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ABSTRACT

CS-MODULES AND GENERALIZATIONS OF CS-MODULES
Oztiirk, Hakan
M.Sc., Department of Mathematics
Supervisor: Assist. Prof. Dr. Cesim Celik

January 2009, 55 pages

This study contain€S-modules (extending modules),aRdextending ancEF-
extending modules which are generalization€ & modules.

This study consists of three sections: In section 1, we present some definitions and
theorems which will be used in the following sections. Section 2 contains a general
characterization o€CS-modules. It is known that every direct summand of &
module is aCS-module too. However, the direct sum GfS-modules may not be
a CS-module. In this section, it is given under which conditions the direct sum of
CS-modules ar€€S-modules.

In section, after giving some characterizations and features of principally injective
modules, the following results of tHe-extending ande F-extending modules which
are the generalizations of principally injective modules are studied.

Let M be a quasi-principally injective module afd= End(M) andK,H < M. If
K= H,thenSH=SK

If M has the conditionRC,),thenM has the propertyRCs).

Under which conditions, direct sums &extending modules i®-extending is
given.

Some examples regarding converse of the implication which is not true are given.

Under which conditions, an ef-extending module is extending is given.



Definitions of EC-submodules an&C-injective modules are given and by means
of these definitions, under which conditions the moddle- M; & M, is P-extending
is given.
Keywords: essential submodules, complement submodules, injective modules,

CS-modules, ef-extending and P-extending modules.



OZET

CS-MODULLER VE CS-MODULLERIN GENELLEMELERI
Oztiirk, Hakan
Master Tezi, Matematik 8lumi
Tez Yoneticisi: Yard. Docg. Dr. Cesim Celik
Ocak 2009, 55 sayfa

Ug bolumden olusan bu calism&S-modilleri (extending modules) ve bu mod-
ullerin genellemeleri olaf-extending E F-extending modllerin karakterizasyonunu
icermektedir.

Birinci bolum, dger lumlerde kullanilan temel tanim ve teoremlerden olusmaktadir.

Ikinci boliim, CS-modillerin genel bir karakterizasyonunu icermektedir. 8-
modiliin her dik toplananininda b€ S-modil oldugu bilinmektedir. AncakCS-
modillerin dik toplamlari her zama@S-modil degjildir. Bu bdlimde,CS-modillerin
hangi kosullar altinda yin€ S-modil oldugu verilmistir.

Uciindl bblimde, temel injektif (principally injective) maderin bazi karakteriza-
syonlari vedzellikleri verildikten sonra, temel injektif madlerin birer genellemeleri
olanP-extending veE F-extending modllerin karakterizasyonuyla ilgili agagaki sonuclar
incelenmistir.

M yari temel injektif (quasi-principally injective) mod K, H < M ve S =
End(M) olmakiizere K = HiseSH=SK

M, (PC,)’yi saghyor iseM, (PCs) ozelligini sajlar.

P-extending modllerin dik toplami ne zamaR-extending modldur.

"extending= ef-extending= uniform-extending®@nermesinin tersinin dpu ol-

madgina dairdrnekler verildi.



Bir ef-extending modliin ne zaman extending mialidoldugu verildi.
EC-altmodil ve EC-injektif modul tanimlari verilip, bu tanimlar yardimiyla,

M = M;@&M, modilinin hangi kosullar altindB-extending modl oldugu verilmistir.

Anahtar Kelimeler: esas altmal injektif modil, CS-modil, ef-extending modl,

P-extending modl.

Vi
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CHAPTER 1

INRODUCTION AND PRELIMINARIES

1.1 Essential and Complement Submodules

Definition 1.1 Let M be a right R-module and N be a submodule of M. N is called
essential submodule of M (M. M) if N n K # 0 for any submodule K of M with
K #0.

Definition 1.2 Let M be a right R-module and,B < M. A is called complement of B
in M if A is maximal with respect to the propertyrAB = 0. If a submodule N of M is

complement submodule in M, then it is denoted by NM.

Proposition 1.3 Let M be a right R-module.
()N <¢ M if and only if Nn mR# O for every0 # me M.
(i) Let K <N <M. K <eMifand only if K< N and N< M.
(iii) Let N <¢ M and K< M. Then NN K <. K.
(iv) LetN < Kiforl<i<t. ThenNNN;N...... NNt <cKiNKon...... N K.
(v) Let K< N < M. If (N/K) <e (M/K), then N<¢ M.
(vi) If K <¢ N < M then(N/K) <e (M/K).
(vilLetN<eMandme M. (N:m) ={r e R: mre N} <¢ Rr.

(viii) Let N; <e M;(i € I) for a nonempty index set |. ThenN; < &, M;.

Lemma 1.4 Let M be a right R-module and,B < M. If An B = 0, there exists a
complement C of B such that# C and Ce B < M.

1



There are two kinds of complement definitions in literature. The first one is above. At
the same time this definition is known as complement in Faith meaning. The second
one is complement in Harada meaning : Rdie a ring and leM be anR-module. For
N < M, the submodul€ly(N) = {me M : (N : m) <. R} is called the closure dfl in
M. If Cly(N) = N, N is called the complement in Harada meaning.

Every complement submodule in Harada meaning is complement submodule in

Faith meaning, but in general, the converse of the above implication is not true.

Example 1.5 Let Z be a Z-module and E E(Zz)(where E= E(Z) is the minimal
injective Z-module contains;Zas essential). Let p be a prime integer and let=M
Ee® Z,. Clu(E) = E and C\y(Zp) = Z,. Let K< E® Z,,. For each xe K, there exists
X € Eand i € Z, such that x= (X,n'). If K < E or K < Z,, Cly(K) = E # Kor
Clu(K) =Z, # K. LetK £ Eand K£ Z,. ForO # xe K, x=(X,n") : 0 # X € E,
0#neZ, ZX <KandZn < K, also X € Eand i € Z, then ZX <. E and
Zn < Z,. For each xe E, (ZX : X) <¢ Z and for each ne Z,, (Zn" : n) <. Z.

(x,n) e E® Z, and
l=(ZX:X)N{Zn :n) < Z
since (x,n) < K, (x,n) € Cly(K). Hence Cl(K) = E® Z, # K.
Definition 1.6 Let M be a right R-module. Then the submodule of M
Z(M)={me M : rg(m) <. R}.

is called singular submodule of M. If(K1) = M, (Z(M) = 0), then M is called

singular (nonsingular) R-module.
Z;(M) ={me M : m+ Z(m) € Z(M/Z(M))}.

Z,(M) is a submodule oM and it is the largest singular submodule Mt Also
Z(M) <e Zo(M). In fact, letm € Z,(M). Thenm+ Z(m) € Z(M/Z(M)). This implies
that there exists an essential ideah R such thaml < Z(M). HenceZ(M) <. Z,(M).

2



Lemma 1.7 Let M be a nonsingular right R-module and let N be a submodule of M.
Then;

() N < M if and only if ZM/N) = M/N.

(i) Zo(M) < M.

Proposition 1.8 Let M be a nonsingular right R-module. The submodule K of M is the

complement in Harada meaning if and only if K is the complement in Faith meaning.

Definition 1.9 Let M be a right R-module and B M. K is called essential closure

of N in M such that N K <. M.

Proposition 1.10 Let M be a right R-module and M K < M. Then

() N <. M if and only if the essential closure of N in M is itself.

(i) N <c K <c Mthen N<. M and if N <. M then N<¢ K.

(iii) If L is the complement of N in M and U is the complement of L in M with
N < U, then N<. U.

(iv) L is essential closure of N in M if and only if L is the maximal submodule
with respect to the property N, L if and only if L is the minimal submodule of the

complement submodules which contain N in M.

1.2 Semi-simple Modules

Definition 1.11 Let M be a right R-module. The submodule
SodM) = N{N < M : N is essential submodule
= >{N < M : N is simple submodule
is called socle of M.

Lemma 1.12 Let M be a right R-module. S@d) is direct summand of simple sub-
modules of M. i.e. S¢M) = @iel M; where M is simple submodule of M for all

iel.



Theorem 1.13 Let M be a right R-module. The followings are equivalent.
(i) Every submodule of M is a sum of the simple submodules of M.
(i) M is a sum of simple submodules of M.
(ii)) M is a direct sum of simple submodules of M.

(iv) Every submodule of M is a direct summand of M.

Definition 1.14 Let M be a right R-module. M is called a semi-simple module if M

satisfies one of the conditions of Theorem 1.13.

Corollary 1.15 (i) Every submodule of a semi-simple module is semi-simple.
(i) Homomorphic image of every semi-simple module is semi-simple.

(iif) Every sum of semi-simple modules is semi-simple.

Lemma 1.16 Let{M; : i € I} be a family of modules. Then

D SocM)) = SocD,., Mi).

1.3 Finite Uniform Dimension Modules

Definition 1.17 Let M be a right R-module. M is called uniform module if every

submodule of M is essential in M.

Definition 1.18 Let M be a right R-module. Then we call M has a finite uniform di-
mension (finite Goldie dimension) if there exists an independent sequerdg H., H,

(n < o) of uniform submodules of M withi H, & .... & H,, <¢ M. Also it is denoted

by udM) =n < oo

Proposition 1.19 Let M be a right R-module and A M.
(i) M has a finite uniform dimension if and only if every submodule of M has a

finite uniform dimension.



(i) If A <. M has a finite uniform dimension th€M/A) has a finite uniform
dimension.

(i) If A1, A, ...., An < M and for each i, Ahas a finite uniform dimension then
ALd A D ... ® A, has a finite uniform dimension.

(iv) If A < M and A has a finite uniform dimension then M has a finite uniform

dimension.

Lemma 1.20 Let M be a right R-module.
(I) If ALA, ..., AL M then

UA(AL @ Ap & ... ® Ay) = Ud(Ar) + Ud(Ay) + ... + ud(Ay).

(i) Let A < M and A has a finite uniform dimension. ThercAM if and only if
ud(M) = ud(A).

Proposition 1.21 Let M be a right R-module and A M.

() If A <c M then udM) = ud(A) + ud(M/A).

(i) Let M has a finite uniform dimension. If (&) = ud(A) + ud(M/A) then
A<c M.

1.4 Injective Modules

Definition 1.22 Let R be a ring.Let M and A be R-modules with identity. If every
homomorphism from a submodule X of A to M extend from A to M then M is said to
be A-injective. For every R-module A if M is A-injective then M is called injective
module. If M is M-injective then M is called quasi-injective module. M and A are

called relatively injective if M is A-injective and A is M-injective.
Note : If M is Ry injective thenM is injective.

Proposition 1.23 Let{M; : i € 1} be a family of R-moduleg];., M; is injective if and

only if for each ie I, M; is injective.



Proposition 1.24 Let M be a right R-module.

(i) M is injective if and only if M is a direct summand of every R-module which
contains M.

(i) Let A be an R-module and B be a submodule of A. If M is A-injective then M

is A/B and B-injective.

