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ABSTRACT

BAER AND QUASI-BAER MODULES
Kor, Arda
Master, Department of Mathematics
Supervisor: Assist. Prof. Dr. Cesim CHEL
February 2011, 58 pages

This study contains the endomorphism rings of retractable modules, Baer, quasi-
Baer modules and rings. A moduléy, is said to be retractable Hong(M, N) # O for
each nonzero submoduieof M. It is shown that ifMg is nonsingular and retractable,
thenEndk(M) = Sis a right CS ring if and only if M is CS module. A moduM is
called (quasi-) Baer if the right annihilator of a (two-sided) left ideabct Endy(M)
is a direct summand of M. After these definitions, it is shown that a direct summand
of a (quasi-) Baer module is also a (quasi-) Baer module and a finitely generated Z-
moduleM is a Baer module if and only if M is semisimple or torsion free. Beside these
it is shown that direct sums of (quasi-) Baer modules are not (quasi-) Baer module.
Furthermore, it is shown every free (projective) module over a (quasi-) Baer ring is
always a (quasi-) Baer module. The relation between CS-modules and Fl-extending
modules are exhibited and it is shown that a module MR is (quasi-) Baer and (FI-)
K-cononsingular if and only iMy is (FI-) extending and (FI-) K-nonsingular. It is also
shown that if R is semisimple and artinian if and only if every (rigkitnodule is Baer.
Among other results, the endomorphism ring of a (quasi-) Baer module is a (quasi-)
Baer ring, while the converse is not true in general.

Key words: retractable modules, CS-modules, (FI-) extending modules, (FI-) K-
nonsingular modules, injective modules, fully invariant modules, endomorphism rings,

annihilator.



OZET

BAER VE QUASI-BAER MODULLER
Kor, Arda
Master Tezi, Matematik 8lumu
Tez Yoneticisi: Yrd. Dog. Dr. Cesim CEHK
Subat 2011, 58 sayfa

Bu calisma retractable matlerin endomorphizma halkalarini, Baer, quasi-Baer
modilleri ve halkalari icermektediM’nin her sifirdan farkli alt modlt icin Honmg(M, N) #
0 ise bu M modilune retractable module denir.0&erildi ki, Mg nonsingular ve re-
tractable olsunMgr CS modildir ancak ve ancak endomorfizma halkasi CS halkadir
(Endk(M) = S). M’'nin endomorfizma halkasinin sol idealiningssifirlayicisiM’nin
direk toplamiysavi’'ye Baer modil denir. Bu tanimlardan sonra (quasi-) Baer riadih
direk toplaminin (quasi-) Baer mabdoldugu gosterildi. Bunlarin yaninda (quasi-)
Baer modiltin dik toplamlarinin (quasi-) Baer miadolmadi gosterildi. (Quasi-)
Baer halkasindaki her serbest nitith her zaman (quasi-) Baer nmidaldugu gsterildi.
CS-modiller ve Fl-extending madller arasindaki iliski gsterildi. Ayrica kanitlandi
ki, Mg (quasi-) Baer ve (FI-) K-cononsingulardir ancak ve ankki(FI-) extending ve
(FI-) K-nonsingulardir. Ve her ($§9 R-modull Baerdir ancak ve ancdR semisimple
ve artiniandir. Bu sonugclarin yaninda, (quasi-) Baer miamehdomorfizma halkasinin
(quasi-) Baer halka oldju ama tersinin genellikle dou olmadgi gosterildi.

Anahtar Kelimeler: retractable moiller, CS-modiller, (FI-) extending modller,
(FI-) K- nonsingular modller, injektif modiller, fully invariant moduller, endomor-

phizma halkasi, annihilat.
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CHAPTER 1

INTRODUCTION AND PRELIMINARIES

1.1 Some Basic Concepts in Modules and Rings

Definition 1.1 Let M be a module. If there does not exist a properly descending (as-
cending) infinite chain M > M, > ... (M; < M, < ...) of submodules of M then M
satisfies the descending (ascending) chain condition DCC (ACC). A module M is ar-
tinian (noetherian) if it satisfies DCC (ACC).

A ring R is called right artinian if R is artinian (noetherian) module. A ring R is
called left artinian ifgrR is artinian (noetherian) module. If R is both left and right

artinian (noetherian) then it is called artinian (noetherian) ring.

Proposition 1.2 Let N be a submodule of M. Then M is artinian if and only if N and

M are both artinian.
Corollary 1.3 Any finite direct sum of artinian modules is artinian.

Corollary 1.4 If R is right artinian ring then all finitely generated R modules are

artinian.

Definition 1.5 A right R-module M is called free ifithas a basfsy |i€l}, me M

such that every element of M can be written uniquely in the form;

m:Zmri

where r € R and all but a finite number of are 0.

Proposition 1.6 Let M be a right R-module.



(i) Aright R module M is free if and only if it is isomorphic to a direct sum of copies

of Rs.

(i) Every module M is homomorphic image of a free module.

Definition 1.7 A right R-module M is said to be finitely generated if there exist ele-
ments m, My, ....M, € M such that M= .7, m;. In this case, we say thaiy, my, ..., m,}

is a set of generators of M.

Definition 1.8 A right R-module M is said to be cyclic if there is an elemeptenM
such that every ne M is of the form m= myr, where r e R. Also g is called the

generator of M and we write M:< m, >.

Definition 1.9 Let M be an R-module and N be a submodule of M. N is called an
essential submodule of M if &N # 0 for all nonzero submodules K of M, denoted by

N <. M.

Proposition 1.10 Let M be an R module. Then;
(i) N <¢ M ifand only if NnmR= O for all nonzero me M.

(i) LetK< N < M. Then K< Mifand only if K< N and K< M.

(i) LetN<e M and K< M. Then NN K <¢ K.

(iv) LetN < Kj,1<i<tt>1 Then;(N; N NaN...Np) <e (K; N Ky LK),
(V) Let K< N < M. If (§) <e () then N<¢ M.

(vi) Let N<e M and me Mthen(N: m) ={r e R mre N} <¢ Rr.

(vii) For any nonempty index set I, let Me M;(i € 1). Then;

@Ni se@Mi

il i€l



Definition 1.11 Let M be a right R-module and,ll < M. K is called complement of
N in M if K is maximal with respect to the propertyKN = 0. If a submodule K of M

is complement submodule in M, then it is denoted by K.

Lemma 1.12 Let M be a right R-module and,il < M. If K 0 N = O,there exists a
complement L of N such that ¥, L and(L @ N) <. M.

Definition 1.13 Let M be an R-module. For any nonzeroexM define ang(x) =
{r e R| rx = 0} that is a left ideal of R and is called the annihilator ideal of x. Also it
R

follows that Rx PO

Definition 1.14 Let M be an R-module. (B1) = {x € M | anmk(X) <¢ R} is called
singular submodule of M. If @) = M then M is called singular module. And if

Z(M) = 0then M is called nonsingular module.

Definition 1.15 An R-module M is said to be torsion module if &jn+ O for all

Xxe M.

Definition 1.16 An R-module M is called torsion-free module if &n= 0 for all

xe M.

Example 1.17Z,(M) = {me M | m+ Z(M) € Z(%)} is a submodule of M and it
is the largest singular submodule of M. AlsO\M) <. Z(M). In fact, let me Zy(M).
Then m+ Z(M) € Z(554)- This implies that there exists an essential ideal | in R such

that ml < Z(M). Hence, ZM) <. Z,(M).

Lemma 1.18 Let M be a nonsingular right R-module and let N be a submodule of M.

Then;
() N <¢ M ifand only if Z(%) = (%).
(i) Z(M) < M.

Definition 1.19 Let M be aright R-module and M M. Kiis called essential closed(closure)

of N in M such that N, K <. M.



Proposition 1.20 Let M be a right R-module and ¥ K < M. Then;
(i) N <; M if and only if the essential closed(closure) of N in M is itself.
(i) N <K <. Mthen N<. M and if N <¢ M then N<, K.

(i) If L is the complement of N in M and U is the complement of L in M with I,

then N<. U.

(iv) L is essential closed of N in M if and only if L is maximal submodule with re-
spect to the property N L if and only if L is the minimal submodule of the

complement submodules which contain N in M.

Definition 1.21 Let M be a right R-module. The submodule
sodM) = N{N < M | N is essential submoduje- >:{N < M | N is simple submoduje

is called socle of M.

Theorem 1.22 Let M be a right R-module. The followings are equivalent.
(i) Every submodule of M is a sum of the simple submodules of M.
(i) Mis a sum of simple submodules of M.

(i) M is a direct summand of simple submodules of M.

(iv) Every submodule of M is a direct summand of M.

Definition 1.23 Let M be a right R-module. If it satisfies one of the conditions of the

theorem above then it is called semisimple module.
Corollary 1.24 (i) Every submodule of semisimple module is semisimple.
(i) Homomorphic image of every semisimple module is semisimple.

(iii) Every sum of semisimple modules is semisimple.



Lemma 1.25 Let{M; | i € I} be a family of modules.Then;

D S o) = Sog(H M)

il iel

Definition 1.26 Let M be a right R-module. M is called uniform module if every sub-

module of M is essential in M.

Definition 1.27 Let M be a right R-module. Then we call M has a finite uniform dimen-
sion (finite Goldie dimension) if there exists an independent sequendé, H., H,
(n < o0) of uniform submodules of M wifiH; dH, @ ... ® H,)) < M. Also it is denoted

by udM) = n < co.
Proposition 1.28 Let M be a right R-module and A M.

(i) M has a finite uniform dimension if and only if every submodule of M has a finite

uniform dimension.
(i) If A < M has a finite uniform dimension théh has a finite uniform dimension.

(ii) If Ay, Ay, ..., Ay < M and for each i, Ahas a finite uniform dimension th¢A; ®

A @ ... ® A,) has a finite uniform dimension.

(iv) If A <¢ M and A has finite uniform dimension then M has finite uniform dimen-

sion.

Lemma 1.29 Let M be a right R-module.
(i) IfAL A, ..., Ay < Mthen, udAi® Ar® ... A,) = Ud(Ar) + Ud(A) + ... + Ud(Ay).

(i) Let A< M and A has finite uniform dimension. Then<4 M if and only if
ud(M) = ud(A).

Proposition 1.30 Let M be a right R-module and AM .

(i) If A <c M then udM) = ud(A) + ud(‘s).

5



(i) Let M has a uniform finite dimension. If (M) = ud(A) + ud(%) then A< M.

Definition 1.31 Let R be a ring, M and N be R-modules with identity. If every ho-
momorphism from a submodule X of N to M extend from N to M then M is said to be
N-injective. For every R-module N if M is N-injective then M is called injective mod-
ule. If M is M-injective then M is called quasi-injective module. M and N are relatively
injective if M is N-injective and N is M-injective. Also if M is jective then M is

injective.

Proposition 1.32 Let{M; | i € |} be a family of R-moduleg.],., M; is injective if and

only if each ie I, M;j is injective.
Proposition 1.33 Let M be a right R-module.

(i) Mis injective if and only if M is direct summand of every R-module which con-

tains M.

(i) Let A be an R-module and B be a submodule of A. If M is A-injective therﬁM is

and B-injective.

Proposition 1.34 A module M is(@i€| A)- injective if and only if M is A- injective

for every ie I.

Definition 1.35 Let M be a right R-module. The injective module which contains M

as essential is called the injective hull of M and it is denoted Gy E

Proposition 1.36 Let M be a right R-module. The followings are equivalent.
(i) The injective hull of M is EM).
(i) E(M) is the maximal module of the modules which contains M as essential.

(i) E(M) is the minimal module of the injective modules which contains M.

Definition 1.37 Let R be a ring and let M be a right R-module. If every complement

submodule K of M is a direct summand of M then M is called CS-md@Digholds.

6



Equivalently, for every submodule K of M there exists a direct summand N of M such
that K is essential in N. The ring R is called right CS-ring § R CS-module. For

every | <. R there exists idempotenteR such that I= eR. For example, semisimple
modules, uniform modules and injective modules are CS-modules. Every complement
of a CS-module is CS-module. But any submodule of a CS-module may not be CS-
module.

For example, let M be not a CS-module then sin€BlEis injective module then it is
CS-module. Even M is essential ig\) it is not CS-module. Also a direct sum of two

CS-modules may not be CS-module.

