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ABSTRACT 
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SCAFFOLDS 

 

PHD THESIS 

BESRA ÖZER 

ABANT IZZET BAYSAL UNIVERSITY GRADUATE SCHOOL OF 

NATURAL AND APPLIED SCIENCES 

DEPARTMENT OF CHEMISTRY 

(SUPERVISOR: PROF.DR. YAŞAR DÜRÜST ) 

 

BOLU, MAY 2018 

 

The coverage of this study is basically related to the synthesis various crown 

ethers containing nitrogen and sulfur atoms. Because many of these compounds 

are highly effective extractants for metal ions. Due to this feature, they found 

application in different areas. On the other hand, five membered heterocyclic 

compounds are one of the important part of  1,3-dipolar cycloaddition chemistry 

due to their importance in pharmaceutical chemistry, organic and bioorganic  

medicinal chemistry. In this regards, the biological effects and industrial uses of 

these macrocyclic compounds have encouraged us to synthesize macrocyclic 

compounds with 1,2,4-oxadiazoles and 1,2,3-triazoles which are not previously 

reported. The outcomes of this study were discussed in four parts;  

In the first part of this work, we have focused on the synthesis of the  

benzotriazacrown ether  and then it was reacted with the 3-p-phenylsubstituted- 5-

chloromethyl-1,2,4-oxadiazoles. Moreover, dibenzodiazacrown carrying 1,2,4-

oxadiazole moieties were obtained. 

In the second part, novel benzodiazacrown ethers carrying  chloro/azido methyl 

1,2,4-oxadiazoles were synthesized with different stages. In addition, 

commercially obtained benzo-15-crown-5 was formylated according to the 

published literature procedure. Then, starting from this formylated crown, 

chloro/azido-methyl 1,2,4-oxadiazoles bearing benzocrown ethers were obtained 

in six different sections. 

In the third section, 1,3-dipolar cycloadditions of the azamacrocycles carrying 

acetylenic side chain with 5-azidomethyl-1,2,4-oxadiazoles were accomplished in 

two protocols. First part contains the synthesis of the novel azamacrocycles 

carrying acetylenic side chain and then these dipolarophilic novel molecules have 

undergone cycloaddition with the different p-phenyl substituted 5-azidomethyl 

1,2,4-oxadiazoles. 

Finally, in addition to all parts in this thesis,  a novel azathiacrown  and 

dibenzocrown ethers carrying aldoxime and nitrile groups were obtained. 

 

 

KEYWORDS: Azacrown Ether, 1,2,4-Oxadiazole, 1,2,3-Triazole, 1,3-Dipolar 

Cycloaddition, Ionophore   
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ÖZET 
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TAÇ ETERLERİN SENTEZİ VE KARAKTERİZASYONU 

DOKTORA TEZİ 

BESRA ÖZER 

ABANT İZZET BAYSAL ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ 

KİMYA ANABİLİM DALI 

(TEZ DANIŞMANI: PROF. DR. YAŞAR DÜRÜST) 

  

BOLU, MAYIS - 2018 

 

Bu çalışmanın içeriği esas olarak azot ve kükürt içeren çeşitli taç eterlerin sentezi 

ile ilgilidir. Çünkü bu bileşiklerin çoğunun metal iyonlarını bağlama kapasitesi 

oldukça yüksektir. Bu özelliklerinden dolayı farklı alanlarda yer bulurlar. Diğer 

taraftan, farmasötik kimya, organik, biyoorganik ve tıbbi kimyadaki öneminden 

dolayı  beş üyeli heterohalkasal bileşikler 1,3–dipolar halkasal katılma 

tepkimelerinin önemli bir parçasıdır. Bu bakımdan biyolojik etkileri ve 

endüstriyel kullanımı bizi, daha önce yayınlanmamış olan  1,2,4-oksadiazol ve 

1,2,3-triazol içeren makrohalkalı bileşikler  sentezlemeye teşvik etti. Bu tezin 

sonuçları dört kısımda tartışıldı. 

Bu çalışmanın ilk kısmında benzotriaza taç eterin sentezine odaklandık ve sonra  

bu taç eter  3-p-fenilsubstitue-5-klorometil-1,2,4-oksadiazoller ile tepkimeye 

sokuldu.  Dahası, 1,2,4-oksadiazol kısımlı dibenzodiaza taç eterler elde edildi.    

İkinci kısımda farklı aşamalarda yeni kloro/azido metil 1,2,4-oksadiazol taşıyan  

benzodiaza taç eterler sentezlendi. Buna ek olarak, satın alınan benzo-15-krovn-5 

literatürdeki yayınlanmış prosedüre göre formillendi. Daha sonra formillenmiş bu 

taç eterden başlayarak, 6 farklı aşamada kloro/azido metil 1,2,4-oksadiazol  

taşıyan benzo taç eterler sentezlendi. 

Ücüncü aşamada  asetilenik kısımlı azamakro halkanın, 5-azidomethyl-1,2,4-

oksadiazoller ile   1,3–dipolar halkasal katılıması iki aşamada tamamlandı. İlk 

aşama, asetilenik kısım taşıyan yeni aza makrohalkalar içerir ve daha sonra  bu 

dipolarofilik yeni moleküller p- fenilsubstitue  5-azidometil 1,2,4-oksadiazol ile 

halkasal katılmaya uğratıldı.  

Son olarak bu tezin bütün aşamalarına ek olarak yeni bir aza/tiya taç eter   ve 

aldoksim ve nitril grupları taşıyan dibenzo taç eterler elde edildi. 

 

 

 

ANAHTAR KELİMELER: Azataç Eter, 1,2,4-Oksadiazol, 1,2,3-Triazol, 1,3-

Dipolar Halkalı Katılma, İyonofor   
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1.   INTRODUCTION 

 

 
Macrocyclic compounds are one of the important parts of the supramolecular 

chemistry. Macrocyclic organic compounds contain a large ring with heteroatoms 

like O, N, S, P. The pioneers of this field; Cram, Lehn, and Pedersen, have been 

awarded with the Nobel Prize in Chemistry for the synthesis macrocyclic polyethers, 

that have high affinity with alkali, alkaline earth and transition metal cations. (Cram, 

1974; Lehn, 1988; Pedersen, 1988).  

 

Crown ethers which have been discovered by the Pedersen have a long 

history in macromolecular chemistry (Pedersen, 1967). In this thesis, we have 

focused on the crown ethers, since a developing interest has been directed on the 

crown ethers since 1967 (Kyba, et al., 1977; Collman, et al, 1998; Krishnakumar, et 

al., 2017; Zhang, et al., 2017). Crown ethers have found practical applications in 

many areas such as science and  industry (Shing, et al., 2013; Sharghi and Beni, 

2007; Elwahy and Abbas, 2008) due to their following characteristics: 

i.They have excellent  affinity towards the metal cations. (Herman, et al., 

2003; Vaira, et al., 1999). This remarkable binding property has lead wide 

applications in  cancer treatment (Ghosh and Wang, 2000), treatment of nuclear 

waste (Maciejewski, et al., 2009), removal of hazardous metals in contaminated 

water (Mane, et al., 2016), catalysis (Chen, et al., 1994). 

 ii. They have been found to exhibit anti-HIV (Bridger, et al., 1995), anti-

protozoal (Wilson, et al. 2007; Reid, et al., 2008), antimicrobial (Abd El-Salam, et 

al., 2012), antibacterial (Tso and Fung, 1981; Tso et al.,1981), antifungal (Patil, et 

al., 2016) and also anticancer and DNA interaction activities (Kralj, et al., 2008).  

iii. Some of these macrocycles  can be  used as  phase transfer catalyst (PTC) 

(Gourdet, et al., 2010; Hausner, et al., 2005).  

iv. Macrocyclic compounds have an important site to bind dye so they can 

remove  dyestuff from waste water (Akceylan, et al., 2009; Yılmaz, et al,. 2007; 

Forgues and Ali, 2004). 
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 v. Crown ethers can also be used as oxidizing agent in order to eradicate 

sulfur compounds from the diesel fuels by oxidizing sulfur compounds (Rakhmanov, 

et al., 2014). 

 

Taking account of the historical background and characteristic features of 

macrocycles, namely azacrown ethers, reported in the literature and above-mentioned 

biological, environmental and industrial features of these class of organic compounds 

make  them significant and profitable to carry out research. In this regard, we have 

focused on the azacrown ether synthesis in this thesis work. 

 

 

1.1 CROWN ETHERS 

 

Crown ethers are generally defined as cyclic oligomers of diethylene ether. A 

simple crown ether consists of repeating -CH2CH2O- units. Macrocyclic polyethers 

of the (-CH2CH2O-)n  type, when n is equal or more than 4, are generally ascribed as 

crown ethers so that their systematic names are not much preferred (Gokel, 1991; 

Dietric and Lehn, 1993). Due to their structural appearance and ability to encircle 

cations, these macromolecules were called ''crown'' (Figure 1.1) (Pedersen, 1967). 

Actually, the crown ethers can be considered as '' hard bases'' owing to heteroatoms 

such as oxygen and nitrogen they possess, thus they prefer to bind to metal cations, 

that are '' hard acids'' (Pearson, 1963). 

 

 
 

 Figure 1. 1. Examples of commonly known crown ethers 
 

In the literature, various crown ethers have been documented, due to their 

excellent properties and convenient applications (Forgues and Ali, 2004; Luboch et 

al., 2009; Steenland, et al 1997; Liang et al., 2006; Qin, et al., 2008; Athey and  

Kiefer, 2002). In particular, the binding nature of the crown ethers towards the 

transition and post transition metal cations comes out such as ionophore (Luboch, et 
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al., 2009; Ge, et al., 2012; Wysiecka,et al., 2003; Kim, et al., 2000; Bühlmann, et al., 

1998) and chemosensor (Jeon, et al., 2009, Moczar et al., 2010) properties. In regards 

to highest affinity towards the metal cations, host-guest chemistry plays an important 

role in the literature (Huang, et al., 2005; Kimura, et al.,1982; Sarma, et al., 2010; 

Tsuchiya, et al., 2006). 