Proof. It is clear thatM is B-injective. LetX < A andX/B be a submodule oA/B
andy : X/B — M be a homomorphism. Let : A — A/B be projection map and
n’ = ntlx. SinceM is A-injective, there exists a homomorphismA — M that extends
on’. Now 6(B) = (¢n')(B) = ¢(0) = 0. HenceKernr < Kerf. Hence there exists a

homomorphismy : A/B — M such thaiyr = 6. For everyx € X

Y(x+ B) = y(n(x)) = 6(X) = ¢r'(X) = (X + B).

Thusy extendsp, and therefordN is A/B-injective.o

Proposition 1.25 A module M iP._, A)-injective if and only if M is Ainjective for

i€l

every ie l.

Proof. Assume thaM is Ai-injective for alli € |. LetA = @ia A, X < Aand consider

a homomorphisnp : X - M. We may assume, by Zorn’s Lemma, tlgatannot be
extended to a homomorphiski — M for any submoduleX” of A which containsx
properly. TherX <, A. We claim thatX = A. Suppose not. Then there exi$ts | and

a € Aj such that is not an element oK. SinceM is Aj-injective, M is aR-injective.
LetK = {r e R: ar € X}. Kis an ideal ofR andaK is a submodule odR and also

aK < X. M = ¢|ak : aK — M is a homomorphism and extends to a homomorphism
B:aR— M. Lety : X+ aR — M be defined byy(x + ar) = o(x + g(ar)). ¥lx = ¢.

This is a contradiction by maximality @f. ThenX = A. O



Definition 1.26 Let M be a right R-module. The injective module which contains M

as essential is called the injective hull of M and it is denoted Y E

Proposition 1.27 Let M be a right R-module. The following are equivalent.
() The injective hull of M is EM).
(i) E(M) is the maximal module of the modules which contains M as essential.

(ii)) E (M) is the minimal module of the injective modules which contain M.

1.5 Continuous Modules

Definition 1.28 Let R be a ring and let M be a right R-module. If every complement
submodule K of M is a direct summand of M then M is called CS -modui¢ ¢(D-
dition holds). Equivalently, for every submodule K of M there exists a direct summand
N of M such that K is essential in N.

The ring R is called right CS -ring if Ris CS -module. For every ¥, Ry there
exists idempotent € R such that I= eR. For example, semi-simple modules, uniform

modules and injective modules are CS -modules.

Every complement of &S-module isCS-module. But any submodule of a
CS-module may not b€ S-module. For example, lé¥1 be not aCS-module. Since
E(M) is injective module E(M) is CS-module. M is essential irE(M) but M is not

CS module. Also the direct sum of tw@S-modules may not b€ S-module.

Example 1.29 Let Z denote the integers, let p be any prime, lgt MZ/Z, and let
M, =Z/Z5. My and M are CS -Z-modules. But M M; @ M, is not CS -module.

Definition 1.30 A right R module M is called indecomposable module if M has no
non-zero proper direct summand. Equivalently, M is indecomposable if and only if for

any K<g M, K=0o0rK =M.



Proposition 1.31 Let M be an indecomposable right R-module. If M is CS-module

then M is uniform module.

Definition 1.32 Let M be a right R-module.

(C,): Every submodule of M which isomorphic to a direct summand of M is a
direct summand of M.

(C3): If N1, N, be two direct summands of M such thatN, = 0, then N & N,

is a direct summand of M.

Lemma 1.33 Every direct summand of M satisfyiriG;)(i = 1, 2) satisfies(C)(i =
1,2).

Definition 1.34 A right R-module M is called continuous (quasi-continuous) if M is

CS-module satisfying the conditi¢@,) ((Cz)).

Lemma 1.35 Every module M satisfying the conditi¢@,) satisfies the condition

(Ca).

Proof. LetK, L be direct summands &ff with KNL = 0, M = K&K’ for a submodule
K’ of M. Letr : M — K’ be the projection mapK n L = 0 thenn(L) = L and
n(L) < K’. By the conditionC;), (L) < M and henceM = n(L)® L’ for a submodule
L’ of M. ThenK’” = n(L)®(K’'NnL’") andM = Ken(L)a(K’'NL’"). HenceKan(L) <4 M.
Ken(lL)=KeLthenKa L <4 M. O



CHAPTER 2

FINITE DIRECT SUMS OF CS-MODULES

In this chapter, all rings are associative with identity element and all modules are unital
right modules. We concern with when a direct sun€C&-modules iSCS-module. In
[45], it is proved that for any ring, the direct suniM = @iel M; is CSif and only if
there exists # j in | such that every closed submodideof M with K n M; = 0 or
K N M; = 0is direct summand. In addition,Ris any ring,M; is a uniformR-module
of finite composition length anil, is a simpleR-module, theriVl; & M, is CS if and
only if M, is M;/N-injective for every non-zero submodul of M;. In [18], it is
proved that ifM; and M, are relatively injectiveCS-modules therM = M; & M, is

CS-module.

Lemma 2.1 Let M be any module and K L submodules of M such that K is a

complementin L and L is a complement in M. Then K is a complement in M.

Proof. Let K, be a complement df in L. ThenK N K; = 0 andK @ K; is essential in

L. LetL; be a complement df in M. ThenL N L; =0 andL & L, is essential irM.

KoKy ~ess L Lel; ~essM
o CSS e and == <SS

im- K+Ki+li —ess M
Claim: === C®58 2

proof. Observe first that
K+K)N(K+L)=K+(K+Ky)nL)<CK+(LNnLy) =K.

We have

K+Ki+ly _ K+Kg o K+l —essL ® K+l _ L+bLs
K = K

K K

K K

9



So it sufices to show thatt cessM | ete : ¥ — M given bye(m+ K) = m+ L.

i Lol; —~ess M -1rlelyy _ L+bka L+l —essM ; ;
Since== c®*°T anda (=) = =2, =+ <*°°%. This proves the claim.

Now suppose thak c®N ¢ M. We must show thak = N. KN (K; +L;) =0
(in fact, if k € K N (Ky + Ly), thenk = k; + I; wherek; € Ky, I; € L;. Then
k—ki =1y € LN Ly =0). SinceK c®°N, N N (Ky + L) = 0. Hence} n =54 = 0

K

implies thaty = 0 and s\ = K. O

Lemma 2.2 Any direct summand of a CS-module is a CS-module.

Proof. Let M be aCS-module and\; be a direct summand dfl. Let K be a com-
plement submodule of;. By Lemma 2.1K is a complement irM. SinceM is
CS-module K is a direct summand d¥l. Then there exists a direct summagdof M
such thaM = K@ K;. By modularityM; = MNM; = Min(KeK;) = K& (M NKy).

HenceK is a direct summand d¥1; and soM; is aCS-module.O

Proposition 2.3 Any indecomposable module M is a CS-module if and only if M is

uniform.

Proof. Let M be an indecomposab@S-module. LetN be a submodule o1 such
that it is not essential itM. SinceM is CS-module, there exists a direct summand
K of M such thatN c®sSK c M. SinceM is indecomposableK = M. This is a
contradiction. ThusM is uniform.

Conversely, suppose thit is indecomposable uniform module. L€tbe a non-
zero complement submodule bf. Then there exists a submoduleof M such that

KNL=0andK & L c®sM. SinceM is uniform,L = 0 and alsK = M. O

Proposition 2.4 Any (quasi-)injective module M is a CS -module.

10



Proof. Let N be a submodule a¥1. ThenE(M) = E; @ E, whereE; = E(N). The
quasi-injectivity of M implies thatM = (M N E;) @ (M N Ey). SinceN C®%° Ey,

Nc®SSMNE; c? M. o
In general, it is not true that the direct sum of t®&-module isCS-module.

Lemma 2.5 Let K be a complementin M. Then K is a direct summand of M if and only
if there exists a complement L of K in M such that every homomorphiskelL — M

can be lifted to a homomorphisin M — M.

Proof. Suppose first thaK is a direct summand dfi. ThenM = K & K’ for some
moduleK’ of M. Clearly,L = K” will do.
Conversely, suppose that there exists a complemesitK in M with the stated

property. Letp : K@ L — M be the homomorphism defined by
e(X+y) =x(xe K,yelL).

By hypothesis, there exists a homomorph®mv — M such that
O(x+y) =x(xe K,yel).

Note thatk C img andL C kers.

Let 0+ v € imd. Then there exists € M such thats = 6(u). Note thatu ¢ L. Thus
KN (L+uR # 0. There existx € K,y € L andr € Rsuch that 0¢ x =y + ur. Then
X = 6(X) = 6(y + ur) = vr. It follows thatvRN K # 0O for all non-zeras € imd. ThusK

is an essential submoduleiafg. ButK is a complement itM. HenceK = imé. o

Corollary 2.6 A module satisfie&C,) if and only if for every complement K in M there

exists a complement L of K in M such that every homomorphisid & L — M can

be lifted to a homomorphist: M — M.

11



Proof. Immediate by Lemma 2.5

Let n be a positive integer. We consider the following condition for a modilde

(P,) For every submodul& of M such thatK is a direct sunK; & ... ® K, of
complements;(1 < i < n)in M, every homomorphisma : K — M can be lifted to a
homomorphisn® : M — M.
It is clear that ifM satisfies P,) thenM satisfies P,_;) for all n > 2. Modules satisfy-

ing (P1) have been considered in [44].

Example 2.7 Let Z denote the integers, let p be any prime, lgt M Z/Z, and let
M, =Z/Z5. My and M are CS -Z-modules. But M M; @ M, is not CS -module.

Theorem 2.8 Let M be any module, and lep@d) denote its second singular submod-
ule. Then M is a CS-module if and only if MZ,(M) & N, where 4(M) and N are

CS-modules and,ZM) is N-injective.

Proof. Suppose thaltl is aCS-module. Sinc&,(M) is closed inM andM is a
CS-module, we hav/ = Z,(M)@® N, whereN is non-singular. By Lemma 2.Z,(M)
andN areCS-modules.

To show thatZ,(M) is N-injective, letg : X — Z,(M) be a homomorphism from a

submoduleX of N to Z,(M). Consider
Xy ={X=¢(x) | x € X}.

SinceM is CS-module, there existX; < X* <4 M. Write M = X* @ Y whereY is
a submodule oM. Let x € X; N Z,(M). Thenx = z— ¢(2) wherez € X. It follows
thatx+ ¢(2) = ze XN Zy(M) = 0. SoX; N Z(M) = 0 and alsaX* N Z,(M) = 0.
Thus X* is non-singular and that,(M) = Z,(Y) <q Y, sayY = Y1 & Z,(M). Let
. X*® YL ® Z(M) - Z(M) be the projectiona = x |y extendsp. In fact, for any

XE€ X, X=(X—=¢(X)) + ¢(X).

n(x) = 7((X = ¢(x)) + ¢(x)) = 7(x = ¢(x)) + 7($(x)) = #(X).