Example 1.38 Let Z denote the integers, let p be any prime, let M Z, and let
M, = Zg. My and M, are CSZ-modules. But M= (M1 + My) is not a CS-module.

Definition 1.39 A right R-module M is called indecomposable module if M has no
nonzero proper direct summand. Equivalently, M is indecomposable if and only if for

any K<gM ,K=0o0rK =M.

Proposition 1.40 Let M be an indecomposable right R-module. If M is CS-module

then M is uniform module.

Definition 1.41 Let M be a right R-module.

(C,): Every submodule of M which is isomorphic to a direct summand of M is a direct
summand of M.

(C3): If N1, N, be two direct summand of M such that NN, = 0 then(N; & N,) is a

direct summand of M.
Lemma 1.42 Every direct summand of M satisfying €= 1, 2) satisfies (i = 1, 2).

Definition 1.43 A right R-module M is called continuous (quasi-continuous) if M is

CS-module satisfying the conditi¢@,) ((Cz)).

Lemma 1.44 Every module M satisfying the conditid,) satisfies the condition

(Ca).



Proof. Let K, L be direct summand of M witkKk NL = 0, M = K@ K’ for a
submoduleK’ of M. Let 7 : M — K’ be a projection mapK N L = 0 thenn(L) = L
andr(L) < K’. By the condition C,), n(L) <4 M and henceM = n(L) & L for a
submoduld.’ of M. ThenK’ = n(L)® (K’ n L") andM = K@ n(L) ® (K’ nL"). Hence,
Ken(ll) <¢ MKen(L) =Ko LthenKa® L <4 M.O

Proposition 1.45 In any ring R, the following sets coincide:
(i) The intersection of all maximal right ideals of R.
(i) The intersection of all maximal left ideals of R.

(iii) The intersection of all right primitive ideals of R.

(iv) The intersection of all left primitive ideals of R.

Definition 1.46 In any ring R, the ideal defined by the intersections given in Proposi-

tion 1.45 is called the Jacobson radical of R, denoted (@3).J



CHAPTER 2

NONSINGULAR RETRACTABLE MODULES AND THEIR
ENDOMORPHISM RINGS

2.1 Preliminaries

In this chapter [26] was taken as a reference basically. Also in this chapter all the rings
are assumed to be associative with unit but not necessarily commutative. The modules
are unital right modules. The base ring, the right R-module and the endomorphism
ring are denoted byR, Mg, S = Endy(M) respectively. The notatioBndM) is used
instead ofEnck(M). TheN <. M meansN is essential in MN <. M meansN is

closed in M;N <4 M meansN is direct summand of/.

Definition 2.1 A module M is said to be retractable if for every nonzero submodule N

of M, Homg(M, N) # 0.

Definition 2.2 A module M is said to be e-retractable if for every nonzero complement

submodule C of M, HogpiM, C) # 0.

Definition 2.3 Let A be a right R-module and B be a left R-module. Let F be a free
abelian group that generated by>AB and K be a subgroup of F whose elements are

generated by the following elements of F;
() (@a+a,b)-(ab)-(a.b)
(i) (ab+b)-(ab)-(ab)

(iii) (ar,b) - (a,rb)

Then FK is an abelian factor group which is called the tensor product of A and B and

denoted by A&r B.



Before defining a nondegenerate module, we define some notations;
Is(N) ={se S| sMC N}

and let

Aw(H) = HM = ZhM
heH

whereN < Mg, H < Sg andS = End(M).
Clearly, Is(N) is a left ideal ofS and Ay(H) = HM is a submodule oM. The
notationsAy (H) andHM will be used interchangeably, and we will identl(N) and

Homr(M, N) for N < Mg; in particular, M is retractable ifs(N) # O for 0 # N < Mg.

Definition 2.4 Let M* = Hong(M,R) and let T = (M*, M) = {3, fim | fi € M",
m € M} = Y :cu- IM(f) be the trace of M in R, M is said to be nondegenerate if

mT #0forall 0 #me M.

Also, define () : M*®s M — Rby (f,m) = f(m) forme M andf € M* is R-module
homomorphism. And,] : M ® M* —» S by [m, flm;, = m(f,m)) = mf(m,) for

mm € Mandf € M*,

Proposition 2.5 Let Mg be nondegenerate. Then, for any nonzero submodule, N of M

Is(N) # 0 but not conversely (for example, let M be %Hmodule%).
Proof. Let N be a nonzero submodule of M, and let2On € N. Then, since M is
nondegeneraten[M*] # 0 by [25]. From h, M*]M = n(M, M*) € nR so [, M*] C
Is(N), hencels(N) # 0.0
Proposition 2.6 For any right R-module M, right M-module N and right S-module H;
(i) Ni <Nz < Mgthen k(N;) < I1s(Ny).
(II) H]_ < H2 < SS then AM(H]_) < AM(Hz)
(iii) Amls(N) < N and H< IsAy(H).

(iv) 1s(N) = IsAuls(N) and Au(H) = AulsAu(H).

10



Proof.
(I) Letse IS(Nl) thensMC N; < N, sose |5(N2) which |mp|IES|S(N1) < |5(N2)

(ll) Let H; < Hy, < Sg thenAM(Hl) = HiM < H,M = AM(Hz) which Implles

Aw(H1) < Au(Hy).

(i) LetN < Mg andH < Ss thenAyls(N) = Is(N)M < N sincels(N) = {s€ S |
sM C N}. Also sincelsAy(H) = Is(HM) = {se S| sMc HM}, forallhe H
thenh e IsAy(H) which impliesH < IsAy(H).

(iv) Let N < Mg andH < Ss then by {ii) Auls(N) < N if we apply Is to both
side we foundsAyls(N) < Is(N). And letls(N) = H; = {se€ S| sM C N}
is a right ideal ofS. Then again byiii) Is(N) < IsAuls(N). Consequently,
Is(N) = IsAuls(N). Similarly, we can see th&y(H) = AulsAu(H).

2.2 Nondegenerate, Retractable and e-Retractable Modules

Proposition 2.7 When M is nondegenerate then M is retractable and M has the fol-
lowing two properties.

() For N3 < Np < Mg, Np <e Ny if and only if Is(N;) <e I1s(Np).

(I For H; < Hy < Sg, H; <¢ Hy if and only if Ay(H1) <e Am(H2).

Proof. (Il) First assumeH; < H, < Sg and let 0# m = X' him € Ay(Hy), with
m € M andh; € Hy fori = 1,...,n. Then 0% [m M*] = £ h[m, M*] € H,, hence
[m M*] n H; # 0. We have Gt [m M*] n HiM € HiM n m(M, M*) € HiM N mR
therefore H;M = Ay (H1) <e Au(Hy).

Conversely, assume thaf,(H;) <e Au(H>), for Hy < Hy, and let 0# h € H, then
hM # 0 implieshM n Ay (H;) # 0 and this implies that @& [hM N Ay(H1), M*] C
[hM, M*] N [Am(H41), M*] € hSn Hy, henceH; <¢ Ho.

11



(1) Let Is(N;) <e Is(Np). Since M is retractable then it follows from Proposition
2.5 that, for every nonzero submodiNe of M, there is 0# s € Is(n;R) where 0+
n; € N;. Hence, sincés(n;R) € Is(N;), we have 0 sM € njRnN Ayls(Ny), so that
Auls(N;) <e N;. Similarly, Ayls(N2) <e No. And by hypothesids(N;) <e Is(N2) so
Awmls(N1) <e Auls(N2) which impliesN; <e No.

Now let N; andN, are nonzero submodules of M such ti\at< N, and assume
first thatN; <¢ N,. Then we havés(N;) < Is(N2), Auls(N1) < Auls(Nz) <e N, and
Amls(N1) <e N1 < N, thereforeAyls(N;) <e N> and henceédyls(Np) <e Auls(Ny),
and this implies by (11), thats(N;) <¢ I1s(N2). O

Proposition 2.8 For any M, the followings are equivalent.
() Mgis retractable.

(i) Forany N< Mg, Auls(N) <¢ N.

(i) For Ny < Ny < MR, Is(Ny) <e Is(Np) then N <¢ N,.

Proof.

(i = ii) If M is retractable and @¢ N < Mg then for any O# n € N, there exists
0 # se Is(nR), sincels(nR) < Is(N), we have that, & sM C nRN Ayls(N) so that
Auls(N) <e N.

(it = 1) If Ayls(N) <e N for any nonzero N this implieks(N) = {s€ S| sM C
N} # 0. ThenMg is retractable.

(i = iii) If M is retractable ands(N;) <e Is(N2) for N; < N, < Mg then for any
0 # ny € Ny, there is 0+ s € Is(mR) N I1s(Ny) we have, 0 sM C n,Rn Ny, which
showsN; <. No.

(iii = ii) Assume iii) holds, and let B¢ N < Mg. Then sincds(N) = IsAuls(N)

implies in particular, thatsAyls(N) <e Is(N) we have byifi) thatAyls(N) <e¢ N.O

It can be seen from Proposition 2.8 that whereas nondegenerate modules are satis-
fied property (1), retractable modules are satisfied only one direction of (I). However,

if M is nonsingular as well as retractable, then the other direction is also satisfied.

12



Theorem 2.9 If Mg is nonsingular and retractable then we have.

(1) For Ny < Nb < Mg, N; <e N, if and only if ls(Ny) <e Is(Ny).

Proof.

(<:) Already proved.(Proposition 2.8)

(=:) Assume thatN; < N, and let 0# s € Is(N,). Choosem € M such that
0 # sm= ny, € Ny, then sinceN; <. N, there isr € Rsuch that 0# n; = n,r = smr,
and also 0# smrR= n;R € N;. By Proposition 2.8i() Auls(mrR) < mrR if xis any
nonzero element imrR then it is known [18, p.46, Lemma 3]that the right idéak

{r e R| xr € Ayls(mrR)} is an essential right ideal of R. Assurdé\;Is(mrR)] = O,
then for any nonzera € mrR, sincexJ, € Ayls(mrR), we will havesxJ, = 0 and
consequentlysx = 0 since M is nonsingular and <¢ Rg, but this contradicts the fact

thatsx = smrR# 0. HencegAuls(mrR)] # 0 and there i € Is(mrR) such that

sc# 0. Then 0% sce sSn Is(Ny), proving thatls(N;) <e Is(Ny).O

Corollary 2.10 Let Mg be nonsingular. Then M is retractable if and only if (1) holds.

Proof. By Proposition 2.8 and Theorem 219.

Recall that a submodufe of M is complement submodule & if C has no proper
essential ilM. When Mg, is nonsingular, then for any submodeof M, there is a

unique complemen€ in M such thaiN <, C.

Theorem 2.11 Let My be nonsingular. Then the followings are equivalent;
(i) M is e-retractable.
(i) For any nonzero complement C in Myi(C) <e C.
(iii) 1fN; < Np, < Mgand N isacomplementin M, ifsN;) <e Is(N,) then N <¢ N,.

Proof.
(i = ii) Let assumeM is e-retractable and let & x € C then there exists a

complement submodulé of C such thatxR <. Y. SinceY C C we have,ls(Y) C
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Is(C), and since 0¢ Y is a complement in M and M is e-retractable, there ig 0
s € Is(Y). ThensM C Y and sincexR <. Y, there is 0# z € sMn xR Therefore,
0 # z€ Is(C)M n xRproving thatls(C)M <, C which impliesAyls(C) <. C.

(i = i) Let0 # C < M by (ii) Auls(C) < C. Then there exists & z €
Is(C)M N xRwherex € C sols(C) = {se€ S| sM ¢ C} # 0 which provides
Hom(M, C) # 0.

(i = iii) AssumeM is e-retractable antl; < N, < Mg whereN, <. M, suppose
thatls(Ny) <e Is(N2). Let 0 # n, € No. Then there exist€ <. N, such thai,R <,
C <: N; and so by e-retractabilitis(C) # 0 hence there is & b € 15(C) N Is(Ny).
Then 0# bM < C n Ny, and this implies tha€ N N; # 0 and sa,RnN N; # 0. This
impliesN; <e N,.

(it = i) Assume {ji) holds. And letN, be nonzero complement in M. From
Is(N2) = IsAuls(N,) we have in particulats Ayls(N2) <e I1s(No) by (iii) Amls(N,) <e
(N2).o

As regards property (1), here again it holds when M is nondegenerate, whereas
for M is nonsingular and retractable, (II) holds if and only\Hf <. Is(HM) for each

H < Ss. Next theorem gives the relationship between properties (I) and (I1).

