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ABSTRACT

CS-MODULES AND GENERALIZATIONS OF CS-MODULES

Öztürk, Hakan

M.Sc., Department of Mathematics

Supervisor: Assist. Prof. Dr. Cesim Çelik

January 2009, 55 pages

This study containsCS-modules (extending modules),andP-extending andEF-

extending modules which are generalizations ofCS-modules.

This study consists of three sections: In section 1, we present some definitions and

theorems which will be used in the following sections. Section 2 contains a general

characterization ofCS-modules. It is known that every direct summand of aCS-

module is aCS-module too. However, the direct sum ofCS-modules may not be

a CS-module. In this section, it is given under which conditions the direct sum of

CS-modules areCS-modules.

In section, after giving some characterizations and features of principally injective

modules, the following results of theP-extending andEF-extending modules which

are the generalizations of principally injective modules are studied.

Let M be a quasi-principally injective module andS = End(M) andK,H ≤ M. If

K � H,thenS H= S K.

If M has the condition (PC2),thenM has the property (PC3).

Under which conditions, direct sums ofP-extending modules isP-extending is

given.

Some examples regarding converse of the implication which is not true are given.

Under which conditions, an ef-extending module is extending is given.
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Definitions ofEC-submodules andEC-injective modules are given and by means

of these definitions, under which conditions the moduleM = M1 ⊕ M2 is P-extending

is given.

Keywords: essential submodules, complement submodules, injective modules,

CS-modules, ef-extending and P-extending modules.

iv



ÖZET

CS-MODÜLLER VE CS-MODÜLLERİN GENELLEMELEṘI

Öztürk, Hakan

Master Tezi, Matematik B̈olümü

Tez Yöneticisi: Yard. Doç. Dr. Cesim Çelik

Ocak 2009, 55 sayfa

Üç bölümden oluşan bu çalışma,CS-mod̈ulleri (extending modules) ve bu mod-

ullerin genellemeleri olanP-extending,EF-extending mod̈ullerin karakterizasyonunu

içermektedir.

Birinci bölüm, dĭger b̈olümlerde kullanılan temel tanım ve teoremlerden oluşmaktadır.

İkinci bölüm,CS-mod̈ullerin genel bir karakterizasyonunu içermektedir. BirCS-

mod̈ulün her dik toplananınında birCS-mod̈ul olduğu bilinmektedir. Ancak,CS-

mod̈ullerin dik toplamları her zamanCS-mod̈ul dĕgildir. Bu bölümde,CS-mod̈ullerin

hangi koşullar altında yineCS-mod̈ul olduğu verilmiştir.

Üçünc̈u bölümde, temel injektif (principally injective) modüllerin bazı karakteriza-

syonları veözellikleri verildikten sonra, temel injektif modüllerin birer genellemeleri

olanP-extending veEF-extending mod̈ullerin karakterizasyonuyla ilgili aşağıgaki sonuçlar

incelenmiştir.

M yarı temel injektif (quasi-principally injective) modül, K, H ≤ M ve S =

End(M) olmaküzere,K � H iseS H= S K.

M, (PC2)’yi sağlıyor iseM, (PC3) özelliğini săglar.

P-extending mod̈ullerin dik toplamı ne zamanP-extending mod̈uldür.

”extending⇒ ef-extending⇒ uniform-extending”önermesinin tersinin dŏgru ol-

madı̆gına dairörnekler verildi.
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Bir ef-extending mod̈ulün ne zaman extending modül olduğu verildi.

EC-altmod̈ul ve EC-injektif modül tanımları verilip, bu tanımlar yardımıyla,

M = M1⊕M2 mod̈ulünün hangi koşullar altındaP-extending mod̈ul olduğu verilmiştir.

Anahtar Kelimeler: esas altmodül, injektif modül, CS-mod̈ul, ef-extending mod̈ul,

P-extending mod̈ul.
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CHAPTER 1

INRODUCTION AND PRELIMINARIES

1.1 Essential and Complement Submodules

Definition 1.1 Let M be a right R-module and N be a submodule of M. N is called

essential submodule of M (N≤e M) if N ∩ K , 0 for any submodule K of M with

K , 0.

Definition 1.2 Let M be a right R-module and A, B ≤ M. A is called complement of B

in M if A is maximal with respect to the property A∩ B = 0. If a submodule N of M is

complement submodule in M, then it is denoted by N≤c M.

Proposition 1.3 Let M be a right R-module.

(i)N ≤e M if and only if N∩mR, 0 for every0 , m ∈ M.

(ii) Let K ≤ N ≤ M. K ≤e M if and only if K≤e N and N≤e M.

(iii) Let N ≤e M and K≤ M. Then N∩ K ≤e K.

(iv) Let Ni ≤e Ki for 1 ≤ i ≤ t. Then N1 ∩ N2 ∩ ...... ∩ Nt ≤e K1 ∩ K2 ∩ ...... ∩ Kt.

(v) Let K≤ N ≤ M. If (N/K) ≤e (M/K), then N≤e M.

(vi) If K ≤c N ≤e M then(N/K) ≤e (M/K).

(vii) Let N ≤e M and m∈ M. (N : m) = {r ∈ R : mr ∈ N} ≤e RR.

(viii) Let Ni ≤e Mi(i ∈ I ) for a nonempty index set I. Then⊕I Ni ≤e ⊕I Mi.

Lemma 1.4 Let M be a right R-module and A, B ≤ M. If A ∩ B = 0, there exists a

complement C of B such that A≤e C and C⊕ B ≤e M.
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There are two kinds of complement definitions in literature. The first one is above. At

the same time this definition is known as complement in Faith meaning. The second

one is complement in Harada meaning : LetRbe a ring and letM be anR-module. For

N ≤ M, the submoduleClM(N) = {m ∈ M : (N : m) ≤e R} is called the closure ofN in

M. If ClM(N) = N, N is called the complement in Harada meaning.

Every complement submodule in Harada meaning is complement submodule in

Faith meaning, but in general, the converse of the above implication is not true.

Example 1.5 Let Z be a Z-module and E= E(ZZ)(where E= E(ZZ) is the minimal

injective Z-module contains ZZ as essential). Let p be a prime integer and let M=

E ⊕ Zp. ClM(E) = E and ClM(Zp) = Zp. Let K ≤c E ⊕ Zp. For each x∈ K, there exists

x′ ∈ E and n′ ∈ Zp such that x= (x′,n′). If K < E or K < Zp, ClM(K) = E , K or

ClM(K) = Zp , K. Let K � E and K� Zp. For 0 , x ∈ K, x = (x′,n′) : 0 , x′ ∈ E,

0 , n′ ∈ Zp. Zx′ ≤ K and Zn′ ≤ K, also x′ ∈ E and n′ ∈ Zp then Zx′ ≤e E and

Zn′ ≤e Zp. For each x∈ E, (Zx′ : x) ≤e Z and for each n∈ Zp, (Zn′ : n) ≤e Z.

(x,n) ∈ E ⊕ Zp and

I = (Zx′ : x) ∩ (Zn′ : n) ≤e Z

since I(x,n) ≤ K, (x,n) ∈ ClM(K). Hence ClM(K) = E ⊕ Zp , K.

Definition 1.6 Let M be a right R-module. Then the submodule of M

Z(M) = {m ∈ M : rR(m) ≤e R}.

is called singular submodule of M. If Z(M) = M, (Z(M) = 0), then M is called

singular (nonsingular) R-module.

Z2(M) = {m ∈ M : m+ Z(m) ∈ Z(M/Z(M))}.

Z2(M) is a submodule ofM and it is the largest singular submodule ofM. Also

Z(M) ≤e Z2(M). In fact, letm ∈ Z2(M). Thenm+ Z(m) ∈ Z(M/Z(M)). This implies

that there exists an essential idealI in Rsuch thatmI ≤ Z(M). HenceZ(M) ≤e Z2(M).
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Lemma 1.7 Let M be a nonsingular right R-module and let N be a submodule of M.

Then ;

(i) N ≤e M if and only if Z(M/N) = M/N.

(ii) Z2(M) ≤c M.

Proposition 1.8 Let M be a nonsingular right R-module. The submodule K of M is the

complement in Harada meaning if and only if K is the complement in Faith meaning.

Definition 1.9 Let M be a right R-module and N≤ M. K is called essential closure

of N in M such that N≤e K ≤c M.

Proposition 1.10 Let M be a right R-module and N≤ K ≤ M. Then

(i) N ≤c M if and only if the essential closure of N in M is itself.

(ii) N ≤c K ≤c M then N≤c M and if N≤c M then N≤c K.

(iii) If L is the complement of N in M and U is the complement of L in M with

N ≤ U, then N≤e U.

(iv) L is essential closure of N in M if and only if L is the maximal submodule

with respect to the property N≤e L if and only if L is the minimal submodule of the

complement submodules which contain N in M.

1.2 Semi-simple Modules

Definition 1.11 Let M be a right R-module. The submodule

S oc(M) =
⋂
{N ≤ M : N is essential submodule}

=
∑
{N ≤ M : N is simple submodule}

is called socle of M.

Lemma 1.12 Let M be a right R-module. S oc(M) is direct summand of simple sub-

modules of M. i.e. S oc(M) =
⊕

i∈I Mi where Mi is simple submodule of M for all

i ∈ I.
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Theorem 1.13 Let M be a right R-module. The followings are equivalent.

(i) Every submodule of M is a sum of the simple submodules of M.

(ii) M is a sum of simple submodules of M.

(iii) M is a direct sum of simple submodules of M.

(iv) Every submodule of M is a direct summand of M.

Definition 1.14 Let M be a right R-module. M is called a semi-simple module if M

satisfies one of the conditions of Theorem 1.13.

Corollary 1.15 (i) Every submodule of a semi-simple module is semi-simple.

(ii) Homomorphic image of every semi-simple module is semi-simple.

(iii) Every sum of semi-simple modules is semi-simple.

Lemma 1.16 Let {Mi : i ∈ I } be a family of modules. Then

⊕
i∈I S oc(Mi) = S oc(

⊕
i∈I Mi).

1.3 Finite Uniform Dimension Modules

Definition 1.17 Let M be a right R-module. M is called uniform module if every

submodule of M is essential in M.

Definition 1.18 Let M be a right R-module. Then we call M has a finite uniform di-

mension (finite Goldie dimension) if there exists an independent sequence H1,H2, ....,Hn

(n < ∞) of uniform submodules of M with H1 ⊕ H2 ⊕ .... ⊕ Hn ≤e M. Also it is denoted

by ud(M) = n < ∞

Proposition 1.19 Let M be a right R-module and A≤ M.

(i) M has a finite uniform dimension if and only if every submodule of M has a

finite uniform dimension.
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(ii) If A ≤c M has a finite uniform dimension then(M/A) has a finite uniform

dimension.

(iii) If A 1,A2, ....,An ≤ M and for each i, Ai has a finite uniform dimension then

A1 ⊕ A2 ⊕ .... ⊕ An has a finite uniform dimension.

(iv) If A ≤e M and A has a finite uniform dimension then M has a finite uniform

dimension.

Lemma 1.20 Let M be a right R-module.

(i) If A1,A2, ....,An ≤ M then

ud(A1 ⊕ A2 ⊕ .... ⊕ An) = ud(A1) + ud(A2) + .... + ud(An).

(ii) Let A ≤ M and A has a finite uniform dimension. Then A≤e M if and only if

ud(M) = ud(A).

Proposition 1.21 Let M be a right R-module and A≤ M.

(i) If A ≤c M then ud(M) = ud(A) + ud(M/A).

(ii) Let M has a finite uniform dimension. If ud(M) = ud(A) + ud(M/A) then

A ≤c M.

1.4 Injective Modules

Definition 1.22 Let R be a ring.Let M and A be R-modules with identity. If every

homomorphism from a submodule X of A to M extend from A to M then M is said to

be A-injective. For every R-module A if M is A-injective then M is called injective

module. If M is M-injective then M is called quasi-injective module. M and A are

called relatively injective if M is A-injective and A is M-injective.

Note : If M is RR injective thenM is injective.

Proposition 1.23 Let {Mi : i ∈ I } be a family of R-modules.
∏

i∈I Mi is injective if and

only if for each i∈ I, Mi is injective.

5



Proposition 1.24 Let M be a right R-module.

(i) M is injective if and only if M is a direct summand of every R-module which

contains M.

(ii) Let A be an R-module and B be a submodule of A. If M is A-injective then M

is A/B and B-injective.

Proof. It is clear thatM is B-injective. LetX ≤ A andX/B be a submodule ofA/B

andϕ : X/B → M be a homomorphism. Letπ : A → A/B be projection map and

π′ = π|X. SinceM is A-injective, there exists a homomorphismθ : A→ M that extends

ϕπ′. Now θ(B) = (ϕπ′)(B) = ϕ(0) = 0. HenceKerπ ≤ Kerθ. Hence there exists a

homomorphismψ : A/B→ M such thatψπ = θ. For everyx ∈ X

ψ(x+ B) = ψ(π(x)) = θ(x) = ϕπ′(x) = ϕ(x+ B).

