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ABSTRACT

ON MEYER-KONIG AND ZELLER OPERATORS
Dogru Akgol, Sibel
Master, Department of Mathematics
Supervisor: Assoc. Prof. Dr. AysabErencin
January 2010, 69 pages

This thesis is a survey on MeyerdKig and Zeller operators which are well-known
positive linear operators in the approximation theory.

This thesis consists of four chapters. In the first chapter, a short history of the
studies on the approximation of the linear positive operators, and some basic defini-
tions and theorems are given. In the second chapter, some approximation properties
of a generalization of Meyer-&hig and Zeller operators via generating functions and
a Kantarovich type generalization of MeyeibKig and Zeller operators are obtained.
Also, the rate of convergence of these operators, with the help of usual modulus of
continuity and the elements of Lipschitz class, is computed and an application to func-
tional differential equations is presented. In the third chapter, explicit formulas and
some estimates for the moments of Meydirkg and Zeller operators are given. In the
final chapter, it is shown that MeyeréRig and Zeller operators preserve the Lipschitz

constants and satisfy an initial value problem.

Keywords: Linear positive operators, Meyetiig and Zeller operators, Korovkin

theorem, Lipschitz class, modulus of continuity, function&ledential equation.



OZET

MEYER-KONIG VE ZELLER OPERATORLER UZERINE
Dogru Akgol, Sibel
Y uksek Lisans, Matematik@umu
Tez Yoneticisi: Dog. Dr. Aysegl Erengin
Ocak 2010, 69 sayfa

Bu tez, yaklasim teorisinde taninmis lineer pozitif opénat olan Meyer-Knig
ve Zeller operdirleri izerine bir incelemedir.

Bu tez ddrt bolumden olusmaktadir. Birinciddiimde, lineer pozitif operatlerin
yaklasimitzerine yapilan ¢alismalarin kisa bir tarihgesi ve bazi temel tanim ve teo-
remler verilmistir. Ikinci bolumde, Meyer-Knig ve Zeller operatlerinin dajurucu
fonksiyonlar aracifjilyla tanimlanan bir genellestirmesi ve Kantarovich tipli bir genelles-
tirmesi sunularak bu genellestirmelerin yaklagazellikleri elde edilmistir. Ayrica
sureklilik modulti ve Lipschitz sinifinin elemanlari yardimiyla bu opérbgrin yaklasim
hizlari hesaplanmis ve fonksiyonel diferansiyel denklemlere bir uygulamalari verilmistir.
Uciindi bdlumde, Meyer-Knig ve Zeller operdtrlerinin momentleri icin agik fortiller
ve bazi hesaplamalar elde edilmistir. Sasliinde ise Meyer-Knig ve Zeller ope-
ratrlerinin Lipschitz sabitini korudgu ve bir baslangi¢ dger problemini sgladgi

gosterilmistir.

Anahtar Kelimeler: Lineer pozitif operatler, Meyer-Konig ve Zeller operdirleri,
Korovkin teoremi, Lipschitz sinifi,igeklilik modilt, fonksiyonel diferansiyel denk-

lem.
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CHAPTER 1

INTRODUCTION

The approximation theory has a close relationship with other branches of math-
ematics, so its development has assisted the development in other mathematical do-
mains. It plays an increasingly important role in applications to many subjects of
applied sciences and engineering. Moreover, it has significant intersections with ev-
ery other topics of analysis. In particular, this theory has been used in the theory of
approximation of continuous functions by means of sequences of linear positive op-
erators. The main aim of this theory is to find representations of a function space’s
elements as limits of elements of another space and in this way, to solve the approxi-

mation problem.

1.1 Basic Definitions and Lemmas

In this section, we give some basic definitions and useful theorems for the linear

positive operators which will be used throughout this thesis.

Definition 1.1 A nonempty set X is said to be a "linear space” (or a vector space)

over a fieldK, if it satisfies the following conditions:
() VX,ye X, x+ye X

(i) VX, ye X, X+y=y+X

(i) Yxy,ze X, Xx+(y+2=(X+Yy)+z

(iv) ¥xe X, d0 € X suchthatx 6 =0+ x= X

(v) Yxe X, dX e X such that % X =6



(vi) Yxe XandYa € K, axe X

(vii) Yxe X andVa,B €K, a(BX) = (aB)x
(vii) ¥xe X, Ix=X

(ix) Vxe X andYa € K, a(X+Yy)=axX+ay

(x) Yxe XandVa,B €K, (a+B)X=ax+pBX.

Definition 1.2 Let X be a linear space over a field. A function||.|| : X — R*

satisfying the following conditions is said to be a "norm”.
(i) ¥YxeX, X >0

(i) Vxe X, [X|=0 < x=0

(i) Vxe Xand¥Ya € K, |lax|| = |a| ||X]

(iv) Vxye X, lIx+yl <X+ yll-

A linear space on which a norm is defined is then called a "linear normed space”.

Definition 1.3 Let X and Y be two linear normed function spaces. An operator
L : X = Y is a rule which assigns to each function of X a function of Y.

We denote the operators byfl; x) or L(f(9); X).

Definition 1.4 Let X and Y be two linear normed function spaces. Also, teXl— Y
be an operator. L. X — Y is said to be a "linear operator” if it satisfies the two

conditions:
() L(f+gx) = L(f; %)+ L(g:X),
(i) L(af;x) = aL(f;x),

for every fg € X and for every scalat.

By the definition of the linear operator, it is easily seen & x) = 0.



Definition 1.5 Let X and Y be two linear normed function spaces, and also, ¢éeXf
such that f> 0. If L(f; x) > 0O, then the operator L X — Y is said to be a "positive
operator”.

If L : X — Y is positive and linear operator, then it is called as "linear positive

operator”

Monotonicity is one of the crucial properties of the linear positive operators. The

following lemma states that every linear positive operator is monotone increasing.

Lemma 1.6 Let L be a linear positive operator. If £ g, then we have

L(f; %) < L(g; X). (1.1)

Proof. If f < g, then we can writg— f > 0. By positivity and linearity of the operator
L, one gets

Lig-f;x)=L(g;x)-L(f;x)>0

which gives the desired resutt.

As a result of Lemma 1.6, we can give the following lemma.

Lemma 1.7 Let L be a linear positive operator. Then, we have

IL(E; )1 < LI %) (1.2)

Proof. Since—|f| < f <|f], by the Lemma 1.6 we have

L(—If]; X) < L(f; x) < L(/f]; X). (1.3)

The linearity of the operatdr implies thatL(—|f|; X) = —L(|f|; X). Thus, from inequal-

ity (1.3) we obtain the inequality (1.2

We now give the definition of the function spaCga, b] which frequently appears

in this thesis.



Definition 1.8 C[a, b] is the space of functions defined pmb] such that they are
continuous in that interval, continuous on the right at the point a and on the left at the

point b. The space [@, b] is normed by

I fllciap = max|f(x).
as<x<b

Definition 1.9 Let ne N and f,(x) € C[a, b] be a sequence of functions. If

imllfn(x) — f(X)llcfay = 0,

then f(x) is said to "converge uniformly to the functior{x) in C[a, b]”, and denoted
by
fa(X) = f(X).

1.2 Fundamental Theorems

Positive approximation processes have a fundamental role in approximation theory
since the linear positive operators, being the main elements of these processes, are the
simplest structures providing functions to converge.

In 1895 Weierstrass proved thaffifx) is a continuous function on a closed interval

[a, b], then for eacte > 0, there exists a polynomialx) such that
max|f(x) — p(X)| < e.
a<x<b

Weierstrass’ theorem includes the existence of a polynomial converging to a continu-
ous function uniformly on a closed interval.
Bernstein [4], to give a simple proof of the Weierstrass theorem, introduced the

polynomials
Bn(f;X) = Z f (‘ﬁ() (E)x"(l — X"k (1.4)
k=0

which are called as Bernstein polynomials. The author proved tfi&t)ifs continuous



on [0, 1], thenB,(f; X) converges uniformly td (x) on [0, 1]. It is clear that the Bern-
stein polynomials are linear positive operators. So, discussing further properties of the
Bernstein polynomials, theory of linear positive operators occurred in the approxima-
tion theory. This theory was first investigated by Bohman and Korovkin (see [2]-[4],
[12], [13)).

Bohman stated the following theorem.

Theorem 1.10 (Bohman):Let f be a continuous function 4, 1]. Then, the neces-

sary and sgficient conditions that the polynomials

n

Po(f;%) = D fakn)Qua(®, 0 < akn <L, Qua(x) = 0

k=0

converge uniformly to f are:

@M lim > Q¥ =1,
k=0

(i) lim > @nQen(¥) = %
k=0

n
(i) lim " o Qalx) = X
k=0
Later, P.P. Korovkin proved a more general theorem known as Korovkin theorem.

Theorem 1.11 (P.P. Korovkin): Let L, : C[a,b] — C[a, b] be a sequence of linear

positive operators satisfying the conditions
() Ln(1;x) 3 1,

(i) La(sX) 3 X,

(i) Ln(s%X) =3 %2

Then, for every & C[a, b], Ly(f; X) converge uniformly to f on [a,b], i.e.,

La(f; x) =3 £(X).



CHAPTER 2

APPROXIMATION BY SOME GENERALIZATIONS OF THE
MEYER-K ONIG AND ZELLER OPERATORS

The classical Meyer-8nig and Zeller operators [5] are defined by

- Kk n+ K
(1—x)”+12f(—)( )x", ifO<x<1;
Mn(f;x): = n+k+1 k

f(1), if x = 1.

(2.1)

In order to give the monotonicity properties, Cheney and Sharma [6] modified these

operators as follows:

(1- x)n+1Z f (Lk)(”lk)xk, if0 <x<1;
Ma(f; X) = oo\

f(1), if x= 1.

2.2)

These operators are called as Bernstein power series. Throughout this thesis, we refer
both of the operators (2.1) and (2.2) as Meyémi{ and Zeller operators.

In this chapter, we first introduce a generalization by means of generating functions
[17] and a Kantarovich type [15] generalization of the Meyémi{ and Zeller oper-
ators defined by (2.1) and (2.2). We compute the order of approximation by means
of modulus of continuity and the elements of Lipschitz class. Finally, an r-th order

generalization and an application to functiondtfeliential equations are presented.



