

REPUBLIC OF TURKEY

ADANA ALPARSLAN TÜRKEŞ SCIENCE AND

TECHNOLOGY UNIVERSITY

GRADUATE SCHOOL OF NATURAL AND APPLIED

SCIENCES

DEPARTMENT OF NANOTECHNOLOGY AND ENGINEERING

SCIENCES

TRANSMITTING VITAL HEALTH DATA WITH STANDART

INTERNET OF THINGS PROTOCOLS

SEDAT BİLGİLİ

MASTER OF SCIENCE

ADANA 2019

REPUBLIC OF TURKEY

ADANA ALPARSLAN TÜRKEŞ SCIENCE AND TECHNOLOGY UNIVERSITY

GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES

DEPARTMENT OF NANOTECHNOLOGY AND ENGINEERING SCIENCES

TRANSMITTING VITAL HEALTH DATA WITH STANDART INTERNET OF

THINGS PROTOCOLS

SEDAT BİLGİLİ

MSc THESIS

ADANA 2019

i

ii

iii

TRANSMITTING VITAL HEALTH DATA WITH STANDART INTERNET OF

THINGS PROTOCOLS

BİLGİLİ Sedat

Master of Science, Nanotechnology and Engineering Sciences

May 2019, 58 Pages

ABSTRACT

The Internet of Things (IoT) is one of the most popular technologies of today. In

recent years, the use of the IoT in daily life is being increased and it is foreseen to increase

further over time. In addition to being able to communicate in an autonomous way without

the need for any user, IoT devices can obtain data via the sensors on them, or they can

process the incoming data. The IoT concept can be used in factory automation, intelligent

traffic management systems, smart city systems, home automation systems and many

other areas. The health sector is also one of the areas where IoT systems are used. With

IoT systems, health data of patients can be acquired autonomously remotely. Patients

under follow-up may choose to remain at home or in nursing homes due to unfavorable

hospital conditions, crowds and cost reasons. As a solution to these situations, IoT systems

can be considered to collect health data and transmit them to a health center. There are

different network protocol stacks that can work with IoT systems. In the case of transmission

of the health data in question, it is important that this protocol stack can carry health data in

the most accurate and fastest way. In this study, the usability of these protocol stacks in

health data transmission was examined and the performances of the available protocol

stacks were analyzed.

Keywords: Internet of Things, Wireless Sensor Networks, 6LoWPAN, Medium Access

Control, Radio Duty Cycle, CoAP

iv

STANDART NESNELERİN İNTERNETİ PROTOKOLLERİ İLE HAYATİ SAĞLIK

VERİLERİNİN TAŞINMASI

BİLGİLİ Sedat

Yüksek Lisans, Nanoteknoloji ve Mühendislik Bilimleri

Mayıs 2019, 58 Sayfa

ÖZET

Nesnelerin interneti, günümüzde oldukça popüler olan teknolojilerden birisidir. Son

yıllarda, nesnelerin internetinin günlük hayattaki kullanımları artmaktadır ve zaman

içerisinde daha da artması öngörülmektedir. IoT cihazları, herhangi bir kullanıcıya gerek

kalmaksızın, otonom şekilde iletişim yapabilmenin yanı sıra, üzerlerinde bulunan sensörler

aracılığı ile veri elde edebilir, veya kendilerine gelen verileri işleyebilirler. Nesnelerin

interneti konsepti, fabrika otomasyonları, akıllı trafik yönetim sistemleri, akıllı şehir

sistemleri, ev otomasyon sistemleri ve daha birçok alanda kullanılabilmektedir. Sağlık

sektörü de IoT sistemlerinin kullanıldığı alanlardan birisidir. IoT sistemleri ile, hastaların

sağlık verileri otonom olarak uzaktan elde edilebilir. Takip altında olması gereken hastalar,

elverişsiz hastane koşulları, kalabalık ve maliyet gibi olumsuz nedenler yüzünden evde veya

bakım evlerinde kalmayı tercih edebilir. Bu durumlara çözüm olarak, sağlık verilerini

toplayarak bir sağlık merkezine iletebilen IoT sistemleri düşünülebilir. IoT sistemleri ile

çalışabilen farklı ağ protokol yığınları mevcuttur. Söz konusu olan sağlık verilerinin iletimi

olduğunda, bu protokol yığınının, sağlık verilerini en doğru ve en hızlı şekilde taşıyabilmesi

önemlidir. Bu çalışma kapsamında, bu protokol yığınlarının, sağlık verileri iletimininde

kullanılabilirliği incelenmiştir ve kullanılabilir olan yığınların ise performansları analiz

edilmiştir.

Anahtar Kelimeler: Nesnelerin İnterneti, Kablosuz Algılayıcı Ağları, Ortama Erişim

Kontrolü, Radyo Görev Döngüsü, 6LoWPAN, CoAP

v

ACKNOWLEDGEMENTS

First of all, I would like to thank Asst. Prof. Dr. Alper K. DEMİR for his supports and

efforts throughout my work. Without his support and guidance, I could never complete this

study.

I would like to thank each and every member of the evaluation committee for their

guidance.

I would like to thank my wife, Ebru BİLGİLİ, who was with me during the study with

her support and patience. She always kept my motivation alive by being with me all the

time.

I would like to thank my family, my father Sami BİLGİLİ, my mother L. Vahide BİLGİLİ

and my sister Seda BİLGİLİ for their support.

I would also like to thank my friends Hüseyin Emre ÖZGÜR and Halit DEMİR for

their support in this study.

This thesis was financially supported by SIREN project funded by the Scientific and

Technological Research Council of Turkey (TUBITAK) under Grant No 116E025.

vi

TABLE OF CONTENTS

ABSTRACT ... iii

ÖZET .. iv

ACKNOWLEDGEMENTS .. v

TABLE OF CONTENTS ... vi

LIST OF FIGURES .. viii

LIST OF TABLES .. x

NOMENCLATURE ... xi

1. INTRODUCTION.. 1

1.1. Internet of Things ... 1

1.2. Suitable IoT Environment for Collecting Health Data 1

1.3. Health Sensors & IoT Environment ... 2

2. PROBLEM STATEMENT .. 3

3. LITERATURE REVIEW ... 4

4. MATERIALS AND METHODS ... 7

4.1. Materials .. 7

4.1.1. Software environment .. 7

4.1.1.1. Cooja network simulator ... 7

4.1.1.2. ContikiOS ... 8

4.1.1.3. WisMote (Used in simulation) ... 9

4.1.1.4. Californium ... 10

4.1.2. Hardware Environment .. 10

4.1.2.1. IoT device: OpenMote .. 11

4.1.2.2. Health sensors and other equipments 12

4.1.3. Network Stack ... 13

4.1.3.1. Physical layer: 802.15.4 radio ... 13

4.1.3.2. Radio duty cycling (RDC) .. 14

4.1.3.3. Medium access control (MAC) .. 15

vii

4.1.3.4. Network: 6LoWPAN ... 16

4.1.3.5. Network: IPv6 ... 16

4.1.3.6. Network: RPL routing .. 17

4.1.3.7. Transport: UDP .. 18

4.1.3.8. Application: CoAP.. 19

4.2. Methods... 20

4.2.1. Obtaining health data ... 20

4.2.2. Determination of vital health data traffic characteristics 22

4.2.3. Preparation of simulation environment .. 24

4.2.3.1. Cooja network tool & contiki os .. 24

4.2.3.2. Californium coap client ... 25

4.2.4. Performance metrics .. 25

4.2.4.1. Latency ... 26

4.2.4.2. Energy efficiency ... 26

4.2.4.3. Reliability .. 27

4.2.4.4. Throughput ... 27

4.2.5. Network topology ... 27

5. RESULTS AND DISCUSSION ... 29

5.1. Latency .. 29

5.2. Energy Efficiency ... 34

5.3. Reliability .. 40

5.4. Throughput ... 44

5.4.1. Node Throughput ... 44

5.4.2. NetworkThroughput ... 48

5.5. Selecting the Valid Protocol Stacks .. 51

5.6. Determination of Optimal IoT Stack to Transfer Health Data 52

6. CONCLUSION ... 54

7. REFERENCES .. 56

viii

LIST OF FIGURES

Figure 1.1 - An Example of IoT Environment ... 1

Figure 3.1 - Cooja Network Simulator .. 8

Figure 3.2 - Zolertia z1 (left) and WisMote (right) IoT nodes .. 10

Figure 3.3 - OpenMote, OpenBattery, OpenBase, OpenUSB, OpenMote Rev.A1 (left to

right) .. 11

Figure 3.4 - MySignals HW Health Sensor Board .. 12

Figure 3.5 - Arduino UNO Microcontroller Board ... 12

Figure 3.6 - Network Layers of LLN (left) and traditional Internet Stack (right) 13

Figure 3.7 - 802.15.4 Radio Channels ... 14

Figure 3.8 - IPv6 Header ... 17

Figure 3.9 - UDP Header ... 18

Figure 3.10 - CoAP CON (left) and NON (right) Message Types 20

Figure 3.11 - Hardware Setup Used to Collect Health Data ... 21

Figure 3.12 - Network Topology .. 28

Figure 4.1 - Latency (Maximum Delay Between Two Packets) graphic of nullMAC /

nullRDC scenario ... 31

Figure 4.2 - Latency (Maximum Delay Between Two Packets) graphic of CSMA / nullRDC

scenario ... 32

Figure 4.3 - Latency (Maximum Delay Between Two Packets) graphic of nullMAC /

contikiMAC scenario .. 33

Figure 4.4 - Latency (Maximum Delay Between Two Packets) graphic of CSMA /

contikiMAC scenario .. 33

Figure 4.5 - Average Energy Consumption per node for PDR=100 36

Figure 4.6 - Average Energy Consumption per node for PDR=95 37

Figure 4.7 - Average Energy Consumption per node for PDR=90 37

Figure 4.8 - Average Energy Consumption per node for All Network Stacks 38

Figure 4.9 - Average Battery Life of Nodes in Different Network Stacks 39

Figure 4.10 – Successful Packet Ratio for PDR = 100... 42

Figure 4.11 – Successful Packet Ratio for PDR = 95 .. 42

Figure 4.12 – Successful Packet Ratio for PDR = 90 .. 43

Figure 4.13 – Average Successful Packet Ratio for Different Network Stacks 43

Figure 4.14 - Node Throughput for PDR = 100 .. 45

Figure 4.15 - Node Throughput for PDR = 95 .. 46

Figure 4.16 - Node Throughput for PDR = 90 .. 47

ix

Figure 4.17 - Average Node Throughput for Different Network Stacks 47

Figure 4.18 - Network Throughput for PDR = 100 ... 49

Figure 4.19 - Network Throughput for PDR = 95 ... 50

Figure 4.20 - Network Throughput for PDR = 90 ... 50

Figure 4.21 - Average Network Throughput for Different Protocol Stacks 51

x

LIST OF TABLES

Table 3.1 - Health Sensors and Data .. 23

Table 3.2 - Power Consumption of two different 802.15.4 Radio ICs 26

Table 4.1 - Health Sensor Data Acquisition Interval Thresold Values by Patient

Categories ... 29

Table 4.2 - Maximum Delay Between Packets (in minutes) in different scenarios 30

Table 4.3 - Average Energy Consumption per Node ... 35

Table 4.4 - Battery Life per Node (in Days) ... 39

Table 4.5 – Average Successful Packets .. 41

Table 4.6 - Node Throughput (Packet per Second) ... 45

Table 4.7 - Network Throughput (Packet per Second) ... 48

Table 4.8 - Ideal Protocol Stack for Different Groups (for up to 15 nodes) 52

Table 4.9 - Ideal Protocol Stack for Different Groups (for 15-30 nodes)........................... 53

xi

NOMENCLATURE

6LoWPAN IPv6 over Low-Power Wireless Personal Area Network(s)

