addition, packet losses delay 

the acquisition of accurate data. The possibility of problems in the environment increases 

with the increase of packet losses. Low packet losses usually provide more stable data 

transfer.  

Packet success rates obtained according to our simulation results are as in Table 

5.5. As in previous tables, scenarios with one or more nodes unable to send packets for 60 

minutes are expressed in gray and underlined.  
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Table 5.5 – Average Successful Packets 

As can be seen from the table, the number of successful packets is generally high 

in network environments with a low number of clients. As the number of nodes on the 

network increases, the rate of successful packet decreases due to increased network traffic. 

Different graphics are obtained according to different PDR values in order to show the data 

in the table more clearly. Charts with PDR values of 100, 95 and 90 are given in Figure 

5.10, Figure 5.11 and Figure 5.12, respectively. Apart from these graphs, a graph 

comparing the average number of successful packets of different scenarios is given in 

Figure 5.13. 

The result graph with a PDR of 100 is given in Figure 5.10. When the graph is 

examined, the differences of different protocol configurations for reliability metrics can be 

seen. According to these results, the configuration that provides the best values is the 

configuration using the null layer in the MAC layer with the CSMA protocol and the RDC 

layer. However, when using contikiMAC in the RDC layer, selecting the CSMA protocol in 

the MAC layer makes the results worse. In cases where the number of nodes is low, the 

reliability result values are good, while the increase in the number of nodes has reduced 

the reliability values, especially when contikiMAC protocol is used in the RDC layer.    
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Figure 5.10 – Successful Packet Ratio for PDR = 100 

The results of CSMA / nullRDC and CSMA / contikiMAC protocol configurations 

are not affected much when the PDR value is reduced to 95 in Figure 5.11. However, 

there has been a significant decrease in the reliability metric values for the nullMAC / 

nullRDC and nullMAC / contikiMAC protocol configurations. In particular, the use of the 

CSMA protocol in the MAC layer can be said to help maintain reliability values against 

decreases in PDR values.  

 

Figure 5.11 – Successful Packet Ratio for PDR = 95 
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When the PDR values are slightly lowered to 90 in Figure 5.12, it can be seen that 

the reliability values of the nullMAC / nullRDC and nullMAC / contikiMAC configurations are 

even lower. When we look at the CSMA / nullMAC and CSMA / contikiMAC configurations, 

there is little difference in reliability values.  

 

Figure 5.12 – Successful Packet Ratio for PDR = 90 

 

Figure 5.13 – Average Successful Packet Ratio for Different Network Stacks 

When we look at Figure 5.13, which shows the overall average reliability values, it 

can be observed how the reliability values change according to the PDR values. It is clear 
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that the reliability values of the nullMAC / nullRDC and nullMAC / contikiMAC configurations 

are significantly reduced. In this graph, it can be seen that using the CSMA protocol in the 

MAC layer helps to keep reliability values stable. 

5.4. Throughput 

Throughput is another metric used in performance assessments in the transmission 

of health data. With the throughput metric, it can be determined what the packet 

transmission speed of a node will be. The faster a packet can send, the more time it will be 

reserved for other nodes to communicate. In addition, rapid packet transmission will allow 

for more health data to be transmitted within a given time frame.  

In this study, only successful packets are considered when calculating the 

throughput metric. Lost packets, ack and signal packets are not included in the calculation. 

Throughput can be analyzed in two different ways: by node or by network. Both analyses 

were conducted in this study.  

As in previous metrics, the conditions that are invalid for obtaining health data are 

underlined and colored in gray. 

5.4.1. Node Throughput 

When examining the throughput metric for the node, the bandwidths of the nodes 

are analyzed. These results are obtained by calculating the total of the successful packets 

each node sends within one second.  

The data of the throughput based on the results obtained are given in Table 5.6. The 

data in this table only covers packets that have been correctly transmitted. Lost packets, 

ack and signal packets are not included. In the table, each node's throughput values are 

given for different protocol stacks and different counts of nodes. Average values for different 

protocol stacks are also given in the bottom line. In order to increase the visibility of the data 

in the table, graphs based on the data in the table were obtained. Figure 5.14, Figure 5.15, 

and Figure 5.16 show the throughput values for PDR values 100,95 and 90 in different 

network stacks, respectively.  
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Table 5.6 - Node Throughput (PPS-Packet per Second) 

 

Figure 5.14 - Node Throughput for PDR = 100 

Figure 5.14 shows node throughput of different protocol configurations with PDR 

value of 100. As can be seen, the best values for all protocol configurations are obtained 

with the minimum number of nodes. By increasing the number of nodes, the throughput 
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value per node is reduced. What is noteworthy here is that the CSMA / nullRDC protocol 

configuration often achieves better throughput values. The nullMAC / nullRDC protocol 

configuration has almost the same throughput values as the CSMA / nullRDC protocol 

configuration when the number of nodes increases. Hem nullMAC / contikiMAC hem de 

CSMA / contikiMAC protokol konfigürasyonları daha düşük çıkış değerleri gösterir.  