2.1 A Generalization of the Meyer-Konig and Zeller Operators

by a Class of Generating Functions

In this section, we consider the sequence of linear positive operators,

[

(n) o .
Z (an(k))c X, xe[0,1), te(-c0,0],  (2.3)

La(f, x) =

’

where{F,(x,t)}, n € N are the generating functions for the sequence of functions

{CI((”)(t)}keNo, Ny = N U {0} in the form

Fn(x,t) = i C(t)x¢ (2.4)
k=0

andC(t) > 0 fort € (~c0, 0].

We assume that the following conditions are valid:
(@) Fria(xt) = p(X)Fn(x, 1), p(X) < M < o0, x € [0, 1),
(b) ACC™ (1) = a,(KC™, (1) - kC"(1), Ae[0,a], C(t) = Oforke Z,
(c) maxk,n} < a,(k) < an(k+ 1).

Remark 2.1 The following choices show that the operatogsdiven in (2.3) are the

generalizations of some well known operators:

(i) Ifwe take &(k) = n+k, C(t) = LI(1), where L (t) is the Laguerre polynomial
[19] and
Fa(ct) = (1— )" Lex (t—x)
n ) - p X — 1 )

then the operators (2.3) become

Pa(f:X) = (1 — x)™! exp(%() Z f (%() LI ()%
k=0

which is given in [6].



(i) Taking C"(t) = LI(t) again, Fy(x, t) as in part (i) and choosing,#k) = n+k+1

for the operators (2.3), we get

. tX \ o k
20 = @0 e 25) D 1 (g 0%

k=0

defined in [10].

(iii) Since L"(0) = (” E k), by choosing t= 0in Pa(f; X) defined in (i), one obtains
the Meyer-Konig and Zeller operators defined by (2.1):

R k \(n+k
Ma(f:X) = (1 - X) 1Zf(m)( ‘ )x".

k=0

(iv) Now, if we insert & 0in the operators Z(f; x) defined in (ii), then the operators

Z,(f; x) turn out to the Bernstein power series defined by (2.2):

Min(f:%) = (1— x)”*li f( K )(”+ k)xk.

- n+k+1 k

k
(v) If we put R(xt) = €% ay,(k) = nand G"(t) = % in the operators (2.3), we

obtain the well known Szasz-Mirakjan operators [1]:

o0 k
S(fix) = e™ > f ('ﬁ() (”k)!() .

k=0

k
(vi) For the choices R(x,t) = €%, a,(k) = h(n) and C"(t) = (h(kr:)) , the operators

(2.3) turn out to be

oy X K\ (h(n)»)*

which were introduced in [17].



2.1.1 Approximation Properties of,L

We now give Korovkin type approximation properties of the operatgrdefined

by (2.3). The following theorem states the convergence of the opelators

Theorem 2.2 Let xe [0, 1), t € (—o0,0] and b be a real number in the intervé, 1).
It]

If f is continuous or0, b] and— — 0, then Ly(f; X) converges to @) uniformly on

[0, b].

Proof. By the Korovkin theorem 1.11, it is flicient to show that the conditions

La(f(s);X) = X, for f(s) =9, i=0,1,2

are satisfied.

By the definition of the operatols,, for the functionf(s) = 1 it is easily seen that

La(1:X) = X t)ZC(")(t)x =

which gives

r'}[l’)lo ILn(1;X) = Ulcpo = O. (2.5)

We now consider the functiofi(s) = s. By using the condition (b), equation (2.4)

and the definition of the operatolg, one gets

LS = i 2 a i O%
= oy
= R t)ZC&“)X‘ Fox, t)Z )
cr i) .

3 (n) Atx
= n(xt)z (0% - n(x,t)zan(ku)

C(n+1) t
= X- At O XK. (2.6)
Fn(x.t) &4 an(k + 1)




Since t € (—, 0], we can write

AtX — 1
Fn(x 1) &4 an(k + 1)

CMY(t)x< <0,
thus, from the equation (2.6), it follows that
Ln(s;x) — x> 0. (2.7)

By the condition (c), we have mékn} < a,(k+ 1). If maxk,n} =n, then
k < n < ay(k+ 1), for the other case, if méix n} =k, thenn < k < a,(k+ 1). This
implies that

<
an(k+1) ~

1 1
= (2.8)

Thus, using the equations (2.4) and (2.6), and the conditions (c) and (a), we obtain

IA

T nFa(x 1) £

Atx
= ox— X ekt
X~ pEcp Y
At
_ X_XH? . (2.9)

1 Atx <
Ln(s; X) X X Z CM B (b)x¢
pary

From inequalities (2.7) and (2.9), it is obvious that

KASX)-HS—Xm?AF (2.10)

Taking maximum of both sides of the inequality (2.10) oveb]pwe find that

bMalt|
ILa(S; X) = Xllcpop < - (2.11)

It

Sinceﬁ — 0, this gives

r'\m ILa(S; X) = Xlcpop = O. (2.12)

10



Now we consider the functiofi(s) = s°. By using the condition (b), we have

() = (x 52 [em(k)]zc(m(t)xk
= & (X, 5 ; [an(k)]z [an (A1) — A ()] X
o [ (n)
=) e O Ao
- anx,og;- " C (n)()‘mcm(t)]
+g»an(k) G0 P (k)]zAthl)(t)]
or

()

At

) an(k ") 1 1)y ok
Ln(Sz, X) — X2 < [ = t) Z an(k) C —2(t)xk - x|+ Fa(X.1) é an(k)Ck 2 (£)x
Seop Z 20| [ % et
=. |1+||2|+||3|+||4|. (213)

From the condition (c), it is easily seen t ;t(;)l) < 1. By using this fact, we can

write

1 < ank-1)
Fa(x 1) & an(K)

I, = C )X — ¥ < 0. (2.14)

If we use the equation (2.4) and the conditions (a) and (c), then we find that

At <« 1

_ (n+1) k (n+1) k
ol = & t)Zan(k)C“ OX1 = E ) Liakeg kO
a|t|X C 1 (n+1)(t)x

Fa(x 1) £ an(k+2) ¥

alt|x? (1) /4y Uk
C t)x
nFn(X,t) kzz(; o

ajt|x?
n

IA

IA

P(X). (2.15)

11



Similarly, in terms of the equation (2.8) and the condition (c), one gets

X 1

v Q
n(X 0% Z an(K) G Fa(x.1) ka an(k+ 1) ¥ 0%
< %( (2.16)

To calculatd 4, by using the condition (c), equation (2.8) and the condition (a), we can

write
B ) O AtX ¢ k+1 (n+1)
= n(xt)Z (k)]2k1() - n(Xt);[an(k 1)]2 0%
Alt|x 1 (1) /4y k
= D e akr ok OF
< % p(X). (2.17)

On the other hand, by the linearity of the operators (2.3) and the equation (2.7), we
find
La(S%: X) — X% = La((S— X% X) + 2XLa(S— X; X), (2.18)

and

Ln(s—x; x) > 0. (2.19)

The inequalities (2.18), (2.19) and the positivitylgfimplies that
Ln(s% X) — X2 > 0. (2.20)

Finally, inserting the equations (2.14) - (2.17) into the equation (2.13) we obtain

2
L(2 %) — % < 'tr']x () + 2+ W 0(%). 2.21)

n
In addition, from inequalities (2.20) and (2.21), it is easily seen that

2
0<La(sx) - %2 < ltrLX p(X) + ;—: + Mp(x).

12



Hence, taking the maximum of both sides oveljOwe have

ajt|b? b atb
0 < ||Ln(s%) - x2||C[07b] L e
1
= ﬁ(b + altbM(1 + b)) (2.22)
which obviously implies that
lim [|Ln(s% %) = %[y = 0. (2.23)

The equations (2.5), (2.12) and (2.23) gives the desired result.

2.1.2 Rate of Convergence of L

In this section, we compute the rate of convergence of the linear positive operators
L, defined by (2.3) which converge tidx) on [0, b] uniformly. For this purpose, we

find an inequality of the form

ILa(f; X) = F(X)llcjan < Can, 0<CEeR, (2.24)

wherea, is a sequence of positive numbers such that

lim a, = 0.

nN—oo

From (2.24), it follows that the rate of convergence of the operatpts f depends on
how fast the sequenceg, converges to zero.
Firstly we give the rate of convergence of the operat@isy means of the modulus

of continuity, defined as follows:

Definition 2.3 Let f € C[0, b]. The modulus of continuity of f, denotedd¥f, 9), is
defined by
w(f,8) = sup [f(s) - f(X)]. (2.25)

|S—X|<d
s,x€[0,b]

13



For anys > 0, the well known properties of modulus of continuity (see [12]- [17], etc.)

are:

i) If 61 < 65, thenw(f,61) < w(f,82) (2.26)
i) lim w(f,5) =0 (2.27)
i) 1F(s) - F(l < w(f,é)(l ; 'S; X') (2.28)
iv) 1£(8) — ()| < w(f,|s— X)) < (1 IS— X|2)w(f 5). (2.29)

Theorem 2.4 Let L, defined by (2.3). Then, for all 4 C[0, b], we have

ILa(f5 %) = F oy < (1+ (3B)?) w(f, 61),

where s, = 1 and B= max{b,bMajt|,3b2Ma|t|}.
\/n

Proof. Let f € C[0,b]. By using linearity and monotonicity df, and the property

(2.28), we can write

IA

ILn(F5%) — £(X)| La (1f(s) - f(X)15 %)

w(f,dn)Ln (1+ |55—_x|; x)

n

IA

= w(f,dp) (Ln(l; X) + an(|s— X; x))
Seapd

Then, by means of the Cauchy-Schwarz inequality and letting

= w(f, 5n)(1+

— _xlc®
an(k) x‘ (t)xD. (2.30)

1 °°(k

2
— M 1)y K —-
Fa(X.1) - an(K) X) CoMOxX = Ax1), (2.31)

14



one gets

oo 2 3
‘- Z{{ Pl t)(an(k) )Cﬁn)(t)xkl

(n)
ADCO]}

1 k 2
aniﬂ%w-ﬁcﬂwﬂ
[ F 0D ZC(")(t)x}

n k=

1 _ (") k%
Lwnégm ﬁqm%

[An(x D)]2. (2.32)

L lan(K)

1
2

Hence, from (2.30), it follows that

ILa(f5X) = £ < (T 6n) (1+ 5—1n (An(X,t))%)-

Taking maximum of both sides over,[f], we find

1 1
ILa(f; X) - f(X)HC[O,b] < w(f;0n) (1 + 5 )I(Qoag]((A”(x’ t)z)) .