 

 

1.1.1 Classes of Crown Ethers and Their Nomenclature 

 

Pedersen has introduced an identifiable and uncomplicated nomenclature for 

the crown ethers.  Since the systematic IUPAC nomenclature of these macrocycles 

can not be appropriate, Pedersen developed a nomenclature system for the crown 

ethers based on the following criteria  (Pedersen, 1967); 

(1) The quantity and the sort of hydrocarbon rings, 

(2) The full number of atoms in the macrocycle, 

(3)  The word ''crown” , 

(4) The number of heteroatoms (oxygen, nitrogen etc.) in the macrocycle.  

 

If the oxygen atom is replaced with other heteroatoms such as N, these 

changes can be illustrated  with a prefix of aza (Pedersen, 1967). Examples of several 

crown ethers used commonly and their names are shown below ( Figure 1.2). 

  

 
 

 Figure 1. 2. Some crowns named according to Pedersen’s method 

 

 Although there is an unpredictability on the location of heteroatoms, the 

Pedersen nomenclature is simple, so the ring size and number of heteroatoms can be 
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easily understood and these features have advantages for using the Pedersen 

nomenclature system. 

 

The nomenclature system described by Pedersen (Pedersen, 1967) are 

referred to any medium sized macrocylic system. These systems having only oxygen  

atoms are attributed  to coronands (Vögtle and Weber, 1974). In addition to 

coronands, different kinds of the associated compounds have been introduced. These 

are; lariat ethers, rotaxanes, cryptands, carcerands, calixarenes, cavitands, 

sepulchrates, podands, spherands (Dietrich, et al., 1993). While podands are acyclic 

counterpart in the macrocyclic system, the cryptands are bi or polycyclic 

counterparts containing any heteroatoms. Cryptates and coronates make complex 

with  cryptands  and coronands respectively  (Gokel and Korzeniowski, 1982). Gokel 

and coworkers have demonstrated that the lariats  which are monocyclic and have 

hanging arms with donor atoms. (Gokel, et al., 1980).  

 

In 1974, Wong and his coworkers have reported bis-crown consisted of two 

macromolecules in its structure. Examples of the various type of macrocyclic 

compounds are illustrated in Figure 1.3. 

 

  
 

 Figure 1. 3. Classifications of the polyethers and examples for each 
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1.1.2 Host-Guest Properties of  Crown Ethers 

 

Macrocyclic compounds possess a cavity depending on their size and atoms 

incorporated in the ring. This feature can lead to accomodate metal ions as host 

(Kimura, et al.,1982; Sarma, et al., 2010; Tsuchiya, et al., 2006). The factors 

affecting ligand-metal complexation and stability of the complexes have been 

summarized as depicted below (Pedersen, 1967).  

 

 The cavity of the crown ethers and the relative sizes of the metal 

cation, 

 The number of oxygen atom in the macrocycle, 

 The planarity of the macrocycle ring, 

 The symmetrical placement of the oxygen atoms, 

 The basicity of the oxygen atoms, 

 Steric hindrance in the polyether ring, 

 The tendency of the ion to associate with the solvent, 

 The electrical charge on the ring. 

 

Several types of the complexes constructed by crown ethers have been 

reported in the literature (Kong, et al., 2003; Steenland, et al., 1997; Gasnier, et al., 

2008; Cram, 1988; Pedersen, 1970). The type where the  metal cation fits in the hole 

of crown ether and a 1:1 stochiometric ratio between metal and crown ether is 

maintained is called as “nesting” complex. But if the metal cation is even slightly 

large  for the cavity of the crown ether a "perching" complex occurs. Sandwich and 

club-sandwich complexes form when metal cation is large to suit into the cavity 

(Figure 1.4) (Zhang, 1999). 
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 Figure 1. 4. Types of crown ether-metal complexes 
 

The crown ethers form complexes not only with metal cations but also with 

ammonium ion, because of the similarity, in terms of charge and size, with K
+
 

(Pedersen, 1967). Organic molecules also behave as guest (Cram and Gokel, 1973; 

Gokel, et al., 2004; Kyba, et al., 1977). The benzenediazonium ion was complexed 

with the 21-crown-7 in solution (Figure 1.5) (Mageswaran, et al., 1979; Steenland, et 

al., 1997; Cram and Gokel, 1973; Kyba, et al., 1977;  Gokel et al., 2004). 

 

 
 

 Figure 1. 5. Example for the sandwich and nesting type host-guest interaction 
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The host-guest relationship between macrocycle and a suitable molecule or an  

ion  has been explained by taking account of electrostatic interaction, hydrogen 

bonding,   interactions, Van der Waals interaction (Kelly and Kim, 1994;  Harger 

and Smith, 1986;Cram, 1988) or charge transfer interactions (Kyba, et al., 1977; 

Kumar et al., 1992) (Figure 1.6).   

 

 

 

 Figure 1. 6. Schematic illustration for macromolecular interactions 

 

The complex formation of crown with alkali and alkaline earth metal cations 

was first announced by Pedersen (Pedersen, 1967) but an important concept about 

complexation was studied by Green who has proposed the ''template effect''. The 

study showed that the concentrations of the reactants did not affect the yield, despite  

changes in concentrations. But, however, upon replacement of tert-BuOK  with 

Bu4NOH, a significant increase in the yield was observed and thus metal cation 

exhibited some kind of template effect. The organization between open-chained 

ligand and cation involved  an ion-dipole interaction. Template effect is exerted by 

K
+
 cation and this promotes the intermolecular SN2 reaction and the  mechanism for 

templating is shown  in Scheme 1.1 (Green, 1972). 

 

Macromolecular 
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 Scheme 1.1. Mechanism for template effect 

 

1.1.3 Applications of Crown Ethers 

 

Crown ethers have attracted remarkable attention in various fields of science  

(Bühlmann, et al., 1998; Nezbedova, et al., 2001;  Valeur and Leray, 2000;  Quinn, et 

al., 2011; Mizukami, et al., 2002; Liu, et al., 2005). The selective binding properties 

of crown ethers  with  alkali and alkaline earth metal ions  made them possible to be 

used as ionophores and ion-selective electrodes (Nakano, et al., 1990; Mashhadizadeh, 

et al., 2012; Kuhn and Erni, 1992; Gokel et al., 2004; Wygladacz and Malinowska, 

2001).  

 

Various methods are being used to clean the dye matter in waste water of 

some industries including textiles, leathers dyestuffs (Akceylan, et al., 2009; Yılmaz 

et al., 2007). But a better solution has been discovered to remove dyestuff by using 

sophisticated properties of macromolecules. Among them the crown ethers form 

highly efficient complexation with  dyestuff  because they have a suitable binding 

site (Yang, et al., 2014;  Zarzeczańska, et al., 2016; Fedorova, et al., 2004).  

 

Crown ethers are also being utilized as phase transfer catalysts (Hausner, et 

al., 2005;Cram and Sogah, 1981; Krakowiak, et al.,1989). Phase transfer catalyst 

(PTC) assists the transfer of reactant from one phase to another, so PTC have found 
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applications in some industrial processes. In order to decrease the disadvantages and 

to be more suitable in industry, PTC should be recovered. In this regard, Gourdet and 

his coworkers have studied the recovering properties of  ''light fluorous'' crown ether  

(Gourdet, et al., 2010). Meanwhile in asymmetric synthesis, chiral crowns have also 

been reported as phase transfer catalysts (O'Donnell, 1993).  

 

Besides the usage as phase transfer catalyst, crown ethers are also 

incorporated as anion activator causing a substitution reaction, otherwise it would be 

difficult to perform (Scheme 1.2) (Liotta and Harris, 1973). 

 
 

 Scheme 1.2. Substitution reaction by means of crown ether 

 

The macrocyclic ionophores  have found potential applications in analytical 

chemistry, biochemical analysis and environmental protection due to their effective 

fluorescence spectral changes ( Fages, et al., 1989;  Bricks, et al.,2005; Shamsipure 

et al., 2008; Lin Ho, et al., 2009). More attention has been directed on fluorescence 

spectra rather than UV-visible spectra  in the detection of  the metal cations by using 

ion-selective ligands (Wysiecka, et al., 2011, Nunez et al., 2009). High selectivity, 

time response, resolution such advantages  make them  favourable (Valeur and 

Leray, 2000). 
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1.1.4 Synthesis of Crown Ethers 

 

Pedersen recommended four different methods for the synthesis of the crown 

ethers as shown in Scheme 1.3. 

 
 

 Scheme 1.3. Pedersen Methods for the preparation of crown ethers (Pedersen     

   1967) 

 

 Pedersen synthesized over sixty crown ethers  by using the above methods. 

Method W is the most effective one, when compared with the other methods, leading 

to high yields. Dibenzo-18-crown-6 was obtained by using W type method by 

Pedersen (1967)  and the researchers later followed this methodology to prepare 

various di, tri benzo crowns (Hanes, et al., 2006; Vaidya, 1996;  Burk, et al., 2008). 

