by
HAKAN ÖZTÜRK

THESIS SUBMITTED TO
THE GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES
OF
THE ABANT İZZET BAYSAL UNIVERSITY
IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF SCIENCE

IN
THE DEPARTMENT OF MATHEMATICS

JANUARY 2009

Approval of the Graduate School of Natural and Applied Sciences.

Prof. Dr. Nihat Çelebi
Director

I certify that this thesis satisfies all the requirements as a thesis for the degree of Master of Science.

Prof. Dr. Zafer Ercan
Head of Department

This is to certify that we have read this thesis and that in our opinion it is fully adequate, in scope and quality as a thesis for the degree of Master of Science.

Assist. Prof. Dr. Cesim Çelik

Supervisor

Examining Committee Members

Assoc. Prof. Dr. Ali Erdoğan
Assist. Prof. Dr. Tahire Özen
Assist. Prof. Dr. Cesim Çelik

ABSTRACT
CS-MODULES AND GENERALIZATIONS OF CS-MODULES
Öztürk, Hakan
M.Sc., Department of Mathematics
Supervisor: Assist. Prof. Dr. Cesim Çelik
January 2009, 55 pages

This study contains $C S$-modules (extending modules), and P-extending and $E F$ extending modules which are generalizations of $C S$-modules.

This study consists of three sections: In section 1, we present some definitions and theorems which will be used in the following sections. Section 2 contains a general characterization of $C S$-modules. It is known that every direct summand of a $C S$ module is a $C S$-module too. However, the direct sum of $C S$-modules may not be a $C S$-module. In this section, it is given under which conditions the direct sum of $C S$-modules are $C S$-modules.

In section, after giving some characterizations and features of principally injective modules, the following results of the P-extending and $E F$-extending modules which are the generalizations of principally injective modules are studied.

Let M be a quasi-principally injective module and $S=\operatorname{End}(M)$ and $K, H \leq M$. If $K \cong H$,then $S H=S K$.

If M has the condition $\left(P C_{2}\right)$,then M has the property $\left(P C_{3}\right)$.
Under which conditions, direct sums of P-extending modules is P-extending is given.

Some examples regarding converse of the implication which is not true are given.
Under which conditions, an ef-extending module is extending is given.

Definitions of $E C$-submodules and $E C$-injective modules are given and by means of these definitions, under which conditions the module $M=M_{1} \oplus M_{2}$ is P-extending is given.

Keywords: essential submodules, complement submodules, injective modules, CS-modules, ef-extending and P -extending modules.

ÖZET

CS-MODÜLLER VE CS-MODÜLLERİN GENELLEMELERİ
Öztürk, Hakan
Master Tezi, Matematik Bölümü
Tez Yöneticisi: Yard. Doç. Dr. Cesim Çelik

Ocak 2009, 55 sayfa

Üç bölümden oluşan bu çalışma, $C S$-modülleri (extending modules) ve bu modullerin genellemeleri olan P-extending, $E F$-extending modüllerin karakterizasyonunu içermektedir.

Birinci bölüm, diğer bölümlerde kullanılan temel tanım ve teoremlerden oluşmaktadır.
İkinci bölüm, $C S$-modüllerin genel bir karakterizasyonunu içermektedir. Bir $C S$ modülün her dik toplananınında bir $C S$-modül olduğu bilinmektedir. Ancak, $C S$ modüllerin dik toplamları her zaman $C S$-modül değildir. Bu bölümde, $C S$-modüllerin hangi koşullar altında yine $C S$-modül olduğu verilmiştir.

Üçüncü bölümde, temel injektif (principally injective) modüllerin bazı karakterizasyonları ve özellikleri verildikten sonra, temel injektif modüllerin birer genellemeleri olan P-extending ve $E F$-extending modüllerin karakterizasyonuyla ilgili aşağıgaki sonuçlar incelenmiştir.
M yarı temel injektif (quasi-principally injective) modül, $K, H \leq M$ ve $S=$ $\operatorname{End}(M)$ olmak üzere, $K \cong H$ ise $S H=S K$.
M, $\left(P C_{2}\right)$ 'yi sağlıyor ise $M,\left(P C_{3}\right)$ özelliğini sağlar.
P-extending modüllerin dik toplamı ne zaman P-extending modüldür.
"extending \Rightarrow ef-extending \Rightarrow uniform-extending" önermesinin tersinin doğru olmadığına dair örnekler verildi.

Bir ef-extending modülün ne zaman extending modül olduğu verildi.
$E C$-altmodül ve $E C$-injektif modül tanımları verilip, bu tanımlar yardımıyla, $M=M_{1} \oplus M_{2}$ modülünün hangi koşullar altında P-extending modül olduğu verilmiştir.

Anahtar Kelimeler: esas altmodül, injektif modül, CS-modül, ef-extending modül, P -extending modül.

To My Family,

ACKNOWLEGMENTS

I would like to express my sincere appreciation to my supervisor Assist. Prof. Dr. Cesim Çelik who has guided, encouraged and helped me in many ways throughout the thesis.

I would also like to thank to the other examining committee members for their sugesstions.

Finally I thank to my family and friends for their support and encouragement.

TABLE OF CONTENTS

ABSTRACT iii
ÖZET v
ACKNOWLEGMENTS viii
TABLE OF CONTENTS ix
1 INRODUCTION AND PRELIMINARIES 1
1.1 Essential and Complement Submodules 1
1.2 Semi-simple Modules 3
1.3 Finite Uniform Dimension Modules 4
1.4 Injective Modules 5
1.5 Continuous Modules 7
2 FINITE DIRECT SUMS OF CS-MODULES 9
2.1 Arbitrary Direct Sums 23
2.2 UC-modules 23
2.3 Modules with Semisimple Summands 25
3 ON P-EXTENDING AND EF-EXTENDING MODULES 29
REFERENCES 51

CHAPTER 1

INRODUCTION AND PRELIMINARIES

1.1 Essential and Complement Submodules

Definition 1.1 Let M be a right R-module and N be a submodule of $M . N$ is called essential submodule of $M\left(N \leq_{e} M\right)$ if $N \cap K \neq 0$ for any submodule K of M with $K \neq 0$.

Definition 1.2 Let M be a right R-module and $A, B \leq M$. A is called complement of B in M if A is maximal with respect to the property $A \cap B=0$. If a submodule N of M is complement submodule in M, then it is denoted by $N \leq_{c} M$.

Proposition 1.3 Let M be a right R-module.
(i) $N \leq_{e} M$ if and only if $N \cap m R \neq 0$ for every $0 \neq m \in M$.
(ii) Let $K \leq N \leq M . K \leq_{e} M$ if and only if $K \leq_{e} N$ and $N \leq_{e} M$.
(iii) Let $N \leq_{e} M$ and $K \leq M$. Then $N \cap K \leq_{e} K$.
(iv)Let $N_{i} \leq_{e} K_{i}$ for $1 \leq i \leq t$. Then $N_{1} \cap N_{2} \cap \ldots \ldots . \cap N_{t} \leq_{e} K_{1} \cap K_{2} \cap \ldots . . . \cap K_{t}$.
(v) Let $K \leq N \leq M$. If $(N / K) \leq_{e}(M / K)$, then $N \leq_{e} M$.
(vi) If $K \leq_{c} N \leq_{e} M$ then $(N / K) \leq_{e}(M / K)$.
(vii) Let $N \leq_{e} M$ and $m \in M .(N: m)=\{r \in R: m r \in N\} \leq_{e} R_{R}$.
(viii) Let $N_{i} \leq_{e} M_{i}(i \in I)$ for a nonempty index set I. Then $\oplus_{I} N_{i} \leq_{e} \oplus_{I} M_{i}$.

Lemma 1.4 Let M be a right R-module and $A, B \leq M$. If $A \cap B=0$, there exists a complement C of B such that $A \leq_{e} C$ and $C \oplus B \leq_{e} M$.

There are two kinds of complement definitions in literature. The first one is above. At the same time this definition is known as complement in Faith meaning. The second one is complement in Harada meaning : Let R be a ring and let M be an R-module. For $N \leq M$, the submodule $C l_{M}(N)=\left\{m \in M:(N: m) \leq_{e} R\right\}$ is called the closure of N in M. If $C l_{M}(N)=N, N$ is called the complement in Harada meaning.

Every complement submodule in Harada meaning is complement submodule in Faith meaning, but in general, the converse of the above implication is not true.

Example 1.5 Let Z be a Z-module and $E=E\left(Z_{Z}\right)\left(\right.$ where $E=E\left(Z_{Z}\right)$ is the minimal injective Z-module contains Z_{Z} as essential). Let p be a prime integer and let $M=$ $E \oplus Z_{p}$. $C l_{M}(E)=E$ and $C l_{M}\left(Z_{p}\right)=Z_{p}$. Let $K \leq_{c} E \oplus Z_{p}$. For each $x \in K$, there exists $x^{\prime} \in E$ and $n^{\prime} \in Z_{p}$ such that $x=\left(x^{\prime}, n^{\prime}\right)$. If $K<E$ or $K<Z_{p}, C l_{M}(K)=E \neq K$ or $C l_{M}(K)=Z_{p} \neq K$. Let $K \not \leq E$ and $K \nsucceq Z_{p}$. For $0 \neq x \in K, x=\left(x^{\prime}, n^{\prime}\right): 0 \neq x^{\prime} \in E$, $0 \neq n^{\prime} \in Z_{p} . Z x^{\prime} \leq K$ and $Z n^{\prime} \leq K$, also $x^{\prime} \in E$ and $n^{\prime} \in Z_{p}$ then $Z x^{\prime} \leq_{e} E$ and $Z n^{\prime} \leq_{e} Z_{p}$. For each $x \in E,\left(Z x^{\prime}: x\right) \leq_{e} Z$ and for each $n \in Z_{p},\left(Z n^{\prime}: n\right) \leq_{e} Z$. $(x, n) \in E \oplus Z_{p}$ and

$$
I=\left(Z x^{\prime}: x\right) \cap\left(Z n^{\prime}: n\right) \leq_{e} Z
$$

since $I(x, n) \leq K,(x, n) \in C l_{M}(K)$. Hence $C l_{M}(K)=E \oplus Z_{p} \neq K$.

Definition 1.6 Let M be a right R-module. Then the submodule of M

$$
Z(M)=\left\{m \in M: r_{R}(m) \leq_{e} R\right\} .
$$

is called singular submodule of M. If $Z(M)=M,(Z(M)=0)$, then M is called singular (nonsingular) R-module.

$$
Z_{2}(M)=\{m \in M: m+Z(m) \in Z(M / Z(M))\} .
$$

$Z_{2}(M)$ is a submodule of M and it is the largest singular submodule of M. Also $Z(M) \leq_{e} Z_{2}(M)$. In fact, let $m \in Z_{2}(M)$. Then $m+Z(m) \in Z(M / Z(M))$. This implies that there exists an essential ideal I in R such that $m I \leq Z(M)$. Hence $Z(M) \leq_{e} Z_{2}(M)$.

Lemma 1.7 Let M be a nonsingular right R-module and let N be a submodule of M. Then ;
(i) $N \leq_{e} M$ if and only if $Z(M / N)=M / N$.
(ii) $Z_{2}(M) \leq_{c} M$.

Proposition 1.8 Let M be a nonsingular right R-module. The submodule K of M is the complement in Harada meaning if and only if K is the complement in Faith meaning.

Definition 1.9 Let M be a right R-module and $N \leq M . K$ is called essential closure of N in M such that $N \leq_{e} K \leq_{c} M$.

Proposition 1.10 Let M be a right R-module and $N \leq K \leq M$. Then
(i) $N \leq_{c} M$ if and only if the essential closure of N in M is itself.
(ii) $N \leq_{c} K \leq_{c} M$ then $N \leq_{c} M$ and if $N \leq_{c} M$ then $N \leq_{c} K$.
(iii) If L is the complement of N in M and U is the complement of L in M with $N \leq U$, then $N \leq_{e} U$.
(iv) L is essential closure of N in M if and only if L is the maximal submodule with respect to the property $N \leq_{e} L$ if and only if L is the minimal submodule of the complement submodules which contain N in M.

1.2 Semi-simple Modules

Definition 1.11 Let M be a right R-module. The submodule

$$
\begin{gathered}
\operatorname{Soc}(M)=\bigcap\{N \leq M: N \text { is essential submodule }\} \\
=\sum\{N \leq M: N \text { is simple submodule }\}
\end{gathered}
$$

is called socle of M.

Lemma 1.12 Let M be a right R-module. $\operatorname{Soc}(M)$ is direct summand of simple submodules of M. i.e. $\operatorname{Soc}(M)=\bigoplus_{i \in I} M_{i}$ where M_{i} is simple submodule of M for all $i \in I$.

Theorem 1.13 Let M be a right R-module. The followings are equivalent.
(i) Every submodule of M is a sum of the simple submodules of M.
(ii) M is a sum of simple submodules of M.
(iii) M is a direct sum of simple submodules of M.
(iv) Every submodule of M is a direct summand of M.

Definition 1.14 Let M be a right R-module. M is called a semi-simple module if M satisfies one of the conditions of Theorem 1.13.

Corollary 1.15 (i) Every submodule of a semi-simple module is semi-simple.
(ii) Homomorphic image of every semi-simple module is semi-simple.
(iii) Every sum of semi-simple modules is semi-simple.

Lemma 1.16 Let $\left\{M_{i}: i \in I\right\}$ be a family of modules. Then

$$
\bigoplus_{i \in I} \operatorname{Soc}\left(M_{i}\right)=\operatorname{Soc}\left(\bigoplus_{i \in I} M_{i}\right) .
$$

1.3 Finite Uniform Dimension Modules

Definition 1.17 Let M be a right R-module. M is called uniform module if every submodule of M is essential in M.

Definition 1.18 Let M be a right R-module. Then we call M has a finite uniform dimension (finite Goldie dimension) if there exists an independent sequence $H_{1}, H_{2}, \ldots, H_{n}$ $(n<\infty)$ of uniform submodules of M with $H_{1} \oplus H_{2} \oplus \ldots . \oplus H_{n} \leq_{e} M$. Also it is denoted by $\operatorname{ud}(M)=n<\infty$

Proposition 1.19 Let M be a right R-module and $A \leq M$.
(i) M has a finite uniform dimension if and only if every submodule of M has a finite uniform dimension.
(ii) If $A \leq_{c} M$ has a finite uniform dimension then (M / A) has a finite uniform dimension.
(iii) If $A_{1}, A_{2}, \ldots, A_{n} \leq M$ and for each i, A_{i} has a finite uniform dimension then $A_{1} \oplus A_{2} \oplus \ldots \oplus A_{n}$ has a finite uniform dimension.
(iv) If $A \leq_{e} M$ and A has a finite uniform dimension then M has a finite uniform dimension.

Lemma 1.20 Let M be a right R-module.
(i) If $A_{1}, A_{2}, \ldots, A_{n} \leq M$ then

$$
u d\left(A_{1} \oplus A_{2} \oplus \ldots \oplus A_{n}\right)=u d\left(A_{1}\right)+u d\left(A_{2}\right)+\ldots .+u d\left(A_{n}\right)
$$

(ii) Let $A \leq M$ and A has a finite uniform dimension. Then $A \leq_{e} M$ if and only if $u d(M)=u d(A)$.

Proposition 1.21 Let M be a right R-module and $A \leq M$.
(i) If $A \leq_{c} M$ then $u d(M)=u d(A)+u d(M / A)$.
(ii) Let M has a finite uniform dimension. If $u d(M)=u d(A)+u d(M / A)$ then $A \leq_{c} M$.

1.4 Injective Modules

Definition 1.22 Let R be a ring. Let M and A be R-modules with identity. If every homomorphism from a submodule X of A to M extend from A to M then M is said to be A-injective. For every R-module A if M is A-injective then M is called injective module. If M is M-injective then M is called quasi-injective module. M and A are called relatively injective if M is A-injective and A is M-injective.

Note : If M is R_{R} injective then M is injective.

Proposition 1.23 Let $\left\{M_{i}: i \in I\right\}$ be a family of R-modules. $\prod_{i \in I} M_{i}$ is injective if and only if for each $i \in I, M_{i}$ is injective.

Proposition 1.24 Let M be a right R-module.
(i) M is injective if and only if M is a direct summand of every R-module which contains M.
(ii) Let A be an R-module and B be a submodule of A. If M is A-injective then M is A / B and B-injective.

Proof. It is clear that M is B-injective. Let $X \leq A$ and X / B be a submodule of A / B and $\varphi: X / B \rightarrow M$ be a homomorphism. Let $\pi: A \rightarrow A / B$ be projection map and $\pi^{\prime}=\left.\pi\right|_{X}$. Since M is A-injective, there exists a homomorphism $\theta: A \rightarrow M$ that extends $\varphi \pi^{\prime}$. Now $\theta(B)=\left(\varphi \pi^{\prime}\right)(B)=\varphi(0)=0$. Hence $\operatorname{Ker} \pi \leq \operatorname{Ker} \theta$. Hence there exists a homomorphism $\psi: A / B \rightarrow M$ such that $\psi \pi=\theta$. For every $x \in X$

$$
\psi(x+B)=\psi(\pi(x))=\theta(x)=\varphi \pi^{\prime}(x)=\varphi(x+B) .
$$

Thus ψ extends φ, and therefore N is A / B-injective.