Theorem 2.12 (i) Given (), then (Il) holds if and only if H<. IsAu(H1) for each
Hi < Ss.

(i) Given (I), then (1) holds if and only if dls(N;) <e N; for each N < Mg
Proof.

() (=:) Let (I) be given. Suppose (I) holds and kgt < Ss. ThenAylsAu(H;) =
An(Hy) implies in particular thaf\y (H1) <e AulsAmw(H1) and by proposition 2.6
(i) Hy < IsAu(H1) these implies that by (IlIH; <¢ IsAu(H4).

(<) Conversely, assume thet <. IsAw(H;) for eachH; < Ss. To prove ()
assume firsH; <. H,. Then we haveAy(Hy) < Au(Hy), Hi <e IsAu(H1) <

IsAu(H>2) andH; <¢ Hy <¢ IsAu(H>), thereforeH; <. IsAw(H>), which im-

plies thatlsAy(H1) <e IsAuw(H2) and by (1) Aw(Hi) <e Au(H.) . For the
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other direction of (II) assuméy(H1) <e¢ Au(H»), whereH; < H, < Sg us-

ing (I) we have,H; <¢ IsAu(H1) <e IsAu(H2), henceH; <. IsAu(H2). But

H; <e Hz <e IsAu(H>), henceH; <. H,.

(i) (=:) Let (Il) be given. Suppose () holds, then we know by Proposition 2.6
Awmls(N;) < N; andlsAuls(N7) = Is(N;) implies in particuladsAyls(N7) <e
Is(Ny) then by (I)Auls(Nz) <e (N3) for eachN; < Mg.

(<:) Conversely, assume thAg,1s(N;) <e N; for eachN; < Mg. To prove (I)
assume firsN; <¢ N,. Then we havés(N;) < Is(N,) , Auls(Ny) < Auls(N2) <e
N, andApls(Ny) <e N; <e Ny thereforeAyls(N1) <e No. HenceAyls(Ng) <e
Awuls(Nz) which by (1) implies thatls(N;) <e Is(N,). For the other direction of
(I) assume thals(N;) <e Is(Nz) with N; < N, < Mg. Then again by using (I1)
Amls(N1) <e Auls(N2) <e N, henceAyls(Ny) <e (N2). But Ayls(Ny) <e N; <
N,, henceN; <¢ No.

Corollary 2.13 Let Mg be a nonsingular and retractable. Then (1) holds if and only

if H <¢ IsAu(H) for each H< Ss.

Proof. By Theorem 2.9 sincéy is nonsingular and retractable then (1) holds so by

Theorem 2.12] (I1) holds if and only ifH <. IsAy(H) for eachH < Ss. O

Theorem 2.14 ()Forany Mrand T = (M*,M) = {3, fm | fi e M, m €
M}, MT <¢ M then NT < Homgr(M, N)M for every nonsingular B if M is

nonsingular, the converse also holds.

(i) T < Rthen NT<¢ N for every nonsingular { if R is right nonsingular, the

converse also holds.

Proof.
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(i) Assume thaMT <¢ M, and letNr be nonsingular. Let & n € Homg(M, N)M
andn = Z!‘zl fim with 0 # fi € Homr(M,N) and 0# m; € M, (assume also
fim # 0), fori = 1,..,k. SetK; = {r €¢ R| mr € MT}, thenK; <. R (Let
r e R\ K; thenmr ¢ MT sinceMT <. M, there exists @ r’ € Rsuch that 0¢
(mn)r’ € MT so 0# m(r'r) € MT thenr'r € K; implies thatK; <. R). Hence,
since 0# fim € N and N is nonsingular, we have® fmK;  fMT N fmR,
fori =1,...k LetJ =rgr(n) = {r € R| nr = 0}. Then, since\r is nonsingular
andn # 0, J is not an essential right idealRf Let 0# P be right ideal oR such
thatP N J = 0. SinceNX; Ki <c R, there is 0 se PN (N, Ki). Then we have
0% ns= (3K, fm)s= 3, imse Y&, fiMT, sinces € N&, K;. Therefore,
sincefiM C N, 0 # nse NTNnR, which shows thalN T <, Homgr(M, N)M. The

second statement is clear.

(i) Assume thal <. Rand letNg be nonsingular. Let & n € N, thenrg(n) = {r
R| nr = 0} is not essential as a right ideal Rf so there is a nonzero right ideal
in Rsuch thatl nrg(n) = 0. ThenJNT £0and 0= n(IJNT) € nJNNT, so

NT <¢ N. Again, the second statement is clear.

Corollary 2.15 Let Mg be nonsingular. Then MEe M if and only if NT <¢ Ayls(N)
for every N< Mg, and M is nondegenerate if and only if M. Mr and M is re-

tractable.

Proof. By Proposition 2.7 and Theorem 2.14.
2.3 Endomorphism Rings of Nonsingular Retractable Modules
Definition 2.16 The set € = {N < Mg | N is a complement submodule ofiMand the

set G(S) = {H < Ss | H is a complement right ideal of Sor S = End(M).
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Theorem 2.17 Let Mr be nonsingular and nondegenerate. Ther=EndM) is a

right CS ring if and only if M is a CS module.

Proof. Assume that M is CS module and let H be a right complement in S. Then
[Au(H)] = eM, fore = € € S, andH = {Is[Au(H)]®} = Is(eM) = eS where
[Av(H)]¢ is a complement ofAw(H)] in Mr. Hence H is a direct summand in S,
proving that S is a right CS ring.

Conversely, assume that S is a right CS ring, and let N be a complement in M. Then
Is(N) = eS, fore= € € S, andN = [Auls(N)]® = [Au(e9)]¢ = [eM]® = eM, since
every direct summand is e-closed. Hence N is a direct summand in M then Mis a CS

moduler

Theorem 2.18 Let My be nonsingular and retractable. Then the maps—NIs(N)
and H — [Au(H)]® determine a projectivity between®@nd C(S) if and only if
K <e IsAu(K) for every K< Ss.

Proof. Assume thaK <. IsAu(K) for everyK < Ss. Then, by Corollary 2.13,
property (I1) holds, also, by Theorem 2.9, property (I) holds. Net C® and suppose
thatls(N) <. J. By Zorn’s Lemma, we may assume thiag CY(S). Since (l1) holds,
Is(N) <. Jimplies thatAyls(N) <e Au(J), since M is retractableiyIs(N) <. N, by
Proposition 2.8. Therefor®\ = [Auls(N)]¢ = [Au(J)]¢, so thatAy(J) € N and hence
J C I5(N), thenlg(N) = J, that isls mapsN e C®to Ig(N) € CY(S). Clearly, for any
H < Ss, [Am(H)]® € C&.

Let H € CX(S), by (1), Au(H) <c [Aw(H)]®implies thatlsAy(H) <e Is{[Av(H)]®}.
ThenH <¢ IsAu(H) <e Is{[Am(H)]¢} implies thatH = IsAu(H) = Is{[Au(H)]¢}-
We haveN € C® — Is(N) € CY(S) — [Auls(N)]® = N, andH € CY(S) — [Au(H)]¢ €
C® — Is{[Au(H)]?} = H.

Hence the two order-preserving maps are inverses of each other and so determine
a projectivity betweer€® andC(S).

Conversely, assume that the maps— Is(N) andH — [Aw(H)]¢ determine a

projectivity betweerC® andC(S). Then, ifH € C1(S), H = Is{[An(H)]®}, sinceH <
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IsAv(H) < Is{[Au(H)]¢}, it follows thatH = IsAy(H). Let K be any right ideal in
S, there isJ € C(S) such thatk <. J. We havel = IsAy(J), Au(K) < Au(J), and
K < IsAu(K) < IsAu(J) = J, soK <¢ Jimplies thatk < IsAw(K).O

The next theorem uses injective hulll, of M and its endomorphism ring =

End(M).

Theorem 2.19 Let Mg be nonsingular and retractable. Then<SEndM) is a right

CSring if and only if M is a CS module.

Proof. Let M be nonsingular, retractable and CS. Since M is nonsingular and re-
tractable, we have, by [27, Theorem 3.1] that S is right nonsing8lat, A and A is
maximal right quotient ring of S. Since M is CS moduleie C®*andN # M, then we
haveN = eM, for 1 # e= € € S, and therefore @ 1 -ec Is(N) = {s€ S| sN = 0}

for N < Mg. Since M is nonsingular, we know by [24, Theorem 3.5] that, if for every
complement N in M such thad # M we haves(N) # 0, then S has nonzero intersec-
tion with every nonzero left ideal ok = End(M). Hence, the right nonsingular ring

S has nonzero intersection with every nonzero left ideal of its maximal right quotient
ring A, therefore, it follows by Utumi’s Theorem [42, Theorem 3.13] that every com-
plement right ideal in S is a right annihilator in S. But, by [25, Theorem 3.13], since
M is nonsingular and CS, every right annihilator in S is a direct summand in S (that is,
S is a Baer ring). Hence every complement right ideal in S is a direct summand in S,
and S is a right CS ring.

Conversely, ifMg is nonsingular, retractable and S is right CS ring then M is CS
module [16, Theorem 3.1]. However, for completeness slightly shorter version of The-
orem 2.11 will be used. Let M be nonsingular and e-retractable and assume that S is a
right CS ring. LetN € C® and setH = Is(N). There isK € C}(S) such thatH <. K,
and, since S is a right CS ring, = eSfor e = € € S. We haveAy(H) < Au(K) =
Au(eS) = eM, andlsAy(K) = Is(eM). Clearly,e € Is(eM), so thateS C Is(eM), on
the other hand, is € Is(eM), then, for anym € M, sm= em somem, € M, hence

esm= €m, = em = sm thatis,s = ese eS. Thereforels(eM) = eS = K, that
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is, IsAu(K) = K, hence, sincéd <, K we haveH <. IsAy(H) <e IsAu(K) = K.

Thus, we haveé\y(H) < Au(K) andisAu(H) <e IsAu(K), with Ay (K) = eM a direct
summand and hence a complement in M. Therefore, by Theorem 2.11, it follows that
Au(H) <e¢ Au(K). Since M is e-retractable ard € C®, we have, again by Theorem
2.11, Auls(N) <e¢ N. Therefore, we hav®l = [Auls(N)]® = [Au(H)]® = Au(K),

that is,N = Ay(K) = eM, and N is a direct summand in M, proving that M is a CS

moduler
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CHAPTER 3

BAER AND QUASI-BAER MODULES

3.1 Preliminaries

In this chapter [38] was taken as a reference basically. And in this chapter all the
ring are assumed to be with unit, and not necessarily commutative. The modules are
unital right modules. The base ring, the right R-module and the endomorphism ring are
denoted byR, Mg, S = Endk(M) respectively. The notatioBnd(M) is used instead of
Endy(M). The right annihilator oX € M in R(i.e. all elements € R so thatXr = 0)
is denoted bygr(X), the left annihilator oiX € M in S (i.e. all elementg € S so that
¢X = 0) is denoted bys(X); the right annihilator off € Sin M (i.e. all elements
m e M so thatT m= 0) is denoted by (T) and the left annihilator dP € Rin M (i.e.
all elementsn e M so thatmP = 0) is denoted byy(P). And N < M means\ is fully

invariant in M.

Definition 3.1 A module M is called an extending (CS-) module if, for allNM,

there exists a direct summand Ny M such that N<. N’.

Definition 3.2 A submodule N of a module M is called fully invarianp{fN) € N for

all ¢ € Enck(M).

Definition 3.3 A module M is called an Fl-extending module if, for alliNM, there

exists a direct summand Mg M such that N<. N’.

Definition 3.4 A ring R is called a Baer ring if the right annihilator in R of any left
ideal is generated, as a right ideal, by an idempotent element of R (in other words, for

all | <gR, 1z(1) = eR where 8= ec R).
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Definition 3.5 Aring R is called a quasi-Baer ring if the right annihilator in R of any
two-sided ideal is generated, as a right ideal, by an idempotent element of R (for all

| <R, 1r(l) = eR where &= ec R).

Remark 3.6 The Baer and quasi-Baer properties for rings are left-right symmetric: a
ring R is a (quasi-) Baer ring if and only if the left annihilator in R of any (two-sided)

right ideal is generated, and a left ideal, by an idempotent element of R.

