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ABSTRACT 

SYMBOLIC MATHEMATICS WITH PYTHON 

MSC THESIS 

FATIH KÜRŞAT CANSU 

ABANT IZZET BAYSAL UNIVERSITY GRADUATE SCHOOL OF 

NATURAL AND APPLIED SCIENCES 

DEPARTMENT OF MATHEMATICS 

(SUPERVISOR: ASSOC. PROF. EROL YILMAZ) 

 

BOLU, AUGUST 2017 

 

 

Python has been a very popular programming language in recent years. SymPy is 

an open source. Python library which has been developed aiming extensibility, 

easy usage and accessibility. These characteristics have made SymPy a popular 

symbolic scientific library in the world of mathematics. In this work, the main aim 

is presenting the main features of SymPy, giving a detailed description of its 

features, and a discussion of selected submodules. The solutions to the provided 

suplementary problems are also going to help in a deep understanding of the 

deteails of the architecture and the features of SymPy.   
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ÖZET 

PYTHON İLE SEMBOLİK MATEMATIK UYGULAMALARI 

YÜKSEK LISANS TEZI 

FATIH KÜRŞAT CANSU 

ABANT İZZET BAYSAL ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ 

MATEMATIK ANABILIM DALI 

(TEZ DANIŞMANI: DOÇ.DR. EROL YILMAZ) 

 

BOLU, AĞUSTOS - 2017 

 

 

 

Python programlama dili son yıllarda oldukça popular olmuş bir programlama 

dilidir. SymPy ise Python dili ile yazılmış kaynak kodları geliştiriciler için açık 

olan bilgisayar tabanlı cebirsel bir Python kütüphanesidir. Bu yapı 

oluşturulurken temelde odaklanılan noktalar kolay ulaşılabilir ve kullanılabilir 

olması, esnek olması ve interaktif bir şekilde kullanılabilmesidir. Bu sayılan 

özellikler zaten SymPy dilini özellikle bilimsel Python modülleri arasında 

oldukça popular hale getirmişlerdir. Yapılan bu çalışma SymPy dilinin genel 

mimarisini, detaylı kullanımını ve özelliklerinin uygulamalarını içermektedir. 

Ayrıca matematiksel uygulamalar ve örneklerle SymPy dilinin yapısının daha 

iyi anlaşılması yazılan uygulamalar ile sağlanmaya çalışılmıştır.  
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1.  INTRODUCTION 

SymPy is a full featured computer algebra system (CAS) which is built with 

Python programming language (Lutz, 2013).  It is also free, open sourced, 

improvable and licensed under 3-clause BSD licence (Rosen, 2005). The SymPy 

initiation project was started in 2005 by Ondrej Certic and the library has been 

further improved by over 500 contributers all from over the world. The main reason 

for rapid improvement has been the contributions from the GitHub community 

(Raymond, 1999). Hundreds and thousands of software developers from all over the 

world have been using this community as a startup and software bazaar. The 

community model, accessibility of the code base and easy usage of Python Language 

made the SymPy a popular computational algebraic system. 

Python is a dynamicly typed programming language which is easy to learn 

and to code with. Due the part this focus, it has become a popular language for 

scientific computing and data science, with broad ecosystem and libraries (Oliphant, 

2007). SymPy is itself also using by another computer based algebra systems such as 

Sagemath (pure and applied mathematics) (The Sage Developers, 2017), yt 

(astronomy and astrophysics, package for analyzing and visualizing big-data) 

(SymPy Developers, 2017), PyDy (multibody dynamics) (Gede et al., 2013), 

SfePy(finite elements) (Cimrman, 2014), galgebra (geometric algebra), Quameon 

(quantum monte carlo in python). 

When compared with other computational software systems, the SymPy does 

not invent its own software language. Python itself is used for internal 

implementation and end user interaction. For example, Sage also is based on Python 

as its language. But Sage is over a gigabyte and SymPy is lightweight. Besides these, 

it enables the users and developers to focus on mathematics rather than language 

design. Python is a well-constructed, bench-tested software language. By reusing an 

already existing language, end users are able to focus on those things that matter: the 

mathematics. Especially Python users have an advantage because SymPy version 1.0 

officially is compatible with both Pyton 2.x and 3.x versions. Neverthless, Python is 
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an interpreted language after all which makes it, and the packages built on it such as 

SymPy, a bit slower than compiled programming languages and software packages 

developed by using them. Hovewer with the use of modern day powerfull computers 

this disadvantage is overcome easily. 

The final important things about SymPy are that it can be used as library and 

it has no graphical user interface (GUI). Like other Python libraries it can be used 

with import statements in all Python development environments. As it has been 

mentioned, there is no built-in GUI in Python; however, SymPy can be integrated to 

very rich and interactive display systems like Anaconda and Jupyter (Kluyver et al., 

2017) frontends, including the Jupyter Notebook and Qt Console. For online systems 

Anaconda supports an online SymPy interactive environment. Jupyter Notebook and 

Qt Console also can render SymPy mathematical expressions using Mathjax 

(Cervone, 2012) or Latex.  

All examples in this thesis are based on SymPy version 1.0, Python version 

3.6.1, mpmath version 0.19 and Anaconda 4.3.1.; Windows 7 and Windows 10 have 

been used as operating systems. Operating systems and all software packages used 

during the writing of the thesis are either originally licensed or open sourced. 
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2. AIM AND SCOPE OF THE STUDY 

The main objective of this thesis is discussing the key components of the 

SymPy Library in depth with its applications. Section “Algebra and Symbolic 

Mathematics” introduces symbolic mathematics by using SymPy Library. This 

section begins with the basic of representing and manipulation of algebraic 

expressions before more complex matters.  Section “Calculus with SymPy” discusses 

the mathematical functions available under Python standard library and SymPy. 

Section Fractals and Geometric Shapes discuss patches in matplotlib that allow to 

construct geometric shapes and fractals. Section “Problems and Solutions” contains 

over 50 mathematical algorithm problems from “Project Euler” which are solved by 

the author of this thesis.  

The following line imports all functions of SymPy into code block when  

executed: 

>>> from SymPy import * 

All the given examples in this thesis can be tested on Anaconda or SymPy 

Live which is an online shell that makes use of Google App Engine (Ciuarana, 

2009). SymPy Live can be used online at the address http://docs.SymPy.org. 

 

 

 

 

 

 

http://docs.sympy.org/
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3.  MATHEMATICS AND PYTHON  

3.1 Algebra and Symbolic Mathematics 

Mathematical problems and their solutions have all involved the handling of 

numbers. But not all mathematical problems are about the number manipulation and 

calculation. There is another way to be learned, taught and practiced, and that is 

doing mathematics in terms of symbols. Besides the numbers x‟s and y‟s are also 

used to calculate to reach solutions in mathematics. We refer the type of mathematics 

that makes use of only symbolic forms as symbolic math.  

3.1.1 Defining Symbols, Symbolic Operations and Basic Assumptions 

In symbolic mathematics mathematical operations are done using symbols 

instead of numbers. This means by using symbols mathematical values and variables 

are represented in exact form, not approximately. If a variable is not evaluated, then 

it is left in its symbolic form.  In a typical Python IDLE we can refer a number by 

using variables. 

The following example shows the difference between an approximate form 

and a symbolic form. Before the example consider the following statements: 

>>> x=1 

>>> x+x+1 

3 

A label, x, created to refer number 1. Then the statement x+x+1 gives the 

result 3. What if we want to get the result in terms of x?  If we write just x and x+x+1 

Python IDLE will generate an error message because the variable x is undefined. 

Python doesn‟t know what x refer to. 



5 

 

SymPy gives an opportunity to write an expression without referring any 

integer or any other numerical type. To use a symbol in a code line, we have to create 

an object of the Symbol class like the following: 

>>> from SymPy import Symbol 

>>> x=Symbol(‘x’) 

Firstly, the Symbol class has to be imported. The symbol class is already 

stored in SymPy library. Then the object is created as symbolic. Now we can define 

an expression in mathematically and we can calculate the result of the operation. 

>>> from SymPy import symbols 

>>> x, y = symbols('x y') 

>>> expr = x + 2*y 

>>> expr 

x + 2*y 

During the thesis the label and the symbol will be named the same because 

using a non-matching labels and variables can be confusing. For instance, 

x=Symbol(„x‟) so both the variable x and the symbol x has the same name, which is 

x.  We also have an opportunity to change the label name and the variable name as 

seen in the code below. 

>>> a=Symbol(‘x’) 

>>> a+a+1 

2*x+1 

Besides these, SymPy has a usefull attribute “.name”. For example: 

>>a=Symbol(‘x’) 

>>a.name 

‘x’ 

Instead of writing all symbols separately, all the symbols can be imported in 

the program in just one line. 

>>from SymPy import symbols 

>>x,y,z=symbols(‘x y z’) 

If you want to change the value of any variable, you can use a very practical 

method. 
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>>> x = symbols('x') 

>>> expr = x + 1 

>>> expr.subs(x, 2) 

3 

By using the substitution (subs) method, the value of any variable can be 

changed. If you don‟t use this method the symbol „x‟ will never change the value 

itself.  Also multi-substitution to any expressions can be done. 

>>> expr = x**3 + 4*x*y - z 

>>> expr.subs([(x, 2), (y, 4), (z, 0)]) 

40 

 SymPy also can do simple addition and multiplication without importing any 

extra package. Let‟s check the interactive screen when expression x*(x+x) as an 

input. 

>>p=x*(x+x) 

>>p 

2*x**2 

But the expression (x+2)*(x+1) can not be computed by using same way. 

Because an extra command of SymPy is needed. In SymPy to avoid the 

mathematical errors like negative square root, some assumptions have to be used. For 

instance Symbol(„t‟, positive=True) will make a symbol named t that is assumed to 

be positive.  

>>t=Symbol(‘t’, positive=True) 

>>sqrt(t**2) 

t 

Some of the basic assumptions are negative, positive, nonpositive, real, 

integer and prime. All SymPy assumptions can be controlled by is_assumption, like 

t.is_positive. In Python there exist three types of Boolean variables; True, False and 

None. In these cases None is generated by Python in case of an unknown value. For 

example, Symbol(„x‟, real=True).is_positive generates None because a real symbol 

can be positive or negative.  

 



7 

 

3.1.2 Working with Expressions 

This is the simple and common way writing a symbolic expression in Python. 

But a mathematician will need more complicated ways and methods in symbolic 

mathematics. 

3.1.3 Factorizing and Expanding 

The factor() function factorise a symbolic mathematical expression into its 

factors. The function expand() expands any given expressions as sums. The usage 

and the flow of these statements are illustrated in the following example. Let‟s 

choose the expression as         (   )(   ).  Two symbols have to be 

taken in the expressions and two Symbol objects will be created: 

>>> x,y=symbols('x,y') 

>>> from SymPy import factor 

>>> expr=x**2-y**2 

>>> factor(expr) 

(x-y)*(x+y) 

Factorized expressions in a new expression can also be stored by labeling 

them as a new elements. Let‟s try this with a more complicated identitiy,                                    

                (   ) . 

>>> expr=x**3+3*x**2*y+3*x*y**2+y**3 

>>> factors=factor(expr) 

>>> factors 

(   )  

>>> expand(factors) 

                

If you try to factorize any expression which can not be factorized, the original 

expression will be printed out by SymPy.  For instance, 

>>> expr=x+y+x*y 

>>> factor(expr) 
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Similarly, if we try to expand any expression which is already expanded, the 

expand function will return the same expression. Besides these functions, SymPy has 

more functions to simplfy the expressions. 

Table 3.1. Basic simplification functions. 

Expand for expanding polynomials 

Factor for finding factor of polynomial 

Collect for finding coefficeints of a  polynomial 

Cancel writing  p/q where p and q are in their lowest terms  

Trigsimp for trigonometric function (Fu et all., 2006) 

Hyperexpand for expanding hypergeometric functions (Roach, 1996; Roach, 

1997) 

3.1.4 Printers and Pretty Printing in SymPy 

In Python using string representation is very common because it is readable 

by Python and a human user. To make the expressions look nicer on paper;  pprint() 

function can be used. For a more thorough understanding the difference between the 

functions  pprint() and print(), is illustrated in the following example: 

>>> expr=x*x+2*x*y+y*y 

>>>expr 

x*x+2*x*y+y*y 

In the last example the polynomial expression looks very simple but it is a 

little bit difficult to figüre out the bases and powers. SymPy also has a two 

dimensional printing option with pprint(). In this option Unicode characters are  

converted for a better interpretation of  mathematical symbols such as square roots, 

integral signs, paranthesis. But the results of this method can not guarantee good 

looking print outs without the usage of Latex and Anaconda. Now let‟s try the same 

example with using function pprint(). 

>>> from SymPy import pprint 

>>> expr=x**2+2*x*y+y**2 

>>> pprint(expr) 
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If the aim is having nice look in the outputs, the function init_printing() must 

be used; this will automatically gets the best printer in your environment. By using 

this function we also avoid the *(asterix) symbols. If the plan is using SymPy 

interactively and good looking pretty printing, the init_session() can be added. This 

function will automatically import all SymPy functions. So using this command is 

strongly  advised. In all the codes and programs developed in this thesis, 

init_session() function has been  used.  

>>> from SymPy import init_printing 

>>> init_printing(order=’rev-lex’) 

>>pprint(expr) 

           

In the last example, an extra command rev-lex is also used. It is called with 

init_printing(). This shows that, the aim is to print the expression from lower to 

higher degree terms. Since the live SymPy Live Shell used, it is not needed to import 

init_printing() because the line is already imported by the live shell. Jupyter 

Notebook and Qt Console users are more fortunate in this regard because both 

systems use LaTeX or MathJax for rendering and printing expressions (Perez and 

Granger, 2007). 

The other printing systems such as mathML, str(string), srepr, ASCII pretty 

printer, Unicode pretty printer and dot are also available in SymPy. As a final 

example, it will be given a Latex printer which converts a given expression to Latex 

codes. 

>>> print(latex(Integral(sqrt(1/x), x))) 

\int \sqrt{\frac{1}{x}}\, dx  

In this thesis, all the codes written in Jupyter Notebook or Qt Console first 3 

lines are always given as below: 

from SymPy import * 

from SymPy import init_sesion 

init_session(quiet=True) 
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Consider the following series, 

  
  

 
 

  

 
 

  

 
   

  

 
  

The aim is to write a program which asks the user to get the maximum power 

of the expansion. In this series, x is a symbol and n is an integer number which is 

given by user. So the n‟th term will be  

  

 
  

The series can be printed by using the following codes. 

'''Print the series: 

x+x**2/+x**3/3+x**4/4+...+x**n 

''' 

from SymPy import * 

from SymPy import init_printing, Symbol, pprint 

 

def print_series(n): 

  #Initialize printing system in reverse order 

  init_printing(order='rev-lex') 

  x=Symbol('x') 

  series=x 

  for i in range(2,n+1): 

    series=series+(x**i)/i 

  pprint(series) 

n=input('Enter the number of the terms you want in the series: 

') 

print_series(int(n)) 

the out put of the program for n=5 will be 

Enter the number of the terms you want in the series:  5 

     2    3    4    5 

    x    x    x    x  

x + ── + ── + ── + ── 

    2    3    4    5  

    

The packages are imported which will be used in the code snippet. Then a function 

print_series is defined with the variable n. In this function, a line 

init_printing(order=‟rev-lex‟) is added because the final polynomial function must 



11 

 

be printed in terms of ascending power. In the following section,  calculating the sum 

of the series for an exact value of  x is given. 

3.1.5 Substituting The Values in an Expression 

By now, printing any expression in SymPy is discussed. Now let‟s consider 

how the value of an expression for exact values of the variables is calculated. 

Assume that there exists a mathematical expression          , and it can be 

defined as follows. 

Python console for SymPy 1.0 (Python 2.7.5) These commands 

were executed: 

from __future__ import division 

from SymPy import * 

x, y, z, t = symbols('x y z t')  

k, m, n = symbols('k m n', integer=True)  

f, g, h = symbols('f g h', cls=Function)  

x,y=symbols('x y') 

x*x+2*x*y+y**2 

To calculate the exact value of the expression for x=1 and y=2, subs() method 

must be used. 

x,y=symbols('x y') x*x+2*x*y+y**2 

          
expr=x*x+2*x*y+y**2 

res=expr. subs({x:1,y:2}) 

res 

  

 

Firstly, a new label is built to refer to the expression, and then the values are 

called to variables of the expressions by using subs() method. The argument for the 

subs() method is a Python dictionary, which contains two keys and two values.  In 

the last example, a numerical value is substituted for every variable in the expression. 

In SymPy, any given symbolic value can be substituted for any other symbolic value. 

expr. subs({x:1-y}) 

     (    )  (    ) 
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If we want to get the solution simplified, for example, when the final solution 

is a bit complex and when there are some terms which cancel each other out; we may 

use SymPy‟s simplify() function, as follows. 

from SymPy import simplify 

simplify(expr. subs({x:1-y})) 

1 

The simplify() function can also simplfy other complicated expressions such  

as trigonometric and algorithmic but in this thesis we will not get into these. Now 

let‟s calculate the exact value of a series by using subs() function. 