 

Figure 5.15 - Node Throughput for PDR = 95 

Where PDR values are 95 (Figure 5.15) and 90 (Figure 5.16), they have similar 

graphs with each other. For both cases, the CSMA / nullRDC protocol configuration 

achieves the best throughput values. The other three protocol configurations (nullMAC / 

nullRDC, nullMAC / contikiMAC, CSMA / contikiMAC) have reached very similar throughput 

values. Although the CSMA / contikiMAC protocol configuration has slightly higher values 

in cases with low number of nodes, with the increase of the node, this difference is lost. For 

most cases with PDR values lower than 100, throughput value ise lower than one packet 

per second. 
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Figure 5.16 - Node Throughput for PDR = 90 

 

Figure 5.17 - Average Node Throughput for Different Network Stacks 

According to the data obtained, the average and summary of the throughput values 

are given in Figure 5.17. When the results were examined, interestingly, when a protocol 

was not used in the MAC and RDC layer, the results were effective when the PDR value 

was 100. However, as the PDR decreases, a significant decrease is observed in throughput 

values. This is because, as the PDR value decreases, the packet transmission rate 

decreases. As mentioned earlier, factors such as signal quality and interferance can affect 
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the PDR value in the real environment. It is not always possible to have a PDR of 100 in 

the real environment. Using the CSMA protocol in the MAC layer and not using the protocol 

in the RDC layer, all the PDR values had a significant stability. While no protocol was used 

in the MAC layer, the use of contikiMAC in the RDC layer also negatively affected the 

throughput performance. The use of the CSMA protocol in the MAC layer with the 

contikiMAC protocol in the RDC layer was able to improve the results slightly.  

5.4.2. NetworkThroughput 

As well as the amount of throughput of the nodes, the total throughput on the network 

is also an important metric for performance measurement. In this way, the maximum 

number of packets that can be sent on the network in unit time can be determined. In the 

light of this data, it can be deduced how successful the network may be when a different 

data packet is in question.  With the simulations, the network's throughput capacity was 

determined under different scenarios. The results obtained are shown in Table 5.7 as a 

table, and the graphs obtained from the same data are given in Figure 5.18, Figure 5.19 

and Figure 5.20, with PDR values 100, 95 and 90 respectively.  

 

Table 5.7 - Network Throughput (PPS-Packet per Second) 
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Figure 5.18 - Network Throughput for PDR = 100 

When we examine the network throughput value in cases where the PDR is 100 

(Figure 5.18), we can see that the CSMA / nullRDC protocol configuration gives higher 

values in the low number of nodes. The nullMAC / nullRDC configuration gives low 

throughput values in low node counts according to the CSMA / nullRDC configuration. The 

increase in the number of nodes allowed a slight increase in the throughput values for this 

configuration. The nullMAC / contikiMAC and CSMA / contikiMAC configurations have 

similar throughput values where the number of nodes is small. As a result of the increase 

in the number of nodes, although the throughput value of the nullMAC / contikiMAC 

configuration has increased, the same cannot be said for the CSMA / contikiMAC 

configuration. 

When we examine the situation where the PDR value is 95 (Figure 5.19), we can 

observe that the CSMA / nullRDC configuration continues with similar throughput values 

with the PDR value of 100. There is a significant decrease in the throughput values of the 

nullMAC / nullRDC configuration. The nullMAC / contikiMAC configuration also reduced the 

throughput value to less than 5 packets per second. Although the CSMA / contikiMAC 

configuration has experienced a decrease in throughput values, this is not a significant 

reduction. 

When the PDR value is reduced to 90, there is a significant decrease in the average 

of the thrpughput values. The change in throughput values with respect to the increasing 

number of nodes is similar to that in which the PDR value is 95. 
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Figure 5.19 - Network Throughput for PDR = 95 

 

Figure 5.20 - Network Throughput for PDR = 90 
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Figure 5.21 - Average Network Throughput for Different Protocol Stacks 

Figure 5.21 shows the average of all network throughput data. The change in 

network throughput values for different protocol stacks can be seen more clearly with this 

graph. It was observed that the changes in the protocols in the RDC and MAC layers 

affected the performance in these results, which are similar to the nodes throughput results. 

According to the numerical values of these results, the packet sending capacity of the 

network has emerged. 

5.5. Selecting the Valid Protocol Stacks 

Performance metrics are used to determine the protocol stacks that may be valid in 

the transmission of health data. The most important criterion for the transmission of health 

data is the transmission of the obtained health data to the health center without losing its 

validity. In this context, the most important metric will be the latency and reliability metric. 