Definition 3.7 A ring R is called right nonsingular if no nonzero element has an es-

sential right annihilator in R.

Definition 3.8 A ring R is called right cononsingular if any right ideal, with zero left

annihilator, is essential in R

Definition 3.9 An idempotente= e € R is called a left (respectively, right) semi-

central idempotent if eR (respectively, Re) is a two-sided ideal of R.

The next lemma will be useful.

Lemma 3.10 For N < M, | <Rg, K <sS, P<M, J<R, L<'S, the followings hold:
() tm(rr(m(1))) = Iu(l)

(i) rr(lm(ra(N))) = rr(N)

(iii) 1s(rm(Is(N))) = 1s(N)

(iv) rm(s(rm(K))) = rm(K)
V) Iu(d) =M

(vi) rr(P) <R

(vii) 1s(P) =S

(viii) rm(L) < M.
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Proof. It is well-known that the pairsg()-Im(), respectivelys()-ry() are Galois pairs,
hence equalities)through {v) hold true. Let showi{;

Letm € Iy(rr(Im(1))) thenmrg(Im(1)) = O which impliesrg(Im(l)) € rr(m), som e
Im(1). Also if we take an elememnin Iy (1) thenrr(Ipm(1)) € rr(m) which implies
mrz(Im(1)) = 0, som e Iu(rr(Im(1)))-

For assertiony) we observe that, in generdl;(J) < sM. On the other hand, i <R
thenrd C J, and so, ifm € ly(J), mr € Iy(J) which implies thatmrd € mJ = 0.

Hencely(J) € M. The last three statements follow similarty.

Lemma 3.11 Let M be a module, and let M M;® M, be a direct sum decomposition.

If N < Mthen N= N;® N,, where N= NN M; < M;, fori =1, 2.

Proof. Let x; be the canonical projection of M ontd;, fori = 1,2. SinceN < M,
mi(N) € N, and sari(N) = NN M; = N;, fori = 1,2. HenceN C n;(N) + m2(N) =
N; + N,. ButsinceN; C N (i=1,2) ,Ny+ N, € N. AsN;n N, = NN My, n M, =0

we get thatN = N; & N,.O

Lemma 3.12 Let M be a module, with M= N; @ N, and let /, < N;. Then there exists

F,<N;sothath & F, < M.

Proof. Let

Fo= Z ¢(F1)
peHomM(N1,Np)

ThenF, < N,. Take anyy € End(Ny). Sinceyo € HOmM(Ny, Np) Yo € HOm(Ny, Ny),
we obtainy(F,) = v(3 ¢(F1)) = X ve(F1) € F,. HenceF, < N,. Considery €
End(M); theny = (xij)i.j=12 xij: N; = Ni, withi, j = 1,2. Note thaj; (F;) € F;, since
Fi <N, i =12, andyz(F1) € Fy, from the definition ofF,. Forg € Hom(Ny, N,),
x12¢ € End(Ny); it follows thaty12(F2) = x12(X ¢(F1)) = X12¢(F1) € F1. Since each

component of mapsF; @ F; back intoF, & F,, F1 @& F, < M.O
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3.2 Baer Modules

Definition 3.13 A right R-module M is called a Baer module if for all ¥ M ,
Is(N) <4 sS (or, equivalentlyd(N) = Se, with é=ec S = End(M)).

Remark 3.14 By lemma 3.10, one can easily prove that a module M is Baer if and

onlyifV 1 <sS, (1) = eM where é=ec S = EndM).

The following theorem given by Chatters and Khuri (1980) is generalized by Rizvi and
Roman (2004) as Theorem 3.29.

Theorem 3.15[16, Theorem2.1] Let R be a ring. Then R is a right nonsingular, right

extending if and only if R is a right cononsingular, Baer ring.

Definition 3.16 We call the module M is K-nonsingular if, for all € S = EndM),

rm(e) = Kerg <¢ M impliesy = 0.

Example 3.17 All semisimple modules are obviously Baer and so K-nonsingular mod-
ules, as are all Baer rings viewed as right modules over themselZ@ss a Baer

Z-module, for all ne N.

Lemma 3.18 A module M is K-nonsingular if and only if for all£ sS, ny(l) <e M

implies 1= 0.

Proof. For the necessity, assume the module M is K-nonsingular. TakeS so that
rm(l) <e M. Lety € I. Thenry(l) = N, Ker(y) < Ker(yp), henceKer(y) <e M

and sop = 0. Sincey was arbitrarily chosen, it implies that= 0. Conversely, let
¢ € S = EndM), with Ker(y) <¢ M. But Ker(y) = ru(S¢), henceSy = 0. This

impliesy = 0.0

Recall that a ring R is said to be cononsingular [16] if < Rg, rl #0,YV0#reR=

I <¢ Rr. A module theoretic version for this concept is like as follows.

Definition 3.19 A module M is called K-cononsingular if, for all ¥ M,Is(N) = 0

implies N<¢ M (equivalentlyp(N) # Oforall 0 # ¢ € S = EndM) implies N<, M).
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Example 3.20 Uniform modules are K-cononsingular.

Proposition 3.21 Let M be an R-module.

(i) M is K-nonsingular if and only if, for all I< sS, ny(l) <ceM for& =ee S =

EndM), implies In Se=0;

(i) M is K-cononsingular if and only if, for all N< M, ry(Is(N)) <4 M implies

N <e rm(Is(N)).
Proof.

(i) Letl < Ssothatry(l) <ceM. Thenry(INSQ =ry(l)®(1-eM <, M. By
K-nonsingularity of M;l N Se= 0. Conversely, lel <s S such thaty(l) <¢ M.

Then, by hypothesis, we have tHat S = 0, thusl = 0.

(i) Letry(ls(N)) = eMfor & = ee S = EndM) impliesls(N) € S(1 - €). Since,
by Lemma 3.1(N < ry(Is(N)) = eM we obtain thats(N & (1 — €M) = 0. By
K-cononsingularityN & (1 — e)M < M = eM® (1 - e)M impliesN <. eM =
rm(Is(N)). Conversely, leN < M with Is(N) = 0 impliesry(Is(N)) = M. Then
N <e rm(Is(N)) = M.

Remark 3.22 When M = R the Definitions 3.16 and 3.19 coincide with the usual
concepts of nonsingularity and cononsingularity, respectively. On the other hand, in
the general case a K-nonsingular module is not nonsingular, as the following example
shows. It can be seen that every Baer module is K-nonsingular and every extending
module is K-cononsingular. K-nonsingularity is a weaker form of nonsingularity, as

shown below.
Proposition 3.23 Every nonsingular module is K-nonsingular.

Proof. Assume M is not K-nonsingular; henék0 # ¢ € S = EndM) so that

Ker(yp) <e M. Since 0# ¢, 30 # me M\Ker(p). The setl = {r e R| mr € Ker(y)}
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isarightidealinR. Infactl <cR:r ¢ 1 = mr ¢ Ker(¢) = dr’ so that 0+ mrr’ €
Ker(¢) = 0 # rr” € |. But for 0 # ¢(m), (M)l = 0, that contradictions with the

nonsingularity of Mo

Example 3.24 TheZ-moduleZ,, where p is prime, is K-nonsingular (it is a simple
module, hence all nonzero endomorphisms are automorphisms); however, the module

Zy is not nonsingular in fact, for alk € Z,, X.pZ = 0 (pZ € Ker(X) # 0), and [Z <. Z.
Lemma 3.25 An extending module M is K-cononsingular.

Proof. Let N < M so thatp(N) # 0,V0 # ¢ € S = End(M). If N £. M, by extending
property we havlN <. eM, for some idempoterg € S = End(M), such thae # 1.
Hence (1- €) # 0; but (1- e)N C (1 - e)eM = 0, thus getting a contradiction. Hence,

M is K-cononsingulan

Lemma 3.26 A K-nonsingular extending module M is a Baer module.

Proof. Assume that M is a K-nonsingular extending module. Nek M. By the
extending property, there exist8 = e € S = EndM) so thatN <, eM. Hence
Is(N) 2 Is(eM) = S(1 — e). Assume that the inclusion is strict; then there exists
¢ € Is(N)\S(1 - e). SinceS = Se® S(1 - ¢) (as a left S-module) we have that
¢ = s+ (1 - e) for somes;, s, € S = EndM) with s; # 0; replacingy with

¢ — (1 - e) € Is(N),we can safely assumgis in Se We obtain thatp(N) = 0
ande((1-eM) = 0and sop(N@® (1 —e)M) = 0. ButN @ (1 — e)M <. M, hence
K-nonsingularity of M yields thap = 0 which contradicts our hypothesis. Therefore
Is(N) = S(1 - €), and so M is Baemn

Lemma 3.27 A Baer module M is K-nonsingular.

Proof. Let M be Baer. Lety € S = EndM) be any endomorphism of M with
Kerg <¢ M. Since M is BaerKery = ry(Se) = fM for somef2 = f € S = EndM).
Being a summand and an essential submodule in M implieskbap = M. Thus

¢ = 0. This proves that M is K-nonsingular.
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Lemma 3.28 A K-cononsingular Baer module M is an extending module.

Proof. Assume M be K-cononsingular and Baer. From Lemma 3.27 it follows that
M is also K-nonsingular. To prove that M is extending, éet< M thenlg(N) = S f

for f2 = f € S = EndM). HenceN c ry(Is(N)) = (1 - f)M. Assume that

N £ (1 — f)M. Hence there existB < (1 - f)M sothatN NP = 0. TakeN > N a
complement of P in M. Note thag(N) # 0 by K-cononsingularity, clearlyN £ M.

Let 0 # se€ S = EndM),sN = 0.ThensN = 0 and sincds(N) = S f, hence
s(1-f) =0,s(1- f)M) = 0. It follows thatsP = 0, and sos(N @ P) = 0. But

PaN <. M, hence, by K-nonsingulas,= 0, it is a contradiction. Thus M is extending

moduleo

Theorem 3.29 A module M is extending and K-nonsingular if and only if M is Baer

and K-cononsingular.

Proof.

(=:) Since M is extending and K-nonsingular by Lemma 3.25 and Lemma 3.26 it is
K-cononsingular and Baer.

(<:) Since M is M is Baer and K-cononsingular by Lemma 3.27 and Lemma 3.28 it is
K-nonsingular and extending.

O

Theorem 3.30 Let M be a Baer module. Then every direct summand N of M is also a

Baer module.

Proof. LetM = N& P. LetS’ = Endk(N). Then, for anyy’ € S’ there exists @ € S,
defined asp = ¢’ @ Op. Takel’ <sS';letl ={p | ¢ = ¢’ ®0p,¢" € I'}. 1is not
necessarily a left ideal of-SEnd(M), so considel = S|, the left ideal of SEnd(M)
generated by the set |. We observe that € |, o(P) = 0, sincep = 3¢ S(¢ @ Op)
ands (¢! ®0p)(P) = s(0) = 0,5 € S = EndM), ¢/ € I'(where F is a finite index set).

Since M is Baer modulay (1) <¢ M, and so there existd <4 M so thatry(l) @ Q =

26



M. Also, sinceP C ry(l), there existd. C ry(1) so thatry(l) = P& L, thusL <4 M.
SoM =ry(l)® Q = Q@ L @ P. Setny to be the projection of M onto N; then we can
see thatry|ger; Q@ L — N is an isomorphism (its kernel BN (Q& L) = 0) and we
obtain a decompositioN = 7n(Q) & nn(L). It will be shown thatr(17) = an(L).

Lety’ € 1" theny’ ®0p € I, ry(l) € ru(l) and so ¢’ @ Op)(P @ L) = 0. It implies that
(¢’ @ Op)(L) = 0. But every elemernite L can be written a$ = nn(l) + 7p(l), Since
np(l) is annihilated by’ @ Op, so¢’ ® Op(nn(l)) = 0 = ¢ @ Op(nn(L)) = 0. Hence
¢'(mn(1)) = 0, and since’ € I was arbitrarily chosemgy (L) C ry(1).