ACK Acknowledgement

BP Blood Pressure

CSMA/CA Carrier Sense Multiple Access / Collision Avoidance

CTS Clear to Send

CoAP Constrained Application Protocol

CoCoA CoAP Simple Congestion Control-Advanced

DAG Directed Acylic Graph

DAO Destination Advertisement Objects

DIO DODAG Information Object

DIS DODAG Information Solicitations

DODAG Destination-Oriented Directed Acylic Graph

DTLS Datagram Transport Layer Security

ECG Electrocardiogram

EEG Electroencephalogram

EMG Electromyogram

HW Hardware

IEEE Institute of Electrical and Electronics Engineers

IETF Internet Engineering Task Force

IP Internet Protocol

IPv4 Internet Protocol v4

IPv6 Internet Protocol v6

IoT Internet of Things

JTAG Joint Test Action Group

KB Kilo Bytes

LLN Low Power and Lossy Network

mA Milliampere

MAC Medium Access Control

NAT Network Address Translation

OSI Open Systems Interconnection

PDR Packet Delivery Ratio

PPS Packet Per Second

RAM Random Access Memory

RDC Radio Duty Cycle

RPL Routing Protocol for Low Power and Lossy Networks

xii

RTS Request to Send

RTT Round Trip Time

RX Receive / Receiver

SPo2 Oxygen Saturation

TCP Transmission Control Protocol

TX Transmit / Transmitter

UDP User Datagram Protocol

WSN Wireless Sensor Network(s)

1

1. INTRODUCTION

1.1. Internet of Things

Internet of Things (Atzori, Iera, and Morabito 2010; Bandyopadhyay and Sen 2011;

Kortuem et al. 2010; Li, Da Xu, and Zhao 2015; Mainetti, Patrono, and Vilei 2011), with the

simplest definition, can be expressed as the objects that can be used in daily life connected

to the internet and exchanging data. The devices that can be used in these environments

are low cost, constrained devices. The fact that these devices are connected directly to the

internet will bring a cost burden. Usually, the approach used includes nodes that collect

sensors and send data to a gateway device. This gateway device is directly connected to

the Internet network. Thus, it acts as a bridge between Internet and IoT devices. Data

presented to the Internet can be viewed, processed and stored. Such an IoT structure is

presented visually in Figure 1.1.

Figure 1.1 - An Example of IoT Environment

1.2. Suitable IoT Environment for Collecting Health Data

The collection of health data from individuals is one of the subjects that have been

studied in the literature for a long time. In most studies, sensors connected to individuals

transmit data via cables. In more recent studies, health data have been transmitted in a

wireless environment. Different technologies were used to transfer health data wirelessly.

The different technologies used have brought different problems to be solved. Bluetooth,

which is one of the technologies that can be used to transmit health data in wireless

environment, is very limited in terms of communication range. When Wi-Fi technology is

2

preferred with a different approach, high energy consumption is concerned. For these

reasons, low power consumption technologies with high communication range have been

investigated. Among the wireless options, the most noticeable is the 802.15.4 radio. In

addition to its low power consumption, the 802.15.4 radio has a higher communication

range than its alternatives.

1.3. Health Sensors & IoT Environment

Recent advances in electronics and integrated circuits has pioneered the

development of wearable or implantable little and smart medical devices on human body.

Through these devices, physiological data on human body can be gathered. Once these

devices are equipped with wireless communication unit, they realize data gathering and

communication features in a network environment. For example, with a pulse oximeter,

heartbeat, oxygen saturation level in the blood and change of blood volume level on the

skin of people can be measured. With an ECG sensor, heart functions of people can be

tracked. With an EMG sensor, muscle functions of people can be tracked. With an EEG

sensor, brain activities of people can be tracked. With a BP sensor, organ damage and

cardiovascular movements of people can be tracked. With an accelerometer sensor,

activities of people can be tracked. Such a wireless communication network can be used,

for example, in a dispensary (home for elderly people who can no longer care for

themselves) to keep track of patients. When the physiological data of patients is transferred

to a patient monitoring center (for example to a hospital) over the Internet, the health status

of the patients can be monitored remotely.

Some of these sensors have been developed in research laboratories or industry,

and they can be used in Internet of Things ambient. In this work, the most efficient standard

Internet of Things protocol configurations and algorithms transferring vital signs of

individuals equipped with health physiological sensors to a patient monitoring center

problem has been studied. Namely, vital signs of individuals will be transferred to a gateway

over CoAP/UDP/IPv6/6LowPAN/802.15.4 protocol stack using RPL (Gaddour and Koubâa

2012) routing protocol within an Internet of Things environment, and from gateway to a

patient monitoring center. CoAP (Bormann, Castellani, and Shelby 2012; Shelby, Hartke,

and Bormann 2014), 6LowPAN (Chen et al. 2011), RPL protocols are standardized by IETF,

and 802.15.4 protocol is standardized by IEEE for low power and lossy IPv6 networks.

These protocols will shape the future Internet of Things applications. In addition to

successful application operation metric, energy, delay, reliability and throughput metrics has

been used in performance evaluations. In brief, within the scope of this work, transferring

vital signs of individuals to a patient monitoring center by the most efficient Internet of Things

network protocol configurations and algorithms has been studied.

3

2. PROBLEM STATEMENT

In the IoT environment, different network layer protocols can be used for

communication purposes and different network topologies may occur depending on the

circumstances. Selection of wrong network protocol stack may make the network

environment more lossy. In order to deliver vital health data in such an environment, it is

important to ensure a minimum latency. In a network environment where health data is

transported, packet losses can lead to critical results. In order to avoid these critical results,

network protocols should be designed so that the traffic is as lossless as possible. Different

network layer protocols can be applied in order to create a network with low loss rate and

high reliability. There may even be a network layer protocol combination that can provide a

low loss rate in all topologies.

In an environment where critical health data is transmitted, besides the lossless

transmission of data, another important issue is energy consumption. Health sensors and

the IoT device must be located on the person to collect and transmit health data. This

situation may be uncomfortable for the person. Therefore, the device(s) to be installed

should be minimized as much as possible. Moreover, the person is connected to these

devices may be unable to deal with operations such as battery replacement. The reduction

of energy consumption can provide a smaller sized battery usage. In addition, low energy

consumption will require less battery replacement. For these reasons, when selecting a

protocol stack, power consumption is also an important issue to be taken into consideration.

In addition to these criteria, it is necessary to transfer the health data to be

transferred to a server in a correct and meaningful way. Packet losses should be minimized

as well as packet corruptions should be prevented.

Patients whom health data to be collected, may be in the form of crowded groups.

In such environments, the throughput that the IoT network can carry is also considered.

Knowing how many patients can receive data from an IoT network is important for a

designed health data collection system. Exceeding the expected number of patients can

lead to an increase in data traffic volume and, consequently, a network traffic congestion

that cannot be avoided.

In summary, in the IoT environment, the protocol stack needed to transport health

data in the fastest, most lossless, most energy efficient and most efficient way should be

investigated. In the relevant IoT environment, it is not enough to provide these conditions in

the best way possible. Health data may have different needs. These requirements should

be investigated and the ideal IoT protocol stack should be determined based on these

requirements.

4

3. LITERATURE REVIEW

The transmission and processing of the data received from the health sensors in the

IoT environment is a subject that is becoming increasingly widespread and is expected to

increase further in the future. This will inevitably lead to improvements and advancements

in the field of healthcare (Lo, Ip, and Yang 2016; Martínez-Caro et al. 2018). There are

many studies in the literature on the transmission of health data through the Internet of

Things. Some of these studies use the 6LoWPAN infrastructure, while others use standard

Internet protocol infrastructure with technologies such as Wi-Fi, Bluetooth. Although studies

are mostly proof-of-concept, there are also studies that include performance analysis or

new network protocols.

One of these studies (Swaroop et al. 2019), compares GSM, Bluetooth Low-Energy

and SMS technologies while collecting health sensor data. The scope of the study is based

on the comparison of health data collection performance over more standardized protocols.

In the study which does not have energy consumption assessment, 6LoWPAN structure is

not used. In another study (Irman 2018), a heart rate sensor and a button on the patient

were used to collect health data over standard Wi-Fi network. When the patient's pulse goes

out of range or when the patient presses the button, the health data is transmitted to the

center. The study is more about proving that the system is working correctly. It is inevitable

that the concept of IoT is merged with the popular technology of cloud technology. One of

the studies combines cloud and IoT concept (Wan et al. 2018). In this study, heart rate data

of the patients were collected and transmitted to the cloud environment. There is also

another study on integrating IoT networks with cloud systems (Muhammad et al. 2017). The

aim of the study is to transfer the data received from IoT devices with limited storage and

communication to the cloud environment and to decompose the meaningful data with a

layer. In this study, a framework that offers these features was proposed. The ability to

monitor, process and manage patient data in a cloud environment and to be able to

distinguish the health data obtained by classification methods (Hassanalieragh et al. 2015)

may facilitate patient follow-up. While the cloud environment is well suited for such IoT

applications, there may be problems such as delays due to heavy traffic. To prevent these

problems, an intermediate layer, fog (Tran et al. 2018; Wayangankar and Prakash Jorvekar

2018), can be created between the cloud and IoT systems. Performance analysis of the

health data transmission of such systems were made and their usability was shown (El

Kafhali and Salah 2018).

A study (Ghosh, Halder, and Hossain 2016), is based on obtaining the health data

in the real environment over the IoT network using TCP protocol. However, there are no

constrained devices in the study. The study focuses on obtaining health data rather than

5

communicating. In the literature, the benefits, vulnerabilities and solutions of the

transmission of health data in the IoT environment are also discussed (Nausheen and

Begum 2018).

A survey study (Khattak, Ruta, and Sciascio 2014), analyzes transferring health data

with CoAP protocol within IoT scope. The study was focused on obtaining health data with

the CoAP protocol and IEEE 802.15.4-6LoWPAN protocols without any performance

evaluation. With the CoAP protocol, health data of patients can be monitored as web-based

(Ugrenovic and Gardasevic 2016). In addition, there are studies suggesting the co-use of

CoAP and HTTP protocols comparing the CoAP protocol with the HTTP protocol (Ge et al.

2016) that requires more system sources. The comparison of CoAP with MQTT, which can

be used in instead of CoAP, (Imane, Tomader, and Nabil 2019), is also available in the

literature.

There is also a comprehensive survey article (Islam et al. 2015) on the transmission

of health data on IoT networks. The study focuses on subjets as; health sensors that can

be used, meaningful health data, usage cases, different patient conditions, different network

infrastructures, health data and transmission of health data in IoT environment. The study

was not only limited to these reviews, but also examined other current technologies that

could be used for health data, and detailed the policies of different countries on obtaining

remote health data. In addition, problems that may be encountered are also presented.

Another survey study (Qi et al. 2017), examines the transmission of health data in IoT

environment from a different perspective. There are more research studies (Baker, Xiang,

and Atkinson 2017; Dey, Ashour, and Bhatt 2017; Mainetti, Patrono, and Vilei 2011; Qi et

al. 2015; YIN et al. 2016) in the literature.

The security of health data is also an important issue in this area. It is possible to

transfer secure health data using enhanced DTLS with CoAP-based authentication (Kumar

and Gandhi 2017). The DTLS protocol is a security protocol for UDP-enabled, constrained

devices. Using CoAP messages, a handshake is performed with a certificate-key exchange.

Together with connection security, patient data must also be confidential. For this reason,

there are studies (He et al. 2018) about encrypting the private data and selection of

passwords. LiBAC (Yang, Liu, and Deng 2018) is a proposed system on the privacy and

security of health data in the IoT network environment.