'''Print the series: 

x+x**2/+x**3/3+x**4/4+...+x**n 

''' 

from SymPy import * 

from SymPy import init_printing, Symbol, pprint 

 

def print_series(n, x_value): 

  #Initialize printing system in reverse order 

  init_printing(order='rev-lex') 

  x=Symbol('x') 

  series=x 

  for i in range(2,n+1): 

    series=series+(x**i)/i 

  pprint(series) 

   

  #Now Let’s evaluate the series at x value 

  series_value=series. subs({x:x_value}) 

  print('Value of the series at {0}: {1}'.format(x_value, 

series_value)) 

 

 

n=input('Enter the number of the terms you want in the series: 

') 

x_value=input('Enter the value of x: ') 

print_series(int(n), float(x_value)) 

Now, the function print_series() will have an extra argument that is the value 

of x, namely x_value. This value will be entered by the user. Second additional line 

is series_value=series.subs({x:x_value}) . By using the function subs() the exact 

value can be assigned to a variable.    
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Enter the number of the terms you want in the series:  7 

Enter the value of x:  1.2 

     2    3    4    5    6    7 

    x    x    x    x    x    x  

x + ── + ── + ── + ── + ── + ── 

    2    3    4    5    6    7  

Value of the series at 1.2: 4.52161097142857 

In this sample run, the code asked for the result from seven terms in the series 

with 1.2 as x value. So, the program prints the series and calculates the value of the 

series. 

3.1.6 Converting Strings to Mathematical Expressions 

Many times mathematical programs take arguments as float or integer from 

the user. But some other times, it is needed to write more general programs that 

could handle any given expression given by the user. For this reason, we need to find 

a way that converts strings to mathematical expressions.  SymPy‟s sympify() function 

can perform this for us. The function is so useful because it converts the strings into 

SymPy objects which can be used as a mathematical input in a function. Now let‟s 

follow the given code. 

from SymPy import * 

from SymPy import sympify, pprint, init_printing 

 

expr=input('Enter the mathematical expression: ') 

 

expr=sympify(expr) 

init_printing(order='rev-lex') 

 

First of all, import the function sympify(). Then take the expression as a string 

value. Then by using sympify() function, the expression is converted from string to 

symbolic mathematical expression. By using this expression it can be performed 

various operations. For example, multiply the expression by 2. 

init_printing(order='rev-lex') 

pprint(2*expr) 
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Enter the mathematical expression:  x**2+3**y+2*x+x**3 

2      3      y 

4 x + 2 x  + 2 x  + 2 3 

But sometimes user inputs could be invalid expressions. In this kind of 

situations we can use the try-except method, which can be used in any Python code 

for error handling in user interactions.  Let‟s follow the codes.  

Enter the mathematical expression:  x**2+2x+x**3 

Traceback (most recent call last): 

  File "python", line 4, in <module> 

SymPy.core.sympify.SympifyError: Sympify of expression 'could 

not parse 'x**2+2x+x**3'' failed, because of exception being 

raised: 

SyntaxError: invalid syntax (<string>, line 1) 

In the error code, the error line tells us that sympfy() can not convert the 

expression to a mathematical expression because user input has 2x expression. 

SymPy can not convert the expression because there is no definition for 2x. There is 

no mathematical operator between 2 and x. So the program will not run and will 

return the error code. But if we use SympifyError exception we can print an error 

code for user. 

from SymPy.core.sympify import SympifyError 

from SymPy import sympify, pprint 

expr=input('Enter the mathematical expression: ') 

 

try: 

  expr=sympify(expr) 

except SympifyError: 

  print('Invalid input') 

 

 

 

Enter the mathematical expression:  x**2+2x+x**3 

Invalid input 

    

Now let‟s apply the sympify() function to write a program which calculates 

the multiplication of 2 given mathematical expressions. 
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''' 

Product of two mathematical expression. 

''' 

from SymPy import expand, sympify, pprint 

from SymPy.core.sympify import SympifyError 

 

def product(equ1, equ2): 

  prod=expand(equ1*equ2) 

  return prod 

 

equ1=input('Enter the first expression: ') 

equ2=input('Enter the second expression: ') 

 

try: 

  equ1=sympify(equ1) 

  equ2=sympify(equ2) 

except SympifyError: 

  print('Invalid expression input.') 

else: 

  pprint(product(equ1, equ2)) 

The last line of the code displays the product of the two expressions. The 

mathematical inputs don‟t have to be in one variable expressions. 

 

Enter the first expression:  x**5+3*x**3-7*x**2+15*x+9 

Enter the second expression:  x**4+3*x**3 

 9      8      7      6      5       4       3 

x  + 3 x  + 3 x  + 2 x  - 6 x  + 54 x  + 27 x  

More than two variables expression example will be 

Python 3.5.2 (default, Dec 2015, 13:05:11) 

[GCC 4.8.2] on linux 

    

Enter the first expression:  x**y+2*x+z 

Enter the second expression:  z**x+2*y+x 

   2      y                      x      y      y  x              

x 

2 x  + x x  + 4 x y + x z + 2 x z  + 2 x  y + x  z  + 2 y z + z z  
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3.1.7 Equation Solving 

SymPy‟s solve() function is used to solve equations in one variable. When an 

expression input with a symbol for example with „x‟, solve() function can calculate 

the value of the variable which makes the equation zero. Writing an equation with an 

equal sign and the value of zero is not a necessity. Because SymPy automaticaly 

assume that the function is an equation and it will be solved with respect to the value 

of the variable. Let‟s begin with a simple example. 

from SymPy import Symbol, solve 

x=Symbol(‘x’) 

expr=x-5-7 

solve(expr) 

[12] 

 It is clearly seen that the value of the solution is an element of the list. So, the 

solve()  function returned a list. Solve function always returns a list because when 

solving an equation, a solution set is found and there is a rule stating that a solution 

should always be a natural or rational number. For example, if we try to solve a 

second degree equation solve function would return a list with two elements. Besides 

finding all solutions as elements of a list, the solutions could get as a dictionary. 

Solving a second degree equation with one variable is the following. 

from SymPy import solve 

x=Symbol(‘x’) 

expr=x**2+5*x+4 

print(solve(expr, dict=True)) 

[{x: -4}, {x: -1}] 

Firstly, the solve() function is imported to the interpreter. Then the variable x 

is defined and a second degree one variable equation is given as a mathematical 

expression. The second argument in the solve function is dict. The “dict=True” is 

given because the aim is to get solutions within an order. If there is no solution for 

the given equation SymPy returnsa an empty list. The roots of the proceeding 

equation is -4 and -1. Now let‟s try this function for another equation. 

from SymPy import solve 

x=Symbol('x') 

expr=x**2+x+1 
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print(solve(expr, dict=True)) 

[{x: -1/2 - sqrt(3)*I/2}, {x: -1/2 + sqrt(3)*I/2}] 

 

As expected, both roots are imaginary, and the imaginary parts of the 

solutions is given with the symbol I. In addition, SymPy can manipulate ordinary 

differential equations, recurrence relations, Diophantine equations and many type of 

algebraic equations. So far, only the solve function has been used. But SymPy also 

has another function solveset(). There is a very significant difference between the 

solve() and the solveset() functions. While the former always returns a list or a 

dictionary but the latter returns a SymPy set object. But both functions assume that 

the given function is equal to 0.  

Let‟s give an example. 

from SymPy import solve, pprint, solveset 

x=Symbol('x') 

expr=x**2-2*x*y+1 

pprint(solve(expr,x, domain=S.Complexes)) 

(  √       √    ) 

In addition, the roots of the any given second degree equation can be omitted 

with respect to the coefficients of the equation. Now take a second degree equation 

as            and try to find all the roots of the equation with respect to a,b,c. 

from SymPy import solve, pprint, solveset 

x,a,b,c=symbols('x a b c') 

expr=a*x**2+b*x+c 

print(solve(expr,x, dict=True)) 

[{x: (-b + sqrt(-4*a*c + b**2))/(2*a)}, {x: -(b + sqrt(-4*a*c 

+ b**2))/(2*a)}]  

 

Now, consider an example from Physics. The motion equation will be used. 

According to equation of motion, the distance travelled by a body can be calculated 

by using the constant acceleration „a‟, initial velocity „u‟ and time „t‟. If the equation 

is organized,      
 

 
    is founded. An example code snippet will look like the 

following. 
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from SymPy import solve, pprint, solveset 

s,u,t,a=symbols('s u t a') 

expr=u*t+(1/2)*a*t*t-s 

t_expr=solve(expr,t, dict=True) 

pprint(t_expr) 

The solution set will be 

⎡⎧           ______________⎫  ⎧    ⎛       ______________⎞ ⎫⎤ 

⎢⎪          ╱            2 ⎪  ⎪    ⎜      ╱            2 ⎟  ⎪⎥ 

⎢⎨   -u + ╲╱  2.0 a s + u  ⎬  ⎨   - ⎝  u + ╲╱  2.0 a s + u  ⎠   ⎬⎥ 

⎢⎪t: ──────────────────────⎪, ⎪t: ───────────────────────── ⎪⎥ 
⎣⎩             a           ⎭  ⎩               a             ⎭⎦ 

Finding the solution set of a system of a linear equation is also possible in 

SymPy. Now, let‟s show this property with an example. 

from SymPy import solve, pprint, solveset 

x,y=symbols('x y') 

expr1=2*x+3*y-11 

expr2=3*x-12*y+6 

pprint(solve((expr1, expr2),dict=True)) 

Then the solution will be 

[{x: 38/11, y: 15/11}] 

In the given equation systems, the solutions are also checked. Consider the 

previous system of equations. 

from SymPy import solve, pprint, solveset 

x,y=symbols('x y') 

expr1=2*x+3*y-11 

expr2=3*x-12*y+6 

soln=solve((expr1, expr2),dict=True) 

soln=soln[0] 

chck1=expr1.subs({x:soln[x],y:soln[y]}) 

print(chck1) 

0 

chck2=expr2.subs({x:soln[x],y:soln[y]}) 

print(chck2) 

0 

 

The both results will give zero as expected. 
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3.1.8 Plotting by SymPy 

By using SymPy, the graph of any given equation can also be drawn. In 

Anaconda and SymPy, you don‟t have to import anything but in any other IDE an 

import statement must be added for the mathplotlib library.  And then, we also don‟t 

have to add show() function to show the graph because this could be automatically 

done by SymPy.  Consider the following example. 

from SymPy import * 

from SymPy.plotting import plot 

x,y=symbols('x y') 

plot(2*x+3) 

 

 

Figure 3.1. Graph y=2x+3. 

 

The graph shows that the default range of the x and y is automatically taken 

as -10 and 10.  This values can also be changed as the following code snippet shows. 

from SymPy import * 

from SymPy.plotting import plot 

x,y=symbols('x y') 

plot((2*x+3), (x,-5,5)) 
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Figure 3.2. Graph y=2x+3 for x in (-5,5). 

SymPy has extra opportunities to add many details to a graph. For example 

by using an extra line and some arguments, labels and a title can be added to a graph. 

from SymPy import * 

from SymPy.plotting import plot 

x,y=symbols('x y') 

plot((2*x**2+3*x-5), (x,-5,5), title='A Graph', xlabel='x', 

ylabel='2*x**2+3*x-5') 

 

Figure 3.3. Graph of a second degree polynomial. 

Also a program which takes mathematical expressions (equations) from the 

user and plots them can be written. 
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''' 

user input graph plotting 

''' 

from SymPy import * 

from SymPy.plotting import plot 

 

def graph_plotter(expr): 

    x,y=symbols('x,y') 

    solutions=solve(expr, y) 

    expr_y=solutions[0] 

    plot(expr_y) 

 

expr=input('Enter your equation in terms of x and y: ') 

try: 

    expr=sympify(expr) 

except: 

    print('Input is not a mathematical expression.') 

else: 

    graph_plotter(expr) 

 

Enter your equation in terms of x and y: x**3+3*x**2+2*x+3-y 

 

Figure 3.4. Graph of one function. 

On the same graph more than one equation can be shown and more than one 

extra labels and colors can be used. 
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''' 

more than one plotting 

''' 

from SymPy import * 

from SymPy.plotting import plot 

x,y=symbols('x y') 

p=plot(3*x**2+2*x+3, 3+2*x-x**2, legend=True, show=False) 

p[0].line_color='blue' 

p[1].line_color='red' 

p.show() 

 

Figure 3.5. Graph of two functions. 

In this chapter, the basics of the symbolic mathematics using SymPy have 

been given, such as declaring the symbols, constructing the mathematical 

expressions by using these symbols, using mathematical operators, solving 

equations, linear equation systems and plotting graphs. In the following examples, 

includes some challenges. 

# Factor Finder 

 

import SymPy 

from SymPy import factor, sympify 

 

def factor_finder(expr): 

    nexpr=sympify(expr) 

    return factor(nexpr) 

expr=input('Enter your expression: ') 

 

print(factor_finder(expr)) 
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#Graphical Equation Solver 

from SymPy import * 

from SymPy import sympify, symbols,solve 

from SymPy.plotting import plot 

 

 

expr1=input('Enter first equation in terms of x and y: ') 

expr2=input('Enter second equation in terms of x and y: ') 

 

def ges(expr1, expr2): 

    x,y=symbols('x y') 

    expr1=sympify(expr1) 

    expr2=sympify(expr2) 

    solution1=solve(expr1,y) 

    solution2=solve(expr2,y) 

    expr1_y=solution1[0] 

    expr2_y=solution2[0] 

    inter=expr1_y-expr2_y 

    soln=solve(inter,dict=True) 

    p=plot(expr1_y, expr2_y,legend=True, show=False) 

    p[0].line_color='b' 

    p[1].line_color='r' 

    print(soln) 

    p.show() 

try: 

    expr1==sympify(expr1) and expr2==sympify(expr2) 

except ValueError: 

    print('Invalid') 

else: 

    ges(expr1,expr2) 

 

# Finding sum of a given arbitrary series 

#summation() used instead of a loop 

 

from SymPy import * 

from SymPy import init_session 

 

def series_sum(expr,term): 

    a,n,d=symbols('a n d') 

    expr=sympify(expr) 

    s=summation(expr,(n,1,term))    

    print(s) 

 

 

if __name__=='__main__': 

    expr=input('Enter your series in terms of a,n,d: ') 
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    term=int(input('Enter the number of terms: ')) 

 

series_sum(expr, term) 

 

# Single variable polynomial inequality solver 

from SymPy import * 

from SymPy import init_session 

 

def PolySolver(expr): 

    x=Symbol('x') 

    expr=sympify(expr)#sympfying the user input. 

    ineq=expr 

    lhs=ineq.lhs#Extract the left side. 

    p=Poly(lhs,x)#Creating a polynomial object 

    rel=ineq.rel_op#Extract the relational operator from the 

ineq. obj. 

    print(solve_poly_inequality(p,rel)) 

 

if __name__=='__main__': 

    print('Single Variable Inequality Solver') 

    expr=input('Enter inequality: ') 

PolySolver(expr) 

 

# Single variable rational inequality solver 

from SymPy import * 

from SymPy import init_session 

 

def RatSol(expr): 

    x=Symbol('x') 

    ineq=sympify(expr) 

    lhs=ineq.lhs 

    numer, denom=lhs.as_numer_denom() 

    p1=Poly(numer) 

    p2=Poly(denom) 

    rel=ineq.rel_op 

    print(solve_rational_inequalities([[((p1,p2), rel)]])) 

 

if __name__=='__main__': 

    print('Single variable rational inequality solver.') 

    expr=input('Enter your inequalities in form f(x)/g(x): ') 

RatSol(expr) 
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In recent four challenges the try-except method was not used and 

is_polynomial() function was also not used to check whether the given function is a 

polynomial or not. Moreover, functions is_rational_functionl() can also be used to 

control but the use of this function was also not preferred.  

3.2 Calculus with SymPy 

In this section the main objective is to solve calculus problems using SymPy 

functions. First, the definition of the mathematical mean of the functions will be 

given. Then the most common used mathematical functions available in standart 

Python‟s library and SymPy will be given. Finding the limits of a function, 

calculating derivatives and calculating integrals will also be given in this chapter. 

Since the basic concepts and assumptions have already been given in the previous 

section, it is not considered to be appropriate to repeat them in this section. 

3.2.1 Basic Definitions 

The definitions of the function, limit, derivative and integral are given below.  

Definition: Let A and B be sets. A function from A to B is a relation, f, from 

A to B such that if for       and        (   )   and (   )  , then    . If 

(   )  , then we write    ( ). A function from A to B is also called a mapping 

from A to B. 

Definition: If f is a function from A to B then 

i. the domain of f, written    ( ) , is the 

set:   ( )  *   |                               ( )+  

ii. the range of f, written    ( ) , is the set: 

   ( )  *   |                               ( )+  

When considering a function from A to B, it is assumed that A=Dom(f). In all 

cases         will be used to denote a function.  
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Definition: Let f(x) be defined in a deleted neighbourhood of the point a. 

Then  

   
   

 ( )    

means that given any     (no matter how small), we can find a (sufficiently small) 

    such that 

| ( )   |    

whenever  

  |   |     

Definition: Let f be a function defined in a neighborhood of a point x. Then 

by the derivative of f at x, denoted by   ( ), it is meaned the limit 

  ( )     
    

 (    )   ( )

  
  

Provided that the limit exists, or equivalently 

  ( )     
   

 ( )   ( )

   
  

(let       ).  If f has derivative at x, we also say that f is differentiable at x. 

3.2.2 Finding Limits 

A basic task in calculus is finding the limit values of the function. For a given 

variable assumed to approach a certain value, the limit of a function can be 

calculated. Assume that the limit value of the function f(x)=1/x, as x goes to infinity 

is needed, whose graph is given below. 

