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ABSTRACT

ON MEYER-KÖNIG AND ZELLER OPERATORS

Doğru Akgöl, Sibel

Master, Department of Mathematics

Supervisor: Assoc. Prof. Dr. Ayşegül Erençin

January 2010, 69 pages

This thesis is a survey on Meyer-König and Zeller operators which are well-known

positive linear operators in the approximation theory.

This thesis consists of four chapters. In the first chapter, a short history of the

studies on the approximation of the linear positive operators, and some basic defini-

tions and theorems are given. In the second chapter, some approximation properties

of a generalization of Meyer-K̈onig and Zeller operators via generating functions and

a Kantarovich type generalization of Meyer-König and Zeller operators are obtained.

Also, the rate of convergence of these operators, with the help of usual modulus of

continuity and the elements of Lipschitz class, is computed and an application to func-

tional differential equations is presented. In the third chapter, explicit formulas and

some estimates for the moments of Meyer-König and Zeller operators are given. In the

final chapter, it is shown that Meyer-König and Zeller operators preserve the Lipschitz

constants and satisfy an initial value problem.

Keywords: Linear positive operators, Meyer-König and Zeller operators, Korovkin

theorem, Lipschitz class, modulus of continuity, functional differential equation.
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ÖZET

MEYER-KÖNIG VE ZELLER OPERAT̈ORLEṘI ÜZEṘINE

Doğru Akgöl, Sibel

Yüksek Lisans, Matematik B̈olümü

Tez Yöneticisi: Doç. Dr. Ayşeg̈ul Erençin

Ocak 2010, 69 sayfa

Bu tez, yaklaşım teorisinde tanınmış lineer pozitif operatörler olan Meyer-K̈onig

ve Zeller operaẗorleri üzerine bir incelemedir.

Bu tez d̈ort bölümden oluşmaktadır. Birinci b̈olümde, lineer pozitif operatörlerin

yaklaşımıüzerine yapılan çalışmaların kısa bir tarihçesi ve bazı temel tanım ve teo-

remler verilmiştir. İkinci bölümde, Meyer-K̈onig ve Zeller operatörlerinin dŏgurucu

fonksiyonlar aracılı̆gıyla tanımlanan bir genelleştirmesi ve Kantarovich tipli bir genelleş-

tirmesi sunularak bu genelleştirmelerin yaklaşımözellikleri elde edilmiştir. Ayrıca

süreklilik modülü ve Lipschitz sınıfının elemanları yardımıyla bu operatörlerin yaklaşım

hızları hesaplanmış ve fonksiyonel diferansiyel denklemlere bir uygulamaları verilmiştir.

Üçünc̈u bölümde, Meyer-K̈onig ve Zeller operatörlerinin momentleri için açık form̈uller

ve bazı hesaplamalar elde edilmiştir. Son bölümde ise Meyer-K̈onig ve Zeller ope-

ratörlerinin Lipschitz sabitini korudŭgu ve bir başlangıç değer problemini săgladı̆gı

gösterilmiştir.

Anahtar Kelimeler: Lineer pozitif operatörler, Meyer-K̈onig ve Zeller operatörleri,

Korovkin teoremi, Lipschitz sınıfı, s̈ureklilik modülü, fonksiyonel diferansiyel denk-

lem.
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CHAPTER 1

INTRODUCTION

The approximation theory has a close relationship with other branches of math-

ematics, so its development has assisted the development in other mathematical do-

mains. It plays an increasingly important role in applications to many subjects of

applied sciences and engineering. Moreover, it has significant intersections with ev-

ery other topics of analysis. In particular, this theory has been used in the theory of

approximation of continuous functions by means of sequences of linear positive op-

erators. The main aim of this theory is to find representations of a function space’s

elements as limits of elements of another space and in this way, to solve the approxi-

mation problem.

1.1 Basic Definitions and Lemmas

In this section, we give some basic definitions and useful theorems for the linear

positive operators which will be used throughout this thesis.

Definition 1.1 A nonempty set X is said to be a ”linear space” (or a vector space)

over a fieldK, if it satisfies the following conditions:

(i) ∀x, y ∈ X, x+ y ∈ X

(ii) ∀x, y ∈ X, x+ y = y+ x

(iii) ∀x, y, z ∈ X, x+ (y+ z) = (x+ y) + z

(iv) ∀x ∈ X, ∃θ ∈ X such that x+ θ = θ + x = x

(v) ∀x ∈ X, ∃x̃ ∈ X such that x+ x̃ = θ
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(vi) ∀x ∈ X and∀α ∈ K, αx ∈ X

(vii) ∀x ∈ X and∀α, β ∈ K, α(βx) = (αβ)x

(viii) ∀x ∈ X, 1x = x

(ix) ∀x ∈ X and∀α ∈ K, α(x+ y) = αx+ αy

(x) ∀x ∈ X and∀α, β ∈ K, (α + β)x = αx+ βx.

Definition 1.2 Let X be a linear space over a fieldK. A function||.|| : X −→ R+

satisfying the following conditions is said to be a ”norm”.

(i) ∀x ∈ X, ||x|| ≥ 0

(ii) ∀x ∈ X, ||x|| = 0 ⇐⇒ x = 0

(iii) ∀x ∈ X and∀α ∈ K, ||αx|| = |α| ||x||

(iv) ∀x, y ∈ X, ||x+ y|| ≤ ||x|| + ||y||.

A linear space on which a norm is defined is then called a ”linear normed space”.

Definition 1.3 Let X and Y be two linear normed function spaces. An operator

L : X→ Y is a rule which assigns to each function of X a function of Y.

We denote the operators by L( f ; x) or L( f (s); x).

Definition 1.4 Let X and Y be two linear normed function spaces. Also, let L: X→ Y

be an operator. L: X → Y is said to be a ”linear operator” if it satisfies the two

conditions:

(i) L( f + g; x) = L( f ; x) + L(g; x),

(ii) L(α f ; x) = αL( f ; x),

for every f,g ∈ X and for every scalarα.

By the definition of the linear operator, it is easily seen thatL(0; x) = 0.

2



Definition 1.5 Let X and Y be two linear normed function spaces, and also, let f∈ X

such that f≥ 0. If L( f ; x) ≥ 0, then the operator L: X → Y is said to be a ”positive

operator”.

If L : X → Y is positive and linear operator, then it is called as ”linear positive

operator.”

Monotonicity is one of the crucial properties of the linear positive operators. The

following lemma states that every linear positive operator is monotone increasing.

Lemma 1.6 Let L be a linear positive operator. If f≤ g, then we have

L( f ; x) ≤ L(g; x). (1.1)

Proof. If f ≤ g, then we can writeg− f ≥ 0. By positivity and linearity of the operator

L, one gets

L(g− f ; x) = L(g; x) − L( f ; x) ≥ 0

which gives the desired result.�

As a result of Lemma 1.6, we can give the following lemma.

Lemma 1.7 Let L be a linear positive operator. Then, we have

|L( f ; x)| ≤ L(| f |; x). (1.2)

Proof. Since−| f | ≤ f ≤ | f |, by the Lemma 1.6 we have

L(−| f |; x) ≤ L( f ; x) ≤ L(| f |; x). (1.3)

The linearity of the operatorL implies thatL(−| f |; x) = −L(| f |; x). Thus, from inequal-

ity (1.3) we obtain the inequality (1.2).�

We now give the definition of the function spaceC[a,b] which frequently appears

in this thesis.
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Definition 1.8 C[a,b] is the space of functions defined on[a,b] such that they are

continuous in that interval, continuous on the right at the point a and on the left at the

point b. The space C[a,b] is normed by

|| f ||C[a,b] = max
a≤x≤b

| f (x)|.

Definition 1.9 Let n∈ N and fn(x) ∈ C[a,b] be a sequence of functions. If

lim
n→∞
|| fn(x) − f (x)||C[a,b] = 0,

then fn(x) is said to ”converge uniformly to the function f(x) in C[a,b]”, and denoted

by

fn(x)⇒ f (x).

1.2 Fundamental Theorems

Positive approximation processes have a fundamental role in approximation theory

since the linear positive operators, being the main elements of these processes, are the

simplest structures providing functions to converge.

In 1895 Weierstrass proved that iff (x) is a continuous function on a closed interval

[a,b], then for eachε > 0, there exists a polynomialp(x) such that

max
a≤x≤b

| f (x) − p(x)| < ε.

Weierstrass’ theorem includes the existence of a polynomial converging to a continu-

ous function uniformly on a closed interval.

Bernstein [4], to give a simple proof of the Weierstrass theorem, introduced the

polynomials

Bn( f ; x) =
n∑

k=0

f

(
k
n

) (
n
k

)
xk(1− x)n−k, (1.4)

which are called as Bernstein polynomials. The author proved that iff (x) is continuous
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on [0,1], thenBn( f ; x) converges uniformly tof (x) on [0,1]. It is clear that the Bern-

stein polynomials are linear positive operators. So, discussing further properties of the

Bernstein polynomials, theory of linear positive operators occurred in the approxima-

tion theory. This theory was first investigated by Bohman and Korovkin (see [2]-[4],

[12], [13]).

Bohman stated the following theorem.

Theorem 1.10 (Bohman):Let f be a continuous function on[0,1]. Then, the neces-

sary and sufficient conditions that the polynomials

Pn( f ; x) =
n∑

k=0

f (αk,n)Qk,n(x), 0 ≤ αk,n ≤ 1, Qk,n(x) ≥ 0

converge uniformly to f are:

(i) lim
n→∞

n∑
k=0

Qk,n(x) = 1,

(ii) lim
n→∞

n∑
k=0

αk,nQk,n(x) = x,

(iii) lim
n→∞

n∑
k=0

α2
k,nQk,n(x) = x2.

Later, P.P. Korovkin proved a more general theorem known as Korovkin theorem.

Theorem 1.11 (P.P. Korovkin): Let Ln : C[a,b] → C[a,b] be a sequence of linear

positive operators satisfying the conditions

(i) Ln(1; x)⇒ 1,

(ii) Ln(s; x)⇒ x,

(iii) Ln(s2; x)⇒ x2.

Then, for every f∈ C[a,b], Ln( f ; x) converge uniformly to f on [a,b], i.e.,

Ln( f ; x)⇒ f (x).

5



CHAPTER 2

APPROXIMATION BY SOME GENERALIZATIONS OF THE

MEYER-K ÖNIG AND ZELLER OPERATORS

The classical Meyer-K̈onig and Zeller operators [5] are defined by

M̃n( f ; x) =


(1− x)n+1

∞∑
k=0

f

(
k

n+ k+ 1

) (
n+ k

k

)
xk, if 0 ≤ x < 1;

f (1), if x = 1.

(2.1)

In order to give the monotonicity properties, Cheney and Sharma [6] modified these

operators as follows:

Mn( f ; x) =


(1− x)n+1

∞∑
k=0

f

(
k

n+ k

) (
n+ k

k

)
xk, if 0 ≤ x < 1;

f (1), if x = 1.

(2.2)

These operators are called as Bernstein power series. Throughout this thesis, we refer

both of the operators (2.1) and (2.2) as Meyer-König and Zeller operators.

In this chapter, we first introduce a generalization by means of generating functions

[17] and a Kantarovich type [15] generalization of the Meyer-König and Zeller oper-

ators defined by (2.1) and (2.2). We compute the order of approximation by means

of modulus of continuity and the elements of Lipschitz class. Finally, an r-th order

generalization and an application to functional differential equations are presented.
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2.1 A Generalization of the Meyer-König and Zeller Operators

by a Class of Generating Functions

In this section, we consider the sequence of linear positive operators,

Ln( f , x) =
1

Fn(x, t)

∞∑
k=0

f

(
k

an(k)

)
C(n)

k (t)xk, x ∈ [0,1), t ∈ (−∞,0], (2.3)

where {Fn(x, t)} , n ∈ N are the generating functions for the sequence of functions{
C(n)

k (t)
}
k∈N0

, N0 = N ∪ {0} in the form

Fn(x, t) =
∞∑

k=0

C(n)
k (t)xk (2.4)

andC(n)
k (t) ≥ 0 for t ∈ (−∞,0].

We assume that the following conditions are valid:

(a) Fn+1(x, t) = p(x)Fn(x, t), p(x) < M < ∞, x ∈ [0,1),

(b) AtC(n+1)
k−1 (t) = an(k)C(n)

k−1(t) − kC(n)
k (t), A ∈ [0,a], C(n)

k (t) = 0 for k ∈ Z−,

(c) max{k,n} ≤ an(k) ≤ an(k+ 1).

Remark 2.1 The following choices show that the operators Ln given in (2.3) are the

generalizations of some well known operators:

(i) If we take an(k) = n+k, C(n)
k (t) = L(n)

k (t), where L(n)
k (t) is the Laguerre polynomial

[19] and

Fn(x, t) = (1− x)−n−1 exp
( tx
x− 1

)
,

then the operators (2.3) become

Pn( f ; x) = (1− x)n+1 exp
( tx
1− x

) ∞∑
k=0

f

(
k

n+ k

)
L(n)

k (t)xk

which is given in [6].
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(ii) Taking C(n)
k (t) = L(n)

k (t) again, Fn(x, t) as in part (i) and choosing an(k) = n+k+1

for the operators (2.3), we get

Zn( f ; x) = (1− x)n+1 exp
( tx
1− x

) ∞∑
k=0

f

(
k

n+ k+ 1

)
L(n)

k (t)xk,

defined in [10].

(iii) Since L(n)
k (0) =

(
n+ k

k

)
, by choosing t= 0 in Pn( f ; x) defined in (i), one obtains

the Meyer-König and Zeller operators defined by (2.1):

Mn( f ; x) = (1− x)n+1
∞∑

k=0

f

(
k

n+ k

) (
n+ k

k

)
xk.

(iv) Now, if we insert t= 0 in the operators Zn( f ; x) defined in (ii), then the operators

Zn( f ; x) turn out to the Bernstein power series defined by (2.2):

M̃n( f ; x) = (1− x)n+1
∞∑

k=0

f

(
k

n+ k+ 1

) (
n+ k

k

)
xk.

(v) If we put Fn(x, t) = enx,an(k) = n and C(n)
k (t) =

nk

k!
in the operators (2.3), we

obtain the well known Szasz-Mirakjan operators [1]:

Sn( f ; x) = e−nx
∞∑

k=0

f

(
k
n

)
(nx)k

k!
.

(vi) For the choices Fn(x, t) = eh(n)x, an(k) = h(n) and C(n)
k (t) =

(h(n))k

k!
, the operators

(2.3) turn out to be

Sn( f ; x) = e−h(n)x
∞∑

k=0

f

(
k

h(n)

)
(h(n)x)k

k!

which were introduced in [17].