Next, letn € N \ ny(L). Thenn = n; + n, for somen; € my(L) and some Gt ny, €
n(Q). SincenyloeL is an isomorphism, there exidis € Q so thatry(nz) = np. Since
rm(1) € ru(1) thenQ N ry(1) = 0, hence there exists € | so thatyp(;) # 0. But as
¢ = Yier S(¥] ® Op) there existss (¢], ® Op)(Nz) # 0, and hencey & Op)(Nz) # O.
Decomposing, into 7y (M) +7p(N2) We get thaty] (mn(N2)) # O (asre(Mz) gets mapped
into 0) & ¢{ (n2) # 0. Hencery(L) = rn(1). Sincery(l”) is clearly a summand of N,

N is a Baer modul&

Example 3.31 Let R be a Baer ring, and lefe- e € R be any idempotent of R. Then

M = eR is an R-module which is Baer.

As an application of above results, the Baer modules can be characterized in the class

of finitely generated-modules.

Theorem 3.32[19, Theoren8.4] A torsion group A is the direct sum of p-groups A
belonging to dfferent primes p. The Aare uniquely determined by A.

Proof. Let A, consist of alla € A whose order is a power of the prinpe In view
of 0 € Ap, Ay is not empty. Ifa,b € Ay, that s, if p™a = p"b = 0 for some integers
m,n > 0, thenp™M"(a —b) = 0, (a-b) € Ay, andA, is a subgroup. Every element

in Ap, + ... + A, is annihilated by a product of a power pf, ..., p, therefore,

ApN(Ap +...+A)=0
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whenevermp # pi, ..., pk. Thus theA, generate their direct sun@pAp € A. In order
to show that everw € A lies in the direct sum, let(a) = m = p...py" with different
primesp;. The numbersn = mp ™" (i = 1,...,n) are relatively prime, hence there are
integers sy, ..., S, such thats;m, + ... + §§m, = 1. Thusa = s;mya + ... + s;m,a where
ma € A, (in view of p'ma = ma = 0), and soa € Ay, + ... + Ay < @pAp. If
A= EBpAp is any direct decomposition & into p-groupsB,, with different primes
p, then by the definition oA, we haveB, < A, for every p. Since th&, andA,

generate direct sums which are both equaAtwe must havéB, = A, for everyp. O

Proposition 3.33 A finitely generate@-module M is Baer if and only if M is semisim-

ple or torsion-free.

Proof.

(<:)If M is semisimple then M is obviously Baer. If M is finitely generated and
torsion-free,M = Z", wheren € N; Z" is extending and nonsingular, hence by Theo-
rem 3.29 it is Baer.

(=:) Assume now M is finitely generated Baer module. We can always decompose
M = t(M) @ f(M), wheret(M) is torsion submodule of M anél(M) is torsion-free
submodule of M. AssumgM) # 0 andf(M) # O; by structure [19, Theorem 8.4],
t(M) = ®pepZpn, WhereP C Z is a finite set of primesy(p) € N, for all p € P. Also,
f(M) = 2Z", 0+ ne N. Let pg be a prime so that(py) # 0 (such a prime must exist),
and lety : Z — Zpgw be the morphism defined hy(x) = X, for x € Z. Ker(y) is

a proper submodule &, hence it is essential iA. Extendy to ¢, an endomorphism

of M, whereg = ¢(ry,), mp, being the canonical projection of M onth The kernel
Ker(p) <e M, butKer(p) # M, hence M is not Baer, a contradiction. Hence either
t(M) = 0 of f(M) = 0.

Supposef (M) = 0. ThenM = t(M) ; it is finite direct sum oZyw, where p is prime
andn(p) € N. ThereforeZ, must be Baer module, by Theorem 3.30. Assume there
exists primep such thain(p) > 1; for suchZym, we setp(X) = pX: Zypo — Zyo.

The morphismp is not 0 (p.1 = p # 0 modulop™, wheren(p) > 1); Ker(y¢) # O
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(p.p"P-1 = p"P = 0), and sinc& v is uniform,Ker(y) cannot be a summand. Thus
Zyo is not a Baer module, a contradiction. Hen@) = @pZ,, with P C Z a finite
collection of primes (possibly in multiple instances).

Finally suppose that(M) = 0; thenM = f(M) = Z" which we already know is a

torsion-free modul&

Remark 3.34 The statement of Proposition 3.33 holds true for any finitely generated

module over a Principal Integral Domain.

Definition 3.35 A module M is said to have the summand intersection property (SIP)
if the intersection of any two direct summands of M is a direct summand. A module is
said to have generalized summand intersection property (GSIP) if the intersection of

any family of direct summands of M is a direct summand.

Theorem 3.36 [22] M has the SIP if and only if for every decomposition=VA & B

and every R-homomorphism f from A to B, the kernel of f is a direct summand of M.

Proof. Assume M is a module with SIP. L& = A® B andf an R-homomorphism
from Ato B. LetT ={a+ f(a) | a€ A}. ToshowthatM = T @ B, letx € M, then

X =a+bwhereae Aandb € B. Now,x =a+ f(a)— f(a) + b. Buta+ f(a) e T
and-f(a) + b e B,soM =T + B. Now, letx € T n B. Hencex = a + f(a), where
ac Aand soa= x- f(a)e An B = 0. Thereforef(a) = 0. Thus,x = 0. Since M has
SIP, thenT N Ais a direct summand in M. It is easy to show that A = Ker(f), so
Ker(f) is a direct summand in M.

The converse, assume that for every decomposifich A@B and every R-homomorphism
from A to B, the kernel off is a direct summand of M. Lé¥l = N& N;, M = K& K;
and letry, : M — N; andng : M — K be the natural epimorphisms. Now, define
h = (7N, © 7k) In. Note that h is defined frol — N;. Thus,Ker(h) is a direct
summand of M. It is easy to check thider(h) = (N N K) & (N N K;). SinceN n K

is a direct summand dfer(h) andKer(h) is a direct summand of M, thed N K is a

direct summand of Mz
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Example 3.37 There are modules with the SIP such that their direct sum need not

have the SIP.

Proof. ConsidelZ, andZ, asZ- modules. It is clear that each Bf andZ, is indecom-
posable and hence, has SIP. Deffrfeom Z, to Z, by f(X) = X. ThenKer(f) = {0, 2}

is not a direct summand @;. By theorem 3.36Z, & Z, does not have SIE

The characterization of Baer modules in terms of GSIP is like as follows.

Proposition 3.38 A module M is Baer if and only if M has the generalized summand

intersection property and Kép) <4 M, Yy € S = EndM).

Proof. Let M be a Baer module. Then it is clear théer(¢) <q M for all ¢ € S. Take

€ =g €S = EndM), i € F (for an index set F) and ldt= ;.- S(1 - ). Then
Ker((1 - &)) 2 ru(l) Vi € F (elements of M that annihilate all morphisms in | must
annihilate, in particular, (+ g)). LetN = N.r Ker((1 - €)); thenry(l) € N. Then
for any morphismy..r s(1 - &) € |, we have thatX.r s(1 — &))(N) = 0 (where

s = 0 for all but finite number of € F), and so we obtaimy(l) = N. This yields
Nice €M =N =ry(l) <4 M, since M is Baer. Therefore M satisfies GSIP.
Conversely, for eaclr € |, wherel < sS, we get thaKer(y) <q M. Also, ry(l) =

Nyel Ker(p) <4 M, by the GSIP. Hence we get that M is Baer.

Theorem 3.39 Alternative proof of Theorem 3.30 can be done by using the property
that M is Baer if and only if M has the generalized summand intersection property and

Ker(yp) <¢ M, Yy € S = EndM).

Proof. By previous proposition M has GSIP aier(y) <q M, Yo € S = EndM).
Since for allP <4 N, whereN <4 M, P <4 M, N obviously has the GSIP. Taking
nowy € EndN), we can extends to an endomorphism d¥1, by takingy = ymy :
M — N C M, whereny, is the canonical projection ontd. Kery <4 M, butKery =
N’ @ Kery as it is easily checked (fdvl = N & N’). This implies thaKery <4 N (by
using GSIP). In conclusioN has GSIP and sinag € End(N) was arbitrarily chosen
thenKery <4 N, Y¢ € End(N) thenN is Baer moduleo
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Theorem 3.40 M is an indecomposable Baer module if and onlydf£ ¢ € End M),

¢ Is @a monomorphism.

Proof. Let M be indecomposable andf¢ € EndM). M being BaerKer(y) <4 M,
henceKer(¢) = 0 orKer(p) = M. As¢ # 0 it follows thaty is a monomorphism.
Conversely, assume that M is not indecomposable, hkheeM; & M, with My, M, #
0. Takey = m; the canonical projection of M ontll;; Ker(¢) = M, # 0, a contradic-

tion. Baer condition for M follows obviouslis.

In general, a direct sum of Baer modules is not a Baer module, as the following exam-

ple shows.

Example 3.417Z and’Z, are BaerZ-modulesZ is domain;Z, is simple). By Theorem
3.38,Z&7Z, is not a Baer module (in fact, for the endomorphig(n, m) = h we obtain

that Ker(yp) = 2Z @ Z,, which is not a direct summand Bf® Zy).

Proposition 3.42 Let{M; | i € F} be a class of Baer modules, for an index set F. If

@ieF M; is a Baer module, then the clafsl;} satisfies the following:

() Relatively Baer Condition: for any paifio, jo), io # Jo € F, and anyy €

HOTT(MJ'O, Mio)) Ker(w) <4 Mjo'

(i) Vio # jo € F, for all monomorphismg : M/ <4 M, = Mj, andy : M <4
Mj, — M, the set A= {(¢"%(a).-y(a)) | a € Im(g) N Im(y)} is a direct

summand of I}(él@ Mjfo.

Proof. The elements of the endomorphism ring @ M; are matrices, for which
the (, j) entries are morphisml; — M;. Since@p M; is Baer, the kernel of every
endomorphism is a direct summand.

To show (), take the endomorphisni(); jer, with

(1) ¢ij =0,Vi #igandj # jo;

(2) Gio.jo = ¥

Ker((¢ij)) = (@je(F\jo) M) @ Ker(y), as it is easily checked. This must be summand
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thenKer(y) <q Mj,.

To prove (i), observe that ag is defined on a summand ®,,, it can be extended
to the wholeM;,, by setting it equal to 0 on the other component; similarly with
To simplify notation, we use the same symbols for these new morphism. Take the
endomorphismd;); jer, With:

(1) @ij = 0, Y(i, j) # (o, o), (io, i0);

(2) aigip = ¢;

(3) aijp = ¥

Ker((aij)) = K = {(b,c) | ¢(b) + y(c) = 0}. Notice thatKer(y) & Ker(y) < K.
Moreover, since both the kernels gfandy are direct summands, we hai, =
Ker(p) ® M; andMj, = Ker(y) ® M; . Note thaty is mono onM; andy is mono
on M. We havey(b) + ¥(c) = 0 only if p(b) = —y(c) € Im(p) N Im(y). For
(b,c) € (M ® M; )N K, we get b,c) € {(gol;,l?o(a), —wlgﬁlio(a)), ae Im(p) N Im(y)} = A
(Ker(y) @ Ker(y)) N A = {(0,0)}, obviously. Given the fact that any palys,€) € K
can be written uniquely ad(c) = (b’,c’) + (b”,c”) with (b', ¢’) € Ker(y) & Ker(y)
and p”,c”) € (M; @ M; ), we have thaK = Ker(p) @ Ker(y) & A. Now, K must be a

summand oM;, & M,;

henceA <4 M{, & M] .0

Proposition 3.43 Let M be a K-nonsingular module, and let N4 M. Then N is

K-nonsingular.

Proof. Lety : N — N so thatKer(p) <¢ N. Extend this morphism t¢ = ¢ & Oy
on the moduleM = N & N’. Ker(p) = Ker(¢) ® N’ <¢c N& N’ = M, and since M is
K-nonsingulary = 0 hencep = 0. Sinceyp was arbitrarily chosen, it implies that N is

K-nonsingulaiz

It is well-known that if R is right nonsingular, the essential closure of a submodule is
unique.

A similar result for K-nonsingularity is like as follows.

Proposition 3.44 Let M be a K-nonsingular module. If X is essential in a summand N

of M, then N is unique.
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Proof. AssumeX <. N, <¢ M, with Ny P, = M, i = 1,2; assumeN; # N,
(which impliesN; ¢ N, andN, ¢ N;). Takey = 7p,(7n,); ¢ # 0, since there exists
x € N; \ N2 which will have a nonzero projection onRy. Takey € M; y = n; + py;
since X <¢ N; there existy € Rso that 0# nir € X; yr # 0, sincenyr # O;
@(yr) = mp, (N, (Mar + par)) = 7p,(Mr) = 0, sincen;r € X € N,. Hence, since y was
arbitrarily chosen, we get thater(y) < M. But M is K-nonsingular, s = 0, a

contradiction. Hence, the summand in which X is essential is urique.