One of the most interesting studies on the transmission of health data in the IoT

environment is InLife (Koutsouris, Giannakopoulou, and Luca 2018). In this study, users

with health data are expected to complete certain tasks as if they are playing a game. This

6

system, which uses scoring, encourages the user to do activities such as sports. The follow-

up of the activities is done with the health data coming through the IoT network.

Studies in the literature show that the IoT is usable for health data transmission. In

addition, various performance evaluations are available. However, in our knowledge, there

is no study on the performance evaluation of the protocols on the 6LoWPAN infrastructure

in the literature. In particular, there is no study that examines the MAC and RDC layer

protocols, as far as we know.

7

4. MATERIALS AND METHODS

4.1. Materials

4.1.1. Software environment

As it is cost effective and provides ease of use and monitoring, a software-based

simulation environment is preferred for measurement and evaluation. Although there are

various network simulation environments, the number of simulation environments

supporting the Internet of things is limited. Also, not all of them support constrained IoT

devices. Other than that, some simulators do simulate only simple communications between

nodes. Cooja (Österlind 2006; Sehgal 2013), the most widely used simulation environment

in this field, was chosen as the default simulation environment as it meets the needs of this

study.

Operating systems are available that can operate with the limited hardware of IoT

devices and enable the use of hardware with a simple interface. These operating systems

generally provide the same network protocol stacks. Choosing a common operating system

that can work on IoT devices to be used in both hardware and software environments is

important for the accuracy of the analysis. ContikiOS is an operating system that we can

test and use in both software and hardware environments and its details are presented in

the following sections.

In IoT devices used in software environment, the point is that the device has the

desired hardware (like 802.15.4 radio) support. In the Cooja simulation tool that we

mentioned and selected, there are IoT node devices that contain the desired hardware

features. Among them, Zolertia Z1 and WisMote devices were preferred.

When choosing a CoAP client application to obtain data from the IoT network

environment, a lightweight client with multi-thread support should be selected so that it does

not affect performance analysis. The Californium CoAP client, which can provide these

features and more, is the most prominent among many CoAP client applications.

Considering all these issues, the IoT environment, in which we can prepare a

prototype in the real environment, was created in simulations and the analysis were made

based on these simulations.

4.1.1.1. Cooja network simulator

Cooja network simulator is a network simulator tool running on java platform,

developed primarily for contiki operating system. By creating a simulation environment, this

tool can simulate many IoT devices and wireless communications between them. Some

features of Cooja simulator is listed as:

8

• Simulates multiple types of nodes with full features.

• Has multiple modules such as node output to show serial interface of node or radio

activity viewer to trace radio on time of a node.

• Has plug-in support for additional features.

• Can simulate some hardware sensors and equipment belonging to nodes.

The details of how this tool is configured for tests and how tests are performed are

described in the methods section. A screenshot of the Cooja simulation tool is given in

Figure 4.1.

Figure 4.1 - Cooja Network Simulator

4.1.1.2. ContikiOS

While selecting an IoT operating system, there were multiple choices. ContikiOS

(Dunkels et al. 2011), OpenWSN (Watteyne et al. 2012) and RioT (Baccelli et al. 2013) are

the most suitable operating systems for constrained IoT devices. All these operating

systems are compatible with our current hardware environment. However, only ContikiOS

has the full compability with Cooja, our selected simulation environment. Other than that,

ContikiOS has more community support than other operating systems. Also, ContikiOS has

network driver selection which allows us to change MAC, RDC layer protocols easily.

Altough different operating systems are available for IoT networks, Contiki OS was

choosen as it has more advantages than other IoT operating systems. Furthermore, it is

9

compatible with wide variety of IoT devices on both simulation environment and real

hardware.

Contiki OS is used in simulations, as well as on real hardware, by installing it on

nodes. The use of ContikiOS on the hardware environment is described in the relevant

section. Features of ContikiOS is listed as:

• Full IP networking

• Memory allocation

• 6LoWPaN, RPL, CoAP protocol support

• Supports Radio Duty Cycling with contikiMAC protocol

• Allows MAC, RDC protocol changes

• Full Cooja simulator support

• Power efficient

• Open source

4.1.1.3. WisMote (Used in simulation)

In the Cooja network tool, the number of virtualisable nodes in which the contiki

operating system can be installed and where the desired applications can be executed is

limited. Zolertia z1 (left on Figure 4.2), which is one of these nodes, can run the desired

applications and protocols with contiki operating system base. Modeled on real hardware,

this virtual node has a 16-bit processor running at 16Mhz clock speed, just like the real

model. This node is also equipped with 8 KB ram and 92 KB flash memory. Although these

hardware features are insufficient in some cases for the desired environment. This was the

most powerful mote type that could be added in the default environment. However, when

the protocols with more memory consumption are run, the hardware of this mote is

inadequate. Especially because of insufficient RAM memory, communication problems

were encountered due to the "number of routes to be kept" which should be reduced. For

these reasons, mote types with more RAM memory, which could be operated in simulation

environment, were investigated.

In the default environment, WisMote (right on Figure 4.2), which cannot be added

due to a bug in the 4.6.3 version of the MSP430-gcc compiler, has the desired properties

for simulations. The error in version 4.6.3 of MSP430-gcc that makes it impossible for us to

add this mote by default is due to incorrect entry of memory type of this mote type. As this

issue was solved by version 4.7.0, the MSP430-gcc version to be used in the simulation

environment was updated to 4.7.3. After this update, the node can be added to the

simulation environment and can be run.

10

Although WisMote shares the same processor structure as the Zolertia Z1, it has

16KB of memory as RAM memory and 256KB of memory as its flash memory. These

memory values are in amounts that can support the protocols that we want to run in

simulations.

Figure 4.2 - Zolertia z1 (left) and WisMote (right) IoT nodes

4.1.1.4. Californium

Californium (Kovatsch, Lanter, and Shelby 2014) is one of many CoAP compatible

clients and has been developed in java. Californium supports CoCoA and CoCoA+ (Betzler

et al. 2015) application layer protocols which are improved versions of CoAP congestion

control protocol. Broad protocol support, ease of use and detailed implementation were the

reasons for choosing Californium. And the fact that Californium is written in java language

brings multi-thread support together. In this way, Californium, which is already a lightweight

application, can work as more than one client and will be able to take the results without

any external effects.

To establish a link between Californium CoAP client and server node inside of IoT

environment, a border-router mote should be placed. This border-router provides a

connection between IoT network and Internet. Border-router mote is also known as gateway

router as shown in Figure 1.1 in section 1.1. Through border-router, californium is able to

send and receive CoAP messages (GET, POST, PUT, etc.) to/from any server mote inside

IoT network.

4.1.2. Hardware Environment

While the measurements and evaluations made in the simulation environment are

accurate, it is necessary to test these results on the actual hardware. In addition, sample

health data, which we can use in simulation environments, was first obtained with real

hardware environment. For this purpose, we selected the MySignals kit that we use to

collect health data combined with OpenMote (Vilajosana et al. 2015) devices that supports

11

preffered operating system and IoT protocols. Detailed information and data about

OpenMote and MySignals devices are given in next sub-chapters.

4.1.2.1. IoT device: OpenMote

OpenMote, which is selected as a hardware node, supports the desired operating

system and the protocols to be used. OpenMote offers an open-hardware and open-

software environment for faster development.

Although OpenMote nodes consist of multiple parts, it is the OpenMote-CC2538

module that takes over the actual job. As the name suggests, this module accommodates

the Texas Instruments CC2538 (Instruments 2015) SoC. The TI CC2538 chipset features

a 32-bit Cortex-M3 microcontroller and one IEEE802.15.4 radio. This microcontroller has

32 KB RAM and 512 KB Flash Memory and clock speed is up to 32 MHz. There are also

GPIO, ADC, I2C, SPI, UART and timer modules within the microcontroller. The radio, the

other part of the SoC, operates at a frequency of 2.4 GHz and is fully compliant with the

IEEE802.15.4-2006 standard.

Another module for the OpenMote platform is the OpenBattery module, which

provides power to the main module with the battery, as well as accelerometer, light,

temperature and humidity sensors.

The OpenBase module, another part of the OpenMote ecosystem, is intended to

increase the interfaces of the main module. The OpenBase module includes USB, 10/100

Mbps Ethernet and 10-pin JTAG connectors.

While the OpenMote ecosystem initially had different modules, in the new revisions,

these modules (such as OpenBattery and OpenBase) were merged into a single main

module. All OpenMote family products are listed in Figure 4.3.

Figure 4.3 - OpenMote, OpenBattery, OpenBase, OpenUSB, OpenMote Rev.A1 (left to right)

12

4.1.2.2. Health sensors and other equipments

As hardware for health sensors, the MySignals (Figure 4.4) set has been chosen

because of its ease of use and wide community support. It is possible to connect many

hardware health sensors to this set, which basically uses the Arduino (Figure 4.5)

microcontroller to read data from the sensors and process the read data.

The data read with MySignals Health Sensor kit can be transferred to external

environment via Arduino serial port. Although this data can be read directly from the serial

port, it was necessary to install a bridge element for serial port communication, as the

hardware development equipment was limited. The device selected for bridging the serial

port communication is the Raspberry Pi microcomputer. Since this device is not used for

any purpose other than a bridge, it is not mentioned in detail. In real hardware development,

it is possible to connect the MySignals kit directly to the IoT device by disabling the

Raspberry Pi and Arduino equipment. However, this requires hardware re-design. Thus, we

used Raspberry Pi as bridge between OpenMote and Arduino devices.

Figure 4.4 - MySignals HW Health Sensor Board

Figure 4.5 - Arduino UNO Microcontroller Board

13

4.1.3. Network Stack

IoT Network stack is a layered stack system like OSI model. As requirements of an

IoT system differs from generic network models, its layer system is slightly different than

OSI model. At the bottom of layered stack, link layer divided into 3 parts as Radio, Radio

Duty Cycling and MAC, from bottom to top. Adaptation layer is composed from 6LoWPAN

and IPv6 layers while IPv6 layer also responsible for routing. Transport layer exist on top of

adaptation layer while it's beneath application layer. The layer structure and the protocols

used in the layers are given in Figure 4.6 with the comparison of the traditional Internet

stack model. In the image, the left-hand stack shows the LLN (Low Power and Lossy

Network) Internet Stack, and the right-hand stack shows the standard traditional Internet

stack model.

Figure 4.6 - Network Layers of LLN (left) and traditional Internet Stack (right)

4.1.3.1. Physical layer: 802.15.4 radio

IEEE 802.15.4 standard defines physical layer and media access control layer

operations for low data rate devices. The radios comply with this standard uses three

unlicensed frequency groups; 868.0-868.6 MHz for Europe, with single channel, 902-928

MHz for North America with up to 10 channels and 2400-2483.5 MHz for worldwide with up

to 16 channels. Most IoT devices and simulation environments uses worldwide frequencies

14

with 16 channels. According to 16 channels, the channel layout is as in Figure 4.7. The

802.15.4 radio can offer a bandwidth of 250 kbit/s in practically around 10 meters range in

general. Tradeoffs are possible to achieve lower energy requirements. Therefore 20 and 40

kbit/s transfer rates are also defined.

Figure 4.7 - 802.15.4 Radio Channels

4.1.3.2. Radio duty cycling (RDC)

On any environment, it's generally unpractical to change batteries. Especially if

related environment is based on healthcare systems. For this purpose, there's some Radio

Duty Cycle protocols for 802.15.4 based devices. Even if 802.15.4 radios power

consumptions are low, this can be decraesed more. Radio Duty Cycle approaches aims to

turn off the radio as much as possible. Rendezvous points are set for nodes, at the

beginning stage of network generally. Nodes turn on their radio on scheduled intervals to

communicate and then turn their radios off after successful communication.