8



2.1.1 Approximation Properties of Ln

We now give Korovkin type approximation properties of the operatorsLn defined

by (2.3). The following theorem states the convergence of the operatorsLn.

Theorem 2.2 Let x∈ [0,1), t ∈ (−∞,0] and b be a real number in the interval(0,1).

If f is continuous on[0,b] and
|t|
n
→ 0, then Ln( f ; x) converges to f(x) uniformly on

[0,b].

Proof. By the Korovkin theorem 1.11, it is sufficient to show that the conditions

Ln( f (s); x)⇒ xi , for f (s) ≡ si , i = 0,1,2

are satisfied.

By the definition of the operatorsLn, for the functionf (s) ≡ 1 it is easily seen that

Ln(1; x) =
1

Fn(x, t)

∞∑
k=0

C(n)
k (t)xk = 1

which gives

lim
n→∞
||Ln(1; x) − 1||C[0,b] = 0. (2.5)

We now consider the functionf (s) ≡ s. By using the condition (b), equation (2.4)

and the definition of the operatorsLn, one gets

Ln(s; x) =
1

Fn(x, t)

∞∑
k=1

k
an(k)

C(n)
k (t)xk

=
1

Fn(x, t)

∞∑
k=1

C(n)
k−1(t)x

k −
At

Fn(x, t)

∞∑
k=1

C(n+1)
k−1 (t)

an(k)
xk

= x
1

Fn(x, t)

∞∑
k=0

C(n)
k (t)xk −

Atx
Fn(x, t)

∞∑
k=0

C(n+1)
k (t)

an(k+ 1)
xk

= x−
Atx

Fn(x, t)

∞∑
k=0

C(n+1)
k (t)

an(k+ 1)
xk. (2.6)

9



Since t ∈ (−∞,0], we can write

Atx
Fn(x, t)

∞∑
k=0

1
an(k+ 1)

C(n+1)
k (t)xk ≤ 0,

thus, from the equation (2.6), it follows that

Ln(s; x) − x ≥ 0. (2.7)

By the condition (c), we have max{k,n} ≤ an(k+ 1). If max{k,n} = n, then

k ≤ n ≤ an(k + 1), for the other case, if max{k,n} = k, then n ≤ k ≤ an(k + 1). This

implies that
1

an(k+ 1)
≤

1
n
. (2.8)

Thus, using the equations (2.4) and (2.6), and the conditions (c) and (a), we obtain

Ln(s; x) ≤ x−
1
n

Atx
Fn(x, t)

∞∑
k=0

C(n+1)
k (t)xk

= x−
Atx

nFn(x, t)
Fn+1(x, t)

= x−
xp(x)At

n
. (2.9)

From inequalities (2.7) and (2.9), it is obvious that

|Ln(s; x) − x| ≤ −
xp(x)At

n
. (2.10)

Taking maximum of both sides of the inequality (2.10) over [0,b], we find that

||Ln(s; x) − x||C[0,b] ≤
bMa|t|

n
. (2.11)

Since
|t|
n
→ 0, this gives

lim
n→∞
||Ln(s; x) − x||C[0,b] = 0. (2.12)

10



Now we consider the functionf (s) ≡ s2. By using the condition (b), we have

Ln(s
2; x) =

1
Fn(x, t)

∞∑
k=1

k2

[an(k)]2
C(n)

k (t)xk

=
1

Fn(x, t)

∞∑
k=1

k
[an(k)]2

[
an(k)C(n)

k−1(t) − AtC(n+1)
k−1 (t)

]
xk

=
1

Fn(x, t)

∞∑
k=1

 (k− 1)C(n)
k−1(t)

an(k)
+

1
an(k)

C(n)
k−1(t) −

k
[an(k)]2

AtC(n+1)
k−1 (t)

 xk

=
1

Fn(x, t)

∞∑
k=2

[
an(k− 1)

an(k)
C(n)

k−2(t) −
At

an(k)
C(n+1)

k−2 (t)

]
xk

+

∞∑
k=1

[
1

an(k)
C(n)

k−1(t) −
k

[an(k)]2
AtC(n+1)

k−1 (t)

]
xk

or

Ln(s
2; x) − x2 ≤

 1
Fn(x, t)

∞∑
k=2

an(k− 1)
an(k)

C(n)
k−2(t)x

k − x2

 +
∣∣∣∣∣∣∣ At
Fn(x, t)

∞∑
k=2

1
an(k)

C(n+1)
k−2 (t)xk

∣∣∣∣∣∣∣
+

∣∣∣∣∣∣∣ 1
Fn(x, t)

∞∑
k=1

1
an(k)

C(n)
k−1(t)x

k

∣∣∣∣∣∣∣ +
∣∣∣∣∣∣∣ At
Fn(x, t)

∞∑
k=1

k

[an(k)]2
C(n+1)

k−1 (t)xk

∣∣∣∣∣∣∣
=: I1 + |I2| + |I3| + |I4|. (2.13)

From the condition (c), it is easily seen that
an(k− 1)

an(k)
≤ 1. By using this fact, we can

write

I1 =
1

Fn(x, t)

∞∑
k=2

an(k− 1)
an(k)

C(n)
k−2(t)x

k − x2 ≤ 0. (2.14)

If we use the equation (2.4) and the conditions (a) and (c), then we find that

|I2| =

∣∣∣∣∣∣∣ At
Fn(x, t)

∞∑
k=2

1
an(k)

C(n+1)
k−2 (t)xk

∣∣∣∣∣∣∣ =
∣∣∣∣∣∣∣ Atx2

Fn(x, t)

∞∑
k=0

1
an(k+ 2)

C(n+1)
k (t)xk

∣∣∣∣∣∣∣
≤

a|t|x2

Fn(x, t)

∞∑
k=0

1
an(k+ 2)

C(n+1)
k (t)xk

≤
a|t|x2

nFn(x, t)

∞∑
k=0

C(n+1)
k (t)xk

≤
a|t|x2

n
p(x). (2.15)
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Similarly, in terms of the equation (2.8) and the condition (c), one gets

|I3| =

∣∣∣∣∣∣∣ 1
Fn(x, t)

∞∑
k=1

1
an(k)

C(n)
k−1(t)x

k

∣∣∣∣∣∣∣ = x
Fn(x, t)

∞∑
k=0

1
an(k+ 1)

C(n)
k (t)xk

≤
x
n
. (2.16)

To calculateI4, by using the condition (c), equation (2.8) and the condition (a), we can

write

|I4| =

∣∣∣∣∣∣∣ At
Fn(x, t)

∞∑
k=1

k

[an(k)]2
C(n+1)

k−1 (t)xk

∣∣∣∣∣∣∣ = A|t|x
Fn(x, t)

∞∑
k=0

k+ 1

[an(k+ 1)]2
C(n+1)

k (t)xk

≤
A|t|x

Fn(x, t)

∞∑
k=0

1
an(k+ 1)

C(n+1)
k (t)xk

≤
a|t|x

n
p(x). (2.17)

On the other hand, by the linearity of the operators (2.3) and the equation (2.7), we

find

Ln(s
2; x) − x2 = Ln((s− x)2; x) + 2xLn(s− x; x), (2.18)

and

Ln(s− x; x) ≥ 0. (2.19)

The inequalities (2.18), (2.19) and the positivity ofLn implies that

Ln(s
2; x) − x2 ≥ 0. (2.20)

Finally, inserting the equations (2.14) - (2.17) into the equation (2.13) we obtain

Ln(s
2; x) − x2 ≤

a|t|x2

n
p(x) +

x
n
+

a|t|x
n

p(x). (2.21)

In addition, from inequalities (2.20) and (2.21), it is easily seen that

0 ≤ Ln(s
2; x) − x2 ≤

a|t|x2

n
p(x) +

x
n
+

a|t|x
n

p(x).

12



Hence, taking the maximum of both sides over [0,b], we have

0 ≤
∣∣∣∣∣∣Ln(s

2; x) − x2
∣∣∣∣∣∣

C[0,b]
≤

a|t|b2

n
M +

b
n
+

a|t|b
n

M

=
1
n

(
b+ a|t|bM(1+ b)

)
(2.22)

which obviously implies that

lim
n→∞

∣∣∣∣∣∣Ln(s
2; x) − x2

∣∣∣∣∣∣
C[0,b]

= 0. (2.23)

The equations (2.5), (2.12) and (2.23) gives the desired result.�

2.1.2 Rate of Convergence of Ln

In this section, we compute the rate of convergence of the linear positive operators

Ln defined by (2.3) which converge tof (x) on [0,b] uniformly. For this purpose, we

find an inequality of the form

||Ln( f ; x) − f (x)||C[a,b] ≤ Cαn, 0 < C ∈ R, (2.24)

whereαn is a sequence of positive numbers such that

lim
n→∞
αn = 0.

From (2.24), it follows that the rate of convergence of the operatorsLn to f depends on

how fast the sequenceαn converges to zero.

Firstly we give the rate of convergence of the operatorsLn by means of the modulus

of continuity, defined as follows:

Definition 2.3 Let f ∈ C[0,b]. The modulus of continuity of f , denoted byω( f , δ), is

defined by

ω( f , δ) = sup
|s−x|<δ
s,x∈[0,b]

| f (s) − f (x)| . (2.25)

13



For anyδ > 0, the well known properties of modulus of continuity (see [12]- [17], etc.)

are:

i) If δ1 ≤ δ2, thenω( f , δ1) ≤ ω( f , δ2) (2.26)

ii) lim
δ→0
ω( f , δ) = 0 (2.27)

iii) | f (s) − f (x)| ≤ ω( f , δ)

(
1+
|s− x|
δ

)
(2.28)

iv) | f (s) − f (x)| ≤ ω( f , |s− x|) ≤

(
1+
|s− x|2

δ2

)
ω( f , δ). (2.29)

Theorem 2.4 Let Ln defined by (2.3). Then, for all f∈ C[0,b], we have

||Ln( f ; x) − f (x)||C[0,b] ≤
(
1+ (3B)

1
2

)
ω( f , δn),

whereδn =
1
√

n
and B= max

{
b,bMa|t|,3b2Ma|t|

}
.

Proof. Let f ∈ C[0,b]. By using linearity and monotonicity ofLn and the property

(2.28), we can write

|Ln( f ; x) − f (x)| ≤ Ln (| f (s) − f (x)| ; x)

≤ ω( f , δn)Ln

(
1+
|s− x|
δn

; x

)
= ω( f , δn)

(
Ln(1; x) +

1
δn

Ln(|s− x|; x)

)
= ω( f , δn)

1+ 1
δn

 1
Fn(x, t)

∞∑
k=0

∣∣∣∣∣ k
an(k)

− x
∣∣∣∣∣C(n)

k (t)xk

 . (2.30)

Then, by means of the Cauchy-Schwarz inequality and letting

1
Fn(x, t)

∞∑
k=0

(
k

an(k)
− x

)2

C(n)
k (t)xk =: An(x, t), (2.31)
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one gets

1
Fn(x, t)

∞∑
k=0

∣∣∣∣∣ k
an(k)

− x
∣∣∣∣∣C(n)

k (t)xk =

∞∑
k=0

{  1
Fn(x, t)

(
k

an(k)
− x

)2

C(n)
k (t)xk

 1
2

×

[
1

Fn(x, t)
C(n)

k (t)xk

] 1
2
}

≤

 1
Fn(x, t)

∞∑
k=0

(
k

an(k)
− x

)2

C(n)
k (t)xk


1
2

×

 1
Fn(x, t)

∞∑
k=0

C(n)
k (t)xk


1
2

=

 1
Fn(x, t)

∞∑
k=0

(
k

an(k)
− x

)2

C(n)
k (t)xk


1
2

= [An(x, t)]
1
2 . (2.32)

Hence, from (2.30), it follows that

|Ln( f ; x) − f (x)| ≤ ω( f ; δn)

(
1+

1
δn

(An(x, t))
1
2

)
.

Taking maximum of both sides over [0,b], we find

||Ln( f ; x) − f (x)||C[0,b] ≤ ω( f ; δn)

(
1+

1
δn

max
x∈[0,b]

(
An(x, t)

1
2

))
.

Since

An(x, t) =
1

Fn(x, t)

∞∑
k=0

(
k

an(k)
− x

)2

C(n)
k (t)xk

= Ln((s− x)2; x)

≤
∣∣∣Ln(s

2; x) − x2
∣∣∣ + 2x

∣∣∣∣Ln(s; x) − x
∣∣∣∣,

by using the inequalities (2.11) and (2.22), one can write

15



max
x∈[0,b]

An(x, t) ≤
∣∣∣∣∣∣Ln(s

2; x) − x2)
∣∣∣∣∣∣

C[0,b]
+ 2b ||Ln(s; x) − x||C[0,b]

≤
1
n

(
b+ a|t|bM(1+ b)

)
+

2b2Ma|t|
n

=
1
n

[
b+ a|t|bM + 3a|t|b2M

]
≤

3B
n
. (2.33)

This implies that

||Ln( f ; x) − f (x)||C[0,b] ≤ ω( f , δn)

1+ 1
δn

(
3B
n

) 1
2

 .
Finally, choosing δn =

1
√

n
, we obtain

||Ln( f ; x) − f (x)||C[0,b] ≤ ω( f , δn)
(
1+ (3B)

1
2

)
,

which is the desired result.�

Let us recall the definition of the Lipschitz class denoted by LipM(α).

Definition 2.5 Let M > 0 and 0 < α ≤ 1. Then, a function f∈ C[0,b] belongs to

LipM(α), if the inequality

| f (s) − f (x)| ≤ M|s− x|α, s, x ∈ [0,b] (2.34)

is satisfied.

We now give the rate of convergence by means of the elements of Lipschitz class.

Theorem 2.6 Let f ∈ LipM(α). Then, we have

||Ln( f ; x) − f (x)||C[0,b] ≤ M(3B)
α
2δαn, (2.35)

where B andδn are the same as in the Theorem 2.4.
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Proof. Let f ∈ LipM(α). By using the linearity and monotonicity of the operatorsLn

defined by (2.3) and using (2.34), we have

|Ln( f ; x) − f (x)| ≤ Ln(| f (s) − f (x)|; x) (2.36)

=
1

Fn(x, t)

∞∑
k=0

∣∣∣∣∣∣ f
(

k
an(k)

)
− f (x)

∣∣∣∣∣∣Cn
k(t)xk

≤
M

Fn(x, t)

∞∑
k=0

∣∣∣∣∣ k
an(k)

− x
∣∣∣∣∣αCn

k(t)xk.