12



Conversely, leM = Z,(M) @ N, whereZ,(M) andN areCS-modules and,(M) is
N-injective. LetA be a complement submodule . SinceZ,(M) is CS-module, we
haveZ,(A) Cq Z,(M), and henc&,(A) C4 A. Write A = Z,(A) @ B, whereB is a non-
singular submodule oA. SinceB N Z,(M) = 0 andZ,(M) is N-injective, there exists
a homomorphisng : N — Z,(M) such thayn; |g= 71 |g, Wherer, : M — Z,(M) and

n, M — N are projections. Consider
N* ={n+y(n) | ne N}.
Forx € B, x = my + mp, wherem, € Z,(M), m, € N.
X=mg + My = m1(X) + m2(X) = m2(X) + Y(ma(X)) € N*.

HenceB C N*. It follows thatB is closed inN*. Let x € N* N Z,(M). Then there
existsn € N such thatx = n+ y(n) andx — ¢(n) = n € NN Z,(M) = 0 and so
x = 0. This implies thaN* N Z,(M) = 0. For anym € M, m = my + m, ; where
My € Z(M), mp € N. m=my+mp = (Mg +¢(my)) + (M —¢(my)) € Z(M) +N*. Hence
M = Z,(M) & N* = Z(M) @ N, impliesN* = N. SinceN* = N, N* is aCS-module,

we haveB <4 N*. Itis clear thatM = Z,(M) & N* ; thereforeA <4 M. O

Lemma 2.9 Let a module M= M; & M5 be a direct sum of submodules MM,. Then
the following statements are equivalent.

(i) M5 is Mz-injective.

(i) For each submodule N of M with N M, = 0, there exists a submodule’ \df

M such that M= M’ @ M, and NC M’.

Proof. (i) = (ii). Fori =1,2, letr; : M — M; denote the projection mapping.
Leta = m; |y andB = mo |v. Thena is a monomorphism. By (i), there exists a
homomorphismp : M; — M, such thatpa = 8. Let

M’ = {X+ ¢(X) : X € My}.
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SinceM’'Nn M, =0andM = M’ + M,, M = M’ @ M,. Forx € N, X = my + mp, where
m € M1, mp € M.

X =My + My = m1(X) + m2(X) = m1(X) + ¢(r1(X)) € M”.

HenceN C M’.

(i) = (i). Let K be a submodule d¥1,, anda : K — M, be a homomorphism. Let

L={y-a(y):yeK}L

ThenL is a submodule oM andLNM, = 0. By (ii), M = L’® M, for some submodule
L’ such thatL < L’. Letxr : L’ ® M, — M, denote the canonical projection. Then

B =n|w,: M1 - M, and, for anyy € K,

By) = B(ly — a(y)) + a(y)) = a(y).

It follows thatg lifts @ to M;. ThusM, is M;-injective. o

Theorem 2.10 Let M be a module such that M M, @ M,, where M and M, are
CS-modules. Suppose that M nonsingular and Mis M;-injective. Then M is a

CS-module.

Proof. BecauseM, is aCS-module, then by Theorem 2.8), = Z,(M,) & M’ for
some nonsingular submodul# of M, such thatM’ andZ,(M,) areCS-modules and
Z5(My) is
M’-injective. SinceZ(M;) = 0, Z,(M) = Z,(M,) andZ,(M) is M;-injective. Thus
M = Z,(M)a(M®M’), whereZ,(M) is aCS-module Z,(M) is (M1®M’)-injective, M,
andM’ areCS-modules andV’ is M;-injective. By [7, Theorem 1]M is aCSmodule
if M;@® M’ is aCS-module. Thus we can suppose without loss of generalityNhas
nonsingular, and hendd is nonsingular.

Let K be a complement iM. BecauséVl, is aCS-module, there exist submodules

L4, L, of My such thatVl, = Ly L, andK N M, is essential i;. Let0# x e K + Lj.
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Thenx =y + zfor somey € K, z€ L;. Becaus&K N M, is essential irL;, there exists

an essential right ide& of R such thazE ¢ K. ThenM nonsingular gives
0+ XE=(y+2E c xRNK C K.

It follows thatK is essential irK + L;.

Now M = M; & M, = M; & L; & L, and, by the Modular Law,
K=KNnM=Kn(MieL;oL)=L®(Kn(M& L))
Note that
(Kn(MieL)nL,cKNnM,nL, cLinlk,=0.

By Lemma2.9M; &L, = M” @ L, for some submodul®” with KN (M; & L,) C
M”. ClearlyM” = M, so thatM” is aCS-module andK N (M; @ L,) is a complement
in M”. ThuskK N (M @ L,) is a direct summand d#1”’, andK = L; & (K N (M @ L))

is a direct summand d¥l. It follows thatM is aCS-module.oO

Theorem 2.11 A module M is a CS -module with finite Goldie dimension if and only
if
() M is a finite direct sum of uniform submodules, and

(ii) every direct summand of M of uniform dimension 2 is a CS -module.

Proof. SupposeM is aCS-module with finite non-zero Goldie dimension. Uétbe
a maximal uniform submodule dfl. ThenU is a complement irM. By hypothesis,
M = U & U’ for some submodul&’ of M. By induction on Goldie dimension and
Lemma 2.2,U’ is a finite direct sum of uniform submodules. This proves (i). Also
Lemma 2.2 proves (ii).

Conversely, suppodd satisfies (i), (ii). LetM = U .. .®U,, where nis a positive
integer andJ; is uniform submodule oM for each 1< i < n. LetV be a maximal

uniform submodule oM. SupposeV/ # M. ThenV N U; = 0 for some 1< i < n.
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Without loss of generality, + 1. LetU’ = U, & ... ® U,. There exists a complement

K in M such thaV & U, is essential irK. By the Modular Law
K=Uo((KnU)

ClearlyKNU’ is a complement i, and hence also iM by Lemma 2.1. Thu&nU’
is a complement ity’. By induction on Goldie dimensiof N U’ is a direct summand
of U’. This implies at once th& is a direct summand dfl. ClearlyK has Goldie
dimension 2, so that, by hypothesisjs aCS-module. Hencé/ is a direct summand
of K, and hence also d¥l.

Now let L be any complement iM. Let W be a maximal uniform submodule of
L. ThenW <. L and by Lemma 2. is a complement itM. By above argument/
is a direct summand dA. ThusM = W& W’ for some submodulgV” of M. Thus
L=Wa (LNnW)andL N W is a complement itM by Lemma 2.1. By induction on
the Goldie dimension of, L N W' is a direct summand df1, and hence also aV'.

ThusL is a direct summand d¥l. It follows thatM is aCS-module.o

For any set, |1| will denote its cardinality.

Theorem 2.12 Let M be a module such that M €., M; be the direct sum of R-
modules Mi € I), for some index set | with| > 2. Then the following statements are
equivalent.

() MisCS.

(ii) There exist i# jin | such that every closed submodule K of M witmK4; = O
or KN Mj = 0is a direct summand.

(iii) There exist i# jin | such that every complement of; dr of M; in M is a

CS -module and a direct summand of M.

Proof. (i) = (ii). Suppose thaM is aCS-module.Then every complement bf is

direct summand.
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(i) = (iii). Let K be a complement ofl; in M. By (ii), K is a direct summand
of M. LetL be a closed submodule &. By Lemma 2.1] is a closed submodule of
M, and clearly. n M; = 0. By (ii), L is a direct summand d¥1, and hence also .
ThusK isCS.

(iif) = (i). Let N be a closed submodule df. There exists a closed submodtie
of N such thatN n M; is essential irH. ClearlyH N M; = 0. By Zorn's Lemma there
exists a complemerR of M; in M such thatH < P. Now Lemma 2.1 givesi closed
in M and henceH is closed inP. Applying (iii) we see thaH is a direct summand of
the CS-moduleP andP is a direct summand d¥1. HenceH is a direct summand of
M.

There exists a submodul¢ of M such thatM = H @ H’. The Modular Law gives
N=Ha&(NnH’). By Lemma 2.1N n H’ is a closed submodule &fl and clearly
(NN H’)n M; = 0. By the above argument, (iii) gives thdtn H’ is a direct summand
of M, and hence also dfl’. It follows thatN is a direct summand dfi. ThusM is

CS.o

Definition 2.13 Let M be a module and K, L are direct summands of M withLKk= O.

M satisfies conditioifCs) if K @ L is a direct summand of M.

Lemma 2.14 The following statements are equivalent for a module M.
(i) M satisfies (GQ).
(i) For all direct summands P, Q of M with B Q = 0, there exists a submodule

P’ of M such that M= P& P’ and Qc P'.

Proof. (i) = (ii). Let P andQ be direct summands &fl with PN Q = 0. By (i), P& Q
is a direct summand d¥l and henceM = P& Q & Q” for some submodul®” of M.
ThusP’ = Q@ Q” has the required properties.

(i) = (i). LetK, L be direct summands d¥l such thatk N L = 0. By (ii),

M = K @ K’ for some submodul&’ of M such thal. € K’. ButM = L @ L’ for some
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submoduld.’ of M, and hence
K=KnM=Kn(LelL)=La& (K nL).

ThusM =Ko K" =KeLa(K'nL") andK & L is a direct summand d¥l. Therefore

M satisfies C3). O

Definition 2.15 A module M is called quasi-continuous if M is CS -module satisfying

(Ca).

Proposition 2.16 A CS -module M is quasi-continuous if and only if whenever

M = M; @ M5 is a direct sum of submodules;Mnd M,, then M is M;-injective.

Proof. Suppose thaM is quasi-continuous. Suppos$¢ = M; & M,. Let N be a
submodule oM with N n M, = 0. BecauseéM is aCS-module, there exists a direct
summand\’ of M such thatN is essential ifN’. ClearlyN’ n M, = 0. By Lemma
2.14,M = M’ @ M, for some submodul®’ of M such thatN’ € M’. By Lemma 2.9,
M, is Ms-injective.

Conversely, supposd, is M;-injective wheneveM = M; @ M,. By Lemma 2.9

and Lemma 2.14M satisfies C3). ThusM is quasi-continuousa
Definition 2.17 Let n be a positive integer. Modules;M,, ..., M, are called rela-
tively injective if M is Mj-injective forall1 <i # j <n.

Theorem 2.18 Let M be a CS -module such that MM, @ ... ® M, is a finite direct
sum of relatively injective modules; K1 < i < n). Then M is a CS -module if and only

if M; is a CS -module for each<i < n.