Proposition 3.45 Let M be a K-nonsingular module and XM. Let N <4 M with
X <¢ N. Then N< M.

Proof. We haveM = N@ P. Letyp € S = EndM). Assumeyp(N) ¢ N. Take
v = nmp(p(nn)), with 7y andrp the respective canonical projections. Ixet N so that
¢(X) ¢ N, hencey(x) # 0. ButX @ P C Ker(y) (since all elements from P are sent
to 0 throughry, while elements fronX C N are sent intoX € N throughe(my)) and
X @ P < M. This is a contradiction, since M is K-nonsingular. Heg¢Bl) € N, and

sincey was arbitrarily choserl\l < M. O

Recall that a module M is called an Fl-extending module if, for eWryM, there
exists€? = e € S = EndM) so thatN <. eM. A large class of modules and rings
are Fl-extending, but not necessarily extending (for example, direct sums of uniform

modules, ring of upper-triangular matrices o¥@r

Proposition 3.46 [4] Let M be a module and X is a fully invariant submodule of M. If

M is Fl-extending, then X is Fl-extending.

Proof. Assume M is a Fl-extending module. Let S be fully invariant submodule of X.
SinceS < X < M, thenS < M (In fact, lety € EndM). Theng(X) C X, and also
¢lx + X = XsinceS < X, (¢lx)(S) € S. Thus,¢(S) € S). SinceM is Fl-extending
andS < M, there is a direct summand D of M such ti$ak. D. Letz : M — D be the

projection endomorphism. Then

S = 7(S) < n(X) N D = n(X)
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Hence,S < n(X) andn(X) is a direct summand of X{<M = D& P for someP < M

impliesX=(DnX)® (PN X)=(Dnna(X) e PnX)=nr(X)s (Pn X)).o

Theorem 3.47 Let M = ., X if each X is an Fl-extending module, then M is FlI-

il
extending module.

Proof. Assume eaclX; is an Fl-extending module, and S is a fully invariant submodule
of M. Since, for each i such that(S) # 0, 7;(S) is a fully invariant submodule oX;,
there existd;, a direct summand of;, such thatr(S) < Di. S = P 7i(S) <e P Di.

Since@ D; is a direct summand of M, we have that M is an Fl-extending module.

Corollary 3.48 If M is direct sum of extending modules, then M is Fl-extending.

Proposition 3.49 Let M be K-nonsingular module, then the following conditions are

equivalent:
() Mis Fl-extending;

(i) M is strongly Fl-extending (M is called a strongly Fl-extending module if every

fully invariant submodule of M is essential in a fully invariant summand of M

[4])

Proof.

(i = ii) Let X < M. Since M is Fl-extendingX <¢ N <4 M. But by the proposition
3.45, this summand is fully invariant (and also it is unique). Hence M is strongly FI-
extending.

(ii = 1) is obviouso

3.3 Quasi-Baer Modules

Definition 3.50 A right R-module M is called a quasi-Baer module if for alld\M,
Is(N) = Se, with é = e € S = EndM) (or, equivalently,yJ < S,ry(J) = fM for
f2= f € S = EndM)).
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Example 3.51 All semisimple modules are quasi-Baer; all Baer and quasi-Baer rings
are quasi-Baer modules, viewed as modules over themselves. The Baer modules are
obviously quasi-Baer modules. The finitely generated abelian groups are also quasi-

Baer.

Theorem 3.52 [2, Propositiort.4] Let R be right nonsingular. Then R is right FI-
extending if and only if R is quasi-Baer and<ar(I(A)), for A< R.

Proof. Assume R is right Fl-extending and ek R. Then there exists = €? such that
Ar <ceR Since R is right nonsingulaltA) = [(eR = R(1 — €) hence R is quasi-Baer.
Moreover,Agr <e eR=r(I(eR) = r(I(A)) S0 Ag <c r(I(A)).

The converse is obvious.

As in the Baer case, we need to introduce a concept of nonsingularity, in this case
taking in account not only the endomorphisms ring but also the fully invariant submod-

ules of M.

Definition 3.53 A module M is called FI-K-nonsingular if, for anyd S so that

rv(l) <ceM for & = ee S = EndM),ry(l) = eM.

Definition 3.54 A module M is called FI-K-cononsingular if, for everydN M and

N’ < N so thatp(N’) # 0,Y¢ € End(N), we get that N<¢ N.

Proposition 3.55 Let M be an R-module.

(i) Mis FI-K-nonsingular if and only if, forall kS, ny(I) <ceM for& =ec S =
End(M), implies In Se=0.

(i) M is FI-K-cononsingular if and only if, for all Nd M, ry(Is(N)) <4 M implies

N <e rm(Is(N)).
Proof. The proof follows on the same line as that of Proposition &21.

The above definitions indeed generalize the notions of K-nonsingularity and K-

cononsingularity, respectively.
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Corollary 3.56 We have the following implications:
(i) If M is K-nonsingular, then M is FI-K-nonsingular.

(ii) If M is K-cononsingular, then M is FI-K-cononsingular.
Proof. The proof follows from Proposition 3.21 and Proposition 355.

Any semiprime ring R which is not right nonsingular has the property Raas
FlI-K-nonsingular but not K-nonsingular. Any module which is Baer, Fl-extending but

not extending has the property that it is FI-K-cononsingular but not K-cononsingular.
Lemma 3.57 Let M be Fl-extending. Then M is FI-K-cononsingular.

Proof. Let N <4 M. Then by Proposition 3.46, N is Fl-extending. Taie< N such
thate(N’) # 0, Yo € End(N). By the Fl-extending propert)’ <¢ N’ <4 N. Assume
N’ @ N, = N for someN, <4 N whereN, # 0. Then letr, be the canonical projection
of N onto N, has the property that,(N’) = 0, contradiction. Henc&l, = 0, hence
N’ <¢ N.O

Lemma 3.58 Let M be FI-K-nonsingular Fl-extending module. Then M is quasi-Baer.

Proof. Letl < S = EndM). We want to show thaty(l) <¢ M. We have that
rm(1) € M, and by Fl-extending property we ggj(l) <. eM,e? = e € S = EndM).
By FI-K-nonsingularity we get thaty, (1) = eM.o

Lemma 3.59 Let M be quasi-Baer. Then M is FI-K-nonsingular.

Proof. Let| <S = EndM), with ry (1) <e €M, wheree? = e € S. Then by quasi-Baer
property,ry(l) <¢ M. Asry(l) € eMit follows thatry(l) <4 eM. Since it is also

essentialry (1) = eM.O

Lemma 3.60 Let M be FI-K-cononsingular quasi-Baer module. Then M is Fl-extending.
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Proof. Let N < M, andls(N) = S e(by quasi-Baer property). Hencl, C (1 - e)M.
Moreover, sincelN < M, Se< S hence (- M <4 M. Now letyp € End((1 — /M),
thusg = (1-€)p(l-e) € S = EndM). Supposeo(N) =0= ¢ =(1-€)p(l-¢) e
Is(N) = Se Butthen (1-e)¢(l-€) € [(1 -e)S](1 -e nSe= 0. So, by the

FI-K-cononsingularity of M we get thadll <. (1 - e)M, hence M is Fl-extending.

Theorem 3.61 A module M is Fl-extending and FI-K-nonsingular if and only if M is

quasi-Baer and FI-K-cononsingular.

Proof.
(=:) By Lemma 3.57 and Lemma 3.58.
(<) By Lemma 3.59 and Lemma 3.60.

O

Remark 3.62 In the proof of Lemma 3.60 we also get tliat- e)M <M (N< M =
Se=Is(N)<S = (1-¢eM = ry(ls(N)) € M), and so we obtain that M is, in fact,

strongly Fl-extending.

Corollary 3.63 Aring R is right Fl-extending and right FI-K-nonsingular if and only

if R is quasi-Baer and right FI-K-cononsingular.

Theorem 3.64 Let M be a quasi-Baer module. Then for any§y M, N is also a

quasi-Baer module.

Proof. SinceN <4 M, there exist® = e € S = End(M) so thatN = eM, and letF <N.
Using Lemma 3.12, there exigB< (1-e)M so thatF # G< M. Since M is quasi-Baer
module,l = Is(F®G)<4S. The endomorphismring N = eMiseS eand sincd <S,
ele=eSen | (one inclusion is obvious, while the other one results from the following
argumenti € IneSe= i = ese= €s& = eiec ele). Atthe sametime, = S fwhere
f2=f € S=EndM), and scele= eS fe But, sinceSf< S, fee Sf= fe= fef;

we can write hencele = eS fe= eSfef= eS fefe= (eS fé(efe. Notice that

(efe? = efeefe= efefe= efee= efe we have €S f¢(efe c (eSg(efe, but
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also the reverse: leegg(efe € (eSg(efe; eseefe- esefe= esefef= esefefe=
e((sgf)efe= g((sef)eefe= (e((sef)e)(efe € (eSej(efd. Hence we have that
ele<q eSg(in fact, it is a fully invariant direct summand becaweseeis a semi-central
idempotent ireSe (efé(esg=efese=efesef=efesefe- (efg(esg(efa).

We only have to show thatle = les{F). Itis clear thatéle)(F) = 0: eig(F) = ei(F) =
e(0) = 0. Assume there exists @ eje € eSeeje ¢ eleso thatejgF) = 0. But
ejeGCcejgl-e)M = 0,and sejec Is(F®G) = |. Buttheneje= eejee= e(ejeec
ele a contradiction. Hencks{F) = ele<q4 eS e F was arbitrarily chosen, hendeis

quasi-Baen

Theorem 3.65 Let M; and M, be quasi-Baer modules. If we have the propeity) =
Ofor all y € Hom(M;, M;) implies x= 0 (i # j;i, ] = 1,2) then M, & M, is quasi-Baer.

Proof. LetS = EndM; @ M), and letl < S. Thenry,ewm, (1) < M1 & My, hence, using
Lemma 3.11ruw,em,(1) = N1 & Ny, whereN; < M;, i = 1,2. As mentioned,
s S Hom(M;, M)
Hom(My, My) S,

Sincel < S we have the following properties;

lin={p € S1| ¢ =é&1;(&)ij=12€ 11 2SS,

l2o ={@ € So | ¢ = &, (ijij=12 € 11 2S)

We also defindi, = {y € Hom(Mz, My) | ¥ = &12; (§ij)ij-12 € I} andlz = {y €
Hom(M1, Mp) | ¢ = &21; ()i j=12 € 1}

Let N; = ry,(I1). We have thalN; = N; N (N, Keny). SinceM; is quasi-Baer,
we know thatry,(I1) <¢ M;. We also have thai(N;) satisfiesy(y(N;)) = 0 for all

x € Hom(M;, M,), sincey(y¥) € |1 for ¢ € 115, Since we have the property that
x(X) = 0 for all y € Hom(M;, M;) implies x = 0 then we get thay(N;) = 0 for all

¥ € l1p, and soN; = Nj <y M.
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Proposition 3.66 M = .. M; is quasi-Baer if Mis quasi-Baer and subisomorphic

ieF
to (i.e., isomorphic to a submodule of);Mor all i # j; i, ] € F, where F is an index

set.

Proof. LetS; be the endomorphism ring ®4;, for alli € F. The endomorphism ring of
M, S, is aring of matrices, with elements®fin theii-position, and mapsl; — M; in
ij-position, for alli, j € F, i # j. We need to show, for all< S, ry(l) <4 M. But since
rv(1) S M, ru(l) = @, rw(l) N Mi. We only have to analyze, hence, the column
morphisms (i.e., matrices) taking; into M for ani € F. Similar to our previous
theorem, we have that tht column ofl < S has elements from an idelak S; in the
ith position, and certain elements frddom(M;, M;) in the remaining places (call the
union of all these set8). ry(1) N M; = ry, (1)) N (Ngea(Ker(p))). But M/ = ry,(I;) <q
M;, sinceM; is a quasi-Baer module. If we takegac A, for exampley : M; — M;,
I,j € F,i# ], thenyjp € |;, wherey; : M; — M; is the monomorphism takiniyl;
into M;; we obtain this by noting that if we multiply a morphismlinhavinge in the
ji-position, with the morphismyta)xicr, X« = O for where k1) # (i, j) andyi; = v,
then we get a morphism ihwith ¢ : M; — M; in theii-position. This means that
Yiip(M!) = 0; asy i is a monomorphism, henggM) = O, thusM/ C Ker(p). Since
¢ € A was arbitrarily chosermu(l) N M; = ry, (1) N (Nea(Ker(p))) = M <q M.
Using this argument for alle F we obtain thaty(l) = . - M/ <¢ P, Mi = M.