Applying the Ḧolder inequality withp =
2
α
, q =

2
2− α

, we can write

|Ln( f ; x) − f (x)| ≤ M

 1
Fn(x, t)

∞∑
k=0

(
k

an(k)
− x

)2

Cn
k(t)xk


α
2
 1
Fn(x, t)

∞∑
k=0

Cn
k(t)xk


2−α

2

= M [An(x, t)]
α
2 , (2.37)

whereAn(x, t) is defined by (2.31). Taking into account the inequality (2.33), we arrive

at the required result.�

Finally, we compute the rate of convergence of the operatorsLn defined by (2.3) by

using the Peetre’s K-functional (see [7], [17]) which is defined as follows.

Definition 2.7 The Peetre’s K-functional K( f , δn) is defined by

K( f , δn) = inf
g∈C2[0,b]

{
|| f − g||C[0,b] + δn ||g||C2[0,b]

}
, (2.38)

where the space C2[0,b] is the space of functions f for which f, f ′, f ′′ ∈ C[0,b]. The

norm in the space C2[0,b] is defined by

|| f ||C2[0,b] := || f ||C[0,b] + || f
′||C[0,b] + || f

′′||C[0,b] . (2.39)

Theorem 2.8 Let Ln defined by (2.3). If f∈ C[0,b], then we have

||Ln( f ; x) − f (x)||C[0,b] ≤ 2K( f , δn)
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where

δn =
b+ a|t|bM(2+ 3b)

4n
.

Proof. Let g ∈ C2[0,b]. Then, by the Taylor formula, we can write

g(s) − g(x) = g′(x)(s− x) +
1
2

g′′(x)(s− x)2

which implies

|Ln(g; x) − g(x)| ≤ |g′(x)| |Ln(s− x; x)| +
1
2
|g′′(x)|

∣∣∣∣Ln

(
(s− x)2; x

)∣∣∣∣ .
Using the expression

Ln((s− x)2; x) =
(
Ln(s

2; x) − x2
)
− 2x

(
Ln(s; x) − x

)
,

we can write

|Ln(g; x) − g(x)| ≤ |g′(x)| |Ln(s− x; x)| +
1
2
|g′′(x)|

[∣∣∣Ln(s
2; x) − x2

∣∣∣ + 2x
∣∣∣∣Ln(s; x) − x

∣∣∣∣] .
If we take the maximum of both sides of this inequality over [0,b] and use the inequal-

ities (2.11) and (2.22), then we find

||Ln(g; x) − g(x)||C[0,b] ≤ ||g
′||C[0,b]

bMa|t|
n
+

1
2n

[
b+ a|t|bM(1+ 3b)

]
||g′′||C[0,b] .

Then, for eacht ∈ (−∞,0] and eachb ∈ (0,1) it follows that

||Ln(g; x) − g(x)||C[0,b] ≤
(
||g′||C[0,b] + ||g

′′||C[0,b]

) 1
2n

[
b+ a|t|bM(2+ 3b)

]
and so

||Ln(g; x) − g(x)||C[0,b] ≤ ||g||C2[0,b]
1
2n

[
b+ a|t|bM(2+ 3b)

]
. (2.40)
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On the other hand, by using the linearity of the operators (2.3), we have

|Ln( f ; x) − f (x)| ≤ |Ln( f − g; x)| + | f (x) − g(x)| + |Ln(g; x) − g(x)|.

Hence, noting thatLn(1; x) = 1 and taking maximum over [0,b] of both sides of the

final equation, we obtain

||Ln( f ; x) − f (x)||C[0,b] ≤ 2|| f − g||C[0,b] + ||Ln(g; x) − g(x)||C[0,b] . (2.41)

Finally, with the help of (2.40), the inequality (2.41) takes the form

||Ln( f ; x) − f (x)||C[0,b] ≤ 2

(
|| f − g||C[0,b] +

1
4n

[
b+ a|t|bM(2+ 3b)

]
||g||C2[0,b]

)

or

||Ln( f ; x) − f (x)||C[0,b] ≤ 2
(
|| f − g||C[0,b] + δn||g||C2[0,b]

)
.

Therefore, this implies that

||Ln( f ; x) − f (x)||C[0,b] ≤ inf
g∈C2[0,b]

(
2|| f − g||C[0,b] + δn||g||C2[0,b]

)
= 2K( f , δn).

So the proof is completed.�

2.1.3 A Generalization of r-th Order of Ln

In this section, we introduce the r-th order generalization of the operatorsLn defined

by (2.3). Let us recall the definition of the function spaceCr [0,b].

Definition 2.9 We denote by Cr [0,b], r = 0,1,2 . . ., the set of functions f having

continuous r-th derivatives f(r)
(
f (0)(x) = f (x)

)
on the interval[0,b].

19



We now consider the following generalization of the linear positive operatorsLn which

are introduced in [11] and [17].

L[r]
n ( f ; x) =

1
Fn(x, t)

∞∑
k=0

r∑
i=0

f (i)

(
k

an(k)

) (
x− k

an(k)

)i

i!
C(n)

k (t)xk, (2.42)

where f ∈ Cr [0,b], r = 0,1,2 . . . andn ∈ N. These operators are called as the r-th

order generalization of the operatorsLn.

Note that forr = 0, we have the sequence of the operators (2.3).

Theorem 2.10 If f (r) ∈ LipM(α) and f ∈ Cr [0,b], then we have

∣∣∣∣∣∣L[r]
n ( f ; x) − f (x)

∣∣∣∣∣∣
C[0,b]

≤
M

(r − 1)!
α

α + r
B(α, r)

∣∣∣∣∣∣Ln(|s− x|α+r ; x)
∣∣∣∣∣∣

C[0,b]
,

where B(α, r) is the Beta function and r,n ∈ N.

Proof. Let f ∈ Cr [0,b]. By (2.42), we have

f (x) − L[r]
n ( f ; x) = f (x) −

1
Fn(x, t)

∞∑
k=0

r∑
i=0

f (i)

(
k

an(k)

) (
x− k

an(k)

)i

i!
C(n)

k (t)xk

=
1

Fn(x, t)

∞∑
k=0

 f (x) −
r∑

i=0

f (i)

(
k

an(k)

) (
x− k

an(k)

)i

i!

C(n)
k (t)xk. (2.43)

From the Taylor’s theorem, it follows that

f (x) −
r∑

i=0

f (i)

(
k

an(k)

) (
x− k

an(k)

)i

i!
=

(
x− k

an(k)

)r

(r − 1!)

1∫
0

(1− t)r−1

×

[
f (r)

(
k

an(k)
+ t

(
x−

k
an(k)

))
− f (r)

(
k

an(k)

) ]
dt.

(2.44)

Since f (r) ∈ LipM(α), we can write

∣∣∣∣∣∣ f (r)

(
k

an(k)
+ t

(
x−

k
an(k)

))
− f (r)

(
k

an(k)

)∣∣∣∣∣∣ ≤ Mtα
∣∣∣∣∣x− k

an(k)

∣∣∣∣∣α .
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Now, using this and the following relation

B(1+ α, r) =

1∫
0

tα(1− t)r−1dt =
α

α + r
B(α, r),

we have

∣∣∣∣∣∣∣∣ f (x) −
r∑

i=0

f (i)

(
k

an(k)

) (
x− k

an(k)

)i

i!

∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣
(
x− k

an(k)

)r

(r − 1)!

1∫
0

(1− t)r−1

[
f (r)

(
k

an(k)
+ t

(
x−

k
an(k)

))
− f (r)

(
k

an(k)

)]
dt

∣∣∣∣∣∣∣∣
≤

∣∣∣∣(x− k
an(k)

)r
∣∣∣∣

(r − 1)!

1∫
0

∣∣∣(1− t)r−1
∣∣∣ ∣∣∣∣∣∣ f (r)

(
k

an(k)
+ t

(
x−

k
an(k)

))
− f (r)

(
k

an(k)

)∣∣∣∣∣∣ dt

≤

∣∣∣∣(x− k
an(k)

)r
∣∣∣∣

(r − 1)!
M

∣∣∣∣∣x− k
an(k)

∣∣∣∣∣α
1∫

0

(1− t)r−1tαdt

=
M

(r − 1)!
α

α + r
B(α; r)

∣∣∣∣∣x− k
an(k)

∣∣∣∣∣α+r

. (2.45)

Thus, by using the equation (2.43) and the inequality (2.45), we may conclude that

∣∣∣ f (x) − L[r]
n ( f ; x)

∣∣∣ ≤ M
(r − 1)!

α

α + r
B(α; r)

1
Fn(x, t)

∞∑
k=0

∣∣∣∣∣x− k
an(k)

∣∣∣∣∣α+r

C(n)
k (t)xk.

Taking maximum of both sides of this inequality over [0,b], we obtain

∣∣∣∣∣∣ f (x) − L[r]
n ( f ; x)

∣∣∣∣∣∣
C[0,b]

≤
M

(r − 1)!
α

α + r
B(α; r)

∣∣∣∣∣∣Ln
(
|x− s|α+r ; x

)∣∣∣∣∣∣
C[0,b]

which is the desired result.�

Considering now the functiong ∈ C[0,b] defined byg(s) = |s− x|α+r , it is seen

thatg(x) = 0. Thus, by Theorem 2.2, this follows that

lim
n→∞
||Ln(g; x)||C[0,b] = 0.
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Then, for all f (r) ∈ LipM(α) and f ∈ Cr [0,b], Theorem 2.10 implies that

lim
n→∞

∣∣∣∣∣∣L[r]
n ( f ; x) − f (x)

∣∣∣∣∣∣
C[0,b]

= 0.

2.1.4 An Application to Differential Equations

Consider the linear positive operators

L∗n( f ; x) =
1

Fn(x, t)

∞∑
k=0

f

(
k

bn + k

)
C(n)

k (t)xk, (2.46)

wherebn ≤ bn+1. We observe that the operatorsLn defined by (2.3) can be reduced to

the operators (2.46) foran(k) = bn+k. In this part, we give an application to differential

equations by the next theorem.

Theorem 2.11 Let
∂

∂x
(
Fn(x, t)

)
= Kn(x)Fn(x, t) (2.47)

and g(s) =
s

1− s
. For each x∈ [0,b], b ∈ (0,1) and f ∈ C[0,b], the operators

L∗n( f ; x) defined by (2.46) satisfy the differential equation

x
d
dx

L∗n( f ; x) = −xKn(x)L∗n( f ; x) + bnL∗n( f g; x). (2.48)

Note that the equation (2.48) is indeed not a differential equation forL∗n( f ; x) but rather

a functional differential equation.

Proof. Let f ∈ C[0,b]. In section 2.1.1, we have shown that the operatorsLn defined

by (2.3) converge uniformly on the interval [0,b]. Hence, the power series on the right

hand side of (2.46) can be differentiated term by term in [0,b]. Doing this, we have

d
dx

L∗n( f ; x) =
− ∂
∂xFn(x, t)

F2
n(x, t)

∞∑
k=0

f

(
k

bn + k

)
C(n)

k (t)xk +
1

Fn(x, t)

∞∑
k=1

f

(
k

bn + k

)
kC(n)

k (t)xk−1.
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By using the equation (2.47) and keeping in mind thatg

(
k

bn + k

)
=

k
bn

, we can write

x
d
dx

L∗n( f ; x) =
−xKn(x)
Fn(x, t)

∞∑
k=0

f

(
k

bn + k

)
C(n)

k (t)xk

+
xbn

Fn(x, t)

∞∑
k=0

f

(
k

bn + k

)
k
bn

C(n)
k (t)xk−1

=
−xKn(x)
Fn(x, t)

∞∑
k=0

f

(
k

bn + k

)
C(n)

k (t)xk

+
bn

Fn(x, t)

∞∑
k=0

f

(
k

bn + k

)
g

(
k

bn + k

)
C(n)

k (t)xk.

Therefore, by using the definition of the operatorsL∗n, we arrive at the required result.

�

2.2 A Kantarovich Type Generalization of the Meyer-König and

Zeller Operators

In this section, we consider a Kantarovich type generalization of the Meyer-König

and Zeller operators [15]

M∗n( f ; x) =
1
ϕn(x)

∞∑
k=0

1
αn,k

k+αn,k∫
k

f
(
ξ

n+ k

)
dξ ϕ(k)

n (0)
xk

k!
, (2.49)

where 0< αn,k ≤ 1, and f is an integrable function on (0,1); under the conditions

given below.

(i) Let A be a real number in the interval (0,1) and also, let{ϕn} be a sequence of

functions. Every element of the sequence{ϕn} is analytic on a domainD which

contains the diskB = {z ∈ C : |z| ≤ A},

(ii) ϕ(0)
n (x) = ϕn(x) > 0,

(iii) ϕ(k)
n (x) = γn(n+ k)(1+ ln,k)ϕ

(k−1)
n (x), k = 1,2, . . . ,

(iv) ϕ(k)
n (0) = γn(n+ k)(1+ ln,k)ϕ

(k−1)
n (0), k = 1,2, . . .,
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whereϕ(k)
n (x) =

dk

dxk
ϕn(x), and ln,k and γn are sequences of positive numbers having

the properties

ln,k = O

(
1
n

)
, ln,k ≥ 0, γn = 1+O

(
1
n

)
, γn ≥ 1.

Note that, if we chooseϕ(k)
n (x) = (1− x)−n−1, γn = 1 and ln,k = 0 for the operators

M∗n, we obtain the Meyer-K̈onig and Zeller operators defined by (2.2).

2.2.1 Approximation Properties of M∗n

We now investigate the approximation properties of the operatorsM∗n( f ; x) with

the help of the Korovkin theorem 1.11. Before giving our main result we need the

following lemma which is given by O. Dŏgru in [14].

Lemma 2.12 The sequence of linear positive operators Tn given by

Tn( f ; x) =
1
ϕn(x)

∞∑
k=0

f

(
k

n+ k

)
ϕ(k)

n (0)
xk

k!
(2.50)

converges uniformly to the function f∈ C[0,A] in [0,A] under the conditions (i)-(iv).

Proof. By the Korovkin theorem 1.11, it is sufficient to show that the conditions

Tn( f (s); x)⇒ xi , for f (s) ≡ si , i = 0,1,2

are satisfied.

For f (s) ≡ 1, (2.50) reduces to

Tn(1; x) =
1
ϕn(x)

∞∑
k=0

ϕ(k)
n (0)

xk

k!
.

By means of the Maclaurin series expansion of the functionϕn(x), it follows that

Tn(1; x) = 1 which gives

lim
n→∞
||Tn(1; x) − 1||C[0,A] = 0.
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For f (s) = s, by using the condition (iv) and the fact thatTn(1; x) = 1, we have

Tn(s; x) =
1
ϕn(x)

∞∑
k=1

ϕ(k)
n (0)

n+ k
xk

(k− 1)!