Proof. Suppose thaM = M; & ... @ M, is aCS-module. By Lemma 2.2\V; is

CS-module for each X i < n.
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Conversely suppose th#f; is aCS-module (1< i < n). We prove thatM is a
CS-module by induction om. It is clearly sificient to prove the case= 2. Suppose
M = M; @ M,. Let K be a complement iM. By Zorn’s Lemma there exists a
submoduld. of K maximal with respect to the propertyn M; = Ln (KN M) = 0.
This implies thatl. @ (K N M,) is essential irK. ClearlyL is a complement ifK, and
hence also irM. BecauseM, is M,-injective, there exists a submodW& of M such
thatM = M; & M” andL € M’. Note thatM’ = M, so that without loss of generality
M’ = M,, and hencé. € M,. Now L is a complement itM, which is aCS-module,
so thatM, = L @ L’ for some submodulk’ of M,.

Note thatM = Mo M, = My Le L’ andK = Le K’, whereK’ = KN (M & L)
is a complement iM; & L’. We now claim thaK’ n M; is essential irK’. In fact,
L& (KN M,)is essential irK. Hence [ & (K N My)] N K’ is essential irK” € K. But

clearlyK’ n M; = K n My, and hence
[Le(KNM)]NnK' =[Le(K'nM)]NK' =(LNK)® (K NnM;) =K N M.
ThusK’” N My is essential i&’. But clearly
(K'nMp)n(K'nL)c M nL" =0,
so thatKk’ n L’ = 0. By hypothesisL’ is M;-injective and hence, by Lemma 2.9,
Mie® L’ = M” @ L’ for some submodul&1” with K ¢ M”. ClearlyM” = M; and

K’ is a complement itM”. ThusK’ is a direct summand d¥l; @ L’, andK is a direct

summand oM. It follows thatM is aCS-module.o

Example 2.19 Let p be any prime integer and let R denote the local rigg lZet M
denote the Z-modul&/Zp) & Q. Then

(i) M is an R-module.

(i) K is a complement in M if and only if K is a direct summand of M or
K = R(1+ Zp, q) for some non-zero element g in Q.

(iii) M is not a CS -module.
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Proof. (i) Let My = (Z/Zp) @ 0 andM; = 0& Q, so thatM = M; @ M,. The ringRis
the subring ofQ consisting of all rational numbegt such thats,t € Z,t # 0 andt is
coprime top. Note first that for any elememtin M and anys,t € Z such thatp does
not dividet, there exists a unique element € M such thatn’ = sm and we shall
denotem’ by (s/t)m. In this wayM is anR-module.

(i) Let g € QandK = R(1+ Zp,q). We show first thaK is a complement
in the Z-module M. Note thatK is a uniform submodule oM. Suppose thaN is
a submodule oM such thatk is an essential submodule bf. Let x € N. Then
U =Zx+Z(1+Zp,q)is afinitely generated uniford-module, and hendd is cyclic.
Suppose thaty = Z(a + Zp,b), wherea € Z,b € Q. There exists1 € Z such that
(1+Zp,g) = n(a+ Zp,b). Note that 1- na € Zp and hencen is coprime top, and
(@+Zpb) e R(A+Zpg) = K. Thusx € K. It follows thatK = N. HenceK is a
complement inM.

Let L be a complement in th8-moduleM. Suppose that # 0, M. Note thatM
has uniform dimension 2 and henkés uniform [8, Lemma 1.9]. We shall show first

thatL is anR-submodule oM. Let
L’={me M :tme L for somet € Z,t coprime top}.

ThenL’ is a submodule oM, in factL’ = RL If 0 # m € L’ thentm € L for some
t € Z, coprime top, and hencem # 0. It follows thatL is an essential submodule of
L’. ThusL = L’, andL is anR-submodule oM.

Next we show that. = 0,M, My, M, or R(1 + Zp, q) for someq € Q. Suppose
thatL # O,M, M; or M,. Note thatM; and M, are both uniform, so thdt is not
contained in eitheM; or M,. Thus € + Zp,d) € L for somec € Z, coprime top and
0 # d € Q. Without loss of generality we can suppose tbat 1. Becausd is an
R-submodule oM, R(1 + Zp,d) € L. ButR(1 + Zp,d) is a complement iM, and

hencel = R(1 + Zp, d). This completes the proof of (ii).
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(i) Let N = R(1 + Zp, 1) is a complement submodule BF by (ii). SinceN is not

a direct summand dfl, M is not aCS-module.o

Lemma 2.20 Let module M= M;® M, be a direct sum of relatively injective submod-
ules M, M, such that M is quasi-continuous. Let K, L be a direct summands of M
such that KN L = 0. Suppose further that KM; = 0. Then Ks L is a direct summand
of M.

Proof. By Lemma 2.9, we can suppose without loss of generalitykhat M,. Then
M, = K & K’ for some submodul&’ of M,. Note thatK is K’-injective (Proposition
2.16). ThereforK is (M; @ K’)-injective. NowM = K& (M; @ K)andLNK =0
so that, again using Lemma 28|, = K & K” for some submodul&” with L € K”.
Now L is a direct summand d¥l, hence also oK”. ThusK @& L is a direct summand

of M. O

Theorem 2.21 Let R be a ring and M an R-module such that-=MM; @ ... ® M, is
a finite direct sum of submodules {1 < i < n). Then M is quasi-continuous if and

only if My, ... M, are relatively injective quasi-continuous modules.

Proof. Suppose thaM is quasi-continuous. By Proposition 2.16 and [2, Proposition
2.7] M; is quasi-continuous for each<li < n.

Conversely, suppose thisl; (1 < i < n) are relatively injective and quasi-continuous.
By induction onn, it is suficient to prove the case= 2. Thus supposkl = M; & M.
By Theorem 2.18M is a CS-module. LetK, L be direct summands d¥l with
KnNL = 0. ThenK is aCS-module, by Lemma 2.1, and hene= K; @ K, for
some submodulgs$;, K, with K N My essential irK;.

Note thatk,NnM; = Kon(KNM;) = 0. By Lemma 2.20K,&L is a direct summand
of M. On the other handKi N M) N (K N M;) = 0 implies thatk; N M, = 0.
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Again using Lemma 2.2 & L = K; & (K, @ L) is a direct summand dfl. It

follows thatM is quasi-continuousa

Lemma 2.22 Let M = M1® M, be a module and let K be a submodule of M. Then K is
a complement of Min M if and only if there exists a homomorphigm M; — E(M,)

such that K= {x + ¢(X) : x € ¢"1(M>)}.

Proof. Suppose thaK is a complement oM, in M. Letn : M — Mi(i = 1,2)

denote the canonical projections. Note thdk : K — M; is a monomorphism. If
€ : M, —» E(M,) is the inclusion mapping then there exists a homomorphism
M; — E(M;) such thatp(m1|x) = e(molk). For anyx € K, ¢r1(X) = m2(X) € M, so that

n(X) € ¢~ 1(M,), and
X = m1(X) + m2(X) = m1(X) + p(r1(X)).

Thusk C {y+¢(y) : y € ¢™1(M,)} = K;. ButKj is a sub module ol andK;nM; = 0,
so thatk = Ky, as required.

Conversely, suppose that M; — E(M,) is a homomorphism and = {x+ 6(X) :
X € 71(My)}. ClearlyK is a submodule oM andK N M, = 0. Suppose that is
a submodule oM such that. N M, = 0. Now suppose there existise L such that
mo(u) # Om1(u). Because Ot mp(u) — 6r1(u) € E(M,), there exists € R such that

0 # {m(u) — 61 (u)}r € M,. But, in this casegr,(u)r € M, and
{mo(U)—0m1(U)}r = mo(ur)—60m(ur) = ur—{my(ur)+0m1(ur)} € (L+K)NM;, = LNM, = 0,

a contradiction.

Letv e L. Thenéry (V) = m2(V) € My, so thatr,(v) € 6-1(M,) and
V = m1(V) + m(V) = m1(V) + 0(r1 (V) € K.

It follows thatL = K. ThusK is a complement oM, in M. O
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2.1 Arbitrary Direct Sums

Theorem 2.23 Let R be any ring and let M €., M; be the direct sum of R-modules
M;(i € 1), for some index set with| > 2. Then the following statements are equivalent:
() MisCS.

(ii) For each i € | and each homomorphisg : M_; = ... M; —» E(M)), the

j#i
submodulgx + ¢(X) : X € ¢ }(M;)} is a CS -module and a direct summand of M.

(iii) There existi# jin | such that for each ke {i, j} and each homomorphism
¢ : M_x —» E(M,), the submoduléx + ¢(X) : x € ¢"(My)} is a CS-module and a

direct summand of M.

Proof. By Theorem 2.12, and Lemma 215.

2.2 UC-modules

Definition 2.24 A module M is called a UC-module if every submodule has a unique

closure.

Semisimple modules, uniform modules and nonsingular modules are all examples

of UC-modules.

Theorem 2.25Let M be a UC-module such that M @iel M; is the direct sum of
R-modules Mi € 1), for some non-empty index set I. Then the following statements
are equivalent.

() MisCS.

(i) There exists i | such that Mis CS and every closed submodule K of M with
KN M, =0is adirect summand.

(iif) There exists ie | such that Mis CS and every complement of M M is a

CS -module and a direct summand of M.
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(iv) The module Mis CS for each i | and every closed submodule L of M with

LN M; =0(i €1) is a direct summand of M.

Proof. (i) = (ii). By Lemma 2.2.

(i) = (iii). Let L be a complement d¥i; in M. ThenL n M; = 0 and by (ii)L is a
direct summand oM. Let N be a closed submodule bf By Lemma 2.1 and (ii)N
is a direct summand d#l, and hence also df. ThusL is aCS-module.

(i) = (i). Let H be a closed submodule M. By [8, Theorem 1]H N M; is a
closed submodule d¥l; and hence, by (ii)H N M; is a direct summand d¥1. Thus
M = (Hn M;) @ H’ for some submodulel’ of M. NowH = (Hn M;)® (HnH’) and
H N H’ is a closed submodule &fl. Moreover H N H’) N M; = 0. By the proof of
Theorem 2.12 (iii}= (i), it follows thatH N H’ is a direct summand d¥1 and hence
H is a direct summand d¥l.

() = (iv). By Lemma 2.2.

(iv) = (i). Let P be a closed submodule d. For each € I, Pn M; is closed in
M; and henceV; = (P n M;) @ M/ for some submodul&/! of M. Let M’ = @M/,
P’ = @ (PN M). ThenM = P’ @ M’ andP’ < P. It follows thatP = P’ & (P n M").
By Lemma 2.1P n M’ is closed inM and PN M) N M; = 0( € 1). By (iv) PN M’
Is a direct summand d¥1. ThusP is a direct summand d¥1. We conclude thaM is

CS. o
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2.3 Modules with Semisimple Summands

Example 2.26 Let p be any prime and M the Z-module M (Z/Z,) & (Z/Zy3). Let
M = (Z/Zy)®0and My, = 0@ (Z/Z3). M and M, are CS -modules. But M is neither
CS nor UC. In fact, the submodule K (1 + Z,, p + Z;3) is a complement submodule
of M of order g. If K were a direct summand of M then M K & K’, for some
submodule Kof M, and hence Khas order g also, giving BM = 0, a contradiction.