Thusψ extendsϕ, and thereforeN is A/B-injective.�

Proposition 1.25 A module M is(
⊕

i∈I Ai)-injective if and only if M is Ai-injective for

every i∈ I.

Proof. Assume thatM is Ai-injective for alli ∈ I . LetA =
⊕

i∈I Ai, X ≤ A and consider

a homomorphismϕ : X → M. We may assume, by Zorn’s Lemma, thatϕ cannot be

extended to a homomorphismX′ → M for any submoduleX′ of A which containsX

properly. ThenX ≤e A. We claim thatX = A. Suppose not. Then there existsj ∈ I and

a ∈ Aj such thata is not an element ofX. SinceM is Aj-injective, M is aR-injective.

Let K = {r ∈ R : ar ∈ X}. K is an ideal ofR andaK is a submodule ofaRand also

aK ≤ X. M = ϕ|aK : aK → M is a homomorphism and extends to a homomorphism

β : aR→ M. Let ψ : X + aR→ M be defined byψ(x+ ar) = ϕ(x+ β(ar)). ψ|X = ϕ.

This is a contradiction by maximality ofϕ. ThenX = A. �
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Definition 1.26 Let M be a right R-module. The injective module which contains M

as essential is called the injective hull of M and it is denoted by E(M).

Proposition 1.27 Let M be a right R-module. The following are equivalent.

(i) The injective hull of M is E(M).

(ii) E (M) is the maximal module of the modules which contains M as essential.

(iii) E (M) is the minimal module of the injective modules which contain M.

1.5 Continuous Modules

Definition 1.28 Let R be a ring and let M be a right R-module. If every complement

submodule K of M is a direct summand of M then M is called CS -module ((C1) con-

dition holds). Equivalently, for every submodule K of M there exists a direct summand

N of M such that K is essential in N.

The ring R is called right CS -ring if RR is CS -module. For every I≤c RR there

exists idempotent e∈ R such that I= eR. For example, semi-simple modules, uniform

modules and injective modules are CS -modules.

Every complement of aCS-module isCS-module. But any submodule of a

CS-module may not beCS-module. For example, letM be not aCS-module. Since

E(M) is injective module,E(M) is CS-module. M is essential inE(M) but M is not

CS module. Also the direct sum of twoCS-modules may not beCS-module.

Example 1.29 Let Z denote the integers, let p be any prime, let M1 = Z/Zp and let

M2 = Z/Zp3. M1 and M2 are CS -Z-modules. But M= M1 ⊕ M2 is not CS -module.

Definition 1.30 A right R module M is called indecomposable module if M has no

non-zero proper direct summand. Equivalently, M is indecomposable if and only if for

any K≤d M, K = 0 or K = M.
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Proposition 1.31 Let M be an indecomposable right R-module. If M is CS -module

then M is uniform module.

Definition 1.32 Let M be a right R-module.

(C2): Every submodule of M which isomorphic to a direct summand of M is a

direct summand of M.

(C3): If N1,N2 be two direct summands of M such that N1 ∩ N2 = 0, then N1 ⊕ N2

is a direct summand of M.

Lemma 1.33 Every direct summand of M satisfying(Ci)(i = 1,2) satisfies(Ci)(i =

1,2).

Definition 1.34 A right R-module M is called continuous (quasi-continuous) if M is

CS -module satisfying the condition(C2) ((C3)).

Lemma 1.35 Every module M satisfying the condition(C2) satisfies the condition

(C3).

Proof. Let K, L be direct summands ofM with K∩L = 0, M = K⊕K′ for a submodule

K′ of M. Let π : M → K′ be the projection map.K ∩ L = 0 thenπ(L) � L and

π(L) ≤ K′. By the condition (C2), π(L) ≤ M and henceM = π(L)⊕ L′ for a submodule

L′ of M. ThenK′ = π(L)⊕(K′∩L′) andM = K⊕π(L)⊕(K′∩L′). HenceK⊕π(L) ≤d M.

K ⊕ π(L) = K ⊕ L thenK ⊕ L ≤d M. �

8



CHAPTER 2

FINITE DIRECT SUMS OF CS-MODULES

In this chapter, all rings are associative with identity element and all modules are unital

right modules. We concern with when a direct sum ofCS-modules isCS-module. In

[45], it is proved that for any ringR, the direct sumM =
⊕

i∈I Mi is CS if and only if

there existsi , j in I such that every closed submoduleK of M with K ∩ Mi = 0 or

K ∩M j = 0 is direct summand. In addition, ifR is any ring,M1 is a uniformR-module

of finite composition length andM2 is a simpleR-module, thenM1 ⊕ M2 is CS if and

only if M2 is M1/N-injective for every non-zero submoduleN of M1. In [18], it is

proved that ifM1 andM2 are relatively injectiveCS-modules thenM = M1 ⊕ M2 is

CS-module.

Lemma 2.1 Let M be any module and K⊆ L submodules of M such that K is a

complement in L and L is a complement in M. Then K is a complement in M.

Proof. Let K1 be a complement ofK in L. ThenK ∩ K1 = 0 andK ⊕ K1 is essential in

L. Let L1 be a complement ofL in M. ThenL ∩ L1 = 0 andL ⊕ L1 is essential inM.

K⊕K1
K ⊆ess L

K and L⊕L1
L ⊆ess M

L

Claim: K+K1+L1
K ⊆ess M

K

proof. Observe first that

(K + K1) ∩ (K + L1) = K + ((K + K1) ∩ L1) ⊆ K + (L ∩ L1) = K.

We have

K+K1+L1
K = K+K1

K ⊕
K+L1

K ⊆ess L
K ⊕

K+L1
K = L+L1

K

9



So it suffices to show thatL+L1
K ⊆ess M

K . Let α : M
K →

M
L given byα(m+ K) = m+ L.

SinceL⊕L1
L ⊆ess M

L andα−1( L⊕L1
L ) = L+L1

K , L+L1
K ⊆ess M

K . This proves the claim.

Now suppose thatK ⊆ess N ⊆ M. We must show thatK = N. K ∩ (K1 + L1) = 0

(in fact, if k ∈ K ∩ (K1 + L1), then k = k1 + l1 wherek1 ∈ K1, l1 ∈ L1. Then

k− k1 = l1 ∈ L ∩ L1 = 0). SinceK ⊆ess N, N ∩ (K1 + L1) = 0. HenceN
K ∩

L+L1+K1
K = 0

implies thatN
K = 0 and soN = K. �

Lemma 2.2 Any direct summand of a CS -module is a CS -module.

Proof. Let M be aCS-module andM1 be a direct summand ofM. Let K be a com-

plement submodule ofM1. By Lemma 2.1,K is a complement inM. SinceM is

CS-module,K is a direct summand ofM. Then there exists a direct summandK1 of M

such thatM = K⊕K1. By modularityM1 = M∩M1 = M1∩ (K⊕K1) = K⊕ (M1∩K1).

HenceK is a direct summand ofM1 and soM1 is aCS-module.�

Proposition 2.3 Any indecomposable module M is a CS -module if and only if M is

uniform.

Proof. Let M be an indecomposableCS-module. LetN be a submodule ofM such

that it is not essential inM. SinceM is CS-module, there exists a direct summand

K of M such thatN ⊆ess K ⊆d M. SinceM is indecomposable,K = M. This is a

contradiction. Thus,M is uniform.

Conversely, suppose thatM is indecomposable uniform module. LetK be a non-

zero complement submodule ofM. Then there exists a submoduleL of M such that

K ∩ L = 0 andK ⊕ L ⊆ess M. SinceM is uniform,L = 0 and alsoK = M. �

Proposition 2.4 Any (quasi-)injective module M is a CS -module.

10



Proof. Let N be a submodule ofM. ThenE(M) = E1 ⊕ E2 whereE1 = E(N). The

quasi-injectivity of M implies thatM = (M ∩ E1) ⊕ (M ∩ E2). SinceN ⊆ess E1,

N ⊆ess M ∩ E1 ⊆
d M. �

In general, it is not true that the direct sum of twoCS-module isCS-module.

Lemma 2.5 Let K be a complement in M. Then K is a direct summand of M if and only

if there exists a complement L of K in M such that every homomorphismϕ : K⊕L→ M

can be lifted to a homomorphismθ : M → M.

Proof. Suppose first thatK is a direct summand ofM. ThenM = K ⊕ K′ for some

moduleK′ of M. Clearly,L = K′ will do.

Conversely, suppose that there exists a complementL of K in M with the stated

property. Letϕ : K ⊕ L→ M be the homomorphism defined by

ϕ(x+ y) = x(x ∈ K, y ∈ L).

By hypothesis, there exists a homomorphismθ : M → M such that

θ(x+ y) = x(x ∈ K, y ∈ L).

Note thatK ⊆ imθ andL ⊆ kerθ.

Let 0, υ ∈ imθ. Then there existsu ∈ M such thatυ = θ(u). Note thatu < L. Thus

K ∩ (L + uR) , 0. There existsx ∈ K, y ∈ L andr ∈ R such that 0, x = y+ ur. Then

x = θ(x) = θ(y+ ur) = υr. It follows thatυR∩ K , 0 for all non-zeroυ ∈ imθ. ThusK

is an essential submodule ofimθ. But K is a complement inM. HenceK = imθ. �

Corollary 2.6 A module satisfies(C1) if and only if for every complement K in M there

exists a complement L of K in M such that every homomorphismϕ : K ⊕ L → M can

be lifted to a homomorphismθ : M → M.
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Proof. Immediate by Lemma 2.5.�

Let n be a positive integer. We consider the following condition for a moduleM:

(Pn) For every submoduleK of M such thatK is a direct sumK1 ⊕ . . . ⊕ Kn of

complementsKi(1 ≤ i ≤ n) in M, every homomorphismϕ : K → M can be lifted to a

homomorphismθ : M → M.

It is clear that ifM satisfies (Pn) thenM satisfies (Pn−1) for all n ≥ 2. Modules satisfy-

ing (P1) have been considered in [44].

Example 2.7 Let Z denote the integers, let p be any prime, let M1 = Z/Zp and let

M2 = Z/Zp3. M1 and M2 are CS -Z-modules. But M= M1 ⊕ M2 is not CS -module.

Theorem 2.8 Let M be any module, and let Z2(M) denote its second singular submod-

ule. Then M is a CS -module if and only if M= Z2(M) ⊕ N, where Z2(M) and N are

CS -modules and Z2(M) is N-injective.

Proof. Suppose thatM is aCS-module. SinceZ2(M) is closed inM andM is a

CS-module, we haveM = Z2(M)⊕N, whereN is non-singular. By Lemma 2.2,Z2(M)

andN areCS-modules.

To show thatZ2(M) is N-injective, letφ : X→ Z2(M) be a homomorphism from a

submoduleX of N to Z2(M). Consider

X1 = {x− φ(x) | x ∈ X}.

SinceM is CS-module, there existsX1 ≤e X∗ ≤d M. Write M = X∗ ⊕ Y whereY is

a submodule ofM. Let x ∈ X1 ∩ Z2(M). Thenx = z− φ(z) wherez ∈ X. It follows

that x + φ(z) = z ∈ X ∩ Z2(M) = 0. SoX1 ∩ Z2(M) = 0 and alsoX∗ ∩ Z2(M) = 0.

Thus X∗ is non-singular and thatZ2(M) = Z2(Y) ≤d Y, sayY = Y1 ⊕ Z2(M). Let

π : X∗ ⊕ Y1 ⊕ Z2(M) → Z2(M) be the projection.α = π |N extendsφ. In fact, for any

x ∈ X, x = (x− φ(x)) + φ(x).

π(x) = π((x− φ(x)) + φ(x)) = π(x− φ(x)) + π(φ(x)) = φ(x).
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Conversely, letM = Z2(M)⊕N, whereZ2(M) andN areCS-modules andZ2(M) is

N-injective. LetA be a complement submodule ofM. SinceZ2(M) is CS-module, we

haveZ2(A) ⊆d Z2(M), and henceZ2(A) ⊆d A. Write A = Z2(A) ⊕ B, whereB is a non-

singular submodule ofA. SinceB∩ Z2(M) = 0 andZ2(M) is N-injective, there exists

a homomorphismψ : N→ Z2(M) such thatψπ2 |B= π1 |B, whereπ1 : M → Z2(M) and

π2 : M → N are projections. Consider

N∗ = {n+ ψ(n) | n ∈ N}.