=
1
ϕn(x)

∞∑
k=1

γn(1+ ln,k)ϕ
(k−1)
n (0)

xk

(k− 1)!

=
xγn

ϕn(x)

∞∑
k=1

(1+ ln,k)ϕ
(k−1)
n (0)

xk−1

(k− 1)!
(2.51)

and so

Tn(s; x) =
xγn

ϕn(x)

∞∑
k=1

ϕ(k−1)
n (0)

xk−1

(k− 1)!
+

xγn

ϕn(x)

∞∑
k=1

ln,kϕ
(k−1)
n (0)

xk−1

(k− 1)!

= xγn +
xγn

ϕn(x)

∞∑
k=0

ln,k+1ϕ
(k)
n (0)

xk

k!
.

Since 0≤ ln,k = O

(
1
n

)
, there exists a positive numberd such thatln,k ≤

d
n

for every

k ∈ N0. Thus, we obtain

Tn(s; x) ≤ xγn +
xγnd

n

or

Tn(s; x) − x ≤ (γn − 1)x+
xγnd

n
. (2.52)

Now, by equation (2.51), one gets

Tn(s; x) =
xγn

ϕn(x)

∞∑
k=0

(1+ ln,k+1)ϕ
(k)
n (0)

xk

k!

=
xγn

ϕn(x)

∞∑
k=0

ϕ(k)
n (0)

xk

k!
+

xγn

ϕn(x)

∞∑
k=0

ln,k+1ϕ
(k)
n (0)

xk

k!

= xγn +
xγn

ϕn(x)

∞∑
k=0

ln,k+1ϕ
(k)
n (0)

xk

k!
,

which yields

Tn(s; x) − x = (γn − 1)x+
xγn

ϕn(x)

∞∑
k=0

ln,k+1ϕ
(k)
n (0)

xk

k!
.
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Taking into consideration the factsγn ≥ 1, ln,k+1 ≥ 0, andx ∈ [0,A], it immediately

follows that

Tn(s; x) − x ≥ 0. (2.53)

From inequalities (2.52) and (2.53), we get

0 ≤ Tn(s; x) − x ≤ (γn − 1)x+
xγnd

n
(2.54)

which gives

lim
n→∞
||Tn(s; x) − x||C[0,A] = 0.

For f (s) ≡ s2, by using the condition (iv), one has

Tn(s
2; x) =

1
ϕn(x)

∞∑
k=1

k
(n+ k)2

ϕ(k)
n (0)

xk

(k− 1)!

=
x
ϕn(x)

∞∑
k=1

k
(n+ k)2

γn(n+ k)(1+ ln,k)ϕ
(k−1)
n (0)

xk−1

(k− 1)!

=
x2γn

ϕn(x)

∞∑
k=2

1
n+ k

(1+ ln,k)ϕ
(k−1)
n (0)

xk−2

(k− 2)!

+
xγn

ϕn(x)

∞∑
k=1

1
n+ k

(1+ ln,k)ϕ
(k−1)
n (0)

xk−1

(k− 1)!

=
x2γ2

n

ϕn(x)

∞∑
k=2

(1+ ln,k)(1+ ln,k−1)
n+ k− 1

n+ k
ϕ(k−2)

n (0)
xk−2

(k− 2)!

+
xγn

ϕn(x)

∞∑
k=1

1
n+ k

(1+ ln,k)ϕ
(k−1)
n (0)

xk−1

(k− 1)!
. (2.55)

Noting that 1+ ln,k ≤ 1+
d
n

,
n+ k− 1

n+ k
≤ 1 and

1
n+ k

≤
1
n

, we can write

Tn(s
2; x) ≤ x2γ2

n

(
1+

d
n

)2 1
ϕn(x)

∞∑
k=2

ϕ(k−2)
n (0)

xk−2

(k− 2)!

+
xγn

n

(
1+

d
n

)
1
ϕn(x)

∞∑
k=1

ϕ(k−1)
n (0)

xk−1

(k− 1)!
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and thus

Tn(s
2; x) − x2 ≤ x2(γ2

n − 1)+
2dx2γ2

n + xγn

n
+

x2γ2
nd

2 + xγnd

n2
. (2.56)

On the other hand, the inequality (2.53) implies that

Tn
(
s− x; x

)
≥ 0. (2.57)

With the help of the positivity ofTn and the inequality (2.57), we have

Tn(s
2; x) − x2 = Tn

(
(s− x)2; x

)
+ 2xTn

(
s− x; x

)
≥ 0. (2.58)

If we now use the inequalities (2.56) and (2.58), then we obtain

0 ≤ Tn(s
2; x) − x2 ≤ x2(γ2

n − 1)+
2dx2γ2

n + xγn

n
+

x2γ2
nd

2 + xγnd

n2
. (2.59)

This leads to

lim
n→∞
||Tn(s

2; x) − x2||C[0,A] = 0.

Thus the proof is completed.�

Now we can give our main result.

Theorem 2.13 The sequence of linear positive operators defined by (2.49) with con-

ditions (i)-(iv) converge uniformly to the function f∈ C[0,A] in [0,A].

Proof. As in Lemma 2.12, it is enough to prove that the conditions

M∗n( f (s); x)⇒ xi , for f (s) ≡ si , i = 0,1,2

are satisfied.
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For f (s) ≡ 1, by using the Maclaurin series expansion ofϕn(x), we have

M∗n(1; x) =
1
ϕn(x)

∞∑
k=0

1
αn,k

k+αn,k∫
k

dξ ϕ(k)
n (0)

xk

k!
= 1.

This implies that

lim
n→∞
||M∗n(1; x) − 1||C[0,A] = 0. (2.60)

By using the operatorsTn defined by (2.50), forf (s) ≡ s we can write

M∗n(s; x) − x =
1
ϕn(x)

∞∑
k=0

1
αn,k

k+αn,k∫
k

ξ

n+ k
dξ ϕ(k)

n (0)
xk

k!
− x

=
1
ϕn(x)

∞∑
k=0

1
2αn,k(n+ k)

[
(k+ αn,k)

2 − k2
]
ϕ(k)

n (0)
xk

k!
− x

=
1
ϕn(x)

∞∑
k=0

k
n+ k

ϕ(k)
n (0)

xk

k!
+

1
2ϕn(x)

∞∑
k=0

αn,k

n+ k
ϕ(k)

n (0)
xk

k!
− x

= Tn(s; x) − x+
1

2ϕn(x)

∞∑
k=0

αn,k

n+ k
ϕ(k)

n (0)
xk

k!
. (2.61)

SinceTn(s; x) − x ≥ 0, it follows that

M∗n(s; x) − x ≥ 0. (2.62)

On the other hand, since
αn,k

n+ k
≤

1
n
, (2.63)

(2.61) implies that

M∗n(s; x) − x ≤ Tn(s; x) − x+
1

2nϕn(x)

∞∑
k=0

ϕ(k)
n (0)

xk

k!

= Tn(s; x) − x+
1
2n
. (2.64)

Thus, from the inequalities (2.62), (2.64) and by the Lemma 2.12, we find

lim
n→∞

∣∣∣∣∣∣M∗n(s; x) − x
∣∣∣∣∣∣

C[0,A]
= 0. (2.65)
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Finally, for f (s) ≡ s2 we have

M∗n(s2; x) =
1
ϕn(x)

∞∑
k=0

1
αn,k

k+αn,k∫
k

(
ξ

n+ k

)2

dξ ϕ(k)
n (0)

xk

k!

=
1
ϕn(x)

∞∑
k=0

1
αn,k

(k+ αn,k)3 − k3

3(n+ k)2
ϕ(k)

n (0)
xk

k!

=
1
ϕn(x)

∞∑
k=0

 k2

(n+ k)2
+

kαn,k

(n+ k)2
+

α2
n,k

3(n+ k)2

 ϕ(k)
n (0)

xk

k!

= Tn(s
2; x) +

1
ϕn(x)

∞∑
k=0

kαn,k

(n+ k)2
ϕ(k)

n (0)
xk

k!
+

1
ϕn(x)

∞∑
k=0

α2
n,k

3(n+ k)2
ϕ(k)

n (0)
xk

k!
.

Using now the inequalities (2.58) and (2.63), we obtain

0 ≤ M∗n(s2; x) − x2 ≤
(
Tn(s

2; x) − x2
)
+

1
nϕn(x)

∞∑
k=0

k
n+ k

ϕ(k)
n (0)

xk

k!

+
1

3n2

1
ϕn(x)

∞∑
k=0

ϕ(k)
n (0)

xk

k!

= Tn(s
2; x) − x2 +

1
n

Tn(s; x) +
1

3n2
. (2.66)

Hence, from Lemma 2.12, it follows that

lim
n→∞

∣∣∣∣∣∣M∗n(s2; x) − x2
∣∣∣∣∣∣

C[0,A]
= 0. (2.67)

By means of the Korovkin theorem, the statements (2.60), (2.65) and (2.67) give

M∗n( f ; x)⇒ f (x), x ∈ [0,A]

which completes the proof.�

2.2.2 Rate of Convergence of M∗n

Now, we compute the rate of convergence of the operatorsM∗n( f ; x) given by (2.49)

with the help of the modulus of continuity defined in section 2.1.2.
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Theorem 2.14 Let f be a continuous function on[0,A]. Then, the sequence of linear

positive operators defined by (2.49) under the conditions (i)-(iv), satisfies the inequality

|M∗n( f ; x) − f (x)| ≤ Cω

(
f ;

1
√

n

)
, (2.68)

where C is a positive number.

Proof. Using the linearity of the operatorsM∗n and the triangle inequality, we obtain

|M∗n( f ; x) − f (x)| =

∣∣∣∣∣∣∣∣∣
1
ϕn(x)

∞∑
k=0

1
αn,k

k+αn,k∫
k

[
f
(
ξ

n+ k

)
− f (x)

]
dξ ϕ(k)

n (0)
xk

k!

∣∣∣∣∣∣∣∣∣
≤

1
ϕn(x)

∞∑
k=0

1
αn,k

k+αn,k∫
k

∣∣∣∣∣ f (
ξ

n+ k

)
− f (x)

∣∣∣∣∣ dξ ϕ(k)
n (0)

xk

k!
.

Then, the inequality (2.29) leads to

|M∗n( f ; x) − f (x)| ≤
1
ϕn(x)

∞∑
k=0

1
αn,k

k+αn,k∫
k

ω( f ; δ)

[
1+

1
δ2

(
ξ

n+ k
− x

)2]
dξ ϕ(k)

n (0)
xk

k!

≤ ω( f ; δ)

[
1
ϕn(x)

∞∑
k=0

1
αn,k

k+αn,k∫
k

dξ ϕ(k)
n (0)

xk

k!

+
1
δ2

1
ϕn(x)

∞∑
k=0

1
αn,k

k+αn,k∫
k

(
ξ

n+ k
− x

)2

dξ ϕ(k)
n (0)

xk

k!

]
.

By the fact thatM∗n(1; x) = 1, we have

|M∗n( f ; x) − f (x)| ≤ ω( f ; δ)

[
1+

1
δ2

M∗n
(
(s− x)2; x

)]
. (2.69)

Then, with the help of the inequalities (2.64) and (2.66), one gets

M∗n
(
(s− x)2; x

)
= [M∗n(s2; x) − x2] − 2x

[
M∗n(s; x) − x

]
≤

[
Tn(s

2; x) − x2
]
+

1
n

Tn(s; x) +
1

3n2
+ 2x

[
Tn(s; x) − x+

1
2n

]
.
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Using (2.54) and (2.56), by direct computation, we obtain

M∗n
(
(s− x)2; x

)
= O

(
1
n

)
.

Thus, for the choose ofδ =
1
√

n
, from (2.69) we find the desired result.�

2.2.3 An Application to Differential Equations

In this part, we give an application of the linear positive operators (2.49) to func-

tional differential equations by the following theorem.

Theorem 2.15 Let

g(s) =
as

b(1− s)
s ∈ [0,A], a,b , 0.

For each x ∈ [0,A], f ∈ C[0,A] and αn,k = 1; M∗n( f ; x) satisfies the following

functional differential equation for n= 2,3, . . . :

x
d
dx

M∗n( f ; x) =

−γn(1+ n)(1+ ln,1)x+
1

ln
(

n−1
n

) − n

 M∗n( f ; x)

−
b

a ln
(

n−1
n

)M∗n
(
( f ,g); x

)
, (2.70)

where

M∗n
(
( f ,g); x

)
=

1
ϕn(x)

∞∑
k=0

k+1∫
k

f
(
ξ

n+ k

)
dξ

k+1∫
k

g
(
ξ

n+ k

)
dξ ϕ(k)

n (0)
xk

k!
.

Proof. Let f ∈ C[0,A]. We have shown thatM∗n( f ; x) is uniform convergent on [0,A],

therefore we can differentiate this series term by term in this interval. Fork = 1, the

condition (iii) turns out to be

ϕ′n(x) = γn(1+ n)(1+ ln,1)ϕn(x).
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By taking this into consideration, we have

x
d
dx

M∗n( f ; x) = x

[
−ϕ′n(x)
ϕ2

n(x)

∞∑
k=0

k+1∫
k

f
(
ξ

n+ k

)
dξ ϕ(k)

n (0)
xk

k!

+
1
ϕn(x)

∞∑
k=0

k+1∫
k

f
(
ξ

n+ k

)
dξ ϕ(k)

n (0)
kxk−1

k!

]

=
−γn(1+ n)(1+ ln,1)x

ϕn(x)

∞∑
k=0

k+1∫
k

f
(
ξ

n+ k

)
dξ ϕ(k)

n (0)
xk

k!

+
1
ϕn(x)

∞∑
k=0

k+1∫
k

f
(
ξ

n+ k

)
dξ ϕ(k)

n (0)k
xk

k!
. (2.71)

By using the definition of the functiong, it is seen thatg
(
ξ

n+ k

)
=

aξ
b(n+ k− ξ)

.

Then we have

∫ k+1

k
g
(
ξ

n+ k

)
dξ =

a
b

∫ k+1

k

(
−1+

n+ k
n+ k− ξ

)
dξ

= −
a
b

(n+ k) ln

(
n− 1

n

)
−

a
b
.

This gives

k =

−a
b −

k+1∫
k

g
(
ξ

n+k

)
dξ

a
b ln

(
n−1

n

) − n.