For un-scheduled communications, a node turns on its radio for a short time period

to listen radio environment. If there's any activity on radio environment, it keeps the radio

on in case of packet receiving. This tecnique is named as Low-power listening. If a node

has no rendezvous point with any node, it uses Low-power probing. In this tecniuqe

Receiver nodes turn their radios on and transmits a probe into radio environment

periodically while powering on their radios a little longer. Sender node turns on its radio and

listens for a probe and sends its packet as soon as it catches a probe.

Within Contiki OS there's 3 available RDC algorithms; ContikiMAC, XMAC and

nullRDC. Since XMAC cannot be run on the cooja simulation tool, it is not included in the

benchmarks.

ContikiMAC

ConitikiMAC is an RDC layer protocol that allows nodes to sleep when there is no

communication. Thus, it is aimed that the nodes consume less energy. ConitikiMAC sleeps

15

the nodes in such a way that they wake up and listen to the line at regular intervals. If the

node catches any packet transmission during its wake, the node remains awake. During the

time that it is awake, it receives the packet that is in transmission, then a link layer ACK

packet is sent to the sender. The node that wants to transmit a packet sends it continuously

until it receives an ACK packet.

The ACK packet is not expected for broadcasts to be sent on all nodes. Instead, the

packet is repeatedly sent over the entire waking time interval. In this way, the awakened

nodes will receive the broadcast packet.

nullRDC

nullRDC is not actually a protocol, it refers to the absence of a protocol running on

the RDC layer on Contiki OS. If no protocol is running in the RDC layer, the radio of the

node will remain on continuously. In this case, it is expected that the node consumes more

energy. Although it can consume much energy, it is unlikely that the packets sent will be

missed by the fact that the radio is always on. In this respect, the lack of protocol in the

RDC layer may affect the performance positively.

4.1.3.3. Medium access control (MAC)

MAC layer provides mechanisms to use the same radio environment without

collisions. It backs-off if there’s traffic on environment to prevent collisions. There’s

CSMA/CA (Carrier Sense Multiple Access with Collision Avoidance) and nullMAC available

in Contiki OS. 802.15.4 MAC header can be up to 25 bytes.

CSMA/CA

With this protocol, firstly, the data to be sent is perceived to be in use. The node first

listens to the environment and examines whether another node is transmitting in the same

environment. If any other node is transmitting at that time, the node waits a certain time.

When the line is detected to be empty, different actions are performed depending on

whether RTS / CTS (Request to Send / Clear to Send) is used in the environment.

If the environment is an environment where RTS / CTS is used, first the RTS signal

is sent and the CTS signal from the receiver is expected. If no RTS / CTS is used in the

environment or a CTS signal is received (in an environment where RTS / CTS is used), the

node sends the entire frame to be transmitted.

The sender node then waits for an acknowledgement message from the receiver

that the frame is correct and the checksum calculation is correct. In the absence of a

confirmation message, the node assumes that the packet collides with another packet sent.

This causes the node to enter into the binary exponential backoff state, which will wait for a

while before re-transmit.

16

nullMAC

nullMAC is a simple pass-through protocol, but it does not operate like a standart

MAC protocol. nullMAC protocol just calls the appropriate RDC functions when necessary.

nullMAC is not responsible for retransmissions or collision avoidance/detection mechanism.

This may result in collisions to happen. The use of the nullMAC protocol can improve

performance in networks with fewer nodes, but may adversely affect performance on more

crowded networks.

4.1.3.4. Network: 6LoWPAN

In the IoT protocol stack, the network layer can be divided into two layers, 6LoWPAN

and IPv6. 6LoWPAN is an IETF workgroup and an abbreviation of IPv6 over a low-power

wireless personal area network. 6LoWPAN concept aims to enable the internet protocol to

be applied to even the smallest devices. Nodes in 6LoWPAN that use IPv6 protocols require

a border router to access outside of the local 6LoWPAN because they use header

compression and different MAC layer protocols. This border router encapsulates 6LoWPAN

packets into UDP packets.

The 802.15.4 frame size is 127 octets. After 40 octets of IPv6 and 8 octets of UDP

headers, the available space is 79 octets. If the MAC header, which can reach 25 octets, is

removed from this field, the user will have only 54 octets left. This applies to non-security

scenarios. When security is used, the space remaining to the user will be further reduced.

For a system that already has limited hardware, this is an undesirable situation. On the

6LoWPAN layer, IPv6 headers can be compressed. Also, in this layer, fragmentation

management is also done. In the 6LoWPAN layer, the redundant fields of the IPv6 header

are discarded and the rest is compressed. The resulting 6LoWPAN header can be reduced

to 2, 12 or 20 octets according to the options used.

4.1.3.5. Network: IPv6

The number of devices connected to the Internet increases day by day and finds

millions. As IoT devices are added to these numbers, it is inevitable that this number will

increase exponentially. For this reason, IPv6 is the preferred internet protocol in IoT

environments.

IPv6 is a protocol developed by ietf, considering the lack of IPv4 in addressing. IPv4

provides 32-bit addressing, while IPv6 can provide 128-bit addressing, so that every device

on the internet is targeted to have a completely different address. Addressing is not the only

advantage of IPv6 over IPv4. IPv6 can also eliminate the NAT problem with the addressing

solution, provide tighter security measures, operate in constrained devices with compressed

versions, provide more mobility and automatic address configuration. The IPv6 header

structure, which differs from the IPv4 header structure, is given in Figure 4.8.

17

Figure 4.8 - IPv6 Header

4.1.3.6. Network: RPL routing

RPL (Routing over Low Power and Lossy Networks), defined in IETF RFC 6550, is

a routing protocol spesificaly designed for IoT environment. RPL provides routing between

nodes within an IoT environment. Also, routing between the IoT environment and the

Internet environment is achieved by RPL routing protocol. RPL is based on distance vector

and source routing. RPL works with the IPv6 protocol in the network layer.

Distance vector works by considering inter-node connections as a vector. In such

routing protocols, topology changes should be periodically informed to the neighbors. The

distance indicated here means the cost of reaching the next node. In the distance vector

protocol, the distance value is calculated together with the direction. The concept of

direction represents the place where the routed packet should be delivered. Each node

keeps the cost of the distance to all other nodes in the network to the vector. It is preferred

for IoT networks because of having less computational complexity, lesser message

overheads and distributed approach.

There are 3 node types within scope of RPL routing; mesh, leaf, and feather. Mesh

nodes can both route and forward traffic. Leaf nodes can only route its own traffic and not

able to forward the traffic while feather node is only capable of forwarding traffic and not

able to route its own traffic.

The network created by RPL is called DODAG network structure. The network

structure with a root node without any loops is called as DAG (Directed Acyclic Graph). If

the structure has only one root node, with paths ends with it, this structure is named as

DODAG (Destination-Oriented DAG).

DODAG structure has 3 types of messages; DAO (Destination Advertisement

Objects), DIO (DODAG Information Object) and DIS (DODAG Information Solicitations).

DAO messages are transmitted in the upper direction along the DODAG structure. This

process works until DAO messages are received by the root node. This informs the root

18

node about network topology. DIO messages, on the other hand, are used for discovering

new nodes, to transmit configuration parameters and, communication. A node sends its

own DIO message if it received a DIO message. Node adds information of rank value and

link metric of the received DIO message, to its own DIO message. This allows node to

choose its parent node. If any received DIO message has better rank value, that node which

sends the DIO message is selected as parent node. DIS messages can be considered as

neighbor discovery messages. A node which is not part of any DODAG structure sends DIS

messages. If any neighbor is a part of DODAG structure, it sends DIO messages to

determine its rank value. After that, the node joins the DODAG structure and is able to send

DIO and DAO messages.

There are 4 values for RPL while managing the network; RPLInstanceID, DODAGID,

DODAGVersionNumber, and Rank. RPLInstanceID is a unique identification number for

RPL. DODAGID defines the root node while DODAGVersionNumber defines the version

number as the name suggests. To make a network unique, RPL casts with RPLInstanceID,

DODAGID, and DODAGVersionNumber. The Rank value refers to the distance of the node

to the root node. The root node itself has the lowest rank value.

Nodes with RPL can work with storing or non-storing mode. A node running in storing

mode holds its own routing table and sends DAO messages as unicast to the parent node

according to this table. Nodes running in non-storing mode do not have routing tables.

Nodes running in this mode send DAO messages unicast to the root node.

4.1.3.7. Transport: UDP

UDP (User Datagram Protocol) is the protocol used to move message packets called

datagrams between two nodes. UDP is a connectionless protocol. In other words, it does

not require a prior agreement for the packets to be sent. In this way, it aims to minimize the

effort to deliver the packets. UDP has a header that specifies the checksum information and

source / destination ports for data integrity. Since no handshake is made for the data to be

sent, the data is not guaranteed to be transmitted. This makes UDP unreliable. Since the

main purpose of the UDP protocol is to transmit the data to the target as soon as possible,

the minimum network load and the minimum protocol weight are targeted. The UDP header

size is only 8 bytes, as in Figure 4.9.

Figure 4.9 - UDP Header

19

4.1.3.8. Application: CoAP

As in the OSI architecture, the application layer is the layer on which the application

will perform the communication. The tools are available in this layer for programs to use the

network. On restricted devices, applications that will run on this layer should consume

system resources as little as possible. Although it is possible to run application layer

protocols such as HTTP on restricted devices, it is more convenient to select alternative

protocols because it consumes a lot of system resources. For this reason, the CoAP

protocol is preferred in this layer, which works like HTTP, but consumes much less of

system resources.

CoAP Congestion Control Mechanism

CoAP, defined in IETF RFC 7252, is an application layer protocol developed for

constrained network nodes. Nodes using the CoAP protocol can communicate with each

other. Coap is a simple low-overhead-sized protocol with multicast support. These features

are very important for an IoT network. In this way, CoAP has proved to be an appropriate

protocol for constrained devices. The CoAP protocol can run on almost any device that can

run the UDP protocol. The CoAP protocol can also make improvements in energy

consumption due to its low consumption of system resources. The CoAP protocol can also

provide secure communication with DTLS.

CoAP messages consist of 4 types; CON (confirmable), NON (non-confirmable),

ACK (acknowledgement) and RST (reset). When a reliable communication is requested,

the client sends a message of type CON to the server until it receives an ACK-type message

from the server. After the sent CON message, the client must wait the ACK message for a

while. The client who cannot receive the ACK message during the expected time resends

the CON message. When the default settings are used, the timeout time expands

exponentially after each CON message. If the server is unable to process the CON

message, it sends the RST type message to the client instead of ACK.

If the connection does not have to be reliable, the client can send NON messages

to the server. The server receiving this type of message does not send the ACK message

to the client. From the client's point of view, it is not known whether the NON message

reached the server. Bu still, if the server cannot process a NON message, it can send the

RST message to the client. Figure 4.10 shows how CON and NON message types work.

20

Figure 4.10 - CoAP CON (left) and NON (right) Message Types

CoAP congestion control uses binary exponential back-off mechanism. If a CoAP

message does not have a response within timeout value, it should be retransmitted. Also,

timeout value is doubled when a retransmit occurs. Aforementioned timeout value is

configurable by client-side application and it should be based on RTT.

There are many different CoAP applications written in different programming

languages. With most open source applications, the use and learning of the CoAP protocol

has been made quite easy.

4.2. Methods

4.2.1. Obtaining health data

The health data in question are not data that can be obtained in the simulation

environment. For this reason, the equipments mentioned in the Materials section are used

to obtain health data. These equipments, in which health data is collected, works with the

Arduino microcontroller interface, as mentioned earlier. Although there are code samples

to run on the arduino microcontroller for these health sensors, there is no comprehensive

application code. For this reason, an arduino program was written to read the sensors for

all health data to be obtained. The sensor data obtained may be of different data types. For

this reason, all data must be converted into a single format when preparing the data. The

health data prepared were encoded on the arduino in accordance with a specified bit

sequence, and the data was sent from the serial interface on the arduino.