For x ∈ B, x = m1 +m2, wherem1 ∈ Z2(M), m2 ∈ N.

x = m1 +m2 = π1(x) + π2(x) = π2(x) + ψ(π2(x)) ∈ N∗.

HenceB ⊆ N∗. It follows that B is closed inN∗. Let x ∈ N∗ ∩ Z2(M). Then there

existsn ∈ N such thatx = n + ψ(n) and x − ψ(n) = n ∈ N ∩ Z2(M) = 0 and so

x = 0. This implies thatN∗ ∩ Z2(M) = 0. For anym ∈ M, m = m1 + m2 ; where

m1 ∈ Z2(M), m2 ∈ N. m= m1+m2 = (m1+ψ(m2))+ (m2−ψ(m2)) ∈ Z2(M)+N∗. Hence

M = Z2(M) ⊕ N∗ = Z2(M) ⊕ N, impliesN∗ � N. SinceN∗ � N, N∗ is aCS-module,

we haveB ≤d N∗. It is clear thatM = Z2(M) ⊕ N∗ ; thereforeA ≤d M. �

Lemma 2.9 Let a module M= M1⊕M2 be a direct sum of submodules M1, M2. Then

the following statements are equivalent.

(i) M2 is M1-injective.

(ii) For each submodule N of M with N∩ M2 = 0, there exists a submodule M′ of

M such that M= M′ ⊕ M2 and N⊆ M′.

Proof. (i) ⇒ (ii). For i = 1,2, let πi : M → Mi denote the projection mapping.

Let α = π1 |N andβ = π2 |N. Thenα is a monomorphism. By (i), there exists a

homomorphismφ : M1→ M2 such thatφα = β. Let

M′ = {x+ φ(x) : x ∈ M1}.
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SinceM′ ∩ M2 = 0 andM = M′ + M2, M = M′ ⊕ M2. For x ∈ N, x = m1 +m2, where

m1 ∈ M1, m2 ∈ M2.

x = m1 +m2 = π1(x) + π2(x) = π1(x) + φ(π1(x)) ∈ M′.

HenceN ⊆ M′.

(ii) ⇒ (i). Let K be a submodule ofM1, andα : K → M2 be a homomorphism. Let

L = {y− α(y) : y ∈ K}.

ThenL is a submodule ofM andL∩M2 = 0. By (ii), M = L′⊕M2 for some submodule

L′ such thatL ≤ L′. Let π : L′ ⊕ M2 → M2 denote the canonical projection. Then

β = π |M1: M1→ M2 and, for anyy ∈ K,

β(y) = β((y− α(y)) + α(y)) = α(y).

It follows thatβ lifts α to M1. ThusM2 is M1-injective.�

Theorem 2.10 Let M be a module such that M= M1 ⊕ M2, where M1 and M2 are

CS -modules. Suppose that M1 is nonsingular and M2 is M1-injective. Then M is a

CS -module.

Proof. BecauseM2 is a CS-module, then by Theorem 2.8,M2 = Z2(M2) ⊕ M′ for

some nonsingular submoduleM′ of M2 such thatM′ andZ2(M2) areCS-modules and

Z2(M2) is

M′-injective. SinceZ(M1) = 0, Z2(M) = Z2(M2) andZ2(M) is M1-injective. Thus

M = Z2(M)⊕(M1⊕M′), whereZ2(M) is aCS-module,Z2(M) is (M1⊕M′)-injective,M1

andM′ areCS-modules andM′ is M1-injective. By [7, Theorem 1],M is aCSmodule

if M1⊕M′ is aCS-module. Thus we can suppose without loss of generality thatM2 is

nonsingular, and henceM is nonsingular.

Let K be a complement inM. BecauseM2 is aCS-module, there exist submodules

L1, L2 of M2 such thatM2 = L1⊕ L2 andK ∩M2 is essential inL1. Let 0, x ∈ K + L1.
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Thenx = y+ z for somey ∈ K, z ∈ L1. BecauseK ∩ M2 is essential inL1, there exists

an essential right idealE of Rsuch thatzE⊆ K. ThenM nonsingular gives

0 , xE = (y+ z)E ⊆ xR∩ K ⊆ K.

It follows thatK is essential inK + L1.

Now M = M1 ⊕ M2 = M1 ⊕ L1 ⊕ L2 and, by the Modular Law,

K = K ∩ M = K ∩ (M1 ⊕ L1 ⊕ L2) = L1 ⊕ (K ∩ (M1 ⊕ L2))

Note that

(K ∩ (M1 ⊕ L2)) ∩ L2 ⊆ K ∩ M2 ∩ L2 ⊆ L1 ∩ L2 = 0.

By Lemma 2.9,M1⊕ L2 = M′′ ⊕ L2 for some submoduleM′′ with K ∩ (M1⊕ L2) ⊆

M′′. ClearlyM′′ � M1, so thatM′′ is aCS-module andK∩ (M1⊕L2) is a complement

in M′′. ThusK ∩ (M1 ⊕ L2) is a direct summand ofM′′, andK = L1 ⊕ (K ∩ (M1 ⊕ L2))

is a direct summand ofM. It follows thatM is aCS-module.�

Theorem 2.11 A module M is a CS -module with finite Goldie dimension if and only

if

(i) M is a finite direct sum of uniform submodules, and

(ii) every direct summand of M of uniform dimension 2 is a CS -module.

Proof. SupposeM is aCS-module with finite non-zero Goldie dimension. LetU be

a maximal uniform submodule ofM. ThenU is a complement inM. By hypothesis,

M = U ⊕ U′ for some submoduleU′ of M. By induction on Goldie dimension and

Lemma 2.2,U′ is a finite direct sum of uniform submodules. This proves (i). Also

Lemma 2.2 proves (ii).

Conversely, supposeM satisfies (i), (ii). LetM = U1⊕. . .⊕Un, where n is a positive

integer andUi is uniform submodule ofM for each 1≤ i ≤ n. Let V be a maximal

uniform submodule ofM. SupposeV , M. ThenV ∩ Ui = 0 for some 1≤ i ≤ n.
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Without loss of generality, i= 1. LetU′ = U2 ⊕ . . . ⊕ Un. There exists a complement

K in M such thatV ⊕ U1 is essential inK. By the Modular Law

K = U1 ⊕ (K ∩ U′)

ClearlyK∩U′ is a complement inK, and hence also inM by Lemma 2.1. ThusK∩U′

is a complement inU′. By induction on Goldie dimension,K∩U′ is a direct summand

of U′. This implies at once thatK is a direct summand ofM. Clearly K has Goldie

dimension 2, so that, by hypothesis,K is aCS-module. HenceV is a direct summand

of K, and hence also ofM.

Now let L be any complement inM. Let W be a maximal uniform submodule of

L. ThenW ≤c L and by Lemma 2.1W is a complement inM. By above argumentW

is a direct summand ofM. ThusM = W ⊕W′ for some submoduleW′ of M. Thus

L = W ⊕ (L ∩W′) andL ∩W′ is a complement inM by Lemma 2.1. By induction on

the Goldie dimension ofL, L ∩W′ is a direct summand ofM, and hence also ofW′.

ThusL is a direct summand ofM. It follows thatM is aCS-module.�

For any setI , |I | will denote its cardinality.

Theorem 2.12 Let M be a module such that M=
⊕

i∈I Mi be the direct sum of R-

modules Mi(i ∈ I ), for some index set I with|I | ≥ 2. Then the following statements are

equivalent.

(i) M is CS .

(ii) There exist i, j in I such that every closed submodule K of M with K∩Mi = 0

or K ∩ M j = 0 is a direct summand.

(iii) There exist i, j in I such that every complement of Mi or of Mj in M is a

CS -module and a direct summand of M.

Proof. (i) ⇒ (ii). Suppose thatM is aCS-module.Then every complement ofM is

direct summand.
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(ii) ⇒ (iii). Let K be a complement ofMi in M. By (ii), K is a direct summand

of M. Let L be a closed submodule ofK. By Lemma 2.1,L is a closed submodule of

M, and clearlyL ∩ Mi = 0. By (ii), L is a direct summand ofM, and hence also ofK.

ThusK is CS.

(iii) ⇒ (i). Let N be a closed submodule ofM. There exists a closed submoduleH

of N such thatN ∩ Mi is essential inH. ClearlyH ∩ M j = 0. By Zorn’s Lemma there

exists a complementP of M j in M such thatH ≤ P. Now Lemma 2.1 givesH closed

in M and henceH is closed inP. Applying (iii) we see thatH is a direct summand of

theCS-moduleP andP is a direct summand ofM. HenceH is a direct summand of

M.

There exists a submoduleH′ of M such thatM = H ⊕ H′. The Modular Law gives

N = H ⊕ (N ∩ H′). By Lemma 2.1,N ∩ H′ is a closed submodule ofM and clearly

(N∩H′)∩Mi = 0. By the above argument, (iii) gives thatN∩H′ is a direct summand

of M, and hence also ofH′. It follows thatN is a direct summand ofM. ThusM is

CS. �

Definition 2.13 Let M be a module and K, L are direct summands of M with K∩L = 0.

M satisfies condition(C3) if K ⊕ L is a direct summand of M.

Lemma 2.14 The following statements are equivalent for a module M.

(i) M satisfies (C3).

(ii) For all direct summands P, Q of M with P∩ Q = 0, there exists a submodule

P′ of M such that M= P⊕ P′ and Q⊆ P′.

Proof. (i)⇒ (ii ). Let P andQ be direct summands ofM with P∩Q = 0. By (i), P⊕Q

is a direct summand ofM and henceM = P⊕ Q⊕ Q′′ for some submoduleQ′′ of M.

ThusP′ = Q⊕ Q′′ has the required properties.

(ii ) ⇒ (i). Let K, L be direct summands ofM such thatK ∩ L = 0. By (ii),

M = K ⊕ K′ for some submoduleK′ of M such thatL ⊆ K′. But M = L ⊕ L′ for some
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submoduleL′ of M, and hence

K′ = K′ ∩ M = K′ ∩ (L ⊕ L′) = L ⊕ (K′ ∩ L′).

ThusM = K ⊕ K′ = K ⊕ L⊕ (K′ ∩ L′) andK ⊕ L is a direct summand ofM. Therefore

M satisfies (C3). �

Definition 2.15 A module M is called quasi-continuous if M is CS -module satisfying

(C3).

Proposition 2.16 A CS -module M is quasi-continuous if and only if whenever

M = M1 ⊕ M2 is a direct sum of submodules M1 and M2, then M2 is M1-injective.

Proof. Suppose thatM is quasi-continuous. SupposeM = M1 ⊕ M2. Let N be a

submodule ofM with N ∩ M2 = 0. BecauseM is aCS-module, there exists a direct

summandN′ of M such thatN is essential inN′. ClearlyN′ ∩ M2 = 0. By Lemma

2.14,M = M′ ⊕ M2 for some submoduleM′ of M such thatN′ ⊆ M′. By Lemma 2.9,

M2 is M1-injective.

Conversely, supposeM2 is M1-injective wheneverM = M1 ⊕ M2. By Lemma 2.9

and Lemma 2.14,M satisfies (C3). ThusM is quasi-continuous.�

Definition 2.17 Let n be a positive integer. Modules M1,M2, . . . ,Mn are called rela-

tively injective if Mi is M j-injective for all1 ≤ i , j ≤ n.

Theorem 2.18 Let M be a CS -module such that M= M1 ⊕ . . . ⊕ Mn is a finite direct

sum of relatively injective modules Mi (1 ≤ i ≤ n). Then M is a CS -module if and only

if M i is a CS -module for each1 ≤ i ≤ n.

Proof. Suppose thatM = M1 ⊕ . . . ⊕ Mn is a CS-module. By Lemma 2.2,Mi is

CS-module for each 1≤ i ≤ n.
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Conversely suppose thatMi is aCS-module (1≤ i ≤ n). We prove thatM is a

CS-module by induction onn. It is clearly sufficient to prove the casen = 2. Suppose

M = M1 ⊕ M2. Let K be a complement inM. By Zorn’s Lemma there exists a

submoduleL of K maximal with respect to the propertyL ∩ M1 = L ∩ (K ∩ M1) = 0.

This implies thatL ⊕ (K ∩ M1) is essential inK. ClearlyL is a complement inK, and

hence also inM. BecauseM1 is M2-injective, there exists a submoduleM′ of M such

that M = M1 ⊕ M′ andL ⊆ M′. Note thatM′ � M2, so that without loss of generality

M′ = M2, and henceL ⊆ M2. Now L is a complement inM2 which is aCS-module,

so thatM2 = L ⊕ L′ for some submoduleL′ of M2.