Substituting this result in the equation (2.71), we obtain

x
d
dx

M∗n( f ; x) =
−γn(1+ n)(1+ ln,1)x

ϕn(x)

∞∑
k=0

k+1∫
k

f
(
ξ

n+ k

)
dξ ϕ(k)

n (0)
xk

k!

+
1
ϕn(x)

∞∑
k=0

k+1∫
k

f
(
ξ

n+ k

)
dξ ϕ(k)

n (0)


−a

b −

k+1∫
k

g
(
ξ

n+k

)
dξ

a
b ln

(
n−1

n

) − n


xk

k!
.
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This, by the linearity of the operatorsM∗n, implies that

x
d
dx

M∗n( f ; x) =

−γn(1+ n)(1+ ln,1)x−
1

ln
(

n−1
n

) − n

 1
ϕn(x)

∞∑
k=0

k+1∫
k

f
(
ξ

n+ k

)
dξ ϕ(k)

n (0)
xk

k!

−
1

a
b ln(n−1

n )

1
ϕn(x)

∞∑
k=0

k+1∫
k

f
(
ξ

n+ k

)
dξ

k+1∫
k

g
(
ξ

n+ k

)
dξ ϕ(k)

n (0)
xk

k!

=

−γn(1+ n)(1+ ln,1)x−
1

ln
(

n−1
n

) − n

 M∗n( f ; x) −
b

a ln
(

n−1
n

)M∗n
(
( f ,g); x

)
which completes the proof.�
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CHAPTER 3

THE MOMENTS OF THE MEYER-K ÖNIG AND ZELLER

OPERATORS

In this chapter, we consider the Meyer-König and Zeller operatorsMn (see [6],[8],

[16],[18], etc.) defined by

Mn( f ; x) =


(1− x)n+1

∞∑
k=0

f

(
k

n+ k

) (
n+ k

k

)
xk, if 0 ≤ x < 1;

f (1), if x = 1,

(3.1)

and give explicit formulas [8] and some estimates for the moments of these operators

[18].

3.1 Explicit Formulas for Central Moments of Mn

We begin with the following theorem.

Theorem 3.1 Let Mn be the positive linear operators defined by (3.1). Then, we have

Mn(1; x) = 1

and

Mn(s; x) = x.

Proof. We now consider the Taylor series expansion of
1

(1− x)α
:

1
(1− x)α

=

∞∑
k=0

(
α + k− 1

k

)
xk.
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If we takeα = n+ 1, then we see that

(1− x)n+1
∞∑

k=0

(
n+ k

k

)
xk = 1. (3.2)

Thus, we may conclude that forf (s) = 1, Mn(1; x) = 1.

For f (s) = s, by (3.1) we can write

Mn(s; x) = (1− x)n+1
∞∑

k=1

(n+ k− 1)!
n!(k− 1)!

xk

= x(1− x)n+1
∞∑

k=0

(
n+ k

k

)
xk.

By using the fact (3.2), we arrive at the desired result.�

We now give the following theorem and lemma [8] which we will use to find an

explicit formula for the second moment of the operatorsMn( f ; x) in terms of hyperge-

ometric series.

Theorem 3.2 Let g(s) =
s

1− s
, s ∈ [0,1). For each n∈ N, x ∈ [0,1) and f ∈ C[0,1)

the linear positive operators Mn( f ; x) defined in (3.1) satisfy the differential equation

x(1− x)
d
dx

Mn( f ; x) = −(n+ 1)xMn( f ; x) + n(1− x)Mn( f g; x). (3.3)

Proof. Let n ∈ N. In Chapter 2, we showed that the operatorsLn defined by (2.3),

which is a generalization of the operators (3.1) converges uniformly on [0,1). Thus we

can differentiate the series in (3.1) term by term in the interval [0,1). Hence, we have

d
dx

Mn( f ; x) = −(n+ 1)(1− x)n
∞∑

k=0

f

(
k

n+ k

) (
n+ k

k

)
xk

+ (1− x)n+1
∞∑

k=1

f

(
k

n+ k

)
k

(
n+ k

k

)
xk−1.

35



Then, it follows that

x(1− x)
d
dx

Mn( f ; x) = −(n+ 1)x(1− x)n+1
∞∑

k=0

f

(
k

n+ k

) (
n+ k

k

)
xk

+ n(1− x)n+2
∞∑

k=1

f

(
k

n+ k

)
k
n

(
n+ k

k

)
xk.

By using the definition of the operatorsMn and the factg

(
k

n+ k

)
=

k
n

, we can write

x(1− x)
d
dx

Mn( f ; x) = −(n+ 1)xMn( f ; x) + n(1− x)n+2
∞∑

k=0

f

(
k

n+ k

)
g

(
k

n+ k

) (
n+ k

k

)
xk

= −(n+ 1)xMn( f ; x) + n(1− x)Mn( f g; x),

which is the desired result.�

By means of this theorem, the following lemma can be proven.

Lemma 3.3 For each n∈ N, Mn(s2; x) is a solution of the differential equation

x(1− x)y′(x) + (n+ x)y(x) = nx2 + x, x ∈ [0,1) (3.4)

satisfying the condition y(0)=0.

Proof. Let n ∈ N andx ∈ [0,1). Then, for f (s) = s2, by definition of the operatorsMn,

it is easily seen that

Mn(s
2; 0) = 0.

We now set f = s− s2 in equation (3.3) to obtain

x(1− x)
d
dx

Mn(s− s2; x) = −(n+ 1)xMn(s− s2; x) + n(1− x)Mn
(
(s− s2)g; x

)
. (3.5)
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By the linearity properties of the operatorsMn, we can rewrite the last term in (3.5) as

Mn
(
(s− s2)g; x

)
= Mn(sg; x) − Mn(s

2g; x)

= (1− x)n+1
∞∑

k=0

k
n

k
n+ k

(
n+ k

k

)
xk − (1− x)n+1

∞∑
k=0

(
k

n+ k

)2 k
n

(
n+ k

k

)
xk

= (1− x)n+1
∞∑

k=0

k
n

 k
n+ k

−

(
k

n+ k

)2 (n+ k
k

)
xk

= (1− x)n+1
∞∑

k=0

(
k

n+ k

)2 (
n+ k

k

)
xk

= Mn(s
2; x).

Substitution of this result into (3.5) gives

x(1− x)
d
dx

Mn(s− s2; x) = −(n+ 1)xMn(s− s2; x) + n(1− x)Mn(s
2; x).

Again by using the linearity properties ofMn and Theorem 3.1, we find

x(1− x)
d
dx

Mn(s
2; x) + (n+ x)Mn(s

2; x) = nx2 + x. (3.6)

Thus the proof is completed.�

Now using the equation (3.6), we can give an explicit expression forMn(s2; x) by

means of the hypergeometric series. The hypergeometric series [9] is defined by

2F1(a,b; c; x) =
∞∑

k=0

(a)k(b)k

(c)k

xk

k!
, (3.7)

wherea,b andc , 0,−1,−2, . . . are constants and

(α)0 = 1, (α)k = α(α + 1)(α + 2) . . . (α + k− 1) (3.8)

is the Pochhammer symbol. It is easily seen that, by using the well known properties

of the Gamma function

Γ(z+ 1) = z!, z≥ −1 (3.9)
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we have

(α)k =
(α + k− 1)!

(α − 1)!
=
Γ(α + k)
Γ(α)

, k ∈ N, α ∈ R. (3.10)

The hypergeometric series defined by (3.7) is convergent for|x| < 1, if c − a − b > 0

so is forx = 1. Indeed, using the ratio test we have

lim
k→∞

ak+1

ak
= lim

k→∞

(a+ k)(b+ k)
(c+ k)(k+ 1)

x = x,

which implies that lim
k→∞

∣∣∣∣∣ak+1

ak

∣∣∣∣∣ = |x|. Thus, the series (3.7) is convergent for|x| < 1.

For the casex = 1, we have2F1(a,b; c; 1) =
∞∑

k=1

(a)k(b)k

(c)kk!
. By means of the Raabe’s

test, we get

lim
k→∞

k

(
ak

ak+1
− 1

)
= lim

k→∞
k

(
(k+ 1)(c+ k)
(a+ k)(b+ k)

− 1

)
= lim

k→∞

k(c− ab)
(a+ k)(b+ k)

+ lim
k→∞

k2(c+ 1− a− b)
k2 + k(a+ b) + ab

= c+ 1− a− b.

Therefore, the series2F1(a,b; c; 1) is convergent wherec+1−a−b > 1 orc−a−b > 0.

Furthermore, as it is given in [9], the following expression holds

2F1(a,b; c; x) =
Γ(c)Γ(c− a− b)
Γ(c− a)Γ(c− b)2F1(a,b,a+ b− c+ 1,1− x)

+
Γ(c)Γ(a+ b− c)
Γ(a)Γ(b)

(1− x)c−a−b
2F1(c− a, c− b, c− a− b+ 1,1− x).

For x = 1, this gives

2F1(a,b; c; 1) =
∞∑

k=0

(a)k(b)k

(c)k

1
k!
=
Γ(c)Γ(c− a− b)
Γ(c− a)Γ(c− b)

, (c− a− b > 0). (3.11)

We now give an explicit expression forMn(s2; x) by the following theorem pre-

sented in [8].
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Theorem 3.4 For n ∈ N and for each x∈ [0,1),

Mn(s
2; x) = x2 +

x(1− x)2

n+ 1 2F1(1,2;n+ 2; x) (3.12)

holds and for n≥ 2 it also holds at x= 1.

Proof. Let n ∈ N andx ∈ [0,1). Substituting

y(x) = x2 + x(1− x)2z(x), (3.13)

wherez is to be determined, into the equation (3.4) we have

x(1− x)y′(x) + (n+ x)y(x) = x(1− x)
(
2x+

[
(1− x)2 − 2x(1− x)

]
z(x) + x(1− x)2z′(x)

)
+ (n+ x)

[
x2 + x(1− x)2z(x)

]
= nx2 + x

or

x(1− x)z′(x) + (n+ 1− 2x)z(x) = 1 , x ∈ [0,1). (3.14)

Now we seek a particular solutionzp of the equation (3.14) of the form

z(x) =
∞∑

k=0

akxk, (3.15)

where the coefficientsak to be determined. Substitution of (3.15) into the equation

(3.14) gives

x(1− x)
∞∑

k=1

kakxk−1 + (n+ 1− 2x)
∞∑

k=0

akxk = 1

or
∞∑

k=1

kakxk −

∞∑
k=2

(k− 1)ak−1xk + (n+ 1)
∞∑

k=0

akxk −

∞∑
k=1

2ak−1xk = 1.

This follows that

(n+ 1)a0 +
[
(n+ 2)a1 − 2a0

]
x+

∞∑
k=2

[
(n+ k+ 1)ak − (k+ 1)ak−1

]
xk = 1.
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To hold this equation, we must have

(n+ 1)a0 = 1, (n+ 2)a1 − 2a0 = 0

and

(n+ k+ 1)ak − (k+ 1)ak−1 = 0, k ≥ 2.

From these one gets

a0 =
1

n+ 1
,

a1 =
2

n+ 2
a0

and the recurrence relation

ak =
k+ 1

n+ k+ 1
ak−1, k ≥ 2.

By means of this recurrence relation, we obtain the following formula for the coeffi-

cientsak:

ak =
2.3 . . . k(k+ 1)

(n+ 1)(n+ 2) . . . (n+ k+ 1)
, k ≥ 2.

If we substitute these coefficients into (3.15), then we obtain

z(x) =
1

n+ 1
+

2x
(n+ 1)(n+ 2)

+

∞∑
k=2

2.3 . . . k(k+ 1)
(n+ 1)(n+ 2) . . . (n+ k+ 1)

xk.

Since (2)0 = 1 and (2)1 = 2, we can rewrite this solution in the form

z(x) =
1

n+ 1

∞∑
k=0

(2)k
(n+ 2)k

xk. (3.16)

By means of the hypergeometric functions defined by (3.7), the solution (3.16) can be

expressed as

z(x) =
1

n+ 12F1(1,2;n+ 2; x).

Now, we find the general solutionzh of the corresponding homogeneous differential

equation
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x(1− x)z′(x) + (n+ 1− 2x)z(x) = 0.

It is easily seen that this equation is separable inx andz. Thus the general solution of

(3.14) is given by

z(x) =
1

n+ 12F1(1,2;n+ 2; x) +Cx−n−1(1− x)n−1, x ∈ [0,1).

Finally, setting this result into equation (3.13), we find

y(x) = x2 +
x(1− x)2

n+ 1 2F1(1,2;n+ 2; x) +Cx−n(1− x)n+1 , C ∈ R, x ∈ [0,1).

To satisfy the conditiony(0) = 0, we must haveC = 0. So we have

y(x) = x2 +
x(1− x)2

n+ 1 2F1(1,2;n+ 2; x). (3.17)

In the Lemma 3.3, we have shown thatMn(s2; x) is a solution of the differential equa-

tion (3.4), then by (3.17), we can write

Mn(s
2; x) = x2 +

x(1− x)2

n+ 1 2F1(1,2;n+ 2; x) (3.18)

which is the desired result (3.12).

For x = 1, with the help of (3.11) and the property (3.9) we obtain

2F1(1,2;n+ 2; 1)=
Γ(n+ 2)Γ(n− 1)
Γ(n+ 1)Γ(n)

=
(n+ 1)!(n− 2)!

n!(n− 1)!
=

n+ 1
n− 1

.

Thus, forx = 1 the left side of (3.12) is equal to 1. On the other hand, by the definition

of the operatorsMn given by (3.1), we have

Mn(s
2; 1) = 1.

Thus, we may conclude that (3.12) is also valid forx = 1. Therefore, the proof is

completed.�
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3.2 Some Estimates forMn
(
(s− x)2p; x

)
Let us first state the following lemma.

Lemma 3.5 For n ≥ 2 and x∈ [0,1] there holds for any m∈ N,

2F1(1,2;n+ 2; x) ≤
m−1∑
k=0

(2)k
(n+ 2)k

xk +
(m+ 1)!

(n− 1)(n+ 2)m−1
xm. (3.19)

Proof. By (3.8), one gets

2F1(1,2;n+ 2; x) =
∞∑

k=0

(1)k(2)k
(n+ 2)k

xk

k!
.