Since

An(X.1)

1 o k ® (rnk
Fa(% 0 kZ{ (an(k) } X) GO
La((s= %)% %)
|La(s% %) — %?| + 2

IA

Ln(s; X) — x‘,

by using the inequalities (2.11) and (2.22), one can write

15



max X, t
xe[0,b] An( )

IA

||La(s% %) = X + 2b||Ln(S; X) = Xlco

Meros
262 Malt]

IA

%(b + altbM(1 + b)) +

- %[b + altjoM + 3a|t|b2|v|]

3B
—. 2.33
. (2.33)

IA

This implies that

ILa(f:%) = F(llcgoy < (. 6n) (1 ’ 51(378)]

1
Finally, choosing 6, = —, we obtain
y gon Vi

ILa(f; %) = F(lleory < w(f,60) (1+ (3B)2),

which is the desired result
Let us recall the definition of the Lipschitz class denoted by l4p.

Definition 2.5 Let M > 0 and0 < @ < 1. Then, a function fe C[0, b] belongs to

Lipy (@), if the inequality
[f(s)— f(X)| < M|s—x* s xe]0,Db] (2.34)

is satisfied.

We now give the rate of convergence by means of the elements of Lipschitz class.

Theorem 2.6 Let f € Lipy,(a). Then, we have
ILa(f; %) = F(Q)llcio.n < M(3B)257, (2.35)

where B and,, are the same as in the Theorem 2.4.
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Proof. Let f € Lipy(@). By using the linearity and monotonicity of the operatbgs

defined by (2.3) and using (2.34), we have

ILn(f5 %) — T(1 < La(If(s) = F(X)1; X) (2.36)

1 = k
Fn(x,t)k; f(m)‘ 9
M - k
< —

= Fao D) 24 |2

Ch(t)X¢

CR(t)x~.

X

2 2 .
=, 0= ——, we can write
a

Applying the Hlder inequality withp = 5

2-a

1 [ k 2 T ) >
§ [Fn(x’ 0 kz (an<k) ) X) Ck(t)xk} [Fn(x, t) kZ Ck(t)xk]

M [An(x.1)]% (2.37)

IA

ILn(5%) — £(X)]

whereA,(x, 1) is defined by (2.31). Taking into account the inequality (2.33), we arrive

at the required resulta

Finally, we compute the rate of convergence of the operatpdefined by (2.3) by

using the Peetre’s K-functional (see [7], [17]) which is defined as follows.

Definition 2.7 The Peetre’s K-functional £, 6,,) is defined by

K(f,o,) = ge(i:g[]:),b] {||f = Ollcio) + On ||g||c2[o,b]} ) (2.38)

where the space [0, b] is the space of functions f for which ff, f” € C[0, b]. The
norm in the space €0, b] is defined by

||f||c2[o,b] = ||f||c[o,b] + ||f/||c[o,b] + ||f//||c[o,b] . (2.39)
Theorem 2.8 Let L, defined by (2.3). If £ C[0, b], then we have

ILa(f; %) - f(X)“C[O,b] < 2K(f, 6n)

17



where
P b + altibM(2 + 3b)
n— 4n '

Proof. Letg € C?[0, b]. Then, by the Taylor formula, we can write

9(8) —9(x) =g'(N(s—x) + %Q”(X)(S— X)?

which implies

La(@ )~ 901 < G ONILals %91+ 2 10" |La((s— % )]
Using the expression
La((s= %% %) = (La(% %) = %) = 2X{La(s: ) - x),

we can write

ILa(@ )~ 901 < GO ILa(s %91+ 5 107 [|La( )~ ] + 2x

Ln(s; X) — XH .

If we take the maximum of both sides of this inequality ovebjGnd use the inequal-

ities (2.11) and (2.22), then we find

bMalt| N i
n 2n

ILa(g; ¥) = 9(llcoyy < N19Icio [b +altbM(1 + 3b)] 19" llco -

Then, for each € (—o0, 0] and eaclb € (0, 1) it follows that

4 4 l
ILn(@:9 =~ 90lcos < (19'cos + 119" leom) 5[0+ @ltOM(2 + 30) |

and so

1
ILn(@: %) = 0llcpory < lDllczposy 5| b+ altbM(2 + 30) | (2.40)

18



On the other hand, by using the linearity of the operators (2.3), we have

ILn(f5%) = T < ILa(f = 0; X)1 + [T(X) — 9(X)| + ILn(g; X) — 9(X)I.

Hence, noting thak,(1;x) = 1 and taking maximum over [0] of both sides of the

final equation, we obtain
ILa(f; %) = f(X)llco < 21f = dlicom + ILa(9; X) — 9(X)lIcion- (2.41)
Finally, with the help of (2.40), the inequality (2.41) takes the form
ILA(F59 = 8l < 2(If - Gl + 4D+ aloM(2-+ 3)Iglcros
or
ILa(f; %) = F(Qllcios < 2(1f = dllcro + Onlldllczo) -
Therefore, this implies that

ILa(f5 %) = F(X)lcion

IA

inf 2lf — + 6
gecz[o,b]( I = dlicio.o) + dnlldllczpo.1)

2K (F, 61).

So the proof is completedh

2.1.3 A Generalization of r-th Order of,L

In this section, we introduce the r-th order generalization of the operatoiefined

by (2.3). Let us recall the definition of the function sp&:¢0, b].

Definition 2.9 We denote by Q0,b], r = 0,1,2..., the set of functions f having

continuous r-th derivatives® (f©(x) = f(x)) on the intervaf0, b].

19



We now consider the following generalization of the linear positive operatongich

are introduced in [11] and [17].

Mrfe vy — 1 AN i K (X an(k))i (n)
LU(f; x) = Fn(X,t)Z. f()(an(k)) T Cy (t)X, (2.42)

wheref € C'[0,b], r = 0,1,2... andn € N. These operators are called as the r-th
order generalization of the operatdrs

Note that forr = 0, we have the sequence of the operators (2.3).

Theorem 2.101f f® € Lip, () and f € C'[0, b], then we have

M a+
ILH(f; %) — f(x)||COb] < W—B(a r) [|La(s = X°*; x)||C[0b],
where Ka,r) is the Beta function and n € N.
Proof. Let f € C'[0, b]. By (2.42), we have
f [r] f f N (|) (X_ﬁ)i (n) k
(=L = 00— th ( (k)) TGP0
_ 1 i f0- 3 10K (x- 2fn) COt)x. (2.43)
Fa(x t) £ Lo \a,() !

From the Taylor’s theorem, it follows that

f(x)_if(i)( K )(X__ﬁ) _ (X_m) f(l_t)r—l
0

— an(K) i! (r—1h

0 (_K ( _L))_ (r)(L)]
X[f (an(k)+tX a0) " \aw)
(2.44)

Sincef® ¢ Lip,,(a), we can write

el el
'f((lo” ®)”law) =M

20
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Now, using this and the following relation
1
B(l+a,r) = f (1 - )t = -2 B(a,r),
a+r
0

we have

r Li
f(x) — Zf(')( (k))( I?”(k’)

i=0

- ani?. f (1- )rl[m( ® (X_ﬁ))_f“)(ﬁﬂdt

'(X (k)) leo( K k n(_K
= ooy J Y |f (an(k)”(x‘m))‘f (m)'dt
(x- =) K| e
< WM‘X—— —t) 1t dt
M a . a+r
S (- Diarro@ ”|X‘m (249

Thus, by using the equation (2.43) and the inequality (2.45), we may conclude that

(o)

Fn(X, t) k=

a+r

nd CO(t)xx.

r-D'a+r

|£() = LEI(F; )|

B(a;r)

~a(k)
Taking maximum of both sides of this inequality overijf) we obtain

M

||f(X)—|—H](f?X)||C[o,b] < W

P (a/ r)||L (Ix =97 X)”COb]

which is the desired result

Considering now the functiog € C[0, b] defined byg(s) = |s— X|**", it is seen

thatg(x) = 0. Thus, by Theorem 2.2, this follows that

lim ILn(9; Yllcpor = 0.
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Then, for allf® € Lip,,(e) and f € C'[0, b], Theorem 2.10 implies that

lim LY (F5 %) ~ f(X)“C[O,b] =0.

2.1.4 An Application to Dferential Equations

Consider the linear positive operators

La(fix) =

n(x ) Z ( )C(”)(t)x (2.46)

whereb, < b,,;. We observe that the operatdrsdefined by (2.3) can be reduced to
the operators (2.46) fa, (k) = b,+Kk. In this part, we give an application toftérential

equations by the next theorem.

Theorem 2.11 Let
0
ax (P ) = Kn(JFn(x. 1) (2.47)

and (s) = 1—55 For each xe [0,b], b € (0,1) and f € C[0, D], the operators
L:(f; x) defined by (2.46) satisfy thef@irential equation

X%{L;(f; X) = —XKn(X)L;(f; X) + byLr(fg; X). (2.48)

Note that the equation (2.48) is indeed notfdatiential equation fok;(f; x) but rather

a functional diferential equation.

Proof. Let f € C[0, b]. In section 2.1.1, we have shown that the operatgrdefined
by (2.3) converge uniformly on the interval,}f]. Hence, the power series on the right

hand side of (2.46) can beftBrentiated term by term in [@]. Doing this, we have

d YEr (’)X n( t)
n(fi%) = B-TOR Z (

)Cl((”)(t)xk+ Fx t)z ( )ka”)(t)x‘

22



By using the equation (2.47) and keeping in mind tkg%ﬁ) = bk we can write
n n

d. . . = xXKa(®) ¢ k () ey ok
xp L) = — kZ:;f(bn+k)Ck ()X

Therefore, by using the definition of the operatbjswe arrive at the required result.

O

2.2 A Kantarovich Type Generalization of the Meyer-Konig and
Zeller Operators

In this section, we consider a Kantarovich type generalization of the MegyaigK

and Zeller operators [15]

k+(tn,k

8

1

LI (-5
()Dn(x) k=0 Cyl’l,k v n+ k

Xk
My(1: %) = e PO (2.49)

where O0< anx < 1, and f is an integrable function on (@); under the conditions

given below.