O

Corollary 3.67 A free module over a quasi-Baer ring is a quasi-Baer module.

Proof. Follows directly from the above result.

O
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3.4 Endomorphism Rings

Theorem 3.68 Let M be a Baer (respectively, quasi-Baer) module. ThenEnd(M)

is Baer (respectively, quasi-Baer) ring.

Proof. Letl < S be aleft (respectively, two-sided) ideal. Since M is Baer (respectively,
quasi-Baer)ru(l) <¢ M, thus there exist&? = e € S such thatry(l) = eM. We
claim thatrs(l) = eS also holds. For angy € eS, we observe thatey = 0, as

for all x € M, ley(x) C 1eM = 0. ThereforeleS = 0, andeS C rg(l). Next, let

¢ € rs(l) be any element; then we can wrige= ep + (1 — €)¢. Sincely = 0,
lo(M) =0 = I(p(M)) = 0. Hencep(M) C ry(l) = eM. Letm e M be arbitrary; then
e(Mm) = em(m € M) = ep(m) = enf = p(Mm) = ep = ¢. Hencep € eSwhich yields
eS=rg(l).O0

Corollary 3.69 [4, Propositiord.8] Let M be a K-nonsingular, Fl-extending module.

Then SEnd(M) is a quasi-Baer ring.

Proof. We know that if a module is Fl-extending and FI-K-nonsingular, then it is
quasi-Baer. Since K-nonsingularity implies FI-K-nonsingularity, we get that M is a
quasi-Baer module. By Theorem 3.64,is quasi-Baer module implies=sEnd(M) is

quasi-Baer ringa
Next example shows that the converse of Theorem 3.68 does not hold in general.

Example 3.70 Let M = Z,~, considered as &-module. Then it is well-known that
End;(M) is the ring of p-adic integers [19, Example 3, page 43]. Since the ring of
p-adic integers is a commutative domain, it is a (quasi-) Baer ring. HoweverZAj-

is not a (quasi-) Baer module.

Definition 3.71 A module M is called retractable if Haflel,N) # O, V0 # N < M
(or, equivalentlyd 0 # ¢ € S = End(M) with Im(¢) C N).

We recall a result of Khuri that already proved as Theorem 2.19.

40



Theorem 3.72 Let Mg be nonsingular and retractable. Then S End(M) is right

extending ring if and only if M is extending module.

Proposition 3.73 Let M be retractable. Then M is Baer if and only #Bnd(M) is

Baer ring.

Proof. The direct implication has already been shown as Theorem 3.68. We now
prove the reverse implication. Lét< sS; since SEnd(M) is Baerrs(l) = eSfor

€& = ec S. Hence,ry(l) 2 eM. Assume there exist® € M \ eM so thatim = 0
without loss of generality we can assume:(n € (1 — e)M. By retractability, there
exists 0% ¢ € S,Im(¢) € mR But in this case]¢M C ImR = 0, hencep € rg(l).

Buty = (1-€)p € eSn (1-e)S = 0 which is a contradiction. Henag(l) = eM,

implying that M is a Baer module.

Proposition 3.74 Let M be retractable. Then M is quasi-Baer if and onlyHEhd(M)

IS a quasi-Baer ring.

Proof. The proof is similar to the Baer case, discussed almove.

Theorem 3.75[29, Theoren2, Theoren3] If R is a Baer ring with only countably
many idempotents, then R has no infinite sets of orthogonal idempotents. If, in ad-

dition, R is a regular ring, then R is a semisimple Artinian ring.

Proposition 3.76 If M is a Baer module, with only countably many direct summands,

then M contains no infinte direct sums of disjoint summands.

Proof.Since M is Baer, S is Baer by Theorem 3.68. Since M has countably many direct
summands, then S has only countably many idempotents. By Theorem 3.75 S has no
infinite sets of orthogonal idempotents, hence there exists no infinite sets of mutually

disjoint direct summands in .
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Proposition 3.77 Let M be an extending module such that its endomorphism ring
S=End(M) is regular ring. Then M is a Baer module, and subsequently S is a Baer

ring.

Proof. In view of Theorem 3.29 we only have to show that M is K-nonsingular. Take
¢ € S = EndM) so thatry(Sy) = Ker(p) <¢ M. Since S is regular, there exists
Y € S so thaty = gy, henceyy = (o)) is an idempotent with the property that
S¢ = Syrp; but thenry(Sy) = ru(We) = (1-we)M <4 M. HenceKer(y) = ry(Se) =

M= =00
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CHAPTER 4

ON K-NONSINGULAR MODULES AND APPLICATIONS

4.1 K-nonsingular Modules

In this chapter [40] was taken as a reference basically.

Definition 4.1 [43, Propositioril1] A module M is called non-M-singular (polyform)

ifforall K € Mand0 # f : K - M, Kerf is not essential in K.
Proposition 4.2 Every non-M-singular (polyform) module M is K-nonsingular.

Proof. In particular, all nonzero endomorphisms of M have kernels which are not

essential in M, providing our assertian.

The following examples show that K-nonsingularity of modules is a proper gener-
alization of the concepts of non-M-singularity (or polyform property) and nonsingu-

larity, i.e., the converse of Proposition 4.2 and Proposition 3.23 do not hold true.

Example 4.3 In Z-mod let M= Q& Z. Then Q< M andZ, < M (Hony(Q, Z,) = 0,
Homy(Z,, Q) = 0).From Theorem 4.14 (later in this section) we can see that M is a
K-nonsingularZ-module since Q is K-nonsingular (in fact it is nonsingular) ads
K-nonsingular. However, if we také < Q andy : Z — Q& Z, ¢(2) = (0,2), then

kernel ofy is 2Z < Z, hence M cannot be non-M-singular (polyform) or nonsingular.

However, when the modulel = R, the base ring, the tree concepts coincide.

Proposition 4.4 A ring R is K-nonsingular if and only if R is nonsingular if and only

if R is non-R-singular (polyform).
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Proof. The proof easily follows aEndR) = R consists of left multiplication by

elements of Ra

Definition 4.5 For a module M we define the K-singular submodule of M B\D) =
Ypeskers<om |Me (Where the summation goes over@le S = End(M) with Kerp <.

M).
Proposition 4.6 A module M is K-nonsingular if and only ifZM) = 0.

Proof. If ZK(M) = 0 ® ¢ = 0,V¢ € S = EndM) with Kerp <. M. The result

follows.o

Proposition 4.7 Let M be a module. ThenZM) < M. Moreover, Z(M) C Z(M).

Proof. Lety € S = End(M) so thatKerp <, M; for anyy € S, Keryg 2 Kerp, and
soKeryp <¢ M.

Forx € ZX(M), let X = X; + Xo + ... + X, Wherex; € Img;, ¢ € S,i € {1,...,n}, for
somen € N. For eachx,dm € M andl; <. Rg so that 0# X = ¢;m;, however
ml; € Kergy = ¢i(mli) = xli = 0 (V1 < i < n). Takingl = (N« li We get that

x| = 0 andl <¢ Rr. Hencex € Z(M), and the result followst

Note that, if M is nonsingulaiZ(M) = 0, hence by Proposition 4.ZX(M) = 0.
In view of Proposition 4.6, this provides another proof of the fact that nonsingularity

implies K-nonsingularity.

Proposition 4.8 Let M = @, - Mi. Then (M) 2 B, . Z¥(M)).

ieF

Proof. Sincez(M) aM = Z¥(M) = 6B, _-(ZX(M) n M;). We only need to show that

ieF
ZX(M)) € ZK(M) N M;.

For a fixedi € F, x € ZK(M)) = X = 01(X) + @2(X2) + ... + ¢n(Xn), for some n,
whereg; € EndM;) andx € M;, Kerg; <¢ M;, Y1 < i < n. Extending eacly; to
¢ - M — M, bygiu, = 0forVi # jwherei, € F gets uKerg; <. M (as it is easily

checked), and se e ZX(M;) = x€ ZK(M) N M;,i € F.O
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It is well known that nonsingularity is inherited by submodules of nonsingular
modules, and in particular by direct summands of nonsingular modules. Also, a di-
rect sum of nonsingular modules is nonsingular. On the contrary, for the case of K-
nonsingularity, neither submodules always inherit K-nonsingularity, nor direct sums of

K-nonsingular modules are K-nonsingular. The next example exhibits this.

Example 4.9 It is easy to see that @ Z, < Q@ Z, is not a K-nonsingulaZ-module
(the map(z n) — (0, 2) has essential kernel), even thoughe@,; is a K-nonsingular

Z-module. AlsoZ andZ, are both K-nonsingular, whil& @ Z; is not.
The property of K-nonsingularity, however, is inherited by direct summands.

Proposition 4.10 Alternative proof of Proposition 3.43 can be done by using Propo-

sition 4.8 and 4.6.

Proof. Let M = N @ N’. By Proposition 4.8 we obtain thZt‘(M) 2 ZX(N) @ Z¥(N");
but ZX(M) = 0 by Proposition 4.6, since M is K-nonsingular. Thi&§(N) = 0, and

applying Proposition 4.6 again, we obtain that N is K-nonsingualar.

Definition 4.11 Let M and N be R-modules. We say that M is K-nonsingular relative

to N if, Yo € Hom(M, N), Kerp < M impliesy = 0

Definition 4.12 The R-modules M and N are relatively Rickart if for@ale Homg(M, N),
Ker(p) <¢ M and for allyy € Homg(N, M), Ker() <4 N (this condition was termed

"relatively Baer” in previous chapter).

Remark 4.13 M is K-nonsingular relative to M if and only if M is K-nonsingular. If M

and N are relatively Rickart modules, then they are mutually relatively K-nonsingular.

In the next result a necessaryfistient condition is provided for arbitrary direct

sums of K-nonsingular modules to be K-nonsingular.

Theorem 4.14 Let(M;)ir be a family of modules. Then M EBieF M; is K-nonsingular

if and only if M is K-nonsingular relative to | Vi, j € F.
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Proof. Lety € EndM). Assume thakKery <, M. Thus,Kery N M; <¢ M;,Vi € F.

Fix i € F. We can splity|y, : M; —» €5 M; into @jel mjYlw, Wherer; is canonical
projection of M ontoM;, j € F. Keryly, = Kery N M; < M;, but Kery|y, =

Nijer Kermjyly, = Kerrply, <e M;, j € F. But, by relative K-nonsingularity in our
hypothesisz;y|w, = 0, V] € F. Henceyly, = 0.

Sincei € F is arbitrary,y|y, = 0Yi € F, thusy = 0. This implies that M is K-
nonsingular.

Converse holds by Proposition 4.10 and the fact that nonzero homomorphisms between
any pair of summands of M can be extended to M in the obvious fashion, in which case

each kernel must be non-essential.

Proposition 4.15 Let M be a module such tha{ M) is a K-nonsingular module. Then

M is K-nonsingular.

Proof. Any endomorphismp € End(M) can be extended to an endomorphignz
EndE(M)). AssumeKery <. M < E(M); sinceKerp C Kerg = Kerg <. E(M).
Hence, sinc&(M) is K-nonsingular, we obtain that= 0 = ¢ = 0. In conclusion, M

is also K-nonsingulamn

In the next example it is shown that the converse of Proposition 4.15 does not hold

in general.

Example 4.16 Let M = Z,,. Even though M is K-nonsingul&-module (M is simple
module in fact), essential extensions of M, in particular its injective h(ME= Z -,
are not necessarily so. This, since the endomorphisn{ ) Bbtained by multiplying

elements by p has a nonzero essential kernel.

Theorem 4.17 Let R be aring. The following are equivalent:
() Every injective (right) R-module is Baer;
(i) Every (right) R-module is Baer;

(i) R is semisimple artinian.
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Proof. (iii = ii = i) are obvious.