Thus Theorem 2.25 (ivp (i) fails if M is not UC.

Theorem 2.27 Let M be a UC-module such that M €., M; is the direct sum of

iel
R-modules Mi € 1), for some non-empty index set I. Then the following statements
are equivalent.

() MisCS.

(i) There exists ie | such that Mis CS and for each homomorphigm M_; —
E(M;) the submoduléx + ¢(X) : x € ¢™1(M;)} is a CS -module and a direct summand

of M.

Proof. Follows from Lemma 2.22 and Theorem 2.25.

Proposition 2.28 Let M be a UC R-module such that MM; & M is the direct sum

of a module M and a semisimple module,MThen M is CS if and only if Mis CS.

Proof. The necessity is clear by Lemma 2.2.

Conversely, suppose thM; is CS. Let K be a complement oM, in M. Then
M; & K is essential irM and henceM, < SocM < M; & K. ThusM = M; @ K. It
follows thatK = M/M; = M, so thatk is CS. By Theorem 2.25M isCS. O

Proposition 2.29 Let M; be an R-module with zero socle and let b a semisimple
R-module. Then the module M M; & M, is CS ifand only if Mis CS and M is

Mj-injective.
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Proof. The necessity follows by Lemma 2.2 and [6, Lemma 11] Conversely, suppose
thatM; is CS andM; is M;-injective. ClearlyM; is M,-injective. By Theorem 2.21,
MisCS. o

Lemma 2.30 Let M; and M, be modules with Msemisimple. Then the module
M; & M, is CS if and only if every complement K of M M is a CS-module and a

direct summand of M.

Proof. Suppose that every complementMs in M is aCS-module and direct sum-
mand ofM. Let K be a complement iVl such thatk N M, = 0. By Zorn’s Lemma
there exists a complemehtof M, in M such thaKK < L. By assumptiorL is a
CS-module and direct summand bf. SinceK is a complement submodule inthen
K <4 L <4 M this implieskK <4 M.

Conversely, itis clean

Theorem 2.31 Let M; be a CS module and let Mbe a semisimple module such that
M, is (M1/N)-injective for every non-zero submodule N of. NThen the module

M=M & MzISCS

Proof. Let K be a complement d1, in M. There exists a homomorphism: M; —
E(M,) such thatk = {x+ ¢(X) : X € ¢ }(M,)} by lemma 2.22. LeQ = ¢}(M,) and
let P = Kerg. ThenP < Q are submodules d¥l;.
Suppose thaP = 0. ThenK N M; = 0, and hencéM; & K = M3 & ¢(Q), which is
a direct summand d¥1, because(Q) is a direct summand d¥l,. ThusK is a direct
summand oM and, becausk embeds inVI/M; = M,, K is semisimple and thuSS.
Now suppose thd® # 0. By hypothesisM is (M1/P)-injective. NowQ/P = ¢(Q),
which is a direct summand d¥l,. Thus Q/P is (M;/P)-injective. There exists a
submodulg’ of M; such thatP € Q" andM;/P = (Q/P) & (Q'/P). Define
6 : M; —» E(M,) by
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6(d+d) = Q,q € Q).

It can easily be checked thais well-defined and a homomorphism. Moreo#iey = ¢.

Let
K' = {x+6(X): x€ 7Y(My)} = {x+6(X) : xe My},

noting thatd(M;) = ¢(Q) < M,. Lemma 2.22 gives thaf’ is a complement oM in
M. ButK < K’ so thatk = K’. ClearlyM = K & M,. ThusK is aCS-module and a

direct summand oM. By Lemma 2.3(M isCS. O

Lemma 2.32 Let M; be a uniform module of finite composition length and lethd
a semisimple module such that M M; & M, is CS. Letp : M; —» E(M;) be a
homomorphism such tha{M;) £ M,. Theng=1(M,) = 0 or ¢~1(M,) is isomorphic to

a simple submodule of M

Proof. LetU = ¢ }(M,). LetK = {x+ ¢(X) : x € U}. By Lemma 2.22K is a
closed submodule and henkeis a direct summand. Note thKt= U € M;. Thus
K = 0 orK is uniform. Suppose that # 0.By the Krull-Schmidt Theorenk = M;
or K is isomorphic to a simple submodule BF,. Suppose thak = M;. Comparing
composition lengthd) = M; and hence(M;) < M,, a contradiction. Thusl = 0 or

U is isomorphic to a simple submodule lgh,. O

Theorem 2.33 Let M; be a uniform module of finite composition length and lgtidd
semisimple module. Then MM; & M, is a CS-module if and only if Ms (M;/N)-

injective for every non-zero submodule N of.M

Proof. The suficiency is proved in Theorem 2.31. Conversely, supposeMhiatCS.
Suppose thal is a non-zero submodule &4, L is is a submodule containing and

there exists a monomorphism: L/N — M,. Note thata(L/N) is a direct summand
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of M, and henceM; & a(L/N) is CS by Lemma 2.2. Thus without loss of generality,
a: L/N — My is an isomorphism.

Letn: L — L/N denote the canonical epimorphism. Ket ax : L — M,. Thend
can be lifted to a homomorphisg: M; — E(M,). LetQ = ¢ 1(M,). ClearlyL < Q.
For anyq in Q there existx € L such thaty(q) = 6(X) = ¢(x), so thatQ = L + kerep.
Moreover,L Nnkerp = L nkerd = N. ThusQ/N = (L/N) & ((kerp)/N).

But N # O implies that the composition length Qfis at least 2. By Lemma 2.32,
¢(M1) < My, i.e. Q = M;. ThusMy/N = (L/N) @ ((kerp)/N). It follows that M, is

(M1/N)-injective.o

Corollary 2.34 Let M; be a module with unique composition serieg ML > N >

0.Then M @ (L/N) isnotCS.
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CHAPTER 3

ON P-EXTENDING AND EF-EXTENDING MODULES

In this chapter, it is given some characterizations and properties of principally injective

modules.

Definition 3.1 1. A right module M over a ring R is called principally injective (P-
injective) if for every R-homomorphism for a principal right ideal of R to M can be
extended to R.

2. M is called P-extending (PC1) module if every cyclic submodule of M is essen-
tial in a direct summand of M.

3. M is called FP-extending module if every finite uniform dimension closed sub-
module which contains essentially a cyclic submodule (EC-closed) is a direct sum-
mand of M.

4. A module M satisfies the condition (PC2) if for each a M such that aRz bR
and bR<y M then aR<y M.

5. A module M satisfies the condition (PC3) if for each a M such that aR and
bR are direct summands of M and al®R = 0 then aR® bR <4 M.

Definition 3.2 1. A module M is called P-quasi-continuous module if the conditions
(PC1) and (PC3) hold.

2. A module M is called P-continuous module if the conditions (PC1) and (PC2)
hold.

Itis clear that
(C1)= (PC1), (C2)= (PC2), (C3)= (PC3).
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Hence

continuous= P-continuous and quasi-continuogs P-quasi-continuous.

Definition 3.3 Let M and N be R-modules and:fN — M be a R-homomorphism.

The set
<f>={n-f(n)|JneN}CNe M
is called graph of f.
Definition 3.4 Let M and N be R-modules. M is called N-principally-injective

(N-P-injective) if every R-homomorphism from a cyclic submodule of N to M can be

extended to N.

A module M is extendingn — extending if every closed submodul& (with U-
dim(A) < n) is a direct summand d¥1, or equivalently to the requirement that every

submoduleA (with U-dim(A) < n) is essential in a direct summand Mt

Lemma 3.5 Let M and N be R-modules. The followings are equivalent
(i) M is N-P-injective
(i) For each me M and ne N with rr(n) € rr(m) there exists fe Homk(N, M)

such that m= f(n).

Proof. (i) = (ii) Let me M andn € N with rg(n) C rg(m). nRis a cyclic submodule of
N. @ : nR— M ; a(nr) = mris a homomorphism. By (i) there exists a homomorphism

f : N - M such thatf |,r= a.
f(n) = f(nlg) = a(nlg) = mlg = m.

(i) = (i) Let X be a cyclic submodule di. Then there exista € N such that

X =nR Leta : X - M be a homomorphismx(n) € M, saya(n) = m. Letk € rg(n).
mk = a(n)k = a(nk) = @(0) = 0.

30



Hencek € rg(m) and sorg(n) C rr(m). By assumption, there exists a homomorphism

f:N—>M; f(n)=m,
f(nr) = f(N)r = mr = a(n)r = a(nr).

Hencef |,r= a@. SOM is N-P-injective.o

Proposition 3.6 Let M and N be R-modules, and-SEndM). Then the following are
equivalent :

(i) M is N P-injective ;

(if) For each me M and ne N with rr(n) € rr(m), we have S@ Homg(N, M)n ;

(i) For each me M and ne N with rg(n) € rr(m), there is a complement C of M
iNNe&Mwithn-meCandNeM=Co M;

(iv) For each ne N, Iyrg(n) = Hong(N, M)n ;

(v) For each ne N and ac R, Iy[aRN rr(n)] = Iy(a) + Homg(N, M)n.

Proof. (i) = (i) : Let me M andn € N with rg(n) C rg(m). SinceM is N-P-injective,
then there exists a homomorphidht N — M such thatm = f(n). Let¢ € S, then
#(Mm) € Homg(N, M)n. Therefore S mc Homg(N, M)n.

(i) = (iii). : Let me M andn € N with rg(n) C rgr(m), then by (ii), there exists a
homomorphismf : N — M such thaim= f(n). HenceN & M = (f) & M, where(f)
is the graph of a homomorphisin: N — M. ThereforeC = (f) is a complement of
MinNeMwithNeM =Ce M andn-meC.

(i) = (iv) : Let n € N andx € Iyrg(n), thenrr(n) € rr(x). By (iii), there is a
complementC of Min N& M withn—- xe CandN& M = C& M. So, there exists a
homomorphisnt : N — M such thaC = (f). Sincen-x € C, thenn—x = n"— f(n'),
for somen’ € N. So,n = n" andx = f(n") = f(n). Hencex € Homg(N, M)n, and
Imrr(n) € Homg(N, M)n. The other conclusion is obvious.

(iv) = (v) : Letne N, ae R, andx € Iy[aRN rr(n)], thenx(aRnN rg(n)) = 0 and

sorg(na) C rr(xa). Hencelyrr(xa) C Iyrr(na) = Honmg(N, M)na, by (iv). Therefore,
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xa = f(na) = f(n)a, for somef € Homgr(N, M). So x — f(n))a = 0 andx — f(n) €
Im(@). Thusx € Iy(a) + Homg(N, M)n, and sdy[aRNrg(n)] € Iu(a) + Homg(N, M)n.
On the other hand, lete Iy (a) + Homg(N, M)n, thenx = m+ f(n) for somem € |y (a)
and f € Homg(N, M). Soxa = ma+ f(n)a = f(na). Letar € aRn rr(n), then
x(ar) = f(na)r = f(nar) = 0, and sax € Iy[aRN rg(N)]. Thusly(a) + Hong(N, M)n C
Im[aRN rr(N)].