(i) Let A be a real number in the interval,(@ and also, lety,} be a sequence of
functions. Every element of the sequenigg} is analytic on a domai which

containsthe disB={ze C: |4 < A},
(i) ¢ = ¢n(x) >0,
(i) ¢h0(x) = ya(n+ KA+ et (x), k=1,2,...,

(V) ¢2(0) = ya(n + KL+ el P(0), k= 1,2,...,

23



where o¥(x) = Xk(pn(X) and l,x andvy, are sequences of positive numbers having

the properties

1 1
|n’k = O(ﬁ), |n’k 2 0, ')/n = l+o(ﬁ), ’)/n Z l

Note that, if we choose®(x) = (1 - )™, y» = 1 and |, = O for the operators

M:, we obtain the Meyer-Bnig and Zeller operators defined by (2.2).

2.2.1 Approximation Properties of M

We now investigate the approximation properties of the operaitj(s; x) with
the help of the Korovkin theorem 1.11. Before giving our main result we need the

following lemma which is given by O. Ogu in [14].

Lemma 2.12 The sequence of linear positive operatorsgiven by

k
) = o 2 g RO (2.50

converges uniformly to the functionefC[0, A] in [0, A] under the conditions (i)-(iv).

Proof. By the Korovkin theorem 1.11, it is flicient to show that the conditions
T.(f(9:x) =3 X, forf(s)=s,i=0,12

are satisfied.

For f(s) = 1, (2.50) reduces to

[>9)

kK
%X) > (o).

n k=0

Ta(1;X) =

By means of the Maclaurin series expansion of the funcigfx), it follows that

Tn(1;X) = 1 which gives

lim [ITa(1;%) — Llco.n = 0.
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For f(s) = s, by using the condition (iv) and the fact thBi(1; x) = 1, we have

1 O eh0) X
(pn(X) Zin+k (k—1)!

Tn(s; X)

= %(X) Z y(L+ In ()

= o 21+ g0
k=1

(k 1)'

(2.51)

¢en(X (k 1)!

and so

_ Xn k= X¥n xk-1
Tn(S, X) ‘Pn(x) Z (k= 1)(0\(k 1)' (X) Z In Qo(k 1)(0)(k 1)|

Z nwn’(m

= X’)/n

n( X) £
. 1 . . d

Since 0< Ik = O - there exists a positive numbeérsuch that,x < - for every

k € Ng. Thus, we obtain

To(s; X) < Xyn + Xynd

or
Xynd

To(sX) — X < (yn — L)x+ (2.52)

Now, by equation (2.51), one gets

Th(s; X)

n(x) Z(l + i) >(0)

> k
_ ®(0 Vn ® ()
- n(x) Z ( ) kl X Z ln,k+l‘pn (O) kl

Z I k+1<,on>(0)

= X‘yn

n()

which yields

Ta(sX) = x = (yn— 1x+

n( P Z Inmwn)(O)

25



Taking into consideration the facig > 1, I k.1 > 0, andx € [0, A], it immediately

follows that

Ta(s;X) — x> 0. (2.53)
From inequalities (2.52) and (2.53), we get

Xynd

0<Ta(SX) = X< (yn— L)X+ (2.54)

which gives

lim [ Ta(s; ) = Xlco.n = O.

For f(s) = s, by using the condition (iv), one has

Tn(S%: X)

X
0 2 e Oy
k-1

(k 1)!

%(X) Z s k)zyn(n + R+ 1ol O

_ X
= W)Zn (L Tl 1>(0)(k 2),

Xyn
* 0 2 Z (L el O (k o

2 1y k—2
} n(x)Z(1+|nk)(1+lnk_1)”+k 1 0

xk-1
(k-1)I

(1 + I P(0)— (2.55)

=
=

d n+k- 1
Noting that 1+ |, <1+ — <1 and —- s —, We can write
n" n+k n+Kk

To($ %) < x)’n( n) cpn(X)Z (v )(k 2),
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and thus

2dX%y2 + Xyn N X2y2d? + xynd

Ta(s%X) = X < X(y2 - 1) + ~ (2.56)
On the other hand, the inequality (2.53) implies that
Th(s=X%;Xx) = 0. (2.57)
With the help of the positivity o, and the inequality (2.57), we have
Ta(s%X) = X% = To((s— X)?; X) + 2XTa(s— x; X) > 0. (2.58)
If we now use the inequalities (2.56) and (2.58), then we obtain
0<Tu( %) - R < RG2— 1)+ dezyiJr X, Xzyﬁd;: Xynd (2.59)

This leads to

MQO ITn(S% X) = Xllcro.y = O.
Thus the proof is completed

Now we can give our main result.

Theorem 2.13 The sequence of linear positive operators defined by (2.49) with con-

ditions (i)-(iv) converge uniformly to the functionefC[0, A] in [0, A].

Proof. Asin Lemma 2.12, it is enough to prove that the conditions
M:(f(s);X) 3 X, for f(5)=¢8,i=0,1,2

are satisfied.
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For f(s) = 1, by using the Maclaurin series expansiompgix), we have

k+an k

This implies that
I!m [IMA(1;X) = Llcpo.n = O. (2.60)
By using the operators, defined by (2.50), forf (s) = swe can write

k+ank

K
WX _
gan(x)Zankfn+k o (O

M/ (s X) — X

k
_ 2 _ 2l mE _
gon(X) Z zank(n T k) [+ @ni? — 1] 07 = x
_ ®(0 Xnk o9
SOn(X) Z n+ k‘p 2<pn(x) Z n+k n - X
_ CWy nk (k)
Ta(S; X) — X+ 2 (X) Z ol : (2.61)

SinceTy(s, X) — x > 0, it follows that

M;(s;x) — x> 0. (2.62)
On the other hand, since
ank 1
: - 2.
n+k-n (2.63)

(2.61) implies that

Mi(sX) — X < Tp(sX) — X+ o n(x)Z‘P(nk)( )

l
Th(s — 2.64

Thus, from the inequalities (2.62), (2.64) and by the Lemma 2.12, we find

lim [[M;(s:%) = Y| 4 = 0. (2.65)
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Finally, for f(s) = s> we have
k‘Hlfn,k

1 f 2 © Xk
e f (m) d¢ ¢n (O)H

_ k3 Xk
RSt U, N (1o ) W
nk 3(n vz O

M?(s% X)

2
ka n,k @,

n+ k)2 N+ K2 " 3n+K?

Xk
AO)

[

B Spn(x) Z
kank

. , nk XK
Tn(sz,><)+%(x)§(mk)2 /(0 )k, %(X)Z:,,(mk)z A0

Using now the inequalities (2.58) and (2.63), we obtain

0 < Mi(s%x) — %

IA

(@0 -%) 5 K o

11
= ®(0) <
T 32 o) ng #n ( )k!

. 2 1 . 1
To(S% X) — X2 + ﬁTn(s, X) + 37 (2.66)

Hence, from Lemma 2.12, it follows that

lim [[M;(s% %) = 5|y 4 = 0. (2.67)

By means of the Korovkin theorem, the statements (2.60), (2.65) and (2.67) give
Mi(f;%) = f(x), x€[0,A]

which completes the proof

2.2.2 Rate of Convergence ofM

Now, we compute the rate of convergence of the operadjj&f ; x) given by (2.49)

with the help of the modulus of continuity defined in section 2.1.2.
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Theorem 2.14 Let f be a continuous function 4, A]. Then, the sequence of linear

positive operators defined by (2.49) under the conditions (i)-(iv), satisfies the inequality

IMZ(F: %) = F(X)] < Cw(f;%), (2.68)

where C is a positive number.

Proof. Using the linearity of the operatoi; and the triangle inequality, we obtain

k+a/n k

Mol 1320 = T ©n(X) i aik f [ (%() - f(x)] dé So(k)(O))k(—I:
MA o “n _

k+(ln,k

%tx)iik kf 'f(ﬁ —f(x)'df go(w(o))k‘—!k.

IA

Then, the inequality (2.29) leads to

K+ank
OF v 1 1 : 1¢& _ ®
ML= 10 = o Do kfw(f,a) 1+ (=S - )]dfso ©)
K+ank
1 & 1 X
< f:o —fd (o)
(,()( )[ n(X)kZ:(;a'n,k y f ‘10n ( )kl
K+ank ) .
1 1 &1 X
il _— _> (NITe) 1A
+62g0n(x)kz_;cynk f(n+k X) aé’ n (O)kl]
= k
By the fact thatM’(1; x) = 1, we have
IMA(F; %) — f(X)] < w(f;0) 1+6—12M;((s—x)2;x)]. (2.69)

Then, with the help of the inequalities (2.64) and (2.66), one gets

Mi((s=%)%%) = [MA(s% %) = X = 2x[M;(s; ) - X]

IA

1
To(S; X) — X+ —].

[T(szx) x]+ T(sx)+i+2x o
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Using (2.54) and (2.56), by direct computation, we obtain
* 2. 1
Mi((s— X% x) = O L

Thus, for the choose &f= —, from (2.69) we find the desired resut.

\/_

2.2.3 An Application to Djerential Equations

In this part, we give an application of the linear positive operators (2.49) to func-

tional differential equations by the following theorem.

Theorem 2.15 Let

a(s) = se[0,A], ab=#0.

as
b(1-9

For each xe [0,A], f € C[0,A] andanx = 1; M;(f; x) satisfies the following

functional dfferential equation for n= 2,3,...:

= M/ (f; X)
n

xdix Mi(Fi%) = | =n(L+ D+ ln)x+

Mn((f, 9); %), (2.70)

b
aIn(”T)

where

k+1

wn(x;f ) f(%() A0S

Proof. Let f € C[0, A]. We have shown tha¥l’(f; x) is uniform convergent on [@\],

M:((f. 9); x) =

therefore we can tlierentiate this series term by term in this interval. ket 1, the

condition (iii) turns out to be

@n(¥) = Yn(1 + N)(L + In1)@n(X).
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By taking this into consideration, we have

k+1

d . . QOn(X) XK
M0 = o ES f e 00

EMCTELES

a1+ M1+ )X ¢ f
= ’ d ()
@n(X) g § ( )
k+1 é—‘ K
_5 MW
+ (X) kzc; f n = dg PP Ok (2.71)
By using the definition of the functiog, it is seen thag( ¢ ) = o .
n+k/ b(n+k-¢)
Then we have
k+1 k+1
& B n+k
fk g(n+k)d§ B bf ( N+ K- g)d§
n-1\ a
= ——(n+k)|n( - )_E'
This gives
k+1 :
-3 Jola)d
k= ak — -n.
£In (T)
Substituting this result in the equation (2.71), we obtain
x5 Mi(f:x) = e th = Jde @0y
k+1
1 o K+l —% — i(f g(%() df &
" (=2 )de o) —n|=
@n(X) kzz(; kf n+k " 2In () k!
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This, by the linearity of the operatoM, implies that

k+1
d e 1 X
X&Mn(f, X) = (—yn(1+ N1+ Ih)x— n (”—nl — )%(X) Zf K dg ()D(k)(O)H
o k+1 k+1 xk
_ (k) =
==yl +n)(L+ln)Xx - @ - n|M;(f;x) — aln?’%) M:((f,9); X)

which completes the proofi
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CHAPTER 3

THE MOMENTS OF THE MEYER-K ONIG AND ZELLER
OPERATORS

In this chapter, we consider the Meyeiiig and Zeller operatonsl,, (see [6],[8],

[16],[18], etc.) defined by

L-xm (Lk)(”Ek)xk, if0 < x<1;
Ma(f; X) = oo\

f(1), if x=1,

(3.1)

and give explicit formulas [8] and some estimates for the moments of these operators

[18].