Using the fact (1)k = 1.2 . . . k = k!, we can write

2F1(1,2;n+ 2; x) =
∞∑

k=0

(2)k
(n+ 2)k

xk. (3.20)

If we let

Φm(x) =
∞∑

k=m

(2)k
(n+ 2)k

xk, (3.21)

then (3.20) can be expressed as follows:

2F1(1,2;n+ 2; x) =
m−1∑
k=0

(2)k
(n+ 2)k

xk + Φm(x). (3.22)

Now consider (3.21). By means of the definition of the Pochhammer symbol (3.8), it

is clear that

(2)k = (k+ 1)!, (2)k = (2)m(m+ 2)k−m

and

(n+ 2)k = (n+ 2)m(n+m+ 2)k−m.
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Hence, (3.21) can be written as

Φm(x) =
∞∑

k=m

(2)m(m+ 2)k−m

(n+ 2)m(n+ 2+m)k−m
xmxk−m

=
(2)m

(n+ 2)m
xm

∞∑
k=0

(m+ 2)k
(n+m+ 2)k

xk

=
(m+ 1)!
(n+ 2)m

xm
∞∑

k=0

(m+ 2)k
(n+m+ 2)k

xk.

Now, with the help of the hypergeometric series (3.7) and (3.11), we can write the

above equation as follows:

Φm(x) =
(m+ 1)!
(n+ 2)m

xm
2F1(1,m+ 2;n+m+ 2; x)

≤
(m+ 1)!
(n+ 2)m

xm
2F1(1,m+ 2;n+m+ 2; 1)

=
(m+ 1)!
(n+ 2)m

xmΓ(n+m+ 2)Γ(n− 1)
Γ(n+m+ 1)Γ(n)

≤
(m+ 1)!

(n− 1)(n+ 2)m−1
xm.

Thus, by (3.22) we arrive at the required result.�

By using Lemma 3.5, we can prove the following theorem.

Theorem 3.6 Let n ∈ N and x ∈ [0,1]. Then, for the linear positive operators Mn

given by (3.1), we have

x(1− x)2

n+ 1

(
1+

2x
n+ 2

)
≤ Mn(s

2; x) − x2 ≤
x(1− x)2

n+ 1

(
1+

2x
n− 1

)
, (3.23)

for n ≥ 2.

Proof. For m= 1, the inequality (3.19) turns out to be

2F1(1,2;n+ 2; x) ≤
(2)0

(n+ 2)0
+

2!
(n− 1)(n+ 2)0

x = 1+
2x

n− 1
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wheren ≥ 2 andx ∈ [0,1]. Thus, by (3.12) we may write

Mn(s
2; x) ≤ x2 +

x(1− x)2

n+ 1

(
1+

2x
n− 1

)

and this implies that

Mn(s
2; x) − x2 ≤

x(1− x)2

n+ 1

(
1+

2x
n− 1

)
, n ≥ 2, x ∈ [0,1]. (3.24)

On the other hand, by (3.20) and the fact that
∞∑

k=2

(2)k
(n+ 2)k

xk ≥ 0, we can write

2F1(1,2;n+ 2; x) =
(2)0

(n+ 2)0
+

(2)1
(n+ 2)1

x+
∞∑

k=2

(2)k
(n+ 2)k

xk ≥ 1+
2x

n+ 2
.

Setting this into (3.12), we can conclude that

Mn(s
2; x) − x2 ≥

x(1− x)2

n+ 1

(
1+

2x
n+ 2

)
. (3.25)

If we combine (3.24) and (3.25), then we obtain the desired result.�

After this result, we are now ready to give the estimates forMn((s− x)2p; x) refer-

ring to [18].

Theorem 3.7 Letϕ(x) =
√

x(1− x), An,2p(x) = Mn((s− x)2p; x), p ∈ N. For n > 2p

and each x∈ [0,1), we have the estimates;

An,2p(x) ≤ C


ϕ2p(x)

np
, for x ≥

1
n

;

ϕ2(x)(1− x)2p−2

n2p−1
, for x <

1
n
.

(3.26)

Here, C is a constant which is independent of n and x and not necessarily the same at

each occurrence.

Proof. We prove this theorem by induction onp. For p = 1, we must show that

An,2(x) = Mn((s− x)2; x) ≤ C
ϕ2(x)

n
, x ∈ [0,1). (3.27)
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With the help of the linearity of the operatorsMn and by using (3.2), (3.3) and (3.23),

we can write

An,2(x) = Mn((s− x)2; x) = Mn(s
2; x) − 2xMn(s; x) + x2Mn(1; x)

= Mn(s
2; x) − x2

≤
ϕ2(x)
n+ 1

(
1+

2x
n− 1

)
. (3.28)

Sincen > 2 andx ∈ [0,1), it is clearly seen that

(
1+

2x
n− 1

)
< 3. Thus, from (3.28)

it follows that

An,2(x) ≤ 3
ϕ2(x)
n+ 1

< 3
ϕ2(x)

n

which shows that (3.26) is valid forp = 1 with C = 3.

We now assume that (3.26) is true forp = r > 1 and n > 2r. That is, we have

An,2r(x) ≤ C


ϕ2r(x)

nr
, for x ≥

1
n

;

ϕ2(x)(1− x)2r−2

n2r−1
, for x <

1
n

(3.29)

and show that (3.26) holds forp = r + 1. Hence, forn > 2(r + 1), by the definition of

the operatorsMn, letting mn,k(x) =

(
n+ k

k

)
xk(1− x)n+1, we can write

An,2(r+1)(x) = Mn((s− x)2(r+1); x)

=

∞∑
k=0

(
k

n+ k
− x

)2(r+1)

mn,k(x)

= x2(r+1)(1− x)n+1 +

∞∑
k=1

k
n+ k

(
k

n+ k
− x

)2r+1

mn,k(x)

−

∞∑
k=1

x

(
k

n+ k
− x

)2r+1

mn,k(x)

= x2(r+1)(1− x)n+1 +
1

n+ 1

(
1

n+ 1
− x

)2r+1

mn,1(x)

+

∞∑
k=2

k
n+ k

(
k

n+ k
− x

)2r+1

mn,k(x) −
∞∑

k=1

x

(
k

n+ k
− x

)2r+1

mn,k(x).
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Since

1
n+ 1

mn,1(x) = x(1− x)n+1

and

k
n+ k

mn,k(x) = x mn,k−1(x),

one gets

An,2(r+1)(x) = x2(r+1)(1− x)n+1 + x

(
1

n+ 1
− x

)2r+1

(1− x)n+1

+ x
∞∑

k=1

( k+ 1
n+ k+ 1

− x

)2r+1

−

(
k

n+ k
− x

)2r+1 mn,k(x)

=: I1 + I2 + I3.

Firstly, we computeI1.

I1 = x2(r+1)(1− x)n+1 = xr+1(1− x)2(r+1)xr+1(1− x)n−2r−1

= ϕ2(r+1)(x)xr+1(1− x)n−2r−1. (3.30)

Since

sup
x∈[0,1)

xr+1(1− x)n−2r−1 =

(
r + 1
n− r

)r+1 (
n− 2r − 1

n− r

)n−2r−1

,

taking into consideration the factn > 2(r + 1), by (3.30), we can write

I1 ≤ ϕ
2(r+1)(x)

(
r + 1
n− r

)r+1 (
n− 2r − 1

n− r

)n−2r−1

≤ ϕ2(r+1)(x)(r + 1)r+1

(
1

n− r

)r+1

= ϕ2(r+1)(x)(r + 1)r+1

(
1
n
+

r
n(n− r)

)r+1

≤ ϕ2(r+1)(x)(r + 1)r+1

(
1
n
+

r
n(r + 2)

)r+1

.
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Since
r

r + 2
< 1 for eachr ≥ 1, it follows that

I1 ≤ ϕ
2(r+1)(x)(r + 1)r+1

(
1
n
+

1
n

)r+1

= ϕ2(r+1)(x)

(
2(r + 1)

n

)r+1

≤ C


ϕ2(r+1)(x)

nr+1
, for x ≥

1
n

;

ϕ2(x)(1− x)2r

n2r+1
, for x <

1
n
,

(3.31)

whereC = (2(r + 1))r+1.

Indeed, forx <
1
n

we have

ϕ2(r+1)(x)
nr+1

=
ϕ2(x)(1− x)2r xr

nr+1
≤
ϕ2(x)(1− x)2r

n2r+1
.

For I2 there are two cases; eitherx ≥
1
n

or 0< x <
1
n

.

If x ≥
1
n

, it is easily seen that

(
1

n+ 1
− x

)
< 0. ThereforeI2 ≤ 0 for x ≥

1
n

, and so

we omit this case.

If 0 < x <
1
n

, then we have
∣∣∣∣∣ 1
n+ 1

− x
∣∣∣∣∣ < 1

n
. Thus, one has

I2 ≤ |I2| ≤ x
1

n2r+1
(1− x)n+1 ≤

ϕ2(x)(1− x)2r

n2r+1
. (3.32)

For I3, firstly we investigate the expression

∣∣∣∣∣∣∣
(

k+ 1
n+ k+ 1

− x

)2r+1

−

(
k

n+ k
− x

)2r+1
∣∣∣∣∣∣∣ .

Let f (s) = (s− x)2r+1. Then, this expression takes the form

∣∣∣∣∣∣ f
(

k+ 1
n+ k+ 1

)
− f

(
k

n+ k

)∣∣∣∣∣∣ .
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Now, applying the mean value theorem on the interval (a,b) with a =
k

n+ k
and

b =
k+ 1

n+ k+ 1
, we get

∣∣∣∣∣∣∣
(

k+ 1
n+ k+ 1

− x

)2r+1

−

(
k

n+ k
− x

)2r+1
∣∣∣∣∣∣∣ = n(2r + 1)

(n+ k)(n+ k+ 1)
(c− x)2r , a < c < b.

Sincea− x < c− x < b− x, choosingH = max{|a− x|, |b− x|} we obtain|c− x| < H

and this implies that (c− x)2r < H2r . Therefore

(c− x)2r < (a− x)2r + (b− x)2r =

(
k+ 1

n+ k+ 1
− x

)2r

+

(
k

n+ k
− x

)2r

, (3.33)

and so

∣∣∣∣∣∣∣
(

k+ 1
n+ k+ 1

− x

)2r+1

−

(
k

n+ k
− x

)2r+1
∣∣∣∣∣∣∣ ≤ n(2r + 1)

(n+ k)(n+ k+ 1)

×

( k+ 1
n+ k+ 1

− x

)2r

+

(
k

n+ k
− x

)2r .
Thus, from this it follows that

I3 = x
∞∑

k=1

( k+ 1
n+ k+ 1

− x

)2r+1

−

(
k

n+ k
− x

)2r+1 mn,k(x)

≤ x(2r + 1)
n

(n+ k)(n+ k+ 1)

( k+ 1
n+ k+ 1

− x

)2r

+

(
k

n+ k
− x

)2r mn,k(x).

Now, by using the fact

n
(n+ k)(n+ k+ 1)

mn,k(x) =
(1− x)2

n− 1
n+ k− 1
n+ k+ 1

mn−2,k(x)

≤
2(1− x)2

n
mn−2,k(x), (3.34)

we can write

|I3| ≤ (4r + 2)x(1− x)2
∞∑

k=1

1
n

( k+ 1
n+ k+ 1

− x

)2r

+

(
k

n+ k
− x

)2r mn−2,k(x).
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Let

I31 =

∞∑
k=1

(
k+ 1

n+ k+ 1
− x

)2r

mn−2,k(x)

and

I32 =

∞∑
k=1

(
k

n+ k
− x

)2r

mn−2,k(x),

and let us recall the following inequality;

(a+ b)n ≤ 2n−1(an + bn), where a,b ≥ 0, n = 1,2,3 . . . (3.35)

For n > 2(r + 1), the inequalities (3.29) and (3.35) imply that

I31 =

∞∑
k=1

(
k+ 1

n+ k+ 1
− x

)2r

mn−2,k(x)

=

∞∑
k=1

[(
k+ 1

n+ k+ 1
−

k
n+ k− 2

)
+

(
k

n+ k− 2
− x

)]2r

mn−2,k(x)

≤ 22r−1
∞∑

k=1

( k+ 1
n+ k+ 1

−
k

n+ k− 2

)2r

+

(
k

n+ k− 2
− x

)2r mn−2,k(x)

= 22r−1
∞∑

k=1

(
n− 2k− 2

(n+ k+ 1)(n+ k− 2)

)2r

mn−2,k(x)

+22r−1
∞∑

k=1

(
k

n+ k− 2
− x

)2r

mn−2,k(x)

≤ 22r−1
∞∑

k=1

1
(n+ k+ 1)2r

mn−2,k(x) + 22r−1An−2,2r(x)

≤ 22r−1
∞∑

k=1

1
(n+ k+ 1)2r

mn−2,k(x) +C


ϕ2r(x)

(n− 2)r
, for x ≥

1
n− 2

;

ϕ2(x)(1− x)2r−2

(n− 2)2r−1
, for x <

1
n− 2

.

≤ 22r−1
∞∑

k=1

1
(n+ k+ 1)2r

mn−2,k(x) +C


ϕ2r(x)

nr
, for x ≥

1
n− 2

;

ϕ2(x)(1− x)2r−2

n2r−1
, for x <

1
n− 2

.

(3.36)
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By some computations, we have

1
(n+ k+ 1)2r

mn−2,k(x) =
1

(n+ k+ 1)2r

(
n+ k− 2

k

)
xk(1− x)n−1

=
(1− x)2r

(n+ k+ 1)2r

(n+ k− 2)!(n− 2r − 2)!k!
(n− 2)!k!(n+ k− 2r − 2)!

mn−2r−2,k(x)

≤ (1− x)2r 1
(n− 2)(n− 3) . . . (n− 2r − 1)

mn−2r−2,k(x)

≤ C
(1− x)2r

n2r
mn−2r−2,k(x). (3.37)

We now need to show that
ϕ2r(x)

nr
∼
ϕ2(x)(1− x)2r−2

n2r−1
for

1
n
≤ x ≤

1
n− 2

. This means

that we must prove that the inequality

C−1 xr(1− x)2r

nr
≤

x(1− x)2r

n2r−1
≤ C

xr(1− x)2r

nr
(3.38)

holds for a positive constantC.

Since
1
n
≤ x ≤

1
n− 2

one has
1
nx
≤

1
(n− 2)x

and
1

xr−1
≤ nr−1.

Moreover, forn > 2(r + 1) we have
2

n− 2
≤

1
r

which implies that

( n
n− 2

)r−1

=

(
1+

2
n− 2

)r−1

≤

(
1+

1
r

)r−1

≤ 2r−1.