When the x value is maximized (or approaching the infinity) f(x) approaches 

the zero. Using the limit notation, it can be written as. 
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Figure 3.6. Graph of 1/x. 

The limit of the function can be found by using SymPy. Firstly, an object of 

the Limit class is created as follows. 

from SymPy import Limit, Symbol, S 

x=Symbol('x') 

print(Limit(1/x, x, S.Infinity)) 

At first line, Limit and Symbol classes imported as well as S, which is a 

special classes because it contains the definition of positive and negative infinity. 

The result line will be as follows. 

Limit(1/x, x, oo, dir='-') 

As expected from the first three lines, there would not be an evaluated value. 

The symbol oo denotes positive infinity and the dir=‟-‟ symbol specifies that x value 

approaches the point where the limit is searched for from the negative side. So, in 

order to evaluate the value of the limit, the doit() function must be used. 

from SymPy import Limit, Symbol, S 

x=Symbol('x') 

L=Limit(1/x, x, S.Infinity) 

print(L.doit()) 
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0 

As default, the limit value is found from positive direction. But, the default 

direction can be changed as folllows. 

from SymPy import Limit, Symbol, S 

x=Symbol('x') 

L=Limit(1/x, x, 0, dir='-') 

print(L.doit()) 

-oo 

Here the value of  

   
   

 

 
 

is calculated and as x approaches to 0 from the negative side, the value of the limit 

approaches negative infinity. On the other side, if x approaches to 0 from the positive 

side, the value will approach the positive infinity. 

from SymPy import Limit, Symbol, S 

x=Symbol('x') 

L=Limit(1/x, x, 0, dir='+') 

print(L.doit()) 

oo 

The limit class can also handles the indeterminate forms of the function as 

 

 
     

 

 
  

Let‟s take the function while x approaches the zero and the value of the 

function at  zero equal to 0/0. 

from SymPy import Limit, Symbol, S 

from SymPy import sin 

L=Limit(sin(x)/x, x,0) 

print(L.doit()) 

1 

Generally, the L‟Hospital Rule is used for solving this type of undefined 

limits but as expected SymPy automaticaly evalutes the value of the limit because the 

Limit class takes care of this for us. 
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3.2.3 Continuous Compound Calculation 

The genius mathematician James Bernoulli found that while the value of n is 

increasing, the term (     )  approaches the value of e such that the constant can 

be verified by finding the limit of the given function using SymPy. 

  (  
 

 
)

 

 

from SymPy import * 

from SymPy import init_session 

n=Symbol('n') 

L=Limit((1+1/n)**n, n, S.Infinity).doit() 

print(L) 

E 

By using this function the continuous compound of interest can be calculated. 

Let‟s assume that the principal amount of money p, rate r, and any number of years t, 

the interest can be calculated by the formula as follows. 

    (  
 

 
)

  

  

If the S function converted to python code it will be as follows. 

from SymPy import symbols, Limit, S 

n,p,r,t=symbols('n p r t', positive=True) 

L=Limit(p*(1+r/n)**(n*t), n, S.Infinity).doit() 

print(L) 

       

First, three symbols objects and n are created. Then the sign of these symbol 

objects are defined in symbols() function as positive=True. If positive=True is not 

written, SymPy would not know anything about the numerical values of the symbol 

which is assumed and would not be able to calculate the limit value of the given 

expression. 

So far, the value of the limit for any given mathematical expression is 

calculated while a variable of the function approaching the exact value of a real 
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number or infinity. Now, the next step is the finding the derivative of the function. 

Now, try to find the derivative of any given function by using the definition.  

Consider an object moving in the road. The function of the distance with 

respect to time is given as  

 ( )            

In this function the independent variable is time-t because it represents the 

elapsed time since the object has started to move. If we measure the instantenous rate 

of change of distance between    and   , a new expression will be as follows 

 (  )   (  )

     
  

This is also referred as an avarage rate of change of the function. Let‟s 

assume that the time distance between    and   is so small as  . So, the last 

expression can be changed as 

 (     )   (  )

  
  

This expression is also a function with    as the variable. If the value of the    

is very small, such that it approaches to zero, the limit notation can be used to write 

   
    

 (     )   (  )

  
  

Now,  evaluate the last limit expression.  

from SymPy import Symbol, Limit, S, pprint 

t=Symbol('t') 

St=3*t**2+5*t+8 

t1=Symbol('t1') 

delta_t=Symbol('delta_t') 

St1=St.subs({t:t1}) 

St1_delta=St.subs({t:t1+delta_t}) 

L=Limit((St1_delta-St1)/delta_t, delta_t,0).doit() 

print(L) 
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The limit calculated in the last codes snippet is referred as the derivative of 

the function and it is written by using the definition of the derivative. In SymPy, we 

don‟t have to write these codes always because the Derivative class can calculate the 

derivative easily. 

3.2.4 Calculating the Derivative 

In SymPy the Derivative class can handle the derivation. But an instance of 

the derivative class has to be created to find the derivative of any given function. 

Now, consider the previous example representing the motion and time function of an 

object. 

from SymPy import Symbol, Derivative 

t=Symbol('t') 

St=3*t**2+5*t+8 

D=Derivative(St,t) 

print(D.doit()) 

The result will be 6t+5 as expected. The derivative at given any point by using subs() 

function can also be calculated. 

from SymPy import symbols, Derivative 

t, t1=symbols('t , t1') 

St=3*t**2+5*t+8 

D=Derivative(St,t) 

print(D.doit().subs({t:t1})) 

6*t1 + 5 

print(D.doit().subs({t:1.2})) 

12.2000000000000 

Now let‟s try for a complicated function whose only variable is x. 

from SymPy import symbols, Derivative 

x, y=symbols('x , y') 

Sx=(x**5-3*x**2-7*x)*(x**4-2*x-x) 

D=Derivative(Sx,x) 

print(D.doit()) 

(4*x**3 - 3)*(x**5 - 3*x**2 - 7*x) + (x**4 - 3*x)*(5*x**4 - 

6*x - 7) 
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As seen in the last example SymPy can handle the derivative of a product of 

two or more functions. The derivatives of more complicated functions which 

involves trigonometric functions could also be founded. The codes can be extended 

such that one can input the function. Let‟s write a derivative calculator program. But 

there will be a little trick because this program asks for the variable name from the 

user. 

from SymPy import Symbol, Derivative, pprint, sympify 

from SymPy.core.sympify import SympifyError 

 

def derivative(f,var): 

    var=Symbol(var) #not var=Symbol(‘var’) 

    D=Derivative(f,var).doit() 

    pprint(D) 

 

if __name__=='__main__': 

    f=input('Enter a function: ') 

    var=input('Enter the variable: ') 

    try: 

        f=sympify(f) 

    except SympifyError: 

        print('Invalid Input') 

    else: 

        derivative(f, var) 

  

Enter a function: 3*x**3+2*x 

 

Enter the variable: x 

         

At this point an important coding rule will be given. When you write on the 

IP(Interactive Python) IDLE like Spyder which is an official scientific Python idle of 

Anaconda, x=Symbol(„x‟) it is considered to be valid. But, when you try this on the 

core (not Shell or IP) you have to write x=Symbol(x) in the code lines. Otherwise, 

program will calculate the derivative of the function with respect to x as 0. 

Let‟s see a sample run for this common mistake. 

Enter a function: x**3+2*x+1 

 

Enter the variable: x 

0 
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3.2.5 Partial Derivative Calculation 

In the previous example, it is aimed to find the derivative of a given function 

with only one variable x. But functions may contain more than one variable and the 

derivative of the function could be try to find due to an existing variable. This 

calculation is generally called as partial differentiation, with partial indicating. 

Let‟s assume that the function  (   )         . The partial 

differentiation of  (   ) wrt x is: 

  

  
          

Our last example is capable to find the partial derivative because the 

Derivative() functions consist of an element var. Let‟s give an example. 

Enter a function: 3*x**3*y**2+2*y 

 

Enter the variable: y       

            

3.2.6 Calculating Higher Order Derivatives and Maxima-Minima 

from SymPy import Symbol 

from SymPy. plotting import plot 

x=Symbol('x') 

p=plot(x**5-30*x**3+50*x,(x,-5,5), legend=True, show=False) 

print(p.show()) 
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In the above example, there exists a function and its graph for       . 

There are some bending points on the graph. These points are called as the maxima, 

minima, local maxima, and local minima points. As seen on the graph at that points 

the derivative will be equal to 0. Because of the definition, it is also said that the 

derivative is zero. By default, Derivative class finds the first-order derivative. To find 

higher order derivatives, SymPy gives an option in Derivative class as the third 

argument. In this section, the higher order derivatives and extremum points will be 

found. 

The following example find the critical points of a given function. 

from SymPy import Symbol, solve, Derivative 

x=Symbol('x') 

f=x**5-30*x**3+50*x 

d1=Derivative(f,x).doit() 

print(d1) 

critical_points=solve(d1) 

print(critical_points) 

5*x**4 - 90*x**2 + 50 

[-sqrt(-sqrt(71) + 9), sqrt(-sqrt(71) + 9), -sqrt(sqrt(71) + 

9), sqrt(sqrt(71) + 9)] 

The critical points which are found here, are assign to the letters B, C, A and 

D. Let‟s create labels to refer to these points. 

from SymPy import Symbol, solve, Derivative 

x=Symbol('x') 

f=x**5-30*x**3+50*x 

d1=Derivative(f,x).doit() 

print(d1) 

critical_points=solve(d1) 

A=critical_points[2] 

B=critical_points[0] 

C=critical_points[1] 

D=critical_points[3] 

All of the critical points lie between the points 5 and -5. To find the global 

maximum and global minimum of f(x), the second derivative test should be used. By 

using this test, the critical points which are maxima or minima can be determined. 

First, calculate the second derivative of the function. 
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from SymPy import Symbol, solve, Derivative 

x=Symbol('x') 

f=x**5-30*x**3+50*x 

x=Symbol('x') 

p=plot(x**5-30*x**3+50*x,(x,-5,5), legend=True, show=False) 

p.show() 

 

d1=Derivative(f,x).doit() 

print(d1) 

p1=plot(d1,(x,-5,5), legend=True, title=('Derivative of f'), 

show=False) 

p1.show() 

critical_points=solve(d1) 

A=critical_points[2] 

B=critical_points[0] 

C=critical_points[1] 

D=critical_points[3] 

d2=Derivative(f,x,2).doit() 

for point in critical_points: 

    if d2.subs({x:point}).evalf()<0: 

        print("{} is local maximum".format(point)) 

    elif d2.subs({x:point}).evalf()>0: 

        print("{} is local minimum".format(point)) 

    else: 

        print("{} is inconclusive".format(point)) 

5*x**4 - 90*x**2 + 50 

-sqrt(-sqrt(71) + 9) is local minimum 

sqrt(-sqrt(71) + 9) is local maximum 

-sqrt(sqrt(71) + 9) is local maximum 

sqrt(sqrt(71) + 9) is local minimum 

For the function  ( )    , there might not be any critical points in the domain, but 

in this case the method works fine: indeed, it says us the extrema occur at the domain 

boundary. 

3.2.7 Integral 

The indefinite integral, or the antiderivative, of a function f(x) is another 

function F(x), such that   ( )   ( )  Mathematically it is written as  

 ( )  ∫ ( )    

The definite integral, on the other side is the integral 
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∫ ( )  

 

 

  

which is equal to  ( )   ( )  where  ( )  and  ( )  are the values of the 

antiderivative at the points a and b. If one want to calculate this definite integral, she 

has to create Integral object for both value. 

Now, let‟s begin with a simple integral which is ∫    , where k is an 

arbitrary constant. 

from SymPy import symbols, Integral, pprint 

x,k=symbols('x k') 

I=Integral(k*x,x) 

pprint(I) 

∫     

As seen on the code block, the codes do not generate a solution because we 

just have been written only the integral. We did not want the solution. For this reason 

we have to add doit() function to code. 

from SymPy import symbols, Integral, pprint 

x,k=symbols('x k') 

I=Integral(k*x,x) 

pprint(I.doit()) 

      

If it is aimed to get the solution as a definite integral, the upper and lower 

bounds of the integral must be added. 

from SymPy import symbols, Integral, pprint 

x,k=symbols('x k') 

I=Integral(k*x,(x,2,6)) 

pprint(I.doit()) 

     

The probability density function, f(x), express the probability of the value of a 

random variable being close to x, an arbitrary value. It can also tell us the probability 

of x falling within an interval. The probability density function defined as 
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√  
  

(    ) 

  

The given graph below is the graph of the function f.  

#Probability Density Function 

from SymPy import * 

D=exp(-(x-10)**2/2)/sqrt(2*pi) 

p=plot(D, (x,0,20), legend=False, show=False, title=D) 

p.show() 

 

 

If you want to calculate  

 (       )  
 ( )

 ( )
  

from SymPy import * 

D=exp(-(x-10)**2/2)/sqrt(2*pi) 

p=plot(D, (x,11,12), legend=False, show=False, title=D) 

p.show() 

 
I=Integral(D, (x,11,12)).doit().evalf() 

print(I) 

0.135905121983278 



38 

 

Thus the probability which could be a grade of a coding lecture lies 

between 11 and 12 is so close to 0.14. The function is evaluated by doit() function 

and found the numerical value using evalf(). 

A probability density function has two basic properties: the first one is the 

value of the x which is greater than zero. It can not be smaller than zero. And the 

value of the definite integral 

∫  ( )     

 

  

 

If we calculate the value of this integral, 

# -*- coding: utf-8 -*- 

""" 

Created on Tue May  2 23:17:27 2017 

@author: fatih.cansu 

""" 

from SymPy import * 

x=Symbol('x') 

p=exp(-(x-10)**2/2)/sqrt(2*pi) 

I=Integral(p,(x,S.NegativeInfinity,S.Infinity)).doit().evalf() 

print(I) 

1.00000000000000 

In this section, we have been doing limits, derivatives, and integrals of 

functions by coding. Now let us assume that two functions are given by the user 

input and our aim is finding the area between two curves. It is clear that the area 

between the curves f(x) and g(x) is 

∫( ( )   ( ))  

 

 

  

The points a and b are the intersection points such that    . The function f 

is the upper function and the g is the lower function. Our challenge is the code a 

program that will allow the user to input any two single variable functions. The 

critical point in this program is making it clear that the first function entered should 

have a greater value, and should ask for the values of  x. 
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# -*- coding: utf-8 -*- 

"""Created on Tue May  2 23:17:27 2017 

@author: fatih.cansu""" 

from SymPy import symbols, Integral, pprint,plot, solve 

x,y=symbols('x y') 

f=x**2 #Example f 

g=x #Example g 

h=f-g 

solutionset=solve(h,x) 

down=solutionset[0] 

up=solutionset[1] 

p=plot(f,g,(x,down,up), legend=True, show=False) 

p.show() 

I=Integral(h,(x,up,down)) 

pprint(I.doit()) 

 

 

 
1/6 

 

# -*- coding: utf-8 -*- 

"""Created on Tue May  2 23:17:27 2017 

@author: fatih.cansu 

Area betwen two curve 

""" 

#User defined f and g 

from SymPy import symbols, Integral,plot, solve,sympify, 

SympifyError 

x,y=symbols('x y') 

def area_between_curves(f,g): 

    h=f-g 

    solutionset=solve(f-g,x) 

    down=solutionset[0] 

    up=solutionset[1] 

    p=plot(f,g, legend=True, show=False) 

    p.show() 

    p=plot(f,g,(x,down,up), legend=True, show=False) 

    p.show() 

    I=Integral(h,(x,up,down)).evalf() 

    return abs(I.doit()) 

 

if __name__=='__main__': 

    f=sympify(input("Enter your first curve: ")) 

    g=sympify(input("Enter your second curve: ")) 
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    try: 

        (f==sympify(f) and g==sympify(g)) 

    except SympifyError: 

        print('Invalid Input') 

    else: 

        print(area_between_curves(f,g)) 

 

 
1/6 

 

Now let us calculate the length of the arc between any given two points for an 

arbitrary function,  f(x). 

# -*- coding: utf-8 -*- 

""" 

Created on Thu May  4 11:22:53 2017 

 

@author: fatih.cansu 

Find the length of a curve between two points 

""" 

from SymPy import * 

 

def curve_length(f,var,a,b): 

    var=Symbol(var) 

    p=plot(f,legend=True, show=False) 

    p[0].line_color='blue' 

    p.show() 

    p=plot(f,(var,a,b), legend=True, show=False) 

    p[0].line_color='red' 

    p.show() 

    D=Derivative(f,var).doit() 
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    Len=Integral(sqrt(1+D**2), (var, a, b)).doit().evalf() 

    return str(Len)[0:7] 

 

if __name__=='__main__': 

    f=input("Enter your curve(in one variable): ") 

    var=input("Enter the variable: ") 

    a=float(input('Enter down bound: ')) 

    b=float(input('Enter upper bound: ')) 

    print("The length of {0} between {1} and {2} is: 

{3}".format(f,a,b,curve_length(f,var,a,b))) 

Let run the code for a sample function. 

Enter your curve(in one variable): x**3+2*x+1 

 

Enter the variable: x 

 

Enter down bound: 2 

 

Enter upper bound: 3 

 

 

 
 

 

 
 

The length of x**3+2*x+1 between 2.0 and 3.0 is: 21.0248 
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As a last example, an interesting shape and its volume and, surface area will 

be given. The Gabriel‟s Horn is a kind of geometrical shape with interesting and 

paradoxial properties. Its surface area is inifine but it has finite volume. First let us 

give the mathematical proofs. 