(v) = (i) : Let me M andn € N with rg(n) C rg(m), thenlyrg(m) C Iyrg(n). By
(v), we getlyrr(n) = Honmg(N, M)n, and so there is a homomorphisin:. N - M

such thatf (n) = m. ThusM is N-P-injective.o

Proposition 3.7 Let M be N-P-injective, then M is X-P-injective, for every submodule
X of N. If, in addition, X is a direct summand of N, then M i&WNP-injective.

Proof. Let N = X @ Y for some submodul¥ of N. Then§ =~ Y andM is N/X-P-
injective.o

Lemma 3.8 Let M be N-P-injective and K® M, then K is N-P-injective.

Proof. Let X = nRbe a cyclic submodule dff anda : nNR— K be a homomorphism.
SinceK <® M, there exists a direct summanhdof M such thatM = K& L. Let
n . M — K be projection map and: K — M be inclusion map. Sinc# is N-P-
injective there existg : N — M a homomorphism such thatz= ie. Letg : N — K;

B = nBis a homomorphism angl|,r= @. HenceK is N-P-injective. o

Lemma 3.9 Let {M;}i; be a family of modules. Then the direct prodli§t, M; is

N-P-injective if and only if Mis N-P-injective, for every € I.

Proof. It is obvious.O
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Proposition 3.10 If M is a quasi-principally injective module, andSEndM), then

S H= SK, for any isomorphic R-submodules H, K of M.

Proof. SinceH = K, then there is a righfR-isomorphisnu- : H — K. For eaclk € K,
k = o(h) for someh € H andrg(h) = rr(k). SinceM is quasi-principally injective,
thenSh= Skby Proposition 3.6, and s8kc S H, for eachk € K. ThenSKc SH.

Similarly, we getSH C SK, and so the resultz

Lemma 3.11 The following conditions are equivalent for a ring R.
() R is right P-injective.
(i) Ir (8) = Rafor all ae R.
(iii) r (@) c r(b), where ab € R, implies that Riz Ra.
(iv) I[bRNr(@)] = I(b) + R(a) for all a,b € R.

(v) If y:aR— R, ae R, is R-linear, then(a) € Ra.

Proof. (i) = (ii) : Always Rac Ir(a). If b € Ir(a) thenr(a) C r(b), soy : aR— Ris
well defined byy(ar) = br. Thusy = c. for somec € Rby (i), whenceb = y(a) = cae
Ra This implieslr(a) = Ra

(i) = (iii) : If r(a) < r(b) thenb € Ir(a) = Raandb = ra for somer € R. Then
Rbc Ra

(i) = (iv) : Let x e [[bRN r(a)]. Thenr(ab) C r(xb), soxb = rab for somer € R.
Hencex—-ra € I(b), proving that[bRNr(a)] < I(b) + R(a). The other inclusion always
holds.

(iv) = (v) : Lety : aR— R, beR-linear, and writey(a) = d. Thenr(a) C r(d), so
d elIr(a). Butlr(a) = Ra Thend = y(a) € Ra

(V) = (i) : Lety : aR— Rg. By (v) writey(a) = ca, c € R Theny = c.. HenceR

is right P-injective.o
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Corollary 3.12 Let R be a P-injective ring and H, K be two-sided ideals of R. If
H = K, as right ideals of R, then & K.

Proof. By Lemma 3.110

Theorem 3.13 Let M be a quasi-principally injective module, then M H&E,).

Proof. Leta, b € M with aR= bRandbR <® M. ThenbR = eM for some idempotent
e € End(M). SinceaR = bR then there is an isomorphistn: bR — aR Letoe = h,
thenaR = hM ando—th = e. SincebR <® M, then by Lemma 3.&Ris M-P-injective,
and so there exists a homomorphigm M — bRsuch thatp(a) = o~1(a). Theng is
an epimorphismgh = e, and sof = h¢ is an idempotent endomorphism lgf. Hence

fM = hgM = h(bR) = heM = hM, and s@R<® M. O

Corollary 3.14 If R is a P-injective ring, then R has {
Lemma 3.15 Let M be an R-module. If M hg®C,), then M haqPC;).

Proof. LetaR<® M andbR <® M with aRn bR = 0, thenaR = eM = Im g, for some
e = e € EndM), and soaR® bR = eM @ (1 - €)bR Since (1- bR = bR <® M
andM has PC,), then (1- e)bR = fM for somef? = f € EndM). Thenef = 0,
andh = e+ f — feis an idempotent iEndM). ThereforeaR® bR=eMa& fM =
(e+f-feQM =hM <® M. O

Corollary 3.16 If M is a quasi-principally injective module, then M h@2C;).

Definition 3.17 By an EC{closed submodule C of a module M, we mean a (closed)
submodule C which contains essentially a cyclic submodule; i.e. there extst ¢
such that cR. C.

Lemma 3.18 Every summand of an EC-submodule of M is EC-submodule.
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Proof. Let cR <. C be anEC-submodule oM, andC; <® C, thenC = C; & C,, for
some submodul€, in C. Letc = ¢; + ¢, wherec; € C; andc; € C,. Itis easy to see

thatciR <. C;. ThereforeC; is anEC-submodule oM. O

Corollary 3.19 Every summand of an EC-closed submodule of M is EC-closed.
Lemma 3.20 Every summand of a P-(quasi-)continuous module is P-(quasi-)continuous.

Proof. It is obvious by Corollary 3.19a

Lemma 3.21 For an indecomposable module M, the following are equivalent:
() M is extending;
(i) M is P-extending;

(iif) M is uniform.

Proof. (i) = (ii) It is obvious.

(i) = (iii) Suppose thatM is not uniform. Then there exista € M such thamR
is not essential itM and also there exists a complement submod#uie M such that
mRis essential submodule #f. SinceM is P-extending K is direct summand oM
andK # M. This contradicts with the indecomposability Ndf.

(iii) = (ii) It is obvious. O

Lemma 3.22 Let M be a 1-extending-module. Then every closed submodule of M of

the form@i”:lAi with all A, uniform, is a direct summand.

Proof. By induction. Assume that the claim is true fojand letA = @7 A be
closed submodule d¥l. By assumptionA* = EBi”:l A is direct summand dfl. Write
M = A* & M* for M* <® M. It follows thatA = A* ® (AN M*). Itis clear thatA N M*
is closed uniform submodule &. Since direct summand of 1-extending modules are

1-extending, we havA N M* <® M. HenceA <® M. O

35



Lemma 3.23 Let M be a 1-extending module. Then every non-zero closed submodule

of M, of finite uniform dimension contains a uniform summand.

Proof. Let A # 0 be a closed submodule bf, with U-dimension(Ax co. Let A; be a
uniform submodule i, and letU be a maximal essential extension&fin A. Since
U is complement irA andA is complement irM, U is complement irM. SinceM is

1l-extendingl is a direct summand iM and therefordJ is a direct summand iA. O

Lemma 3.24 A module M over a noetherian ring R, is 1-extending if and only if it is

P-extending.

Proof. Let M be a 1-extending module, aiR <¢ C be anEC-closed submodule of
M. SinceR is a noetherian ring, the@ has a finite uniform dimension. Sindé is
1-extending, then by Lemma 3.22 and Lemma 33s n-extending. Henc€ is a

summand, and sM is P-extending. For the converse, it is obvious.

Corollary 3.25 Let M be a module with finite uniform dimension, then the following
are equivalent:

(i) M is extending;

(i) M is 1-extending;

(i) M is P-extending.

Proposition 3.26 Let M = M; & M,, and let Cn M; be an EC-submodule of M,
for every EC-closed submodule C of M. Then M is P-extending if and only if every

EC-closed submodule C, with@©M; = 0, or Cn M, = 0, is a summand.

Proof. The necessary condition is obvious. For théfisient condition, letR <¢ C be
an EC-closed submodule df1. If Cn M; = 0, then we are done. OtherwisenN My

is an EC-submodule oM, by assumption. Le€; be a maximal essential extension
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of Cn My in C, thenC; is anEC-closed submodule d¥1, with C n M, = 0. Hence
by the assumptiorC; is a summand oM. Write M = C; & C,, by the modular law,
C=C;®(CnNCy) by Corollary 3.19C n C, is anEC-closed submodule d1 with

(CNnCy)Nn M, =0, and therefore N C, is an summand di. ThusC is a summand

of M, and thereforelM is P-extending.co

Proposition 3.27 Let M = M; @ M,, where M is of finite uniform dimension. Then
M is P-extending if and only if every EC-closed submodule C of M withNT; = O,

or C is of finite uniform dimension, is a summand.

Proof. The necessary condition is obvious. For théisient condition, lemR<® C
be anEC-closed submodule dfl. If C n M; = 0, then we are done. Now let#

c € Cn My, andC; be a maximal essential extensiona®® in C. SinceM; is of
finite uniform dimension, so i€;. By the given assumptiol&; is a summand oM.
Write M = C; @ K. HenceC = C; @ C*, whereC* = KN C is closed inM. Let
m = ¢; + ¢, wherec; € C; andc* € C*. SinceC* is a summand of aikC-closed
submoduleC, then by Corollary 3.19C* is EC-closed. IfC* n M; = 0, then by
assumptiorC* is a summand, and hen€eis a summand oM. On the other hand, if
C* n My # 0, then by repeating the previous steps, we @ave: C, @ Cz, whereC,
is a summand and has a non-zero intersection MithContinuing in this manner, we
should stop after a finite steps (dueNfy a finite uniform dimensional module) and
endwithC =C; ¢ Cy@...0C,, whereCjisasummandoM (i=1,2,...,n-1), and
C, contains an essential cyclic submodule withn M; = 0. HenceC, is a summand

of M, by assumption, and therefoeis a summand oM. O

Corollary 3.28 Let M = M; @ M,, where M is of finite uniform dimension. Then M
is P-extending if and only if every EC-closed submodule of M, with@; = O, or

CnNnM,=0,isasummand.
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Proposition 3.29 Let M = M; @ M,. Then M is FP-extending if and only if every
EC-closed submodule C of M with finite uniform dimensional such that\Gg = O,

orCn M, =0, isasummand.

Proof. It is similar to the proof of Proposition 3.2%&

Proposition 3.30 Let M = M; @ M,, where M is a semisimple module. Then M is
P-extending if and only if every EC-closed submodule C of M with!@; = 0, is a

summand.

Proof. The necessary condition is obvious. For théfisient condition, letC be an
EC-closed submodule dfl. If CnM; = 0, then we are done. On the other hand, since
M; is a semisimple, we g&& N M; <® M; and soC = Cn M; @ C*. SinceC* is an
EC-closed submodule d#t andC* n M1 = 0, thenC* is a summand oM. Therefore

Cis asummand oM. o

Proposition 3.31 Let M = M; & M,, where M is P-extending and Mis M;-P-
injective. If My is nonsingular, then every EC-closed submodule C of M, witiiz =

0, is a summand of M.