An example for the W type is shown in Scheme 1.4. 
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 Scheme 1.4. Methodology for the synthesis of tri or tetrabenzo crowns 

 

The formyl derivatives of benzocrowns are convenient intermediates for the 

synthesis of a variety of  benzene bearing macrocyclic polyethers by using carbonyl 

function (Wada, et al., 1980; Kimura, et al., 2006; Chen, et al., 2016; Seyedi, et al., 

2011; Kryatova, et al., 2003; Doğru, et al., 2015; Safonova, et al., 2013; Morgan et 

al., 2014; Volchkov, et al., 2016; Bourgeois, et al., 1999; Moghimi, 2002). An 

example of the synthesis of the benzo substituted crown was prepared (Jagadale et al.  

in 2015). Jagadale and his coworkers  used TFA (trifloroacetic acetic) and HMTA 

(hexamethylenetetraamine) to obtain diformyl dibenzo-18-crown-6. The formylation 

is the first step to reach the desired compounds (Scheme 1.5) . 
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 Scheme 1.5. A synthetic method for the synthesis of the dibenzothiazolyldi 

            benzo-18-crown-6-ether starting from diformylatedbenzocrown  

 

 Various benzo-derivated crown ethers were reported in the literature (Patil, et 

al., 2016; Dhakal, et al., 2009; An, 1994; Deshmukh, et al., 2010; Bartsch and Eley 

1996) some of which were derived from 3' formyl benzocrown 29 (Scheme 1.6). 

 

 

 

 Scheme 1.6. Structures obtained from 3' formyl benzocrown 29 
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1.2 AZACROWN ETHERS 

  

Azacrown ethers are the intriguing class of the compounds in the macrocyclic 

chemistry due to their strong capability to bind metal cations (Khoramdareh, et al., 

2014; Xue, et al., 2002; Sakamoto, et al., 2011; You, et al., 1997). The binding 

properties of azacrowns can be regarded as intermediate between all-oxygen crowns 

and the all-nitrogen cyclams. Therefore azacrown ethers play a crucial  role in  

coordination with cationic guests (Krakowiak, et al., 1989; Bordunov, et al., 1996; 

Ioannidis, et al., 2010). These guests should be organic and inorganic cations 

(Tsuchiya, et al., 2006;  Wang and Lönnberg, 2006). Due to their unique host-guest 

property, aza-crowns have gained importance in different fields (Abbaspour, et al., 

2011; Puyol, et al., 2007; Tsukube, 1986; Liu, et al., 1998; Hirano, et al., 2000; 

Shing, et al., 2013; Kaur, et al., 2012; Echegoyen, et al., 1994;  Li, et al., 2012).  

 

 

1.2.1 Nomenclature of Azacrowns  

 

The azacrown ethers are named according to Pedersen. Below two examples 

are given (Pedersen, 1967) (Figure 1.7). 

 

 
 

 Figure 1. 7. Nomenclature of nitrogen macrocycles according to Pedersen 
 

 Busch and coworkers have recommended a different kind of nomenclature for 

crown ethers which contain nitrogen and/or oxygen atoms. In this  structure, 36 is 

indicated as [15]aneN4O (Figure 1.8). The explanation of this notation is that; the 

number in brackets shows the ring size and the word ''ane'' means the structure is a 

saturated compound, and at the end of the notation is of the number and kind of 

heteroatoms (Busch, et al., 1972). This cyclic tetraamine are often called cyclam. 
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 Figure 1. 8. Nomenclature of nitrogen macrocycles according to Busch et. al 

. 

 

1.2.2 Synthesis of  the Azacrown Macrocycles  

 

 Synthesis of the nitrogen-containing macrocycles has received interest due to 

binding properties with transition metal and other heavy metals, which have applied 

on various biological systems (Ranganathan, et al., 2002; Aguilar, et al., 2001; Long, 

1999, Shing Wu, et al., 2013; Przybylski, et al., 2009). Aza crown synthesis has been 

based on high dilution technique, (Gokel, et al., 1982; Chavez and Sherry, 1989), 

template effect (Kulstat and Malmsten, 1979) and high-pressure approach (Jurczak 

and Pietraszkiewicz 1985; Richman and  Atkins, 1974; Atkins, et al., 1988). Some of 

the synthetic procedures for macrocyclic polyamines as key precursors have been 

summarized below:   

 

 

1.2.2.1  Synthetic Precursors of Azacrowns 

 

 

1.2.2.1.1 Preparation of Diamines 

 

The preparation of the diamino aliphatic ether has been reported by the  

Krakowiak et al. by using a modified Gabriel synthesis (Krakowiak et al.,1992). 

Quici and coworkers have also used this method by reacting potassium phthalimide 

with dimesylated aliphatic ether 37, followed by hydrolysis to obtain diamino 

aliphatic ether 39 (Scheme 1.7) (Quici et al., 1996).   
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 Scheme 1.7. Synthesis of diamino aliphatic ether by using Gabriel synthesis 

 

In addition to Gabriel synthesis, various synthetic methods of  aliphatic 

diaminoethers were reported and herein some of these diamine precursors of 

azacrowns are depicted in Scheme 1.8 (King and Krespan, 1974; Krakowiak, et al., 

1989;  Gatto, et al. 1986; Krakowiak, et al., 1988) . 
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 Scheme 1.8. Synthesis of diamino aliphatic ethers by using different methods 

 

The aromatic diamines have been synthesized by reduction of nitro- 

containing aromatic compounds (Scheme 1.9) (Wu, 2000; Wysiecka, et al., 2007; 

Sharghi, et al., 2001; Lockhart, et al., 1977). 

 

 

 

 Scheme 1.9. Methods to prepare diamino ether by reduction of dinitro derivatives 
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1.2.2.1.2 Preparation of Amino Diols and Amide-based Aliphatic 

  ethers  

 

An alternative way for the synthesis of nitrogen-containing crown ethers is to 

use amino, amino-diols and amide-based precursors. Amino or diamino diol 

precursors have been synthesized with or without protecting of  amino group by tosyl  

chloride or THP (Scheme 1.10) (Anelli, et al., 1988; Huang, et al., 2009; Piatek, et 

al., 2001; Krakowiak and Bradshaw, 1992;  Maeda, et al., 1983; Atkins et al., 1988; 

Romanski and Jaworski, 2017; Elwahy, 2003; Pastushok, et al., 1996). Protection or 

deprotection phases through final products actually exploit too many steps. 

Meanwhile tosyl group was found to affect the binding properties of crown ether 

towards the metal cations (Pratt and Sutherland, 1988). Also chloroacetyl chloride 

have been used to obtain amide-based precursors (Scheme 1.11) (Yang,  et al., 1999; 

Krakowiak, et al., 1990, Sharma, et al., 2007; Song, et al., 2001; Krakowiak, et al., 

2000; Rajakumar, et al., 2006). Here are some of the published methods regarding 

above-mentioned procedures (Schemes 1.10 and 1.11). 
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 Scheme 1.10. Synthesis of the various amino diols 
 

 

 
 

 Scheme 1.7. Synthesis of amide-based precursors of crown ether 
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1.2.2.2   General Synthetic Methods Used To Prepare Azacrowns

  

Methods for the preparation of certain types of aza-macro heterocycles are 

illustrated below. 

 

1.2.2.2.1 Mono/ Di/Polyaza- Crowns 

 

The different types of monoazacrowns have been reported in the literature 

(Itoh and Shirakami, 2001). In order to synthesize this type of azacrowns, appropriate 

aliphatic and aromatic amines were reacted with the dihalide or ditosylated derivative 

of ethylene glycol (Johnson, et al., 1979; Schultz, et al., 1985; Amrani et al., 2007; 

Wu, et al., 2013). An example for the synthesis of the monoazacrown is shown 

below (Scheme 1.12) (White, et al., 1985) 

 

  

 

 Scheme 1.8. A typical method for the synthesis of mono azacrown ether 

 

The protection of the nitrogen with the tosyl group increases the acidity and 

also prevent the nitrogen to undergo additional reactions. For example, Lockhart and 

co-workers reacted 2-amino phenol 79 with the dihalides 66 without tosylation of 

nitrogen reaction yield two monoaza compounds (Scheme 1.13) (Lockhart, et al., 

1977). 
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 Scheme 1.9. A schematic synthesis of aza-crown without protection with by 

   product 
 

 The diazacrown compounds are important for the synthesis of cryptand 

(Czech, et al., 1988) and for the sandwich type macromolecules (Fasseu, et al., 1998; 

Safonova, et al., 2013). Gatto and his coworkers synthesized diaza crown by one step 

cyclization  (Scheme 1.14) (Gatto and Gokel,1984). 

 

  
 

 Scheme 1.10. Synthesis of the diazacrown by Gatto and coworkers 

 

An alternative synthesis of diaza-crown was reported using alumina 

(Pietraszkiewicz, 1984). There are a number of synthetic routes of diazacrowns were 

also known (Zhang, et al., 1995; Börjesson and Welch, 1991; Lukyanenko, et al., 

1988; Desreux, et al.,1977).  

 

Atkins and co-workers obtained polyazacrowns by reacting the polyamine, 

which were tosylated with p-toluenesulfonyl chloride, with ditosylated oligoethylene 

glycol (Scheme 1.15) (Atkins, et al., 1988). In order to obtain unsubstituted polyaza 

crown, the compound 85 was protonated with conc. H2SO4. Polyazacrowns of  

different ring sizes bearing heteroatoms have been referred (Wei, et al., 1986;  

Huang, et al., 2009; Sun, et al., 1985; Grolik et al., 2012; Buschman and Mutihac,  

2001;  Sarma et al., 2010). 
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 Scheme 1.11. Synthesis of polyazacrown 86  facilitated by tosyl chloride 
 
 

1.2.2.2.2 Benzoaza-Crowns 

 

Numerous synthetic methods for the azacrowns carrying benzo groups were 

reported (Scheme 1.16) (Hogberg and Cram, 1975; Kulikov et al., 2005; Gray, et al., 

2007;  Sharghi and Zare, 2006). 
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 Scheme 1.12. Synthesis of  dibenzo azacrowns 

 

 

1.2.2.2.3 Amide-based Azacrowns  

 

Macrocycles with amide groups have been synthesized by reacting primary 

amine derivatives with a diester precursor in an alcoholic solvent without a base 

(Sharghi, et al., 2007; Patra, et al., 2010; Jurczak, et al., 1991; Szumna, et al., 2002; 

Piatek, et al., 2004; Desreux, et al., 1993). But the addition of the diacid chloride to 
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the amine  derivatives needed a base such as K2CO3 or Na2CO3 (Scheme 1.17) (Yang,  

et al., 1999; Patra et al., 2010). 