Proposition 1.25 A module M is $\left(\bigoplus_{i \in I} A_{i}\right)$-injective if and only if M is A_{i}-injective for every $i \in I$.

Proof. Assume that M is A_{i}-injective for all $i \in I$. Let $A=\bigoplus_{i \in I} A_{i}, X \leq A$ and consider a homomorphism $\varphi: X \rightarrow M$. We may assume, by Zorn's Lemma, that φ cannot be extended to a homomorphism $X^{\prime} \rightarrow M$ for any submodule X^{\prime} of A which contains X properly. Then $X \leq_{e} A$. We claim that $X=A$. Suppose not. Then there exists $j \in I$ and $a \in A_{j}$ such that a is not an element of X. Since M is A_{j}-injective, M is $a R$-injective. Let $K=\{r \in R: a r \in X\}$. K is an ideal of R and $a K$ is a submodule of $a R$ and also $a K \leq X . M=\left.\varphi\right|_{a K}: a K \rightarrow M$ is a homomorphism and extends to a homomorphism $\beta: a R \rightarrow M$. Let $\psi: X+a R \rightarrow M$ be defined by $\psi(x+a r)=\varphi(x+\beta(a r)) .\left.\psi\right|_{X}=\varphi$. This is a contradiction by maximality of φ. Then $X=A$.

Definition 1.26 Let M be a right R-module. The injective module which contains M as essential is called the injective hull of M and it is denoted by $E(M)$.

Proposition 1.27 Let M be a right R-module. The following are equivalent.
(i) The injective hull of M is $E(M)$.
(ii) $E(M)$ is the maximal module of the modules which contains M as essential.
(iii) $E(M)$ is the minimal module of the injective modules which contain M.

1.5 Continuous Modules

Definition 1.28 Let R be a ring and let M be a right R-module. If every complement submodule K of M is a direct summand of M then M is called $C S$-module ($\left(C_{1}\right)$ condition holds). Equivalently, for every submodule K of M there exists a direct summand N of M such that K is essential in N.

The ring R is called right CS-ring if R_{R} is $C S$-module. For every $I \leq_{c} R_{R}$ there exists idempotent $e \in R$ such that $I=e R$. For example, semi-simple modules, uniform modules and injective modules are CS-modules.

Every complement of a $C S$-module is $C S$-module. But any submodule of a $C S$-module may not be $C S$-module. For example, let M be not a $C S$-module. Since $E(M)$ is injective module, $E(M)$ is $C S$-module. M is essential in $E(M)$ but M is not $C S$ module. Also the direct sum of two $C S$-modules may not be $C S$-module.

Example 1.29 Let Z denote the integers, let p be any prime, let $M_{1}=Z / Z_{p}$ and let $M_{2}=Z / Z_{p^{3}} . M_{1}$ and M_{2} are CS-Z-modules. But $M=M_{1} \oplus M_{2}$ is not $C S$-module .

Definition 1.30 A right R module M is called indecomposable module if M has no non-zero proper direct summand. Equivalently, M is indecomposable if and only if for any $K \leq_{d} M, K=0$ or $K=M$.

Proposition 1.31 Let M be an indecomposable right R-module. If M is $C S$-module then M is uniform module.

Definition 1.32 Let M be a right R-module.
$\left(C_{2}\right):$ Every submodule of M which isomorphic to a direct summand of M is a direct summand of M.
$\left(C_{3}\right)$: If N_{1}, N_{2} be two direct summands of M such that $N_{1} \cap N_{2}=0$, then $N_{1} \oplus N_{2}$ is a direct summand of M.

Lemma 1.33 Every direct summand of M satisfying $\left(C_{i}\right)(i=1,2)$ satisfies $\left(C_{i}\right)(i=$ 1,2).

Definition 1.34 A right R-module M is called continuous (quasi-continuous) if M is $C S$-module satisfying the condition $\left(C_{2}\right)\left(\left(C_{3}\right)\right)$.

Lemma 1.35 Every module M satisfying the condition $\left(C_{2}\right)$ satisfies the condition $\left(C_{3}\right)$.

Proof. Let K, L be direct summands of M with $K \cap L=0, M=K \oplus K^{\prime}$ for a submodule K^{\prime} of M. Let $\pi: M \rightarrow K^{\prime}$ be the projection map. $K \cap L=0$ then $\pi(L) \cong L$ and $\pi(L) \leq K^{\prime}$. By the condition $\left(C_{2}\right), \pi(L) \leq M$ and hence $M=\pi(L) \oplus L^{\prime}$ for a submodule L^{\prime} of M. Then $K^{\prime}=\pi(L) \oplus\left(K^{\prime} \cap L^{\prime}\right)$ and $M=K \oplus \pi(L) \oplus\left(K^{\prime} \cap L^{\prime}\right)$. Hence $K \oplus \pi(L) \leq_{d} M$. $K \oplus \pi(L)=K \oplus L$ then $K \oplus L \leq_{d} M$.

CHAPTER 2

FINITE DIRECT SUMS OF CS-MODULES

In this chapter, all rings are associative with identity element and all modules are unital right modules. We concern with when a direct sum of $C S$-modules is $C S$-module. In [45], it is proved that for any ring R, the direct sum $M=\bigoplus_{i \in I} M_{i}$ is $C S$ if and only if there exists $i \neq j$ in I such that every closed submodule K of M with $K \cap M_{i}=0$ or $K \cap M_{j}=0$ is direct summand. In addition, if R is any ring, M_{1} is a uniform R-module of finite composition length and M_{2} is a simple R-module, then $M_{1} \oplus M_{2}$ is $C S$ if and only if M_{2} is M_{1} / N-injective for every non-zero submodule N of M_{1}. In [18], it is proved that if M_{1} and M_{2} are relatively injective $C S$-modules then $M=M_{1} \oplus M_{2}$ is CS-module.

Lemma 2.1 Let M be any module and $K \subseteq L$ submodules of M such that K is a complement in L and L is a complement in M. Then K is a complement in M.

Proof. Let K_{1} be a complement of K in L. Then $K \cap K_{1}=0$ and $K \oplus K_{1}$ is essential in L. Let L_{1} be a complement of L in M. Then $L \cap L_{1}=0$ and $L \oplus L_{1}$ is essential in M.

$$
\frac{K \oplus K_{1}}{K} \complement^{e s s} \frac{L}{K} \text { and } \frac{L \oplus L_{1}}{L} \complement^{e s s} \frac{M}{L}
$$

Claim: $\frac{K+K_{1}+L_{1}}{K} \bigwedge^{e s s} \frac{M}{K}$
proof. Observe first that

$$
\left(K+K_{1}\right) \cap\left(K+L_{1}\right)=K+\left(\left(K+K_{1}\right) \cap L_{1}\right) \subseteq K+\left(L \cap L_{1}\right)=K .
$$

We have

$$
\frac{K+K_{1}+L_{1}}{K}=\frac{K+K_{1}}{K} \oplus \frac{K+L_{1}}{K} \subseteq^{e s s} \frac{L}{K} \oplus \frac{K+L_{1}}{K}=\frac{L+L_{1}}{K}
$$

So it suffices to show that $\frac{L+L_{1}}{K} \subseteq^{e s s} \frac{M}{K}$. Let $\alpha: \frac{M}{K} \rightarrow \frac{M}{L}$ given by $\alpha(m+K)=m+L$. Since $\frac{L \oplus L_{1}}{L} \complement^{\text {ess }} \frac{M}{L}$ and $\alpha^{-1}\left(\frac{L \oplus L_{1}}{L}\right)=\frac{L+L_{1}}{K}, \frac{L+L_{1}}{K} \complement^{e s s} \frac{M}{K}$. This proves the claim.

Now suppose that $K \subseteq^{e s s} N \subseteq M$. We must show that $K=N . K \cap\left(K_{1}+L_{1}\right)=0$ (in fact, if $k \in K \cap\left(K_{1}+L_{1}\right)$, then $k=k_{1}+l_{1}$ where $k_{1} \in K_{1}, l_{1} \in L_{1}$. Then $\left.k-k_{1}=l_{1} \in L \cap L_{1}=0\right)$. Since $K \complement^{\text {ess }} N, N \cap\left(K_{1}+L_{1}\right)=0$. Hence $\frac{N}{K} \cap \frac{L+L_{1}+K_{1}}{K}=0$ implies that $\frac{N}{K}=0$ and so $N=K$.

Lemma 2.2 Any direct summand of a CS-module is a CS-module.

Proof. Let M be a $C S$-module and M_{1} be a direct summand of M. Let K be a complement submodule of M_{1}. By Lemma $2.1, K$ is a complement in M. Since M is $C S$-module, K is a direct summand of M. Then there exists a direct summand K_{1} of M such that $M=K \oplus K_{1}$. By modularity $M_{1}=M \cap M_{1}=M_{1} \cap\left(K \oplus K_{1}\right)=K \oplus\left(M_{1} \cap K_{1}\right)$. Hence K is a direct summand of M_{1} and so M_{1} is a $C S$-module.

Proposition 2.3 Any indecomposable module M is a CS-module if and only if M is uniform.

Proof. Let M be an indecomposable $C S$-module. Let N be a submodule of M such that it is not essential in M. Since M is $C S$-module, there exists a direct summand K of M such that $N \subseteq^{e s s} K \subseteq^{d} M$. Since M is indecomposable, $K=M$. This is a contradiction. Thus, M is uniform.

Conversely, suppose that M is indecomposable uniform module. Let K be a nonzero complement submodule of M. Then there exists a submodule L of M such that $K \cap L=0$ and $K \oplus L \subseteq^{e s s} M$. Since M is uniform, $L=0$ and also $K=M$.

Proposition 2.4 Any (quasi-)injective module M is a CS-module.

Proof. Let N be a submodule of M. Then $E(M)=E_{1} \oplus E_{2}$ where $E_{1}=E(N)$. The quasi-injectivity of M implies that $M=\left(M \cap E_{1}\right) \oplus\left(M \cap E_{2}\right)$. Since $N \subseteq^{e s s} E_{1}$, $N \subseteq^{e s s} M \cap E_{1} \subseteq^{d} M$.

In general, it is not true that the direct sum of two $C S$-module is $C S$-module.

Lemma 2.5 Let K be a complement in M. Then K is a direct summand of M if and only if there exists a complement L of K in M such that every homomorphism $\varphi: K \oplus L \rightarrow M$ can be lifted to a homomorphism $\theta: M \rightarrow M$.

Proof. Suppose first that K is a direct summand of M. Then $M=K \oplus K^{\prime}$ for some module K^{\prime} of M. Clearly, $L=K^{\prime}$ will do.

Conversely, suppose that there exists a complement L of K in M with the stated property. Let $\varphi: K \oplus L \rightarrow M$ be the homomorphism defined by

$$
\varphi(x+y)=x(x \in K, y \in L) .
$$

By hypothesis, there exists a homomorphism $\theta: M \rightarrow M$ such that

$$
\theta(x+y)=x(x \in K, y \in L) .
$$

Note that $K \subseteq \operatorname{im} \theta$ and $L \subseteq k e r \theta$.
Let $0 \neq v \in \operatorname{im} \theta$. Then there exists $u \in M$ such that $v=\theta(u)$. Note that $u \notin L$. Thus $K \cap(L+u R) \neq 0$. There exists $x \in K, y \in L$ and $r \in R$ such that $0 \neq x=y+u r$. Then $x=\theta(x)=\theta(y+u r)=v r$. It follows that $v R \cap K \neq 0$ for all non-zero $v \in \operatorname{im} \theta$. Thus K is an essential submodule of $\operatorname{im} \theta$. But K is a complement in M. Hence $K=i m \theta$.

Corollary 2.6 A module satisfies $\left(C_{1}\right)$ if and only iffor every complement K in M there exists a complement L of K in M such that every homomorphism $\varphi: K \oplus L \rightarrow M$ can be lifted to a homomorphism $\theta: M \rightarrow M$.

Proof. Immediate by Lemma 2.5.

Let n be a positive integer. We consider the following condition for a module M :
$\left(P_{n}\right)$ For every submodule K of M such that K is a direct sum $K_{1} \oplus \ldots \oplus K_{n}$ of complements $K_{i}(1 \leq i \leq n)$ in M, every homomorphism $\varphi: K \rightarrow M$ can be lifted to a homomorphism $\theta: M \rightarrow M$.

It is clear that if M satisfies $\left(P_{n}\right)$ then M satisfies $\left(P_{n-1}\right)$ for all $n \geq 2$. Modules satisfying $\left(P_{1}\right)$ have been considered in [44].

Example 2.7 Let Z denote the integers, let p be any prime, let $M_{1}=Z / Z_{p}$ and let $M_{2}=Z / Z_{p^{3}} . M_{1}$ and M_{2} are CS-Z-modules. But $M=M_{1} \oplus M_{2}$ is not $C S$-module .

Theorem 2.8 Let M be any module, and let $Z_{2}(M)$ denote its second singular submodule. Then M is a CS -module if and only if $M=Z_{2}(M) \oplus N$, where $Z_{2}(M)$ and N are CS-modules and $Z_{2}(M)$ is N-injective.

Proof. Suppose that M is a $C S$-module. Since $Z_{2}(M)$ is closed in M and M is a $C S$-module, we have $M=Z_{2}(M) \oplus N$, where N is non-singular. By Lemma 2.2, $Z_{2}(M)$ and N are $C S$-modules.

To show that $Z_{2}(M)$ is N-injective, let $\phi: X \rightarrow Z_{2}(M)$ be a homomorphism from a submodule X of N to $Z_{2}(M)$. Consider

$$
X_{1}=\{x-\phi(x) \mid x \in X\} .
$$

Since M is $C S$-module, there exists $X_{1} \leq_{e} X^{*} \leq_{d} M$. Write $M=X^{*} \oplus Y$ where Y is a submodule of M. Let $x \in X_{1} \cap Z_{2}(M)$. Then $x=z-\phi(z)$ where $z \in X$. It follows that $x+\phi(z)=z \in X \cap Z_{2}(M)=0$. So $X_{1} \cap Z_{2}(M)=0$ and also $X^{*} \cap Z_{2}(M)=0$. Thus X^{*} is non-singular and that $Z_{2}(M)=Z_{2}(Y) \leq_{d} Y$, say $Y=Y_{1} \oplus Z_{2}(M)$. Let $\pi: X^{*} \oplus Y_{1} \oplus Z_{2}(M) \rightarrow Z_{2}(M)$ be the projection. $\alpha=\left.\pi\right|_{N}$ extends ϕ. In fact, for any $x \in X, x=(x-\phi(x))+\phi(x)$.

$$
\pi(x)=\pi((x-\phi(x))+\phi(x))=\pi(x-\phi(x))+\pi(\phi(x))=\phi(x) .
$$

Conversely, let $M=Z_{2}(M) \oplus N$, where $Z_{2}(M)$ and N are $C S$-modules and $Z_{2}(M)$ is N-injective. Let A be a complement submodule of M. Since $Z_{2}(M)$ is $C S$-module, we have $Z_{2}(A) \subseteq_{d} Z_{2}(M)$, and hence $Z_{2}(A) \subseteq_{d} A$. Write $A=Z_{2}(A) \oplus B$, where B is a nonsingular submodule of A. Since $B \cap Z_{2}(M)=0$ and $Z_{2}(M)$ is N-injective, there exists a homomorphism $\psi: N \rightarrow Z_{2}(M)$ such that $\left.\psi \pi_{2}\right|_{B}=\left.\pi_{1}\right|_{B}$, where $\pi_{1}: M \rightarrow Z_{2}(M)$ and $\pi_{2}: M \rightarrow N$ are projections. Consider

$$
N^{*}=\{n+\psi(n) \mid n \in N\} .
$$

For $x \in B, x=m_{1}+m_{2}$, where $m_{1} \in Z_{2}(M), m_{2} \in N$.

$$
x=m_{1}+m_{2}=\pi_{1}(x)+\pi_{2}(x)=\pi_{2}(x)+\psi\left(\pi_{2}(x)\right) \in N^{*} .
$$

Hence $B \subseteq N^{*}$. It follows that B is closed in N^{*}. Let $x \in N^{*} \cap Z_{2}(M)$. Then there exists $n \in N$ such that $x=n+\psi(n)$ and $x-\psi(n)=n \in N \cap Z_{2}(M)=0$ and so $x=0$. This implies that $N^{*} \cap Z_{2}(M)=0$. For any $m \in M, m=m_{1}+m_{2} ;$ where $m_{1} \in Z_{2}(M), m_{2} \in N . m=m_{1}+m_{2}=\left(m_{1}+\psi\left(m_{2}\right)\right)+\left(m_{2}-\psi\left(m_{2}\right)\right) \in Z_{2}(M)+N^{*}$. Hence $M=Z_{2}(M) \oplus N^{*}=Z_{2}(M) \oplus N$, implies $N^{*} \cong N$. Since $N^{*} \cong N, N^{*}$ is a $C S$-module, we have $B \leq_{d} N^{*}$. It is clear that $M=Z_{2}(M) \oplus N^{*}$; therefore $A \leq_{d} M$.