Note thatM = M1 ⊕M2 = M1 ⊕ L⊕ L′ andK = L⊕ K′, whereK′ = K ∩ (M1 ⊕ L′)

is a complement inM1 ⊕ L′. We now claim thatK′ ∩ M1 is essential inK′. In fact,

L ⊕ (K ∩ M1) is essential inK. Hence [L ⊕ (K ∩ M1)] ∩ K′ is essential inK′ ⊆ K. But

clearlyK′ ∩ M1 = K ∩ M1, and hence

[L ⊕ (K ∩ M1)] ∩ K′ = [L ⊕ (K′ ∩ M1)] ∩ K′ = (L ∩ K′) ⊕ (K′ ∩ M1) = K′ ∩ M1.

ThusK′ ∩ M1 is essential isK′. But clearly

(K′ ∩ M1) ∩ (K′ ∩ L′) ⊆ M1 ∩ L′ = 0,

so thatK′ ∩ L′ = 0. By hypothesis,L′ is M1-injective and hence, by Lemma 2.9,

M1 ⊕ L′ = M′′ ⊕ L′ for some submoduleM′′ with K′ ⊆ M′′. Clearly M′′ � M1 and

K′ is a complement inM′′. ThusK′ is a direct summand ofM1 ⊕ L′, andK is a direct

summand ofM. It follows thatM is aCS-module.�

Example 2.19 Let p be any prime integer and let R denote the local ring Zp. Let M

denote the Z-module(Z/Zp) ⊕ Q. Then

(i) M is an R-module.

(ii) K is a complement in M if and only if K is a direct summand of M or

K = R(1+ Zp,q) for some non-zero element q in Q.

(iii) M is not a CS -module.
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Proof. (i) Let M1 = (Z/Zp) ⊕ 0 andM2 = 0⊕ Q, so thatM = M1 ⊕ M2. The ringR is

the subring ofQ consisting of all rational numberss/t such thats, t ∈ Z, t , 0 andt is

coprime top. Note first that for any elementm in M and anys, t ∈ Z such thatp does

not dividet, there exists a unique elementm′ ∈ M such thattm′ = sm, and we shall

denotem′ by (s/t)m. In this wayM is anR-module.

(ii) Let q ∈ Q and K = R(1 + Zp,q). We show first thatK is a complement

in the Z-moduleM. Note thatK is a uniform submodule ofM. Suppose thatN is

a submodule ofM such thatK is an essential submodule ofN. Let x ∈ N. Then

U = Zx+Z(1+Zp,q) is a finitely generated uniformZ-module, and henceU is cyclic.

Suppose thatU = Z(a + Zp,b), wherea ∈ Z,b ∈ Q. There existsn ∈ Z such that

(1 + Zp,q) = n(a + Zp,b). Note that 1− na ∈ Zp and hencen is coprime top, and

(a + Zp,b) ∈ R(1 + Zp,q) = K. Thusx ∈ K. It follows that K = N. HenceK is a

complement inM.

Let L be a complement in theZ-moduleM. Suppose thatL , 0,M. Note thatM

has uniform dimension 2 and henceL is uniform [8, Lemma 1.9]. We shall show first

thatL is anR-submodule ofM. Let

L′ = {m ∈ M : tm ∈ L for somet ∈ Z, t coprime top}.

ThenL′ is a submodule ofM, in fact L′ = RL. If 0 , m ∈ L′ thentm ∈ L for some

t ∈ Z, coprime top, and hencetm , 0. It follows thatL is an essential submodule of

L′. ThusL = L′, andL is anR-submodule ofM.

Next we show thatL = 0,M,M1,M2 or R(1 + Zp,q) for someq ∈ Q. Suppose

that L , 0,M,M1 or M2. Note thatM1 and M2 are both uniform, so thatL is not

contained in eitherM1 or M2. Thus (c+ Zp,d) ∈ L for somec ∈ Z, coprime top and

0 , d ∈ Q. Without loss of generality we can suppose thatc = 1. BecauseL is an

R-submodule ofM, R(1 + Zp,d) ⊆ L. But R(1 + Zp,d) is a complement inM, and

henceL = R(1+ Zp,d). This completes the proof of (ii).
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(iii) Let N = R(1+ Zp,1) is a complement submodule ofM by (ii). SinceN is not

a direct summand ofM, M is not aCS-module.�

Lemma 2.20 Let module M= M1⊕M2 be a direct sum of relatively injective submod-

ules M1, M2 such that M2 is quasi-continuous. Let K, L be a direct summands of M

such that K∩L = 0. Suppose further that K∩M1 = 0. Then K⊕L is a direct summand

of M.

Proof. By Lemma 2.9, we can suppose without loss of generality thatK ⊆ M2. Then

M2 = K ⊕ K′ for some submoduleK′ of M2. Note thatK is K′-injective (Proposition

2.16). ThereforeK is (M1 ⊕ K′)-injective. NowM = K ⊕ (M1 ⊕ K′) andL ∩ K = 0

so that, again using Lemma 2.9,M = K ⊕ K′′ for some submoduleK′′ with L ⊆ K′′.

Now L is a direct summand ofM, hence also ofK′′. ThusK ⊕ L is a direct summand

of M. �

Theorem 2.21 Let R be a ring and M an R-module such that M= M1 ⊕ . . . ⊕ Mn is

a finite direct sum of submodules Mi (1 ≤ i ≤ n). Then M is quasi-continuous if and

only if M1, . . .Mn are relatively injective quasi-continuous modules.

Proof. Suppose thatM is quasi-continuous. By Proposition 2.16 and [2, Proposition

2.7] Mi is quasi-continuous for each 1≤ i ≤ n.

Conversely, suppose thatMi (1 ≤ i ≤ n) are relatively injective and quasi-continuous.

By induction onn, it is sufficient to prove the casen = 2. Thus supposeM = M1⊕M2.

By Theorem 2.18,M is a CS-module. LetK, L be direct summands ofM with

K ∩ L = 0. ThenK is a CS-module, by Lemma 2.1, and henceK = K1 ⊕ K2 for

some submodulesK1, K2 with K ∩ M1 essential inK1.

Note thatK2∩M1 = K2∩(K∩M1) = 0. By Lemma 2.20,K2⊕L is a direct summand

of M. On the other hand, (K1 ∩ M2) ∩ (K ∩ M1) = 0 implies thatK1 ∩ M2 = 0.
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Again using Lemma 2.20,K ⊕ L = K1 ⊕ (K2 ⊕ L) is a direct summand ofM. It

follows thatM is quasi-continuous.�

Lemma 2.22 Let M = M1⊕M2 be a module and let K be a submodule of M. Then K is

a complement of M2 in M if and only if there exists a homomorphismϕ : M1→ E(M2)

such that K= {x+ ϕ(x) : x ∈ ϕ−1(M2)}.

Proof. Suppose thatK is a complement ofM2 in M. Let πi : M → Mi(i = 1,2)

denote the canonical projections. Note thatπ1|K : K → M1 is a monomorphism. If

ε : M2 → E(M2) is the inclusion mapping then there exists a homomorphismϕ :

M1 → E(M2) such thatϕ(π1|K) = ε(π2|K). For anyx ∈ K, ϕπ1(x) = π2(x) ∈ M2 so that

π(x) ∈ ϕ−1(M2), and

x = π1(x) + π2(x) = π1(x) + ϕ(π1(x)).

ThusK ⊆ {y+ϕ(y) : y ∈ ϕ−1(M2)} = K1. But K1 is a sub module ofM andK1∩M2 = 0,

so thatK = K1, as required.

Conversely, suppose thatθ : M1→ E(M2) is a homomorphism andK = {x+ θ(x) :

x ∈ θ−1(M2)}. Clearly K is a submodule ofM andK ∩ M2 = 0. Suppose thatL is

a submodule ofM such thatL ∩ M2 = 0. Now suppose there existsu ∈ L such that

π2(u) , θπ1(u). Because 0, π2(u) − θπ1(u) ∈ E(M2), there existsr ∈ R such that

0 , {π2(u) − θπ1(u)}r ∈ M2. But, in this case,θπ1(u)r ∈ M2 and

{π2(u)−θπ1(u)}r = π2(ur)−θπ1(ur) = ur−{π1(ur)+θπ1(ur)} ∈ (L+K)∩M2 = L∩M2 = 0,

a contradiction.

Let v ∈ L. Thenθπ1(v) = π2(v) ∈ M2, so thatπ1(v) ∈ θ−1(M2) and

v = π1(v) + π2(v) = π1(v) + θ(π1(v)) ∈ K.

It follows thatL = K. ThusK is a complement ofM2 in M. �
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2.1 Arbitrary Direct Sums

Theorem 2.23 Let R be any ring and let M=
⊕

i∈I Mi be the direct sum of R-modules

Mi(i ∈ I ), for some index set with|I | ≥ 2. Then the following statements are equivalent:

(i) M is CS .

(ii) For each i ∈ I and each homomorphismϕ : M−i =
⊕

j,i M j → E(Mi), the

submodule{x+ ϕ(x) : x ∈ ϕ−1(Mi)} is a CS -module and a direct summand of M.

(iii) There exist i, j in I such that for each k∈ {i, j} and each homomorphism

ϕ : M−k → E(Mk), the submodule{x + ϕ(x) : x ∈ ϕ−1(Mk)} is a CS -module and a

direct summand of M.

Proof. By Theorem 2.12, and Lemma 2.5.�

2.2 UC-modules

Definition 2.24 A module M is called a UC-module if every submodule has a unique

closure.

Semisimple modules, uniform modules and nonsingular modules are all examples

of UC-modules.

Theorem 2.25 Let M be a UC-module such that M=
⊕

i∈I Mi is the direct sum of

R-modules Mi(i ∈ I ), for some non-empty index set I. Then the following statements

are equivalent.

(i) M is CS .

(ii) There exists i∈ I such that Mi is CS and every closed submodule K of M with

K ∩ Mi = 0 is a direct summand.

(iii) There exists i∈ I such that Mi is CS and every complement of Mi in M is a

CS -module and a direct summand of M.
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(iv) The module Mi is CS for each i∈ I and every closed submodule L of M with

L ∩ Mi = 0(i ∈ I ) is a direct summand of M.

Proof. (i) ⇒ (ii). By Lemma 2.2.

(ii) ⇒ (iii). Let L be a complement ofMi in M. ThenL ∩ Mi = 0 and by (ii)L is a

direct summand ofM. Let N be a closed submodule ofL. By Lemma 2.1 and (ii),N

is a direct summand ofM, and hence also ofL. ThusL is aCS-module.

(iii) ⇒ (i). Let H be a closed submodule ofM. By [8, Theorem 1],H ∩ Mi is a

closed submodule ofMi and hence, by (iii),H ∩ Mi is a direct summand ofM. Thus

M = (H ∩Mi) ⊕ H′ for some submoduleH′ of M. Now H = (H ∩Mi) ⊕ (H ∩ H′) and

H ∩ H′ is a closed submodule ofM. Moreover (H ∩ H′) ∩ Mi = 0. By the proof of

Theorem 2.12 (iii)⇒ (i), it follows that H ∩ H′ is a direct summand ofM and hence

H is a direct summand ofM.

(i) ⇒ (iv). By Lemma 2.2.

(iv) ⇒ (i). Let P be a closed submodule ofM. For eachi ∈ I , P∩ Mi is closed in

Mi and henceMi = (P ∩ Mi) ⊕ M′i for some submoduleM′i of M. Let M′ = ⊕i∈I M′i ,

P′ = ⊕i∈I (P∩ Mi). ThenM = P′ ⊕ M′ andP′ ≤ P. It follows thatP = P′ ⊕ (P∩ M′).

By Lemma 2.1,P∩ M′ is closed inM and (P∩ M′) ∩ Mi = 0(i ∈ I ). By (iv) P∩ M′

is a direct summand ofM. ThusP is a direct summand ofM. We conclude thatM is

CS. �

24



2.3 Modules with Semisimple Summands

Example 2.26 Let p be any prime and M the Z-module M= (Z/Zp) ⊕ (Z/Zp3). Let

M1 = (Z/Zp) ⊕ 0 and M2 = 0⊕ (Z/Zp3). M1 and M2 are CS -modules. But M is neither

CS nor UC. In fact, the submodule K= (1+ Zp, p+ Zp3) is a complement submodule

of M of order p2. If K were a direct summand of M then M= K ⊕ K′, for some

submodule K′ of M, and hence K′ has order p2 also, giving p2M = 0, a contradiction.

Thus Theorem 2.25 (iv)⇒ (i) fails if M is not UC.

Theorem 2.27 Let M be a UC-module such that M=
⊕

i∈I Mi is the direct sum of

R-modules Mi(i ∈ I ), for some non-empty index set I. Then the following statements

are equivalent.

(i) M is CS .

(ii) There exists i∈ I such that Mi is CS and for each homomorphismϕ : M−i →

E(Mi) the submodule{x+ ϕ(x) : x ∈ ϕ−1(Mi)} is a CS -module and a direct summand

of M.