Once the MySignals device we use to collect health data with the Arduino

microcontroller is ready for use, this health data should be transferred to the IoT device.

The OpenMote node, the IoT device we use, does not have an interface to communicate

directly with the Arduino microcontroller. For this reason, a Raspberry Pi microcomputer

was installed between the two devices, which would serve as a bridge. With a few hardware

modifications to the OpenMote node or Arduino microcontroller, the need for a Raspberry

21

Pi microcomputer can be eliminated. Since hardware development is not the subject of this

study, this issue has not been discussed. A sample setup prepared with several health

sensors is as in Figure 4.11. Arduino and OpenMote devices are connected to USB ports

on Raspberry Pi. On these USB ports, they can send and receive data via a virtual serial

interface.

Figure 4.11 - Hardware Setup Used to Collect Health Data

With this setup, the data was tested by reading on the Raspberry Pi microcomputer

before being sent to the IoT device. After making sure that the data is seamless, the bridge

software has been prepared to communicate the virtual serial interfaces created on the USB

ports of the Raspberry Pi microcomputer. This application, written using NodeJS,

communicates the virtual serial port connected to OpenMote with the virtual serial port

connected to Arduino. After establishing a connection between Arduino and OpenMote, the

IoT device (OpenMote) must transmit the health data received to it via the 802.15.4 radio.

At this stage, for the ContikiOS operating system running on OpenMote, an application was

written in C to read the serial interface and transfer the incoming data over the network. At

this stage, the setup is ready to collect health data and forward it to the IoT network. This

setup can be called as a server node.

22

The node that will be in the Gateway role consists of the Raspberry Pi

microcomputer and the OpenMote IoT node. The gateway node is responsible for collecting

health data, processing health data, and connecting the IoT network to the Internet network.

With the applications to be run on the Raspberry Pi microcomputer within the Gateway

node, data can be collected from the gateway node IoT device. Through this node, any

connection to any other node (the node that collects the health data) can be considered as

a client. This setup can be called as a gateway node. Within this setup, we can call each

application piece that collects data as a client.

After a server node and a gateway node were created, the client application was run

on the gateway and the current health data was obtained. At the same time, the health data

is also monitored via the server node (before being transmitted to the IoT network). Two

health data were compared and no difference was found between them. In this way, it is

checked that the IoT network transmits health data without error. As a result of these

processes, both the collection of health data in the real environment has been tested and

the sample health data which can be used in simulations are obtained.

4.2.2. Determination of vital health data traffic characteristics

Data from health sensors are mostly numeric data in float or integer format. These

data should be minimized as the intended purpose is to transport these data as soon as

possible and accurately. For this reason, the maximum and minimum values that these

health data were determined first. After each sensor data was examined in this way, a bit

sequence was created by allocating as much space as needed for each sensor data. The

result is a 64-byte bit sequence containing all sensor data and the free space to which

additional data and options can be added.

In this model, there are 11 different sensors with 21 types of data in total. As a sensor

can deliver more than one kind of data, a difference occurs in this way. Most sensor data

can be expressed in the form of unsigned integer data. Long unsigned integer and byte data

types are used for data that does not fit the unsigned integer data type or is smaller. Of the

21 data types used, 1 is a long unsigned integer, 1 is a byte, and the remaining 19 are

unsigned integer. In this structure, the total data length is 344 bits (43 bytes). The remaining

168 bits (21 bytes) of space may be filled with patient information, other sensor data that

may be added, or other options. These data types and lengths are given in Table 4.1.

23

Table 4.1 - Health Sensors and Data

Although 64 bytes of data packets appear to be small, they can contain many health

data without compression. In future studies, these 64 bytes can be used more effectively

by optimization and compression methods.

It is also possible to send all these health data as separate messages for different

types of health data. However, sending large, unified health data is less costly than sending

these data separately. For this reason, it is more logical that all data are transmitted as a

single unified structure.

Patients to collect health data may have different conditions. In this case, the needs

of patients in different categories may be different. What is required here is the health values

that need to be measured. Therefore, patients were divided into three categories according

to the sensors to be measured. The patient category, which requires continuous and

immediate observation of health status, are critical patients. Patients whose condition is not

critical, but need to be monitored and measured at regular intervals, can be categorized as

non-critical. In addition to these two categories, individuals who are not in any health status

(critical or non-critical), but are followed-up for probabilities are examined under the follow-

up category. Critical and non-critical patient categories are more suitable for hospitals,

clinics, nursing homes, while the follow-up category is suitable for nursing homes and child

care homes.

In addition to categorizing patients, health sensors can also be categorized

according to needs groups. For example, for a patient who is permanently lying down, body

position sensor data may not be important, while the same sensor may be important for an

elderly patient to detect events such as falls. Health data that may be important for the

24

patient should be measured more frequently. For such reasons, for each category of

patients, the sensor data is divided into categories according to their importance (and hence

the frequency of measurement). The sensor data is divided into 4 categories according to

the measurement frequency requirements. Patient categories and measurement frequency

requirements based on the information obtained from doctors are listed in Results

sectionHata! Başvuru kaynağı bulunamadı..

The numerical data indicated in the table indicates how many minutes the relevant

sensor should be updated at the latest. For example, Airflow, ECG, EMG, Spo2 sensors

require almost continuous measurement for critical patient categories. However, the

Galvanic Skin Response, Body Scale and Glucometer sensor data is sufficient to take one

hour.

4.2.3. Preparation of simulation environment

4.2.3.1. Cooja network tool & contiki os

As mentioned earlier, the installation and operation steps of the cooja tool, which is

determined as a simulation tool, are indicated in this chapter. The cooja simulation tool

works on the Ubuntu operating system in the most efficient way. For this reason, a virtual

computer was created on the computer using VMWare, and Ubuntu 16.04 operating system

was installed on this computer. After the required application packets were installed on this

operating system, the contiki operating system development folder, including the cooja

network tool, was downloaded via github. Then, additional packets that the contiki operating

system or cooja tool might need were downloaded and installed. Detailed steps on these

procedures can be found on the contiki operating system website and related forums.

After the Contiki operating system and the cooja network tool are operational, the

cooja tool is started. In this step, the virtual environment of the simulation will be displayed.

In this step, a contiki operating system with the desired application will be installed to the

virtual node wismote mote and the node will be added to the environment. The first node to

be added must contain the border-router software and must be in the border-router function

as appropriate for the software in it. In addition, the serial interface that enables the border-

router node to communicate with the out-of-simulation must be activated for this node. The

Border-router node, as mentioned earlier, is the node that will allow our IoT network to

access the Internet. The environment in which the simulation environment operates The IoT

network can be thought of as the virtual computer itself (which runs the Ubuntu operating

system) as an internet network. Since the connection runs from the serial interface, there is

a need for a bridge connection outside the simulation environment that can connect the

simulation environment with the computer. This tool is offered within the contiki operating

system. A virtual interface is created with the Cooja-border-router tool to create a bridge

25

connection between the simulation environment and the actual computer. After this step,

the network connection between the main computer and the simulation environment is

provided.

In the next step, the wismote motes that have the software installed to transmit the

health data from the sensors to the network environment are added to the simulation

network environment. The desired number of nodes and network topology are visually

established in the simulated environment. From the options, the simulation speed should

also be selected 100% for a realistic approach.

Energy efficiency, which is one of our performance metrics, can be calculated

approximately by means of the cooja tool with the sleeping times of the radios of the nodes.

These values (Radio Duty Cycle values) can be displayed with the powertracker plugin in

the cooja tool. Other performance metrics cannot be read directly from the cooja tool. Other

performance metrics can be obtained by receiving data from a client reading data from

these nodes responsible for delivering health data. This client is the californium CoAP client,

the details are given in the next section.

4.2.3.2. Californium coap client

The Californium application described in the Material section has been chosen as

the default CoAP application in the tests performed. Californium is an open source

application that can be downloaded from github.

Based on the hello-world application in the Californium downloaded from the Github

packets, a benchmark application has been developed. The new application was designed

to be based on the multi-client model. For this reason, the application is designed and

developed as multi-thread. The multi-threaded application makes it possible to run a client

for each server. Thus, the result values to be taken will be independent of the nodes and

will not affect each other.

Latency, Reliability and Throughput performance metric values are gathered by

creating a separate Californium CoAP client thread for each server. Once the values are

obtained, they are formatted to form a meaningful graph.

4.2.4. Performance metrics

Some performance metrics have been identified in order to determine the extent to

which the collected health data is useful and to measure the performance at the stage of

obtaining useful data. Some of these metrics have helped us to determine whether the

resulting health data were useful. Some metrics have enabled us to perform performance

analysis of different network stacks. These metrics and their descriptions are explained in

order of importance.

26

4.2.4.1. Latency

Since the study involved critical health data, it should be ensured that these data are

delivered to the corresponding point as soon as possible. Latency metric tells us how long

it takes delivering packets to destination. This metric represents the maximum delay time

between two successful packets. Thus, the knowledge of how long the health data is

renewed at the latest is obtained. In the study, patients were categorized according to the

importance of the sensors to be measured. Similarly, health data are also divided into

groups according to their importance in patient categories. Each health data may require

different rates of renewal for different patient groups. For example, ECG measurements of

a critical patient should be performed at frequent intervals. For this reason, this metric will

be used to determine in which scenarios the health data will be used in the patient groups.

Patient categories and measurement frequency requirements based on the information

obtained from doctors are listed in the Results and Discussion section.

4.2.4.2. Energy efficiency

While transporting vital health data, it is important that the system can continue to

work. In order to achieve this, the energy needs of the systems that collect and transmit

health data should be provided. These energy needs should be met with batteries as a

wireless system is considered. As well as the health data collection and transmission

systems to be used, the battery should be as light and portable as possible. In addition,

undesirable situations such as frequent battery replacement should be minimized. In order

to achieve this, power consumption must be kept to a minimum. Since the scope of this

work is on finding the best environment for transporting health data, energy efficiency has

been selected as an important performance metric. This metric can provide us with

information about how long a node can work. Energy efficieny metric is calculated by total

radio-on time. The WisMote used in the simulation environment and the OpenMote nodes

used in the real environment use the TI CC2520 and TI CC2538 radio chips respectively.

The hourly energy consumption data obtained from the data sheets of these radio chips are

given in Table 4.2.

Table 4.2 - Power Consumption of two different 802.15.4 Radio ICs

27

4.2.4.3. Reliability

One of the metrics required for the transmission of health data is reliability. One or

more health data packets should not be lost during transmission. The fact that samples of

health data can be taken more will prove the accuracy of the measurement. While this metric

is not as critical as latency or energy efficiency, it will directly affect the transmission

performance of health data. The measurement of this metric is calculated by the rate at

which the packets sent are successfully transmitted to the recipient. The high transmission

success rate will show the performance of the relevant environment / scenario.

4.2.4.4. Throughput

Regarding the transmission of health data, it is wrong to think that there will be data

from a single patient on the system. It should also be possible to have simultaneous data

from multiple patients. In this case, throughput is an important performance metric. This

metric is calculated based on the sum of the packet sizes successfully transmitted over the

network. Larger throughput is better because it means more data can be carried on the

network which means support for more patient data. With the data of this metric, the total

throughput of the network or the average throughput of the nodes can be calculated.

4.2.5. Network topology

While the network topology is planned within the scope of the study, the environment

such as hospital or nursing home has been considered. It is assumed that each patient is

in a different room and nodes that transmit health data are fixed or move in a narrow space.

In this structure, patients are located in 6x5 separated rooms with around 40 meters

between them. From these patients, health data were considered to be transmitted to a root

node at the endpoint. An example of the respective topology is given in Figure 4.12.