Let us consider that surface area and the volume of the solid built by rotating 

the line y=1/x around x-axis. The bound of the rotation is x-axis and x=1 line. The 

volume of that solid by revoluation can be calculated by using shell method. So 

   ∫
  

  
  (  

 

 
)

 

 

   

If it is assumed as a approaches to the infinity, 

   
   

 (  
 

 
)     

It will be found as expected the volume of the horn to be finite and equal to 

pi. Now, let‟s look for the value of surface area. The surface area of any given solid 

is 

    ∫  ( )√  (
  

  
)

 
 

 

    

Since the value of 
 

  

 

 
  

 

  , the surface area formula will be 

    ∫
 

 
√  ( 

 

  
)

 
 

 

   

   ∫
 

 
√  

 

  

 

 

    

Instead of calculating integral value the inequalities method can be used to 

show the surface area is unbounded. Since the interval is (1,a), the expression in the 

square root and the r(x) are positive.  
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  ∫
 

 
√  

 

  

 

 

     ∫
 

 
   

 

 

 

From this inequality, it can be written 

 

    ∫
 

 
         

 

 

 

 

If the limit value of the right hand side with approaches to infinity is 

calculated, an impossible inequality     will be found. Now, let us check this 

paradoxials in SymPy. 

# -*- coding: utf-8 -*- 

""" 

Created on Thu May  4 17:23:11 2017 

 

@author: fatih.cansu 

Volume of the Gabriel's Horn  

""" 

import SymPy 

from SymPy import * 

x,y,a=symbols('x y a') 

f=1/x 

I=pi*Integral(f**2,(x,1,a)).doit() 

pprint(I) 

L=Limit(I,a,S.Infinity).doit() 

pprint(L) 

 (     ) 
  

Figure 3.7. Gabriel‟s Horn. 
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# -*- coding: utf-8 -*- 

""" 

Created on Thu May  4 17:23:11 2017 

 

@author: fatih.cansu 

Area of the Gabriel's Horn  

""" 

import SymPy 

from SymPy import pi, Derivative, symbols, Integral, S, sqrt, 

Limit, pprint 

x,y,a=symbols('x y a') 

f=1/x 

I=pi*Integral(f**2,(x,1,a)).doit() 

L=Limit(I,a,S.Infinity).doit() 

S=2*pi*Integral(f*sqrt(1+Derivative(f,x)**2),(x,1,S.Infinity))

.doit() 

pprint(S) 

 

 

Integral does not convergent 

 

 

 

 

 

3.3 Fractals and Geometric Shapes 

In this section it will be discussed how the basic geometric shapes are 

drawn like circles, triangles, and the other polygons. In the last part of the section, 

fractals will be constructed by using codes, the complex geometric shapes like 

fractals will be constructed by very basic and simple but clever algorithms and, 

repeated applications of simple geometric transformations. 

3.3.1 Geometric Shapes with Mathplotlib and Patches 

In SymPy drawing the graph of any given equations is already discussed in 

previous sections. Now it will be tried to draw graphs and geometric shapes 

without SymPy libraries. Instead of SymPy, mathplotlib and its patches will be 

used. In Mathplotlib, the patches allow us to draw geometric shapes. First let us 
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try to understand how a matplotlib plot is constructed. Assume that there exists a 

line passing (1,1), (2,2), (3,3), and (4,4). 

# -*- coding: utf-8 -*- 

""" 

Created on Fri May  5 14:28:37 2017 

 

@author: fatih.cansu 

""" 

import matplotlib.pyplot as plt 

x=[1,2,3] 

y=[1,2,3] 

plt.plot(x,y) 

plt.show() 

 

 

It is easy to predict what the graph looks like. The code block given below 

creates a matplotlib window. The window shows a line passing through the given 

points. When the plt.plot is called, a Figure object is created, with axes, and finaly 

the data sets are plotted. Drawing a line example helps to understand how 

matplotlib works. Now let us try to draw a circle with building functions. 

# -*- coding: utf-8 -*- 

""" 

Created on Fri May  5 14:47:46 2017 

 

@author: fatih.cansu 

Example of using circle patches 

""" 

import matplotlib.pyplot as plt 

def build_circle(): 

    circle=plt.Circle((0,0), radius=0.4) 

    return circle 

 

def show_geo(patch): 

    ax=plt.gca()#axis defining 

    ax.add_patch(patch)#adding the axis figure 

    plt.axis('scaled')#scaling the shape 

    plt.show()#showing the shape 
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if __name__=='__main__': 

    c=build_circle() 

    show_geo(c) 

 

Besides creating axis and figure objects manualy, different functions in pyplot 

module can be used. When gcf() function is used, it returns a reference to the current 

Figure, and when we call gca() function, it returns that a reference to the current 

Axes. In this code block, program is seperated into two parts. Creation of Circle 

patch object and the addition of the patch to the figure with functions: build_circle() 

and show_geo(). In build_circle() a circle with radius and center coordinates is 

created. The show_geo() function is built such that it could work with any 

mathplotlib patches.  The explanation of the show_geo() function was given on the 

code block with #.  Furthermore, if you want to see the figure which is fitted to 

window you have to use plt.axis('scaled'). Because without this funciton the figure 

will be 

 
 

Moreover, to take under guarantee the shape‟s proportion to be 1:1, the 

ax.set_aspect('equal') could be used after ax=plt.gca(). You can also change the 

edge color and face color of the geometric shapes by using fc='g' returns green 

and ec='r' returns red. 
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Mathplotlib supports many geometric shapes such as Ellipse, Polygon and 

Rectangle. The other way of drawing geometric shapes is using the package 

Pillow (Sweigart, 2015). It is a bit simple than the matplotlib. Here is a given 

example. 

from PIL import Image, ImageDraw 

im=Image.new('RGBA', (170,150), 'white') 

draw=ImageDraw.Draw(im) 

draw.line([(0,0), (198,0), (198,198), (0,199), (0,1)], 

fill='black') 

draw.rectangle((20,30,60,60), fill='red') 

draw.ellipse((120,30,160,60), fill='blue') 

draw.polygon(((25,55), (94,85), 

(120,90),(100,113)),fill='grey') 

 

im.save('drawing.png') 

 

 
 

 

 

 

 

3.3.2 Repeated Shapes, Fractals 

Fractals are interesting and complex geometric shapes which are constructed 

repeating simple geometric shapes. If we compare the fractals with other geometric 

shapes like circles, squares or any polygons, we will see that the fractals consist of 

infinite repetations. Infinite repetations of simple geometric shapes creates fractals, 

because if we look deeply, we can see that individual shapes repeated many times. 

Every simple shapes takes a little role of the huge construction like a brick on the 

Great Wall. Many of the fractals are constructed with the geometric transformations 

of the points or shapes.  There are many computer programs to create the fractals but 

in this section we will discuss how to draw a fractal and what the construction 

algorithm is. And some popular examples such as Barnsley Fern, The Sierpinski 

Triangle and the Henon Function will be given. 
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3.3.3 Point Transformations 

The main idea behind the construction a fractal is the transformation of a 

point. Let us assume that the point  (   )  is given as an initial point, the 

transformation be defined as  (   )   (       ) . This means that the 

location of the point will be changed by one unit right and one unit up. Let us 

write this simple transfomation. 

# -*- coding: utf-8 -*- 

""" 

Created on Sat May  6 14:56:28 2017 

 

@author: fatih.cansu 

""" 

from pylab import plot, show 

x0=2 

y0=1 

x_coordinates=[x0] 

y_coordinates=[y0] 

 

def transformation_x(x): 

    return x+1 

def transformation_y(y): 

    return y+1 

 

for i in range(0,5): 

    x_coordinates.append(transformation_x(x0)) 

    y_coordinates.append(transformation_y(y0)) 

    x0=transformation_x(x0) 

    y0=transformation_y(y0) 

 

print(x_coordinates) 

print(y_coordinates) 

p=plot(x_coordinates,y_coordinates,'o' 

[2, 3, 4, 5, 6, 7] 

[1, 2, 3, 4, 5, 6] 
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In the previous example, the pylab module was used. The pylab module is 

convenient for creating the plots from any given list, especialy, working on 

interactive Shell like IDLE Shell, as we have been doing many times so far. But if 

we are working in a big data list or we are writing for a larger program the pyplot 

module will be more efficient. There is no big differences for small code blocks, 

because all the methods that is given in pylab will work efficiently and the same 

way with pyplot and using Anaconda IDLE. Let‟s convert the last example. 

# -*- coding: utf-8 -*- 

""" 

Created on Sat May  6 14:56:28 2017 

 

@author: fatih.cansu 

""" 

 

from matplotlib import pyplot 

x0=2 

y0=1 

x_coordinates=[x0] 

y_coordinates=[y0] 

 

def transformation_x(x): 

    return x+1 

def transformation_y(y): 

    return y+1 

 

for i in range(0,5): 

    x_coordinates.append(transformation_x(x0)) 

    y_coordinates.append(transformation_y(y0)) 

    x0=transformation_x(x0) 

    y0=transformation_y(y0) 

 

print(x_coordinates) 

print(y_coordinates) 

p=pyplot.plot(x_coordinates,y_coordinates,'o') 

pyplot.show() 

[2, 3, 4, 5, 6, 7] 

[1, 2, 3, 4, 5, 6] 
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When the Anaconda IDLE is used, the output will be a bit different but 

useful. Because by using the Options panel one can change the name of axis, label, 

legend, title and etc. In the previous example the transformation of points was done 

by a single function. Let us assume that there exist more then one transformation 

function. And the transformation will be picked at randomly. The rules are given as 

                    (   )    (       ) 

                    (   )    (       ) 

If we take the initial point as (0,1) then the new points will be 

Figure 3.8. Figure options. 
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                    (   )    (   ) 

                    (   )    (   ) 

                    (   )    (   ) 

                  (   )    (   ) 

            

The selection of the transformations is done randomly. As seen from the 

transformations the point will follow a zigzag path. The following code block will 

draw a graph which consist the path of the initial point that is directed by 

transformations. 

# -*- coding: utf-8 -*- 

""" 

Created on Sat May  6 14:56:28 2017 

 

@author: fatih.cansu 

""" 

 

from matplotlib import pyplot 

import random 

x0=2 

y0=1 

x_coordinates=[x0] 

y_coordinates=[y0] 

 

def transformation1_x(x): 

    return x+1 

def transformation1_y(y): 

    return y-1 

 

def transformation2_x(x): 

    return x+1 

def transformation2_y(y): 

    return y+1 

 

for i in range(0,100): 

    r=random.randint(0,1) 

    if r==0: 

        x_coordinates.append(transformation1_x(x0)) 

        y_coordinates.append(transformation1_y(y0)) 

        x0=transformation1_x(x0) 

        y0=transformation1_y(y0) 

    else: 

        x_coordinates.append(transformation2_x(x0)) 

        y_coordinates.append(transformation2_y(y0)) 
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        x0=transformation2_x(x0) 

        y0=transformation2_y(y0) 

 

 

p=pyplot.plot(x_coordinates,y_coordinates,'.') 

pyplot.show() 

 
 

 

If the iteration number is increased to 1000, the chart will be 

 

Fractals are the geometric shapes that can be seen in nature like coastlines, 

trees and snowflakes. One of the popular fractals in nature which is invented and 
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defined by English mathematician Michael Barnsley. The following steps are given 

by him to create fern like structure (Barnsley, 1988). 

Transformation 1(0.85 probability):   

                   

                        

 Transformation 2 (0.07 probability): 

                   

                       

 Transformation 3 (0.07 probability): 

                    

                        

Transformation 4 (0.01 probability): 

       

           . 

Each of the given transformation creates a part of a fern. The first 

transformation which is selected with the 0.85 probability will creates the stem (root) 

and the bottom parts of the fern. The second and the third transformations will 

creates the bottom parts and left and, right respectively. At last, the fourth 

transformation will create the stem of the fern. 

# -*- coding: utf-8 -*- 

""" 

Created on Sat May  6 14:56:28 2017 

 

@author: fatih.cansu 

Barns Fern Modelling 

""" 
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from matplotlib import pyplot 

import random 

x0=0 

y0=1 

x_coordinates=[x0] 

y_coordinates=[y0] 

 

def transformation1_x(x,y): 

    return 0.85*x+0.04*y 

def transformation1_y(x,y): 

    return -0.04*x+0.85*y+1.6 

 

def transformation2_x(x,y): 

    return 0.2*x-0.26*y 

def transformation2_y(x,y): 

    return 0.23*x+0.22*y+1.6 

 

def transformation3_x(x,y): 

    return -0.15*x+0.28*y 

def transformation3_y(x,y): 

    return 0.26*x+0.24*y+0.44 

 

def transformation4_x(x,y): 

    return 0 

def transformation4_y(x,y): 

    return 0.16*y 

n=100 

liste1=[] 

liste2=[] 

liste3=[] 

liste4=[] 

for i in range(1,int(n*0.85)+1): 

    liste1.append(1) 

for i in range(1,int(n*0.07)+1): 

    liste2.append(2) 

    liste3.append(3) 

 

for i in range(1,int(n*0.01)+1): 

    liste4.append(4) 

 

for i in range(0,10**5): 

        l=liste1+liste2+liste3+liste4 

        r=random.choice(l) 

        if r==1: 

            x_coordinates.append(transformation1_x(x0,y0)) 

            y_coordinates.append(transformation1_y(x0,y0)) 

            x0=transformation1_x(x0,y0) 

            y0=transformation1_y(x0,y0) 

        elif r==2: 

            x_coordinates.append(transformation2_x(x0,y0)) 

            y_coordinates.append(transformation2_y(x0,y0)) 

            x0=transformation2_x(x0,y0) 

            y0=transformation2_y(x0,y0) 

        elif r==3: 

            x_coordinates.append(transformation3_x(x0,y0)) 

            y_coordinates.append(transformation3_y(x0,y0)) 
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            x0=transformation3_x(x0,y0) 

            y0=transformation3_y(x0,y0) 

        else: 

            x_coordinates.append(transformation4_x(x0,y0)) 

            y_coordinates.append(transformation4_y(x0,y0)) 

            x0=transformation1_x(x0,y0) 

            y0=transformation1_y(x0,y0) 

             

     

 

 

p=pyplot.plot(x_coordinates,y_coordinates,'.') 

pyplot.show() 

 
 

The transformations have different selection probabilities. For this reason, a 

non-uniform randomness in our code block has to used.  Many of the fern modelling 

by using codeblocks consist an extra probability function. But instead of using 

probability functions, balls and box method is used. Let‟s assume that there exist 100 

balls in a box and the number of blues are 85, whites and reds are 7 respectively and, 

purple is 1. The probability of taking a blue ball is 0.85 as expected. In our 

codeblock; 

liste1=[] 

liste2=[] 

liste3=[] 

liste4=[] 

for i in range(1,int(n*0.85)+1): 

    liste1.append(1) 
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for i in range(1,int(n*0.07)+1): 

    liste2.append(2) 

    liste3.append(3) 

for i in range(1,int(n*0.01)+1): 

    liste4.append(4) 

l=liste1+liste2+liste3+liste4 

creates a box l=liste1+liste2+liste3+liste4 with different ball numbers and, 

r=random.choice(l) 

selects a ball non-uniformly. 

As a second example, a new and popular fractal which was named by Polish 

mathematician Waclaw Sierpinski will be given. The Sierpinski fractal consist of  

equilateral triangles composed of smaller equilateral triangles. The transformations 

are given as 

Transformation 1: 

           

           

Transformation 2: 

               

               

Transformation 3: 

             

           

Each of the transformations has the same selection probability. So there is no 

need to write a selection function or a balls and box codes as previous fractal. 

 



57 

 

# -*- coding: utf-8 -*- 

""" 

Created on Mon May  8 21:05:58 2017 

 

@author: fatih.cansu 

Sierpinski Triangle 

""" 

from matplotlib import pyplot 

import random 

 

 

def transformation1_x(x,y): 

    return 0.5*x 

def transformation1_y(x,y): 

    return 0.5*y 

 

def transformation2_x(x,y): 

    return 0.5*x+0.5 

def transformation2_y(x,y): 

    return 0.5*y+0.5 

 

def transformation3_x(x,y): 

    return 0.5*x+1 

def transformation3_y(x,y): 

    return 0.5*y 

 

def draw_Sierpinski(n): 

    x0=0 

    y0=0 

    x_coordinates=[x0] 

    y_coordinates=[y0] 

    for i in range(0,n+1): 

            l=[1,2,3] 

            r=random.choice(l) 

            if r==1: 

                x_coordinates.append(transformation1_x(x0,y0)) 

                y_coordinates.append(transformation1_y(x0,y0)) 

                x0=transformation1_x(x0,y0) 

                y0=transformation1_y(x0,y0) 

            elif r==2: 

                x_coordinates.append(transformation2_x(x0,y0)) 

                y_coordinates.append(transformation2_y(x0,y0)) 

                x0=transformation2_x(x0,y0) 

                y0=transformation2_y(x0,y0) 

            elif r==3: 

                x_coordinates.append(transformation3_x(x0,y0)) 

                y_coordinates.append(transformation3_y(x0,y0)) 

                x0=transformation3_x(x0,y0) 

                y0=transformation3_y(x0,y0) 

    p=pyplot.plot(x_coordinates,y_coordinates,'.') 

    return pyplot.show() 

if __name__=='__main__': 

    n=int(input('Enter the number of points: ')) 

    draw_Sierpinski(n) 
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As a final example, we have another fractal which was introduced by Michel 

Henon at 1976.  He invented a fuction which describes a transformation for a point 

as follows (Henon, 1976). 