3.1 Explicit Formulas for Central Moments of M,

We begin with the following theorem.
Theorem 3.1 Let M, be the positive linear operators defined by (3.1). Then, we have
Mn(1;x) =1

and

Mn(s; X) = X.

Proof. We now consider the Taylor series expansio?—leJlT)a:

1 o (a+ k-1
e ul kR

k=0
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If we takea = n+ 1, then we see that
(1- %)™ i (” N k)xk —1 (3.2)
k=0 k

Thus, we may conclude that fé(s) = 1, My(1;x) = 1.

For f(s) = s, by (3.1) we can write

N (NHK-D,
(1-x 12 n!(k — 1)|

X(1 - X)n+1 Z (n -|k' k)xk

k=0

My (s, X)

By using the fact (3.2), we arrive at the desired result.

We now give the following theorem and lemma [8] which we will use to find an
explicit formula for the second moment of the operatdgf; x) in terms of hyperge-

ometric series.
Theorem 3.2 Let (s) = rss se[0,1). Foreachne N, xe[0,1)and fe C[0, 1)
the linear positive operators Mf; X) defined in (3.1) satisfy the gkrential equation

xX(1 - x)%(Mn(f; X) = —(n+ 1)XMu(f; X) + n(1 — X)M,(fg; X). (3.3)

Proof. Letn € N. In Chapter 2, we showed that the operatoyslefined by (2.3),
which is a generalization of the operators (3.1) converges uniformly,dr).[Ohus we

can diferentiate the series in (3.1) term by term in the intervalJO0Hence, we have

d o Coan - k \(n+k\ ,
&Mn(f,x) = —(n+1)(1-x) kzof(—n”‘)( K )x
- k n+k
n+1 k-1
+(1-X) Z:;f—mkk k)x
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Then, it follows that

x(1- x)%(Mn(f; X)

= k \(n+k
_ _ y\n+l o
(n+ 1x(1 - X) kz; f (n+ k)( )
RS (—k )I—((” y k)
n\ k

k_
. I k k .
By using the definition of the operatok4, and the facy pord Raliet we can write

x(1- X)d—dxl\/ln(f; X) = —(n + 1)XMn(f; %) + n(L — x)™? i f (L)Q(L) (” + k)xk

- \n+ k n+k k
= —(n+ 1)XxMy(f; X) + n(1 - X)Mq(fg; X),
which is the desired result

By means of this theorem, the following lemma can be proven.

Lemma 3.3 For each ne N, M,(s% X) is a solution of the giferential equation
X(1-XYy(X)+ M +Xy(x) =n+x  xe[0,1) (3.4)

satisfying the condition y(&p.

Proof. Letn € N andx € [0, 1). Then, forf(s) = s, by definition of the operatonsl,,
it is easily seen that

M,(s%; 0) = 0.

We now setf = s— s? in equation (3.3) to obtain

x(1 - x)%(Mn(s— & X) = —(N+ DXxMy(s— % X) + n(1 - X)Mn((s— 9)g; X). (3.5)

36



By the linearity properties of the operatdvk,, we can rewrite the last term in (3.5) as

Mn((s_ Sz)ga X) = Mn(Sga X) - Mn(szg; X)

>k k (n+k <k \Vk(n+k
_ _ n+1 N k _ n+1 A k
== Znn+k( k )X (1-x Z(n+k) n( k )X

k=0 k=0
k[ ok k \|(n+k
_ _ n+1 i A B k
== én n+k (n+k)}( k )X

(AN

k=0

= My (S%; X).
Substitution of this result into (3.5) gives
x(1 - x)%(Mn(s— X)) = —(n+1)xMy(s— % X) + n(L - X)M,(s% X).
Again by using the linearity properties M, and Theorem 3.1, we find
x(1 - x)%(Mn(sz; X)+ (N+X)Mp(s5X) = né+x (3.6)

Thus the proof is completedi

Now using the equation (3.6), we can give an explicit expressiolVfgs?; x) by

means of the hypergeometric series. The hypergeometric series [9] is defined by

S (@)X
JFi(a b e x) = kZ# O K’ (3.7)
wherea, b andc # 0,-1, -2, ... are constants and
(@o=1 (a)k=ale+)(@+2)...(a+k-1) (3.8)

is the Pochhammer symbol. It is easily seen that, by using the well known properties
of the Gamma function

Iz+1)=2, z>-1 (3.9)
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we have
(@+k-1)! T(a+k)
(@-1)!  TI(e)

(o) = , keN, aeR. (3.10)

The hypergeometric series defined by (3.7) is convergenkffer 1, ifc-a—-b >0

so is forx = 1. Indeed, using the ratio test we have

aw . (@+Kb+K)
e L vy P T

which implies tha‘E( Iim‘ a;? = |X. Thus, the series (3.7) is convergent [fjr< 1.
_ R SN R (V) ,
For the casex = 1, we have,F(a, b;c; 1) = Z . By means of the Raabe’s
— (c)k!
test, we get
. a o (k+ 1)(c+ k)
mk(a«u 1) - mk((m NCET .
_ im k(c — ab) + lim K(c+1-a-b)
koo (@+K)(b+K) koo k2 4+ k(a+ b) + ab
= c+1l-a-h

Therefore, the serie$1(a, b; c; 1) is convergent where+1-a—b > 1 orc—a—-b > 0.

Furthermore, as it is given in [9], the following expression holds

I'‘cor'(c-a-"h)

I'(c—a)l'(c—Db)

I'cr(a+b-c)
I'(@I'(b)

Fi(aba+b-c+1,1-X)

2F1(a, b; c; X)

(1-x°*PF,(c-a,c-bc—a-b+11-x).

Forx = 1, this gives

o\ @bkl rre-a-b
Fi(ab;c 1)_;:(; O K~ To-acb) (c-a-b>0). (3.11)

We now give an explicit expression fod,(s% X) by the following theorem pre-

sented in [8].
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Theorem 3.4 For n € N and for each » [0, 1),

X(1 - X)?

) a2
Mn(s% X) = X% + T

2F1(1,2;n+ 2;X) (3.12)

holds and for > 2 it also holds at x= 1.

Proof. Letn e N andx € [0, 1). Substituting

V(X) = X% + X(1 - X)?Z(x), (3.13)

wherezis to be determined, into the equation (3.4) we have

X(1 = XY (X) + (N + X)y(X) X(1 = %) (2x+ [(1 = %)% = 2x(1 - ¥)]2(x) + X(1 - )*Z (%))
+ (N + X)X + X(1 - X)?z(X)]

nx + X

or

XAL-xZ(X)+(n+1-2x)z(x) =1, xe[0,1). (3.14)

Now we seek a particular solutiag of the equation (3.14) of the form

z(X) = i axs, (3.15)
k=0

where the coicientsa, to be determined. Substitution of (3.15) into the equation

(3.14) gives

x(1—X)Zka(xk‘1+(n+1—2x)2akx" =1
o1 k=0
or
Z kax — Z(k — Da 1 X+ (n+1) Z X< — Z 2a, X = 1.
k=1 k=2 k=0 k=1
This follows that

(o)

(n+ 1)ao + [(n+ 2)ay - 280]x+ Y [(N+k+ Da — (k+ Da1]x = 1

k=2

39



To hold this equation, we must have

(n+1)ay=1 (nN+2)a; —2a,=0
and

(n+k+1)ac—(k+ a1 =0, k> 2.

From these one gets

B 1
ao_n+1’
3 2
1_n+2a°

and the recurrence relation

k+1

————a. k> 2.
n+k+1ak1’ -

ak:

By means of this recurrence relation, we obtain the following formula for théieoe

cientsay:
3...k(k+1) k2
(n+1)(n+2)...(n+k+1)

ak =
If we substitute these céiicients into (3.15), then we obtain

1 k(k + 1)
9 = gt (n+1)(n+2) Z(n+1)(n+2) (n+k+1)k

Since (2) = 1 and (2) = 2, we can rewrite this solution in the form

3 (2)
2 = n+1 Z (n+ 2)k X (3.16)

By means of the hypergeometric functions defined by (3.7), the solution (3.16) can be

expressed as

1
zZ(xX) = — 12F1(1,2,n+2,x).

Now, we find the general solutiany of the corresponding homogeneousfetiential

equation
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X(1-=x)Z(X)+ (n+1-2x)z(x) = 0.

It is easily seen that this equation is separable amdz. Thus the general solution of

(3.14) is given by

1
SFi(L2;n+2;¥) +Cx ™1 -x",  xe]0,1).

A3 = n+1

Finally, setting this result into equation (3.13), we find

X(1 - x)?

) SF1(1,2;n+2;X) +CxX"(1 - x)™, CeR, xe|0,1).

y(X) = X% +

To satisfy the conditioy(0) = 0, we must hav€ = 0. So we have

X(1 - x)?

W2
y(X) = xX° + 1

2F1(1,2;n+ 2; ). (3.17)

In the Lemma 3.3, we have shown thd(s?; X) is a solution of the dferential equa-

tion (3.4), then by (3.17), we can write

X(1 - x)?

Mp(S%: X) = X°
n(S5%) =X+ n+1

oF1(1,2;n+ 2;X) (3.18)

which is the desired result (3.12).