Using these inequalities, we may conclude that

x(1− x)2r

n2r−1
≤

x(1− x)2r

nr

( n
n− 2

)r−1

≤
x(1− x)2r

nr
2r−1. (3.39)

On the other hand, the inequalityx ≤
1

n− 2
gives that

(
1
x

)r−1

≥ (n − 2)r−1. Then,

sincen > 2(r + 1) andr ≥ 1, we have

(
n− 2

n

)r−1

=

(
1−

2
n

)r−1

≥

(
1−

1
r + 1

)r−1

≥
1

2r−1
,

and (
n− 2

n

)
≤

1
(nx)r−1

.
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Thus, one has

x(1− x)2r

n2r−1
≥

xr(1− x)2r

nr(nx)r−1
≥

xr(1− x)2r

nr

(
n− 2

n

)r−1

≥
xr(1− x)2r

nr

1
2r−1
. (3.40)

Combining inequalities (3.39) and (3.40), we obtain that (3.38) holds forC = 2r−1.

Substitution of (3.37) and (3.38) into (3.36) implies that

I31 ≤ C
(1− x)2r

n2r

∞∑
k=1

mn−2r−2,k(x) +C


ϕ2r(x)

nr
, for x ≥

1
n

;

ϕ2(x)(1− x)2r−2

n2r−1
, for x <

1
n
.

Since the equality
∞∑

k=0

mn,k(x) = 1 is valid for alln ∈ N and mn−2r−2,0(x) = (1−x)n−2r−1,

we may conclude that

∞∑
k=1

mn−2r−2,k(x) =
∞∑

k=0

mn−2r−2,k(x) −mn−2r−2,0(x)

≤ 1− (1− x)n−2r−1

≤ 1.

On the other hand, it is easy to see that forx ≥
1
n

the inequality

ϕ2(x)(1− x)2r

n2r+1
=
ϕ2r+2(x)

nr+1

1
(nx)r

≤
ϕ2r+2(x)

nr+1

and forx <
1
n

the inequality

ϕ4(x)(1− x)2r−2

n2r
=
ϕ2(x)(1− x)2r

n2r+1
nx≤

ϕ2(x)(1− x)2r

n2r+1

hold. Hence, with the help of these inequalities one gets

ϕ2(x)
n

I31 ≤ C
ϕ2(x)(1− x)2r

n2r+1
+C
ϕ2(x)

n


ϕ2r(x)

nr
, for x ≥

1
n

;

ϕ2(x)(1− x)2r−2

n2r−1
, for x <

1
n
,
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which obviously implies that

ϕ2(x)
n

I31 ≤ C


ϕ2(r+1)(x)

nr+1
, for x ≥

1
n

;

ϕ2(x)(1− x)2r

n2r+1
, for x <

1
n
.

(3.41)

We now considerI32. Using the inequality (3.35) forn > 2(r + 1), we can write

I32 =

∞∑
k=1

[(
k

n+ k
−

k
n+ k− 2

)
+

(
k

n+ k− 2
− x

)]2r

mn−2,k(x)

≤ 22r−1
∞∑

k=1

( k
n+ k

−
k

n+ k− 2

)2r

+

(
k

n+ k− 2
− x

)2r mn−2,k(x)

= 22r−122r
∞∑

k=1

k2r

(n+ k)2r(n+ k− 2)2r
mn−2,k(x) + 22r−1An−2,2r(x)

≤ 24r−1
∞∑

k=1

1
(n+ k)2r

mn−2,k(x) + 22r−1An−2,2r(x).

In a similar way that of (3.37), we find that

1
(n+ k)2r

mn−2,k(x) ≤ C
(1− x)2r

n2r
mn−2r−2,k(x).

Hence, we may write

I32 ≤ C
∞∑

k=1

(1− x)2r

n2r
mn−2r−2,k(x) +CAn−2,2r(x).

Multiplying both sides of this inequality by
ϕ2(x)

n
and taking (3.29) into account, we

have

ϕ2(x)
n

I32 ≤ C
ϕ2(x)(1− x)2r

n2r+1
+C
ϕ2(x)

n


ϕ2r(x)

nr
, for x ≥

1
n

;

ϕ2(x)(1− x)2r−2

n2r−1
, for x <

1
n

≤ C


ϕ2(r+1)(x)

nr+1
, for x ≥

1
n

;

ϕ2(x)(1− x)2r

n2r+1
, for x <

1
n
.

(3.42)
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For some constantC, the inequalities (3.41) and (3.42) imply that

|I3| ≤ C


ϕ2(r+1)(x)

nr+1
, for x ≥

1
n

;

ϕ2(x)(1− x)2r

n2r+1
, for x <

1
n
.

(3.43)

Thus, forn > 2(r + 1), by the inequalities (3.31), (3.32) and (3.43), we conclude that

An,2(r+1)(x) ≤ I1 + I2 + |I3| ≤ C


ϕ2(r+1)(x)

nr+1
, for x ≥

1
n

;

ϕ2(x)(1− x)2r

n2r+1
, for x <

1
n
.

Therefore, by induction onp the theorem has been proved.�
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CHAPTER 4

ON SOME PROPERTIES OF THE MEYER-K ÖNIG AND

ZELLER OPERATORS

The aim of this chapter is to give some basic properties of the Meyer-König and

Zeller operators

Mn( f ; x) =


(1− x)n+1

∞∑
k=0

f

(
k

n+ k

) (
n+ k

k

)
xk, if 0 ≤ x < 1;

f (1), if x = 1.

(4.1)

Firstly, we show that these operators preserve the Lipschitz constants [16] and then we

give the monotonicity properties [6] of these operators. Finally, we prove that these

linear positive operators satisfy an initial value problem.

4.1 Preservation of Lipschitz Constants

Let us recall the definition of concave function which is given in [6].

Definition 4.1 A function f is said to be concave on an interval[a,b] if for any points

t j, j = 1,2, . . .n in [a,b] and arbitrary constantsαi , i = 1,2, . . .n, f satisfies the

inequality

α1 f (t1) + α2 f (t2) + . . . αn f (tn) ≤ f (α1t1 + α2t2 + . . . αntn) (4.2)

where0 < αi < 1 and α1 + α2 + . . . + αn = 1.

If the reverse of the inequality (4.2) holds, then f is said to be convex.
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Theorem 4.2 Let Mn be the linear positive operators defined by (4.1). Then, for all

f ∈ LipM(α) and n∈ N, we have

Mn( f ; x) ∈ LipM(α). (4.3)

Proof. Let f ∈ LipM(α) and n ∈ N. Now, consider the linear positive operators

Mn defined by (4.1) and assume that 0≤ x1 < x2 < 1. SinceMn( f ; 1) = f (1), we will

consider only the casex2 < 1. Then, with the help of the binomial formula

(x+ y)n =

n∑
k=0

(
n
k

)
xkyn−k,

we have

Mn( f ; x2) =
∞∑
j=0

f

(
j

n+ j

) (
n+ j

j

)
x j

2(1− x2)
n+1

=

∞∑
j=0

f

(
j

n+ j

) (
n+ j

j

)
(1− x2)

n+1

(
x2 − x1 + x1 − x1x2

1− x1

) j

=

∞∑
j=0

f

(
j

n+ j

) (
n+ j

j

)
(1− x2)n+1

(1− x1) j

j∑
k=0

(
j
k

)
x1

k(1− x2)
k(x2 − x1)

j−k

=

∞∑
j=0

j∑
k=0

f

(
j

n+ j

)
(n+ j)!

n!k!( j − k)!

xk
1(x2 − x1) j−k(1− x2)n+k+1

(1− x1) j

=

∞∑
k=0

∞∑
j=k

f

(
j

n+ j

)
(n+ j)!

n!k!( j − k)!

xk
1(x2 − x1) j−k(1− x2)n+k+1

(1− x1) j
.

By the change of indexj − k = `, we can write this as follows:

Mn( f ; x2) =
∞∑

k=0

∞∑
`=0

f

(
k+ `

n+ k+ `

)
(n+ k+ `)!

n!k!`!

xk
1(x2 − x1)`(1− x2)n+k+1

(1− x1)k+`
. (4.4)

On the other hand, by the Taylor expansion

1
(1− x)n

=

∞∑
k=0

(
n+ k− 1

n

)
xk
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we have

Mn( f ; x1) =
∞∑

k=0

f

(
k

n+ k

) (
n+ k

k

)
xk

1(1− x1)
n+1

=

∞∑
k=0

f

(
k

n+ k

) (
n+ k

k

)
xk

1

(1− x2)n+k+1

(1− x1)k

1(
1− x2−x1

1−x1

)n+k+1

=

∞∑
k=0

f

(
k

n+ k

) (
n+ k

k

)
xk

1(1− x2)n+k+1

(1− x1)k

∞∑
`=0

(
n+ k+ `
`

) (
x2 − x1

1− x1

)`
=

∞∑
k=0

∞∑
`=0

f

(
k

n+ k

)
(n+ k+ `)!

n!k!`!

xk
1(x2 − x1)`(1− x2)n+k+1

(1− x1)k+`
. (4.5)

By means of the factsMn(1; x) = 1, Mn(s; x) = x and the equalities (4.4), (4.5), it is

seen that

∞∑
k,`=0

(n+ k+ `)!
n!k!`!

xk
1(x2 − x1)`(1− x2)n+k+1

(1− x1)k+`
= 1, (4.6)

∞∑
k,`=0

k+ `
n+ k+ `

(n+ k+ `)!
n!k!`!

xk
1(x2 − x1)`(1− x2)n+k+1

(1− x1)k+`
= x2, (4.7)

∞∑
k,`=0

k
n+ k

(n+ k+ `)!
n!k!`!

xk
1(x2 − x1)`(1− x2)n+k+1

(1− x1)k+`
= x1. (4.8)

Since f ∈ LipM(α), it follows that

|Mn( f ; x2) − Mn( f ; x1)| ≤
∞∑

k,`=0

(n+ k+ `)!
n!k!`!

xk
1(x2 − x1)`(1− x2)n+k+1

(1− x1)k+`

×

∣∣∣∣∣∣ f
(

k+ `
n+ k+ `

)
− f

(
k

n+ k

)∣∣∣∣∣∣
≤ M

∞∑
k,`=0

(n+ k+ `)!
n!k!`!

xk
1(x2 − x1)`(1− x2)n+k+1

(1− x1)k+`

×

∣∣∣∣∣ k+ `
n+ k+ `

−
k

n+ k

∣∣∣∣∣α .
Since the function

g(t) = tα, 0 < α ≤ 1, t ∈ [0,∞)

is concave, by using (4.6), we can deduce that
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|Mn( f ; x2) − Mn( f ; x1)| ≤ M

[ ∞∑
k,`=0

(n+ k+ `)!
n!k!`!

xk
1(x2 − x1)`(1− x2)n+k+1

(1− x1)k+`

×

(
k+ `

n+ k+ `
−

k
n+ k

) ]α
.

Using now (4.7) and (4.8), we obtain

|Mn( f ; x2) − Mn( f ; x1)| ≤ M(x2 − x1)
α,

which shows thatMn( f ; x) ∈ LipM(α). Thus the proof is completed.�

We now give the monotonicity properties of the linear positive operatorsMn defined

by (4.1).

Theorem 4.3 Let n∈ N. If f is convex, then Mn( f ; x) is decreasing in n.

Proof. Let f be a convex function. Then, by the definition of the linear positive

operatorsMn, one gets

Mn( f ; x) − Mn+1( f ; x) = (1− x)n+1

{ ∞∑
k=0

f

(
k

n+ k

) (
n+ k

k

)
− (1− x)

∞∑
k=0

f

(
k

n+ k+ 1

) (
n+ k+ 1

k

)}
xk

= (1− x)n+1

{ ∞∑
k=0

f

(
k

n+ k

) (
n+ k

k

)
xk

−

∞∑
k=0

f

(
k

n+ k+ 1

) (
n+ k+ 1

k

)
xk

+

∞∑
k=0

f

(
k

n+ k+ 1

) (
n+ k+ 1

k

)
xk+1

}
= (1− x)n+1

{
f (0)+

∞∑
k=1

f

(
k

n+ k

) (
n+ k

k

)
xk

− f (0)−
∞∑

k=1

f

(
k

n+ k+ 1

) (
n+ k+ 1

k

)
xk

+

∞∑
k=1

f

(
k− 1
n+ k

) (
n+ k
k− 1

)
xk

}
.
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Since,

(
n+ k

k

)
=

n+ 1
n+ k+ 1

(
n+ k+ 1

k

)
and

(
n+ k
k− 1

)
=

k
n+ k+ 1

(
n+ k+ 1

k

)

we have

Mn( f ; x) − Mn+1( f ; x) = (1− x)n+1
∞∑

k=1

{
n+ 1

n+ k+ 1
f

(
k

n+ k

)
− f

(
k

n+ k+ 1

)
+

k
n+ k+ 1

f

(
k− 1
n+ k

) }(
n+ k+ 1

k

)
xk.

Let

An,k :=
n+ 1

n+ k+ 1
f

(
k

n+ k

)
− f

(
k

n+ k+ 1

)
+

k
n+ k+ 1

f

(
k− 1
n+ k

)
.

Then, one has

Mn( f ; x) − Mn+1( f ; x) = (1− x)n+1
∞∑

k=1

An,k

(
n+ k+ 1

k

)
xk.

If we choose

α1 =
n+ 1

n+ k+ 1
, α2 =

k
n+ k+ 1

, x1 =
k

n+ k
and x2 =

k− 1
n+ k

,

then, it is clear that

α1 + α2 = 1

and

α1x1 + α2x2 =
(n+ 1)k

(n+ k+ 1)(n+ k)
+

k(k− 1)
(n+ k+ 1)(n+ k)

=
k

n+ k+ 1
.

Hence, we can write

An,k = α1 f (x1) + α2 f (x2) − f (α1x1 + α2x2).
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Using the fact thatf is convex, we find

α1 f (x1) + α2 f (x2) − f (α1x1 + α2x2) ≥ 0.

This gives An,k ≥ 0, and so we have

Mn( f ; x) − Mn+1( f ; x) ≥ 0.

Thus, the proof is completed.�

4.2 An Application to Initial Value Problems

In this section, we show that the linear positive operatorsMn given by (4.1) is a

solution of an initial value problem for a first order ordinary differential equation. For

this purpose, let us first prove the following lemmas.

Lemma 4.4 If | f ′′| ≤ ν, α ≥ 0, β ≥ 0 andα + β = 1, then we have

∣∣∣α f (x) + β f (y) − f (αx+ βy)
∣∣∣ ≤ ν

8
(x− y)2.