 (   )   (              )  

Now, let us give the code for Henon Function. 

# -*- coding: utf-8 -*- 

""" 

Created on Mon May  8 21:40:16 2017 

 

@author: fatih.cansu 

Henon Function 

""" 

from matplotlib import pyplot 

 

def transformation(x,y): 

    return y+1-1.4*x**2, 0.3*x 

 

x0=0 

y0=0 

x_coordinates=[x0] 

y_coordinates=[y0] 
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for i in range(0,20000): 

    p=transformation(x0,y0) 

    x_coordinates.append(p[0]) 

    y_coordinates.append(p[1]) 

    x0=p[0] 

    y0=p[1] 

 

pyplot.plot(x_coordinates,y_coordinates,'.') 

pyplot.show() 

 

 

 

In this section, it is started with how to draw a geometric shapes and draw a 

circle by using mathplotlib library. As well as, drawing a circle matplotlib allows 

drawing other geometric shapes. Now let‟s draw a basic geometric shapes at the 

same coordinate axis: 

# -*- coding: utf-8 -*- 

""" 

Created on Tue May  9 13:01:24 2017 

 

@author: fatih.cansu 

""" 

 

import matplotlib.pyplot as plt 

def build_square(): 

    square=plt.Polygon([(1,1),(5,1),(5,5),(1,5)], closed=True) 

    return square 

def build_circle(x,y): 
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    circle=plt.Circle((x,y), radius=0.5,fc='white') 

    return circle 

     

if __name__=='__main__': 

    ax=plt.gca()#1.create the axis 

    s=build_square()#2.create the square 

    ax.add_patch(s)#3.add shape the axis 

    y=1.5 

    while y<5: 

        x=1.5 

        while x<5: 

            c=build_circle(x,y) #4. create the circle 

            ax.add_patch(c) #5. add shape the exist axis at step 3 

            x=x+1 

        y=y+1 

 

    plt.axis('scaled') 

    plt.show() 

 
 

 

 

3.4 Problems and Solutions. 

In this section, we will discuss and write the solution code of the given 

mathematics problems. The all the problems are taken from the on-line mathematics 

and programming challenge site Project Euler (www.projecteuler.net). Every 

problem needs a basic mathematical knowledge and absolutely sharp algorithmic 

thinking because most of the solved problems are indeed informatics olympiad 

problems. Every problem at this chapter had been solved by the author of this thesis.  

Problems are discussed in two parts. First part is understanding the 

mathematical pattern or generalization of the problem then the second part has the 
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coding blocks. The degree of difficulty of every problem will follow an ascending 

order. The numerical answer of the every solution is given at last line of the 

codeblock with bold characters. 

Before starting to solve the problems a library named fkclib.py is created to 

maket he codes run more efficiently. The library is given as 

# -*- coding: utf-8 -*- 

""" 

Created on Tue May  9 20:35:07 2017 

 

@author: fatih.cansu 

The fkclib library 

""" 

import math    

def lcm(a, b): 

    return a * b // gcd(a, b) 

 

def gcd(a, b): 

    while b:       

        a, b = b, a % b 

    return a 

def prime_factors(n):##12=[2,2,3] 

    i=2 

    factors=[] 

    while i*i<=n: 

        if n%i!=0: 

            i=i+1 

        else: 

            n//=i 

            factors.append(i) 

    if n>1: 

        factors.append(n) 

    return factors 

 

def unique_prime_factors(n):##84=[2,3,7] 

    i=2 

    factors=[] 

    while i*i<=n: 

        if n%i!=0: 

            i=i+1 

        else: 

            n//=i 

            if i not in factors: 

                factors.append(i) 

    if n>1: 

        if n not in factors: 

            factors.append(n) 

    return factors 
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def largest_prime_factor(n):##84=[7] 

    i = 2 

    while i * i <= n: 

        if n % i: 

            i += 1 

        else: 

            n //= i 

    return n 

 

def is_prime(n): 

    if len(prime_factors(n))==1: 

        return True 

    else: return False 

 

def list_of_divisors(n): 

    liste=prime_factors(n) 

    liste1=[] 

    liste2=[] 

    for elem in liste: 

        if elem not in liste1: 

            liste1.append(elem) 

            liste2.append(liste.count(elem)) 

    return dict(zip(liste1, liste2)) 

 

def calculate(a,b): 

    return (a**(b+1)-1)/(a-1) 

 

def sum_of_divisors(n): 

    toplam=1 

    for k, v in list_of_divisors(n).items(): 

        toplam=toplam*calculate(k,v) 

    return toplam-n 

 

def number_of_divisors(n): 

    value=1 

    for v in list_of_divisors(n).values(): 

        value=value*(v+1) 

    return value 

 

 

def phi(n): 

    liste=unique_prime_factors(n) 

    value=1 

    for elem in liste: 

        value=(1-(1/elem))*value 

    return int(n*value) 

 

def prime_to_up(n): 

    liste=[] 

    for i in range(1,n+1): 

        if is_prime(i)==True: 

            liste.append(i) 

    return liste 

 

 

def first_n_prime(n): 
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    liste=[] 

    i=0 

    while len(liste)<n: 

        if is_prime(i)==True: 

            liste.append(i) 

        i=i+1 

    return liste 

 

def is_palindrome(n): 

    if str(n)[0::]==str(n)[::-1]: 

        return True 

    else: return False 

 

def is_pandigital(n,r): #print(is_pandigital(123450,6))  

    a=str(n) 

    liste=[i for i in range(0,r+1)] 

    k=0 

    if len(a)!=r: 

        return False 

    else: 

        for elem in liste: 

            if str(elem) in str(n): 

                k=k+1 

            else: 

                k=k 

        if k==r: 

            return True 

        else: return False     

 

 

def sqrt(x): # returns to floor value 

 assert x >= 0 

 i = 1 

 while i * i <= x: 

  i *= 2 

 y = 0 

 while i > 0: 

  if (y + i)**2 <= x: 

   y += i 

  i //= 2 

 return y 

def is_square(x): 

 if x < 0: 

  return False 

 y = sqrt(x) 

 return y * y == x 

def reciprocal_mod(x, m): 

 assert 0 <= x < m 

  

 # Simplfied Euclide’s Algorithm by fatih cansu 

 y = x 

 x = m 

 a = 0 

 b = 1 

 while y != 0: 

  a, b = b, a - x // y * b 
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  x, y = y, x % y 

 if x == 1: 

  return a % m 

 else: 

  raise ValueError("Reciprocal does not exist") 

Problem 1. The numbers which are divisible by 3 or 5 with zero remainder are 

listed. The first five elements are 3, 5, 6, 9 and 12. The sum of first five element 

could be calculated easily. So, calculate the sum of the numbers which are divisible 

by 3 or 5 and less than 1000. 

Solution 1. 

toplam=0 

for i in range(0,1000): 

    if i%3==0 or i%5==0: 

        toplam=toplam+i 

print(toplam) 

233168 

Problem 2.  The elements of the Fibonacci sequence are obtained by adding last two 

elements each other. If we eliminate the first term of the sequence, we get 1, 2, 3, 

5,… and it goes like this. According to this information calculate the sum of even 

terms of the Fibonacci series less than 4*10
6
. 

Solution 2.  

# -*- coding: utf-8 -*- 

""" 

Created on Tue May  9 20:22:15 2017 

 

@author: fatih.cansu 

prob2 

""" 

a=1 

b=1 

liste=[a,b] 

toplam=0 

while liste[-1]+liste[-2]<=4*10**6: 

    elem=liste[-1]+liste[-2] 

    liste.append(elem) 

    if elem%2==0: 

        toplam=toplam+elem 

         

print(toplam) 

4613732 
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Problem 3. The prime divisors of 44863 are 7, 13, 17 and 29. So find the greatest 

prime divisor of the number 2541876436891298753. 

Solution 3. 

import math 

import time 

start = time.time() 

def div_num(n): 

    div_list=[] 

    for i in range(1,int(math.sqrt(n))+1): 

        if n%i==0: 

            div_list.append(i) 

            div_list.append(n//i) 

    return div_list 

 

def is_prime(n): 

    if len(div_num(n))==2: 

        return True 

    else: 

        return False 

 

def findprime(n): 

    bigprime=0 

    for number in div_num(n): 

        if is_prime(number)==True and number>bigprime: 

            bigprime=number 

    return bigprime 

print(findprime(2541876436891298753)) 

end=time.time() 

print(end-start)  

3924121 

Problem 4. The numbers 11, 121 and 1441 have an interesting property such that the 

reverse sequence of digits of the each number is equal to itself. This type of numbers 

are also called as palindromic. So, find the greatest palindromic number which is 

equal to the product of two 3 digits numbers. 

Solution 4.  

import time 

print(max(i*j for i in range(1000,100,-1) for j in 

range(1000,100,-1)if str(i*j)==str(i*j)[::-1])) 

sonra=time.time() 

print("time:{}".format(str(sonra-once)[0:4])) 

906609 
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Problem 5. The number 362880 is divisible by the each number (with zero 

reaminder) from 1 to 9. But we easily predict that the number is not the least number 

with this property. So, find the least number which is divisible by each number from 

1 to 20. 

Solution 5.  

liste=[i for i in range(1,21)] 

 

def lcm(a, b): 

    return a * b // gcd(a, b) 

 

def gcd(a, b): 

    while b:       

        a, b = b, a % b 

    return a 

veri=1 

for i in range(0,19): 

    veri=lcm(veri, liste[i]) 

 

print(veri) 

 

232792560 

Problem 6. If we take the sum of the square of each number from 1 to 6 (namely 

1
2
+2

2
+3

2
+4

2
+5

2
+6

2
) it will be 91. But if we take the square of the sum of the 

numbers in same range ((1+2+3+4+5+6)
2
) we will get 441. The difference is 441-

91=350. So find the same difference for the numbers from 1 to 100. 

Solution 6.  

def square_sum(n): 

    return n*(n+1)*(2*n+1)/6 

 

def sum_square(n): 

    return (n*(n+1)/2)**2 

 

print(sum_square(100)-square_sum(100)) 

25164150 

Problem 7. It can easily seen that the 13 is the sixth prime number. Find the 10002 

nd prime number? 

 



67 

 

 

Solution 7. 

import math 

import time 

start = time.time() 

def div_num(n): 

    div_list=[] 

    for i in range(1,int(math.sqrt(n))+1): 

        if n%i==0: 

            div_list.append(i) 

    return div_list 

 

def is_prime(n): 

    if len(div_num(n))==1: 

        return True 

    else: 

        return False 

 

i=0 

a=1 

while i<=10001: 

    if is_prime(a)==True: 

        i=i+1 

        prime=a 

        a=a+1 

    else: 

        a=a+1 

print(prime) 

end = time.time() 

print(end-start) 

104759 

Problem 8.  

22251762402601583099503193927905505834569035731189 

14143988264017605893005216239642128114116338574471 

36029667534205191153166980258909663471706105828144 

82812978708641406216112354014925771479780804072074 

05969895977023934600609217478341331309942008344603 

42331804443932726549512137440453444357600443085708 

60067057897559988366110523151046419855243111334107 

84206038247996800838326925469119763373793589749182 

96002040278955499885018878041226420013610819309045 

53980368479096042525646527940775929766651033355101 

50734329895733294853990828508192678752495921701815 

36518322048072349676109265353264838612716715863051 

38047895222732073247700469234106405381105733643729 

92311069552010017044247356146103424179733017728474 

44077439980995734426608172780009793638619578653078 

14464549914229093347411766833064140179134205630738 

90702470741993866536256385453680195153359091084286 

41139932618962515964369156846827606572541434974187 

09218521916088328445808214381422717294719682715787 

71069609319483591334680917676951369955901898190556 
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A table with 1000 digits is given. In the given table, the greatest product of 4 

consequitive digit is 5832. So, find the greatest product of the 13 consecutive digits. 

Solution 8. 

def create_liste(filename): 

    liste='' 

    toplam=0 

    with open(filename) as f: 

        for line in f: 

            liste=liste+str(line) 

    return liste 

numbers=[] 

for elem in create_liste('prob8_numbers.txt'): 

    if elem!='\n': 

        numbers.append(elem) 

    result=[] 

for i in range(0, 1000-13): 

    b=numbers[i:i+13] 

    product=1 

    for element in b: 

        product=product*int(element) 

    result.append(product) 

print(max(result)) 

49380710400 

Problem 9. In a given right angled triangle which is not isosceles, the sum of three 

sides of the triangle is given as 1000. So find the product of the value of the sides.  

Solution 9.  

for a in range(1,998): 

    for b in range(1,999-a): 

        c = 1000 - a - b 

        if a*a + b*b == c*c: 

             print (a, b, c) 

             print(a*b*c) 

31875000 

Problem 10. The sum of prime numbers less than 15 is 2+3+5+7+11+13= 41. So 

find the sum of the prime numbers less than 2x10
6
. 

Solution 10.  

import math 

import fkclib 

toplam=0 

for i in range(2,2000000): 
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    if fkclib.is_prime(i)==True: 

        toplam=toplam+i 

print(toplam) 

142913828922 

Problem 11. 20×20 table is given and four number in a diagonal painted red. 

86 64 08 74 75 34 73 40 45 88 72 94 96 14 13 37 78 01 99 36 

13 17 21 17 15 22 73 93 23 19 30 97 28 87 02 68 74 17 67 17 

48 65 00 46 66 11 23 87 83 62 11 29 27 45 27 64 50 69 22 43 

35 43 40 67 95 39 61 06 91 66 19 54 08 39 94 67 58 61 52 78 

90 77 40 88 17 69 90 51 90 36 45 05 56 48 58 13 77 25 73 91 

62 13 54 59 76 25 84 61 48 34 59 67 37 48 04 22 07 22 56 29 

75 77 96 24 47 03 71 20 28 82 63 44 54 21 39 82 96 61 51 87 

58 41 61 92 30 64 24 06 21 44 91 43 43 94 65 81 69 11 38 30 

92 02 92 66 92 35 95 73 87 48 10 06 80 30 57 11 24 92 20 37 

70 12 79 99 12 76 86 64 70 00 11 01 63 12 19 27 47 75 97 61 

28 54 47 69 56 10 84 51 83 94 97 50 41 91 66 53 46 14 33 56 

17 11 76 34 33 30 87 69 31 95 49 33 97 87 88 34 56 62 58 56 

41 05 00 90 47 05 69 18 44 38 45 78 19 90 67 76 74 21 34 39 

92 10 12 80 90 91 32 28 16 17 41 69 49 21 44 80 80 92 03 12 

58 38 21 19 96 30 32 58 50 63 49 84 67 72 03 65 46 63 51 79 

28 16 65 21 60 43 05 18 81 10 20 81 20 00 16 71 05 83 24 56 

89 94 98 03 76 02 52 67 07 68 63 45 65 43 48 34 32 42 29 25 

67 37 74 11 81 94 70 91 57 89 89 66 26 08 37 58 87 83 05 23 

71 37 51 15 30 18 74 55 45 31 35 48 14 91 65 03 49 56 45 47 

65 47 49 77 23 28 98 35 23 53 10 35 84 78 50 63 84 97 25 53 

The product of 51 × 48 × 82 × 91 is calcuated as 18266976. So find the greatest 

production of four number which are on the same direction as up, left, right, down, or 

diagonally.  

Solution 11.  

def create_liste(filename): 

    liste=[] 

    toplam=0 

    with open(filename) as f: 

        for line in f: 

            a=line.split() 

            liste=liste+a 

    return liste 

numbers=[] 

for elem in create_liste('numbers.txt'): 

    numbers.append(float(elem)) 

     

results=[] 

for i in range(0,400-20*3): 

    a=numbers[i] 

    b=numbers[i+20] 

    c=numbers[i+40] 

    d=numbers[i+60] 

    results.append(a*b*c*d) 

 

for j in range(0,400): 

    if j%19!=0 or j%19!=18 and j%19!=17: 

        a=numbers[j:j+4] 
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        sonuc=1 

        for num in a: 

            sonuc=sonuc*int(num) 

        results.append(sonuc) 

 

for k in range(0,399-21*3+1): 

    if k%19!=0 or k%19!=18 and k%19!=17: 

        e=numbers[k] 

        f=numbers[k+21] 

        g=numbers[k+42] 

        h=numbers[k+63] 

        results.append(int(e*f*g*h)) 

for k in range(0,399-19*3+1): 

    if k%19!=1 and k%19!=2 and k%19!=3: 

        e=numbers[k] 

        f=numbers[k+19] 

        g=numbers[k+38] 

        h=numbers[k+57] 

        results.append(int(e*f*g*h)) 

print(max(results)) 

 

 

    61753344 

Problem 12. A triangle number is obtained by summing the numbers up to a given 

number. For example 1+2+3+4=10 is the fourth triangle number.  And the triangle 

number 28 has a unique property such that number of its divisors is greater than 5 

and it is the first triangle number which has this property. Find the first triangle 

number whose number of divisors is over 500.  