Lemma 2.9 Let a module $M=M_{1} \oplus M_{2}$ be a direct sum of submodules M_{1}, M_{2}. Then the following statements are equivalent.
(i) M_{2} is M_{1}-injective.
(ii) For each submodule N of M with $N \cap M_{2}=0$, there exists a submodule M^{\prime} of M such that $M=M^{\prime} \oplus M_{2}$ and $N \subseteq M^{\prime}$.

Proof. (i) \Rightarrow (ii). For $i=1,2$, let $\pi_{i}: M \rightarrow M_{i}$ denote the projection mapping. Let $\alpha=\left.\pi_{1}\right|_{N}$ and $\beta=\left.\pi_{2}\right|_{N}$. Then α is a monomorphism. By (i), there exists a homomorphism $\phi: M_{1} \rightarrow M_{2}$ such that $\phi \alpha=\beta$. Let

$$
M^{\prime}=\left\{x+\phi(x): x \in M_{1}\right\} .
$$

Since $M^{\prime} \cap M_{2}=0$ and $M=M^{\prime}+M_{2}, M=M^{\prime} \oplus M_{2}$. For $x \in N, x=m_{1}+m_{2}$, where $m_{1} \in M_{1}, m_{2} \in M_{2}$.

$$
x=m_{1}+m_{2}=\pi_{1}(x)+\pi_{2}(x)=\pi_{1}(x)+\phi\left(\pi_{1}(x)\right) \in M^{\prime} .
$$

Hence $N \subseteq M^{\prime}$.
(ii) \Rightarrow (i). Let K be a submodule of M_{1}, and $\alpha: K \rightarrow M_{2}$ be a homomorphism. Let

$$
L=\{y-\alpha(y): y \in K\} .
$$

Then L is a submodule of M and $L \cap M_{2}=0$. By (ii), $M=L^{\prime} \oplus M_{2}$ for some submodule L^{\prime} such that $L \leq L^{\prime}$. Let $\pi: L^{\prime} \oplus M_{2} \rightarrow M_{2}$ denote the canonical projection. Then $\beta=\left.\pi\right|_{M_{1}}: M_{1} \rightarrow M_{2}$ and, for any $y \in K$,

$$
\beta(y)=\beta((y-\alpha(y))+\alpha(y))=\alpha(y) .
$$

It follows that β lifts α to M_{1}. Thus M_{2} is M_{1}-injective.

Theorem 2.10 Let M be a module such that $M=M_{1} \oplus M_{2}$, where M_{1} and M_{2} are CS-modules. Suppose that M_{1} is nonsingular and M_{2} is M_{1}-injective. Then M is a CS-module.

Proof. Because M_{2} is a $C S$-module, then by Theorem 2.8, $M_{2}=Z_{2}\left(M_{2}\right) \oplus M^{\prime}$ for some nonsingular submodule M^{\prime} of M_{2} such that M^{\prime} and $Z_{2}\left(M_{2}\right)$ are $C S$-modules and $Z_{2}\left(M_{2}\right)$ is
M^{\prime}-injective. Since $Z\left(M_{1}\right)=0, Z_{2}(M)=Z_{2}\left(M_{2}\right)$ and $Z_{2}(M)$ is M_{1}-injective. Thus $M=Z_{2}(M) \oplus\left(M_{1} \oplus M^{\prime}\right)$, where $Z_{2}(M)$ is a $C S$-module, $Z_{2}(M)$ is ($\left.M_{1} \oplus M^{\prime}\right)$-injective, M_{1} and M^{\prime} are $C S$-modules and M^{\prime} is M_{1}-injective. By [7, Theorem 1], M is a $C S$ module if $M_{1} \oplus M^{\prime}$ is a $C S$-module. Thus we can suppose without loss of generality that M_{2} is nonsingular, and hence M is nonsingular.

Let K be a complement in M. Because M_{2} is a $C S$-module, there exist submodules L_{1}, L_{2} of M_{2} such that $M_{2}=L_{1} \oplus L_{2}$ and $K \cap M_{2}$ is essential in L_{1}. Let $0 \neq x \in K+L_{1}$.

Then $x=y+z$ for some $y \in K, z \in L_{1}$. Because $K \cap M_{2}$ is essential in L_{1}, there exists an essential right ideal E of R such that $z E \subseteq K$. Then M nonsingular gives

$$
0 \neq x E=(y+z) E \subseteq x R \cap K \subseteq K .
$$

It follows that K is essential in $K+L_{1}$.
Now $M=M_{1} \oplus M_{2}=M_{1} \oplus L_{1} \oplus L_{2}$ and, by the Modular Law,

$$
K=K \cap M=K \cap\left(M_{1} \oplus L_{1} \oplus L_{2}\right)=L_{1} \oplus\left(K \cap\left(M_{1} \oplus L_{2}\right)\right)
$$

Note that

$$
\left(K \cap\left(M_{1} \oplus L_{2}\right)\right) \cap L_{2} \subseteq K \cap M_{2} \cap L_{2} \subseteq L_{1} \cap L_{2}=0 .
$$

By Lemma 2.9, $M_{1} \oplus L_{2}=M^{\prime \prime} \oplus L_{2}$ for some submodule $M^{\prime \prime}$ with $K \cap\left(M_{1} \oplus L_{2}\right) \subseteq$ $M^{\prime \prime}$. Clearly $M^{\prime \prime} \cong M_{1}$, so that $M^{\prime \prime}$ is a $C S$-module and $K \cap\left(M_{1} \oplus L_{2}\right)$ is a complement in $M^{\prime \prime}$. Thus $K \cap\left(M_{1} \oplus L_{2}\right)$ is a direct summand of $M^{\prime \prime}$, and $K=L_{1} \oplus\left(K \cap\left(M_{1} \oplus L_{2}\right)\right)$ is a direct summand of M. It follows that M is a $C S$-module.

Theorem 2.11 A module M is a CS-module with finite Goldie dimension if and only if
(i) M is a finite direct sum of uniform submodules, and
(ii) every direct summand of M of uniform dimension 2 is a CS-module.

Proof. Suppose M is a $C S$-module with finite non-zero Goldie dimension. Let U be a maximal uniform submodule of M. Then U is a complement in M. By hypothesis, $M=U \oplus U^{\prime}$ for some submodule U^{\prime} of M. By induction on Goldie dimension and Lemma 2.2, U^{\prime} is a finite direct sum of uniform submodules. This proves (i). Also Lemma 2.2 proves (ii).

Conversely, suppose M satisfies (i), (ii). Let $M=U_{1} \oplus \ldots \oplus U_{n}$, where n is a positive integer and U_{i} is uniform submodule of M for each $1 \leq i \leq n$. Let V be a maximal uniform submodule of M. Suppose $V \neq M$. Then $V \cap U_{i}=0$ for some $1 \leq i \leq n$.

Without loss of generality, $\mathrm{i}=1$. Let $U^{\prime}=U_{2} \oplus \ldots \oplus U_{n}$. There exists a complement K in M such that $V \oplus U_{1}$ is essential in K. By the Modular Law

$$
K=U_{1} \oplus\left(K \cap U^{\prime}\right)
$$

Clearly $K \cap U^{\prime}$ is a complement in K, and hence also in M by Lemma 2.1. Thus $K \cap U^{\prime}$ is a complement in U^{\prime}. By induction on Goldie dimension, $K \cap U^{\prime}$ is a direct summand of U^{\prime}. This implies at once that K is a direct summand of M. Clearly K has Goldie dimension 2, so that, by hypothesis, K is a $C S$-module. Hence V is a direct summand of K, and hence also of M.

Now let L be any complement in M. Let W be a maximal uniform submodule of L. Then $W \leq_{c} L$ and by Lemma $2.1 W$ is a complement in M. By above argument W is a direct summand of M. Thus $M=W \oplus W^{\prime}$ for some submodule W^{\prime} of M. Thus $L=W \oplus\left(L \cap W^{\prime}\right)$ and $L \cap W^{\prime}$ is a complement in M by Lemma 2.1. By induction on the Goldie dimension of $L, L \cap W^{\prime}$ is a direct summand of M, and hence also of W^{\prime}. Thus L is a direct summand of M. It follows that M is a $C S$-module.

For any set $I,|I|$ will denote its cardinality.

Theorem 2.12 Let M be a module such that $M=\bigoplus_{i \in I} M_{i}$ be the direct sum of R modules $M_{i}(i \in I)$, for some index set I with $|I| \geq 2$. Then the following statements are equivalent.
(i) M is $C S$.
(ii) There exist $i \neq j$ in I such that every closed submodule K of M with $K \cap M_{i}=0$ or $K \cap M_{j}=0$ is a direct summand.
(iii) There exist $i \neq j$ in I such that every complement of M_{i} or of M_{j} in M is a $C S$-module and a direct summand of M.

Proof. (i) \Rightarrow (ii). Suppose that M is a $C S$-module.Then every complement of M is direct summand.
(ii) \Rightarrow (iii). Let K be a complement of M_{i} in M. By (ii), K is a direct summand of M. Let L be a closed submodule of K. By Lemma 2.1, L is a closed submodule of M, and clearly $L \cap M_{i}=0$. By (ii), L is a direct summand of M, and hence also of K. Thus K is $C S$.
(iii) \Rightarrow (i). Let N be a closed submodule of M. There exists a closed submodule H of N such that $N \cap M_{i}$ is essential in H. Clearly $H \cap M_{j}=0$. By Zorn's Lemma there exists a complement P of M_{j} in M such that $H \leq P$. Now Lemma 2.1 gives H closed in M and hence H is closed in P. Applying (iii) we see that H is a direct summand of the $C S$-module P and P is a direct summand of M. Hence H is a direct summand of M.

There exists a submodule H^{\prime} of M such that $M=H \oplus H^{\prime}$. The Modular Law gives $N=H \oplus\left(N \cap H^{\prime}\right)$. By Lemma 2.1, $N \cap H^{\prime}$ is a closed submodule of M and clearly $\left(N \cap H^{\prime}\right) \cap M_{i}=0$. By the above argument, (iii) gives that $N \cap H^{\prime}$ is a direct summand of M, and hence also of H^{\prime}. It follows that N is a direct summand of M. Thus M is CS.

Definition 2.13 Let M be a module and K, L are direct summands of M with $K \cap L=0$. M satisfies condition $\left(C_{3}\right)$ if $K \oplus L$ is a direct summand of M.

Lemma 2.14 The following statements are equivalent for a module M.
(i) M satisfies $\left(C_{3}\right)$.
(ii) For all direct summands P, Q of M with $P \cap Q=0$, there exists a submodule P^{\prime} of M such that $M=P \oplus P^{\prime}$ and $Q \subseteq P^{\prime}$.

Proof. (i) \Rightarrow (ii). Let P and Q be direct summands of M with $P \cap Q=0$. By (i), $P \oplus Q$ is a direct summand of M and hence $M=P \oplus Q \oplus Q^{\prime \prime}$ for some submodule $Q^{\prime \prime}$ of M. Thus $P^{\prime}=Q \oplus Q^{\prime \prime}$ has the required properties.
(ii) \Rightarrow (i). Let K, L be direct summands of M such that $K \cap L=0$. By (ii), $M=K \oplus K^{\prime}$ for some submodule K^{\prime} of M such that $L \subseteq K^{\prime}$. But $M=L \oplus L^{\prime}$ for some
submodule L^{\prime} of M, and hence

$$
K^{\prime}=K^{\prime} \cap M=K^{\prime} \cap\left(L \oplus L^{\prime}\right)=L \oplus\left(K^{\prime} \cap L^{\prime}\right) .
$$

Thus $M=K \oplus K^{\prime}=K \oplus L \oplus\left(K^{\prime} \cap L^{\prime}\right)$ and $K \oplus L$ is a direct summand of M. Therefore M satisfies $\left(C_{3}\right)$.

Definition 2.15 A module M is called quasi-continuous if M is $C S$-module satisfying $\left(C_{3}\right)$.

Proposition 2.16 A CS-module M is quasi-continuous if and only if whenever $M=M_{1} \oplus M_{2}$ is a direct sum of submodules M_{1} and M_{2}, then M_{2} is M_{1}-injective.

Proof. Suppose that M is quasi-continuous. Suppose $M=M_{1} \oplus M_{2}$. Let N be a submodule of M with $N \cap M_{2}=0$. Because M is a $C S$-module, there exists a direct summand N^{\prime} of M such that N is essential in N^{\prime}. Clearly $N^{\prime} \cap M_{2}=0$. By Lemma 2.14, $M=M^{\prime} \oplus M_{2}$ for some submodule M^{\prime} of M such that $N^{\prime} \subseteq M^{\prime}$. By Lemma 2.9, M_{2} is M_{1}-injective.

Conversely, suppose M_{2} is M_{1}-injective whenever $M=M_{1} \oplus M_{2}$. By Lemma 2.9 and Lemma 2.14, M satisfies $\left(C_{3}\right)$. Thus M is quasi-continuous.

Definition 2.17 Let n be a positive integer. Modules $M_{1}, M_{2}, \ldots, M_{n}$ are called relatively injective if M_{i} is M_{j}-injective for all $1 \leq i \neq j \leq n$.

Theorem 2.18 Let M be a CS-module such that $M=M_{1} \oplus \ldots \oplus M_{n}$ is a finite direct sum of relatively injective modules $M_{i}(1 \leq i \leq n)$. Then M is a CS-module if and only if M_{i} is a $C S$-module for each $1 \leq i \leq n$.

Proof. Suppose that $M=M_{1} \oplus \ldots \oplus M_{n}$ is a $C S$-module. By Lemma 2.2, M_{i} is $C S$-module for each $1 \leq i \leq n$.

Conversely suppose that M_{i} is a $C S$-module $(1 \leq i \leq n)$. We prove that M is a $C S$-module by induction on n. It is clearly sufficient to prove the case $n=2$. Suppose $M=M_{1} \oplus M_{2}$. Let K be a complement in M. By Zorn's Lemma there exists a submodule L of K maximal with respect to the property $L \cap M_{1}=L \cap\left(K \cap M_{1}\right)=0$. This implies that $L \oplus\left(K \cap M_{1}\right)$ is essential in K. Clearly L is a complement in K, and hence also in M. Because M_{1} is M_{2}-injective, there exists a submodule M^{\prime} of M such that $M=M_{1} \oplus M^{\prime}$ and $L \subseteq M^{\prime}$. Note that $M^{\prime} \cong M_{2}$, so that without loss of generality $M^{\prime}=M_{2}$, and hence $L \subseteq M_{2}$. Now L is a complement in M_{2} which is a $C S$-module, so that $M_{2}=L \oplus L^{\prime}$ for some submodule L^{\prime} of M_{2}.

Note that $M=M_{1} \oplus M_{2}=M_{1} \oplus L \oplus L^{\prime}$ and $K=L \oplus K^{\prime}$, where $K^{\prime}=K \cap\left(M_{1} \oplus L^{\prime}\right)$ is a complement in $M_{1} \oplus L^{\prime}$. We now claim that $K^{\prime} \cap M_{1}$ is essential in K^{\prime}. In fact, $L \oplus\left(K \cap M_{1}\right)$ is essential in K. Hence $\left[L \oplus\left(K \cap M_{1}\right)\right] \cap K^{\prime}$ is essential in $K^{\prime} \subseteq K$. But clearly $K^{\prime} \cap M_{1}=K \cap M_{1}$, and hence

$$
\left[L \oplus\left(K \cap M_{1}\right)\right] \cap K^{\prime}=\left[L \oplus\left(K^{\prime} \cap M_{1}\right)\right] \cap K^{\prime}=\left(L \cap K^{\prime}\right) \oplus\left(K^{\prime} \cap M_{1}\right)=K^{\prime} \cap M_{1} .
$$

Thus $K^{\prime} \cap M_{1}$ is essential is K^{\prime}. But clearly

$$
\left(K^{\prime} \cap M_{1}\right) \cap\left(K^{\prime} \cap L^{\prime}\right) \subseteq M_{1} \cap L^{\prime}=0,
$$

so that $K^{\prime} \cap L^{\prime}=0$. By hypothesis, L^{\prime} is M_{1}-injective and hence, by Lemma 2.9, $M_{1} \oplus L^{\prime}=M^{\prime \prime} \oplus L^{\prime}$ for some submodule $M^{\prime \prime}$ with $K^{\prime} \subseteq M^{\prime \prime}$. Clearly $M^{\prime \prime} \cong M_{1}$ and K^{\prime} is a complement in $M^{\prime \prime}$. Thus K^{\prime} is a direct summand of $M_{1} \oplus L^{\prime}$, and K is a direct summand of M. It follows that M is a $C S$-module.

Example 2.19 Let p be any prime integer and let R denote the local ring Z_{p}. Let M denote the Z-module $(Z / Z p) \oplus Q$. Then
(i) M is an R-module.
(ii) K is a complement in M if and only if K is a direct summand of M or $K=R(1+Z p, q)$ for some non-zero element q in Q.
(iii) M is not a CS-module.