Proof. Let cR <. C be anEC-closed submodule df1 with C n M, = 0, and write
C = C; + C;, Wherec; € M; andc, € M,. SinceM; is M;-P-injective, then the
homomorphismr : ¢c;R — My; a(c,) = ¢y, there exists a homomorphispn: M; —

M, such thaw |,,r= . Let
(iR = {cr + p(cy)r |1 e R
(c,R)* is a submodule of

M3 = {my + ¢(my) | My € My}
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Letcr € cR cr = ¢ir + Cor = &yf + ¢p(C1)r. ThencR = (¢;R)". Lety € Mj N M, = 0.
Letme M. m= (my + ¢(my)) + (M — ¢(my)) € M + M, wheremy, € My andm,, € M.
ThenM = M; @ M,. ThereforeM] = M;. Letx € C and writex = y + mp, where
y € (M1)" andm, € M,. SincecR <, C, then there exists an essential right ideal
of R such thatm,l = 0. SinceM,; is nonsingular, them, = 0. Letc € C. Then
c = mg + ¢(my) + mp wherem, € M; andm, € M,. SincecR <. C, there exists
0 # r € Rsuch thatr = (my + ¢(my) + Mp)r € CR< Mi. mur + ¢(my)r + mpr € M.
Then there existg € M} such thatmyr + ¢(my)r —z = —mpr € M; N M, = 0. It follows
thatm, = 0 and alsa = my + ¢(my) € M]. It follows thatC c (Mj)*. Since M1)* is

P-extending, we hav€ <® (M;)* <® M. O

Definition 3.32 Let M = M; @ M, be a module. The module,;Nk called M-EC-
in jective, if for every EC-(closed) submodule N of, lihd every homomorphism from
N to M, can be extended to M

This is equivalent to for every EC-(closed) submodule N of M such thd\= 0,

there exists N< M such that N< N, and M= N’ & M.

Observe that every module over a regular itig R-EC-injective.

Lemma 3.33 Let M = M; & M, and M, be My-EC-injective. Then:
(i) M5 is K-EC-injective, for all K< M;.
(i) H is M;-EC-injective, for all H<® M,.
(iii) H is K-EC-injective, for all K<® M, and H<® M,.

Proof. (i) Let K be a submodule oM;, andN be anEC-submoduleK & M, with
N N M, = 0. ThenN is anEC-submodule oM. SinceM,; is M;-EC-injective, then
there isN’ < M such thalN < N’, andM = N’& M,. ThenKe M, = (KeM,)N (N’ &
M2) = (NN (K& Myp)) @ M, andN < N’ @ (K @ My). HenceM; is K-EC-injective.
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(i) Let H be a summand oM, andN be anEC-submodule ofM; & H with
NN H = 0. ThenN is anEC-submodule oM andN N M, = 0 sinceM, is M;-EC-
injective, then there idl’ < M such thatN < N’, andM = N’ @ M,. SinceH <® M,
thenM, = HeH’, and soM;&H = (M;@H)N(N'eHeH’) = He(MiaH)N (N’ & H).
SinceN < N’, thenN < (M; @ H) n (N’ & H). ThereforeH is M;-EC-injective.

(iii) Follows from (i) and (ii). o

Proposition 3.34 Let M = M; & M, where M is P-extending and Mis M;-EC-
injective. Then M= C® M] ® M,; where M < My, for every EC-closed submodule C

of M, with Cn M, = 0.

Proof. Let cR <® C be anEC-closed submodule o1 with C n M, = 0. Define
X =M;Nn(CadM,). Thenc,R <¢ X, wherec = ¢; +C,, wherec; € M; andc, € M,. Let
N; be a maximal essential extensiom6fn M. ThenN; is anEC-closed submodule
of M;. SinceM; is P-extending, we hav®\; <® M;. Write M; = N; & M/, where
M; < M. NowC @ My = X& My < N1 @ My; i.e. C < Ny @ My, andC <; N; & M,.
ThenC is complement oM, in N; & M,. SinceM, is M;-EC-injective, andN; is a
summand ofM;, then by Lemma 3.33 ()M, is N;-EC-injective, and so there exists
N’ < N; @ M, such thaC < N’, andN; @ M, = N’ @ M,. HenceN’ is a complement
of M, in N; @ M, butC is a complement oM, in N; & M,. Therefore N’ = C and

M = M]_EB M2: N]_GB MS_EBMZZC@M?L@ Mz. O

Corollary 3.35 Let M = M; @ M, where M is P-extending and is MEC-injective
(i#]j=2L12ifandonlyif M= Ce M’ ® M;; where M < M;, for every EC-closed
submodule C of M, with@ M; =0 (i # j = 1,2).

Proposition 3.36 Let M = M; & M,, where M and M, are relatively EC-injective,
and either M or M, is of finite uniform dimension. Then M is P-extending if and only

if M; and M, are P-extending.
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Proof. It is follows by Corollaries 3.35, and 3.28.

Proposition 3.37 Let M = €p._, M; be an R-module, where (#) is P-extending and

i€l

M(I'\F) is M(F)-EC-injective, for all finite subset F of I. Then M is P-extending.

Proof. Letc € M andC be a maximal essential extensiorcéfin M. ThencR < M(F)
andcRN M(I\F) = 0, for a finite subsef of I. SincecR <. C, thenC n M(I\F) = 0.
Since M(1\F) is M(F)-EC-injective andC is EC-closed submodule d#, then by

Proposition 3.34C is a summand oM. HenceM is P-extending.c

Definition 3.38 A module M is called ef-extending if every closed submodule which
contains essentially a finitely generated submodule is a direct summand.(Equivalently,
A module M is called ef-extending if every submodule N of M such that N is finitely

generated there exists a direct summand L of M such that N is essential in L.

Definition 3.39 A module M is called uniformextending (u-extending) if every uni-

form submodule is essential in a direct summand of M.

The following implications are obvious
extending= ef-extending= p-extending> uniform-extending

The following example shows that the implication ef-extendiagextending is not

true.
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Example 3.40 The Z-module M= [];2; Z; is ef-extending but it is not extending.

Proof. It is easy to see thatl = @lez is local direct summand df1. SinceZ
is a Noetherian ringN is closed submodule dfl [10, 8.1]. ButN is not a direct
summand oM. In fact, suppose thafl = Ne K. Setx=(0,1,1,...,1,...) e K, X =
(0,0,0,1,...,1,...) e K. Thenx—x =(0,1,1,0,...,0,...) € KN N, a contradiction.
ThusM is not extending. We now show thit is ef-extendingZ/2Z = {0, 1}, M has
some of the following properties:

() Sincex = () € M, x; = 0 orx; = 1. This implies thak = O if k is even and
xk = xif kis odd. HenceZ = {0, x}. This means thatZ is a simple submodule d¥l.

(xx) For everyx € M, xZ is a direct summand dfl. In fact, we can suppose
thatx # 0, x = x. Then there exists an integesuch that;, = 1, x; = 1 says, i.e.,
X =(1,X%,X3,...). TakeN” = {(0,¥,,¥3,...) | Vi € Zo,i > 1} < M. We can easily see
thatN” N xZ=0andM = xZ& N".

Thus, every cyclic submodule ®&fl is a simple submodule and a direct summand
of M. So if K is an essentially finitely generated submodule, then we can easily see

thatK is direct summand d¥. HenceM is ef-extendingo

Proposition 3.41 Let M be an ef-extending module such that every local direct sum-

mand is a direct summand of M. Then M is an extending module.

Proof. Let K be a non-zero closed submoduleMf For any 0# x € K, xRis essential
in a submodule of K which is closed irK. SinceK is closed inM, Ais closed inM
and thereforeA is a direct summand d¥l. By Zorn’s lemma, there exists a maximal
local direct summandN = @l A where eachA; ¢ K. By hypothesisN is a direct
summand oM, i.e.,M = N & N’ for some submoduldl’ of M, soK = N& (K n N’).
Assume thak N N’ # 0. Then there exist8 # 0 Ais a direct summand d¥1. This

implies thatA is also a direct summand &N N’. SoN & Ais a local direct summand
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of M, contradicting the choice dfl. ThusKk N N’ = 0. This means thaf = N. This
shows thaM is an extending module.

By the example above, we see that FxenoduleM = [];2, Z; is ef-extending but
not extending. Note thatl = @Zl Z, is local direct summand dfl but it is not a

direct summand of1. O

Lemma 3.42 A module M is uniform-extending if and only if every closed submodule

K of M that has finite uniform dimension is a direct summand of M.

Proof. SupposeM is u-extending. LeK be a closed submodule & that has finite
uniform dimension. Without loss of generality, we can assume uniform dimension
of K is 2. Then we have a uniform closed submodkileof K. SinceK is closed
submodule oM, K, is closed inM andM is u-extendingK; is direct summand df.

M = K; & L for some direct summaridof M. By modularityK = K; & (KNL). Since
ud(K) = 2, K n L is a uniform closed submodule and so it is a direct summarid of

and also ol. HenceK is a direct summand d¥l. Conversely, it is obviousa

Proposition 3.43 For a module M over a noetherian ring, the following conditions
are equivalent:
(i) M is ef-extending.

(i) M is uniform-extending.

Proof. Since a finitely generated module over a noetherian ring is noetherian, every
finitely generated module has finite uniform dimension. By Lemma 3.42, the proposi-

tion follows. O

Definition 3.44 A module M is said to satisf({,,) if and only if for every submodule

A of M, there exists a direct summand K of M such thatlid = 0and Ae K < M
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Lemma 3.45 Any direct sum of modules (¢ satisfies (G1).

Proof. Let M,(1 € A) be a non-empty collections of modules, each satisfy@g)(
Let M = @,coM,. Let N be any submodule dfl. Let 1 € A. Note thatN n M,

is a submodule oM, and M, satisfies C;1). By [13 Proposition 2.3], there exists a
direct summand, of M, such thatNNn M) N K, = 0 and N n M) & K, is an
essential submodule &fl,. Note thatN N K, =0, N® K,)n M, = (NN M;) N K,
and N @ K,;) N M, is an essential submodule bf,. Let A’ be a non-empty subset
of A containinga such that there exists a direct summagicof M’ = &,.4- M., with

N N K’ = 0 and with N @ K’) n M” an essential submodule bf’. Suppose\” # A.
Letu € A,uisnotinA’. NowL = (NeK’)nM, is a submodule oM, so there exists
a direct summané, of M, such that. N K, = 0 andL @ K is an essential submodule
of M. LetA” = A’ U {u} andM” = @,4»M, = M’ ® M,. Note thatk’ n K, = 0. Let
K” = K’ ® K,. Note thatK” is a direct summand d¥1” and moreoveN N K” = 0.
Consider the submodule & K”. Note that N & K”) n M’ contains N & K’) n M’, so

that N & K”) n M’ is an essential submodule BF. Moreover
(NeK)NM,=(NeK' @eK)NM,=[(NeK)NM,]eK, =LK,

which is an essential submodule df,. It follows that N & K””) n M” is an essential
submodule ofM”. Repeating this argument, there exists a direct sumnkaonél M
such thatN N K = 0 andN & K is an essential submodule bf. By [13 Proposition

2.3] M satisfiesC11). O

Lemma 3.46 Let M = @I M; be a decomposition with all Muniform and End¢iV;)
local. If the family{M; | i € |} is relatively injective, then there does not exist an
infinite sequence of non-isomorphic monomorphigm M;, — M, ,}n with all iy € |

distinct.
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Proof. Suppose that there exists an infinite sequence of non-isomorphic monomor-
phisms §) wheref; : M; - Mi,q,1 > 1.