To prove { = iii), consider the moduleB = E(M) @ E(E(M)/M), where M is an
arbitrary rightR-module. B is injective (being the direct sum of two injective modules)
and hence Baer by hypothesis. ket E(M) — E(E(M)/M) be defined byp(x) =

X+ M, ¥x € E(M). ThenKery = M is a direct summand d&(M). SinceM <, E(M)

we getM = E(M). Since M was arbitrarily chosen, we get that all rightodules are

injective, hencdk must be semisimple artiniam.

As a consequence, itis shown that the class of semisimple artinian rings is precisely

also the class for which eveRBrmodule is K-nonsingular.

Corollary 4.18 Let R be aring. The following assertions are equivalent:
() Every (right) R-module is K-nonsingular;
(i) Every injective (right) R-module is K-nonsingular;

(i) R is semisimple artinian.

Proof. (i = ii) is obvious. To provei{ = iii ) we observe that if a module M is injective
and K-nonsingular, it is, in particular, extending and K-nonsingular. By Theorem 3.29
we obtain that M is Baer. Then by Theorem 4.17 R is semisimple artinian.

(iii = 1) is clear since the kernel of any nonzero endomorphism oRampodule must

be a proper direct summand, hence cannot be essaential.

4.2 K-Nonsingularity and The Endomorphism Ring

Definition 4.19 Recall that A right R-module M is called continuous (quasi-continuous)
if M is CS-module satisfying the conditi¢@,) ((Cz)).

Let R be aring. Let M and N be R-modules with identity if every homomorphism from
a submodule X of N to M extend from N to M then M is said to be N-injective. For
every R-module N if M is N-injective then M is called injective module. If M is M-
injective then M is called quasi-injective module. M and N are relatively injective if M

is N-injective and N is M-injective. Also if M isRhjective then M is injective.
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Lemma 4.20 Let A be a submodule of an arbitrary module M. If A is closed in a

summand of M, then A is closed in M.

Proof. Let M = M; @ M, with A <. M;. m; : My & M, — M, be projection map.
Assume tha®A <, B < M. Then it is easy to see that= n(A) <¢ 7(B) < M;. Since
A<.M;thenA=7r(A) =7(B)<B. (1-7B<B= (1-7)BNA=0,(1-7)B=0

= B=7nB< M;soA=BO

Theorem 4.21 The followings are equivalent for a module M.

(i) Mis quasi-continuous.

(i) M = XeY for any two submodules X and Y which are complement of each other.
(i) fM < M for every idempotent € End(E(M)).

(iv) E(M) = &P, Eiimplies M= ., M NE,.

Proof.

(i=ii) XY <c MthenX,Y <4 M. By condition C3) X& Y <4 M. SinceXaY < M
thenXe@ Y = M.

(il = iii) Let Ay = M n f(E(M)) (f : E(M) > E(M)) andA; = M n (1 - f)(E(M)).
Let B; be a complement o, that containsA;. Let B, be a complement of; that
containsA,. ThenM = B; @ B,. Letx be the projectiorB; & B, — B;. We claim
thatM N (f —7)M = 0. Letx,y e M suchthaty = (f —7)(X) >y = f(X) - n(X) =
f(X) = y+n(x) € M and hence (x) € A;. Thus (1- f)(x) € M and so (+ f)(x) € A,.
Thereforer(x) = f(x), and consequently= 0. (x— f(x) € A, = n(x- f(X)) = 0=
a(X)—n(f(X)) = 0= n(X) = f(X). M <e E(M) = (f-1)M = 0= f(M) = 7(M) < M.
(i = iv) Itis clear thatth, , M N E; < M. Let m be an arbitrary element in M. Then

me .- Ei for a finite subseF C |. Write E(M) = €, _ E; @ E*. Then there exists

ieF
orthogonal idempotents € End[E(M)) i € F such thak; = f(E(M)) sincefM < M
by assumptionn = (Ticr f)(M) = Sier i(M) € P, .. MNE thenM < P, - MNE

soM =, MNE.
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(iv = i) Let A < M. ThenE(M) = E(A) ® E*. ThenM = (M n E(A)) ® (M N E¥)
with A < M n E(A) hence M has,). Let M;, M, <4 M such thatM; N M, = 0.
E(M) = E(M;) ® E(M,) @ E' thenM = (M n E(M;)) & (M N E(MJ)) @ (M N E’) =
MieM,®&(MNE") soMi&M; <g¢ M (M <4 M, M; <¢ E(M;) = M; <¢ MNE(Mj) < M
= M <g MNEM) <M= M = MnE(M)).

O

Proposition 4.22 If M, @ M, is quasi-continuous then Mand M, are relatively injec-

tive.

Proof. Let M = M; @ M,. We will show thatM, is M;-injective. LetX < My,

¢ © X = M; and defineB = {x - ¢(Xx) : x € X} < M. Assume there exists an
elementy € BN M, theny = x— ¢(X); X € My sox =y+¢(X) € MiNn M, =0
hencey = 0 thenBn M, = 0. Now letM; be a complement o1, that contains B.
SinceM = M; & M; is quasi-continuous then we can defiMe= M; @ M, where
M; = M. Letr : M] + M, — M, whereKer(r) = M] 2 B. Let x € X so can define
X =m; + m, sincen(X — ¢(x)) = 0 thenn(x) = n(p(X)) = ¢(X). So we can extend(x)

to 7'l'||\/|1 ‘M, - Mz;ﬂ'(ml) = .0
Corollary 4.23 @i”:l M; is quasi-continuous if and only if each; M quasi-continuous
and M-injective for all i # .

Proposition 4.24 Let M be a quasi-continuous module,=SEndM), A = {@ € S :
Ker(a) <¢ M} and J the Jacobson radical of S. Then M is continuous if and only if

A =Jand SAis regular.

Proof. Suppose M is continuous. Lete S and letL be a complement df = Ker(a)

R

by (C,) L <4 M. Sincea|_ is a monomorphismg|. : L — M, a(L) L then
a(L) <4 M by (C,). Hence there exisgg € S such thapa = 1,. Then @ — aoBa)(K &
L) = (@ — aBa)(L) = a(L) —a(L) = 0 soK & L C Ker(a — aBa) <. M that implies

(@ — aBa) € A thusS/A is regular ring. This also proves that< A (J(S/A) = 0=
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J(S) € A). Leta € A. SinceKer(a) N Ker(1 — a) = 0 andKer(a) <. M this implies
thatKer(1 — a) = 0 then (1- a)(M) <4 M by (C,). SinceKer(a) < (1 — a)M then
(1-aM <. M. Hence, (- a)M = M then (1- a) is unit in S. It follows thata € J
thena € Jsoa =J.

Conversely, assume that= J andS/A is regular. Letp € S be a monomorphism with
essential image. There exigis= S such thaty — gy € A. Then (1- ¢y¥)pK = 0O for
someK <¢ M. Sincey is a monomorphismyK <¢ ¢M thus¢K <, M as¢M <, M.
Therefore, - o € A = J, and hencey is a unit inS. Thusg is onto and s@ is an

isomorphism. Then M is continuous.

Proposition 4.25 If M is a K-nonsingular and continuous module, then S is regular

and S is right continuous.

Proof. M is continuous hencé(S) = {¢ | Kerp < M}, andS/J(S) is von Neumann

regular and right continuous. By K-nonsingularidyS) = 0, and the result follows.

Proposition 4.26 If M is a module such that-9end(M) is regular, then M is K-nonsingular.

Proof. Let ¢ € S so thatKery <. M. By regularity,3y € S so thatpy¢ = ¢. But
that impliesyp is an idempotent, and hen&eryp <4 M. But Kerp C Kernyg =

Kernyp <e M = Kerggp =M =y =0= ¢ = pyp = 0.0

Corollary 4.27 Let M be an extending module such that its endomorphism ring S is a
regular ring. Then M is Baer module, and subsequently S is Baer ring.
Proof. By Theorem 3.29 and Proposition 4.26, M is Baer module. By Theorem 3.68,

S=End(M) is a Baer ringa

Proposition 4.28 Let M be a module with semisimple artinian endomorphism ring S.

Then M is Baer module.
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Proof. Since a semisimple artinian ring is Baer, S is Baer. Since every leftlidegb
is a summand iRS (semisimple artinian ring is, in particular, semisimple left module

over itself),l = Sewith€? =ee S,ry(l) = (1- €M <4 M, hence M is Baen

Proposition 4.29 Let M be retractable. If M is K-nonsingular, thea-Bnd(M) is right

nonsingular.

Proof. Let M be a K-nonsingular module. Let e S, so thatrs(p) <e Ss. Assume
rm(e) = Ker(y) is not essential in M; hence, there exists a nonzero complekhent
M, N n Ker(yp) = 0. By retractabilityd0 # y € S,Imy € N. But gy # O(as the image
of ¥ has zero intersection with the kernel@f thusy'Snrs(¢) = 0, since the image of
anyyy’ with y’ € S is also a subset of N. This contradicts essentialitys¢f), hence

rm(e) <e M = ¢ = 0, by K-nonsingularity of Mo

Theorem 4.30 Let M be a Baer module with only countably many direct summands.

Then M is semisimple artinian if any of the following conditions hold:
(i) Mis retractable and SEnd(M) is a regular ring;
(i) Every cyclic submodule of M is a direct summand of M; or

(ii) Yme M,3f e Hom(M, Rg) such that m= mfm.

Proof. Suppose (i) holds. By Theorem 3.68 and in view of Proposition 3.76, S is a
regular ring with only countably many idempotents. Then S is a semisimple artinian
ring, by [29, Theorem 3].

Since S is semisimple artinian ring, it can be decomposed into a finite, ring direct sum
of simple artinian ringsS = (P,_,_, S& wheren € N and allg are central idempo-
tents. Hence we obtain the following module direct decomposioa (B, _,eM,
wheregM <4 M. We show that this impliesyl < i < n, M is retractable. Take

N <eM < M, 1< iy < n; there exists a nonzero endomorphigne S so that

¢(M) < N = n,¢ = ¢ (Wherer, is the canonical projection on&,M). Assume
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that 0 # x € M, so thaty(x) # 0; we havex = eX + &X + ... + e,x and by
eM M = p(ex) = mi,p(ex) € eMnNeg,M = 0 unless = ip. This implies that
o(X) = ¢(&,X) # 0, and so the restricting @f to e,M produces a nonzero endomor-
phism ofe,M (e,M < M = ¢(e,M) € e,M), whose image is a subsetf Sinceig
was arbitrary chosen, this implies that all of the above summanhfsark retractable.

If we can show that, for any X i < n, g M is semisimple artinian, we're done. To
simplify notation, and without losing generality, we can assume S is simple artinian.
We know that a simple artinian ring is finitey x m matrix ring over a field K, where
me N. Lety;,1 <i < mbe the idempotent elements o£Bnd(M) having 1 in thei-
position, and 0 everywhere else. Thdsan be decomposed 6= ¢y M +y,M+...+
YymM. We want to show that eagiyM is a simple module, for ¥ j < m. For a fixed

jo, takeP < y;;M, where 1< j, < m. By retractability of M, we have that there exists
x € Swith y(M) < P. Takey € M so thatyy # 0; we havex = Y1 X + YoX + ... + YmX
and hence & yy i1 X+ xy2X + ... + y¥ymX = AL < Ky < mso thatyyy x # 0. If kg = jo

we can restricf to yj,M, and so obtain an endomorphismyof M, whose image is

a subset of N. BuByj, is isomorphic, as a ring, with field K, which implies that all
nonzero endomorphisms must be isomorphisms. This means that N, containing the
image of such an endomorphism, must egugM.

Assume now thak, # jo. Since there exists an isomorphisin: Sy, — Sy,

0 # (xlsu,) o T @ Syrj, = Sy, Im(xlsy,,) © f S N. Now use the above argument to
show thatN = yj, M.

Since N was arbitrarily chosen, it implies that any nonzero submodujg, bf must
be yj,M, hencey,M is simple. jo was arbitrarily chosen, hence M is semisimple

artiniano

Proposition 4.31 If M is an indecomposable Baer module then=SEnd(M) is a
domain. If M is retractable and S is a domain, then M is an indecomposable Baer

module.

Proof. Let M be indecomposable Baer module. From Theorem 3.40 we get that all

endomorphisms are monomorphisms, hence S is a domain.
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Let M is retractable since S is a domain then S is Baer rind/isis a Baer mod-
ule. Also, since S is a domain, it does not have any proper idempotents, thus M is

indecomposable.
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