Proof. Follows from Lemma 2.22 and Theorem 2.25.�

Proposition 2.28 Let M be a UC R-module such that M= M1 ⊕ M2 is the direct sum

of a module M1 and a semisimple module M2. Then M is CS if and only if M1 is CS .

Proof. The necessity is clear by Lemma 2.2.

Conversely, suppose thatM1 is CS. Let K be a complement ofM1 in M. Then

M1 ⊕ K is essential inM and henceM2 ≤ SocM ≤ M1 ⊕ K. ThusM = M1 ⊕ K. It

follows thatK � M/M1 � M2, so thatK is CS. By Theorem 2.25,M is CS. �

Proposition 2.29 Let M1 be an R-module with zero socle and let M2 be a semisimple

R-module. Then the module M= M1 ⊕ M2 is CS if and only if M1 is CS and M2 is

M1-injective.
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Proof. The necessity follows by Lemma 2.2 and [6, Lemma 11] Conversely, suppose

that M1 is CS andM2 is M1-injective. ClearlyM1 is M2-injective. By Theorem 2.21,

M is CS. �

Lemma 2.30 Let M1 and M2 be modules with M2 semisimple. Then the module

M1 ⊕ M2 is CS if and only if every complement K of M2 in M is a CS -module and a

direct summand of M.

Proof. Suppose that every complement ofM2 in M is aCS-module and direct sum-

mand ofM. Let K be a complement inM such thatK ∩ M2 = 0. By Zorn’s Lemma

there exists a complementL of M2 in M such thatK ≤ L. By assumptionL is a

CS-module and direct summand ofM. SinceK is a complement submodule inL then

K ≤d L ≤d M this impliesK ≤d M.

Conversely, it is clear.�

Theorem 2.31 Let M1 be a CS module and let M2 be a semisimple module such that

M2 is (M1/N)-injective for every non-zero submodule N of M1. Then the module

M = M1 ⊕ M2 is CS .

Proof. Let K be a complement ofM2 in M. There exists a homomorphismϕ : M1 →

E(M2) such thatK = {x+ ϕ(x) : x ∈ ϕ−1(M2)} by lemma 2.22. LetQ = ϕ−1(M2) and

let P = Kerϕ. ThenP ≤ Q are submodules ofM1.

Suppose thatP = 0. ThenK ∩ M1 = 0, and henceM1 ⊕ K = M1 ⊕ ϕ(Q), which is

a direct summand ofM, becauseϕ(Q) is a direct summand ofM2. ThusK is a direct

summand ofM and, becauseK embeds inM/M1 � M2, K is semisimple and thusCS.

Now suppose thatP , 0. By hypothesis,M is (M1/P)-injective. NowQ/P � ϕ(Q),

which is a direct summand ofM2. Thus Q/P is (M1/P)-injective. There exists a

submoduleQ′ of M1 such thatP ⊆ Q′ andM1/P = (Q/P) ⊕ (Q′/P). Define

θ : M1→ E(M2) by
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θ(q+ q′) = ϕ(q)(q ∈ Q,q′ ∈ Q′).

It can easily be checked thatθ is well-defined and a homomorphism. Moreoverθ|Q = ϕ.

Let

K′ = {x+ θ(x) : x ∈ θ−1(M2)} = {x+ θ(x) : x ∈ M1},

noting thatθ(M1) = ϕ(Q) ≤ M2. Lemma 2.22 gives thatK′ is a complement ofM2 in

M. But K ≤ K′ so thatK = K′. ClearlyM = K ⊕ M2. ThusK is aCS-module and a

direct summand ofM. By Lemma 2.30M is CS. �

Lemma 2.32 Let M1 be a uniform module of finite composition length and let M2 be

a semisimple module such that M= M1 ⊕ M2 is CS . Letϕ : M1 → E(M2) be a

homomorphism such thatϕ(M1) � M2. Thenϕ−1(M2) = 0 or ϕ−1(M2) is isomorphic to

a simple submodule of M2.

Proof. Let U = ϕ−1(M2). Let K = {x + ϕ(x) : x ∈ U}. By Lemma 2.22,K is a

closed submodule and henceK is a direct summand. Note thatK � U ⊆ M1. Thus

K = 0 or K is uniform. Suppose thatK , 0.By the Krull-Schmidt Theorem,K � M1

or K is isomorphic to a simple submodule ofM2. Suppose thatK � M1. Comparing

composition lengths,U = M1 and henceϕ(M1) ≤ M2, a contradiction. ThusU = 0 or

U is isomorphic to a simple submodule ofM2. �

Theorem 2.33 Let M1 be a uniform module of finite composition length and let M2 be

semisimple module. Then M= M1 ⊕ M2 is a CS -module if and only if M2 is (M1/N)-

injective for every non-zero submodule N of M1.

Proof. The sufficiency is proved in Theorem 2.31. Conversely, suppose thatM is CS.

Suppose thatN is a non-zero submodule ofM1, L is is a submodule containingN and

there exists a monomorphismα : L/N → M2. Note thatα(L/N) is a direct summand

27



of M2 and henceM1 ⊕ α(L/N) is CS by Lemma 2.2. Thus without loss of generality,

α : L/N→ M2 is an isomorphism.

Let π : L→ L/N denote the canonical epimorphism. Letθ = απ : L→ M2. Thenθ

can be lifted to a homomorphismϕ : M1 → E(M2). Let Q = ϕ−1(M2). ClearlyL ≤ Q.

For anyq in Q there existsx ∈ L such thatϕ(q) = θ(x) = ϕ(x), so thatQ = L + kerϕ.

Moreover,L ∩ kerϕ = L ∩ kerθ = N. ThusQ/N = (L/N) ⊕ ((kerϕ)/N).

But N , 0 implies that the composition length ofQ is at least 2. By Lemma 2.32,

ϕ(M1) ≤ M2, i.e. Q = M1. ThusM1/N = (L/N) ⊕ ((kerϕ)/N). It follows that M2 is

(M1/N)-injective.�

Corollary 2.34 Let M1 be a module with unique composition series M1 > L > N >

0.Then M1 ⊕ (L/N) is not CS .
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CHAPTER 3

ON P-EXTENDING AND EF-EXTENDING MODULES

In this chapter, it is given some characterizations and properties of principally injective

modules.

Definition 3.1 1. A right module M over a ring R is called principally in jective (P-

injective) if for every R-homomorphism for a principal right ideal of R to M can be

extended to R.

2. M is called P-extending (PC1) module if every cyclic submodule of M is essen-

tial in a direct summand of M.

3. M is called FP-extending module if every finite uniform dimension closed sub-

module which contains essentially a cyclic submodule (EC-closed) is a direct sum-

mand of M.

4. A module M satisfies the condition (PC2) if for each a,b ∈ M such that aR� bR

and bR≤d M then aR≤d M.

5. A module M satisfies the condition (PC3) if for each a,b ∈ M such that aR and

bR are direct summands of M and aR∩ bR= 0 then aR⊕ bR≤d M.

Definition 3.2 1. A module M is called P-quasi-continuous module if the conditions

(PC1) and (PC3) hold.

2. A module M is called P-continuous module if the conditions (PC1) and (PC2)

hold.

It is clear that

(C1)⇒ (PC1), (C2)⇒ (PC2), (C3)⇒ (PC3).
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Hence

continuous⇒ P-continuous and quasi-continuous⇒ P-quasi-continuous.

Definition 3.3 Let M and N be R-modules and f: N → M be a R-homomorphism.

The set

< f >= {n− f (n) | n ∈ N} ⊆ N ⊕ M

is called graph of f .

Definition 3.4 Let M and N be R-modules. M is called N-principally-injective

(N-P-injective) if every R-homomorphism from a cyclic submodule of N to M can be

extended to N.

A module M is extending(n − extending) if every closed submoduleA (with U-

dim(A) ≤ n) is a direct summand ofM, or equivalently to the requirement that every

submoduleA (with U-dim(A) ≤ n) is essential in a direct summand ofM.

Lemma 3.5 Let M and N be R-modules. The followings are equivalent

(i) M is N-P-injective

(ii) For each m∈ M and n∈ N with rR(n) ⊆ rR(m) there exists f∈ HomR(N,M)

such that m= f (n).

Proof. (i)⇒ (ii) Let m ∈ M andn ∈ N with rR(n) ⊆ rR(m). nRis a cyclic submodule of

N. α : nR→ M ; α(nr) = mr is a homomorphism. By (i) there exists a homomorphism

f : N→ M such thatf |nR= α.

f (n) = f (n1R) = α(n1R) = m1R = m.

(ii) ⇒ (i) Let X be a cyclic submodule ofN. Then there existsn ∈ N such that

X = nR. Letα : X→ M be a homomorphism.α(n) ∈ M, sayα(n) = m. Let k ∈ rR(n).

mk= α(n)k = α(nk) = α(0) = 0.
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Hencek ∈ rR(m) and sorR(n) ⊆ rR(m). By assumption, there exists a homomorphism

f : N→ M ; f (n) = m.

f (nr) = f (n)r = mr = α(n)r = α(nr).

Hencef |nR= α. SoM is N-P-injective.�

Proposition 3.6 Let M and N be R-modules, and S= End(M). Then the following are

equivalent :

(i) M is N P-injective ;

(ii) For each m∈ M and n∈ N with rR(n) ⊆ rR(m), we have S m⊆ HomR(N,M)n ;

(iii) For each m∈ M and n∈ N with rR(n) ⊆ rR(m), there is a complement C of M

in N ⊕ M with n−m ∈ C and N⊕ M = C ⊕ M ;

(iv) For each n∈ N, lMrR(n) = HomR(N,M)n ;

(v) For each n∈ N and a∈ R, lM[aR∩ rR(n)] = lM(a) + HomR(N,M)n.

Proof. (i)⇒ (ii) : Let m ∈ M andn ∈ N with rR(n) ⊆ rR(m). SinceM is N−P-injective,

then there exists a homomorphismf : N → M such thatm = f (n). Let φ ∈ S, then

φ(m) ∈ HomR(N,M)n. Therefore,S m⊆ HomR(N,M)n.

(ii) ⇒ (iii). : Let m ∈ M andn ∈ N with rR(n) ⊆ rR(m), then by (ii), there exists a

homomorphismf : N → M such thatm= f (n). HenceN ⊕ M = 〈 f 〉 ⊕ M, where〈 f 〉

is the graph of a homomorphismf : N → M. Therefore,C = 〈 f 〉 is a complement of

M in N ⊕ M with N ⊕ M = C ⊕ M andn−m ∈ C.

(iii) ⇒ (iv) : Let n ∈ N and x ∈ lMrR(n), thenrR(n) ⊆ rR(x). By (iii), there is a

complementC of M in N ⊕ M with n− x ∈ C andN ⊕ M = C ⊕ M. So, there exists a

homomorphismf : N→ M such thatC = 〈 f 〉. Sincen− x ∈ C, thenn− x = n′− f (n′),

for somen′ ∈ N. So,n = n′ and x = f (n′) = f (n). Hencex ∈ HomR(N,M)n, and

lMrR(n) ⊆ HomR(N,M)n. The other conclusion is obvious.

(iv) ⇒ (v) : Let n ∈ N, a ∈ R, andx ∈ lM[aR∩ rR(n)], thenx(aR∩ rR(n)) = 0 and

sorR(na) ⊆ rR(xa). HencelMrR(xa) ⊆ lMrR(na) = HomR(N,M)na, by (iv). Therefore,
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xa = f (na) = f (n)a, for somef ∈ HomR(N,M). So (x − f (n))a = 0 andx − f (n) ∈

lM(a). Thusx ∈ lM(a)+HomR(N,M)n, and solM[aR∩ rR(n)] ⊆ lM(a)+HomR(N,M)n.

On the other hand, letx ∈ lM(a)+HomR(N,M)n, thenx = m+ f (n) for somem ∈ lM(a)

and f ∈ HomR(N,M). So xa = ma+ f (n)a = f (na). Let ar ∈ aR∩ rR(n), then

x(ar) = f (na)r = f (nar) = 0, and sox ∈ lM[aR∩ rR(n)]. ThuslM(a)+HomR(N,M)n ⊆

lM[aR∩ rR(n)].

(v)⇒ (i) : Let m ∈ M andn ∈ N with rR(n) ⊆ rR(m), thenlMrR(m) ⊆ lMrR(n). By

(v), we getlMrR(n) = HomR(N,M)n, and so there is a homomorphismf : N → M

such thatf (n) = m. ThusM is N-P-injective.�

Proposition 3.7 Let M be N-P-injective, then M is X-P-injective, for every submodule

X of N. If, in addition, X is a direct summand of N, then M is N/X-P-injective.