28

Figure 4.12 - Network Topology

In the Cooja network simulator environment, there is no transmission after 6 nodes

in linear topology. For this reason, designed network topology is prepared in accordance

with this limitation.

The traffic flow in the environment is from all nodes to the root node. Request

messages sent by the root node are assumed to be insignificant due to their small size.

While transmitting the health data, each node transmits health data packets to the parent

node to deliver it to the root node. Also, each node (if its a parent of another node) forwards

the received health data packets towards the root node through their parent nodes.

29

5. RESULTS AND DISCUSSION

5.1. Latency

Within the scope of the study, first of all, the usability of different health sensors for

different patient categories was examined. In order to achieve this, the health data groups

needed by each patient category were examined considering their latency values. As

mentioned earlier, the required health data should be obtained at a certain time interval.

That is why the latency metric is chosen as the distinctive metric. Before comparing the

performances of different scenarios, the patient categories and health data for which the

relevant scenario could be used were separated.

Table 5.1 - Health Sensor Data Acquisition Interval Thresold Values (in minutes) by Patient
Categories

Table 5.1 lists the sensor data needed by the patients divided into categories. The

data in this table indicate that the importance of the data required by different patient groups

also varies. In this way, it may be necessary for the patient group to have a higher refresh

rate for a health data. In this table, with the help of the information obtained from the doctors,

the health data is divided into different refresh rate intervals according to their importance.

The health data specified by red color are the data that require the most frequent refresh

rate in critical patient groups. Therefore, the refresh rate of these data is determined as one

30

minute at the latest. Secondary health data is shown in orange color and the regeneration

interval is determined as maximum 15 minutes. Examples of this type of data include

measurements of the patients under follow-up to detect body positions (for detecting events

such as falls) or fever measurements of critically ill patients. The health data in the third

category, which is indicated by yellow color, means the health data that should be renewed

with a maximum delay of 30 minutes. The fourth and last health data category is expressed

in green color. These data are relatively less important. Therefore, the measurement

frequency is defined as 60 minutes.

Table 5.2 - Maximum Delay Between Packets (in minutes) in different scenarios

According to the data obtained from the simulation results, maximum delay between

two packets values in different scenarios are given in Table 5.2. In the table, four different

scenarios are presented with different PDR (Packet Delivery Ratio) values. Up to 30 clients

were used in the simulations and consequently in the results table. In this table, according

to the minimum threshold values, the appropriate data is colored according to the threshold

values. An appropriate threshold value also applies to all threshold values greater than

itself. For example, the data indicated in red represents 1 minute with the lowest threshold

range. Since this threshold range is less than 15, 30 and 60 minutes with other threshold

ranges, it is suitable for all patient groups and health data. The results can also be analyzed

31

with the graphics obtained for 4 different scenarios (different MAC and RDC layer

protocols).

In Figure 5.1, the result graph of the scenario using nullMAC and nullRDC is given.

The result graph of the scenario using CSMA and nullRDC is given in Figure 5.2, while the

result graph of the scenario using nullMAC and contikiMAC is shown in Figure 5.3. Finally,

the result graph in which the CSMA and contikiMAC protocols are used is in Figure 5.4.

Latency thresold indicators based on Table 5.1 are also shown graphs.

Figure 5.1 - Latency (Maximum Delay Between Two Packets) graphic of nullMAC / nullRDC
scenario

In Figure 5.1 latency values are given for protocol stack with nullMAC protocol in

MAC layer and nullRDC protocol in RDC layer with PDR values 100,95 and 90. In this graph,

only thresold 1 and thresold 2 values are indicated. As there’s no result to exceed or close

to the thresold 3 (30min) or thresold 4 (60 min), these thresold values are not indicated.

When the results are examined, in general, the reduction of the pdr value (decrease in the

packet delivery rate) leads to increase in latency. When we look at the graph more widely,

it is seen that the latency values of nullMAC / nullRDC protocol combination are usually less

than 15min (thresold 2). However, there are also cases where the latency values are less

than 1 min (thresold 1) and above 15 min (thresold 2). If the results are analyzed on

average, it can be said that the combination of nullMAC / nullRDC protocol can be suitable

for situations where the latency tolerance is less than or equal to 15min.

32

Figure 5.2 - Latency (Maximum Delay Between Two Packets) graphic of CSMA / nullRDC scenario

Scenario results for latency metric with using the CSMA and nullRDC protocols are

given in Figure 5.2. As can be seen from the graph, when the number of nodes is 16 or less,

the latency values are under thresold 1 (1min). Nevertheless, as a result of the increasing

number of nodes, the latency values for all PDR values are gradually increasing. However,

in all the results, the combination with the lowest latency values is the CSMA / nullRDC

protocol combination.

The latency metric results in Figure 5.3 belong to the nullMAC and contikiMAC

protocol combination. The latnecy values in these results are higher than the results of the

protocol combinations we have previously examined. The significant increase in the latency

values in this combination might be due to the contikiMAC protocol, which sleeps the radio

to conserve energy. However, the latency values usually remain below thresold 3 (30 min)

when the PDR value is low. In almost all PDR values and number of nodes, the latency

values are above thresold 1 (1min). According to the results, when the number of nodes

does not exceed 18, this protocol combination is suitable for threshold 3 (30min). In cases

where the number of nodes is greater, this configuration will be compatible only for threshold

4 (60min).

The last combination of protocols, CSMA / contikiMAC, is given in Figure 5.4. This

combination gave similar latency values to nullMAC / contikiMAC combination. This

combination is compatible with threshold 3 (30min) in network scenarios with up to 24

nodes. This combination is not suitable for situations where the threshold value should be

less than 1 minute (threshold 1).

33

Figure 5.3 - Latency (Maximum Delay Between Two Packets) graphic of nullMAC / contikiMAC
scenario

Figure 5.4 - Latency (Maximum Delay Between Two Packets) graphic of CSMA /

contikiMAC scenario

According to the data in the table and graphs, it is clear which categorized health

data can be transmitted in different scenarios.

34

5.2. Energy Efficiency

When collecting health data, the sensors and equipment on the patients should be

as light and comfortable as possible. To achieve this, the batteries, which are the heaviest

equipment, are minimized as much as possible. Naturally, small batteries will be weaker in

capacity. The consequence of this is that the frequency of battery change increases. Just

as heavy equipment is undesirable, frequent battery change is undesirable for patients.

Therefore, the second metric that is important is energy efficiency. If the equipment used is

designed to use the minimum energy, long working times can be achieved with light

batteries. As the focus of the study was not on the health sensors themselves or on

microcontrollers, this energy saving was tried to be provided on IoT devices.

In IoT devices, the most energy consuming unit is the 802.15.4 radio itself. As a

solution to this, RDC protocols have been proposed to ensure that the radio is switched off

when not in use. Among these protocols, contikiMAC, one of the most commonly used, is

the RDC protocol used in simulations in the study. WisMote was used in the simulation

environment. The radio integrated circuit on this node is the TI CC2520 model. The

OpenMote nodes we tested in the real environment have a TI CC2538 radio integrated

circuit. The energy consumption values of both radio integrated circuits are indicated in

Table 4.2 in the previous Section: 4.2.4.2. These values were obtained from the data sheet

of the respective radio integrated circuit. The active energy consumption of the active RX

and active TX modes is different. There will be an RX node across the network,

corresponding to each TX node. Therefore, the average of these values was used for the

times when the radio was switched on. The energy consumption data in Table 5.3 were

obtained according to these energy consumption values and radio on / off times.

35

Table 5.3 - Average Energy Consumption per Node

The energy consumption in the table is indicated in mAh and refers to the average

energy consumption of the nodes. Scenarios where at least one or more of the nodes

cannot send data for 60 minutes have been highlighted in gray and underlined. As can be

seen from the data, the use of the RDC protocol significantly reduced energy consumption,

as expected. Charts based on the table are given below. The result data can also be

examined with these graphs.

Graphics are grouped under different PDR (Packet Delivery Ratio) values. The

values where the PDR value is 100 are given in Figure 5.5, the values where the PDR value

is 95 are shown in Figure 5.6 and the values in which the PDR is 90 are given in Figure 5.7.

In these graphs, it is shown how much energy is spent to send the packet with the protocol

stack used. In addition, the graph containing the energy consumption average of the nodes

is added in Figure 5.8.

36

Figure 5.5 - Average Energy Consumption per node for PDR=100

According to the energy consumption data obtained when the PDR value is 100

(Figure 5.5), the energy consumption per node increases in parallel with the increase in the

number of nodes. The change in the RDC layer protocol, which plays an active role in

energy consumption, is evident in these results. When contikiMAC is used in the RDC layer,

there is a clear difference in energy consumption. With the contikiMAC, it was observed that

the use of the CSMA protocol in the MAC layer increased energy consumption. However,

when nullRDC is used in the RDC layer, the use of CSMA in the MAC layer can reduce

energy consumption slightly.

When the PDR value is 95 (Figure 5.6), it is seen that there is an increase in energy

consumption in the protocol configuration using nullRDC protocol in RDC layer and nullMAC

protocol in MAC layer. The reason for this energy consumption increase might be re-

transmissions for packets that cannot be transmitted as a result of a decrease in PDR value.

The energy consumption results in the case that the PDR value is 90 (Figure 5.7) is

close to that of the PDR value 95. The difference between Figure 5.6 and Figure 5.7 , is not

close to the difference between Figure 5.5 and Figure 5.6.

37

Figure 5.6 - Average Energy Consumption per node for PDR=95

Figure 5.7 - Average Energy Consumption per node for PDR=90

38

Figure 5.8 - Average Energy Consumption per node for All Network Stacks

When the results are examined, it is clear that the factor that affects the most energy

consumption is the RDC protocol. When the RDC protocol is not used, energy consumption

is higher. However, the only factor affecting energy consumption is not the RDC protocol.

The MAC layer protocol or different PDR values also cause changes in energy

consumption. In addition, the increase in the number of nodes usually leads to an increase

in energy consumption.

In order to give these results a meaning closer to real life usage, it was calculated

how long the 802.15.4 radio can be operated with a battery. Only the 802.15.4 radio is

thought to be powered by a relatively small and lightweight CR2032 battery. The energy

consumption of health sensors and microcontrollers is ignored. The average capacity of the

CR2032 battery is 220 mA. According to this value, it was calculated how many days the

802.15.4 radio could be running. The data are given in Table 5.4.

In addition, the average battery life of each node was calculated for the respective

scenario in the bottom line of the table. According to these averages, the graph for battery

life for different scenarios and PDR values is given in Figure 5.9.

39

Table 5.4 - Battery Life per Node (in Days)

Figure 5.9 - Average Battery Life of Nodes in Different Network Stacks

When no RDC protocol is used, the radio will remain on continuously. As a result,

no energy savings will be made, the 802.15.4 radio will always operate at full power. In all

40

scenarios where the RDC protocol is not used, the energy consumption is constant since

the radio is not turned off at all. As can be seen from the table and graph, in these scenarios

where RDC is not used, the energy consumption will be high and the battery life will be

short. In these cases, it is necessary to change the battery approximately 2 times a day.

When the scenarios using contikiMAC RDC protocol are examined, there is a

serious improvement in the battery life. Against the scenarios where the RDC protocol is

not used, when the contikiMAC RDC protocol is used, the frequency of battery change is

approximately 4.5 - 8 days. Thus, the patient's health data can be observed for a long time

with a single battery.

5.3. Reliability

Another metric that affects performance while collecting health data from patients is

reliability. Network packets that contain health data from patients can be lost in this lossy

network environment. Reliability is a metric that expresses how low these packet losses

are. Naturally, low packet loss would mean high reliability. In addition, packet losses delay

the acquisition of accurate data. The possibility of problems in the environment increases

with the increase of packet losses. Low packet losses usually provide more stable data

transfer.