Proof. (i) Let $M_{1}=(Z / Z p) \oplus 0$ and $M_{2}=0 \oplus Q$, so that $M=M_{1} \oplus M_{2}$. The ring R is the subring of Q consisting of all rational numbers s / t such that $s, t \in Z, t \neq 0$ and t is coprime to p. Note first that for any element m in M and any $s, t \in Z$ such that p does not divide t, there exists a unique element $m^{\prime} \in M$ such that $t m^{\prime}=s m$, and we shall denote m^{\prime} by $(s / t) m$. In this way M is an R-module.
(ii) Let $q \in Q$ and $K=R(1+Z p, q)$. We show first that K is a complement in the Z-module M. Note that K is a uniform submodule of M. Suppose that N is a submodule of M such that K is an essential submodule of N. Let $x \in N$. Then $U=Z x+Z(1+Z p, q)$ is a finitely generated uniform Z-module, and hence U is cyclic. Suppose that $U=Z(a+Z p, b)$, where $a \in Z, b \in Q$. There exists $n \in Z$ such that $(1+Z p, q)=n(a+Z p, b)$. Note that $1-n a \in Z p$ and hence n is coprime to p, and $(a+Z p, b) \in R(1+Z p, q)=K$. Thus $x \in K$. It follows that $K=N$. Hence K is a complement in M.

Let L be a complement in the Z-module M. Suppose that $L \neq 0, M$. Note that M has uniform dimension 2 and hence L is uniform [8, Lemma 1.9]. We shall show first that L is an R-submodule of M. Let

$$
L^{\prime}=\{m \in M: t m \in L \text { for some } t \in Z, t \text { coprime to } p\} .
$$

Then L^{\prime} is a submodule of M, in fact $L^{\prime}=R L$. If $0 \neq m \in L^{\prime}$ then $t m \in L$ for some $t \in Z$, coprime to p, and hence $t m \neq 0$. It follows that L is an essential submodule of L^{\prime}. Thus $L=L^{\prime}$, and L is an R-submodule of M.

Next we show that $L=0, M, M_{1}, M_{2}$ or $R(1+Z p, q)$ for some $q \in Q$. Suppose that $L \neq 0, M, M_{1}$ or M_{2}. Note that M_{1} and M_{2} are both uniform, so that L is not contained in either M_{1} or M_{2}. Thus $(c+Z p, d) \in L$ for some $c \in Z$, coprime to p and $0 \neq d \in Q$. Without loss of generality we can suppose that $c=1$. Because L is an R-submodule of $M, R(1+Z p, d) \subseteq L$. But $R(1+Z p, d)$ is a complement in M, and hence $L=R(1+Z p, d)$. This completes the proof of (ii).
(iii) Let $N=R(1+Z p, 1)$ is a complement submodule of M by (ii). Since N is not a direct summand of M, M is not a $C S$-module.

Lemma 2.20 Let module $M=M_{1} \oplus M_{2}$ be a direct sum of relatively injective submodules M_{1}, M_{2} such that M_{2} is quasi-continuous. Let K, L be a direct summands of M such that $K \cap L=0$. Suppose further that $K \cap M_{1}=0$. Then $K \oplus L$ is a direct summand of M.

Proof. By Lemma 2.9, we can suppose without loss of generality that $K \subseteq M_{2}$. Then $M_{2}=K \oplus K^{\prime}$ for some submodule K^{\prime} of M_{2}. Note that K is K^{\prime}-injective (Proposition 2.16). Therefore K is ($M_{1} \oplus K^{\prime}$)-injective. Now $M=K \oplus\left(M_{1} \oplus K^{\prime}\right)$ and $L \cap K=0$ so that, again using Lemma 2.9, $M=K \oplus K^{\prime \prime}$ for some submodule $K^{\prime \prime}$ with $L \subseteq K^{\prime \prime}$. Now L is a direct summand of M, hence also of $K^{\prime \prime}$. Thus $K \oplus L$ is a direct summand of M.

Theorem 2.21 Let R be a ring and M an R-module such that $M=M_{1} \oplus \ldots \oplus M_{n}$ is a finite direct sum of submodules $M_{i}(1 \leq i \leq n)$. Then M is quasi-continuous if and only if $M_{1}, \ldots M_{n}$ are relatively injective quasi-continuous modules.

Proof. Suppose that M is quasi-continuous. By Proposition 2.16 and [2, Proposition 2.7] M_{i} is quasi-continuous for each $1 \leq i \leq n$.

Conversely, suppose that $M_{i}(1 \leq i \leq n)$ are relatively injective and quasi-continuous. By induction on n, it is sufficient to prove the case $n=2$. Thus suppose $M=M_{1} \oplus M_{2}$. By Theorem 2.18, M is a $C S$-module. Let K, L be direct summands of M with $K \cap L=0$. Then K is a $C S$-module, by Lemma 2.1, and hence $K=K_{1} \oplus K_{2}$ for some submodules K_{1}, K_{2} with $K \cap M_{1}$ essential in K_{1}.

Note that $K_{2} \cap M_{1}=K_{2} \cap\left(K \cap M_{1}\right)=0$. By Lemma 2.20, $K_{2} \oplus L$ is a direct summand of M. On the other hand, $\left(K_{1} \cap M_{2}\right) \cap\left(K \cap M_{1}\right)=0$ implies that $K_{1} \cap M_{2}=0$.

Again using Lemma 2.20, $K \oplus L=K_{1} \oplus\left(K_{2} \oplus L\right)$ is a direct summand of M. It follows that M is quasi-continuous.

Lemma 2.22 Let $M=M_{1} \oplus M_{2}$ be a module and let K be a submodule of M. Then K is a complement of M_{2} in M if and only if there exists a homomorphism $\varphi: M_{1} \rightarrow E\left(M_{2}\right)$ such that $K=\left\{x+\varphi(x): x \in \varphi^{-1}\left(M_{2}\right)\right\}$.

Proof. Suppose that K is a complement of M_{2} in M. Let $\pi_{i}: M \rightarrow M_{i}(i=1,2)$ denote the canonical projections. Note that $\left.\pi_{1}\right|_{K}: K \rightarrow M_{1}$ is a monomorphism. If $\epsilon: M_{2} \rightarrow E\left(M_{2}\right)$ is the inclusion mapping then there exists a homomorphism φ : $M_{1} \rightarrow E\left(M_{2}\right)$ such that $\varphi\left(\left.\pi_{1}\right|_{K}\right)=\epsilon\left(\left.\pi_{2}\right|_{K}\right)$. For any $x \in K, \varphi \pi_{1}(x)=\pi_{2}(x) \in M_{2}$ so that $\pi(x) \in \varphi^{-1}\left(M_{2}\right)$, and

$$
x=\pi_{1}(x)+\pi_{2}(x)=\pi_{1}(x)+\varphi\left(\pi_{1}(x)\right) .
$$

Thus $K \subseteq\left\{y+\varphi(y): y \in \varphi^{-1}\left(M_{2}\right)\right\}=K_{1}$. But K_{1} is a sub module of M and $K_{1} \cap M_{2}=0$, so that $K=K_{1}$, as required.

Conversely, suppose that $\theta: M_{1} \rightarrow E\left(M_{2}\right)$ is a homomorphism and $K=\{x+\theta(x)$: $\left.x \in \theta^{-1}\left(M_{2}\right)\right\}$. Clearly K is a submodule of M and $K \cap M_{2}=0$. Suppose that L is a submodule of M such that $L \cap M_{2}=0$. Now suppose there exists $u \in L$ such that $\pi_{2}(u) \neq \theta \pi_{1}(u)$. Because $0 \neq \pi_{2}(u)-\theta \pi_{1}(u) \in E\left(M_{2}\right)$, there exists $r \in R$ such that $0 \neq\left\{\pi_{2}(u)-\theta \pi_{1}(u)\right\} r \in M_{2}$. But, in this case, $\theta \pi_{1}(u) r \in M_{2}$ and $\left\{\pi_{2}(u)-\theta \pi_{1}(u)\right\} r=\pi_{2}(u r)-\theta \pi_{1}(u r)=u r-\left\{\pi_{1}(u r)+\theta \pi_{1}(u r)\right\} \in(L+K) \cap M_{2}=L \cap M_{2}=0$, a contradiction.

Let $v \in L$. Then $\theta \pi_{1}(v)=\pi_{2}(v) \in M_{2}$, so that $\pi_{1}(v) \in \theta^{-1}\left(M_{2}\right)$ and

$$
v=\pi_{1}(v)+\pi_{2}(v)=\pi_{1}(v)+\theta\left(\pi_{1}(v)\right) \in K .
$$

It follows that $L=K$. Thus K is a complement of M_{2} in M.

2.1 Arbitrary Direct Sums

Theorem 2.23 Let R be any ring and let $M=\bigoplus_{i \in I} M_{i}$ be the direct sum of R-modules $M_{i}(i \in I)$, for some index set with $|I| \geq 2$. Then the following statements are equivalent:
(i) M is $C S$.
(ii) For each $i \in I$ and each homomorphism $\varphi: M_{-i}=\bigoplus_{j \neq i} M_{j} \rightarrow E\left(M_{i}\right)$, the submodule $\left\{x+\varphi(x): x \in \varphi^{-1}\left(M_{i}\right)\right\}$ is a CS -module and a direct summand of M.
(iii) There exist $i \neq j$ in I such that for each $k \in\{i, j\}$ and each homomorphism $\varphi: M_{-k} \rightarrow E\left(M_{k}\right)$, the submodule $\left\{x+\varphi(x): x \in \varphi^{-1}\left(M_{k}\right)\right\}$ is a CS-module and a direct summand of M.

Proof. By Theorem 2.12, and Lemma 2.5.

2.2 UC-modules

Definition 2.24 A module M is called a UC-module if every submodule has a unique closure.

Semisimple modules, uniform modules and nonsingular modules are all examples of $U C$-modules.

Theorem 2.25 Let M be a UC-module such that $M=\bigoplus_{i \in I} M_{i}$ is the direct sum of R-modules $M_{i}(i \in I)$, for some non-empty index set I. Then the following statements are equivalent.
(i) M is $C S$.
(ii) There exists $i \in I$ such that M_{i} is CS and every closed submodule K of M with $K \cap M_{i}=0$ is a direct summand.
(iii) There exists $i \in I$ such that M_{i} is CS and every complement of M_{i} in M is a $C S$-module and a direct summand of M.
(iv) The module M_{i} is $C S$ for each $i \in I$ and every closed submodule L of M with $L \cap M_{i}=0(i \in I)$ is a direct summand of M.

Proof. (i) \Rightarrow (ii). By Lemma 2.2.
(ii) \Rightarrow (iii). Let L be a complement of M_{i} in M. Then $L \cap M_{i}=0$ and by (ii) L is a direct summand of M. Let N be a closed submodule of L. By Lemma 2.1 and (ii), N is a direct summand of M, and hence also of L. Thus L is a $C S$-module.
(iii) \Rightarrow (i). Let H be a closed submodule of M. By [8, Theorem 1], $H \cap M_{i}$ is a closed submodule of M_{i} and hence, by (iii), $H \cap M_{i}$ is a direct summand of M. Thus $M=\left(H \cap M_{i}\right) \oplus H^{\prime}$ for some submodule H^{\prime} of M. Now $H=\left(H \cap M_{i}\right) \oplus\left(H \cap H^{\prime}\right)$ and $H \cap H^{\prime}$ is a closed submodule of M. Moreover $\left(H \cap H^{\prime}\right) \cap M_{i}=0$. By the proof of Theorem 2.12 (iii) \Rightarrow (i), it follows that $H \cap H^{\prime}$ is a direct summand of M and hence H is a direct summand of M.
(i) \Rightarrow (iv). By Lemma 2.2.
(iv) \Rightarrow (i). Let P be a closed submodule of M. For each $i \in I, P \cap M_{i}$ is closed in M_{i} and hence $M_{i}=\left(P \cap M_{i}\right) \oplus M_{i}^{\prime}$ for some submodule M_{i}^{\prime} of M. Let $M^{\prime}=\oplus_{i \in I} M_{i}^{\prime}$, $P^{\prime}=\oplus_{i \in I}\left(P \cap M_{i}\right)$. Then $M=P^{\prime} \oplus M^{\prime}$ and $P^{\prime} \leq P$. It follows that $P=P^{\prime} \oplus\left(P \cap M^{\prime}\right)$. By Lemma 2.1, $P \cap M^{\prime}$ is closed in M and $\left(P \cap M^{\prime}\right) \cap M_{i}=0(i \in I)$. By (iv) $P \cap M^{\prime}$ is a direct summand of M. Thus P is a direct summand of M. We conclude that M is $C S$.

2.3 Modules with Semisimple Summands

Example 2.26 Let p be any prime and M the Z-module $M=\left(Z / Z_{p}\right) \oplus\left(Z / Z_{p^{3}}\right)$. Let $M_{1}=\left(Z / Z_{p}\right) \oplus 0$ and $M_{2}=0 \oplus\left(Z / Z_{p^{3}}\right) . M_{1}$ and M_{2} are CS-modules. But M is neither CS nor UC. In fact, the submodule $K=\left(1+Z_{p}, p+Z_{p^{3}}\right)$ is a complement submodule of M of order p^{2}. If K were a direct summand of M then $M=K \oplus K^{\prime}$, for some submodule K^{\prime} of M, and hence K^{\prime} has order p^{2} also, giving $p^{2} M=0$, a contradiction. Thus Theorem 2.25 (iv) \Rightarrow (i) fails if M is not $U C$.

Theorem 2.27 Let M be a UC-module such that $M=\bigoplus_{i \in I} M_{i}$ is the direct sum of R-modules $M_{i}(i \in I)$, for some non-empty index set I. Then the following statements are equivalent.
(i) M is $C S$.
(ii) There exists $i \in I$ such that M_{i} is CS and for each homomorphism $\varphi: M_{-i} \rightarrow$ $E\left(M_{i}\right)$ the submodule $\left\{x+\varphi(x): x \in \varphi^{-1}\left(M_{i}\right)\right\}$ is a CS-module and a direct summand of M.

Proof. Follows from Lemma 2.22 and Theorem 2.25.

Proposition 2.28 Let M be a $U C$-module such that $M=M_{1} \oplus M_{2}$ is the direct sum of a module M_{1} and a semisimple module M_{2}. Then M is $C S$ if and only if M_{1} is CS.

Proof. The necessity is clear by Lemma 2.2.
Conversely, suppose that M_{1} is $C S$. Let K be a complement of M_{1} in M. Then $M_{1} \oplus K$ is essential in M and hence $M_{2} \leq \operatorname{Soc} M \leq M_{1} \oplus K$. Thus $M=M_{1} \oplus K$. It follows that $K \cong M / M_{1} \cong M_{2}$, so that K is $C S$. By Theorem 2.25, M is $C S$.

Proposition 2.29 Let M_{1} be an R-module with zero socle and let M_{2} be a semisimple R-module. Then the module $M=M_{1} \oplus M_{2}$ is CS if and only if M_{1} is $C S$ and M_{2} is M_{1}-injective.

Proof. The necessity follows by Lemma 2.2 and [6, Lemma 11] Conversely, suppose that M_{1} is $C S$ and M_{2} is M_{1}-injective. Clearly M_{1} is M_{2}-injective. By Theorem 2.21, M is $C S$.

Lemma 2.30 Let M_{1} and M_{2} be modules with M_{2} semisimple. Then the module $M_{1} \oplus M_{2}$ is CS if and only if every complement K of M_{2} in M is a CS -module and a direct summand of M.

Proof. Suppose that every complement of M_{2} in M is a $C S$-module and direct summand of M. Let K be a complement in M such that $K \cap M_{2}=0$. By Zorn's Lemma there exists a complement L of M_{2} in M such that $K \leq L$. By assumption L is a $C S$-module and direct summand of M. Since K is a complement submodule in L then $K \leq_{d} L \leq_{d} M$ this implies $K \leq_{d} M$.

Conversely, it is clear.

Theorem 2.31 Let M_{1} be a CS module and let M_{2} be a semisimple module such that M_{2} is $\left(M_{1} / N\right)$-injective for every non-zero submodule N of M_{1}. Then the module $M=M_{1} \oplus M_{2}$ is $C S$.

Proof. Let K be a complement of M_{2} in M. There exists a homomorphism $\varphi: M_{1} \rightarrow$ $E\left(M_{2}\right)$ such that $K=\left\{x+\varphi(x): x \in \varphi^{-1}\left(M_{2}\right)\right\}$ by lemma 2.22. Let $Q=\varphi^{-1}\left(M_{2}\right)$ and let $P=\operatorname{Ker} \varphi$. Then $P \leq Q$ are submodules of M_{1}.

Suppose that $P=0$. Then $K \cap M_{1}=0$, and hence $M_{1} \oplus K=M_{1} \oplus \varphi(Q)$, which is a direct summand of M, because $\varphi(Q)$ is a direct summand of M_{2}. Thus K is a direct summand of M and, because K embeds in $M / M_{1} \cong M_{2}, K$ is semisimple and thus $C S$.

Now suppose that $P \neq 0$. By hypothesis, M is $\left(M_{1} / P\right)$-injective. Now $Q / P \cong \varphi(Q)$, which is a direct summand of M_{2}. Thus Q / P is $\left(M_{1} / P\right)$-injective. There exists a submodule Q^{\prime} of M_{1} such that $P \subseteq Q^{\prime}$ and $M_{1} / P=(Q / P) \oplus\left(Q^{\prime} / P\right)$. Define $\theta: M_{1} \rightarrow E\left(M_{2}\right)$ by

$$
\theta\left(q+q^{\prime}\right)=\varphi(q)\left(q \in Q, q^{\prime} \in Q^{\prime}\right)
$$

It can easily be checked that θ is well-defined and a homomorphism. Moreover $\left.\theta\right|_{Q}=\varphi$. Let

$$
K^{\prime}=\left\{x+\theta(x): x \in \theta^{-1}\left(M_{2}\right)\right\}=\left\{x+\theta(x): x \in M_{1}\right\}
$$

noting that $\theta\left(M_{1}\right)=\varphi(Q) \leq M_{2}$. Lemma 2.22 gives that K^{\prime} is a complement of M_{2} in M. But $K \leq K^{\prime}$ so that $K=K^{\prime}$. Clearly $M=K \oplus M_{2}$. Thus K is a $C S$-module and a direct summand of M. By Lemma $2.30 M$ is $C S$.