 

 

 

 Scheme 1.13. Synthetic routes for amide-based azacrowns 
 
 

1.3 THIACROWN ETHERS 

 

The replacement of one or more oxygen with the sulfur atom leads to new 

macrocycle named as thiacrown. Figure 1.9 illustrates some of the reported 

thiacrowns (Bradshaw, 1997;  Pedersen 1971). 
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 Figure 1. 9. Examples for some thiacrown ethers 
 

According to Pedersen’s work, the affinity towards the metal cations is 

affected by the atomic size and electronegativity when the oxygen is replaced by the 

sulfur atom. Oxygen is smaller than the sulfur atom, so the bond angle between C-O-

C is greater than the the bond angle of the C-S-C. The C-O bond is more ionic than 

the C-S bond due to electronegativity. Due to these reasons sulfur has poor affinity 

towards the alkali metal cations but not for the soft metal cations (Pedersen, 1971; 

Rosen and Busch, 1969; Hartman and Cooper, 1986). 

 

 A variety of aza/oxacrown derivatives were reported as fluorescent 

chemosensors (McFarland and Finney, 2002; Lochman, et al., 2015; Nunez, et al., 

2009;  De Silva, et al., 2002; Xu, et al., 2001) whereas  a small number of examples 

of thia-macrocycle were described as fluorescent metal cation sensors (Santis, et al., 

1997; Lee, et al., 2001; Bronson, et al., 2001; Bricks, et al., 2005). 

 

 

1.3.1 Synthetic Methods for Preparation of Thia Crowns 

 

 

 

1.3.1.1  Synthesis of  Sulfur containing Crown Ether  

 

A few sulfur-containing cyclic compounds have been synthesized (Meadov 

and Reid, 1934; Dann, et al., 1961; Mortillaro et al., 1966,) before Pedersen has 
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reported their affinity towards the metal cations (Pedersen, 1971). Then, a growing 

interest has been directed on the thia, oxa and aza macrocycles (Greene, 1972, 

Gerber, et al., 1977; Kimura, et al.,1982; Cram, 1988; Blake, et al., 2004; Volchkov, 

et al., 2016; Gürek and Bekaroğlu,1997; Ertem, et al., 2008). Meadov and Reid used 

different kind of dihalogenated ethane and dithiol derivatives in the presence of a 

base in EtOH to obtain sulfur containing macrocycles (Scheme 1.18) (Meadov and 

Reid,1934).  

 

 

 Scheme 1.14. Synthesis of the cyclic sulfur compounds   

  

 Gerber and his coworkers improved the yield of thiacrowns from  17% to 

32% under inert atmosphere. The major product is 111, but also the structures 113, 

114, 115 as byproducts (Scheme 1.19) (Gerber, et al., 1977). 

 

  
 

 Scheme 1.15. Synthesis of the thiacrowns in highly diluted condition Buter 

           and Kellog synthesized a type of cyclic sulfide in 7.5% yield    

                       yield by cesium carbonate (Scheme 1.20) (Buter and Kellog, 

            1993). 
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 Scheme 1.16. Synthesis of the tetrathiacrown 120 by using CsCO3 in DMF 
 
 

1.3.1.2   Oxygen and Sulfur containing Crown Synthesis 

 

 The thiacrown ethers were synthesized by reacting oligo-ethylene glycol 

dihalide with a dithiol (Scheme 1.21) (Dann, et al., 1961).  

 

 

 

 Scheme 1.17. The synthesis of thiacrown ether 123 
 

As their metal complexing capabilities are continuously drawing attention 

(Pedersen, 1971) the scientists those are interested in crown ethers tried to increase 

the yields of those molecules. In order to improve yields, they used highly diluted 

conditions (Bradshaw, et al., 1973, 1976, 1997; Bradshaw, 1997). In addition,  

Kellog et al., used Cs2CO3 in DMF (dimethylformamide) to increase the yield 

without using dilution conditions. They have been successful in the synthesis of 

thiacro124 with higher yields (Scheme 1.22) (Stock and Kellogg, 1996). 
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 Scheme 1.18. Synthetic method of Stock and Kellog 

 

One of the disadvantages of low-yielding synthesis of the thiacrowns is 

template effect. Although  aza/oxa-crown ethers have strong template effects, low 

affinity of sulfur-containing crowns towards the alkali and alkaline earth metal 

cations induces also template effect giving rise to low yields (Bradshaw and Hui, 

1974). 

 

 

1.3.1.3  Synthesis of Nitrogen and Sulfur Containing Aliphatic and 

  Aromatic Crown Ether  

 

Various synthetic methods were reported for thia/aza crowns and their 

derivatives (Pedersen, 1971; Rostami, et al., 2012; Glenny, et al., 2006; Bradshaw 

and Izatt, 1997; Blake, et al., 2004; Caltagirone, et al., 2003; Van de Water, et al., 

2000; Krylova, et al., 1999; Chartres, et al., 2006; Szczygelska-Tao, et al., 2004; 

Bricks, et al., 2005). For example, Busch and Thomson synthesized an example of 

sulfur and nitrogen containing macrocycle using metal template synthesis (Scheme 

1.23) (Busch and Thomson, 1964). 

 

 
 

 Scheme 1.19. Template synthesis of thiaazacrown 
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The crablike cyclization between bis-α-chloroamide and a diamine for the 

synthesis of azacrown ethers resulted in high yield (Yang, et al., 1999). In this 

regard, Bronson et al., reacted bis(chloroamide) with different ethanedithiol 

derivatives then BH3.THF was used as reducing agent and final product 131 was 

obtained in  high yield  (Scheme 1.24) (Bronson, et al., 2001). 

 

 
 

 Scheme 1.20. A crab-like synthesis for azathiacrown 

 

A number of aza, thiacrown compounds carrying aromatic groups were 

synthesized (Ertem et al., 2008; Szczygelska-Tao and Biernat, 1999; Szczygelska-

Tao, et al., 2004; Caltagirone, et al., 2003; Blake et al., 2004; Wygladacz and 

Malinowska, 2001) along with the aliphatic crown ethers.  

 

Kertmen and coworkers prepared azo and azoxythiacrowns by using catechol 

as starting material through a multi-step reaction sequence (Scheme 1.25) (Kertmen, 

et al., 2013). 
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 Scheme 1.21. Multi-step reaction for the synthesis of thiazacrown 

 

Ranganathan et al. reacted 139 with o-phenylenediamine and  obtained 

thiaazacrown with hexabenzene ring (Scheme 1.26) (Ranganathan, et al., 2002). 
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 Scheme 1.22. Synthetic routes for the synthesis of  benzothiaza-crown 
 
 

1.3.1.4   Synthesis of the Crown Compounds with Mixed Donor 

  Atoms  

 

The synthesis of the crowns having mixed donor atoms (N,O,S) was reported 

by Bradshaw et al. by using diacylchloride, diamine and dithiols (Scheme 1.27) 

(Bradshaw, et al., 2000). 
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 Scheme 1.23. Syntheses of diazadithiacrown  ethers 

 
 

1.4 1,3-DIPOLAR CYCLOADDITION CHEMISTRY 

 

A general definition for the 1,3-dipolar cycloaddition is given as; a 

convenient method to create five-membered heterocycle in which a zwitterionic 

molecule (dipole) 147, 150 reacted with  a multiple bond system (dipolarophile) 148 

(Scheme 1.28). 

 
 

 Scheme 1.24. An example of the 1,3-dipolar cycloaddition 
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1.4.1 Classification of Dipoles and Dipolarophiles 

 

The concept of 1,3-dipolar cycloaddition was first defined by Huisgen. The 

1,3-dipoles are classified  as the allyl type, which structures are bent and allenyl 

(propargyl) type which are linear. In allyl anion type there are four electrons in three 

parellel p orbitals vertical to plane of the dipole. These electrons overlap to create 

reactive sites and the possible resonance structures are shown in scheme 1.29. In allyl 

type, negative charge is delocalized on the terminal atoms A, C while the central 

atom B bears the positive charge. In this regard, it would not be appropriate to 

attribute 1,3 dipoles as exactly electrophilic or nucleophilic; but instead one can say 

that 1,3-dipoles display both electrophilic and nucleophilic activity. If an extra π 

bond merger in the plane perpendicular allyl molecular orbital (MO), allenyl type 

1,3-dipoles arise. The allyl, allenyl (propargyl) type and their reactions are shown 

below (Scheme 1.30) (Huisgen, 1961,1976). 

 

 
 

 Scheme 1.25. Resonance structures of 1,3-dipole 

 

 
 

 Scheme 1.26. Types of 1,3-dipoles and their cycloadditions 
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A complete list which categorizes the 1,3-dipoles with their resonance 

structures by Huisgen is schematized (Scheme 1.31). 

 

 

 

 

 Scheme 1.27. Types of 1,3-dipoles with resonance structures 

 

Dipolarophiles can be classified as electron poor, electron rich and conjugated 

structures which include 2π electrons and, react with 1,3-dipoles in suitable 
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conditions. The most commonly known dipolarophiles are α- β unsaturated 

aldehydes, alkynes, ketones, esters, vinylic ethers, allylic alcohols, and allylic halides 

(Houk, et al., 1973). Some of  the dipolarophiles are exemplified below (Figure 

1.10). 