As stated in the previous sections, the importance of health data is different according to 

different patient groups. In this case, the stack of protocols to be selected may also vary 

according to the patient and the type of health data. In addition, energy efficiency, which is 

another metric, can be effective in the selection of protocols. As an example, there is no 

mobility for a patient in continuous sleep. For a patient in this condition, energy efficiency 

can be ignored. In return, better results can be achieved in the latency metric and other 

metrics. Based on such scenarios, ideal protocol stacks can be determined by patient 

groups and sensor types. When making these selections, metrics should be considered in 

order of importance. In the following section, these ideal protocol stacks were examined.  
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5.6. Determination of Optimal IoT Stack to Transfer Health Data 

When all the results are examined, different protocol stacks can be suggested 

according to patient groups and sensor types. There is no best stack of protocols available 

for all patients. Instead, we can offer the best protocol stacks according to patient groups 

and sensor types. It should also be noted that not all sensors mentioned in this study will 

be present on the patient at the same time. Depending on the type of sensor to be found on 

the patient, such adjustments can be made easily. 

The number of nodes (patients) in the environment is another important factor 

affecting performance. As with other factors affecting performance, the number of patients 

also affects the protocol stack to be selected. In scenarios with a large number of patients, 

it may not be possible to obtain data from certain sensor types at valid times. Considering 

such cases, tables prepared according to patient groups and sensor types, indicating the 

most appropriate protocol stack, are given in Table 5.8 and Table 5.9. In Table 5.8, cases 

where the number of patients were up to 15 were taken, while in Table 5.9, the number of 

patients was between 15-30.  

 

Table 5.8 - Ideal Protocol Stack for Different Groups (for up to 15 nodes) 
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Table 5.9 - Ideal Protocol Stack for Different Groups (for 15-30 nodes) 

The collision avoidance feature of the CSMA protocol also prevents delays due to 

collisions. This makes it possible to obtain the best latency values when using the CSMA 

protocol. As already mentioned, energy efficieny is an important issue in IoT devices. 

Therefore, contikiMAC is preferred as RDC protocol whenever possible. For these reasons, 

priority has been given to the selection of the CSMA protocol in the MAC layer, and the 

selection of the contikiMAC protocol in the RDC layer. 

As can be seen in the table, in a network with a large number of nodes, there may 

be no suitable stack of protocols for receiving data from specific sensor types. In these 

scenarios, it would not be reasonable to obtain health data over the IoT network. The 

scenarios found in this case are marked with N/A in the table. 
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6. CONCLUSION 

In the study on the transmission of health data in an IoT network using 6LoWPAN 

infrastructure, analysis of different protocol stacks were performed. These performance 

evaluations were the outcome of the stages performed respectively.  Firstly, similar studies 

in the literature have been researched and the path to be followed in the study has been 

established. Then, the real hardware environment in which sample health data can be 

obtained is created. The health data samples obtained in this environment were stored for 

use in performance evaluations. This step is also a simple proof that health data can be 

transmitted over the IoT network. In this section, the stages of obtaining health data are 

detailed. By examining these stages, information can be obtained about how to set up the 

aforementioned system or similar system. After this stage which was a milesone for the 

study, the stages involving the performance tests were started. 

The next step was to prepare the simulation environment where performance 

evaluations would be made. In the simulation environment, which was created in close 

proximity to the actual scenarios, the previously obtained health data was used. Simulation 

environments that can provide this were investigated and the most appropriate one was 

chosen. The successful transmission of health data in the simulation environment enabled 

us to proceed to the next step. 

The next step was to examine the change in performance using different protocols. 

Different protocol stacks have been tried in order to transmit these transmitted health data 

more effectively and rapidly. Analysis were made using different node (patient) numbers 

with these protocol changes. According to the analysis, it was investigated which protocol 

stacks are useful in the transmission of health data. These evaluations were made 

according to metrics that could make the patients' health data meaningful. Some of the 

metrics selected at this stage were critical in the transmission of health data, while other 

metrics were related to how quickly and accurately the health data were sent.  

In addition, performance comparisons have been made between protocol stacks 

available for transmission of health data. According to these performance evaluations, the 

most appropriate protocol stacks were determined according to patient groups and sensor 

types to be used. It has been shown that the health data of the patients can be taken without 

any problem when using these protocol stacks.  

As performance analysis of different protocols are given in detail in the study, when 

a different health data application (sensor) is used, the possible situations can be predicted 

based on this data. For example, for a different group of patients who require different health 
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data than the one in this study, the appropriate protocol stack can be proposed by examining 

the results of the analysis.  

In future studies, it is planned to evaluate different protocols in the MAC and RDC 

layers. In addition, for MAC, RDC or other layer(s), it is planned to develop a protocol which 

may be more efficient in transferring health data.  
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