Proof. Let N = X ⊕ Y for some submoduleY of N. Then N
X � Y andM is N/X-P-

injective.�

Lemma 3.8 Let M be N-P-injective and K≤⊕ M, then K is N-P-injective.

Proof. Let X = nRbe a cyclic submodule ofN andα : nR→ K be a homomorphism.

SinceK ≤⊕ M, there exists a direct summandL of M such thatM = K ⊕ L. Let

π : M → K be projection map andi : K → M be inclusion map. SinceM is N-P-

injective there existsβ : N→ M a homomorphism such thatβ |nR= iα. Letβ : N→ K;

β = πβ is a homomorphism andβ |nR= α. HenceK is N-P-injective.�

Lemma 3.9 Let {Mi}i∈I be a family of modules. Then the direct product
∏

i∈I Mi is

N-P-injective if and only if Mi is N-P-injective, for every i∈ I.

Proof. It is obvious.�
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Proposition 3.10 If M is a quasi-principally injective module, and S= End(M), then

S H= S K, for any isomorphic R-submodules H, K of M.

Proof. SinceH � K, then there is a rightR-isomorphismσ : H → K. For eachk ∈ K,

k = σ(h) for someh ∈ H andrR(h) = rR(k). SinceM is quasi-principally injective,

thenS h= S kby Proposition 3.6, and soS k⊆ S H, for eachk ∈ K. ThenS K ⊆ S H.

Similarly, we getS H⊆ S K, and so the result.�

Lemma 3.11 The following conditions are equivalent for a ring R.

(i) R is right P-injective.

(ii) lr (a) = Ra for all a∈ R.

(iii) r (a) ⊆ r(b), where a,b ∈ R, implies that Rb⊆ Ra.

(iv) l[bR∩ r(a)] = l(b) + R(a) for all a,b ∈ R.

(v) If γ : aR→ R, a∈ R, is R-linear, thenγ(a) ∈ Ra.

Proof. (i) ⇒ (ii) : Always Ra⊆ lr (a). If b ∈ lr (a) thenr(a) ⊆ r(b), soγ : aR→ R is

well defined byγ(ar) = br. Thusγ = c. for somec ∈ Rby (i), whenceb = γ(a) = ca ∈

Ra. This implieslr (a) = Ra.

(ii) ⇒ (iii) : If r(a) ⊆ r(b) thenb ∈ lr (a) = Raandb = ra for somer ∈ R. Then

Rb⊆ Ra.

(iii) ⇒ (iv) : Let x ∈ l[bR∩ r(a)]. Thenr(ab) ⊆ r(xb), soxb= rab for somer ∈ R.

Hencex− ra ∈ l(b), proving thatl[bR∩ r(a)] ⊆ l(b)+R(a). The other inclusion always

holds.

(iv) ⇒ (v) : Let γ : aR→ R, beR-linear, and writeγ(a) = d. Thenr(a) ⊆ r(d), so

d ∈ lr (a). But lr (a) = Ra. Thend = γ(a) ∈ Ra.

(v)⇒ (i) : Let γ : aR→ RR. By (v) write γ(a) = ca, c ∈ R. Thenγ = c.. HenceR

is right P-injective.�
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Corollary 3.12 Let R be a P-injective ring and H, K be two-sided ideals of R. If

H � K, as right ideals of R, then H= K.

Proof. By Lemma 3.11.�

Theorem 3.13 Let M be a quasi-principally injective module, then M has(PC2).

Proof. Let a,b ∈ M with aR� bRandbR≤⊕ M. ThenbR= eM for some idempotent

e ∈ End(M). SinceaR� bR, then there is an isomorphismσ : bR→ aR. Letσe= h,

thenaR= hM andσ−1h = e. SincebR≤⊕ M, then by Lemma 3.8,bRis M-P-injective,

and so there exists a homomorphismφ : M → bRsuch thatφ(a) = σ−1(a). Thenφ is

an epimorphism,φh = e, and sof = hφ is an idempotent endomorphism ofM. Hence

f M = hφM = h(bR) = heM= hM, and soaR≤⊕ M. �

Corollary 3.14 If R is a P-injective ring, then R has (C2).

Lemma 3.15 Let M be an R-module. If M has(PC2), then M has(PC3).

Proof. Let aR≤⊕ M andbR≤⊕ M with aR∩ bR= 0, thenaR= eM = Im e, for some

e2 = e ∈ End(M), and soaR⊕ bR = eM ⊕ (1 − e)bR. Since (1− e)bR � bR ≤⊕ M

andM has (PC2), then (1− e)bR = f M for some f 2 = f ∈ End(M). Thene f = 0,

andh = e+ f − f e is an idempotent inEnd(M). Therefore,aR⊕ bR= eM⊕ f M =

(e+ f − f e)M = hM ≤⊕ M. �

Corollary 3.16 If M is a quasi-principally injective module, then M has(PC3).

Definition 3.17 By an EC-(closed) submodule C of a module M, we mean a (closed)

submodule C which contains essentially a cyclic submodule; i.e. there exists c∈ C

such that cR≤e C.

Lemma 3.18 Every summand of an EC-submodule of M is EC-submodule.
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Proof. Let cR≤e C be anEC-submodule ofM, andC1 ≤
⊕ C, thenC = C1 ⊕ C2, for

some submoduleC2 in C. Let c = c1 + c2, wherec1 ∈ C1 andc2 ∈ C2. It is easy to see

thatc1R≤e C1. Therefore,C1 is anEC-submodule ofM. �

Corollary 3.19 Every summand of an EC-closed submodule of M is EC-closed.

Lemma 3.20 Every summand of a P-(quasi-)continuous module is P-(quasi-)continuous.

Proof. It is obvious by Corollary 3.19.�

Lemma 3.21 For an indecomposable module M, the following are equivalent:

(i) M is extending;

(ii) M is P-extending;

(iii) M is uniform.

Proof. (i) ⇒ (ii) It is obvious.

(ii) ⇒ (iii) Suppose thatM is not uniform. Then there existsm ∈ M such thatmR

is not essential inM and also there exists a complement submoduleK in M such that

mRis essential submodule ofK. SinceM is P-extending,K is direct summand ofM

andK , M. This contradicts with the indecomposability ofM.

(iii) ⇒ (ii) It is obvious.�

Lemma 3.22 Let M be a 1-extending-module. Then every closed submodule of M of

the form
⊕n

i=1 Ai with all Ai uniform, is a direct summand.

Proof. By induction. Assume that the claim is true forn,and letA =
⊕n

i=0 Ai be

closed submodule ofM. By assumption,A∗ =
⊕n

i=1 Ai is direct summand ofM. Write

M = A∗ ⊕ M∗ for M∗ ≤⊕ M. It follows thatA = A∗ ⊕ (A∩ M∗). It is clear thatA∩ M∗

is closed uniform submodule ofM. Since direct summand of 1-extending modules are

1-extending, we haveA∩ M∗ ≤⊕ M. HenceA ≤⊕ M. �
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Lemma 3.23 Let M be a 1-extending module. Then every non-zero closed submodule

of M, of finite uniform dimension contains a uniform summand.

Proof. Let A , 0 be a closed submodule ofM, with U-dimension(A)< ∞. Let A1 be a

uniform submodule inA, and letU be a maximal essential extension ofA1 in A. Since

U is complement inA andA is complement inM, U is complement inM. SinceM is

1-extending,U is a direct summand inM and thereforeU is a direct summand inA. �

Lemma 3.24 A module M over a noetherian ring R, is 1-extending if and only if it is

P-extending.

Proof. Let M be a 1-extending module, andcR≤e C be anEC-closed submodule of

M. SinceR is a noetherian ring, thenC has a finite uniform dimension. SinceM is

1-extending, then by Lemma 3.22 and Lemma 3.23,M is n-extending. HenceC is a

summand, and soM is P-extending. For the converse, it is obvious.�

Corollary 3.25 Let M be a module with finite uniform dimension, then the following

are equivalent:

(i) M is extending;

(ii) M is 1-extending;

(iii) M is P-extending.

Proposition 3.26 Let M = M1 ⊕ M2, and let C∩ M1 be an EC-submodule of M,

for every EC-closed submodule C of M. Then M is P-extending if and only if every

EC-closed submodule C, with C∩ M1 = 0, or C∩ M2 = 0, is a summand.

Proof. The necessary condition is obvious. For the sufficient condition, letcR≤e C be

anEC-closed submodule ofM. If C ∩ M1 = 0, then we are done. Otherwise,C ∩ M1

is anEC-submodule ofM, by assumption. LetC1 be a maximal essential extension
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of C ∩ M1 in C, thenC1 is anEC-closed submodule ofM, with C ∩ M2 = 0. Hence

by the assumption,C1 is a summand ofM. Write M = C1 ⊕ C2, by the modular law,

C = C1 ⊕ (C ∩ C2) by Corollary 3.19,C ∩ C2 is anEC-closed submodule ofM with

(C ∩C2) ∩ M1 = 0, and therefore,C ∩C2 is an summand ofM. ThusC is a summand

of M, and therefore,M is P-extending.�

Proposition 3.27 Let M = M1 ⊕ M2, where M1 is of finite uniform dimension. Then

M is P-extending if and only if every EC-closed submodule C of M with C∩ M1 = 0,

or C is of finite uniform dimension, is a summand.

Proof. The necessary condition is obvious. For the sufficient condition, letmR≤e C

be anEC-closed submodule ofM. If C ∩ M1 = 0, then we are done. Now let 0,

c ∈ C ∩ M1, andC1 be a maximal essential extension ofcR in C. SinceM1 is of

finite uniform dimension, so isC1. By the given assumption,C1 is a summand ofM.

Write M = C1 ⊕ K. HenceC = C1 ⊕ C∗, whereC∗ = K ∩ C is closed inM. Let

m = c1 + c∗, wherec1 ∈ C1 andc∗ ∈ C∗. SinceC∗ is a summand of anEC-closed

submoduleC, then by Corollary 3.19,C∗ is EC-closed. IfC∗ ∩ M1 = 0, then by

assumptionC∗ is a summand, and henceC is a summand ofM. On the other hand, if

C∗ ∩ M1 , 0, then by repeating the previous steps, we haveC∗ = C2 ⊕ C3, whereC2

is a summand and has a non-zero intersection withM1. Continuing in this manner, we

should stop after a finite steps (due toM1 a finite uniform dimensional module) and

end withC = C1⊕C2⊕ . . .⊕Cn, whereCi is a summand ofM (i = 1,2, . . . ,n−1), and

Cn contains an essential cyclic submodule withCn ∩ M1 = 0. HenceCn is a summand

of M, by assumption, and thereforeC is a summand ofM. �

Corollary 3.28 Let M = M1 ⊕ M2, where M1 is of finite uniform dimension. Then M

is P-extending if and only if every EC-closed submodule of M, with C∩ M1 = 0, or

C ∩ M2 = 0, is a summand.
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Proposition 3.29 Let M = M1 ⊕ M2. Then M is FP-extending if and only if every

EC-closed submodule C of M with finite uniform dimensional such that C∩ M1 = 0,

or C ∩ M2 = 0, is a summand.

Proof. It is similar to the proof of Proposition 3.27.�

Proposition 3.30 Let M = M1 ⊕ M2, where M1 is a semisimple module. Then M is

P-extending if and only if every EC-closed submodule C of M with C∩ M1 = 0, is a

summand.

Proof. The necessary condition is obvious. For the sufficient condition, letC be an

EC-closed submodule ofM. If C∩M1 = 0, then we are done. On the other hand, since

M1 is a semisimple, we getC ∩ M1 ≤
⊕ M1 and soC = C ∩ M1 ⊕ C∗. SinceC∗ is an

EC-closed submodule ofM andC∗ ∩ M1 = 0, thenC∗ is a summand ofM. Therefore

C is a summand ofM. �

Proposition 3.31 Let M = M1 ⊕ M2, where M1 is P-extending and M2 is M1-P-

injective. If M2 is nonsingular, then every EC-closed submodule C of M, with C∩M2 =

0, is a summand of M.

Proof. Let cR ≤e C be anEC-closed submodule ofM with C ∩ M2 = 0, and write

c = c1 + c2, wherec1 ∈ M1 and c2 ∈ M2. SinceM2 is M1-P-injective, then the

homomorphismα : c1R→ M2; α(c1) = c2, there exists a homomorphismφ : M1 →

M2 such thatφ |c1R= α. Let

(c1R)∗ = {c1r + φ(c1)r | r ∈ R}.

(c1R)∗ is a submodule of

M∗1 = {m1 + φ(m1) | m1 ∈ M1}
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Let cr ∈ cR. cr = c1r + c2r = c1r + φ(c1)r. ThencR= (c1R)∗. Let y ∈ M∗1 ∩ M2 = 0.