 

 
 

 Figure 1.10. Examples for commonly known dipolarophiles 

 
 

1.4.2 Mechanism of the 1,3-Dipolar Cycloadditions 

 

 Huisgen, in the mid 1960s, reported 1,3-dipolar cycloaddition reaction  

mechanism. According to Huisgen, the 4π electrons from the 1,3-dipoles and 2π 

electrons from the dipolarophiles create isochronously two new sigma bonds 

(Scheme 1.32) (Huisgen, 1963). On the other hand, Firestone made a clarification 

about the stepwise diradical pathway. In the stepwise reaction, diradicals occur and 

the C-C sigma bond of dipolarophile can rotate 180
o
 around itself, so that a mixture 

of cis and trans is obtained (Scheme 1.33) (Firestone, 1968). 

 

 

 

 Scheme 1.28. Concerted mechanism (Huisgen) 
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 Scheme 1.29. Stepwise reaction mechanism (Firestone) 

 

Frontier molecular orbital (FMO) approach is a convenient theory which describes 

the regioselectivity of the reaction of 1,3-dipolar cycloadditions and it relies on the 

character of the dipoles and dipolarophile. The FMO theory explains the interaction 

between LUMOdipole - HOMOdipolarophile  and HOMOdipole- LUMOdipolarophile. Sustman 

and coworkers classified the 1,3-dipolar cycloaddition in three types according to 

FMO theory. Furthermore, when an electron donating or withdrawing groups found 

on the dipole or dipolarophile, the FMO energies can change during 1,3-dipolar 

cycloaddition (Sustman and Trill, 1972). The type of FMO is shown in Figure 1.11. 



36 

 

 

 

 Figure 1.11. Energy diagram for the dipole-dipolarophile interactions 

 

For the type 1; azomethine imine, carbonyl imine, and azomethine ylide, nitrile ylide, 

can be given as examples of HOMO-controlled dipoles or nucleophilic dipoles. 

For the type 2;  azide and a nitrile oxides are referred as  ambiphilic dipole. 

For the type 3; nitrous oxide and ozone are the given examples which are known as 

the electrophilic dipole. 

 

 

1.4.2.1   1,3-Dipolar Cycloaddition of Azides with Dipolarophiles  

 

Organic azides can be prepared by different methods; these include ring 

opening reactions of epoxides and aziridines (Saito, et al., 1985), by diazo transfer 

(Tor et al., 2003), nucleophilic substitution (Dürüst et al., 2012, Lowe-Ma et al., 

1990); from alcohols via the Mitsunobu reaction (Mitsunobu and Yamada,1967) and 

from the diazonium compounds (Scheme 1.34) (Butler, et al., 1998). 
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 Scheme 1.30. Examples for organic azide synthesis 

 

 Azides, a type of 1,3-dipoles, can undergo [3+2] cycloaddition reaction with 

dipolarophiles such as alkenes, alkynes, carbonitriles to yield  triazolines, triazoles as 

well as tetrazoles (Scheme 1.35) (Monasterio, et al., 2016; Chiba, 2012; Majumdar, 

et al., 2012; Chavan et al., 2017; Abbas et al., 2004; Joly, et al., 2009). 

 

 

 

 Scheme 1.31. 1,3-Dipolar cycloaddition of azide with unsaturated bonds 
 
 

1.4.2.1.1  Biological activity of 1,2,3-triazoles  

 

The 1,2,3-triazoles are one of the important classes of the nitrogen bearing 

heterocyclic compounds which are found in the molecular skeleton of some natural 

products (Asami et al., 2000). For this reason, the triazoles have been drawing 
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increasing attention in the pharmaceutical, organic, bioorganic and medicinal 

chemistry (Yang, et al., 2013; Zhang, et al., 2017; Ali, et al., 2017; Majumdar, et al., 

2012; Chavan, et al., 2017; Babu, et al., 2015). The 1,2,3-triazole containing 

structures have been reported to possess some biological activities such as anti-

tubercular (Ali, et al., 2017), antimicrobial and antibacterial (Kidwai, et al., 2001; 

Holla, et al.,1994) anti-HIV  (Brik, et al., 2003), anti-fungal (Wu, et al., 2018) 

antitumor (Yamada, et al., 2018), antimicrobial (Khalil, 2010). Among these 

properties, the compound 156 acts as M. tuberculosis DprE1 inhibitor (Ali, et al., 

2017),and the compound 157 acting as an HIV-1 protease inhibitor (Brik, et al., 

2003). Two different triazole ring containing structures 158, 159 can exhibit antiviral 

activity against the tobacco mosaic virus  (Xia et al., 2006) and some antibiotic 

properties (Liang et al., 2005) (Figure 1.12). 

 

 

 

 Figure 1.12. Some triazoles exhibiting biological activities 
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2.  AIM AND SCOPE OF THE STUDY 

 

 
 During the past two decades, a growing interest has been focused on the 

chemistry of nitrogen and sulfur macrocycles. Because many of these compounds are 

highly effective extractants for metal ions (Mane, et al., 2016; Maciejewski, et 

al.,2009; Herman, et al., 2003; Wang, 2000; Vaira, et al., 1999) which can be used as 

precursors in the biosynthesis of certain types of alkaloids (Nezbedova, et al., 2001), 

fluorescent (Valeur and Leray, 2000), acting as anti-protozoal (Wilson et al., 2007; 

Reid et al., 2008), antimicrobial agent (Abd El-Salam, et al., 2012,) and especially 

acts as anti-HIV agents (Ranganatham, et al., 2002; Bridger, et al., 1995). Moreover, 

crown ethers have found applications in industry due to their metal sensing capability 

(Yang, et, al., 2014; Zarzeczańska, et al., 2016; Fedorova, et al., 2004). On the other 

hand, five-membered heterocyclic compounds are one of the important part of 1,3-

dipolar cycloaddition chemistry. Due to their presence in the natural products, 1,2,3- 

triazole moiety have been taking growing interest in the pharmaceutical, organic, 

bioorganic and medicinal chemistry (Yang, et al., 2013; Zhang, et al., 2017; Ali, et 

al., 2017; Majumdar, et al., 2012; Chavan, et al., 2017; Babu, et al., 2015). 

Furthermore, 1,2,4-oxadiazole and 1,2,3-triazole-containing heterocyclic compounds 

have been found to exhibit various biological activities (Lamberth, 2007; Fink, et al., 

1999). In this regard, the biological, medicinal importance and industrial usages of 

these macrocyclic and heterocyclic compounds have encouraged us to synthesize  

some novel N, O, S containing macrocycles with and without aromatic part (164, 

182, 184, 187, 188, 189, 193, 194, 199, 200, 201), azacrown ethers with 1,2,4-

oxadiazole moieties (166(a-h), 168(a-i)),   azacrowns carrying 1,2,4 oxadiazole and 

1,2,3-triazoles moieties 196,197(a-h) and benzocrown ethers with chloro/azido-

methyl 1,2,4-oxadiazoles (185, 186, 190, 191). 

 

These novel azacrown ether structures carrying both 1,2,4-oxadiazole and 

1,2,3-triazole scaffolds are expected to be potentially ionophores and bioactive 

molecules. All of the starting materials that led us to the target products, p-phenyl-

substituted amidoximes, 5-chloromethyl 1,2,4-oxadiazoles, formylated benzocrowns  

and other intermediate reagents were obtained by us according to the previously 
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reported literature methods (Kumar, et al., 1992; Kimura, et al., 2006; Chen, et al., 

2016; Safonova, et al., 2013; Jagadale, et al., 2015; Dürüst et al., 2012, 2015). Since 

there are both electron-withdrawing and electron-releasing substituents in the para 

position of the phenyl ring on the starting compounds, effect of these groups on the 

structural properties would also be subject for us to evaluate further. 
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3.  MATERIALS AND METHODS 

 

 
Reagents were purchased from commercial sources and were used as 

received. Melting points were recorded in capillary tubes with a Meltemp apparatus 

and are uncorrected. 
1
H NMR and 

13
C NMR spectra were recorded on JEOL and 

VARIAN spectrometers operating at 400 MHz (
1
H) and 100 MHz (

13
C) in CDCl3. 

1
H 

NMR chemical shifts are reported in parts per million relative to tetramethylsilane 

(TMS) with the solvent resonance employed as the internal standard (CDCl3 at 7.26 

ppm). Data are reported as follows: chemical shift (multiplicity, coupling constant(s) 

in Hz, integration). Multiplicities are abbreviated as follows: s (singlet), br s (broad 

singlet), d (doublet), t (triplet), q (quartet), m (multiplet). 
13

C NMR chemical shifts 

are reported in parts per million from tetramethylsilane (TMS) with the solvent 

resonance as the internal standard (CDCl3 at 77.20 ppm for carbon). IR spectra were 

recorded in KBr on Shimadzu spectrometer; ṽ in cm
-1

. HRMS measurements were 

performed on Waters Synapt and Agilent Technologies 6224 spectrometers using the 

ionization modes specified. Routine TLC analyses were carried out on pre-coated 

silica gel plates with fluorescent indicator. Flash column chromatography was 

performed on silica gel (230-400 Mesh ASTM). A rotary TLC apparatus 

(Chromatotron) was utilized for further separation and purifications. Stain solutions 

of potassium permanganate and iodine were used for visualization of the TLC spots. 
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Experimental  

 

 

 

Synthesis of diethyl 2,2'-(1,2-phenylenebis(oxy))diacetate (162) (Kumar et al., 

1992) 

 

A suspension of K2CO3 (50 g, 0.36 mol) in dried acetone (400 ml) was added 

to the mixture of ethyl bromoacetate 161 (40.8 g, 0.24 mol) and catechol 160 (11 g, 

0.1 mol). The resulting mixture was stirred at room temperature for 24 h. The 

mixture was filtered off and the precipitate was washed with acetone.Then combined 

solvent was evaporated. The remaining yellow oily crude product was purified by 

flash column chromatography with (EtOAc/n-hexane, 1:20) to give a yellow oil (20 

g, 70%), Rf: 0.50 (EtOAC/n-hexane, 1:5). IR (KBr, v:cm
-1

): 3066 (Ar., CH), 2982, 

2935 (Aliph., CH), 1732 (C=O), 1593, 1504, 1458, 1442, 1377, 1273, 1188, 1068, 

1030, 933, 960,752, 597, 428, 412. 
1
H NMR (400 MHz, CDCl3) δ  6.93 – 6.89 (m, 
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2H), 6.88 – 6.84 (m, 2H), 4.68 (s, 4H), 4.22 (q, J = 8.0 Hz, 4H), 1.25 (t, J = 8.0 Hz, 

6H). 