For x = 1, with the help of (3.11) and the property (3.9) we obtain

) oy T+2f((n-1) (n+1)!(n-2)! n+1
FALZNH 2= T T -1 n- 1

Thus, forx = 1 the left side of (3.12) is equal to 1. On the other hand, by the definition

of the operator$/,, given by (3.1), we have

M,(s%1) = 1.

Thus, we may conclude that (3.12) is also valid *oe 1. Therefore, the proof is

completedo
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3.2 Some Estimates foM((s - X)?P; X)

Let us first state the following lemma.

Lemma 3.5 For n > 2 and xe [0, 1] there holds for any e N,

m-1
)P (m+1)! m
Fi1(1,2;n+2;x) < X X 3.19
Fal )< 2 2 oD 2 (3.19)
Proof. By (3.8), one gets
(D) X¢
JFi(1,2:n+2:X) = Z N
Using the fact (1) = 1.2...k = kI, we can write
. . _ N (2)k k
JFi(L,2:n+2:X) = kZi TR (3.20)
If we let
2
Dn() = Z o 321)
then (3.20) can be expressed as follows:
= (2
SFi(1,2;n+2;%) = X<+ Opn(X). (3.22)
é (n + 2)k

Now consider (3.21). By means of the definition of the Pochhammer symbol (3.8), it

is clear that

2k =(k+21)!, 2k = @)m(mM+ 2y
and

N+ 2k =N+ 2)n(n+ M+ 2)_m.
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Hence, (3.21) can be written as

DOn(X) = i " @M+ 2)em XTxk-m
k=

+ 2)m(N+ 2+ M)_m

_ (9 Z (m+ 2) N
(n

(n+2)m +m+ 2)k

(m + 1)' Z (m + 2)k k
(n

(n+2)m +m+ 2)k

Now, with the help of the hypergeometric series (3.7) and (3.11), we can write the

above equation as follows:

(m+ 1)! «

(N+ 2

1
E:H_Z))m X"oF(L,m+2;n+m+2;1)

(m+1)! I'(h+m+2)'(n—1)

n+2)." Tnh+m+ N
(m+ 21)!

=D+ Dt

D(X) 2R, m+2;n+ m+ 2;X)

IA

m

IA

Thus, by (3.22) we arrive at the required resait.

By using Lemma 3.5, we can prove the following theorem.

Theorem 3.6 Let ne N and xe [0, 1]. Then, for the linear positive operators,M

given by (3.1), we have

X(1 - x)? 2X _ ,  X(1-x)? 2X
ﬁ(1+m)SMn(SZ,X)—X < ntl (1+n_1), (323)

forn> 2.
Proof. Form = 1, the inequality (3.19) turns out to be

) ol 2x
Fi(1,2;n+2;%) < =1+ —
FL2Zn+ 20 < ot e D2 - tthoa
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wheren > 2 andx € [0, 1]. Thus, by (3.12) we may write

wisos e B 20

and this implies that

Mn(; X) — X2 < X(rl]; :)2 (1 + n2_x1), n>2 xel0,1]. (3.24)

% 2 .
On the other hand, by (3.20) and the fact t@t n( ) X< > 0, we can write

(n+2)
_ o (2o (2)1 (2 o 2X
Pl N2 = oy T ey Z GE A
Setting this into (3.12), we can conclude that
2o X=X 2X
M (S%; X) — X2 > —] 1+ —]- (3.25)

If we combine (3.24) and (3.25), then we obtain the desired result.

After this result, we are now ready to give the estimatesMg{(s — x)?"; x) refer-

ring to [18].

Theorem 3.7 Letp(X) = VX(1 - X), Anzp(X) = Mn((s—X)?";X), p€ N. Forn> 2p

and each »x [0, 1), we have the estimates;

"Ozp(x) for x > }
x)<Cl P’ n’ 3.26
An,Zp( ) (,02()()(1 _ X)2p_2 1 ( )
1 , forx< -
n2ze n

Here, C is a constant which is independent of n and x and not necessarily the same at

each occurrence.

Proof. We prove this theorem by induction gn For p = 1, we must show that

Ana(X) = Ma((S— %)% X) < c“)zr(lx), x € [0, 1) (3.27)
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With the help of the linearity of the operatok, and by using (3.2), (3.3) and (3.23),

we can write

An2(X) = Mn((s— %)% %) Mn(S% X) = 2XM(S; X) + X*Mn(1; X)

= Mp(s%X) - X2
©*(X) 2X
< n+1(1+n_1). (3.28)

Sincen > 2 andx € [0, 1), it is clearly seen tha(l + le) < 3. Thus, from (3.28)

it follows that

2 2
() _ 49°(9
+1

Ana(¥) < 31

which shows that (3.26) is valid fqy = 1 withC = 3.

We now assume that (3.26) is true fpr=r > 1 and n > 2r. That is, we have

" () for x> 1
x<C{ I~ n 3.29
An,Zr( ) ()02()()(1— X)zr_z 1 ( )
1 , forx< =
n n

and show that (3.26) holds far=r + 1. Hence, forn > 2(r + 1), by the definition of

. Kk .
the operatord/,, letting my,(X) = (n;: )x"(l — X)™?1, we can write

Anze)(®) = Mn((s— "D %)
00 Kk 2(r+1)
= é(m - ) Mhx(X)
— X2(r+1)(1 _ X)n+1 + i k k _ o rnnk(X)
i n+ kin+k '
i k 2r+1
- X(— —X| Muk(X)
~\n+ k
— X2(r+l)(1 _ X)n+l +— i _ 2 mnl(X)
n+1\n+1 ’
o k k 2r+1 00 k 2r+1
Dl ™o (g me
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Since

1 n+1

mmu(X)—X(l X)
and

K () = X My ()

n+kmn,k = X Mhk-1(X),
one gets

1 2r+1
An,2(r+l)(X) — X2(r+1)(1 _ X)n+1 + X(m _ ) (1 _ X)n+1

2r+1 2r+1
R I

+XZ

= | +|2 +|3.

n+k+1 n+k

Firstly, we computd;.

|1 — X2(r+1)(1 _ X)n+1 — Xr+1(1 _ X)Z(r+1)xr+1(1 _ X)n—Zr—l

902(r+l)(x)xr+l(1 _ X)n—2r—1. (330)

Since

r+1 n-2r-1
xe[0.1) n—r n—r ’

taking into consideration the fant> 2(r + 1), by (3.30), we can write

r+1 n-2r-1
L < 2(r+1)()(r+1) (n—Zr—l)
r n-r

IA

r+1
902(r+1)(X)(I’ + 1)r+1 _)

— 902(r+1)(X)(I' + 1)r+1

902(”1)(X)(r + 1)r+1

IA
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. r .
Since P < 1 for eachr > 1, it follows that

=
IA

1 1 r+1
2(r+1) 1r+1 - =
ARy (1)

2(r + 1)\
(,02(r+l)(X) ( . )
2(r+1) 1
(pnr—+l(X)’ for x > ﬁ,
(3.32)

2 1-— 2r 1
M, for x < —

n r+1 n

whereC = (2(r + 1)) L.

1
Indeed, forx < - we have

() ()L - XX - e*(})(1 - X)*
n+1 - nr+1 = n2+1 :

) 1 1
For I, there are two cases; either> a or O< x< —.

If x> } it is easily seen the(ti - x) < 0. Thereford, < 0 for x > } and so
n n+1 n
we omit this case.

If 0 <x< } then we have‘i - x‘ < } Thus, one has
n n+1 n

P*(X)(1 - x)*

1
n+1
I, < |l < Xn—(l— X) < 2L

2r+1

(3.32)

For I3, firstly we investigate the expression

k+ 1 § 2r+1 k § 2r+1
n+k+1 n+k '

Let f(s) = (s— x)?*1. Then, this expression takes the form

NSRS
n+k+1 n+kjl
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Now, applying the mean value theorem on the interaab) with a = nL and

+k
b—ﬁ we get
T n+k+1’ 9

k+1 _Xz”l_ K _Xz”l_ n(2r + 1)
n+k+1 n+k

W\
SR ke Y a<c<b

Sincea— X < ¢— X < b - X, choosingH = maxX|a — x|, |b — x|} we obtainjc— x| < H

and this implies thato— x)* < H%*. Therefore

(c—X* <(@a-x* +(b-x?* = k+1 —x2r+ L—xzr (3.33)
n+k+1 n+k ’

and so

K+1 _X””_ K _X”” n(2r + 1)
n+k+1 n+k

(n+K(+k+1)

k+1 X” K x
% n+k+1 * n+k ’

Thus, from this it follows that

) k+1 2r+1 k 2r+1
s = kZ(n+k+1 ) ]”hk(x)

n k+1 z k z
X(2“+:L)(n+k)(n+k+1_)[(n+k+1_X) +(HIE_ )lm““)

IA

Now, by using the fact

n . (1-%?n+k-1
nrRmka D™ = oy
_v)2
< 2(1n i Mh-2k(X), (3.34)

we can write
> 1[( k+1 x K x
— 2 —_— — — —
[I3] < (4r + 2)x(1 - X) ;n (n+k+1 x) +(n+k ) ]mn_z,k(x).
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Let

> k+1 x
l31 = Z ( - X) Mh-2x(X)
k

—~ n+k+1

and

) k 2r
l3o = Z (m - X) Ma_2k(X),

k=1

and let us recall the following inequality;

(a+b)"<2™@ +b", wherea,b>0, n=123...