Proof. Let t = αx + βy, then α =
t − y
x− y

and β = 1 − α =
x− t
x− y

. By the Taylor

formula f (x) = f (a) + (x− a) f ′(a) +
(x− a)2

2
f ′′(a), we may write

∣∣∣α f (x) + β f (y) − f (αx+ βy)
∣∣∣ = ∣∣∣α f (x) + (1− α) f (y) − f (αx+ βy)

∣∣∣
=

∣∣∣∣∣ 1
x− y

[
(t − y) f (x) + (x− t) f (y) − (x− y) f (t)

]∣∣∣∣∣
=

∣∣∣∣∣∣ 1
x− y

[
(t − y)

{
f (a) + (x− a) f ′(a) +

(x− a)2

2
f ′′(a)

}
+ (x− t)

{
f (a) + (y− a) f ′(a) +

(y− a)2

2
f ′′(a)

}
− (x− y)

{
f (a) + (t − a) f ′(a) +

(t − a)2

2
f ′′(a)

} ]∣∣∣∣∣∣.
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Using the assumption| f ′′| ≤ ν, by simple computation we find

∣∣∣α f (x) + β f (y) − f (αx+ βy)
∣∣∣ = ∣∣∣∣∣12 [

t(x+ y) − t2 − xy
]∣∣∣∣∣ | f ′′(a)|

≤
ν

2

∣∣∣t(x+ y) − t2 − xy
∣∣∣

=
ν

2

∣∣∣[αx+ (1− α)y
]
(x+ y) −

[
αx+ (1− α)y

]2
− xy

∣∣∣
=
ν

2

∣∣∣α − α2
∣∣∣ (x− y)2.

Now, let g(α) = α − α2. Sinceg(α) ≤
1
4

, it follows that

∣∣∣α f (x) + β f (y) − f (αx+ βy)
∣∣∣ ≤ ν

8
(x− y)2.

So, the proof is completed.�

Lemma 4.5 If | f ′′| ≤ ν, then we have

(i)
∣∣∣Mn( f ; x) − Mn+1( f ; x)

∣∣∣ ≤ ν
8n2

(1− x)

(ii)
∣∣∣Mn( f ; x) − f (x)

∣∣∣ ≤ ν
3n

(1− x).

Proof. By the Theorem 4.3, we have

Mn( f ; x) − Mn+1( f ; x) = (1− x)n+1
∞∑

k=1

(
n+ k+ 1

k

)
×

[
α1 f (x1) + α2 f (x2) − f (α1x1 + α2x2)

]
xk,

where

α1 =
n+ 1

n+ k+ 1
, α2 =

k
n+ k+ 1

; x1 =
k

n+ k
and x2 =

k− 1
n+ k

.

Taking into consideration the Lemma 4.4, and using the expressions

x1 − x2 =
1

n+ k
and

n+ k+ 1
n(n+ 1)(n+ k)

≤
1
n2
,
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one has

∣∣∣Mn( f ; x) − Mn+1( f ; x)
∣∣∣ ≤ (1− x)n+1

∞∑
k=1

(
n+ k+ 1

k

)
ν

8
(x1 − x2)

2xk

=
ν

8
(1− x)n+1

∞∑
k=1

n+ k+ 1
n(n+ 1)(n+ k)

(
n+ k− 1

k

)
xk

≤
ν

8n2
(1− x)n+1

∞∑
k=1

(
n+ k− 1

k

)
xk.

Now, we use the expansion

1
(1− x)n

=

∞∑
k=0

(
n+ k− 1

k

)
xk (4.9)

in order to obtain

∣∣∣Mn( f ; x) − Mn+1( f ; x)
∣∣∣ ≤ ν

8n2
(1− x)n+1

 ∞∑
k=0

(
n+ k− 1

k

)
xk − 1


=

ν

8n2
(1− x)n+1

[
1

(1− x)n
− 1

]
=

ν

8n2

[
(1− x) − (1− x)n+1

]
≤

ν

8n2
(1− x).

Thus, the desired result (i) is obtained. The statement (ii) can be proven similarly .�

We shall now give the main theorem.

Theorem 4.6 The functions yn(x) defined recursively by

y0(x) = y0, yn(x) = y0 +

x∫
0

Mn { f (t, yn−1(t)); s}ds, n = 1,2, . . . , (4.10)

converge uniformly to a solution of the initial value problem

y′ = f (x, y), y(0) = y0 for x ∈ [0,1)

provided that f and its first two partial derivatives are bounded in the strip0 ≤ x < 1,
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−∞ < y < ∞ and that f satisfies the Lipschitz condition

| f (x, y1) − f (x, y2)| ≤ λ|y1 − y2|, withλ < 1. (4.11)

Proof. Let yn(x) be defined as in (4.10). We consider the series

y0 +

∞∑
k=0

[
yk+1(x) − yk(x)

]
.

This series converges uniformly on [0,1) if and only if its partial sum converges uni-

formly on [0,1). Let εn(x) = yn+1(x) − yn(x). Then, by means of (4.10) one gets

|εn(x)| =

∣∣∣∣∣∣y0 +

x∫
0

Mn+1

{
f (t, yn(t)); s

}
ds− y0 −

x∫
0

Mn

{
f (t, yn−1(t)); s

}
ds

∣∣∣∣∣∣
≤

x∫
0

∣∣∣∣∣∣Mn+1

{
f (t, yn(t)); s

}
− Mn

{
f (t, yn−1(t)); s

}∣∣∣∣∣∣ds

≤

x∫
0

∣∣∣∣∣∣Mn+1

{
f (t, yn(t)); s

}
− Mn

{
f (t, yn(t)); s

}∣∣∣∣∣∣ds

+

x∫
0

∣∣∣∣∣∣Mn

{
f (t, yn(t)); s

}
− Mn

{
f (t, yn−1(t)); s

}∣∣∣∣∣∣ds

=: I1 + I2.

By the Lemma 4.5, we can write

I1 =

x∫
0

∣∣∣∣∣∣Mn+1

{
f (t, yn(t)); s

}
− Mn

{
f (t, yn(t)); s

}∣∣∣∣∣∣ds

≤
ν

8n2

x∫
0

(1− s)ds

=
ν

8n2

(
x−

x2

2

)
.

Since x−
x2

2
≤

1
2
, x ∈ [0,1), from this it follows that

I1 ≤
ν

16n2
, (4.12)
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where

ν = sup
0≤x<1

∣∣∣∣∣∣ d2

dx2
f
(
x, yn(x)

)∣∣∣∣∣∣ .
We now prove that our hypotheses guarantee thatν < ∞. Since f and its first two

partial derivatives are bounded in the stripx ∈ [0,1), −∞ < y < ∞, we let

K = sup
0≤x<1
−∞<y<∞

{| f |, | f1|, | f2|, | f11, | f12|, | f22|} ,

where f1, f2 denote the first partial derivatives off with respect to the first and sec-

ond variable off respectively, and similarlyf11, f12, f22 denote the second partial

derivatives. On the other hand, sinceMn(1; x) = 1, for a functiong we have

∣∣∣∣Mn(g; x)
∣∣∣∣ ≤ sup

0≤s<1

∣∣∣g(s)
∣∣∣∣∣∣∣∣∣(1− x)n+1

∞∑
k=0

(
n+ k

k

)
xk

∣∣∣∣∣∣
≤ sup

0≤s<1

∣∣∣g(s)
∣∣∣. (4.13)

Thus, by the definition ofyn(x), one has

∣∣∣y′n(x)
∣∣∣ = ∣∣∣Mn

{
f (t, yn−1(t)); x

}∣∣∣ ≤ sup
0≤t<1

∣∣∣ f (t, yn−1(t))
∣∣∣ = K

or

|y′n(x)| ≤ K.

Now, let F(x) = f (x, yn−1(x)). Then, one can write

y′′n (x) =
d
dx

(
Mn

{
f (t, yn−1(t)); x

})
=

d
dx

(1− x)n+1
∞∑

k=0

F

(
k

n+ k

) (
n+ k

k

)
xk


= (1− x)n

[
− (n+ 1)

∞∑
k=0

F

(
k

n+ k

) (
n+ k

k

)
xk

+

∞∑
k=1

F

(
k

n+ k

) (
n+ k

k

)
kxk−1 −

∞∑
k=1

F

(
k

n+ k

) (
n+ k

k

)
kxk

]
.
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Using the relation

(
n+ k

k

)
=

n+ k
k

(
n+ k− 1

k− 1

)
, we find

y′′n (x) = (1− x)n

[
− (n+ 1)

∞∑
k=0

F

(
k

n+ k

) (
n+ k

k

)
xk

+

∞∑
k=1

F

(
k

n+ k

)
(n+ k)

(
n+ k− 1

k− 1

)
xk−1 −

∞∑
k=1

F

(
k

n+ k

) (
n+ k

k

)
kxk

]
= (1− x)n

−(n+ k+ 1)
∞∑

k=0

F

(
k

n+ k

)
+

∞∑
k=0

(n+ k+ 1)F

(
k+ 1

n+ k+ 1

) (n+ k
k

)
xk

= (1− x)n
∞∑

k=0

(n+ k+ 1)

[
F

(
k+ 1

n+ k+ 1

)
− F

(
k

n+ k

)] (
n+ k

k

)
xk.

By using the mean value theorem on the interval

(
k

n+ k
,

k+ 1
n+ k+ 1

)
for the function

F, we obtain

∣∣∣∣∣∣F
(

k+ 1
n+ k+ 1

)
− F

(
k

n+ k

)∣∣∣∣∣∣ = ∣∣∣∣F′(ξ)∣∣∣∣ ∣∣∣∣∣ k+ 1
n+ k+ 1

−
k

n+ k

∣∣∣∣∣
= |F′(ξ)|

n
(n+ k)(n+ k+ 1)

, ξ ∈

(
k

n+ k
,

k+ 1
n+ k+ 1

)
,

and so

y′′n (x) ≤ ν(1− x)n
∞∑

k=0

|F′(ξ)|
n

n+ k

(
n+ k

k

)
xk. (4.14)

Then, differentiation ofF with respect tox gives that

F′(x) =
d
dx

[
f (x, yn−1(x))

]
= f1(x, yn−1(x)) + f2(x, yn−1(x))y′n−1(x)

which implies ∣∣∣F′(x)
∣∣∣ ≤ | f1| + | f2||y′n−1| ≤ K + K2.

Using (4.9) and this inequality in (4.14), we find

|y′′n (x)| ≤ K + K2.
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On the other hand, since

d2

dx2

[
f (x, yn(x))

]
= f11+ (2 f12+ f22y

′
n)y
′
n + f2y

′′
n ,

taking supremum of both sides of this overx ∈ [0,1), we find

ν ≤ K + (2K + K2)K + K(K + K2) = C.

Setting this into (4.12), we may conclude thatI1 ≤
C
n2

.

Now, we turn toI2. Since the operatorsMn are linear and the functionf satisfies

the Lipschitz condition (4.11), using (4.13), for 0≤ x < 1, we can write

I2 =

x∫
0

∣∣∣∣∣∣Mn

{
f (t, yn(t)); s

}
− Mn

{
f (t, yn−1(t)); s

}∣∣∣∣∣∣ds

≤

x∫
0

Mn

{∣∣∣∣ f (t, yn(t)) − f (t, yn−1(t))
∣∣∣∣; s

}
ds

≤ λ

x∫
0

Mn

{∣∣∣yn(t) − yn−1(t)
∣∣∣; s

}
ds

= λ

x∫
0

Mn

{∣∣∣εn−1(t)
∣∣∣; s

}
ds

≤ sup
0≤t<1

∣∣∣∣εn−1(t)
∣∣∣∣ x∫

0

ds

≤ λ sup
0≤t<1

∣∣∣εn−1(t)
∣∣∣.

Furthermore, we have

sup
0≤t<1

∣∣∣εn(t)∣∣∣ ≤ sup
0≤t<1

∣∣∣∣∣∣∣∣y0 +

x∫
0

Mn+1
{
f (t, yn(t)); s

}
ds

∣∣∣∣∣∣∣∣ + sup
0≤t<1

∣∣∣∣∣∣∣∣y0 +

x∫
0

Mn
{
f (t, yn−1(t)); s

}
ds

∣∣∣∣∣∣∣∣
≤ 2|y0| + sup

0≤t<1

x∫
0

∣∣∣∣Mn+1
{
f (t, yn(t)); s

}∣∣∣∣ds+ sup
0≤t<1

x∫
0

∣∣∣∣Mn
{
f (t, yn−1(t)); s

}∣∣∣∣ds.

65



Using again the inequality (4.13), it implies that

sup
0≤t<1

∣∣∣εn(t)∣∣∣ ≤ 2|y0| + sup
0≤t<1
| f (t, yn(t))|

x∫
0

ds+ sup
0≤t<1
| f (t, yn−1(t))|

x∫
0

ds

= 2
(
|y0| + K

)
.

Therefore, we find

∣∣∣εn(t)∣∣∣ ≤ I1 + I2 ≤
C
n2
+ λ sup

0≤t<1

∣∣∣εn−1(t)
∣∣∣. (4.15)

By using the Weierstrass-M test, it is easily seen that the series
∞∑

n=1

∣∣∣εn(t)∣∣∣ converges

uniformly. In this case, we may conclude that its partial sum converges uniformly.

That is, we have

lim
n→∞

yn(x) = y(x).

From this, it follows that

lim
n→∞

y′n(x) = lim
n→∞

Mn
{
f (t, yn−1(t)); x

}
= y′(x).

Finally, by using the fact thatf satisfies the Lipschitz condition and taking into con-

sideration Lemma 4.5, we have

∣∣∣∣Mn
{
f (t, yn(t)); x

}
− f (x, y(x))

∣∣∣∣ ≤ ∣∣∣∣Mn
{
f (t, yn(t)); x

}
− Mn

{
f (t, y(t)); x

}∣∣∣∣
+

∣∣∣∣Mn
{
f (t, y(t)); x

}
− f (x, y(x))

∣∣∣∣
≤ λMn

{∣∣∣yn(t) − yn−1(t)
∣∣∣; x

}
+

∣∣∣∣Mn
{
f (t, y(t)); x

}
− f (x, y(x))

∣∣∣∣
≤ λ sup

0≤t<1

∣∣∣∣yn(t) − y(t)
∣∣∣∣ + ν3n

(1− x)
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or

0 ≤ lim
n→∞

∣∣∣∣Mn
{
f (t, yn(t)); x

}
− f (x, y(x))

∣∣∣∣ ≤ lim
n→∞

(
λ sup

0≤t<1

∣∣∣∣yn(t) − y(t)
∣∣∣∣ + ν3n

(1− x)

)
.

(4.16)

Since yn(t)⇒ y(t), the right hand side of the above equation is equal to zero and this

leads to

Mn
{
f (t, yn(t)); x

}
⇒ f (x, y(x)), x ∈ [0,1).

Thus, we complete the proof.�
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