Packet success rates obtained according to our simulation results are as in Table

5.5. As in previous tables, scenarios with one or more nodes unable to send packets for 60

minutes are expressed in gray and underlined.

41

Table 5.5 – Average Successful Packets

As can be seen from the table, the number of successful packets is generally high

in network environments with a low number of clients. As the number of nodes on the

network increases, the rate of successful packet decreases due to increased network traffic.

Different graphics are obtained according to different PDR values in order to show the data

in the table more clearly. Charts with PDR values of 100, 95 and 90 are given in Figure

5.10, Figure 5.11 and Figure 5.12, respectively. Apart from these graphs, a graph

comparing the average number of successful packets of different scenarios is given in

Figure 5.13.

The result graph with a PDR of 100 is given in Figure 5.10. When the graph is

examined, the differences of different protocol configurations for reliability metrics can be

seen. According to these results, the configuration that provides the best values is the

configuration using the null layer in the MAC layer with the CSMA protocol and the RDC

layer. However, when using contikiMAC in the RDC layer, selecting the CSMA protocol in

the MAC layer makes the results worse. In cases where the number of nodes is low, the

reliability result values are good, while the increase in the number of nodes has reduced

the reliability values, especially when contikiMAC protocol is used in the RDC layer.

42

Figure 5.10 – Successful Packet Ratio for PDR = 100

The results of CSMA / nullRDC and CSMA / contikiMAC protocol configurations

are not affected much when the PDR value is reduced to 95 in Figure 5.11. However,

there has been a significant decrease in the reliability metric values for the nullMAC /

nullRDC and nullMAC / contikiMAC protocol configurations. In particular, the use of the

CSMA protocol in the MAC layer can be said to help maintain reliability values against

decreases in PDR values.

Figure 5.11 – Successful Packet Ratio for PDR = 95

43

When the PDR values are slightly lowered to 90 in Figure 5.12, it can be seen that

the reliability values of the nullMAC / nullRDC and nullMAC / contikiMAC configurations are

even lower. When we look at the CSMA / nullMAC and CSMA / contikiMAC configurations,

there is little difference in reliability values.

Figure 5.12 – Successful Packet Ratio for PDR = 90

Figure 5.13 – Average Successful Packet Ratio for Different Network Stacks

When we look at Figure 5.13, which shows the overall average reliability values, it

can be observed how the reliability values change according to the PDR values. It is clear

44

that the reliability values of the nullMAC / nullRDC and nullMAC / contikiMAC configurations

are significantly reduced. In this graph, it can be seen that using the CSMA protocol in the

MAC layer helps to keep reliability values stable.

5.4. Throughput

Throughput is another metric used in performance assessments in the transmission

of health data. With the throughput metric, it can be determined what the packet

transmission speed of a node will be. The faster a packet can send, the more time it will be

reserved for other nodes to communicate. In addition, rapid packet transmission will allow

for more health data to be transmitted within a given time frame.

In this study, only successful packets are considered when calculating the

throughput metric. Lost packets, ack and signal packets are not included in the calculation.

Throughput can be analyzed in two different ways: by node or by network. Both analyses

were conducted in this study.

As in previous metrics, the conditions that are invalid for obtaining health data are

underlined and colored in gray.

5.4.1. Node Throughput

When examining the throughput metric for the node, the bandwidths of the nodes

are analyzed. These results are obtained by calculating the total of the successful packets

each node sends within one second.

The data of the throughput based on the results obtained are given in Table 5.6. The

data in this table only covers packets that have been correctly transmitted. Lost packets,

ack and signal packets are not included. In the table, each node's throughput values are

given for different protocol stacks and different counts of nodes. Average values for different

protocol stacks are also given in the bottom line. In order to increase the visibility of the data

in the table, graphs based on the data in the table were obtained. Figure 5.14, Figure 5.15,

and Figure 5.16 show the throughput values for PDR values 100,95 and 90 in different

network stacks, respectively.

45

Table 5.6 - Node Throughput (PPS-Packet per Second)

Figure 5.14 - Node Throughput for PDR = 100

Figure 5.14 shows node throughput of different protocol configurations with PDR

value of 100. As can be seen, the best values for all protocol configurations are obtained

with the minimum number of nodes. By increasing the number of nodes, the throughput

46

value per node is reduced. What is noteworthy here is that the CSMA / nullRDC protocol

configuration often achieves better throughput values. The nullMAC / nullRDC protocol

configuration has almost the same throughput values as the CSMA / nullRDC protocol

configuration when the number of nodes increases. Hem nullMAC / contikiMAC hem de

CSMA / contikiMAC protokol konfigürasyonları daha düşük çıkış değerleri gösterir.

Figure 5.15 - Node Throughput for PDR = 95

Where PDR values are 95 (Figure 5.15) and 90 (Figure 5.16), they have similar

graphs with each other. For both cases, the CSMA / nullRDC protocol configuration

achieves the best throughput values. The other three protocol configurations (nullMAC /

nullRDC, nullMAC / contikiMAC, CSMA / contikiMAC) have reached very similar throughput

values. Although the CSMA / contikiMAC protocol configuration has slightly higher values

in cases with low number of nodes, with the increase of the node, this difference is lost. For

most cases with PDR values lower than 100, throughput value ise lower than one packet

per second.

47

Figure 5.16 - Node Throughput for PDR = 90

Figure 5.17 - Average Node Throughput for Different Network Stacks

According to the data obtained, the average and summary of the throughput values

are given in Figure 5.17. When the results were examined, interestingly, when a protocol

was not used in the MAC and RDC layer, the results were effective when the PDR value

was 100. However, as the PDR decreases, a significant decrease is observed in throughput

values. This is because, as the PDR value decreases, the packet transmission rate

decreases. As mentioned earlier, factors such as signal quality and interferance can affect

48

the PDR value in the real environment. It is not always possible to have a PDR of 100 in

the real environment. Using the CSMA protocol in the MAC layer and not using the protocol

in the RDC layer, all the PDR values had a significant stability. While no protocol was used

in the MAC layer, the use of contikiMAC in the RDC layer also negatively affected the

throughput performance. The use of the CSMA protocol in the MAC layer with the

contikiMAC protocol in the RDC layer was able to improve the results slightly.

5.4.2. NetworkThroughput

As well as the amount of throughput of the nodes, the total throughput on the network

is also an important metric for performance measurement. In this way, the maximum

number of packets that can be sent on the network in unit time can be determined. In the

light of this data, it can be deduced how successful the network may be when a different

data packet is in question. With the simulations, the network's throughput capacity was

determined under different scenarios. The results obtained are shown in Table 5.7 as a

table, and the graphs obtained from the same data are given in Figure 5.18, Figure 5.19

and Figure 5.20, with PDR values 100, 95 and 90 respectively.

Table 5.7 - Network Throughput (PPS-Packet per Second)

49

Figure 5.18 - Network Throughput for PDR = 100

When we examine the network throughput value in cases where the PDR is 100

(Figure 5.18), we can see that the CSMA / nullRDC protocol configuration gives higher

values in the low number of nodes. The nullMAC / nullRDC configuration gives low

throughput values in low node counts according to the CSMA / nullRDC configuration. The

increase in the number of nodes allowed a slight increase in the throughput values for this

configuration. The nullMAC / contikiMAC and CSMA / contikiMAC configurations have

similar throughput values where the number of nodes is small. As a result of the increase

in the number of nodes, although the throughput value of the nullMAC / contikiMAC

configuration has increased, the same cannot be said for the CSMA / contikiMAC

configuration.

When we examine the situation where the PDR value is 95 (Figure 5.19), we can

observe that the CSMA / nullRDC configuration continues with similar throughput values

with the PDR value of 100. There is a significant decrease in the throughput values of the

nullMAC / nullRDC configuration. The nullMAC / contikiMAC configuration also reduced the

throughput value to less than 5 packets per second. Although the CSMA / contikiMAC

configuration has experienced a decrease in throughput values, this is not a significant

reduction.

When the PDR value is reduced to 90, there is a significant decrease in the average

of the thrpughput values. The change in throughput values with respect to the increasing

number of nodes is similar to that in which the PDR value is 95.

50

Figure 5.19 - Network Throughput for PDR = 95

Figure 5.20 - Network Throughput for PDR = 90

51

Figure 5.21 - Average Network Throughput for Different Protocol Stacks

Figure 5.21 shows the average of all network throughput data. The change in

network throughput values for different protocol stacks can be seen more clearly with this

graph. It was observed that the changes in the protocols in the RDC and MAC layers

affected the performance in these results, which are similar to the nodes throughput results.

According to the numerical values of these results, the packet sending capacity of the

network has emerged.

5.5. Selecting the Valid Protocol Stacks

Performance metrics are used to determine the protocol stacks that may be valid in

the transmission of health data. The most important criterion for the transmission of health

data is the transmission of the obtained health data to the health center without losing its

validity. In this context, the most important metric will be the latency and reliability metric.

As stated in the previous sections, the importance of health data is different according to

different patient groups. In this case, the stack of protocols to be selected may also vary

according to the patient and the type of health data. In addition, energy efficiency, which is

another metric, can be effective in the selection of protocols. As an example, there is no

mobility for a patient in continuous sleep. For a patient in this condition, energy efficiency

can be ignored. In return, better results can be achieved in the latency metric and other

metrics. Based on such scenarios, ideal protocol stacks can be determined by patient

groups and sensor types. When making these selections, metrics should be considered in

order of importance. In the following section, these ideal protocol stacks were examined.

52

5.6. Determination of Optimal IoT Stack to Transfer Health Data

When all the results are examined, different protocol stacks can be suggested

according to patient groups and sensor types. There is no best stack of protocols available

for all patients. Instead, we can offer the best protocol stacks according to patient groups

and sensor types. It should also be noted that not all sensors mentioned in this study will

be present on the patient at the same time. Depending on the type of sensor to be found on

the patient, such adjustments can be made easily.

The number of nodes (patients) in the environment is another important factor

affecting performance. As with other factors affecting performance, the number of patients

also affects the protocol stack to be selected. In scenarios with a large number of patients,

it may not be possible to obtain data from certain sensor types at valid times. Considering

such cases, tables prepared according to patient groups and sensor types, indicating the

most appropriate protocol stack, are given in Table 5.8 and Table 5.9. In Table 5.8, cases

where the number of patients were up to 15 were taken, while in Table 5.9, the number of

patients was between 15-30.

Table 5.8 - Ideal Protocol Stack for Different Groups (for up to 15 nodes)

53

Table 5.9 - Ideal Protocol Stack for Different Groups (for 15-30 nodes)

The collision avoidance feature of the CSMA protocol also prevents delays due to

collisions. This makes it possible to obtain the best latency values when using the CSMA

protocol. As already mentioned, energy efficieny is an important issue in IoT devices.

Therefore, contikiMAC is preferred as RDC protocol whenever possible. For these reasons,

priority has been given to the selection of the CSMA protocol in the MAC layer, and the

selection of the contikiMAC protocol in the RDC layer.

As can be seen in the table, in a network with a large number of nodes, there may

be no suitable stack of protocols for receiving data from specific sensor types. In these

scenarios, it would not be reasonable to obtain health data over the IoT network. The

scenarios found in this case are marked with N/A in the table.

54

6. CONCLUSION

In the study on the transmission of health data in an IoT network using 6LoWPAN

infrastructure, analysis of different protocol stacks were performed. These performance

evaluations were the outcome of the stages performed respectively. Firstly, similar studies

in the literature have been researched and the path to be followed in the study has been

established. Then, the real hardware environment in which sample health data can be

obtained is created. The health data samples obtained in this environment were stored for

use in performance evaluations. This step is also a simple proof that health data can be

transmitted over the IoT network. In this section, the stages of obtaining health data are

detailed. By examining these stages, information can be obtained about how to set up the

aforementioned system or similar system. After this stage which was a milesone for the

study, the stages involving the performance tests were started.