Let m ∈ M. m= (m1+φ(m1))+ (m2−φ(m1)) ∈ M∗1+M2 wherem1 ∈ M1 andm2 ∈ M2.

ThenM = M∗1 ⊕ M2. ThereforeM∗1 � M1. Let x ∈ C and writex = y + m2, where

y ∈ (M1)∗ andm2 ∈ M2. SincecR ≤e C, then there exists an essential right idealI

of R such thatm2I = 0. SinceM2 is nonsingular, thenm2 = 0. Let c ∈ C. Then

c = m1 + φ(m1) + m2 wherem1 ∈ M1 andm2 ∈ M2. SincecR ≤e C, there exists

0 , r ∈ R such thatcr = (m1 + φ(m1) +m2)r ∈ cR≤ M∗1. m1r + φ(m1)r +m2r ∈ M∗1.

Then there existsz ∈ M∗1 such thatm1r +φ(m1)r − z= −m2r ∈ M∗1∩M2 = 0. It follows

thatm2 = 0 and alsoc = m1 + φ(m1) ∈ M∗1. It follows thatC ⊆ (M1)∗. Since (M1)∗ is

P-extending, we haveC ≤⊕ (M1)∗ ≤⊕ M. �

Definition 3.32 Let M = M1 ⊕ M2 be a module. The module M2 is called M1-EC-

in jective, if for every EC-(closed) submodule N of M1, and every homomorphism from

N to M2 can be extended to M1.

This is equivalent to for every EC-(closed) submodule N of M such that N∩M2 = 0,

there exists N′ ≤ M such that N≤ N′, and M= N′ ⊕ M2.

Observe that every module over a regular ringR is R-EC-injective.

Lemma 3.33 Let M = M1 ⊕ M2 and M2 be M1-EC-injective. Then:

(i) M2 is K-EC-injective, for all K≤ M1.

(ii) H is M1-EC-injective, for all H≤⊕ M2.

(iii) H is K-EC-injective, for all K≤⊕ M1, and H≤⊕ M2.

Proof. (i) Let K be a submodule ofM1, andN be anEC-submoduleK ⊕ M2 with

N ∩ M2 = 0. ThenN is anEC-submodule ofM. SinceM2 is M1-EC-injective, then

there isN′ ≤ M such thatN ≤ N′, andM = N′⊕M2. ThenK ⊕M2 = (K ⊕M2)∩ (N′⊕

M2) = (N′ ∩ (K ⊕ M2)) ⊕ M2 andN ≤ N′ ⊕ (K ⊕ M2). HenceM2 is K-EC-injective.
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(ii) Let H be a summand ofM2, and N be anEC-submodule ofM1 ⊕ H with

N ∩ H = 0. ThenN is anEC-submodule ofM andN ∩ M2 = 0 sinceM2 is M1-EC-

injective, then there isN′ ≤ M such thatN ≤ N′, andM = N′ ⊕ M2. SinceH ≤⊕ M2,

thenM2 = H⊕H′, and soM1⊕H = (M1⊕H)∩(N′⊕H⊕H′) = H⊕(M1⊕H)∩(N′⊕H′).

SinceN ≤ N′, thenN ≤ (M1 ⊕ H) ∩ (N′ ⊕ H). ThereforeH is M1-EC-injective.

(iii) Follows from (i) and (ii).�

Proposition 3.34 Let M = M1 ⊕ M2 where M1 is P-extending and M2 is M1-EC-

injective. Then M= C⊕M′1⊕M2; where M′1 ≤ M1, for every EC-closed submodule C

of M, with C∩ M2 = 0.

Proof. Let cR ≤e C be anEC-closed submodule ofM with C ∩ M2 = 0. Define

X = M1∩ (C⊕M2). Thenc1R≤e X, wherec = c1+c2, wherec1 ∈ M1 andc2 ∈ M2. Let

N1 be a maximal essential extension ofX in M1. ThenN1 is anEC-closed submodule

of M1. SinceM1 is P-extending, we haveN1 ≤
⊕ M1. Write M1 = N1 ⊕ M′1, where

M′1 ≤ M1. Now C ⊕ M2 = X ⊕ M2 ≤e N1 ⊕ M2; i.e. C ≤ N1 ⊕ M2, andC ≤c N1 ⊕ M2.

ThenC is complement ofM2 in N1 ⊕ M2. SinceM2 is M1-EC-injective, andN1 is a

summand ofM1, then by Lemma 3.33 (i),M2 is N1-EC-injective, and so there exists

N′ ≤ N1 ⊕ M2 such thatC ≤ N′, andN1 ⊕ M2 = N′ ⊕ M2. HenceN′ is a complement

of M2 in N1 ⊕ M2, butC is a complement ofM2 in N1 ⊕ M2. Therefore,N′ = C and

M = M1 ⊕ M2 = N1 ⊕ M′1 ⊕ M2 = C ⊕ M′1 ⊕ M2. �

Corollary 3.35 Let M = M1 ⊕ M2, where Mi is P-extending and is Mj-EC-injective

(i , j = 1,2) if and only if M = C ⊕ M′i ⊕ M j; where M′i ≤ Mi, for every EC-closed

submodule C of M, with C∩ M j = 0 (i , j = 1,2).

Proposition 3.36 Let M = M1 ⊕ M2, where M1 and M2 are relatively EC-injective,

and either M1 or M2 is of finite uniform dimension. Then M is P-extending if and only

if M1 and M2 are P-extending.
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Proof. It is follows by Corollaries 3.35, and 3.28.�

Proposition 3.37 Let M =
⊕

i∈I Mi be an R-module, where M(F) is P-extending and

M(I\F) is M(F)-EC-injective, for all finite subset F of I. Then M is P-extending.

Proof. Let c ∈ M andC be a maximal essential extension ofcRin M. ThencR≤ M(F)

andcR∩ M(I\F) = 0, for a finite subsetF of I . SincecR≤e C, thenC ∩ M(I\F) = 0.

Since M(I\F) is M(F)-EC-injective andC is EC-closed submodule ofM, then by

Proposition 3.34,C is a summand ofM. HenceM is P-extending.�

Definition 3.38 A module M is called ef-extending if every closed submodule which

contains essentially a finitely generated submodule is a direct summand.(Equivalently,

A module M is called ef-extending if every submodule N of M such that N is finitely

generated there exists a direct summand L of M such that N is essential in L.

Definition 3.39 A module M is called uni f orm−extending (u-extending) if every uni-

form submodule is essential in a direct summand of M.

The following implications are obvious

extending⇒ ef-extending⇒ p-extending⇒ uniform-extending

The following example shows that the implication ef-extending⇒ extending is not

true.
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Example 3.40 The Z-module M=
∏∞

i=1 Z2 is ef-extending but it is not extending.

Proof. It is easy to see thatN =
⊕∞

i=1 Z2 is local direct summand ofM. SinceZ

is a Noetherian ring,N is closed submodule ofM [10, 8.1]. ButN is not a direct

summand ofM. In fact, suppose thatM = N⊕ K. Setx = (0,1,1, . . . ,1, . . .) ∈ K, x′ =

(0,0,0,1, . . . ,1, . . .) ∈ K. Thenx− x′ = (0,1,1,0, . . . ,0, . . .) ∈ K ∩N, a contradiction.

ThusM is not extending. We now show thatM is ef-extending.Z/2Z = {0,1}, M has

some of the following properties:

(∗) Sincex = (xi) ∈ M, xi = 0 or xi = 1. This implies thatxk = 0 if k is even and

xk= x if k is odd. HencexZ = {0, x}. This means thatxZ is a simple submodule ofM.

(∗∗) For everyx ∈ M, xZ is a direct summand ofM. In fact, we can suppose

that x , 0, x = xi. Then there exists an integeri such thatxi = 1, x1 = 1 says, i.e.,

x = (1, x2, x3, . . .). TakeN′′ = {(0, y2, y3, . . .) | yi ∈ Z2, i > 1} ≤ M. We can easily see

thatN′′ ∩ xZ = 0 andM = xZ⊕ N′′.

Thus, every cyclic submodule ofM is a simple submodule and a direct summand

of M. So if K is an essentially finitely generated submodule, then we can easily see

thatK is direct summand ofM. HenceM is ef-extending.�

Proposition 3.41 Let M be an ef-extending module such that every local direct sum-

mand is a direct summand of M. Then M is an extending module.

Proof. Let K be a non-zero closed submodule ofM. For any 0, x ∈ K, xRis essential

in a submoduleA of K which is closed inK. SinceK is closed inM, A is closed inM

and thereforeA is a direct summand ofM. By Zorn’s lemma, there exists a maximal

local direct summandN =
⊕

I Ai where eachAi ⊂ K. By hypothesis,N is a direct

summand ofM, i.e.,M = N ⊕ N′ for some submoduleN′ of M, soK = N ⊕ (K ∩ N′).

Assume thatK ∩ N′ , 0. Then there existsA , 0 A is a direct summand ofM. This

implies thatA is also a direct summand ofK ∩N′. SoN⊕ A is a local direct summand
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of M, contradicting the choice ofN. ThusK ∩ N′ = 0. This means thatK = N. This

shows thatM is an extending module.

By the example above, we see that theZ-moduleM =
∏∞

i=1 Z2 is ef-extending but

not extending. Note thatN =
⊕∞

i=1 Z2 is local direct summand ofM but it is not a

direct summand ofM. �

Lemma 3.42 A module M is uniform-extending if and only if every closed submodule

K of M that has finite uniform dimension is a direct summand of M.

Proof. SupposeM is u-extending. LetK be a closed submodule ofM that has finite

uniform dimension. Without loss of generality, we can assume uniform dimension

of K is 2. Then we have a uniform closed submoduleK1 of K. SinceK is closed

submodule ofM, K1 is closed inM andM is u-extendingK1 is direct summand ofM.

M = K1⊕ L for some direct summandL of M. By modularityK = K1⊕ (K ∩ L). Since

ud(K) = 2, K ∩ L is a uniform closed submodule and so it is a direct summand ofM

and also ofL. HenceK is a direct summand ofM. Conversely, it is obvious.�

Proposition 3.43 For a module M over a noetherian ring, the following conditions

are equivalent:

(i) M is ef-extending.

(ii) M is uniform-extending.

Proof. Since a finitely generated module over a noetherian ring is noetherian, every

finitely generated module has finite uniform dimension. By Lemma 3.42, the proposi-

tion follows.�

Definition 3.44 A module M is said to satis f y(C11) if and only if for every submodule

A of M, there exists a direct summand K of M such that A∩ K = 0 and A⊕ K E M
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Lemma 3.45 Any direct sum of modules (C11) satisfies (C11).

Proof. Let Mλ(λ ∈ Λ) be a non-empty collections of modules, each satisfying (C11).

Let M = ⊕λ∈ΛMλ. Let N be any submodule ofM. Let λ ∈ Λ. Note thatN ∩ Mλ

is a submodule ofMλ and Mλ satisfies (C11). By [13 Proposition 2.3], there exists a

direct summandKλ of Mλ such that (N ∩ Mλ) ∩ Kλ = 0 and (N ∩ Mλ) ⊕ Kλ is an

essential submodule ofMλ. Note thatN ∩ Kλ = 0, (N ⊕ Kλ) ∩ Mλ = (N ∩ Mλ) ∩ Kλ

and (N ⊕ Kλ) ∩ Mλ is an essential submodule ofMλ. Let Λ′ be a non-empty subset

of Λ containingλ such that there exists a direct summandK′ of M′ = ⊕λ∈Λ′Mλ′, with

N ∩ K′ = 0 and with (N ⊕ K′) ∩ M′ an essential submodule ofM′. SupposeΛ′ , Λ.

Let µ ∈ Λ, µ is not inΛ′. Now L = (N⊕K′)∩Mµ is a submodule ofMµ, so there exists

a direct summandKµ of Mµ such thatL ∩ Kµ = 0 andL ⊕ K is an essential submodule

of Mµ. LetΛ′′ = Λ′ ∪ {µ} andM′′ = ⊕λ∈Λ′′Mλ = M′ ⊕ Mλ. Note thatK′ ∩ Kµ = 0. Let

K′′ = K′ ⊕ Kµ. Note thatK′′ is a direct summand ofM′′ and moreoverN ∩ K′′ = 0.