Solution 12.  

import math 

import time 

 

def triangle_number(n): 

    return int(n*(n+1)/2) 

 

def DivNum(a): 

    n=int(math.sqrt(a)) 

    div_list=[] 

    for i in range(1, n+1): 

        if a%i==0: 

            if i and (a//i) not in div_list: 

                div_list.append(i) 

                div_list.append(a//i) 

    return len(div_list) 

once=time.time() 

n=1 

while DivNum(triangle_number(n))<500: 

    n=n+1 
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sonra=time.time() 

print(triangle_number(n)) 

print("time: {}".format(str(sonra-once)[0:4])) 

76576500 

time: 12.7 

  

Problem 13. A table with 100 fifty-digit is given. Let‟s assume that every line 

represents a number with 50 digits. If the sum of all the lines is given as A, find the 

first ten digit from left hand side of A. 

88335047858190414612252130248050730063089607841393 

81011069980616288250756773354051471152084117304907 

06904408171012407035374783021478339974686886455591 

55466544775544214641065001393660265487804328316959 

00310954128440621673607846691274821555115298985864 

39356291106537389930879311396779944986979375620763 

51462141192476526016164179216903518572441376153960 

65580681599618029366505839614687771718913940146692 

78913881439358313479832358875048496127807646121222 

84540190833675054233327435581039386752292179490527 

72334856344980694959142476683217954774113735353638 

25336413265360967360256395551717062483822430915898 

12850907985264039334789208107947835871357542181145 

84604118787545768893767016828771410791160542894245 

48632305339217342929997382836483750716801961920278 

72287373343887318356333640185404710426081627652984 

12621548104067490802632565959964460572163103744574 

18980211833143865640423405435818022560188751725854 

98426749309347769784182901703937066919338638237356 

74777949763986343695375281119434885434810031227912 

57625964326267437806146606787330319363126626424935 

15308670808747505640205233208887126325339044294879 

08363042789230276296919346662540735578788602253628 

19375411226595176452881706055665047831873054479743 

10078808518498991231064045723987923580229409355785 

79712565012005842071786508559555020269928919697359 

66747508494770004310511917335040831649798691437344 

33885747536139394158288273688249540465301975202601 

04211866067459024072675058335167998375586671847723 

04713168092494538491519732596651144248667790378031 

38178074101446169094768022517777409445260064029098 

48037540281315555919534024188993114235257203791810 

55313965567694912198534593290351408528938929520446 

08420620922644498812396893366059481480905591160194 

16145828603548963422713655822868458139285664015567 

72645152792843823108312004167551969100434619417722 

74680906898089672366799772718563261583402781374306 

20965105181830042310165159393521697107206554796537 

04578256263659660938373161342856713701133707306681 

62182397689143041411301759418853854945486425588983 

42283885856293942374200181248594753471269847289394 

24673740579330440609468319361732703304288164784274 

03750473134582065936843646940672517058286915957594 

27953304097681358206088990850674122007697347584191 

98426472287462501694676721999635199138093896763395 

12239212049776022524425819555354062392800817495309 

10537802656704831618271579835152922893845636553533 

37503976856466172972902403421003776195564553839549 

23383235316660317440111615015308392109027310336354 

21407010178709300832198024374378707505768328849411 

75794455409644727347551054319712295844831774542008 

26282091571455383054518117668942402223968877714946 

91093460919569107395447082104651991473145831794734 

42148301474480497696899455502350036010831967320984 

23617556726029242708480975396170417713576227488860 

58841812998502047729762737187196108072347069147930 

60751224192982739043664184802086214125180452911878 

65961455187626637561444164930646323572060415485236 
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16045678763851740833711763088061468627224204764178 

42886381276513714065318356534669912073510307750884 

17357041075986288601305967986964939722915230305260 

08424859508819154204586528789322118248345862080656 

11106995093624491225811910059345547343103920475752 

18831173806773186723003253630092489127079992036920 

35046881567834166824785876598578672592773169999970 

08483229237034122376448033775552931394318329418374 

19749581566214773809519608808495536531398429780820 

34287776857168433728801524380927945978516169357059 

61991422419427035937031341365985252982609976761117 

57128086081214424967418399086530569661893356381959 

21987140272666198458454951314632907076865521398586 

09086573680313919087513638966124747477661331024133 

91756500512778903493766056984557301752196424047875 

26177236630079459572588699900577503780529594518207 

41284309634032439345884539755248951605425784610285 

89114498391774341446196638622412427777821599860988 

75107965561744141708587072182531460395616078530494 

11422880261918336140492092460017117793290045278185 

65694350582460158842887957639409542516062051761048 

84924416982612939067638983034912184348015430600429 

48158189116492114490774620104966405189861586041921 

89572453503064114946507426669410176854188163340522 

74521903630825621414698788938944360960195409084156 

10263358531695749570075240366886672780144030782351 

79892362254220175110368711928660701939457497532762 

06244723224220811465163056809768767664003559199492 

39395378436072562531989984723021647180897150985968 

06296012205491830973687243654208469139204276791607 

53235458765239796662825545409759277282680112537466 

45175067861239221413604467593886108105013559903756 

77009123815775708719498629278468792039624355531380 

86089412073539787794523906014959354943875499449686 

77190912807024127635814530992822922323871344400777 

10606616039659017379847901322053062548169109750139 

19224005548754417301630412981107284249060650247373 

71388078763693247655725112422179606050707236270960 

34105065408703479564414916410423154262785456824767 

11147524308379824390557243783624772952430928168341 

91675106935462269280985304433648211334407437745379 

91626970306159130233206764127533738529332197628799 

Solution 13. 

with open('prob13.txt', 'r') as f: 

    liste = [line.strip() for line in f]#Every line in txt file added 
#to list  

toplam=0 

for i in range(len(liste)): 

    toplam=toplam+int(liste[i]) 

 

a=str(toplam) 

print(a[0:10]) 

4391266421 

 

Problem 14. Collatz sequence is a famous number sequence of mathematics. Every 

element of the sequence is obtained by using a simple algorithm. For a given number 

if the number is even the next number will be half of the previous, else the next 

number is equal to three times and one more of the previous. The mystery is starts at 
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this point because the algorithm is ended always by 1. For example if we take 

number as 7: 

7, 22, 11, 34, 17, 52, 26, 13, 40, 20, 10, 5, 16, 6, 4, 2, 1 

So by using the given rules calculate the Collatz number less than one milllion which 

reaches the number 1 with the maximum step number. 

Solution 14. 

def collatz_len(n): 

    i=1 

    while n!=1: 

        if n%2==0: 

            n=n/2 

            i=i+1 

        else: 

            n=3*n+1 

            i=i+1 

    return i 

 

maxi=0 

maxlen=0 

for i in range(1, 1000001): 

    if maxlen<=collatz_len(i): 

        maxlen=collatz_len(i) 

        maxi=i 

     

print(maxi) 

 

837799 

 

Problem 15.  

 

The directions on a 2x2 map is given as six different routes (only right and down 

move). Since the map is so small all the routes are predictable. So find the number of 

routes from left-up corner to right-bottom corner on a 20x20 map. 
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Solution 15.  

def fact(n): 

    fac=1 

    for i in range(1,n+1): 

        fac=fac*i 

    return fac 

 

def route(n,r): 

    return(int(fact(2*n)/((fact(r)*fact(r))))) 

print(route(20,20)) 

137846528820 

Problem 16. 2
16

=65536 is given and and its sum of the digits is 6+5+5+3+6=25. So 

find the digit sum of the number 2
1000

. 

Solution 16.  

a=2**1000 

 

toplam=0 

for char in str(a): 

    toplam=toplam+int(char) 

print(toplam) 

1366 

 

Problem 17. The factorial is a well-known mathematical expression. So find the sum 

of digits of 100!. 

Solution 17.  

def fact(n): 

    fact=1 

    for i in range(1,n+1): 

        fact=fact*i 

    return fact 

a=str(fact(100)) 

sum=0 

for number in a: 

    sum=sum+int(number) 

 

print(sum) 

     

648 

Problem 18.  Let‟s assume that s(n) represents the sum of the divisors (less than and 

different than n) of the n. If s(x)=y and s(y)=x where     then (x,y) is called as 
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Sbelian pairs. For example (220,284) are Sbelian pairs. Sum of the divisors of 220 is 

284 and sum of the divisors of the 284 is 220. So, find the sum of all Sbelian 

numbers under 10000. 

Solution 18. 

import math 

 

def divsum(a): 

    n=int(math.sqrt(a)) 

    div_list=[] 

    for i in range(1, n+1): 

        if a%i==0: 

            if i not in div_list: 

                div_list.append(i) 

            if a//i not in div_list: 

                div_list.append(a//i) 

    div_list.sort() 

    return sum(div_list)-a 

toplam=0 

for i in range(1,10001): 

    a=divsum(i) 

    if divsum(a)==i and a!=i: 

        toplam=toplam+a 

print(toplam) 

31626 

 

Problem 19. Given names.txt 
1
 includes english names over 5000 which are sorted 

into alphabetical order. Every letter has a numerical value which is the position 

number. For example a=1, b=2, c=3 and goes on. So, every name has a numerical 

value for example F+A+T+I+H=6+1+18+9+8=42. The position number of FATIH is 

is 23 in names.txt  hence the score of FATIH is 42x23=966. Calculate the score of 

the every name in names.txt and find the sum of the score of the all names in file.  

Solution 19.  

import time 

then=time.clock() 

liste=[chr(i) for i in range(ord('A'),ord('Z')+1)] 

liste.append('"') 

open_file = open('p022_names.txt') 

lst = [] #empty list  

 

                                                             
1
 Download the file names.txt from the address 

https://drive.google.com/open?id=0B5QoqCRDwQR3NXhjUFNfOU9ERTg 
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for line in open_file:      

    line = line.rstrip()   # We aligned a new line to the line 

according to the leading and trailing space. 

    words = line.split()   # We added word by word all words 

to a new list according to the gap between the resulting 

lines. 

    for word in words: 

        lst.append(word)  

lst.sort() 

newlist="" 

for i in range(len(lst)): 

    newlist=newlist+lst[i] 

wordliste=[word for word in newlist.split(",")] 

wordliste.sort() 

 

def kelimator(wordliste): 

    wordnum=[] 

    for word in wordliste: 

        toplam=0 

        for char in word: 

            toplam=toplam+(liste.index(char)+1) 

        toplam=toplam-(54) 

        wordnum.append(toplam*(wordliste.index(word)+1)) 

    return sum(wordnum) 

 

print(kelimator(wordliste))     

now=time.clock() 

print(now-then)  

 

Solution 19 (Alternative). 

f = open('p022_names.txt', 'r') 

total = 0 

for k, name in enumerate(sorted(f.read().replace("\"", 

"").split(","))): 

        points = 0 

        for char in list(name): 

                points += ord(char)-64 

        total += points * (k+1) 

print(total)  

871198282 

 

Problem 20. All the possible permutations of 3,1,2,4 is calculated. The number of 

the all permutations without repetation is 4!=24. For example if we order the set first 

element will be 1234 and the last element will be 4321. Due to this permutation 

rules, find the millionth permutations of the 0,1,2,3,4,5,6,7,8,9. (note: 0567894321 is 

a possible permutation.)  
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Solution 20.  

import math 

import itertools 

a=1000000 

liste=[0,1,2,3,4,5,6,7,8,9] 

nliste=[] 

for i in range(len(liste)-2): 

    kalan=a%(math.factorial(len(liste)-1)) 

    if kalan!=0: 

        bolum=a//(math.factorial(len(liste)-1)) 

        nliste.append(liste[bolum]) 

        a=kalan 

    else: 

        a=2 

        bolum=a//(math.factorial(len(liste)-1)) 

        nliste.append(liste[bolum]) 

         

    del liste[bolum] 

liste.sort(reverse=True) 

print(nliste+liste) 

2783915460 

Problem 21. The Fibonacci sequence has an interesting property such that  

                                  

The 144 is the 12th fibonacci number and its is the first fibonacci number wtih 3 

digits.  Find the index of the first fibonacci number which contains 1000 digits. 

Solution 21.  

def fibo(n): 

    a,b=1,1 

    for i in range(1,n): 

        a,b=b, a+b 

    return a 

a=1 

while len(str(fibo(a)))<1000: 

    a=a+1 

print(a) 

4782 

Problem 22.  : If we take a fraction with a numerator equal to one and denominators 

range from 2 to 10, then the fractions and their decimal representations would be as 

given: 
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1/2 =      

1/3 =     ̅ 

1/4 =       

1/5 =      

1/6 =      ̅ 

1/7 =          ̅̅ ̅̅ ̅̅ ̅̅ ̅̅  

1/8 =        

1/9 =     ̅ 

1/10 =      

From the table given above it is clear that the length of the repeating part of the 

decimals change in every fraction. For example the length of repeating part of the 

fraction 1/7 is 6. So, find the denominator of the decimal whose repeating part is the 

longest and whose denominator is less than 1000.  

Solution 22.  

def ind(n): 

    x=n 

    while x%5==0: 

        x=(x/5) 

    y=x 

    while y%2==0: 

        y=(y/2) 

    return int(y) 

 

def g(n,d): 

    d=ind(d) 

    a=1 

    num=10*n 

    while (num-n)%d: 

        num=num*10 

        a=a+1 

    return a 

 

 

maxper=0 

for i in range(1,1001): 

    if maxper<g(1,i): 

        maxper=g(1,i) 
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        a=i 

print(maxper,a) 

982,983 

 

Problem 23. The great mathematician Leonard Euler discovered a formula: 

          

This formula has an interesting property such that for n value if the numbers from 1 

to 39 are substituted then formula generates 40 prime numbers. By using substitution 

it can easily found. Then the marvellous formula was discovered such that it 

produces 80 prime numbers by substitution values of n: 

                     

Let‟s assume that the formula is given: 

               | | | |         

Find the value of     such that the formula generates maximum prime numbers for 

successive values of n (the initial value of n=0). 

Solution 23.  

import fkclib 

import time 

start=time.time() 

liste=[] 

vliste=[] 

maxivalue=0 

for a in range(-999,1000): 

    for b in range(-1000,1001): 

        value=0 

        step=0 

        while fkclib.is_prime(step**2+a*step+b): 

            step=step+1 

            value=value+1 

        liste.append(a*b) 

        vliste.append(value) 

print(max(vliste)) 

a=vliste.index(max(vliste)) 

print(liste[a]) 

end=time.time() 

print("time: {}".format(end-start)) 

71 



80 

 

-59231 

time: 24.5 

 

Problem 24.  

21 22 23 24 25 

20  7  8  9 10 

19  6  1  2 11 

18  5  4  3 12 

17 16 15 14 13 

A 5x5 table which filled numbers is given and the numbers on the diagonals 

colorized with red. For the given table, sum of the colorized numbers can be easily 

calculated. Calculate the sum of the numbers on the diagonals for 1001 by 1001 

table. 

Solution 24.  

a=2 

value=1 

toplam=1 

for j in range(1,501): 

    for i in range(1,5): 

        value=value+a 

        toplam=toplam+value 

    a=a+2 

print(toplam)     

 

669 171 001 

Problem 25. All combinations for  a
b
 for 2 ≤ a ≤ 5 and 2 ≤ b ≤ 5 is given as: 

2
2
=4, 2

3
=8, 2

4
=16, 2

5
=32 

3
2
=9, 3

3
=27, 3

4
=81, 3

5
=243 

4
2
=16, 4

3
=64, 4

4
=256, 4

5
=1024 

5
2
=25, 5

3
=125, 5

4
=625, 5

5
=3125 

If the numbers are ordered then the sequence will be: 

4, 8, 9, 16, 25, 27, 32, 64, 81, 125, 243, 256, 625, 1024, 3125 

If a
b
 for 2 ≤ a ≤ 100 and 2 ≤ b ≤ 100 are given, calculate the number of distinct 

elements in the obtained sequence? 
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Solution 25.  

list=[] 

for i in range(2,101): 

    for j in range(2,101): 

        if i**j not in list: 

            list.append(i**j) 

print(len(list)) 

         

9183 

Problem 26. There is only 3 four digit numbers which can be written as the sum of 

the fourth power of its digits: 

1634 = 1
4
 + 6

4
 + 3

4
 + 4

4
 

8208 = 8
4
 + 2

4
 + 0

4
 + 8

4
 

9474 = 9
4
 + 4

4
 + 7

4
 + 4

4
 

The sum of 1634 + 8208 + 9474 is equal to 19316. So, find the sum of all numbers 

which can be written as the sum of fifth power of its digits. 

Solution 26.  

def powsum(n): 

    a=str(n) 

    toplam=0 

    for digit in a: 

        toplam=toplam+(int(digit)**5) 

    if (n==toplam): 

        return True 

    else: 

        return False 

toplam=0 

for i in range(4149,1000000): 

    if powsum(i)==True: 

        toplam=toplam+i 

print(toplam) 

443839 

Problem 27. For an n-digit number, if the digits of number consist of all the integers 

1 to n, it is called as pandigital number. For example 23415 is a five digit pandigital. 

Even more, some numbers have very interesting identities about being pandigital. 