The next step was to prepare the simulation environment where performance

evaluations would be made. In the simulation environment, which was created in close

proximity to the actual scenarios, the previously obtained health data was used. Simulation

environments that can provide this were investigated and the most appropriate one was

chosen. The successful transmission of health data in the simulation environment enabled

us to proceed to the next step.

The next step was to examine the change in performance using different protocols.

Different protocol stacks have been tried in order to transmit these transmitted health data

more effectively and rapidly. Analysis were made using different node (patient) numbers

with these protocol changes. According to the analysis, it was investigated which protocol

stacks are useful in the transmission of health data. These evaluations were made

according to metrics that could make the patients' health data meaningful. Some of the

metrics selected at this stage were critical in the transmission of health data, while other

metrics were related to how quickly and accurately the health data were sent.

In addition, performance comparisons have been made between protocol stacks

available for transmission of health data. According to these performance evaluations, the

most appropriate protocol stacks were determined according to patient groups and sensor

types to be used. It has been shown that the health data of the patients can be taken without

any problem when using these protocol stacks.

As performance analysis of different protocols are given in detail in the study, when

a different health data application (sensor) is used, the possible situations can be predicted

based on this data. For example, for a different group of patients who require different health

55

data than the one in this study, the appropriate protocol stack can be proposed by examining

the results of the analysis.

In future studies, it is planned to evaluate different protocols in the MAC and RDC

layers. In addition, for MAC, RDC or other layer(s), it is planned to develop a protocol which

may be more efficient in transferring health data.

56

7. REFERENCES

Atzori, Luigi, Antonio Iera, and Giacomo Morabito. 2010. “The Internet of Things: A
Survey.” Computer networks 54(15): 2787–2805.

Baccelli, Emmanuel et al. 2013. “RIOT OS: Towards an OS for the Internet of Things.” In
2013 IEEE Conference on Computer Communications Workshops (INFOCOM
WKSHPS), IEEE, 79–80.

Baker, Stephanie B., Wei Xiang, and Ian Atkinson. 2017. “Internet of Things for Smart
Healthcare: Technologies, Challenges, and Opportunities.” IEEE Access 5: 26521–
44.

Bandyopadhyay, Debasis, and Jaydip Sen. 2011. “Internet of Things: Applications and
Challenges in Technology and Standardization.” Wireless Personal Communications
58(1): 49–69.

Betzler, August, Carles Gomez, Ilker Demirkol, and Josep Paradells. 2015. “CoCoA+: An
Advanced Congestion Control Mechanism for CoAP.” Ad Hoc Networks 33: 126–39.

Bormann, Carsten, Angelo P. Castellani, and Zach Shelby. 2012. “CoAP: An Application
Protocol for Billions of Tiny Internet Nodes.” IEEE Internet Computing 16(2): 62–67.

Chen, Yibo et al. 2011. “6LoWPAN Stacks: A Survey.” 7th International Conference on
Wireless Communications, Networking and Mobile Computing, WiCOM 2011: 1–4.

Dey, Nilanjan, Amira S. Ashour, and Chintan Bhatt. 2017. “Internet of Things Driven
Connected Healthcare.” In Springer, Cham, 3–12.
http://link.springer.com/10.1007/978-3-319-49736-5_1 (April 30, 2019).

Dunkels, Adam et al. 2011. “The Contiki Os: The Operating System for the Internet of
Things.” Online], at http://www. contikios. org 605.

Gaddour, Olfa, and Anis Koubâa. 2012. “RPL in a Nutshell: A Survey.” Computer
Networks 56(14): 3163–78.

Ge, Shu Yuan, Seung Man Chun, Hyun Su Kim, and Jong Tae Park. 2016. “Design and
Implementation of Interoperable IoT Healthcare System Based on International
Standards.” 2016 13th IEEE Annual Consumer Communications and Networking
Conference, CCNC 2016: 119–24.

Ghosh, Ananda Mohon, Debashish Halder, and S. K.Alamgir Hossain. 2016. “Remote
Health Monitoring System through IoT.” 2016 5th International Conference on
Informatics, Electronics and Vision, ICIEV 2016: 921–26.

Hassanalieragh, Moeen et al. 2015. “Health Monitoring and Management Using Internet-
of-Things (IoT) Sensing with Cloud-Based Processing: Opportunities and
Challenges.” Proceedings - 2015 IEEE International Conference on Services
Computing, SCC 2015: 285–92.

He, Daojing et al. 2018. “Privacy in the Internet of Things for Smart Healthcare.” IEEE
Communications Magazine 56(4): 38–44.

Imane, Sahmi, Mazri Tomader, and Hmina Nabil. 2019. “Comparison between CoAP and
MQTT in Smart Healthcare and Some Threats.” International Symposium on
Advanced Electrical and Communication Technologies, ISAECT 2018 - Proceedings:
1–4.

Instruments, Texas. 2015. “Cc2538 Powerful Wireless Microcontroller System‐on‐chip for
2.4‐ghz Ieee 802.15. 4, 6lowpan, and Zigbee Applications.” CC2538 datasheet (April

57

2015).

Irman, Muhammad. 2018. “Low Cost Heart Rate Portable Device for Risk Patients with
LoT and Warning System.” : 46–49.

Islam, S. M.Riazul et al. 2015. “The Internet of Things for Health Care: A Comprehensive
Survey.” IEEE Access 3: 678–708.

El Kafhali, Said, and Khaled Salah. 2018. “Performance Modelling and Analysis of Internet
of Things Enabled Healthcare Monitoring Systems.” IET Networks 8(1): 48–58.

Khattak, Hasan Ali, Michele Ruta, and Eugenio Di Sciascio. 2014. “CoAP-Based
Healthcare Sensors Network: A Survey.” Sisinflab.Poliba.It.
http://sisinflab.poliba.it/publications/2014/KRD14/khattak_et_al_ibcast2014.pdf.

Kortuem, Gerd, Fahim Kawsar, Daniel Fitton, and Vasughi Sundramoorthy. 2010. “Smart
Objects as Building Blocks for the Internet of Things.” Internet Computing, IEEE
14(1): 44–51.

Koutsouris, Nikos, Katerina Giannakopoulou, and Vanessa De Luca. 2018. “InLife : A
Platform Enabling the Exploitation of IoT and Gamification in Healthcare.” 2018 14th
International Conference on Wireless and Mobile Computing, Networking and
Communications (WiMob): 224–30.

Kovatsch, Matthias, Martin Lanter, and Zach Shelby. 2014. “Californium: Scalable Cloud
Services for the Internet of Things with Coap.” In 2014 International Conference on
the Internet of Things (IOT), IEEE, 1–6.

Kumar, Priyan Malarvizhi, and Usha Devi Gandhi. 2017. “Enhanced DTLS with CoAP-
Based Authentication Scheme for the Internet of Things in Healthcare Application.”
Journal of Supercomputing: 1–21.

Li, Shancang, Li Da Xu, and Shanshan Zhao. 2015. “The Internet of Things: A Survey.”
Information Systems Frontiers 17(2): 243–59.

Lo, Benny P.L., Henry Ip, and Guang Zhong Yang. 2016. “Transforming Health Care:
Body Sensor Networks, Wearables, and the Internet of Things.” IEEE Pulse 7(1): 4–
8.

Mainetti, Luca, Luigi Patrono, and Antonio Vilei. 2011. “Evolution of Wireless Sensor
Networks towards the Internet of Things: A Survey.” In Software,
Telecommunications and Computer Networks (SoftCOM), 2011 19th International
Conference On, , 1–6.

Martínez-Caro, Eva, Juan Gabriel Cegarra-Navarro, Alexeis García-Pérez, and Monica
Fait. 2018. “Healthcare Service Evolution towards the Internet of Things: An End-
User Perspective.” Technological Forecasting and Social Change 136(March): 268–
76. https://doi.org/10.1016/j.techfore.2018.03.025.

Muhammad, Ghulam, SK Md Mizanur Rahman, Abdulhameed Alelaiwi, and Atif Alamri.
2017. “Smart Health Solution Integrating IoT and Cloud: A Case Study of Voice
Pathology Monitoring.” IEEE Communications Magazine 55(1): 69–73.

Nausheen, Farha, and Sayyada Hajera Begum. 2018. “Healthcare IoT : Benefits ,
Vulnerabilities and Solutions.” 2018 2nd International Conference on Inventive
Systems and Control (ICISC) (Icisc): 517–22.

Österlind, Fredrik. 2006. “A Sensor Network Simulator for the Contiki OS.” SICS Research
Report.

Qi, Jun et al. 2017. “Advanced Internet of Things for Personalised Healthcare Systems: A

58

Survey.” Pervasive and Mobile Computing 41: 132–49.
http://dx.doi.org/10.1016/j.pmcj.2017.06.018.

Qi, Jun, Po Yang, Dina Fan, and Zhikun Deng. 2015. “A Survey of Physical Activity
Monitoring and Assessment Using Internet of Things Technology.” Proceedings -
15th IEEE International Conference on Computer and Information Technology, CIT
2015, 14th IEEE International Conference on Ubiquitous Computing and
Communications, IUCC 2015, 13th IEEE International Conference on Dependable,
Autonomic and Se: 2353–58.

Sehgal, Anuj. 2013. “Using the Contiki Cooja Simulator.” Computer Science, Jacobs
University Bremen Campus Ring 1: 28759.

Shelby, Z., K. Hartke, and C. Bormann. 2014. The Constrained Application Protocol
(CoAP).

Swaroop, K. Narendra, Kavitha Chandu, Ramesh Gorrepotu, and Subimal Deb. 2019. “A
Health Monitoring System for Vital Signs Using IoT.” Internet of Things 5: 116–29.
https://doi.org/10.1016/j.iot.2019.01.004.

Tran, Van Loc, Anik Islam, Jeevan Kharel, and Soo Young Shin. 2018. “On the
Application of Social Internet of Things with Fog Computing: A New Paradigm for
Traffic Information Sharing System.” Proceedings - 2018 IEEE 6th International
Conference on Future Internet of Things and Cloud, FiCloud 2018: 349–54.

Ugrenovic, Dejana, and Gordana Gardasevic. 2016. “CoAP Protocol for Web-Based
Monitoring in IoT Healthcare Applications.” In 2015 23rd Telecommunications Forum,
TELFOR 2015, , 79–82.

Vilajosana, Xavier, Pere Tuset, Thomas Watteyne, and Kris Pister. 2015. “OpenMote:
Open-Source Prototyping Platform for the Industrial IoT.” In International Conference
on Ad Hoc Networks, Springer, 211–22.

Wan, Jie et al. 2018. “Wearable IoT Enabled Real-Time Health Monitoring System.”
Eurasip Journal on Wireless Communications and Networking 2018(1).

Watteyne, Thomas et al. 2012. “OpenWSN: A Standards‐based Low‐power Wireless
Development Environment.” Transactions on Emerging Telecommunications
Technologies 23(5): 480–93.

Wayangankar, Sravani Ganesh, and Priti Prakash Jorvekar. 2018. “Survey on Internet of
Things in the Fog.” 2018 IEEE Global Conference on Wireless Computing and
Networking (GCWCN): 80–86. https://ieeexplore.ieee.org/document/8668610/.

Yang, Yang, Ximeng Liu, and Robert H. Deng. 2018. “Lightweight Break-Glass Access
Control System for Healthcare Internet-of-Things.” IEEE Transactions on Industrial
Informatics 14(8): 3610–17.

YIN, Yuehong, Yan Zeng, Xing Chen, and Yuanjie Fan. 2016. “The Internet of Things in
Healthcare: An Overview.” Journal of Industrial Information Integration 1: 3–13.
http://dx.doi.org/10.1016/j.jii.2016.03.004.