Forn> 2(r + 1), the inequalities (3.29) and (3.35) imply that

>y k+1 x
la1 = Z (m - X) Mh-2k(X)

( k+1 k

Kk 2r
n+k+1 n+k—2)+(n+k—2_x)] Mh-24(X)

(9]

22r-1 Z
k=1

— 2r—1 N n-2k-2 2r
-2 kzzl‘((n+k+1)(n+k_2)) My-2k(X)

0 k 2r
+27 1 Z (n koo ) My-2k(X)

IA

= 1
< 21 Z mmn—z,k(x) + 27 A 22 (X)
¢” (X)
< ox-1 (n-2)y’
< 2 §:m+k+1w”“%“”+c () (1 — X)2-2
(n _ 2)2I’—l ’

) for x >
< 2121 Mok +C{ I )
- (n + k+ 1)2r g (,02(X)(1 _ X)Zr—Z

n2l’—l ’
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By some computations, we have

1 1 n+k-2\ ,
- g - 1-— n-1
nike g 2 = ms 1)2r( K )X( )
(1-x (n+k-2)!(n-2r-2)k!
M+k+ 17 (- 2K+ k-2r -2 a2
1
< (1-x* -2r-
< = e ey oz
1-X 2r
< T m ). (3.37)
2r 2 1-— 2r-2 1 1 )
We now need to show th(ft% . (X)(an_lx) for - <X< P This means
that we must prove that the inequality
r(1 _ v\2r _\2r r(1 _ v\2r
C_1x(1 X < X(1 - X sCX(l X (3.38)
nr n2l’—1 nl’
holds for a positive constaft.
1 1 1 1
ince= < x< has— < <n L
Since —SX< one asnX < - 2)x aner_l <n

Moreover, forn > 2(r + 1) we have % < % which implies that

n r—1 2 r-1 1r—1
— ) =(1+—==] <[1+Z=] <2%
(n—z) ( +n—2) _( +r) B

Using these inequalities, we may conclude that

X(1 — x)% x(l—xzr( n )f-l X(1 - x)*
< < —

r-1
e A e =2 (3.39)

On the other hand, the inequality <

1 A
ives that{=] > (n—2)"% Then,
—— gives tha (x) > (n-2) en

sincen > 2(r + 1) andr > 1, we have

n_2r—l 2r—l 1 r-1 1
 — =(1-— >11- — >
() ) =fem) e

n-2 1
< )
( n )‘(nxf-l
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Thus, one has

1 - %) (1 — x)2 (1 — x)2 _2f—1 "(1—x2 1
X(1 - X >x( X >x( X (n ) >x( X (3.40)

n2l’—l - nl‘(nx)l’—l - n n - n' 2[‘—1'

Combining inequalities (3.39) and (3.40), we obtain that (3.38) hold€fer 21,
Substitution of (3.37) and (3.38) into (3.36) implies that

2r X 1
(1-x7 S (’Dng), forxzﬁ;

la3 < C —or—2k(X) + C
1 S O 2 M s+ C) T 1
= o) , forx<-—.
n n

Since the equalitE myx(X) = 1 is valid for alln € N and my_y_20(X) = (1-x)"1,
k=0
we may conclude that

Z Mh—2r—2k(X) Z Ma_2r—2.k(X) = My_2r—20(X)
k=1 k=0

IA

1-— (1 — X n-2r-1

IA

1

o 1 . .
On the other hand, it is easy to see that for - the inequality

(,02(X)(1— X)2r _ (,DZHZ(X) 1 QOZHZ(X)
n2r+l - nl’+1 (nx)l' < nl’+l

1 . .
and forx < - the inequality

G N O el VN € (O g
n% - n2r+1 = n2r+1

hold. Hence, with the help of these inequalities one gets

2 2 2r 2 m for X > 1-
P FRA-XT P09 |y Z
n - n2r+1 n QDZ(X)(]. _ X)Zr—z 1

, forx< -,

n2r—1 n
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which obviously implies that

2(r+1) X 1

gDZ(X) i r+1( ), for x> —
R ! (3.4

"D forx< -

n2l’+l n

We now considels,. Using the inequality (3.35) fon > 2(r + 1), we can write

(o8]

w3

k=1

k Kk 2r
(n+k n+k—2)+(n+k_2_x)] My-2(X)

(o)

22r-1 Z

k=1

IA

k k 2r k 2r
(n+k_n+k—2) +(n+k—2_x) lmn_z’k(x)

— px-lox Z e k)zr(n k- 2P My2k(X) + 22"—1An_2,2r(x)

IA

Q-1 —mn_z’k(x) + 27 An 22 (X).
kZ:; (n+ k)

In a similar way that of (3.37), we find that

— 2r
(n+—1k)2frn“—2,k(X)§ ca X)

Mh—2r—2.k(X).

Hence, we may write

s 1 - X 2r
I3 < CZ ( an) Ma_2r—2k(X) + CA_2.2(X).

2
Multiplying both sides of this inequality b?% and taking (3.29) into account, we
have
2r
@™ (X) 1
¢%(X) (X)L - X)Z ©?(X) paa for x > it
Il < C +C
n nr+1 n (,DZ(X)(]. _ X)Zr—z 1
, forx< =
n2l’—l n
QDZ(H]')(X) for 1_
A " (3.42)
2 o\ .
A CICE RN |
n2l’+l n
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For some constaii, the inequalities (3.41) and (3.42) imply that

2(r+1)
=" (X) 1
I (3.43)
- 2 1-— 2r 1 )
LSy A (x)(2 X , forx<—.
n r+1 n

Thus, forn > 2(r + 1), by the inequalities (3.31), (3.32) and (3.43), we conclude that

2(r+1) X 1

z r+1( ), for x > —;

An,2(r+1)(x) <li+l+]l3 <C 2n o n
" (X1 -x) 1

—g > forx<-.

n r+1 n

Therefore, by induction op the theorem has been proved.
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CHAPTER 4

ON SOME PROPERTIES OF THE MEYER-K ONIG AND
ZELLER OPERATORS

The aim of this chapter is to give some basic properties of the Megeigkand

Zeller operators

LX) f (Lk)(”Ek)xk, if0 < x<1;
Ma(f; X) = oo\

f(1), if x= 1.

(4.1)

Firstly, we show that these operators preserve the Lipschitz constants [16] and then we
give the monotonicity properties [6] of these operators. Finally, we prove that these

linear positive operators satisfy an initial value problem.

4.1 Preservation of Lipschitz Constants

Let us recall the definition of concave function which is given in [6].

Definition 4.1 A function f is said to be concave on an interfalb] if for any points
tj, ] = 1,2,...n in[ab] and arbitrary constants;, i = 1,2,...n, f satisfies the

inequality

Cllf(tl) + (lzf(tz) + ... Clnf(tn) < f(altl +aoty + ... antn) (42)

whereO< ;<1 anda;+as+...+a, = 1.

If the reverse of the inequality (4.2) holds, then f is said to be convex.
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Theorem 4.2 Let M, be the linear positive operators defined by (4.1). Then, for all

f € Lipy(@) and ne N, we have
Mn(f;X) € Lipy(a). (4.3)

Proof. Let f € Lipy (@) and n € N. Now, consider the linear positive operators
M, defined by (4.1) and assume that(; < X, < 1. SinceM,(f; 1) = f(1), we will

consider only the case < 1. Then, with the help of the binomial formula

n

ey =)

k=0

we have
N+ j
j

= j N+ j " Xo — Xg + Xq — XgXo |
= E fl— ) 1-x)"
=0 ) ] ( 2 ( 1-% )

N i \n+\A-x)™ G (] .
JZ:(; f n—‘”) j ﬁ kzz;‘ (k)xlk(l — Xo)¥(X2 — Xq)1 ¥
— SEY £ j (n+ ) X';(Xz - xl)i*k(l _ Xz)n+k+1
= JZ:(;kZ:C; (n+j)n!k!(j—k)! (1— X))
N j (N+ ) X% — X1)I 7K1 — xp)het
2 (n+1)n!k!(j—k)! A=)

Mi(f; X2) (1 - xp)™*

Il
gk
-
>
+ |—
_

By the change of index — k = ¢, we can write this as follows:

_ BESES K+ ¢\ (n+k+ ) XX — X)) (1 — xp)™k+t
M(T:%0) = sz(n+k+f) kil Aot @4

On the other hand, by the Taylor expansion

1 N+ k-1
(1—x)n:Z( n )Xk

k=0
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we have

n+k

N k
Mn(f, Xl) = f _ le(_(l _ Xl)n+1
kZ:; n+k k
_ i f K \(n+Kk xk(l — Xp)Hhl 1
4 \n+k/\ k L1 = xy)K (1 B %)mkﬂ
= if K ”+ka(n+k+f)(x2_xl)€
=AU k k (1 — xq) =0 4 1-x
_ i i ; k ) (N+k+ O X% — X1) (1 — x)m+t s
- 44 \n+k/ nik (1= ) . _

By means of the factd,(1;X) = 1, Mu(s; X) = x and the equalities (4.4), (4.5), itis

seen that

00 !XkX—X fl_x n+k+1
Z (N+k+ ) X{(x2 — x1)*( 2) _1 (4.6)
Ki=

NIkl ¢! (1= xq)<+

i K+ ¢ (n+k+ 6O XX — Xq) (1 — %)™kt

Zintk+(  nikdl (LX) =% (4.7)
i k (n+k+ 0! X500 —x1) (1-x)™t ) “s)
G+ Kk nlkie! (1 — xq)k+¢ L :

Sincef e Lipy(a), it follows that

IMn(f; X2) = Mn(f; Xa)l

IA

i (N+ K+ )1 X(X2 — Xq) (L = xp)mk+t
£ nikle! (1 — xq)k+t

ar k+¢ g L

n+k+¢ n+k

M i (N + K+ ) X40% — %) (1 — xp)ket
k(=0

nlk! ¢! (1 = xq)kt

‘ k+¢ k
n+k+¢ n+k

IA

a

Since the function

git) =t*, O<a <1, te[0, )

Is concave, by using (4.6), we can deduce that

56



S (N4 K+ O X (% — X1) (1= xp)meet
247 ik L=<

y k+¢ Kk “
n+k+¢ n+k/|"’

Using now (4.7) and (4.8), we obtain

IMn(f; X2) = Mn(f; x1)] < IVI[

IMn(f; %2) = Mn(f; X2)l < M(X2 = X1)7,

which shows thaM,(f; x) € Lipy(@). Thus the proof is completedi

We now give the monotonicity properties of the linear positive operafigrdefined

by (4.1).
Theorem 4.3 Let ne N. If f is convex, then Mf; X) is decreasing in n.

Proof. Let f be a convex function. Then, by the definition of the linear positive

operatorsM,,, one gets

- (- x)”+1{f(0) ; i f (%() (”Jl: k)xk

k=1

_f:O) Z (n+k+1)(n+:z+1)xk
S
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Since,

n+k_ n+1 n+k+1 and n+k_ k n+k+1
k | n+k+1 k k=1 n+k+1 k

we have

Mn(f;x)—Mn+1(f;X):(1‘X)n+1i{ e f( : )_f( k

n+k+1 \n+k

k=1
N k ¢ k-1 n+k+1Xk
n+k+1 \n+k k ’

Let

n+1 k k k k-1
Aok 1= n+k+1f(n+k)_f(n+k+1)+n+k+1f(n+k)'

Then, one has

- n+k+1
Mn(f;x)_Mml(f;X):(1_X)n+1kZ:;An,k( K )X“.
If we choose
_on+1 K L SNV T
NENTk+ T hnrk+1r T htk 27 n+k

then, it is clear that
ay+ar = 1
and

(n+ 1)k k(k—1) B k
(n+k+1)(n+K) " N+k+1)(n+k) n+k+1

@1 X1 + a2Xo =

Hence, we can write

Ank = a1 (X)) + a2f (%) — flaax + azX).