Lemma 2.32 Let M_{1} be a uniform module of finite composition length and let M_{2} be a semisimple module such that $M=M_{1} \oplus M_{2}$ is CS. Let $\varphi: M_{1} \rightarrow E\left(M_{2}\right)$ be a homomorphism such that $\varphi\left(M_{1}\right) \nsubseteq M_{2}$. Then $\varphi^{-1}\left(M_{2}\right)=0$ or $\varphi^{-1}\left(M_{2}\right)$ is isomorphic to a simple submodule of M_{2}.

Proof. Let $U=\varphi^{-1}\left(M_{2}\right)$. Let $K=\{x+\varphi(x): x \in U\}$. By Lemma 2.22, K is a closed submodule and hence K is a direct summand. Note that $K \cong U \subseteq M_{1}$. Thus $K=0$ or K is uniform. Suppose that $K \neq 0$.By the Krull-Schmidt Theorem, $K \cong M_{1}$ or K is isomorphic to a simple submodule of M_{2}. Suppose that $K \cong M_{1}$. Comparing composition lengths, $U=M_{1}$ and hence $\varphi\left(M_{1}\right) \leq M_{2}$, a contradiction. Thus $U=0$ or U is isomorphic to a simple submodule of M_{2}.

Theorem 2.33 Let M_{1} be a uniform module of finite composition length and let M_{2} be semisimple module. Then $M=M_{1} \oplus M_{2}$ is a CS-module if and only if M_{2} is $\left(M_{1} / N\right)$ injective for every non-zero submodule N of M_{1}.

Proof. The sufficiency is proved in Theorem 2.31. Conversely, suppose that M is $C S$. Suppose that N is a non-zero submodule of M_{1}, L is is a submodule containing N and there exists a monomorphism $\alpha: L / N \rightarrow M_{2}$. Note that $\alpha(L / N)$ is a direct summand
of M_{2} and hence $M_{1} \oplus \alpha(L / N)$ is $C S$ by Lemma 2.2. Thus without loss of generality, $\alpha: L / N \rightarrow M_{2}$ is an isomorphism.

Let $\pi: L \rightarrow L / N$ denote the canonical epimorphism. Let $\theta=\alpha \pi: L \rightarrow M_{2}$. Then θ can be lifted to a homomorphism $\varphi: M_{1} \rightarrow E\left(M_{2}\right)$. Let $Q=\varphi^{-1}\left(M_{2}\right)$. Clearly $L \leq Q$. For any q in Q there exists $x \in L$ such that $\varphi(q)=\theta(x)=\varphi(x)$, so that $Q=L+\operatorname{ker} \varphi$. Moreover, $L \cap \operatorname{ker} \varphi=L \cap \operatorname{ker} \theta=N$. Thus $Q / N=(L / N) \oplus((\operatorname{ker} \varphi) / N)$.

But $N \neq 0$ implies that the composition length of Q is at least 2. By Lemma 2.32, $\varphi\left(M_{1}\right) \leq M_{2}$, i.e. $Q=M_{1}$. Thus $M_{1} / N=(L / N) \oplus((\operatorname{ker} \varphi) / N)$. It follows that M_{2} is (M_{1} / N)-injective.

Corollary 2.34 Let M_{1} be a module with unique composition series $M_{1}>L>N>$ 0. Then $M_{1} \oplus(L / N)$ is not $C S$.

CHAPTER 3

ON P-EXTENDING AND EF-EXTENDING MODULES

In this chapter, it is given some characterizations and properties of principally injective modules.

Definition 3.1 1 . A right module M over a ring R is called principally injective (P injective) if for every R-homomorphism for a principal right ideal of R to M can be extended to R.
2. M is called P-extending (PC1) module if every cyclic submodule of M is essential in a direct summand of M.
3. M is called $F P$-extending module if every finite uniform dimension closed submodule which contains essentially a cyclic submodule (EC-closed) is a direct summand of M.
4. A module M satisfies the condition (PC2) if for each $a, b \in M$ such that $a R \cong b R$ and $b R \leq_{d} M$ then $a R \leq_{d} M$.
5. A module M satisfies the condition (PC3) if for each $a, b \in M$ such that $a R$ and $b R$ are direct summands of M and $a R \cap b R=0$ then $a R \oplus b R \leq_{d} M$.

Definition 3.2 1. A module M is called P-quasi-continuous module if the conditions (PC1) and (PC3) hold.
2. A module M is called P-continuous module if the conditions (PC1) and (PC2) hold.

It is clear that

$$
(C 1) \Rightarrow(P C 1),(C 2) \Rightarrow(P C 2),(C 3) \Rightarrow(P C 3) .
$$

Hence

$$
\text { continuous } \Rightarrow P \text {-continuous and quasi-continuous } \Rightarrow P \text {-quasi-continuous. }
$$

Definition 3.3 Let M and N be R-modules and $f: N \rightarrow M$ be a R-homomorphism. The set

$$
<f>=\{n-f(n) \mid n \in N\} \subseteq N \oplus M
$$

is called graph of f.

Definition 3.4 Let M and N be R-modules. M is called N-principally-injective (N-P-injective) if every R-homomorphism from a cyclic submodule of N to M can be extended to N.

A module M is extending $(n-$ extending $)$ if every closed submodule A (with U $\operatorname{dim}(A) \leq n)$ is a direct summand of M, or equivalently to the requirement that every submodule A (with $U-\operatorname{dim}(A) \leq n)$ is essential in a direct summand of M.

Lemma 3.5 Let M and N be R-modules. The followings are equivalent
(i) M is N-P-injective
(ii) For each $m \in M$ and $n \in N$ with $r_{R}(n) \subseteq r_{R}(m)$ there exists $f \in \operatorname{Hom}_{R}(N, M)$ such that $m=f(n)$.

Proof. (i) \Rightarrow (ii) Let $m \in M$ and $n \in N$ with $r_{R}(n) \subseteq r_{R}(m)$. $n R$ is a cyclic submodule of $N . \alpha: n R \rightarrow M ; \alpha(n r)=m r$ is a homomorphism. By (i) there exists a homomorphism $f: N \rightarrow M$ such that $\left.f\right|_{n R}=\alpha$.

$$
f(n)=f\left(n 1_{R}\right)=\alpha\left(n 1_{R}\right)=m 1_{R}=m .
$$

(ii) \Rightarrow (i) Let X be a cyclic submodule of N. Then there exists $n \in N$ such that $X=n R$. Let $\alpha: X \rightarrow M$ be a homomorphism. $\alpha(n) \in M$, say $\alpha(n)=m$. Let $k \in r_{R}(n)$.

$$
m k=\alpha(n) k=\alpha(n k)=\alpha(0)=0
$$

Hence $k \in r_{R}(m)$ and so $r_{R}(n) \subseteq r_{R}(m)$. By assumption, there exists a homomorphism $f: N \rightarrow M ; f(n)=m$.

$$
f(n r)=f(n) r=m r=\alpha(n) r=\alpha(n r) .
$$

Hence $\left.f\right|_{n R}=\alpha$. So M is N - P-injective.

Proposition 3.6 Let M and N be R-modules, and $S=\operatorname{End}(M)$. Then the following are equivalent:
(i) M is N P-injective ;
(ii) For each $m \in M$ and $n \in N$ with $r_{R}(n) \subseteq r_{R}(m)$, we have $S m \subseteq \operatorname{Hom}_{R}(N, M) n$;
(iii) For each $m \in M$ and $n \in N$ with $r_{R}(n) \subseteq r_{R}(m)$, there is a complement C of M in $N \oplus M$ with $n-m \in C$ and $N \oplus M=C \oplus M$;
(iv) For each $n \in N, l_{M} r_{R}(n)=\operatorname{Hom}_{R}(N, M) n$;
(v) For each $n \in N$ and $a \in R, l_{M}\left[a R \cap r_{R}(n)\right]=l_{M}(a)+\operatorname{Hom}_{R}(N, M) n$.

Proof. (i) \Rightarrow (ii) : Let $m \in M$ and $n \in N$ with $r_{R}(n) \subseteq r_{R}(m)$. Since M is $N-P$-injective, then there exists a homomorphism $f: N \rightarrow M$ such that $m=f(n)$. Let $\phi \in S$, then $\phi(m) \in \operatorname{Hom}_{R}(N, M) n$. Therefore, $S m \subseteq \operatorname{Hom}_{R}(N, M) n$.
(ii) \Rightarrow (iii). : Let $m \in M$ and $n \in N$ with $r_{R}(n) \subseteq r_{R}(m)$, then by (ii), there exists a homomorphism $f: N \rightarrow M$ such that $m=f(n)$. Hence $N \oplus M=\langle f\rangle \oplus M$, where $\langle f\rangle$ is the graph of a homomorphism $f: N \rightarrow M$. Therefore, $C=\langle f\rangle$ is a complement of M in $N \oplus M$ with $N \oplus M=C \oplus M$ and $n-m \in C$.
(iii) \Rightarrow (iv) : Let $n \in N$ and $x \in l_{M} r_{R}(n)$, then $r_{R}(n) \subseteq r_{R}(x)$. By (iii), there is a complement C of M in $N \oplus M$ with $n-x \in C$ and $N \oplus M=C \oplus M$. So, there exists a homomorphism $f: N \rightarrow M$ such that $C=\langle f\rangle$. Since $n-x \in C$, then $n-x=n^{\prime}-f\left(n^{\prime}\right)$, for some $n^{\prime} \in N$. So, $n=n^{\prime}$ and $x=f\left(n^{\prime}\right)=f(n)$. Hence $x \in \operatorname{Hom}_{R}(N, M) n$, and $l_{M} r_{R}(n) \subseteq \operatorname{Hom}_{R}(N, M) n$. The other conclusion is obvious.
(iv) \Rightarrow (v) : Let $n \in N, a \in R$, and $x \in l_{M}\left[a R \cap r_{R}(n)\right]$, then $x\left(a R \cap r_{R}(n)\right)=0$ and so $r_{R}(n a) \subseteq r_{R}(x a)$. Hence $l_{M} r_{R}(x a) \subseteq l_{M} r_{R}(n a)=\operatorname{Hom}_{R}(N, M) n a$, by (iv). Therefore,
$x a=f(n a)=f(n) a$, for some $f \in \operatorname{Hom}_{R}(N, M)$. So $(x-f(n)) a=0$ and $x-f(n) \in$ $l_{M}(a)$. Thus $x \in l_{M}(a)+\operatorname{Hom}_{R}(N, M) n$, and so $l_{M}\left[a R \cap r_{R}(n)\right] \subseteq l_{M}(a)+\operatorname{Hom}_{R}(N, M) n$. On the other hand, let $x \in l_{M}(a)+\operatorname{Hom}_{R}(N, M) n$, then $x=m+f(n)$ for some $m \in l_{M}(a)$ and $f \in \operatorname{Hom}_{R}(N, M)$. So $x a=m a+f(n) a=f(n a)$. Let $a r \in a R \cap r_{R}(n)$, then $x(a r)=f(n a) r=f(n a r)=0$, and so $x \in l_{M}\left[a R \cap r_{R}(n)\right]$. Thus $l_{M}(a)+\operatorname{Hom}_{R}(N, M) n \subseteq$ $l_{M}\left[a R \cap r_{R}(n)\right]$.
(v) \Rightarrow (i) : Let $m \in M$ and $n \in N$ with $r_{R}(n) \subseteq r_{R}(m)$, then $l_{M} r_{R}(m) \subseteq l_{M} r_{R}(n)$. By (v), we get $l_{M} r_{R}(n)=\operatorname{Hom}_{R}(N, M) n$, and so there is a homomorphism $f: N \rightarrow M$ such that $f(n)=m$. Thus M is $N-P$-injective.

Proposition 3.7 Let M be N-P-injective, then M is X - P-injective, for every submodule X of N. If, in addition, X is a direct summand of N, then M is N / X - P-injective.

Proof. Let $N=X \oplus Y$ for some submodule Y of N. Then $\frac{N}{X} \cong Y$ and M is $N / X-P-$ injective.

Lemma 3.8 Let M be N - P-injective and $K \leq{ }^{\oplus} M$, then K is N - P-injective.

Proof. Let $X=n R$ be a cyclic submodule of N and $\alpha: n R \rightarrow K$ be a homomorphism. Since $K \leq{ }^{\oplus} M$, there exists a direct summand L of M such that $M=K \oplus L$. Let $\pi: M \rightarrow K$ be projection map and $i: K \rightarrow M$ be inclusion map. Since M is $N-P-$ injective there exists $\beta: N \rightarrow M$ a homomorphism such that $\left.\beta\right|_{n R}=i \alpha$. Let $\bar{\beta}: N \rightarrow K$; $\bar{\beta}=\pi \beta$ is a homomorphism and $\left.\bar{\beta}\right|_{n R}=\alpha$. Hence K is $N-P$-injective.

Lemma 3.9 Let $\left\{M_{i}\right\}_{\in I}$ be a family of modules. Then the direct product $\prod_{i \in I} M_{i}$ is N-P-injective if and only if M_{i} is N-P-injective, for every $i \in I$.

Proof. It is obvious.

Proposition 3.10 If M is a quasi-principally injective module, and $S=\operatorname{End}(M)$, then S H $=$ S K, for any isomorphic R-submodules H, K of M.

Proof. Since $H \cong K$, then there is a right R-isomorphism $\sigma: H \rightarrow K$. For each $k \in K$, $k=\sigma(h)$ for some $h \in H$ and $r_{R}(h)=r_{R}(k)$. Since M is quasi-principally injective, then $S h=S k$ by Proposition 3.6, and so $S k \subseteq S H$, for each $k \in K$. Then $S K \subseteq S H$. Similarly, we get $S H \subseteq S K$, and so the result.

Lemma 3.11 The following conditions are equivalent for a ring R.
(i) R is right P-injective.
(ii) $\operatorname{lr}(a)=$ Ra for all $a \in R$.
(iii) $r(a) \subseteq r(b)$, where $a, b \in R$, implies that $R b \subseteq R a$.
(iv) $l[b R \cap r(a)]=l(b)+R(a)$ for all $a, b \in R$.
(v) If $\gamma: a R \rightarrow R, a \in R$, is R-linear, then $\gamma(a) \in R a$.

Proof. (i) \Rightarrow (ii) : Always $R a \subseteq \operatorname{lr}(a)$. If $b \in \operatorname{lr}(a)$ then $r(a) \subseteq r(b)$, so $\gamma: a R \rightarrow R$ is well defined by $\gamma(a r)=b r$. Thus $\gamma=c$. for some $c \in R$ by (i), whence $b=\gamma(a)=c a \in$ $R a$. This implies $\operatorname{lr}(a)=R a$.
(ii) \Rightarrow (iii) : If $r(a) \subseteq r(b)$ then $b \in \operatorname{lr}(a)=R a$ and $b=r a$ for some $r \in R$. Then $R b \subseteq R a$.
(iii) \Rightarrow (iv) : Let $x \in l[b R \cap r(a)]$. Then $r(a b) \subseteq r(x b)$, so $x b=r a b$ for some $r \in R$. Hence $x-r a \in l(b)$, proving that $l[b R \cap r(a)] \subseteq l(b)+R(a)$. The other inclusion always holds.
(iv) $\Rightarrow(\mathrm{v}):$ Let $\gamma: a R \rightarrow R$, be R-linear, and write $\gamma(a)=d$. Then $r(a) \subseteq r(d)$, so $d \in \operatorname{lr}(a)$. But $\operatorname{lr}(a)=R a$. Then $d=\gamma(a) \in \operatorname{Ra}$.
(v) \Rightarrow (i) : Let $\gamma: a R \rightarrow R_{R}$. By (v) write $\gamma(a)=c a, c \in R$. Then $\gamma=c$.. Hence R is right P-injective.

Corollary 3.12 Let R be a P-injective ring and H, K be two-sided ideals of R. If $H \cong K$, as right ideals of R, then $H=K$.

Proof. By Lemma 3.11.

Theorem 3.13 Let M be a quasi-principally injective module, then M has $\left(P C_{2}\right)$.

Proof. Let $a, b \in M$ with $a R \cong b R$ and $b R \leq^{\oplus} M$. Then $b R=e M$ for some idempotent $e \in \operatorname{End}(M)$. Since $a R \cong b R$, then there is an isomorphism $\sigma: b R \rightarrow a R$. Let $\sigma e=h$, then $a R=h M$ and $\sigma^{-1} h=e$. Since $b R \leq^{\oplus} M$, then by Lemma 3.8, $b R$ is M - P-injective, and so there exists a homomorphism $\phi: M \rightarrow b R$ such that $\phi(a)=\sigma^{-1}(a)$. Then ϕ is an epimorphism, $\phi h=e$, and so $f=h \phi$ is an idempotent endomorphism of M. Hence $f M=h \phi M=h(b R)=h e M=h M$, and so $a R \leq^{\oplus} M$.