 

 

Synthesis of the 5,6,7,8,9,10-hexahydro-2H-benzo[b][1,4]dioxa [7,10,13] triaza 

cyclopentadecine-3,11(4H,12H)-dione (163) (Kumar et al., 1992)  

 

Diethyl 2,2'-(1,2-phenylenebis(oxy))diacetate 162 (16.67 g, 0.059 mol) and 

ethylenetriamine 68 (6.100 g, 0.059 mol) were mixed in EtOH and the reaction 

mixture was refluxed. The solvent was evaporated under reduced pressure. Yellow 

solid was recrystallized with acetone/DCM mixture. Crystals were filtered off and 

product was obtained as white solid (7.89 g, 50%). Rf : 0.500 (MeOH), M.p: 235-236 

o
C  IR (KBr, v:cm

-1
): 3498, 3394, 3306 (NH), 3082, 3063 (Ar., CH), 2966, 2908, 

2850 (Aliph., CH stretching), 1689, 1643 (C=O), 1593, 1527, 1504, 1473, 1442, 

1330, 1288, 1257, 1219, 1130, 1049, 991, 922, 887, 848, 817, 783, 759, 678, 655, 

586, 520, 482. 
1
H NMR (400 MHz, CDCl3) δ  7.79 (s, 2H), 6.96 (dd, J = 6.8, 3.3 Hz, 

2H), 6.83 (dd, J= 5.3, 3.6 Hz, 2H), 4.46 (s, 4H), 3.46 (dd, J = 10.7, 5.1 Hz, 4H), 2.92 

(t, J = 4.0 Hz, 4H). 
13

C NMR (100 MHz, CDCl3): δ 167.28, 146.18, 122.08, 112.35, 

66.92, 47.49, 38.18. LC-MS (ES
+
): m/z  (M+H) :  294. 

 

 

Synthesis of the 3,4,5,6,7,8,9,10,11,12-decahydro-2Hbenzo[b][1,4,7,10,13]dioxa 

triaza cyclopentadecine (164) 
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Crown 163 (5.637 g, 0.019 mol ) was dissolved in THF (300 ml) then 

BH3.DMS (15.33 ml) was added drop wise and mixture was refluxed, 60 
o
C, under 

N2 atmosphere for 3h. After reaction was completed, THF was evaporated under the 

reduced pressure. When the temperature of the mixture reached to  the room 

temperature, HCl (80 ml) was added and refluxed again at 80 
o
C for 2h. Then the 

reaction mixture was cooled to room temperature and NaOH solution was added to 

maintain pH at 13–14. Then it was extracted with CH2Cl2/H2O. A white solid formed 

after evaporation of CH2Cl2  (3.300 g, 65%), Rf : 0.50 (MeOH), M.p: 90-91 
o
C. IR 

(KBr, v:cm
–1

): 3296, 3221 (NH), 2918, 2885, 2812 (Aliph., CH stretching), 1595, 

1508, 1458, 1398, 1377, 1327, 1257, 1222, 1126, 1041, 954, 902, 883, 842, 779, 736, 

455, 430, 408. 
1
H NMR (400 MHz, CDCl3): δ  6.90 (d, J = 1.6 Hz, 4H), 4.07 (t, J = 

4.4 Hz, 4H), 2.98 ( t, J =4.8 Hz, 4H), 2.85 – 2.79 (m, 4H), 2.73 – 2.65 (m, 4H), 2.50 

(s, 3H). 
13

C NMR (100 MHz, CDCl3): δ 148.72, 121.22, 113.10, 68.21, 49.49, 48.92, 

47.79. LC-MS (ES
+
): m/z (M+H) : 266. HRMS: m/z (ESI-TOF, [M+H

+
] ) calcd for 

C14H23N3O2: 266.1868; found: 266.1856. 

 

 

General procedure for the preparation of (166a-h) 

 

4,7,10-tris((3-phenyl-1,2,4-oxadiazol-5-yl)methyl)-3,4,5,6,7,8,9,10,11,12-decahydro-

2H-benzo[b][1,4,7,10,13]dioxatriazacyclopentadecine (166a) 

A mixture of benzodioxatriaza crown 164 (50 mg, 0.188 mmol),  5-

(chloromethyl)-3-phenyl-1,2,4-oxadiazole 165 (Dürüst et al., 2015) (110 mg, 0.565 

mmol) and K2CO3 (78 mg, 0.567 mmol) was refluxed in MeCN under N2 atmosphere 

for 2.5–3h. After completion of the reaction, as monitored by TLC (n-hexane/EtOAc, 

2:1), the solvent was removed under reduced pressure. The crude product was then 

purified by column chromatography to give compound 166a. 
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Orange oil (60 mg, 43%). Rf : 0.76 (n-hexane/EtOAc, 2:1). IR (KBr, v:cm
–1

): 3053 

(Ar., CH),  2933, 2835 (Aliph., CH stretching),  1593, 1560 (C=N), 1504, 1446, 

1356, 1265, 1255, 1219, 1124, 1041, 898, 694, 738. 
1
H NMR (400 MHz, CDCl3): δ 

8.05 (ddd, J = 7.4, 6.6, 1,6 Hz, 6H), 7.51 – 7.39 (m, 9H), 6.92 – 6.83 (m, 4H), 4.19 

(s, J = 8.0 Hz, 6H), 4.13 (t, J = 4.4 Hz, 4H), 3.19 (t, J = 4.4 Hz, 4H), 3.11 (t, J = 6.7 

Hz, 4H), 3.00 (t, J = 6.6 Hz, 4H). 
13

C NMR (100 MHz, CDCl3): δ 177.12, 168.28, 

148.58, 131.32, 128.94, 127.58, 126.72, 121.19, 112.78, 67.39, 53.37, 52.90, 52.69, 

50.00. LC-MS (ES
+
): m/z  (M+H) : 740. HRMS: m/z (ESI-TOF, [M+H

+
] ) calcd for 

C41H41N9O5: 740.3309; found: 740.3329. 

 

 

4,7,10-Tris((3-(p-tolyl)-1,2,4-oxadiazol-5-yl)methyl)-3,4,5,6,7,8,9,10,11,12-decahydr 

o-2H-benzo[b][1,4,7,10,13]dioxatriazacyclopentadecine (166b) 

 Yellow solid (90 mg, 41%), Rf : 0.78 (n-hexane/EtOAc, 2:1), M.p: 116-119 
o
C  IR 

(KBr, v:cm
–1

): 3034 (Ar., CH), 2922, 2864 (Aliph., CH stretching)  1616, 1591, 

1560, 1504, 1481, 1452, 1411, 1346, 1253, 1219, 1180, 1122, 1041, 900, 829, 738, 

414, 405.
   1

H NMR (400 MHz, CDCl3): δ 7.92 (ddd, J =8.6, 5.0, 1.8 Hz,  6H), 7.27 – 

7.21 (m, 6H), 6.90 – 6.85 (m, 4H), 4.18 (s, 6H), 4.12 (t, J = 4.4 Hz, 4H), 3.19 (t, J = 

4.2 Hz, 4H), 3.11 (t, J = 6.3 Hz, 4H), 3.00 (d, J = 5.8 Hz, 4H), 2.38 (d, J = 8.5 Hz, 

9H). 
13

C NMR (100 MHz, CDCl3):  δ 176.91, 168.28, 148.58, 141.61, 129.63, 

127.50, 123.89, 121.18, 112.78, 67.37, 53.33, 52.88, 52.67, 49.52, 21.68. LC-MS 
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(ES
+
): m/z  (M+H) : 782.  HRMS: m/z (ESI-TOF, [M+H

+
] ) calcd for C44H47N9O5: 

782.3778; found: 782.3802. 