LetN; = {x- fi(X) | x € M;}. Then we can easily see that the family
{Ni |i=1,2,...}independent, so the sul{>, N; is direct. Since eacl; is a uniform
module, it satisfies;,), so thuséBZ1 M;. Therefore, there exists a direct summand
K of @, Mi suchthat@;", N)n K = 0and B,_, Ni) @ K is essential ifD,_, M;.
Assume thaK # 0. Then by [1, 12.6] there existskae N such thatMy is direct
summand oK. The relative injectivity of the familf{M; | i = 1,2,...} implies that
My is B, Mi-injective [2, 1.5]. Hence, there exisk4’ such thatp”, N < M" and
P2, Mi = M’ ® My. This implies thaf\y is a direct summand dl” so thatMy & Ny is
a direct summand d¥1 or M, @ N is a closed submodule &f. Moreover,My & Ny is
essential iMMy® My, 1. HenceM @ Ny = M@ My, 1. This implies thatf, is epimorphic,
a contradiction. Therefor& = 0 and henc@i1 N; is essential ir@il M;. Thus
M;N (@f:l Ni) # 0, so there existg; # 0,x; = y1 — fi(y1) + ... + Yo — fn(Yn), where
yi € M (i =1,...,n). This would imply thatf,f,_; ... ff1(X) = O, which contradicts

to the fact that allfi are monomorphic, proving our lemma.

Theorem 3.47 Let M = &, M; be a decomposition with Miniform and End(M) lo-
cal. Assume the family; | i € 1} is relatively injective. Then the following conditions
are equivalent:

(i) M is extending.

(if) M is ef-extending.

(ii)) M is uniform-extending.

Proof. The proof follows by Lemma 3.46. and [14 Theorem 314]
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Lemma 3.48 Let M = M; & M; having the following property: either every closed
submodule K in M with Kn M; = 0 is a direct summand of M, or every closed
submodule K in M which is essentially finitely generated such thatM, = O is a

direct summand of M. Then M is an ef-extending module.

Proof. LetK be a closed submodule df that contains essentially a finitely generated
submoduleN = x;R+. ..+ X,R. Then there exists a closed submoddla K such that
KNM, is essential ilH. From this,H is a closed submodule &, HNM; = 0 and then

H is a direct summand d¥l, M = H @ H’ says. This implies thak = H @ (K n H’).
SoK N H’ is closed submodule iM and K N H’) n M, = 0. We now prove that
K N H’ is essentially finitely generated. In fact, sifde= x;R+ ... + X,Ris essential
inK =Ha& (H NnK), we havex; = hy + ki, ..., X, = hy+k,, whereh; € H, ki € H' nK
(i=1,...,n). LetB = kkR+ ...+ K,R SinceN is essential irK, B is essential in

K n H’. By hypothesis, we have’ N K is a direct summand d¥l and hence oH’,
i.e.,H = (H" n K) @ P for someP. It follows thatM = He (H NnK)®e P =K &P,

proving our lemman

Proposition 3.49 A direct sum of an extending module and an ef-extending module

which are relatively injective is also an ef-extending module.

Proof. By Lemma 3.48 and [10 Theorem 7.5].

Lemma 3.50 Let M = M; & M, with each M uniform and EndlV};) local (i = 1, 2).
Assume M is uniform-extending. Then for ang M; every homomorphism fA —
M; can be extended to a homomorphism

f”: B — Mj, where B is a submodule ofjMduch that either B= M; or B # M; and f

is an isomorphism.
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Proof. Assume thafA < M; andf : A — M, is a homomorphism. Let
A’ ={a-f(a)|ac A}

ThenA” ~ A'is a uniform submodule oM. SinceM is uniform extendingA” is
essential in a direct summaidof M. By [1, 12.7], eitheM = M;&D or M = D& M,.
Assume first thaM = D& M,. Letp : D@ M, — M, be the projection. Then it is
easy to check the restriction @f on M; is an extension off. So p is the desired
homomorphism. Now assume thst = M; @ D. ThenD n M; = 0 and clearly
kerf = 0, therefore there exists? : f(A) — A. We can easily see that the projection
q: My @ D — M; which restricts onM, is an extension off ! and we call this
extensionj. Sincef!is a monomorphism ant¥l, is a uniform modulej is also a
monomorphism. We can easily see that j(M,). SetB = j(M,). Then we see that

j”t: B— M, is an extension of. Soj!is the desired isomorphismu

Definition 3.51 A module A is called nearly B-injective if for each € B and for
each homomorphism f C — A with kerf < 0, then there exists a homomorphism

f’ : B — A such that it is extension of f.

The family {M; | i € I} of right R-modules is said to satisff,) if for any choice of
Xn, Xn € M, with distincti, € | such thatrg(y) € N2 rr(X,) for somey € M;, the

ascending sequence :
Mhea TR S Nizz F'RGGN) - - -
becomes stationary.

Lemma 3.52 A module A is nearly B-injective if and only if A is nearly xR-injective

for each xe B.

Proof. We use the same argument as that given in [2, Th4].
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Lemma 3.53 Let M = EBI M; be a decomposition with all Muniform and En@M;)
local. Assume Ms M; is uniform-extending for each pair# jin | and the family

{M; | i € 1} satisfiegA;). Then for each ke I, €., M; is nearly M-injective.

ik

Proof. By Lemma 3.52, it sfiices to prove tha@#k M; is nearly xR-injective for
eachx € M. Assume thaA < xRandf : A — @iik M; is @ homomorphism such
that kerf # 0. DefineS = {r € R| xr € A}. Then it is easy to check th&is an
ideal of RandA = xS. For each € | \ {k}, putfi = pif : XS — M;, where each
pi: EB#k M; — M,; is the projection. Sincé, & M; is uniform-extending, ker # 0
and by Lemma 3.50f; can be extended to a homomorphiem xR — M;. So we can

easily see that : xR — [T M;
Xr = (hi(Xn)inw
is an extension of onA. Puta = (&), = h(X) € [1i.x Mi. Clearly
rr(X) € rr(@) = MNizk rr(@)-

For each elemerge S, letls = {i € | \ {k} such thaty;s # 0}. Thenlis a finite subset
of I'\ {k}. If Uss Is such that J;_; I, is countable. Sinck; is finite for eachs € S, we

can choose a sequencg)f, satisfying

Iy, Slg, S ...

andiy € Ig, iz € 15, \ Is, ..., in € 1 \ (U]Z1 Is). Sinceiy € I, it follows thata;, s # 0,

a;s, = 0 for eachj € | \ Is,. Similarly, fori, € I, \ I, we have
8,9 =0,8,%#0,...

and finally,i, € 1 \ (U?j ls;), we havea;,s; = ... = &,$1=0,8,% # 0.
Thus the sequencé ), rr(ai))nen IS strictly increasing, contradicting to the as-
sumption thaf{M;}ic, satisfies ;). We now assume that)o.s ls = {i1,...,in}. For

eacht € I \ {is,...,in}, &s = 0. This would implyf(x9) = (aS)ic\) € @?:1 M, for
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eachs € S. Hencef(A) ¢ @, , M;.. Since eactM; is nearlyMy-injective, P, M;,
is nearlyM-injective. So there exists a homomorphiem My — @t”:l M;, such that

h" is an extension of . The proof of our lemma is completed.

Theorem 3.54 Let M = @I M; be a decomposition with all Muniform and En@M;)
local. Then the following conditions are equivalent:

() M; is uniform-extending.

(i) M; & My is extending for each pair & i in | and the family{M; | i € |} satisfies
(A2).

(i) M; & My is ef-extending for each pair & iin | and the family{M; | i € I}
satisfieqA,).

(iv) M; @ My is uniform-extending for each pairkiin | and the family{M; | i € I}

satisfieqA,).

Proof. (i) = (ii). By [14,Lemma 2.3]

(i) = (iii) and (iii) = (iv) are obvious.

(iv) = (i). Suppose thatM; | i € |} satisfies A;) andU is a uniform submodule
of M. By Zorn’s lemma, there exists € | such thatu n @iik M; = 0. Thus, the
projectionpy : M = (@i.kM;) ® My — M restricts orJ is a monomorphism. Let
A = p(U) andp : (@M & My — &i.«M; be the projection. Consider the homo-
morphismh : A — &;.«M;, defined byh(pk(u)) = p(u) for eachu € U. If h = 0 then
U < M and sincéA is closed inMy, it follows thatU = M. SoU is a direct sum-
mand ofM. Now assume thdt # 0. Then there exists € U such thah(p(u)) # O.
Thus, we can choosg, i,,...i, in | \ {k} such thath(p«(u)) € M, ® ... ® M; . Put
Ny = M, ®...oM;, andN, = @#k M;\ N;. By Lemma 3.52N, is nearlyM-injective

and p;h is not a monomorphism (wheg : €p.., Mi = Ny @ N, — N, is the projec-

ik
tion), it would implies thatp,h can be extended to a homomorphiggn: My — No.

If for eacht = 1,2,...,n, ph : A - M, is not a monomorphism, theph can be
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extended to a homomorphism : My — M;,. Thereforeh can be extended to a ho-
momorphismh’ : My — @i.«M;. SetM; = {x-N'(X) | Xx € My}. Itis easy to see
thatM = M; @ (@i.«M;) andU < M;. HenceU = Mg, i.e.,U is a direct summand of
M. If there exists somesuch thatp:h is isomorphic then, without loss of generality,
we suppose thap:h,..., pyh are monomorphic for some < n. By Lemma 3.50,
p:h can be extended to a homomorphism B, — M;, and f; is isomorphic for each
t=12,...,m We can easily see that :

() A= NL1 B

(x+) The family{B; | t = 1,..., m} is total ordered.

Thus there exist$ € {1,...,m} such thatA = B, i.e., fi = p, : A - M, is
isomorphic. It follows thap; : U — M;, is isomorphic. Henc#l is a direct summand

of M and henceM is uniform-extendingo
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