Corollary 3.14 If R is a P-injective ring, then R has $\left(C_{2}\right)$.

Lemma 3.15 Let M be an R-module. If M has $\left(P C_{2}\right)$, then M has $\left(P C_{3}\right)$.
Proof. Let $a R \leq{ }^{\oplus} M$ and $b R \leq{ }^{\oplus} M$ with $a R \cap b R=0$, then $a R=e M=\operatorname{Im} e$, for some $e^{2}=e \in \operatorname{End}(M)$, and so $a R \oplus b R=e M \oplus(1-e) b R$. Since $(1-e) b R \cong b R \leq^{\oplus} M$ and M has $\left(P C_{2}\right)$, then $(1-e) b R=f M$ for some $f^{2}=f \in \operatorname{End}(M)$. Then $e f=0$, and $h=e+f-f e$ is an idempotent in $\operatorname{End}(M)$. Therefore, $a R \oplus b R=e M \oplus f M=$ $(e+f-f e) M=h M \leq{ }^{\oplus} M$.

Corollary 3.16 If M is a quasi-principally injective module, then M has $\left(P C_{3}\right)$.

Definition 3.17 By an EC-(closed) submodule C of a module M, we mean a (closed) submodule C which contains essentially a cyclic submodule; i.e. there exists $c \in C$ such that $c R \leq_{e} C$.

Lemma 3.18 Every summand of an EC-submodule of M is EC-submodule.

Proof. Let $c R \leq_{e} C$ be an $E C$-submodule of M, and $C_{1} \leq^{\oplus} C$, then $C=C_{1} \oplus C_{2}$, for some submodule C_{2} in C. Let $c=c_{1}+c_{2}$, where $c_{1} \in C_{1}$ and $c_{2} \in C_{2}$. It is easy to see that $c_{1} R \leq_{e} C_{1}$. Therefore, C_{1} is an $E C$-submodule of M.

Corollary 3.19 Every summand of an EC-closed submodule of M is EC-closed.

Lemma 3.20 Every summand of a P-(quasi-)continuous module is P-(quasi-)continuous.

Proof. It is obvious by Corollary 3.19.

Lemma 3.21 For an indecomposable module M, the following are equivalent:
(i) M is extending;
(ii) M is P-extending;
(iii) M is uniform.

Proof. (i) \Rightarrow (ii) It is obvious.
(ii) \Rightarrow (iii) Suppose that M is not uniform. Then there exists $m \in M$ such that $m R$ is not essential in M and also there exists a complement submodule K in M such that $m R$ is essential submodule of K. Since M is P-extending, K is direct summand of M and $K \neq M$. This contradicts with the indecomposability of M.
(iii) \Rightarrow (ii) It is obvious.

Lemma 3.22 Let M be a 1-extending-module. Then every closed submodule of M of the form $\bigoplus_{i=1}^{n} A_{i}$ with all A_{i} uniform, is a direct summand.

Proof. By induction. Assume that the claim is true for n, and let $A=\bigoplus_{i=0}^{n} A_{i}$ be closed submodule of M. By assumption, $A^{*}=\bigoplus_{i=1}^{n} A_{i}$ is direct summand of M. Write $M=A^{*} \oplus M^{*}$ for $M^{*} \leq^{\oplus} M$. It follows that $A=A^{*} \oplus\left(A \cap M^{*}\right)$. It is clear that $A \cap M^{*}$ is closed uniform submodule of M. Since direct summand of 1-extending modules are 1-extending, we have $A \cap M^{*} \leq^{\oplus} M$. Hence $A \leq{ }^{\oplus} M$.

Lemma 3.23 Let M be a 1-extending module. Then every non-zero closed submodule of M, of finite uniform dimension contains a uniform summand.

Proof. Let $A \neq 0$ be a closed submodule of M, with U-dimension(A) $<\infty$. Let A_{1} be a uniform submodule in A, and let U be a maximal essential extension of A_{1} in A. Since U is complement in A and A is complement in M, U is complement in M. Since M is 1-extending, U is a direct summand in M and therefore U is a direct summand in A.

Lemma 3.24 A module M over a noetherian ring R, is 1-extending if and only if it is P-extending.

Proof. Let M be a 1-extending module, and $c R \leq^{e} C$ be an $E C$-closed submodule of M. Since R is a noetherian ring, then C has a finite uniform dimension. Since M is 1 -extending, then by Lemma 3.22 and Lemma 3.23, M is n-extending. Hence C is a summand, and so M is P-extending. For the converse, it is obvious.

Corollary 3.25 Let M be a module with finite uniform dimension, then the following are equivalent:
(i) M is extending;
(ii) M is 1 -extending;
(iii) M is P-extending.

Proposition 3.26 Let $M=M_{1} \oplus M_{2}$, and let $C \cap M_{1}$ be an EC-submodule of M, for every EC-closed submodule C of M. Then M is P-extending if and only if every EC-closed submodule C, with $C \cap M_{1}=0$, or $C \cap M_{2}=0$, is a summand.

Proof. The necessary condition is obvious. For the sufficient condition, let $c R \leq^{e} C$ be an $E C$-closed submodule of M. If $C \cap M_{1}=0$, then we are done. Otherwise, $C \cap M_{1}$ is an $E C$-submodule of M, by assumption. Let C_{1} be a maximal essential extension
of $C \cap M_{1}$ in C, then C_{1} is an $E C$-closed submodule of M, with $C \cap M_{2}=0$. Hence by the assumption, C_{1} is a summand of M. Write $M=C_{1} \oplus C_{2}$, by the modular law, $C=C_{1} \oplus\left(C \cap C_{2}\right)$ by Corollary 3.19, $C \cap C_{2}$ is an $E C$-closed submodule of M with $\left(C \cap C_{2}\right) \cap M_{1}=0$, and therefore, $C \cap C_{2}$ is an summand of M. Thus C is a summand of M, and therefore, M is P-extending.

Proposition 3.27 Let $M=M_{1} \oplus M_{2}$, where M_{1} is of finite uniform dimension. Then M is P-extending if and only if every EC-closed submodule C of M with $C \cap M_{1}=0$, or C is of finite uniform dimension, is a summand.

Proof. The necessary condition is obvious. For the sufficient condition, let $m R \leq^{e} C$ be an $E C$-closed submodule of M. If $C \cap M_{1}=0$, then we are done. Now let $0 \neq$ $c \in C \cap M_{1}$, and C_{1} be a maximal essential extension of $c R$ in C. Since M_{1} is of finite uniform dimension, so is C_{1}. By the given assumption, C_{1} is a summand of M. Write $M=C_{1} \oplus K$. Hence $C=C_{1} \oplus C^{*}$, where $C^{*}=K \cap C$ is closed in M. Let $m=c_{1}+c^{*}$, where $c_{1} \in C_{1}$ and $c^{*} \in C^{*}$. Since C^{*} is a summand of an $E C$-closed submodule C, then by Corollary 3.19, C^{*} is $E C$-closed. If $C^{*} \cap M_{1}=0$, then by assumption C^{*} is a summand, and hence C is a summand of M. On the other hand, if $C^{*} \cap M_{1} \neq 0$, then by repeating the previous steps, we have $C^{*}=C_{2} \oplus C_{3}$, where C_{2} is a summand and has a non-zero intersection with M_{1}. Continuing in this manner, we should stop after a finite steps (due to M_{1} a finite uniform dimensional module) and end with $C=C_{1} \oplus C_{2} \oplus \ldots \oplus C_{n}$, where C_{i} is a summand of $M(i=1,2, \ldots, n-1)$, and C_{n} contains an essential cyclic submodule with $C_{n} \cap M_{1}=0$. Hence C_{n} is a summand of M, by assumption, and therefore C is a summand of M.

Corollary 3.28 Let $M=M_{1} \oplus M_{2}$, where M_{1} is of finite uniform dimension. Then M is P-extending if and only if every $E C$-closed submodule of M, with $C \cap M_{1}=0$, or $C \cap M_{2}=0$, is a summand.

Proposition 3.29 Let $M=M_{1} \oplus M_{2}$. Then M is $F P$-extending if and only if every EC-closed submodule C of M with finite uniform dimensional such that $C \cap M_{1}=0$, or $C \cap M_{2}=0$, is a summand.

Proof. It is similar to the proof of Proposition 3.27.

Proposition 3.30 Let $M=M_{1} \oplus M_{2}$, where M_{1} is a semisimple module. Then M is P-extending if and only if every $E C$-closed submodule C of M with $C \cap M_{1}=0$, is a summand.

Proof. The necessary condition is obvious. For the sufficient condition, let C be an $E C$-closed submodule of M. If $C \cap M_{1}=0$, then we are done. On the other hand, since M_{1} is a semisimple, we get $C \cap M_{1} \leq^{\oplus} M_{1}$ and so $C=C \cap M_{1} \oplus C^{*}$. Since C^{*} is an $E C$-closed submodule of M and $C^{*} \cap M 1=0$, then C^{*} is a summand of M. Therefore C is a summand of M.

Proposition 3.31 Let $M=M_{1} \oplus M_{2}$, where M_{1} is P-extending and M_{2} is $M_{1}-P$ injective. If M_{2} is nonsingular, then every $E C$-closed submodule C of M, with $C \cap M_{2}=$ 0 , is a summand of M.

Proof. Let $c R \leq_{e} C$ be an $E C$-closed submodule of M with $C \cap M_{2}=0$, and write $c=c_{1}+c_{2}$, where $c_{1} \in M_{1}$ and $c_{2} \in M_{2}$. Since M_{2} is $M_{1}-P$-injective, then the homomorphism $\alpha: c_{1} R \rightarrow M_{2} ; \alpha\left(c_{1}\right)=c_{2}$, there exists a homomorphism $\phi: M_{1} \rightarrow$ M_{2} such that $\left.\phi\right|_{c_{1} R}=\alpha$. Let

$$
\left(c_{1} R\right)^{*}=\left\{c_{1} r+\phi\left(c_{1}\right) r \mid r \in R\right\} .
$$

$\left(c_{1} R\right)^{*}$ is a submodule of

$$
M_{1}^{*}=\left\{m_{1}+\phi\left(m_{1}\right) \mid m_{1} \in M_{1}\right\}
$$

Let $c r \in c R$. $c r=c_{1} r+c_{2} r=c_{1} r+\phi\left(c_{1}\right) r$. Then $c R=\left(c_{1} R\right)^{*}$. Let $y \in M_{1}^{*} \cap M_{2}=0$. Let $m \in M . m=\left(m_{1}+\phi\left(m_{1}\right)\right)+\left(m_{2}-\phi\left(m_{1}\right)\right) \in M_{1}^{*}+M_{2}$ where $m_{1} \in M_{1}$ and $m_{2} \in M_{2}$. Then $M=M_{1}^{*} \oplus M_{2}$. Therefore $M_{1}^{*} \cong M_{1}$. Let $x \in C$ and write $x=y+m_{2}$, where $y \in\left(M_{1}\right)^{*}$ and $m_{2} \in M_{2}$. Since $c R \leq_{e} C$, then there exists an essential right ideal I of R such that $m_{2} I=0$. Since M_{2} is nonsingular, then $m_{2}=0$. Let $c \in C$. Then $c=m_{1}+\phi\left(m_{1}\right)+m_{2}$ where $m_{1} \in M_{1}$ and $m_{2} \in M_{2}$. Since $c R \leq_{e} C$, there exists $0 \neq r \in R$ such that $c r=\left(m_{1}+\phi\left(m_{1}\right)+m_{2}\right) r \in c R \leq M_{1}^{*} . m_{1} r+\phi\left(m_{1}\right) r+m_{2} r \in M_{1}^{*}$. Then there exists $z \in M_{1}^{*}$ such that $m_{1} r+\phi\left(m_{1}\right) r-z=-m_{2} r \in M_{1}^{*} \cap M_{2}=0$. It follows that $m_{2}=0$ and also $c=m_{1}+\phi\left(m_{1}\right) \in M_{1}^{*}$. It follows that $C \subseteq\left(M_{1}\right)^{*}$. Since $\left(M_{1}\right)^{*}$ is P-extending, we have $C \leq^{\oplus}\left(M_{1}\right)^{*} \leq^{\oplus} M$.

Definition 3.32 Let $M=M_{1} \oplus M_{2}$ be a module. The module M_{2} is called $M_{1}-E C$ injective, iffor every EC-(closed) submodule N of M_{1}, and every homomorphism from N to M_{2} can be extended to M_{1}

This is equivalent to for every $E C$-(closed) submodule N of M such that $N \cap M_{2}=0$, there exists $N^{\prime} \leq M$ such that $N \leq N^{\prime}$, and $M=N^{\prime} \oplus M_{2}$.

Observe that every module over a regular ring R is $R-E C$-injective.

Lemma 3.33 Let $M=M_{1} \oplus M_{2}$ and M_{2} be M_{1}-EC-injective. Then:
(i) M_{2} is K-EC-injective, for all $K \leq M_{1}$.
(ii) H is M_{1}-EC-injective, for all $H \leq{ }^{\oplus} M_{2}$.
(iii) H is K-EC-injective, for all $K \leq{ }^{\oplus} M_{1}$, and $H \leq{ }^{\oplus} M_{2}$.

Proof. (i) Let K be a submodule of M_{1}, and N be an $E C$-submodule $K \oplus M_{2}$ with $N \cap M_{2}=0$. Then N is an $E C$-submodule of M. Since M_{2} is $M_{1}-E C$-injective, then there is $N^{\prime} \leq M$ such that $N \leq N^{\prime}$, and $M=N^{\prime} \oplus M_{2}$. Then $K \oplus M_{2}=\left(K \oplus M_{2}\right) \cap\left(N^{\prime} \oplus\right.$ $\left.M_{2}\right)=\left(N^{\prime} \cap\left(K \oplus M_{2}\right)\right) \oplus M_{2}$ and $N \leq N^{\prime} \oplus\left(K \oplus M_{2}\right)$. Hence M_{2} is K - $E C$-injective.
(ii) Let H be a summand of M_{2}, and N be an $E C$-submodule of $M_{1} \oplus H$ with $N \cap H=0$. Then N is an $E C$-submodule of M and $N \cap M_{2}=0$ since M_{2} is $M_{1}-E C$ injective, then there is $N^{\prime} \leq M$ such that $N \leq N^{\prime}$, and $M=N^{\prime} \oplus M_{2}$. Since $H \leq{ }^{\oplus} M_{2}$, then $M_{2}=H \oplus H^{\prime}$, and so $M_{1} \oplus H=\left(M_{1} \oplus H\right) \cap\left(N^{\prime} \oplus H \oplus H^{\prime}\right)=H \oplus\left(M_{1} \oplus H\right) \cap\left(N^{\prime} \oplus H^{\prime}\right)$. Since $N \leq N^{\prime}$, then $N \leq\left(M_{1} \oplus H\right) \cap\left(N^{\prime} \oplus H\right)$. Therefore H is $M_{1}-E C$-injective.
(iii) Follows from (i) and (ii).

Proposition 3.34 Let $M=M_{1} \oplus M_{2}$ where M_{1} is P-extending and M_{2} is $M_{1}-E C$ injective. Then $M=C \oplus M_{1}^{\prime} \oplus M_{2}$; where $M_{1}^{\prime} \leq M_{1}$, for every $E C$-closed submodule C of M, with $C \cap M_{2}=0$.

Proof. Let $c R \leq^{e} C$ be an $E C$-closed submodule of M with $C \cap M_{2}=0$. Define $X=M_{1} \cap\left(C \oplus M_{2}\right)$. Then $c_{1} R \leq_{e} X$, where $c=c_{1}+c_{2}$, where $c_{1} \in M_{1}$ and $c_{2} \in M_{2}$. Let N_{1} be a maximal essential extension of X in M_{1}. Then N_{1} is an $E C$-closed submodule of M_{1}. Since M_{1} is P-extending, we have $N_{1} \leq{ }^{\oplus} M_{1}$. Write $M_{1}=N_{1} \oplus M_{1}^{\prime}$, where $M_{1}^{\prime} \leq M_{1}$. Now $C \oplus M_{2}=X \oplus M_{2} \leq_{e} N_{1} \oplus M_{2}$; i.e. $C \leq N_{1} \oplus M_{2}$, and $C \leq_{c} N_{1} \oplus M_{2}$. Then C is complement of M_{2} in $N_{1} \oplus M_{2}$. Since M_{2} is $M_{1}-E C$-injective, and N_{1} is a summand of M_{1}, then by Lemma 3.33 (i), M_{2} is $N_{1}-E C$-injective, and so there exists $N^{\prime} \leq N_{1} \oplus M_{2}$ such that $C \leq N^{\prime}$, and $N_{1} \oplus M_{2}=N^{\prime} \oplus M_{2}$. Hence N^{\prime} is a complement of M_{2} in $N_{1} \oplus M_{2}$, but C is a complement of M_{2} in $N_{1} \oplus M_{2}$. Therefore, $N^{\prime}=C$ and $M=M_{1} \oplus M_{2}=N_{1} \oplus M_{1}^{\prime} \oplus M_{2}=C \oplus M_{1}^{\prime} \oplus M_{2}$.