For example the number 7254 is the product of the numbers 39 and 186. The digits 

of two factors and the result consist of 1 to 9 numbers. Find the sum of all numbers 

whose two factors and itself have all numbers 1 to 9. 
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Solution 27.  

import math 

def DivNum(a): 

    n=int(math.sqrt(a)) 

    div_list=[] 

    for i in range(1, n+1): 

        if a%i==0: 

            if i and (a//i) not in div_list: 

                div_list.append(i) 

                div_list.append(int(a//i)) 

    return div_list 

 

def kontrol(n): 

    a=str(n) 

    liste=[str(i)for i in range(1,10)] 

    kontrolliste=[] 

    for element in liste: 

        if element in a: 

            kontrolliste.append(1) 

    if len(kontrolliste)==9: 

        return True 

    else: 

        return False 

    

def pandigital(n): 

    checklist=[] 

    for element in DivNum(n): 

        a=str(n)+str(int(n//element))+str(element) 

        if kontrol(a)==True and len(a)==9: 

            checklist.append(1) 

    if 1 in checklist: 

        return True 

    else: 

        return False 

total=0     

for i in range(1,50000): 

    if pandigital(i)==True: 

        total=total+int(i) 

print(total) 

45228 

Problem 28. The fraction 49/98 has an interesting property. If we cancel the same 

digit in the nominator and denominator 49/98=4/8=1/2 and it is surprisingly true. 

Mathematicaly, doing cancellation by this way is not true but the result is true. 40/20, 

30/50, 70/80 are the trivial solutions but there exist four non-trivial solutions. Find 

the denominator of product of these non-trivial solutions. 
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Solution 28.  

import math 

 

for i in range(10,100): 

    for j in range(10,100): 

        pay=str(i) 

        payda=str(j) 

        try: 

                if pay[0]==payda[0]: 

                    if int(pay[1])/int(payda[1])==i/j: 

                        if i!=j and i*j%100!=0: 

                            print(i,j) 

                if pay[0]==payda[1]: 

                    if int(pay[1])/int(payda[0])==i/j: 

                        if i!=j and i*j%100!=0: 

                            print(i,j) 

                if pay[1]==payda[0]: 

                    if int(pay[0])/int(payda[1])==i/j: 

                        if i!=j and i*j%100!=0: 

                            print(i,j) 

                if pay[1]==payda[1]: 

                    if int(pay[0])/int(payda[0])==i/j: 

                        if i!=j and i*j%100!=0: 

                            print(i,j) 

        except ZeroDivisionError: 

                pass 

         

16 64 

19 95 

26 65 

49 98 

64 16 

65 26 

95 19 

98 49 

answer: 100 

Problem 29. 145 is a very interesting number because the sum of the factorial of its 

digits is equal to itself. Namely, 1!+4!+5! is equal to 145. Find the sum of all 

numbers that keep the same manner.(1 and 2 not included.)  

Solution 29.  

def fact(n): 

    if n==0: 

        return 1 

    else: 

        fact=1 

        for i in range(1,n+1): 

            fact=fact*i 

        return fact 
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liste=[]           

for i in range(3,100000): 

    toplam=0 

    for j in str(i): 

        toplam=toplam+fact(int(j)) 

        if toplam==i: 

            liste.append(i) 

toplam=0             

for num in liste: 

    toplam+=num 

print(toplam) 

40730 

Problem 30. The prime numbers are the big phenomenon of the mathematics. For 

example 971 is a prime number. Even more, all circulations of the number is also 

prime number as 197 and 719.  There exist thirteen primes which provide the circle 

prime rule. For example 5,7,71,37. So, find the number of circular primes less than 

10
6
. 

Solution 30. 

import math 

import fkclib 

 

def rotation(n): 

    liste=[n] 

    a=str(n) 

    for i in range(1,len(a)): 

        number=a[1:]+a[0] 

        liste.append(int(number)) 

        a=str(number) 

    b=0 

    for num in liste: 

        if fkclib.is_prime(num)==True: 

            b=b+1 

    if b==len(a): 

        return True 

    else: return False 

c=0 

for i in range(1,10**6,1): 

            if '2' not in str(i): 

                if fkclib.is_prime(i)==True: 

                    if rotation(i)==True: 

                        c=c+1 

                    

print(c+1) 

55 
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Problem 31. If a number read from right to left and left to right is equal each other, 

called as palindromic numbers. For example 1221 is an palindromic number. 585 is 

also a palindromic number. Even more, the binary form of the number 585 is also 

palindromic: (1001001001)2. Calculate the sum of all palindromic numbers less than 

10
6
 whose binary expansion is also palindromic. 

Solution 31.  

def div(m,n): 

    i=0 

    while (m>=n)==True: 

        m=m-n 

        i=i+1 

    return i 

 

def base_conv(m,n): 

    converted="" 

    while(m>=n)==True: 

        number=m%n 

        converted=str(number)+converted 

        m=div(m,n) 

        if m<n: 

            converted=str(m)+converted 

    return converted 

 

def is_palindrome(n): 

    a=str(n) 

    if (a==a[::-1])==True: 

        return True 

    else: 

        return False 

     

liste=[i for i in range(1,1000000) if is_palindrome(i)==True] 

 

toplam=0 

for elem in liste: 

        if is_palindrome(base_conv(elem,2))==True: 

            toplam=toplam+elem 

print(toplam) 

872187 

Problem 32. The number 3137 has an amazing property such that the numbers 3137, 

137, 37 and 7 are all primes. Moreover, 3137, 313, 31 and 3 are all also prime 

numbers. Let‟s call the number 3137 as Bâde  Number. Find the first eleven Bâde 

Numbers and their sum.(note: pimes less than 8 not accepted as Bâde Number.)  
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Solution 32. 

import math 

import fkclib_alternative 

 

 

def controlfromleft(n): 

    checklist=[] 

    a=str(n) 

    for i in range(len(a)+1): 

        b=n//(10**(len(a)-i)) 

        if fkclib_alternative.is_prime(b)==True: 

            checklist.append(1) 

    if len(checklist)==len(a): 

        return True 

    else: 

        return False 

     

def controlfromright(n): 

    checklist=[] 

    a=str(n) 

    for i in range(len(a)+1): 

        b=n%(10**(len(a)-i)) 

        if fkclib_alternative.is_prime(b)==True: 

            checklist.append(1) 

    if len(checklist)==len(a): 

        return True 

    else: 

        return False 

pliste=["2","3","5","7"] 

toplam=0 

count=0 

i=8 

while count<11: 

    if str(i)[-1] in pliste and str(i)[0] in pliste: 

        if controlfromleft(i)==True and 

controlfromright(i)==True: 

            print(i) 

            toplam=toplam+i 

            count=count+1 

            i=i+1 

        else: i=i+1 

    else: i=i+1 

             

print(toplam) 

23 

37 

53 

73 

313 

317 

373 

797 

3137 

3797 
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739397 

748317 

Problem 33. Take the number 192 and multiply it by each of 1, 2, and 3: 

192 × 1 = 192 

192 × 2 = 384 

192 × 3 = 576 

By concatenating each product we get the 1 to 9 pandigital, 192384576. We will call 

192384576 the concatenated product of 192 and (1,2,3). The same can be achieved 

by starting with 9 and multiplying by 1, 2, 3, 4, and 5, giving the pandigital, 

918273645, which is the concatenated product of 9 and (1,2,3,4,5). What is the 

largest 1 to 9 pandigital 9-digits number that can be formed as the concatenated 

product of an integer with (1,2, ... , n) where n > 1? 

Solution 33. 

def check(a): 

    return sorted(str(a))==sorted(str(123456789)) 

def prod(a): 

    i=1 

    num='' 

    while len(num)<9: 

        num=num+str(a*i) 

        i=i+1 

    if check(num)==True: 

        return num 

    else: return 0 

numlist=[] 

panlist=[] 

for i in range(1,10000): 

    if prod(i)!=0: 

        numlist.append(i) 

        panlist.append(prod(i)) 

print(dict(zip(numlist,panlist))) 

print(len(numlist)) 

print(max(panlist)) 

{192: '192384576', 1: '123456789', 7269: '726914538', 327: 

'327654981', 6792: '679213584', 9: '918273645', 9327: 

'932718654', 7692: '769215384', 6927: '692713854', 273: 

'273546819', 9267: '926718534', 7923: '792315846', 7329: 

'732914658', 6729: '672913458', 9273: '927318546', 219: 

'219438657', 7932: '793215864', 7293: '729314586'} 

18 

932718654 
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Problem 34. Let‟s assume that for a given Pythagorean triple {x,y,z} the sum of 

them be equal to p. For p=120, we have three triple (24,45,51), (30,40,50) and, 

(20,48,52). Find the value of p ≤ 1000 such that the number of triples is maximum. 

Solution 34.  

import math 

def is_square(n): 

    return math.sqrt(n)==int(math.sqrt(n)) 

liste=[] 

for a in range(1,1000): 

    for b in range(1,1000): 

        c=a**2+b**2 

        if is_square(c)==True and a+b+math.sqrt(c)<=1000: 

            liste.append(a+b+math.sqrt(c)) 

 

liste.sort() 

def findhighfreq(liste): 

    numlist=[] 

    flist=[] 

    for i in range(len(liste)): 

        j=0 

        while liste[i]!=liste[j]: 

            j=j+1 

        numlist.append(liste[i]) 

        flist.append(i-j+1) 

    a=flist.index(max(flist)) 

    b=numlist[a] 

    return b 

                 

print(findhighfreq(liste))             

         

840 

Problem 35. The number N is created by concatenating the numbers from 1 to n. 

Decimal representation of the number is N=0.1234567891011… . It is easily seen 

that the the 10 th digit is 1. If N(i) represents the i‟th digit in the N find the product: 

 ( )    (  )    (   )    (    )    (     )    (      )    (       ) 

Solution 35.  

def create(): 

    num='0' 

    for i in range(1,179000): 

        num=num+str(i) 

    return num 

liste=create() 

print(len(liste)) 
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carpim=1 

for i in range(0,7): 

    carpim=carpim*int(liste[10**i]) 

 

print(carpim) 

210 

Problem 36.  A pandigital number is an n-digit number and consists all numbers 

from 1 to n in its digits. For example 3124 is a four digits pandigital number. Find 

the largest pandigital number which is also a prime number. 

Solution 36. 

import math 

import fkclib 

def is_pandigital(n): 

    liste=[] 

    a=str(n) 

    for i in range(1,len(a)+1): 

        if str(i) in a: 

            liste.append(1) 

    if len(liste)==len(a): 

        return True 

    else: return False 

 

for i in range(1,987654322): 

    if is_pandigital(i)==True: 

        if fkclib.is_prime(i)==True: 

            print(i) 

                

7652413 

Problem 37. The triangle numbers are given with the closed form   
 

  
 (   )

 
 . The 

first five triangle numbers are 1, 3, 6, 10, and this goes on. The file words.txt
2
 

includes more than 2000 words. The value of every word is calculated with a special 

method. Due to method, the value of a word is equal to the letter number of each 

word in the alphabetical order of the English language. For example 

ZEYNEP=Z+E+Y+N+E+P=26+5+25+15+5+16=87. If the value of the word is a 

triangle number the word is called as triangle word. So, find the number of triangle 

words in file words.txt. 

 

                                                             
2
 Download the file names.txt from the address 

https://drive.google.com/file/d/0B5QoqCRDwQR3d19hNVhhVnhYdjg/view?usp=sharing 
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Solution 37.  

import time 

liste=[chr(i) for i in range(ord('A'),ord('Z')+1)] 

liste.append('"') 

open_file = open('p042_words.txt') 

lst = [] #boÅŸ liste  

 

for line in open_file:      

    line = line.rstrip()   

    words = line.split()    

    for word in words: 

        lst.append(word)  

lst.sort() 

 

newlist="" 

for i in range(len(lst)): 

    newlist=newlist+lst[i] 

wordliste=[word for word in newlist.split(",")] 

 

def is_triangle(n): 

    if ((1+8*n)**(0.5)).is_integer(): 

        return True 

    else: 

        return False 

def is_triangle_word(word): 

    toplam=0 

    for char in word: 

        toplam=toplam+liste.index(char)+1 

    toplam=toplam-(2*(liste.index('"')+1)) 

    if is_triangle(toplam)==True: 

        return True 

    else: 

        return False 

starttime=time.clock()     

a=0 

for i in range(len(wordliste)): 

    if is_triangle_word(wordliste[i])==True: 

       a=a+1 

print(a) 

endtime=time.clock() 

print(endtime-starttime) 

162 

0.13 second 

 

Problem 38. The number, 1406357289, is a 0 to 9 pandigital number because it is 

made up of each of the digits from 0 to 9 in some order, but it also has a rather 

interesting sub-string divisibility property. Let d1 be the 1
st
 digit, d2 be the 2

nd
 digit, 

and so on. In this way, we note the following: 

d2d3d4=406 is divisible by 2 
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d3d4d5=063 is divisible by 3 

d4d5d6=635 is divisible by 5 

d5d6d7=357 is divisible by 7 

d6d7d8=572 is divisible by 11 

d7d8d9=728 is divisible by 13 

d8d9d10=289 is divisible by 17 

Find the sum of all 0 to 9 pandigital numbers with this property. 

Solution 38.  

def is_pandigital(num): 

    liste=[str(i) for i in range(0,10)] 

    checklist=[] 

    for char in num: 

        if char in liste: 

            checklist.append(1) 

    if sum(checklist)==10: 

        return True 

    else: 

        return False 

 

def divisors(n): 

    divlist=[1,2,3,5,7,11,13,17] 

    value=[] 

    for i in range(1,8): 

        if int(n[i:i+3])%divlist[i]==0: 

            value.append(1) 

    if sum(value)==7: 

        return True 

    else: 

        return False 

           

 

from itertools import permutations 

l = list(permutations(range(0, 10))) 

 

newL=[] 

for element in l: 

    kelime='' 

    for i in range(len(element)): 

        kelime=kelime+str(element[i]) 

    newL.append(kelime) 
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def sum_pan(): 

    toplam=0 

    for element in newL: 

        if is_pandigital(element)==True and 

divisors(element)==True: 

                toplam=toplam+int(element) 

    return toplam 

print(sum_pan()) 

16695334890 

  

Problem 39. Pentagonal numbers are generated by the formula, Pn=n(3n−1)/2. The 

first ten pentagonal numbers are: 

1, 5, 12, 22, 35, 51, 70, 92, 117, 145, ... 

It can be seen that P4 + P7 = 22 + 70 = 92 = P8. However, their difference, 70 − 22 = 

48, is not pentagonal. Find the pair of pentagonal numbers, Pj and Pk, for which their 

sum and difference are pentagonal and D = |Pk − Pj| is minimised; what is the value 

of D? 

Solution 39.  

def is_pentagonal(n): 

    if math.sqrt(24*n+1)==int(math.sqrt(24*n+1)): 

        return True 

    else: 

        return False 

    

def pentagonal(n): 

    return int(n*(3*n-1)*(0.5)) 

 

pentafark=[] 

pentaliste=[pentagonal(i) for i in range(1,10000)] 

for i in range(0,len(pentaliste)): 

    for j in range(i-1,0,-1): 

            if 

is_pentagonal(pentaliste[i]+pentaliste[j])==True and 

is_pentagonal(pentaliste[i]-pentaliste[j])==True: 

                       print(pentaliste[i]-pentaliste[j], 

pentaliste[i], pentaliste[j]) 

 

(1247, 715, 532) 

(2262, 1820, 442) 

(12927, 7315, 5612) 

(25676, 23375, 2301) 
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(73151, 12650, 60501) 

(661012, 490490, 170522) 

(3079517, 2794155, 285362) 

(3455727, 270725, 3185002) 

(7042750, 1560090, 5482660) 

5482660 

Problem 40. The general closed formula of the pentagonal, triangle and hexagonal 

numbers: 

Triangle Number Closed Formula   Tn=n(n+1)/2   1, 3, 6, 10, 15, ... 

Pentagonal Number Closed Formula   Pn=n(3n−1)/2   1, 5, 12, 22, 35, ... 

Hexagonal Number Closed Formula   Hn=n(2n−1)   1, 6, 15, 28, 45, ... 

The number 40755 has an interesting property that is triangle, pentagonal and also 

hexagonal number. So, let‟s call 40755 as Zeynep Number. Find the next Zeynep 

number greater than 40755. 

Solution 40.  

import math 

import time 

def is_triangle(n): 

    if math.sqrt(1+8*n)==int(math.sqrt(1+8*n)): 

        return True 

    else: return False 

def is_pentagonal(n): 

    if (math.sqrt(1+24*n)+1)/6==int((math.sqrt(1+24*n)+1)/6): 

        return True 

    else: return False 

def is_hexagonal(n): 

    if 

(math.sqrt(1+8*n)+1)*(1/4)==int((math.sqrt(1+8*n)+1)*(1/4)): 

        return True 

    else: return False 

def tri(n): 

    trilist=[] 

    for i in range(1,n+1): 

        trilist.append(int(i*(i+1)*(0.5))) 

    return trilist 

then=time.time() 

for element in tri(100000): 

    if is_pentagonal(element)==True and 

is_hexagonal(element)==True: 

        print(element) 

now=time.time() 

print(now-then) 

1 

210 

40755 
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7906276 

1533776805 

0.981999874115 second 

Problem 41. The great mathematician Euler proposed that every odd (not prime) 

number can be written as a sum of a prime and double of a square. 

9 = 7 + 2×1
2
 

15 = 7 + 2×2
2
 

21 = 3 + 2×3
2
 

25 = 7 + 2×3
2
 

27 = 19 + 2×2
2
 

33 = 31 + 2×1
2
 

But the conjecture was not true. Find the least odd number (not prime) which can not 

be written as the sum of a prime and double of a square? 