 

 

4,7,10-Tris((3-(4-methoxyphenyl)-1,2,4-oxadiazol-5-yl)methyl)-3,4,5,6,7,8, 

9,10,11,12-decahydro-2Hbenzo[b][1,4,7,10,13]dioxatriazacyclopentadecine (166c) 

 Yellow oil (150 mg, 48%). Rf  : 0.30 (n-hexane/EtOAc, 2:1). IR (KBr, v:cm
–1

): 3053 

(Ar., CH), 2985, 2839 (Aliph., CH stretching),  1614, 1591, 1566, 1506, 1481, 1423, 

1352, 1265, 1174, 1107, 1031, 896, 842, 738, 705, 439.
  1

H NMR (400 MHz, 

CDCl3): δ  7.92 (ddd, J = 6.6, 6.5, 1.6 Hz,  6H), 6.96 – 6.91 (m, 6H), 6.90 – 6.85 (m, 

4H), 4.16 (s, 4H), 4.14 – 4.08 (dt, J = 5.6, 1.7 Hz, 6H), 3.82 (d, J = 8.9 Hz, 9H), 3.20 

– 3.16 (t, J = 4.6 Hz, 4H), 3.09 (t, J = 6.7 Hz, 4H), 2.97 (t, J = 6.6 Hz, 4H). 
13

C NMR 

(100 MHz, CDCl3):  δ 176.84, 167.96, 161.97, 148.61, 129.18, 121.15, 119.20, 

114.29, 112.78, 67.44, 60.48, 55.45, 53.36, 52.90, 49.54. LC-MS (ES
+
): m/z  (M+H) 

: 830. HRMS: m/z (ESI-TOF, [M+H
+
] ) calcd for C44H47N9O8: 830.3626; found: 

830.3646. 

 

 

4,7,10-Tris((3-(4-iodophenyl)-1,2,4-oxadiazol-5-yl)methyl)-3,4,5,6,7,8,9,10,11,12-

decahydro-2H-benzo[b][1,4,7,10,13]dioxatriazacyclopentadecine (166d) 

White solid (67 mg, 48%). Rf  : 0.60 (n-hexane/EtOAc, 2:1). IR (KBr, v:cm
–1

): 306 

(Ar., CH), 2955, 2924, 2854 (Aliph., CH stretching)  1651, 1589, 1458, 1402, 1342, 

1265, 1118, 1049, 1006, 962. 
1
H NMR (400 MHz, CDCl3): δ 7.82 – 7.69 (m, 12H), 
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6.94 – 6.75 (m, 4H), 4.19 (s, 6H), 4.12 (t, J = 4.3 Hz, 4H), 3.19 (t, J = 4.4 Hz, 4H), 

3.08 (s, 4H), 3.03 (s, 4H). 
13

C NMR (100 MHz, CDCl3): δ 167.74, 148.47, 138.13, 

129.04, 129.01, 126.13, 121.27, 112.77, 98.12, 53.50, 52.87, 49.93, 49.27, 48.66. 

LC-MS (ES
+
): m/z  (M+H) : 1118. HRMS: m/z (ESI-TOF, [M+H

+
]) calcd for 

C44H38N9O5: 1118.0208; found:1118.0231. 

 

 

4,7,10-Tris((3-(4-fluorophenyl)-1,2,4-oxadiazol-5-yl)methyl)-3,4,5,6,7,8,9, 10,11,12-

decahydro-2H-benzo[b][1,4,7,10,13]dioxatriazacyclopentadecine (166e) 

Yellow oil (55 mg, 51%).  Rf  : 0.87 (n-hexane/EtOAc, 2:1). M.p: 114-115
o
C  IR 

(KBr, v:cm
–1

): 3053 (Ar., CH), 2985, 2928, 2852 (Aliph., CH stretching), 1608, 

1575, 1483, 1417, 1348, 1338, 1265, 1226, 1157,  1124, 1043,  896, 846, 746, 704, 

605. 
1
H NMR (400 MHz, CDCl3):  δ  8.05 – 7.98 (m, 6H), 7.15 – 7.08 (m, 6H), 6.91 

– 6.83 (m, 4H), 4.18 (s, 6H), 4.13 (t, J = 4.4 Hz, 4H), 3.19 (t, J = 4.3 Hz, 4H), 3.10 (t, 

J = 6.5 Hz, 4H), 2.99 (t, J = 6.6 Hz, 4H). 
13

C NMR (100 MHz, CDCl3):  δ 177.19, 

167.47, 165.90, 163.40, 148.51, 129.65, 122.93, 116.17, 112.69, 67.28, 53.42, 52.81, 

52.62, 49.49. LC-MS (ES
+
): m/z  (M+H) : 794. HRMS: m/z (ESI-TOF, [M+H

+
] ) 

calcd for C41H39F3N9O5: 794.3027; found: 794.3043. 

 

 

4,7,10-Tris((3-(4-chlorophenyl)-1,2,4-oxadiazol-5-yl)methyl)-3,4,5,6,7,8, 9,10,11,12-

decahydro-2H-benzo[b][1,4,7,10,13]dioxatriazacyclopentadecine (166f) 

White solid (96 mg, 80%).  Rf : 0.90 (n-hexane/EtOAc, 2:1). M.p:118–119
o
C. IR 

(KBr, v:cm
–1

): 3053 (Ar., CH), 2983, 2928, 2841 (Aliph., CH stretching), 1602, 
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1589, 1558, 1504, 1473, 1410, 1346 1265, 1116,  1226,  1091, 1043, 1014,  896, 746, 

704, 437. 
1
H NMR (400 MHz, CDCl3): δ 7.98 – 7.92 (m, 6H), 7.43 – 7.34 (m, 6H), 

6.90 – 6.82 (m, 4H), 4.18 (s, 4H), 4.12 (t, J = 4.4 Hz, 6H), 3.19 (t, J = 4.5 Hz, 4H), 

3.09 (t, J = 6.7 Hz, 4H), 2.97 (t, J = 6.5 Hz, 4H). 
13

C NMR (100 MHz, CDCl3): δ 

177.53, 167.10, 148.53, 137.45, 129.25, 128.83, 125.18, 121.21, 112.74, 67.35, 

53.49, 52.87, 50.07, 49.58. LC-MS (ES
+
): m/z  (M+H) : 844. HRMS: m/z (ESI-TOF, 

[M+H
+
] ) calcd for C41H39Cl3N9O5:842.2140;  found: 842.2164. 

 

 

4,7,10-Tris((3-(4-bromophenyl)-1,2,4-oxadiazol-5-yl)methyl)-3,4,5,6,7,8,9, 10,11,12-

decahydro-2H-benzo[b][1,4,7,10,13]dioxatriazacyclopentadecine (166g) 

White solid (40 mg, 67%). Rf : 0.85 (n-hexane/EtOAc, 2:1). M.p: 113–114
o
C. IR 

(KBr, v:cm
–1

): 3063 (Ar., CH), 2924, 2850 (Aliph., CH stretching), 1599, 1560, 

1504, 1469, 1406, 1344, 1253, 1217,  1122,  1068, 1041, 1010,  964, 904, 837, 740. 

1
H NMR (400 MHz, CDCl3): δ 7.87 (ddd, J = 10.8, 5.5, 2.0 Hz, 6H), 7.60 – 7.52 (m, 

6H), 6.92 – 6.83 (m, 4H), 4.18 (s, 6H), 4.12 (t, J = 4.3 Hz, 4H), 3.19 (t, J = 4.5 4H), 

3.10 (s, 4H), 2.99 (s, 4H). 
13

C NMR (100 MHz, CDCl3): δ 167.60, 148.49, 132.23, 

132.20, 129.07, 125.91, 125.60, 121.25, 112.75, 67.28, 53.55, 53.49, 52.87, 49.55. 

LC-MS (ES
+
): m/z  (M+H) : 974. HRMS: m/z (ESI-TOF, [M+H

+
] ) calcd for 

C41H39Br3N9O5:974.0625;  found: 974.0644. 

 

 

4,7,10-Tris((3-(4-(methylthio)phenyl)-1,2,4-oxadiazol-5-yl)methyl)-3,4,5,6,7,8,9, 

10,11,12-decahydro-2H-benzo[b][1,4,7,10,13]dioxatriazacyclopentadecine (166h) 



49 

 

White solid  (55mg, 38%). Rf : 0.85 (n-hexane/EtOAc, 2:1). M.p: 92-93
o
C. IR (KBr, 

v:cm
–1

): 3061 (Ar., CH), 2922, 2852 (Aliph., CH stretching), 1600, 1587, 1552, 

1504, 1469, 1408, 1354, 1219, 1186,  1122,  1089, 1041, 1012,  962, 902, 831, 738.  

1
H NMR (400 MHz, CDCl3): δ 7.94 – 7.89 (m, 6H), 7.28 – 7.23 (m, 6H), 6.91– 6.83 

(m, 4H), 4.17 (s, 4H), 4.12 (t, J = 4.8 Hz, 6H), 3.18 (t, J = 4.4 Hz, 4H), 3.09 (t, J = 

6.6 Hz, 4H), 2.98 (t, J = 6.5 Hz, 4H), 2.49 (s, 6H), 2.47 (s, 3H). 
13

C NMR (100 MHz, 

CDCl3): δ 177.03, 167.93, 148.56, 143.03, 127.80, 125.79, 122.69, 121.13, 112.76, 

67.37, 53.41, 52.86, 52.75, 49.84, 49.55, 15.24. LC-MS (ES
+
): m/z  (M+H) : 878. 

HRMS: m/z (ESI-TOF, [M+H
+
] ) calcd for C44H48N9O5S3:979. 2941;  found: 

979.2962. 