Corollary 3.35 Let $M=M_{1} \oplus M_{2}$, where M_{i} is P-extending and is M_{j}-EC-injective $(i \neq j=1,2)$ if and only if $M=C \oplus M_{i}^{\prime} \oplus M_{j}$; where $M_{i}^{\prime} \leq M_{i}$, for every $E C$-closed submodule C of M, with $C \cap M_{j}=0(i \neq j=1,2)$.

Proposition 3.36 Let $M=M_{1} \oplus M_{2}$, where M_{1} and M_{2} are relatively EC-injective, and either M_{1} or M_{2} is of finite uniform dimension. Then M is P-extending if and only if M_{1} and M_{2} are P-extending.

Proof. It is follows by Corollaries 3.35, and 3.28.

Proposition 3.37 Let $M=\bigoplus_{i \in I} M_{i}$ be an R-module, where $M(F)$ is P-extending and $M(I \backslash F)$ is $M(F)$-EC-injective, for all finite subset F of I. Then M is P-extending.

Proof. Let $c \in M$ and C be a maximal essential extension of $c R$ in M. Then $c R \leq M(F)$ and $c R \cap M(I \backslash F)=0$, for a finite subset F of I. Since $c R \leq_{e} C$, then $C \cap M(I \backslash F)=0$. Since $M(I \backslash F)$ is $M(F)$ - $E C$-injective and C is $E C$-closed submodule of M, then by Proposition 3.34, C is a summand of M. Hence M is P-extending.

Definition 3.38 A module M is called ef-extending if every closed submodule which contains essentially a finitely generated submodule is a direct summand.(Equivalently, A module M is called ef-extending if every submodule N of M such that N is finitely generated there exists a direct summand L of M such that N is essential in L.

Definition 3.39 A module M is called uniform - extending (u-extending) if every uniform submodule is essential in a direct summand of M.

The following implications are obvious

$$
\text { extending } \Rightarrow \text { ef-extending } \Rightarrow \mathrm{p} \text {-extending } \Rightarrow \text { uniform-extending }
$$

The following example shows that the implication ef-extending \Rightarrow extending is not true.

Example 3.40 The Z-module $M=\prod_{i=1}^{\infty} Z_{2}$ is ef-extending but it is not extending.

Proof. It is easy to see that $N=\bigoplus_{i=1}^{\infty} Z_{2}$ is local direct summand of M. Since Z is a Noetherian ring, N is closed submodule of M [10, 8.1]. But N is not a direct summand of M. In fact, suppose that $M=N \oplus K$. Set $x=(0,1,1, \ldots, 1, \ldots) \in K, x^{\prime}=$ $(0,0,0,1, \ldots, 1, \ldots) \in K$. Then $x-x^{\prime}=(0,1,1,0, \ldots, 0, \ldots) \in K \cap N$, a contradiction. Thus M is not extending. We now show that M is ef-extending. $Z / 2 Z=\{0,1\}, M$ has some of the following properties:
$(*)$ Since $x=\left(x_{i}\right) \in M, x_{i}=0$ or $x_{i}=1$. This implies that $x k=0$ if k is even and $x k=x$ if k is odd. Hence $x Z=\{0, x\}$. This means that $x Z$ is a simple submodule of M.
$(* *)$ For every $x \in M, x Z$ is a direct summand of M. In fact, we can suppose that $x \neq 0, x=x_{i}$. Then there exists an integer i such that $x_{i}=1, x_{1}=1$ says, i.e., $x=\left(1, x_{2}, x_{3}, \ldots\right)$. Take $N^{\prime \prime}=\left\{\left(0, y_{2}, y_{3}, \ldots\right) \mid y_{i} \in Z_{2}, i>1\right\} \leq M$. We can easily see that $N^{\prime \prime} \cap x Z=0$ and $M=x Z \oplus N^{\prime \prime}$.

Thus, every cyclic submodule of M is a simple submodule and a direct summand of M. So if K is an essentially finitely generated submodule, then we can easily see that K is direct summand of M. Hence M is ef-extending.

Proposition 3.41 Let M be an ef-extending module such that every local direct summand is a direct summand of M. Then M is an extending module.

Proof. Let K be a non-zero closed submodule of M. For any $0 \neq x \in K, x R$ is essential in a submodule A of K which is closed in K. Since K is closed in M, A is closed in M and therefore A is a direct summand of M. By Zorn's lemma, there exists a maximal local direct summand $N=\bigoplus_{I} A_{i}$ where each $A_{i} \subset K$. By hypothesis, N is a direct summand of M, i.e., $M=N \oplus N^{\prime}$ for some submodule N^{\prime} of M, so $K=N \oplus\left(K \cap N^{\prime}\right)$. Assume that $K \cap N^{\prime} \neq 0$. Then there exists $A \neq 0 A$ is a direct summand of M. This implies that A is also a direct summand of $K \cap N^{\prime}$. So $N \oplus A$ is a local direct summand
of M, contradicting the choice of N. Thus $K \cap N^{\prime}=0$. This means that $K=N$. This shows that M is an extending module.

By the example above, we see that the Z-module $M=\prod_{i=1}^{\infty} Z_{2}$ is ef-extending but not extending. Note that $N=\bigoplus_{i=1}^{\infty} Z_{2}$ is local direct summand of M but it is not a direct summand of M.

Lemma 3.42 A module M is uniform-extending if and only if every closed submodule K of M that has finite uniform dimension is a direct summand of M.

Proof. Suppose M is u-extending. Let K be a closed submodule of M that has finite uniform dimension. Without loss of generality, we can assume uniform dimension of K is 2 . Then we have a uniform closed submodule K_{1} of K. Since K is closed submodule of M, K_{1} is closed in M and M is u-extending K_{1} is direct summand of M. $M=K_{1} \oplus L$ for some direct summand L of M. By modularity $K=K_{1} \oplus(K \cap L)$. Since $u d(K)=2, K \cap L$ is a uniform closed submodule and so it is a direct summand of M and also of L. Hence K is a direct summand of M. Conversely, it is obvious.

Proposition 3.43 For a module M over a noetherian ring, the following conditions are equivalent:
(i) M is ef-extending.
(ii) M is uniform-extending.

Proof. Since a finitely generated module over a noetherian ring is noetherian, every finitely generated module has finite uniform dimension. By Lemma 3.42, the proposition follows.

Definition 3.44 A module M is said to satisfy $\left(C_{11}\right)$ if and only iffor every submodule A of M, there exists a direct summand K of M such that $A \cap K=0$ and $A \oplus K \unlhd M$

Lemma 3.45 Any direct sum of modules (C_{11}) satisfies (C_{11}).

Proof. Let $M_{\lambda}(\lambda \in \Lambda)$ be a non-empty collections of modules, each satisfying $\left(C_{11}\right)$. Let $M=\oplus_{\lambda \in \Lambda} M_{\lambda}$. Let N be any submodule of M. Let $\lambda \in \Lambda$. Note that $N \cap M_{\lambda}$ is a submodule of M_{λ} and M_{λ} satisfies $\left(C_{11}\right)$. By [13 Proposition 2.3], there exists a direct summand K_{λ} of M_{λ} such that $\left(N \cap M_{\lambda}\right) \cap K_{\lambda}=0$ and $\left(N \cap M_{\lambda}\right) \oplus K_{\lambda}$ is an essential submodule of M_{λ}. Note that $N \cap K_{\lambda}=0,\left(N \oplus K_{\lambda}\right) \cap M_{\lambda}=\left(N \cap M_{\lambda}\right) \cap K_{\lambda}$ and $\left(N \oplus K_{\lambda}\right) \cap M_{\lambda}$ is an essential submodule of M_{λ}. Let Λ^{\prime} be a non-empty subset of Λ containing λ such that there exists a direct summand K^{\prime} of $M^{\prime}=\oplus_{\lambda \in \Lambda^{\prime}} M_{\lambda^{\prime}}$, with $N \cap K^{\prime}=0$ and with $\left(N \oplus K^{\prime}\right) \cap M^{\prime}$ an essential submodule of M^{\prime}. Suppose $\Lambda^{\prime} \neq \Lambda$. Let $\mu \in \Lambda, \mu$ is not in Λ^{\prime}. Now $L=\left(N \oplus K^{\prime}\right) \cap M_{\mu}$ is a submodule of M_{μ}, so there exists a direct summand K_{μ} of M_{μ} such that $L \cap K_{\mu}=0$ and $L \oplus K$ is an essential submodule of M_{μ}. Let $\Lambda^{\prime \prime}=\Lambda^{\prime} \cup\{\mu\}$ and $M^{\prime \prime}=\oplus_{\lambda \in \Lambda^{\prime \prime}} M_{\lambda}=M^{\prime} \oplus M_{\lambda}$. Note that $K^{\prime} \cap K_{\mu}=0$. Let $K^{\prime \prime}=K^{\prime} \oplus K_{\mu}$. Note that $K^{\prime \prime}$ is a direct summand of $M^{\prime \prime}$ and moreover $N \cap K^{\prime \prime}=0$. Consider the submodule $N \oplus K^{\prime \prime}$. Note that $\left(N \oplus K^{\prime \prime}\right) \cap M^{\prime}$ contains $\left(N \oplus K^{\prime}\right) \cap M^{\prime}$, so that $\left(N \oplus K^{\prime \prime}\right) \cap M^{\prime}$ is an essential submodule of M^{\prime}. Moreover

$$
\left(N \oplus K^{\prime \prime}\right) \cap M_{\mu}=\left(N \oplus K^{\prime} \oplus K_{\mu}\right) \cap M_{\mu}=\left[\left(N \oplus K^{\prime}\right) \cap M_{\mu}\right] \oplus K_{\mu}=L \oplus K_{\mu},
$$

which is an essential submodule of M_{μ}. It follows that $\left(N \oplus K^{\prime \prime}\right) \cap M^{\prime \prime}$ is an essential submodule of $M^{\prime \prime}$. Repeating this argument, there exists a direct summand K of M such that $N \cap K=0$ and $N \oplus K$ is an essential submodule of M. By [13 Proposition 2.3] M satisfies $\left(C_{11}\right)$.

Lemma 3.46 Let $M=\bigoplus_{I} M_{i}$ be a decomposition with all M_{i} uniform and $\operatorname{End}\left(M_{i}\right)$ local. If the family $\left\{M_{i} \mid i \in I\right\}$ is relatively injective, then there does not exist an infinite sequence of non-isomorphic monomorphism $\left\{f_{k}: M_{i_{k}} \rightarrow M_{i_{k+1}}\right\}_{N}$ with all $i_{k} \in I$ distinct.

Proof. Suppose that there exists an infinite sequence of non-isomorphic monomorphisms $\left(f_{i}\right)$ where $f_{i}: M_{i} \rightarrow M_{i+1}, i \geq 1$.

Let $N_{i}=\left\{x-f_{i}(x) \mid x \in M_{i}\right\}$. Then we can easily see that the family $\left\{N_{i} \mid i=1,2, \ldots\right\}$ independent, so the sum $\sum_{i=1}^{\infty} N_{i}$ is direct. Since each M_{i} is a uniform module, it satisfies $\left(C_{11}\right)$, so thus $\bigoplus_{i=1}^{\infty} M_{i}$. Therefore, there exists a direct summand K of $\bigoplus_{i=1}^{\infty} M_{i}$ such that $\left(\bigoplus_{i=1}^{\infty} N_{i}\right) \cap K=0$ and $\left(\bigoplus_{i=1}^{\infty} N_{i}\right) \oplus K$ is essential in $\bigoplus_{i=1}^{\infty} M_{i}$. Assume that $K \neq 0$. Then by $[1,12.6]$ there exists a $k \in N$ such that M_{k} is direct summand of K. The relative injectivity of the family $\left\{M_{i} \mid i=1,2, \ldots\right\}$ implies that M_{k} is $\bigoplus_{i \neq k} M_{i}$-injective [2, 1.5]. Hence, there exists M^{\prime} such that $\bigoplus_{i=1}^{\infty} N_{i} \leq M^{\prime}$ and $\bigoplus_{i=1}^{\infty} M_{i}=M^{\prime} \oplus M_{k}$. This implies that N_{k} is a direct summand of M^{\prime} so that $M_{k} \oplus N_{k}$ is a direct summand of M or $M_{k} \oplus N_{k}$ is a closed submodule of M. Moreover, $M_{k} \oplus N_{k}$ is essential in $M_{k} \oplus M_{k+1}$. Hence $M_{k} \oplus N_{k}=M_{k} \oplus M_{k+1}$. This implies that f_{k} is epimorphic, a contradiction. Therefore $K=0$ and hence $\bigoplus_{i=1}^{\infty} N_{i}$ is essential in $\bigoplus_{i=1}^{\infty} M_{i}$. Thus $M_{1} \cap\left(\bigoplus_{i=1}^{\infty} N_{i}\right) \neq 0$, so there exists $x_{1} \neq 0, x_{1}=y_{1}-f_{1}\left(y_{1}\right)+\ldots+y_{n}-f_{n}\left(y_{n}\right)$, where $y_{i} \in M_{i}(i=1, \ldots, n)$. This would imply that $f_{n} f_{n-1} \ldots f_{2} f_{1}(x)=0$, which contradicts to the fact that all f_{i} are monomorphic, proving our lemma.

Theorem 3.47 Let $M=\bigoplus_{I} M_{i}$ be a decomposition with M_{i} uniform and End $\left(M_{i}\right)$ local. Assume the family $\left\{M_{i} \mid i \in I\right\}$ is relatively injective. Then the following conditions are equivalent:
(i) M is extending.
(ii) M is ef-extending.
(iii) M is uniform-extending.

Proof. The proof follows by Lemma 3.46. and [14 Theorem 3.4]

Lemma 3.48 Let $M=M_{1} \oplus M_{2}$ having the following property: either every closed submodule K in M with $K \cap M_{1}=0$ is a direct summand of M, or every closed submodule K in M which is essentially finitely generated such that $K \cap M_{2}=0$ is a direct summand of M. Then M is an ef-extending module.

Proof. Let K be a closed submodule of M that contains essentially a finitely generated submodule $N=x_{1} R+\ldots+x_{n} R$. Then there exists a closed submodule H in K such that $K \cap M_{2}$ is essential in H. From this, H is a closed submodule of $M, H \cap M_{1}=0$ and then H is a direct summand of $M, M=H \oplus H^{\prime}$ says. This implies that $K=H \oplus\left(K \cap H^{\prime}\right)$. So $K \cap H^{\prime}$ is closed submodule in M and $\left(K \cap H^{\prime}\right) \cap M_{2}=0$. We now prove that $K \cap H^{\prime}$ is essentially finitely generated. In fact, since $N=x_{1} R+\ldots+x_{n} R$ is essential in $K=H \oplus\left(H^{\prime} \cap K\right)$, we have $x_{1}=h_{1}+k_{1}, \ldots, x_{n}=h_{n}+k_{n}$, where $h_{i} \in H, k_{i} \in H^{\prime} \cap K$ $(i=1, \ldots, n)$. Let $B=k_{1} R+\ldots+k_{n} R$. Since N is essential in K, B is essential in $K \cap H^{\prime}$. By hypothesis, we have $H^{\prime} \cap K$ is a direct summand of M and hence of H^{\prime}, i.e., $H^{\prime}=\left(H^{\prime} \cap K\right) \oplus P$ for some P. It follows that $M=H \oplus\left(H^{\prime} \cap K\right) \oplus P=K \oplus P$, proving our lemma.

Proposition 3.49 A direct sum of an extending module and an ef-extending module which are relatively injective is also an ef-extending module.

Proof. By Lemma 3.48 and [10 Theorem 7.5].

Lemma 3.50 Let $M=M_{1} \oplus M_{2}$ with each M_{i} uniform and End $\left(M_{i}\right)$ local $(i=1,2)$. Assume M is uniform-extending. Then for any $A \leq M_{i}$ every homomorphism $f: A \rightarrow$ M_{j} can be extended to a homomorphism
$f^{\prime}: B \rightarrow M_{j}$, where B is a submodule of M_{i} such that either $B=M_{i}$ or $B \neq M_{i}$ and f^{\prime} is an isomorphism.

Proof. Assume that $A \leq M_{1}$ and $f: A \rightarrow M_{2}$ is a homomorphism. Let

$$
A^{\prime \prime}=\{a-f(a) \mid a \in A\} .
$$

Then $A^{\prime \prime} \simeq A$ is a uniform submodule of M. Since M is uniform extending, $A^{\prime \prime}$ is essential in a direct summand D of M. By [1, 12.7], either $M=M_{1} \oplus D$ or $M=D \oplus M_{2}$. Assume first that $M=D \oplus M_{2}$. Let $p: D \oplus M_{2} \rightarrow M_{2}$ be the projection. Then it is easy to check the restriction of p on M_{1} is an extension of f. So p is the desired homomorphism. Now assume that $M=M_{1} \oplus D$. Then $D \cap M_{1}=0$ and clearly $\operatorname{ker} f=0$, therefore there exists $f^{-1}: f(A) \rightarrow A$. We can easily see that the projection $q: M_{1} \oplus D \rightarrow M_{1}$ which restricts on M_{2} is an extension of f^{-1} and we call this extension j. Since f^{-1} is a monomorphism and M_{2} is a uniform module, j is also a monomorphism. We can easily see that $A \leq j\left(M_{2}\right)$. Set $B=j\left(M_{2}\right)$. Then we see that $j^{-1}: B \rightarrow M_{2}$ is an extension of f. So j^{-1} is the desired isomorphism.