Consider the submoduleN ⊕ K′′. Note that (N ⊕ K′′) ∩ M′ contains (N ⊕ K′) ∩ M′, so

that (N ⊕ K′′) ∩ M′ is an essential submodule ofM′. Moreover

(N ⊕ K′′) ∩ Mµ = (N ⊕ K′ ⊕ Kµ) ∩ Mµ = [(N ⊕ K′) ∩ Mµ] ⊕ Kµ = L ⊕ Kµ,

which is an essential submodule ofMµ. It follows that (N ⊕ K′′) ∩ M′′ is an essential

submodule ofM′′. Repeating this argument, there exists a direct summandK of M

such thatN ∩ K = 0 andN ⊕ K is an essential submodule ofM. By [13 Proposition

2.3] M satisfies (C11). �

Lemma 3.46 Let M =
⊕

I Mi be a decomposition with all Mi uniform and End(Mi)

local. If the family{Mi | i ∈ I } is relatively injective, then there does not exist an

infinite sequence of non-isomorphic monomorphism{ fk : Mik → Mik+1}N with all ik ∈ I

distinct.
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Proof. Suppose that there exists an infinite sequence of non-isomorphic monomor-

phisms (fi) where fi : Mi → Mi+1, i ≥ 1.

Let Ni = {x− fi(x) | x ∈ Mi}. Then we can easily see that the family

{Ni | i = 1,2, . . .} independent, so the sum
∑∞

i=1 Ni is direct. Since eachMi is a uniform

module, it satisfies (C11), so thus
⊕∞

i=1 Mi. Therefore, there exists a direct summand

K of
⊕∞

i=1 Mi such that (
⊕∞

i=1 Ni)∩ K = 0 and (
⊕∞

i=1 Ni)⊕ K is essential in
⊕∞

i=1 Mi.

Assume thatK , 0. Then by [1, 12.6] there exists ak ∈ N such thatMk is direct

summand ofK. The relative injectivity of the family{Mi | i = 1,2, . . .} implies that

Mk is
⊕

i,k Mi-injective [2, 1.5]. Hence, there existsM′ such that
⊕∞

i=1 Ni ≤ M′ and⊕∞

i=1 Mi = M′⊕Mk. This implies thatNk is a direct summand ofM′ so thatMk⊕Nk is

a direct summand ofM or Mk ⊕ Nk is a closed submodule ofM. Moreover,Mk ⊕ Nk is

essential inMk⊕Mk+1. HenceMk⊕Nk = Mk⊕Mk+1. This implies thatfk is epimorphic,

a contradiction. ThereforeK = 0 and hence
⊕∞

i=1 Ni is essential in
⊕∞

i=1 Mi. Thus

M1 ∩ (
⊕∞

i=1 Ni) , 0, so there existsx1 , 0, x1 = y1 − f1(y1) + . . . + yn − fn(yn), where

yi ∈ Mi (i = 1, . . . ,n). This would imply thatfn fn−1 . . . f2 f1(x) = 0, which contradicts

to the fact that allfi are monomorphic, proving our lemma.�

Theorem 3.47 Let M =
⊕

I Mi be a decomposition with Mi uniform and End(Mi) lo-

cal. Assume the family{Mi | i ∈ I } is relatively injective. Then the following conditions

are equivalent:

(i) M is extending.

(ii) M is ef-extending.

(iii) M is uniform-extending.

Proof. The proof follows by Lemma 3.46. and [14 Theorem 3.4]�

45



Lemma 3.48 Let M = M1 ⊕ M2 having the following property: either every closed

submodule K in M with K∩ M1 = 0 is a direct summand of M, or every closed

submodule K in M which is essentially finitely generated such that K∩ M2 = 0 is a

direct summand of M. Then M is an ef-extending module.

Proof. Let K be a closed submodule ofM that contains essentially a finitely generated

submoduleN = x1R+ . . .+ xnR. Then there exists a closed submoduleH in K such that

K∩M2 is essential inH. From this,H is a closed submodule ofM, H∩M1 = 0 and then

H is a direct summand ofM, M = H ⊕ H′ says. This implies thatK = H ⊕ (K ∩ H′).

So K ∩ H′ is closed submodule inM and (K ∩ H′) ∩ M2 = 0. We now prove that

K ∩ H′ is essentially finitely generated. In fact, sinceN = x1R+ . . . + xnR is essential

in K = H ⊕ (H′ ∩K), we havex1 = h1+ k1, . . . , xn = hn+ kn, wherehi ∈ H, ki ∈ H′ ∩K

(i = 1, . . . ,n). Let B = k1R+ . . . + knR. SinceN is essential inK, B is essential in

K ∩ H′. By hypothesis, we haveH′ ∩ K is a direct summand ofM and hence ofH′,

i.e., H′ = (H′ ∩ K) ⊕ P for someP. It follows thatM = H ⊕ (H′ ∩ K) ⊕ P = K ⊕ P,

proving our lemma.�

Proposition 3.49 A direct sum of an extending module and an ef-extending module

which are relatively injective is also an ef-extending module.

Proof. By Lemma 3.48 and [10 Theorem 7.5].�

Lemma 3.50 Let M = M1 ⊕ M2 with each Mi uniform and End(Mi) local (i = 1,2).

Assume M is uniform-extending. Then for any A≤ Mi every homomorphism f: A→

M j can be extended to a homomorphism

f ′ : B→ M j, where B is a submodule of Mi such that either B= Mi or B , Mi and f′

is an isomorphism.
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Proof. Assume thatA ≤ M1 and f : A→ M2 is a homomorphism. Let

A′′ = {a− f (a) | a ∈ A}.

Then A′′ ' A is a uniform submodule ofM. SinceM is uniform extending,A′′ is

essential in a direct summandD of M. By [1, 12.7], eitherM = M1⊕D or M = D⊕M2.

Assume first thatM = D ⊕ M2. Let p : D ⊕ M2 → M2 be the projection. Then it is

easy to check the restriction ofp on M1 is an extension off . So p is the desired

homomorphism. Now assume thatM = M1 ⊕ D. Then D ∩ M1 = 0 and clearly

kerf = 0, therefore there existsf −1 : f (A) → A. We can easily see that the projection

q : M1 ⊕ D → M1 which restricts onM2 is an extension off −1 and we call this

extensionj. Since f −1 is a monomorphism andM2 is a uniform module,j is also a

monomorphism. We can easily see thatA ≤ j(M2). SetB = j(M2). Then we see that

j−1 : B→ M2 is an extension off . So j−1 is the desired isomorphism.�

Definition 3.51 A module A is called nearly B-injective if for each C≤ B and for

each homomorphism f: C → A with ker f ≤ 0, then there exists a homomorphism

f ′ : B→ A such that it is extension of f .

The family {Mi | i ∈ I } of right R-modules is said to satisfyA2) if for any choice of

xn, xn ∈ Min with distinct in ∈ I such thatrR(y) ⊆
⋂∞

i=1 rR(xn) for somey ∈ M j, the

ascending sequence :

⋂∞
n=1 rR(xn) ⊆

⋂∞
n=2 rR(xn) . . .

becomes stationary.

Lemma 3.52 A module A is nearly B-injective if and only if A is nearly xR-injective

for each x∈ B.

Proof. We use the same argument as that given in [2, 1.4].�
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Lemma 3.53 Let M =
⊕

I Mi be a decomposition with all Mi-uniform and End(Mi)

local. Assume Mi ⊕ M j is uniform-extending for each pair i, j in I and the family

{Mi | i ∈ I } satisfies(A2). Then for each k∈ I,
⊕

i,k Mi is nearly Mk-injective.

Proof. By Lemma 3.52, it suffices to prove that
⊕

i,k Mi is nearlyxR-injective for

eachx ∈ Mk. Assume thatA ≤ xRand f : A →
⊕

i,k Mi is a homomorphism such

that kerf , 0. DefineS = {r ∈ R | xr ∈ A}. Then it is easy to check thatS is an

ideal of R andA = xS. For eachi ∈ I \ {k}, put fi = pi f : xS → Mi, where each

pi :
⊕

i,k Mi → Mi is the projection. SinceMk ⊕ Mi is uniform-extending, kerf , 0

and by Lemma 3.50,fi can be extended to a homomorphismhi : xR→ Mi. So we can

easily see thath : xR→
∏

i,k Mi

xr 7→ (hi(xr))I\{k}

is an extension off on A. Puta = (ai)I\{k} = h(x) ∈
∏

i,k Mi. Clearly

rR(x) ⊆ rR(a) =
⋂

i,k rR(ai).

For each elements ∈ S, let Is = {i ∈ I \ {k} such thatai s, 0}. ThenIs is a finite subset

of I \ {k}. If
⋃

s∈S Is such that
⋃∞

n=1 Isn is countable. SinceIs is finite for eachs ∈ S, we

can choose a sequence (sn)n satisfying

Is1 $ Is1 $ . . .

andi1 ∈ Is1, i2 ∈ Is2 \ Is1, . . . , in ∈ I \ (
⋃n−1

j=1 Isj ). Sincei1 ∈ Is1, it follows thatai1 s1 , 0,

aj s1 = 0 for eachj ∈ I \ Is1. Similarly, for i2 ∈ Is2 \ Is1, we have

ai2 s1 = 0, ai2 s2 , 0, . . .

and finally,in ∈ I \ (
⋃n−1

j=1 Isj ), we haveain s1 = . . . = ain sn−1 = 0, ain sn , 0.

Thus the sequence (
⋂∞

k=n rR(aik))n∈N is strictly increasing, contradicting to the as-

sumption that{Mi}i∈I satisfies (A2). We now assume that
⋃

s∈S Is = {i1, . . . , in}. For

eacht ∈ I \ {i1, . . . , in}, ats = 0. This would imply f (xs) = (ai s)i∈I\{k}) ∈
⊕n

t=1 Mit for
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eachs ∈ S. Hencef (A) ⊆
⊕n

t=1 Mit . Since eachMit is nearlyMk-injective,
⊕n

t=1 Mit

is nearlyMk-injective. So there exists a homomorphismh′ : Mk →
⊕n

t=1 Mit such that

h′ is an extension off . The proof of our lemma is completed.�

Theorem 3.54 Let M =
⊕

I Mi be a decomposition with all Mi-uniform and End(Mi)

local. Then the following conditions are equivalent:

(i) M i is uniform-extending.

(ii) M i ⊕Mk is extending for each pair k, i in I and the family{Mi | i ∈ I } satisfies

(A2).

(iii) M i ⊕ Mk is ef-extending for each pair k, i in I and the family{Mi | i ∈ I }

satisfies(A2).

(iv) Mi ⊕Mk is uniform-extending for each pair k, i in I and the family{Mi | i ∈ I }

satisfies(A2).

Proof. (i) ⇒ (ii). By [14,Lemma 2.3]

(ii) ⇒ (iii) and (iii) ⇒ (iv) are obvious.

(iv) ⇒ (i). Suppose that{Mi | i ∈ I } satisfies (A2) andU is a uniform submodule

of M. By Zorn’s lemma, there existsk ∈ I such thatU ∩
⊕

i,k Mi = 0. Thus, the

projectionpk : M = (⊕i,kMi) ⊕ Mk → Mk restricts onU is a monomorphism. Let

A = pk(U) and p : (⊕i,kMi) ⊕ Mk → ⊕i,kMi be the projection. Consider the homo-

morphismh : A→ ⊕i,kMi, defined byh(pk(u)) = p(u) for eachu ∈ U. If h = 0 then

U ≤ Mk and sinceA is closed inMk, it follows thatU = Mk. SoU is a direct sum-

mand ofM. Now assume thath , 0. Then there existsu ∈ U such thath(pk(u)) , 0.

Thus, we can choosei1, i2, . . . in in I \ {k} such thath(pk(u)) ∈ Mi1 ⊕ . . . ⊕ Min. Put

N1 = Mi1⊕ . . .⊕Min andN2 =
⊕

i,k Mi \N1. By Lemma 3.52,N2 is nearlyMk-injective

andp2h is not a monomorphism (wherep2 :
⊕

i,k Mi = N1 ⊕ N2 → N2 is the projec-

tion), it would implies thatp2h can be extended to a homomorphismh2 : Mk → N2.

If for each t = 1,2, . . . ,n, pth : A → Mit is not a monomorphism, thenpth can be
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extended to a homomorphismht : Mk → Mit . Thereforeh can be extended to a ho-

momorphismh′ : Mk → ⊕i,kMi. SetM∗k = {x − h′(x) | x ∈ Mk}. It is easy to see

that M = M∗k ⊕ (⊕i,kMi) andU E M∗k. HenceU = M∗k, i.e.,U is a direct summand of

M. If there exists somet such thatpth is isomorphic then, without loss of generality,

we suppose thatp1h, . . . , pmh are monomorphic for somem ≤ n. By Lemma 3.50,

pth can be extended to a homomorphismft : Bt → Mit and ft is isomorphic for each

t = 1,2, . . . ,m. We can easily see that :

(∗) A =
⋂m

t=1 Bt.

(∗∗) The family{Bt | t = 1, . . . ,m} is total ordered.

Thus there existst ∈ {1, . . . ,m} such thatA = Bt, i.e., ft = pit : A → Mit is

isomorphic. It follows thatpt : U → Mit is isomorphic. HenceU is a direct summand

of M and henceM is uniform-extending.�
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