Solution 41. 

import eulerlib 

import math 

def is_sqr(n): 

    return math.sqrt(n)==int(math.sqrt(n)) 

def check(n): 

    checklist=[] 

    plist=eulerlib.primes(n) 

    for p in plist: 

        if is_sqr((n-p)/2)==True: 

            checklist.append(1) 

    if len(checklist)>=1: 

        return True 

    else: return False 

liste=[] 

for i in range(2,10000): 

    if i%2!=0: 

        if eulerlib.is_prime(i)==False: 

            if check(i)==False: 

                liste.append(i) 

 

print(min(liste))        

5777 

Problem 42. The numbers 14 and 15 are the first two numbers whose prime factors 

are different from each other. 644, 645 and 646 are the first three consecutive 

numbers which have three different prime factors. So, find the first consecutive 

numbers which have four distinct prime factors. 
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Solution 42. 

def prime_factors(n):##12=[2,2,3] 

    i=2 

    factors=[] 

    while i*i<=n: 

        if n%i!=0: 

            i=i+1 

        else: 

            n//=i 

            factors.append(i) 

    if n>1: 

        factors.append(n) 

    return factors 

 

 

def unique_prime_factors(n):##84=[2,3,7] 

    i=2 

    factors=[] 

    while i*i<=n: 

        if n%i!=0: 

            i=i+1 

        else: 

            n//=i 

            if i not in factors: 

                factors.append(i) 

    if n>1: 

        if n not in factors: 

            factors.append(n) 

    return factors 

 

def findconsprime(): 

    liste=[i for i in range(3,1000000)] 

    for i in liste: 

        fournum=[] 

        for element in liste[i:i+4]: 

            if len(unique_prime_factors(element))==4: 

                fournum.append(element) 

        if len(fournum)==4: 

            break 

    return fournum 

    

print(findconsprime()) 

[134043, 134044, 134045, 134046] 

Problem 43.    
 
                                 is given. Calculate the 

ten digits of the number        
 
                     from right. 

Solution 43.  

def powersum(n): 
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    toplam=0 

    for i in range(1,n+1): 

        toplam=toplam+(i**i)%(10**10) 

    return toplam%(10**10) 

print(powersum(1000)) 

9110846700 

Problem 44.  The arithmetic sequence, 1487, 4817, 8147, in which each of the terms 

increases by 3330, is unusual in two ways: (i) each of the three terms are prime, and, 

(ii) each of the 4-digits numbers are permutations of one another. There are no 

arithmetic sequences made up of three 1-, 2-, or 3-digits primes, exhibiting this 

property, but there is one other 4-digits increasing sequence. What 12-digits number 

do you form by concatenating the three terms in this sequence? 

Solution 44.  

import itertools 

import math 

import time 

def DivNum(a): 

    n=int(math.sqrt(a)) 

    div_list=[] 

    for i in range(1, n+1): 

        if a%i==0: 

            if i and (a//i) not in div_list: 

                div_list.append(i) 

                div_list.append(a//i) 

    return len(div_list) 

 

def is_prime(n): 

    if DivNum(n)==2: 

        return True 

    else: 

        return False 

 

def per(n,r): 

    L=list(itertools.permutations(n,r)) 

    newL=[] 

    for element in L: 

        kelime='' 

        for i in range(len(element)): 

            kelime=kelime+str(element[i]) 

        newL.append(kelime) 

    return newL 

then=time.time() 

listeson=[] 

for i in range(9000,9999): 

    liste=per(str(i),4) 

    liste1=[] 

    for element in liste: 
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        if is_prime(int(element))==True and str(0) not in 

element: 

            liste1.append(int(element)) 

    for elem1 in liste1: 

        for elem2 in liste1: 

            elem3=(elem1+elem2)/2 

            if elem3 in liste1 and elem3!=elem2!=elem1: 

                if elem1 and elem3 and elem2 not in listeson: 

                    listeson.append(elem1) 

                    listeson.append(int(elem3)) 

                    listeson.append(elem2) 

print(listeson) 

now=time.time() 

print(str(now-then)[0:5]+" second") 

962962992969 

0.984 second 

Problem 45. The prime number 41 could be written as the sum of 6 successive prime 

numbers from 2 to 13. This sum is the longest sum to build a prime number by using 

consecutive primes less than 100. If we look for the prime number which has the 

same property under one-thousand is 953 which is the sum of 21 consecutive prime 

numbers. Find the prime number which is less than one million and can be written as 

the sum of the most successive prime numbers. 

Solution 45.  

import fkclib 

pliste=fkclib.first_n_prime(4000) 

sliste=[] 

lliste=[] 

for i in range(0,len(pliste)): 

    for j in range(0,len(pliste)+1): 

        toplam=sum(pliste[i:j]) 

        if toplam not in sliste and fkclib.is_prime(toplam) 

and toplam<10**6: 

            sliste.append(toplam) 

            lliste.append(j-i) 

new=dict(zip(sliste, lliste)) 

print(fkclib.is_prime(max(sliste)))         

a=lliste.index(max(lliste)) 

print(sliste[a]) 

997651 

Problem 46.  If the number 125874 and the number 25174 are taken it is obvious 

that the second number is equal to two times the first number and they have the same 

digits but different order. So, find the least positive integer, n, such that 2n, 3n, 4n, 

5n, and 6n includes the same digits. 
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Solution 46. 

def kontrol(m,n): 

    m=str(m) 

    n=str(n) 

    liste=[] 

    if len(m)==len(n): 

        for num in m: 

            if m.count(num)==n.count(num): 

                liste.append(1) 

            else: return False 

    if len(liste)==len(m): 

        return True 

    else: return False 

 

def check(n): 

    liste=[n*2, n*3, n*4, n*5, n*6] 

    checklist=[] 

    for i in range(0,5): 

        if kontrol(n, liste[i])==True: 

            checklist.append(1) 

    if len(checklist)==5: 

        return True 

    else: return False 

 

import time 

once=time.time() 

for i in range(100008,10000000,9): 

    if check(i)==True: 

        print(i) 

        break 

sonra=time.time() 

print(sonra-once) 

142857 

0.08 second 

Problem 47. There are exactly ten ways of selecting three from five, 12345: 

123, 124, 125, 134, 135, 145, 234, 235, 245, and 345. 

In combinatorics, we use the notation, 
5
C3 =10. In general,  (

 
 
)  

  

  (   ) 
 

               (   )           and 0!=1. It is not until n = 23, that a 

value exceeds one-million: 
23

C10 = 1144066. How many, not necessarily distinct, 

values of  
n
Cr, for 1 ≤ n ≤ 100, are greater than one-million? 
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Solution 47.  

import time 

def fact(n): 

    prod=1 

    if n==0 or n==1: 

        return 1 

    else: 

        for i in range(1,n+1): 

            prod=prod*i 

    return prod 

def comb(n,r): 

    return fact(n)/(fact(r)*fact(n-r)) 

a=0 

for i in range(1,101): 

    for j in range(0,i+1): 

        b=comb(i,j) 

        if b>1000000: 

            a=a+1 

once=time.time() 

print(a) 

sonra=time.time() 

print("time: {}".format(str(sonra-once)[0:4])) 

4075 

time: 0.01     

Problem 48. If we take 47, reverse and add, 47 + 74 = 121, which is palindromic. 

Not all numbers produce palindromes so quickly. For example, 

349 + 943 = 1292, 

 1292 + 2921 = 4213 

4213 + 3124 = 7337 

That is, 349 took three iterations to arrive at a palindrome. Although no one has 

proved it yet, it is thought that some numbers, like 196, never produce a palindrome. 

A number that never forms a palindrome through the reverse and add process is 

called a Lychrel number. Due to the theoretical nature of these numbers, and for the 

purpose of this problem, we shall assume that a number is Lychrel until proven 

otherwise. In addition you are given that for every number below ten-thousand, it 

will either (i) become a palindrome in less than fifty iterations, or, (ii) no one, with 

all the computing power that exists, has managed so far to map it to a palindrome. In 

fact, 10677 is the first number to be shown to require over fifty iterations before 

producing a palindrome: 4668731596684224866951378664 (53 iterations, 28-

digits). Surprisingly, there are palindromic numbers that are themselves Lychrel 
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numbers; the first example is 4994. How many Lychrel numbers are there below ten-

thousand? 

Solution 48.  

import time 

start=time.time() 

def is_palindrome(n): 

    if str(n)[0::]==str(n)[::-1]: 

        return True 

    else: return False 

 

def counter(n): 

    counter=0 

    for i in range(1,59): 

        a=n+int(str(n)[::-1]) 

        if is_palindrome(a)==True: 

            return counter+1 

            break 

        else: 

            n=a 

            counter=counter+1    

number=0 

for i in range(1,10001): 

    if counter(i)==None: 

        number=number+1 

print(number) 

stop=time.time() 

print("time:{0}".format(stop-start)) 

249 

time:0.547000169754 

Problem 49. The number 10
100

 is called as a googol. It contains one times 1 and 

hundred times zeros.  If we take the number 100
100

, it contains one times 1 and two 

hundred times zeros. The sum of their digits are equal to 1. If we take a natural 

number as x
y
, where x,y<100, find the greatest value of the sum of its digits ? 

Solution 49.  

liste=[] 

for i in range(1,100): 

    for j in range(1,100): 

        a=i**j 

        b=str(a) 

        toplam=0 

        for char in b: 

            toplam=toplam+int(char) 

            liste.append(toplam) 

print(max(liste)) 
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972 

 

Problem 50. It can be shown that the square root of 2 can be written as an infinite 

continued fraction. 

√          (      (      (       )))                

If we expand this for the first 4 iterations, we will get: 

1 + 1/2 = 3/2 = 1.5 

1 + 1/(2 + 1/2) = 7/5 = 1.4 

1 + 1/(2 + 1/(2 + 1/2)) = 17/12 = 1.41666... 

1 + 1/(2 + 1/(2 + 1/(2 + 1/2))) = 41/29 = 1.41379... 

99/70, 239/169, and 577/408 are the result of next 3 iterations. But the eighth 

expansion, 1393/985, is the first example where the number of digits in the 

numerator exceeds the number of digits in the denominator. In the first one-thousand 

expansions, how many fractions contain a numerator with more digits than the 

denominator? 

Solution 50. 

from fractions import Fraction as f 

 

value=f(3,2) 

count=0 

for i in range(1,1000): 

    value=1+f(1,value+1) 

    a=str(value).split("/") 

    if len(a[0])>len(a[1]): 

        count=count+1 

print(count) 

153 

 

Problem 51. Starting with 1 and spiralling counterclockwise in the following way, a 

square spiral with side length 7 is formed. 

37 36 35 34 33 32 31 

38 17 16 15 14 13 30 

39 18  5  4  3 12 29 

40 19  6  1  2 11 28 

41 20  7  8  9 10 27 

42 21 22 23 24 25 26 

43 44 45 46 47 48 49 
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It is interesting to note that the odd squares lie along the bottom right diagonal, but 

what is more interesting is that 8 out of the 13 numbers lying along both diagonals 

are prime; that is, a ratio of 8/13 ≈ 62%. 

If one complete new layer is wrapped around the spiral above, a square spiral with 

side length 9 will be formed. If this process is continued, what is the side length of 

the square spiral for which the ratio of primes along both diagonals first falls below 

10%? 

Solution 51.  

import math 

import fkclib 

liste=[] 

a=2 

value=1 

primecount=0 

c=1 

side=1 

for j in range(1,10**7): 

    c=c+4 

    side=side+2 

    for i in range(1,5): 

        value=value+a 

        if fkclib.is_prime(value)==True: 

            primecount=primecount+1 

        if i!=4: 

            liste.append(value) 

    if primecount/c<1/10: 

        print(side, primecount, c, primecount/c) 

        break 

    a=a+2 

26241 5248 52481 0.09999809454850327 

Problem 52. The cube, 41063625 (345
3
), can be permuted to produce two other 

cubes: 56623104 (384
3
) and 66430125 (405

3
). In fact, 41063625 is the smallest cube 

which has exactly three permutations of its digits which are also cube. 

Find the smallest cube for which exactly five permutations of its digits are 

cube. 

Solution 52.  

liste=[str(i**3) for i in range(1,20000)] 

lenliste=[] 
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def check(str1,str2): 

    checklist=0 

    if len(str1)==len(str2): 

        for elem in str1: 

            if str1.count(elem)==str2.count(elem): 

                checklist=checklist+1 

        if len(str1)==checklist: 

            return True 

        else: return False 

 

for eleman1 in liste: 

    a=0 

    for eleman2 in liste: 

        if check(eleman1, eleman2)==True: 

            a=a+1 

    if a==5: 

        print(eleman1) 

        break 

127035954683 

Problem 53. The 5-digit number, 16807=7
5
, is also a fifth power. Similarly, the 9-

digit number, 134217728=8
9
, is a ninth power. How many n-digit positive integers 

exist which are also an nth power? 

Solution 53.  

a=0 

for i in range(1,100): 

    for j in range(1,100): 

        if len(str(i**j))==j: 

            a=a+1 

print(a) 

49 

Problem 54. The function φ calculates the number of relatively prime numbers less 

than any given natural number. For example φ(10)=4 because the relatively prime 

numbers with 10 are 1, 3, 7, 9. If we look the proportion of the n/ φ(n) the maximum 

value is 3 for the first ten natural numbers (i.e. 6/φ(6)=3). For which value of n 

which is smaller and equal to 10
6
, n/φ(n) has the maximum value? 

Solution 54. 

import math 

from numpy import prod 

 

def DivNum(a): 

    n=int(math.sqrt(a)) 

    div_list=[] 
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    for i in range(1, n+1): 

        if a%i==0: 

            if i not in div_list: 

                div_list.append(i) 

            if a//i not in div_list: 

                div_list.append(a//i) 

    return len(div_list) 

def is_prime(n): 

    if n==1: 

        return False 

    elif DivNum(n)==2: 

        return True 

    else:s 

        return False 

def DivNum1(a): 

    n=int(math.sqrt(a)) 

    div_list=[] 

    for i in range(1, n+1): 

        if a%i==0: 

            if i not in div_list: 

                if is_prime(i)==True: 

                    div_list.append(i) 

            if a//i not in div_list: 

                if is_prime(a//i)==True: 

                    div_list.append(a//i) 

    return div_list 

 

def phi(n): 

    philist=[] 

    for num in DivNum1(n): 

        philist.append(1-(1/num)) 

    return n*(prod(philist)) 

maxi=0 

for i in range(2,1000001): 

    a=i/phi(i) 

    if a>maxi: 

        maxi=a 

        index=i 

print(maxi) 

print(index) 

 

510510 
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4. CONCLUSION AND RECOMMENDATIONS       

4.1    Performance      

Using Python without some extension modules, SymPy‟s performance is not 

as good as other commercial equivalent competitors. But for many applications the 

general performance of SymPy is sufficient as measured by time or clock cycles, 

memory occupation, and memory layout. But in some points, we have to accept that 

the SymPy has some troubles in doing very long expressions or lots of small ones. 

Indeed, part of the performance problems is due to the OS used, the processor, and 

other hardware components such as RAM Python‟s nature as being an interpreted 

language also brings other performance related issues. During the solution of the 

problems, many times the author of the thesis had to chance to compare different 

types of computers and online idles. For example, many problems are solved on the 

computer which has an Intel R atom processor and some problems are solved on an 

online Idle repl.it
3
. And the performance difference between a tablet computer and a 

mini super computer has been obvious. The ratio of the solution times is very high 

because online Idle was 80 times faster than the pc. So, the boundaries of the 

software depend on the system, because the modern computers have a range 10
4
-10

6
 

symbols for calculation. 

Therefore, a new open source project named SymEngine (The SymPy 

Developers, 2016) was started. The main aim of this project is to write efficient 

libraries to make the SymPy has a better performance.   

4.2 Conclusion and Future Work 

Python language and SymPy support many mathematical facilities. These 

includes many functions from number theory to calculus. Expression simplifying, 

                                                             
3 www.repl.it 
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polynomial calculations, pretty printing and using Miktex, solving equations, 

performing symbolic matrices are the most popular functions. Furthermore, plotting 

2D and 3D graphs, sets, series, vectors, combinatorics, group theory, cryptography, 

tensors, code generation, linear algebra can also be counted as special functions. For 

this reason, many of the users has been choosing SymPy because of its easy usage 

and free access. When compared with other CAS‟s SymPy is easy to learn, teach and 

use since it is being written in pure Python. There are many source to learn Python 

and SymPy freely. One can also start with the given Python documentation list to 

explore various features from official site
4
: 

 The Statistics Module 

 Numeric and Mathematical Modules 

 The Math Module  

 The Decimal Module (We did not disscuss this module.) 

 Floating Point Arithmetic (We did not disscuss this module.) 

Beside the official site, one can also explore the mathematics and 

programming topics from the books: 

 Doing Mathematics With Python (Saha, 2015) 

 Invent Your Computer Games With Python (Sweigart, 2016) 

 Think Stats: Probability and Statistics for Programmers (Downey, 

2011) 

In addition to all the given internet resources, Project Euler 

(https://projecteuler.com) is the definite place to take exercises for the ones who 

would like improve their coding skills. The site includes more than 500 mathematics 

problems. The problems in the Problems and The Solutions section are selected from 

this web site. Creating a free account is the only requirement to begin selecting 

problems to solve and improve thereby coding skills in Python using SymPy. 

 

 

                                                             
4 https://docs.python.org 

https://projecteuler.com/
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