Definition 3.51 A module A is called nearly B-injective if for each $C \leq B$ and for each homomorphism $f: C \rightarrow A$ with kerf ≤ 0, then there exists a homomorphism $f^{\prime}: B \rightarrow A$ such that it is extension of f.

The family $\left\{M_{i} \mid i \in I\right\}$ of right R-modules is said to satisfy A_{2}) if for any choice of $x_{n}, x_{n} \in M_{i_{n}}$ with distinct $i_{n} \in I$ such that $r_{R}(y) \subseteq \bigcap_{i=1}^{\infty} r_{R}\left(x_{n}\right)$ for some $y \in M_{j}$, the ascending sequence :

$$
\bigcap_{n=1}^{\infty} r_{R}\left(x_{n}\right) \subseteq \bigcap_{n=2}^{\infty} r_{R}\left(x_{n}\right) \ldots
$$

becomes stationary.

Lemma 3.52 A module A is nearly B-injective if and only if A is nearly $x R$-injective for each $x \in B$.

Proof. We use the same argument as that given in [2, 1.4].

Lemma 3.53 Let $M=\bigoplus_{I} M_{i}$ be a decomposition with all M_{i}-uniform and $\operatorname{End}\left(M_{i}\right)$ local. Assume $M_{i} \oplus M_{j}$ is uniform-extending for each pair $i \neq j$ in I and the family $\left\{M_{i} \mid i \in I\right\}$ satisfies $\left(A_{2}\right)$. Then for each $k \in I, \bigoplus_{i \neq k} M_{i}$ is nearly M_{k}-injective.

Proof. By Lemma 3.52, it suffices to prove that $\bigoplus_{i \neq k} M_{i}$ is nearly $x R$-injective for each $x \in M_{k}$. Assume that $A \leq x R$ and $f: A \rightarrow \bigoplus_{i \neq k} M_{i}$ is a homomorphism such that $\operatorname{ker} f \neq 0$. Define $S=\{r \in R \mid x r \in A\}$. Then it is easy to check that S is an ideal of R and $A=x S$. For each $i \in I \backslash\{k\}$, put $f_{i}=p_{i} f: x S \rightarrow M_{i}$, where each $p_{i}: \bigoplus_{i \neq k} M_{i} \rightarrow M_{i}$ is the projection. Since $M_{k} \oplus M_{i}$ is uniform-extending, $\operatorname{ker} f \neq 0$ and by Lemma 3.50, f_{i} can be extended to a homomorphism $h_{i}: x R \rightarrow M_{i}$. So we can easily see that $h: x R \rightarrow \prod_{i \neq k} M_{i}$

$$
x r \mapsto\left(h_{i}(x r)\right)_{I \backslash k\}}
$$

is an extension of f on A. Put $a=\left(a_{i}\right)_{\ \backslash\{k\}}=h(x) \in \prod_{i \neq k} M_{i}$. Clearly

$$
r_{R}(x) \subseteq r_{R}(a)=\bigcap_{i \neq k} r_{R}\left(a_{i}\right)
$$

For each element $s \in S$, let $I_{s}=\left\{i \in I \backslash\{k\}\right.$ such that $\left.a_{i} s \neq 0\right\}$. Then I_{s} is a finite subset of $I \backslash\{k\}$. If $\bigcup_{s \in S} I_{s}$ such that $\bigcup_{n=1}^{\infty} I_{s_{n}}$ is countable. Since I_{s} is finite for each $s \in S$, we can choose a sequence $\left(s_{n}\right)_{n}$ satisfying

$$
I_{s_{1}} \varsubsetneqq I_{s_{1}} \varsubsetneqq \ldots
$$

and $i_{1} \in I_{s_{1}}, i_{2} \in I_{s_{2}} \backslash I_{s_{1}}, \ldots, i_{n} \in I \backslash\left(\bigcup_{j=1}^{n-1} I_{s_{j}}\right)$. Since $i_{1} \in I_{s_{1}}$, it follows that $a_{i_{1}} s_{1} \neq 0$, $a_{j} s_{1}=0$ for each $j \in I \backslash I_{s_{1}}$. Similarly, for $i_{2} \in I_{s_{2}} \backslash I_{s_{1}}$, we have

$$
a_{i_{2}} s_{1}=0, a_{i_{2}} s_{2} \neq 0, \ldots
$$

and finally, $i_{n} \in I \backslash\left(\bigcup_{j=1}^{n-1} I_{s_{j}}\right)$, we have $a_{i_{n}} s_{1}=\ldots=a_{i_{n}} s_{n-1}=0, a_{i_{n}} s_{n} \neq 0$.
Thus the sequence $\left(\bigcap_{k=n}^{\infty} r_{R}\left(a_{i_{k}}\right)\right)_{n \in N}$ is strictly increasing, contradicting to the assumption that $\left\{M_{i}\right\}_{i \in I}$ satisfies $\left(A_{2}\right)$. We now assume that $\bigcup_{s \in S} I_{s}=\left\{i_{1}, \ldots, i_{n}\right\}$. For each $t \in I \backslash\left\{i_{1}, \ldots, i_{n}\right\}, a_{t} s=0$. This would imply $\left.f(x s)=\left(a_{i} s\right)_{i \in I \backslash\{k\}}\right) \in \bigoplus_{t=1}^{n} M_{i_{t}}$ for
each $s \in S$. Hence $f(A) \subseteq \bigoplus_{t=1}^{n} M_{i_{t}}$. Since each $M_{i_{t}}$ is nearly M_{k}-injective, $\bigoplus_{t=1}^{n} M_{i_{t}}$ is nearly M_{k}-injective. So there exists a homomorphism $h^{\prime}: M_{k} \rightarrow \bigoplus_{t=1}^{n} M_{i_{t}}$ such that h^{\prime} is an extension of f. The proof of our lemma is completed.

Theorem 3.54 Let $M=\bigoplus_{I} M_{i}$ be a decomposition with all M_{i}-uniform and End $\left(M_{i}\right)$ local. Then the following conditions are equivalent:
(i) M_{i} is uniform-extending.
(ii) $M_{i} \oplus M_{k}$ is extending for each pair $k \neq i$ in I and the family $\left\{M_{i} \mid i \in I\right\}$ satisfies $\left(A_{2}\right)$.
(iii) $M_{i} \oplus M_{k}$ is ef-extending for each pair $k \neq i$ in I and the family $\left\{M_{i} \mid i \in I\right\}$ satisfies $\left(A_{2}\right)$.
(iv) $M_{i} \oplus M_{k}$ is uniform-extending for each pair $k \neq i$ in I and the family $\left\{M_{i} \mid i \in I\right\}$ satisfies $\left(A_{2}\right)$.

Proof. (i) \Rightarrow (ii). By [14,Lemma 2.3]
(ii) \Rightarrow (iii) and (iii) \Rightarrow (iv) are obvious.
(iv) \Rightarrow (i). Suppose that $\left\{M_{i} \mid i \in I\right\}$ satisfies $\left(A_{2}\right)$ and U is a uniform submodule of M. By Zorn's lemma, there exists $k \in I$ such that $U \cap \bigoplus_{i \neq k} M_{i}=0$. Thus, the projection $p_{k}: M=\left(\oplus_{i \neq k} M_{i}\right) \oplus M_{k} \rightarrow M_{k}$ restricts on U is a monomorphism. Let $A=p_{k}(U)$ and $p:\left(\oplus_{i \neq k} M_{i}\right) \oplus M_{k} \rightarrow \oplus_{i \neq k} M_{i}$ be the projection. Consider the homomorphism $h: A \rightarrow \oplus_{i \neq k} M_{i}$, defined by $h\left(p_{k}(u)\right)=p(u)$ for each $u \in U$. If $h=0$ then $U \leq M_{k}$ and since A is closed in M_{k}, it follows that $U=M_{k}$. So U is a direct summand of M. Now assume that $h \neq 0$. Then there exists $u \in U$ such that $h\left(p_{k}(u)\right) \neq 0$. Thus, we can choose $i_{1}, i_{2}, \ldots i_{n}$ in $I \backslash\{k\}$ such that $h\left(p_{k}(u)\right) \in M_{i_{1}} \oplus \ldots \oplus M_{i_{n}}$. Put $N_{1}=M_{i_{1}} \oplus \ldots \oplus M_{i_{n}}$ and $N_{2}=\bigoplus_{i \neq k} M_{i} \backslash N_{1}$. By Lemma 3.52, N_{2} is nearly M_{k}-injective and $p_{2} h$ is not a monomorphism (where $p_{2}: \bigoplus_{i \neq k} M_{i}=N_{1} \oplus N_{2} \rightarrow N_{2}$ is the projection), it would implies that $p_{2} h$ can be extended to a homomorphism $h_{2}: M_{k} \rightarrow N_{2}$. If for each $t=1,2, \ldots, n, p_{t} h: A \rightarrow M_{i_{t}}$ is not a monomorphism, then $p_{t} h$ can be
extended to a homomorphism $h_{t}: M_{k} \rightarrow M_{i_{i}}$. Therefore h can be extended to a homomorphism $h^{\prime}: M_{k} \rightarrow \oplus_{i \neq k} M_{i}$. Set $M_{k}^{*}=\left\{x-h^{\prime}(x) \mid x \in M_{k}\right\}$. It is easy to see that $M=M_{k}^{*} \oplus\left(\oplus_{i \neq k} M_{i}\right)$ and $U \unlhd M_{k}^{*}$. Hence $U=M_{k}^{*}$, i.e., U is a direct summand of M. If there exists some t such that $p_{t} h$ is isomorphic then, without loss of generality, we suppose that $p_{1} h, \ldots, p_{m} h$ are monomorphic for some $m \leq n$. By Lemma 3.50, $p_{t} h$ can be extended to a homomorphism $f_{t}: B_{t} \rightarrow M_{i_{t}}$ and f_{t} is isomorphic for each $t=1,2, \ldots, m$. We can easily see that :
(*) $A=\bigcap_{t=1}^{m} B_{t}$.
(**) The family $\left\{B_{t} \mid t=1, \ldots, m\right\}$ is total ordered.
Thus there exists $t \in\{1, \ldots, m\}$ such that $A=B_{t}$, i.e., $f_{t}=p_{i_{t}}: A \rightarrow M_{i_{t}}$ is isomorphic. It follows that $p_{t}: U \rightarrow M_{i_{t}}$ is isomorphic. Hence U is a direct summand of M and hence M is uniform-extending.

REFERENCES

[1] Anderson, F. W. and Fuller, K. R.: Rings and Categories of Modules, SpingerVerlag, New York, 1974.
[2] Mohamed, S. H. and Müller, B. J., Continuous and discrete modules, London Math. Soc. Lecture Note Series 147(Cambrige Uni. Press, Cambrige, 1990).
[3] Nicholson W. K. and Yousif M. F., Quasi-Frobenius Rings, Cambridge Univ. Press, 2003.
[4] Tercan, A., CS-modules and generalizations, thesis, University of Glasgow, 1992.
[5] Harmanci, A. and Smith, P. F., Finite direct sums of CS-modules, Houston J. Math. 19(1993), 523-532.
[6] Harmanci, A. and Smith, P. F., Tercan A. and Tiras, Y., The Bass-Papp theorem and some related results, Vietnam J. Math. 25(1997), 1, 33-39
[7] Kamal, M. A. and Müller, B. J., Extending modules over commutative domains, Osaka J. Math. 25(1988), 531-538.
[8] Smith, P. F., Modules for which every submodule has a unique closure, in Ring Theory(eds S. K. Jain, S. T. Rizvi)(World Scientific, Singapore 1993), 302-313.
[9] Kamal, M. A. and Elmnophy, O. A., On P-extending modules, Acta Math. Univ. Comenianae Vol. LXXIV, 2(2005), 279-286.
[10] Dung, N. V, Huynh, D. V., Smith, P. and Wisbarer, R.: Extending modules, Pitman, London, 1994.
[11] Kamal, M. A. and Müller, B. J., The structure of extending modules over Noetherian rings, Osaka J. Math.25(1988), 539-551.
[12] Kamal M. A., On decomposition and direct sums of modules, Osaka J. Math. 32(1995), 125-133.
[13] Smith, F. and Tercan, A.: Generalizations of CS-modules, Comm. in Algebra 21(6),1809-1847 (1993).
[14] Dung, N. V.: On indecomposable decompositions of CS-modules, J. Austral. Math. Soc., Series A 61, 30-41(1997).
[15] Harmanci, A. and Smith, P. F., Tercan A. and Tiras, Y., Direct sums of CS modules, Houston Journal of Math. 22(1996), 61-71.
[16] Burgess W. D. and Raphael, R., On modules with the absolute direct summand property.Proceedings of the Biennial Ohio State-Dension Conference (1992), World Scientific(1993), 137-148.
[17] Cammillo, V. and Yousif, M. F., CS-modules with acc or dcc on essential submodules, Comm. Algebra 19 (1991),655-662.
[18] Chatters, A. W. and Hajarnavis, C. R., Rings in which every complement right ideal is a direct summand, Quart. J. Math. Oxford (2)28 (1977), 61-80.
[19] Chatters, A. W. and Hajarnavis, C. R., Rings with chain conditions, (Pitman, London, 1980).
[20] Chatters, A. W. and Khuri, S. M., Endomorphism rings of modules over nonsingular CS-rings, J. London Math. Soc. (2) 21 (1980), 434-444.
[21] Clark, J. and Wisbarer, R.: इ-extending Module, J. Pure Applied Algebra, 1995.(to appear)
[22] Dischinger, F. and Müller, W.: Left PF is not right PF, Comm. Algebra 14(7), 1223-1227(1986).
[23] Dung, N. V., A note on hereditary rings or nonsingular rings with chain conditions, Math. Scand. 66 (1990), 301-306.
[24] Dung, N. V. and Smith, P. F., Hereditary CS-modules, Math. Scand. 71(1992), 173-180.
[25] Dung, N. V. and Smith, P. F.: इ-modules, Comm. Algebra 22, 83-93(1994).
[26] Dung, N. V.: On indecomposable decompositions of CS-modules II, J. Pure Applied Algebra 119, 139-153(1997).
[27] Goodearl, K. R.: Ring Theory, Marcel Dekker, New York, 1976.
[28] Harada, M., Factor categories with applications to direct decompositions of modules, Lecture Notes in Pure and Applied Math. 88, (Dekker, New York, 1983).
[29] Jeremy, L., Modules et anneaux quasi-continuous, Canad. Math. Bull. 17(1974), 217-228.
[30] Müller, B. J. and Rizvi, S. T., On the decomposition of continuous modules, Canad. Math. Bull. 25(1982), 296-301.
[31] Müller, B. J. and Rizvi, S. T., On injective and quasi-continuous modules, J. Pure Appl. Algebra 28(1983), 197-210.
[32] Nicholson, W. K. and Yousif, M. F., Principally injective rings, J. Algebra 174(1995), 77-93.
[33] Okado, M., On the decomposition of extending modules, Math. Japonica 29(1984), 939-944.
[34] Oshiro, K.: Continuous modules and quasi-continuous modules, Osaka J. Math. 20, 681-694(1983).
[35] Osofsky, B. L., Injective modules over twisted polynomial rings, Nagoya Math. J. 119(1990), 107-114.
[36] Sharpe, D. W. and Vamos, P., Injective modules, Cambridge Tracts in Math. 62(Cambridge Uni. Press, Cambridge 1972).
[37] Smith, P. F. and Tercan, A., Continuous and quasi-continuous modules, Houston J. Math. 18(1992), 339-348.
[38] Smith, P. F.: Modules for which every submodule has a unique closure, Ring Theory, Proc. of the Biennial Ohio-State Denison Conference, World Scien. Pub., 302-313(1992).
[39] Tercan, A., On nonsingular CS-modules, preprint.
[40] Thuyet, L. V. and Wisbauer, R.: Extending propertyfor finetely generated submodules, Vietnam J. of Math. 25(1), 65-73(1997).
[41] Utumi, Y., On continuous rings and self-injectiverings, Trans. Amer. Math. Soc. 118(1965), 158-173.
[42] Utumi, Y.: Self-injective rings, J. of Algebra 6, 56-64(1967).
[43] Vanaja, N., All finitely generated M-subgenerated modules are extending, preprint.
[44] Vanaja, N.: Characterization of rings using extending and lifting modules, in Ring Theory (Denison Conf.), World Scientific, Singapore, 1993.
[45] Wisbauer, R.: Foundations of Module and Ring Theory, Gordon and Breach, 1991.
[46] Wongwai, S., On the endomorphism ring of a semi-injective modules, Acta Math. Univ. Comenianae, LXXI(1) (2002), 27-33.
[47] Paramhans, S. A., Some variants of quasi-injectivity, Progr. Math. (Allahabad) 12 (1978), 59-66.
[48] Ara, P. and Park, J. K.: On continuous semiprimary rings, Comm. Algebra 19(7), 1945-1957 (1991).
[49] Nguyen Chien, On EF-extending modules, Southeast Asian Bull. of Math. 26(2003), 909-916.
[50] Kasch, F., Modules and Rings, Academic Press inc., New York (1982), 10003.