58

n+k+1



Using the fact thaf is convex, we find
a1f (%) + a2 f (%) — flarx + azXe) > 0.
This gives A,k > 0, and so we have
Mn(f; %) = Mp,a(f; X) > 0.

Thus, the proof is completech

4.2 An Application to Initial Value Problems

In this section, we show that the linear positive operatdfsgiven by (4.1) is a
solution of an initial value problem for a first order ordinaryteiential equation. For

this purpose, let us first prove the following lemmas.

Lemmad.4if [f’|<v, « >0, g>0 anda + S =1, then we have

f() + ) = Flax+ By < Z(x- )%

Proof. Let t = ax+ By, thena = % and f=1-a = ))((T_:, By the Taylor
’ (X - a)Z 17 :
formula f(x) = f(a) + (x—a)f'(a) + > f”(a), we may write

|laf(X) +B(y) — flax+py)| = |af(x) +(L-a)f(y) - fax+py)|

= X—y[(t—Y)f(X)+(X—t)f(y) (x- y)f(t)]'

L k—w{ua+a a)f/(a) + &2 )V<ﬁ

+w—wﬁ@+w a)f(a)+ Y= )fxg
—w—w{um+a a)f(a)+ )f%>H|
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Using the assumption f”’| < v, by simple computation we find

laf(X) +BE(y) — f(ax +By)| = '% |tx+y) - 12— xy]‘ 1£”(a)|
< £|t(x+y) — 2= xy|
- Z|

5 [ax+ (1 - a)y] (x+Y) — [ax+ (1 - a)y]* = xy|

v
=5 |cx - a2| (X —y)2.
. 1.
Now, let g(a) = @ — a?. Sinceg(a) < 7 it follows that

[t (9 + 1Y) - fax+By)| < 5(x= V)"

So, the proof is completed

Lemma 4.5 If |[f”] <v, then we have

)4

() [Ma(f;%) = Maoa(F; X)) < £

(1-x
(i) Ma(f;%) - F(9)] < %(1— X).

Proof. By the Theorem 4.3, we have

Mo (F: %) = Mpa(F:%) = (1— X ”+1Z(”+ E+ 1)
k=1

X [Cklf(Xl) + a’zf(Xz) — f(alxl + Cl’zXz)] Xk,

where

x—L and X, = ——
1 ik 2T n+k

=~
H

n+1 k

al:n+k+1’ az:n+k+1’

5

Taking into consideration the Lemma 4.4, and using the expressions

. — 3o = an n+k+1 <1
L T hrk n(n+1)(n+k ~ n?’
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one has

A

> N+ K+ 1\v
IMa(f; %) = Maaa(F; )] < (1 x)”+12( ) )§(x1 — Xp) 2K
k=1

(o)

_ Vi anet n+k+1 (n+k-1)\,
= gl kZ:;n(n+1)(n+k)( Kk ¥

Vot N (MR-
< 8nz(1 X) Z( K )x.
k=1
Now, we use the expansion
(1—x)”_k:0 k '

in order to obtain

M(Fix) - Mol < oot ST (MR g
| | < 57 K

<
k=0
v e 1
= @(1—x) 1[(1_)()”—1]
- #[(1—x)—(1—x”*1]
< é(l—x).

Thus, the desired result (i) is obtained. The statement (ii) can be proven simitarly .

We shall now give the main theorem.

Theorem 4.6 The functions )(x) defined recursively by

X

Yo(X) = Yo, Yn(X) = Yo + f Mn {f(t, yn-1(t)); Sds n=1,2,..., (4.10)
0

converge uniformly to a solution of the initial value problem

y =f(xy). y0)=yo forxe[0,1)

provided that f and its first two partial derivatives are bounded in the sfig x < 1,
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—o0 <y < oo and that f satisfies the Lipschitz condition
1T y) = f(y2)l < Alyr—VYal, witha< 1. (4.11)
Proof. Lety,(x) be defined as in (4.10). We consider the series
Yo+ ; [Yk+1(X) - Yk(X)]-

This series converges uniformly on, [ if and only if its partial sum converges uni-

formly on [0, 1). Let ex(X) = Yn:1(X) — Ya(X). Then, by means of (4.10) one gets

X X

()l = Yo+ | Muaff(tya(t)); Sjds—yo - qumymﬂox§d{
/ |
< [ Mo f(09000: 8 - Mo{FC3a00): 8]0
0
< [ Mo 1900015 - Mo{FCL 3000 ]
0
N OO R SAROE S
= |(j_ + .

By the Lemma 4.5, we can write

X

Oj‘
4
< Wf(l—S)dS
0

X
8 2]

Mr.a{ f(t. Ya(D)); S} — Ma{ f(t. ya(D)); s} {dis

i
Il

2
Since x— XE < % x € [0,1), from this it follows that
4
l; < 4.12
1= 16"]2’ ( )



where

2

v = sup
O<x<1 d 2

f(X yn(X)] -

We now prove that our hypotheses guarantee ithatco. Sincef and its first two

partial derivatives are bounded in the stripe [0, 1), —c0 <y < o0, We let

K= sup {Ifl,[fl,[fal, |11, [ fa2l, | f22l} ,

O<x<1
—oo<y<oo

wheref;, f, denote the first partial derivatives éfwith respect to the first and sec-
ond variable off respectively, and similarlyf;;, fi, f;, denote the second partial

derivatives. On the other hand, sindd,(1; x) = 1, for a functiong we have

= k
'Mn(g; x)| < sup la(9)||(1 - x ”*12 (n; )xk
k=0
< suplg(s)|- (4.13)
O<s<1

Thus, by the definition o§,(x), one has

V(¥ = [Maf f(t, ya-a(0); X} < O§g<g|f(t,yn_1(t))| =

or

Ya(X¥)I < K.

Now, let F(x) = (X, Yn-1(X)). Then, one can write

Ya (¥

%{ (Mn{ f(t, Yn-1(1)); X})

d AN K
_ 5({(1—x) 1ZF(m ”E )xk}

k=0

-t enge Y
SIS

n
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Using the relatlor(n k) _ 0= k(n :: k- 1 1) we find

Yo ()

I
~
|_\
é

ol
S S

(n+k+1)Z ( — ) Z(n+k+1)F( _':iil)

k+1 k n+ K\ ,
I:(n+k+1)_|:(n+k)( k )X

. . K+ 1 .
By using the mean value theorem on the inte vaL i for the function
n+k n+k+1

(1-x)"

[

(o8]

(1-X" > (n+k+1)

k=0

F, we obtain
kK+1 k , k+1
|F(n+k+1)_F(n+k)‘ - |F(§)'n+k+1_n+k’
, n k k+1
= PO on ke fe(n+k’n+k+1)’

and so

n+ k)xk (4.14)

Vi) < AL~ X)”ZIF(§)|n+k( .

Then, diferentiation ofF with respect tax gives that

F/(9 = S [F06Yaa(9)] = flx Yora) + ok Yo ()Y, 109

which implies

[F'()] < Ifal +1flly,_s < K+K2.

Using (4.9) and this inequality in (4.14), we find

/(X < K + K2,
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On the other hand, since

2

% [F(XYn(¥)] = i1+ (2f12 + T22y0)y, + f2yy,

taking supremum of both sides of this ovee [0, 1), we find
v <K+ (2K +K)K + K(K + K?) =C.

. . C
Setting this into (4.12), we may conclude that < %
Now, we turn tol,. Since the operatomsl, are linear and the functioh satisfies

the Lipschitz condition (4.11), using (4.13), for<Ox < 1, we can write

X

/

0
X

fu

0
X

A f Maf[Vn(®) = Y20 S}dis

0
X

= /lan{|en_1(t)|;s}ds

0
en_l(t)‘ f ds
0

/losup|en_1(t)|.

<t<1l

ds

N
Il

Mn{ f(t, Yn(0)); S} = Ma{F (L. Yo-2(D)); S}

IA

(6 Ya(®) — (& yn-20)]; Sjds

IA

IA

sup
O<t<1

IA

Furthermore, we have

sup|ea(t)| < sup
O<t<1 O<t<1

Yo + an{f(t’yn—l(t)); S}d%

0

Yo + f Mn.1{ T (t, yn(1)); s}d% + sup

O<t<1
0

O<t<1 O<t<1

< 2lyol + sup | [Mnaf f(t, yn(D); sljds+ sup | [Ma{f(t,yn-1(1)); s}(ds
i+ g ot o g [ o030
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Using again the inequality (4.13), it implies that

X

suplen(t)| < 2lyol + sup|f(t, ya(®) f ds+ sup|f(t,yaa(®)l | ds
O<t<1 O<t<1 2 O<t<1 J

A

2(Iyol + K).

Therefore, we find

C
|len(®)| < 11+ 12 < = + 4 suplen-a(t)]- (4.15)
n O<t<1

By using the Weierstrass-M test, it is easily seen that the s@ehn(tﬂ converges
n=1
uniformly. In this case, we may conclude that its partial sum converges uniformly.

That is, we have

1im yn(X) = y(X).

From this, it follows that

lim Y500 = lim Maf F(t.yo-0): ) = Y (9.

Finally, by using the fact that satisfies the Lipschitz condition and taking into con-

sideration Lemma 4.5, we have

Mol F(L YD) ) = FO0Y09)| = Ml £ (8, a(0); X) = Mol (2. Y(0); )
+ [Maf (8 Y(0): 0 = 0 y(0)
< AM{|yn(®) = Yaa(t)]; X}
+ Ml (8 Y0): ) - Tx.Y(0)
< A sUpya(® -y + 3519
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or

-0 + 353 9).
(4.16)

0= fm Ml £(.300): ) - 1(x.y0)] < fim [ sup

O<t<1

Since y,(t) =3 y(t), the right hand side of the above equation is equal to zero and this
leads to

Mn{ f(t, Ya(D); X} 3 f(X.¥(X)), x€]0,1).

Thus, we complete the proafi
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