 

 

General procedure for the preparation of (168a-h) 

 
 

 

6,10-Bis((3-phenyl-1,2,4-oxadiazol-5-yl)methyl)-6,7,8,9,10,11,17,18-octahydro-5H-

dibenzo[e,n][1,4,8,12]dioxadiazacyclopentadecine (168a) 

A mixture of 6,7,8,9,10,11,17,18-octahydro-5H-dibenzo[e,n] [1,4]dioxa 

[8,12]diaza cyclopentadecine 167 (80.3 mg, 0.257 mmol),  5-(chloromethyl)-3-

phenyl-1,2,4-oxadiazole (Dürüst et al., 2015) 165 (100 mg, 0.514 mmol ) and K2CO3 

(70 mg, 0.514 mmol) was refluxed in MeCN under N2(g) overnight. After completion 

of the reaction, as monitored by TLC (n-hexane/EtOAc, 2:1), the solvent was 

removed under reduced pressure. The crude product was then purified by column 

chromatography to give compound 168a. 
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White solid (150 mg, 92%). Rf : 0.88 (n-hexane/EtOAc, 1:1). M.p: 101–102
o
C IR 

(KBr, v:cm
–1

): 3063 (Ar., CH), 2931, 2831, 2576 (Aliph., CH), 1654, 1597, 1562, 

1492, 1446, 1354, 1288, 1242, 1068, 1195, 1161, 1114, 1068, 1018, 1018, 941, 902, 

756, 717, 694. 
1
H NMR (400 MHz, CDCl3): δ 8.09 (d, J = 7.2 Hz, 4H), 7.52 – 7.44 

(m, 4H), 7.37 (d, J = 7.2 Hz, 2H), 7.30–7.24 (m, 4H), 6.98–6.89 (ddd, J = 21.5, 10.7, 

4.4 Hz, 4H), 4.36 (s, 4H), 3.96 (s, 4H), 3.86 (s, 4H), 2.79 (t, J = 6.8 Hz, 4H), 1.83 

(m, 2H). 
13

C NMR (100 MHz, CDCl3): δ 177.44, 168.20, 157.51, 132.62, 131.22, 

128.92, 127.60, 126.91, 126.81, 125.79, 120.61, 111.25, 66.75, 52.86, 51.81, 46.2, 

26.73. LC-MS (ES
+
): m/z  (M+H) : 629. HRMS: m/z (ESI-TOF, [M+H

+
] ) calcd for 

C37H37N6O4 : 629. 2877; found: 629.2891. 

 

 

6,10-Bis((3-(p-tolyl)-1,2,4-oxadiazol-5-yl)methyl)-6,7,8,9,10,11,17,18-octahydro-

5H-dibenzo[e,n][1,4,8,12]dioxadiazacyclopentadecine (168b) 

White solid (150 mg, 95%). Rf : 0.87 (n-hexane/EtOAc, 1:1). M.p: 130-131 
o
C  IR 

(KBr, v:cm
–1

): 3036 (Ar., CH), 2928, 2866, 2831 (Aliph., CH), 1589, 1558, 1492, 

1450, 1411, 1350, 1242, 1114, 1064, 1014  945, 898, 829, 736, 624, 509. 
1
H NMR 

(400 MHz, CDCl3): δ 7.97 (d, J = 8.0 Hz, 4H), 7.36 (d, J = 7.1 Hz, 2H), 7.26 (d, J = 

8.2 Hz, 6H), 6.94 (dt, J = 12.1, 6.8 Hz, 4H), 4.35 (s, 4H), 3.93 (s, 4H), 3.85 (s, 4H), 

2.77 (t, J = 6.7 Hz, 4H), 2.40 (s, 6H), 1.82 (m, 2H). 
13

C NMR (100 MHz, CDCl3): δ 

177.28, 168.28, 157.50, 141.51, 132.61, 129.62, 129.02, 127.52, 125.88, 124.11, 

120.60, 111.25, 66.75, 52.86, 51.85, 46.27, 25.47, 21.69. LC-MS (ES
+
): m/z  (M+H) 



51 

 

: 657. HRMS: m/z (ESI-TOF, [M+H
+
] ) calcd for C39H41N6O4 : 657.3190;  found: 

657.3224. 

 

6,10-Bis((3-(4-fluorophenyl)-1,2,4-oxadiazol-5-yl)methyl)-6,7,8,9,10,11,17,18-

octahydro-5H-dibenzo[e,n][1,4,8,12]dioxadiazacyclopentadecine (168c) 

White solid (140 mg, 89%).  Rf : 0.65 (n-hexane/EtOAc, 1:1). M.p: 137-138 
o
C  IR 

(KBr, v:cm
–1

): 3066 (Ar., CH), 2928, 2835 (Aliph., CH), 1604, 1562, 1535 1481, 

1450, 1415, 1350, 1288, 1234, 1157, 1114 1068, 1014  945, 844, 752, 605, 520. 
1
H 

NMR (400 MHz, CDCl3): δ 8.08 (dd, J = 9.1, 5.9 Hz, 4H), 7.35 (d, J = 8.1 Hz, 2H), 

7.28 (td, J = 4.9, 1.7 Hz, 2H), 7.15 (t, J = 9.0 Hz, 4H), 6.98 – 6.89 (m, 4H), 4.36 (s, 

4H), 3.93 (s, 4H), 3.85 (s, 4H), 2.77 (t, J = 7.5 Hz, 4H), 1.82 (m, 2H). 
13

C NMR (100 

MHz, CDCl3): δ 177.53, 167.50, 165.93, 163.23, 157.25, 132.58, 129.66, 125.80, 

123.69, 120.60, 116.00, 111.25, 66.72, 52.95, 51.77, 46.21, 25.49. LC-MS (ES
+
): m/z  

(M+H) : 665. HRMS: m/z (ESI-TOF, [M+H
+
] ) calcd for C37H35 F2N6O4 : 665.2689;  

found: 665.2719.  

 

6,10-Bis((3-(4-chlorophenyl)-1,2,4-oxadiazol-5-yl)methyl)-6,7,8,9,10,11,17,18-

octahydro-5H-dibenzo[e,n][1,4,8,12]dioxadiazacyclopentadecine (168d) 

White solid (130 mg, 76%).  Rf : 0.85 (n-hexane/EtOAc, 1:1).  M.p:112-113 
o
C  IR 

(KBr, v:cm
–1

):
 
 3011 (Ar., CH), 2928, 2835 (Aliph., CH), 1600, 1558, 1492, 1450, 



52 

 

1408, 1384, 1346, 1242, 1114, 1091, 1049, 1014  941, 840, 748. 
1
H NMR (400 MHz, 

CDCl3): δ 8.01 (d, J = 8.2 Hz, 4H), 7.44 (d, J = 8.5 Hz, 4H), 7.34 (d, J = 7.2 Hz, 2H), 

7.27 (t, J = 7.6 2H), 6.97 – 6.87 (m, 4H), 4.35 (s, 4H), 3.93 (s, 4H), 3.85 (s, 4H), 2.77 

(t, J = 6.6 Hz, 4H), 1.84 – 1.74 (m, 2H). 
13

C NMR (100 MHz, CDCl3): δ 177.70, 

167.41, 157.50, 137.34, 132.54, 129.24, 129.08, 128.90, 125.69, 125.42, 120.60, 

111.24, 66.71, 53.01, 51.76, 46.25, 25.43. LC-MS (ES
+
): m/z  (M+H) : 697. HRMS: 

m/z (ESI-TOF, [M+H
+
] ). calcd for C37H35 Cl2N6O4 : 697.2098; found: 697.2097. 

 

 

6,10-Bis((3-(4-bromophenyl)-1,2,4-oxadiazol-5-yl)methyl)-6,7,8,9,10,11,17,18-

octahydro-5H-dibenzo[e,n][1,4,8,12]dioxadiazacyclopentadecine (168e) 

White solid (30 mg, 42%). Rf  : 0.89 (n-hexane/EtOAc, 1:1). M.p: 170-171 
o
C IR 

(KBr, v:cm
–1

):
  
3039 (Ar., CH), 2924, 2854 (Aliph., CH), 1620, 1597, 1562, 1492, 

1450, 1404, 1384, 1342, 1238, 1114, 1068, 1010  833, 740, 694.  
1
H NMR (400 

MHz, CDCl3): δ 7.95 (d, J = 8.3 Hz, 4H), 7.59 (d, J = 8.4 Hz, 4H), 7.33 (d, J = 7.2 

Hz, 2H), 7.28 (td, J = 4.1, 1.1 Hz, 2H), 6.97- 6.89 (m, 4H), 4.35 (s, 4H), 3.91 (s, 4H), 

3.84 (s, 4H), 2.75 (t, J = 6.8 Hz, 4H), 1.84-1.75 (m, 2H). 
13

C NMR (100 MHz, 

CDCl3): δ 177.70, 167.50, 157.49, 132.56, 132.21, 129.13, 129.09, 125.87, 125.76, 

125.69, 120.59, 111.24, 66.70, 53.02, 51.75, 46.27, 25.50. LC-MS (ES
+
): m/z  (M+H) 

: 787. HRMS: m/z (ESI-TOF, [M+H]). calcd for C37H35Br2N6O4 : 785. 1087; found: 

785.1064. 
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6,10-Bis((3-(4-nitrophenyl)-1,2,4-oxadiazol-5-yl)methyl)-6,7,8,9,10,11,17,18-octa 

hydro-5H-dibenzo[e,n][1,4,8,12]dioxadiazacyclopentadecine (168f) 

White solid (25 mg, 22%).  Rf  : 0.83 (n-hexane/EtOAc, 1:1). M.p: 151-153 
o
C 

(decomp.). IR (KBr, v:cm
–1

): 3101 (Ar., CH), 2924, 2850 (Aliph., CH), 1600, 1562, 

1527, 1492, 1450, 1415, 1342, 1292, 1242, 1107, 1064, 941, 852, 756, 732.  
1
H 

NMR (400 MHz, CDCl3): δ 8.32 (d, J = 8.8 Hz, 4H), 8.26 (d, J = 8.4 Hz, 4H), 7.33 

(d, J = 7.2 Hz, 2H), 7.27 (t, J = 7.6 Hz, 2H), 6.98 – 6.90 (m, 4H), 4.35 (s, 4H), 3.96 

(s, 4H), 3.86 (s, 4H), 2.80 (t, J = 6.3 Hz, 4H), 1.86 – 175 (m, 2H). 
13

C NMR (100 

MHz, CDCl3): δ 178.42, 166.70, 157.50, 149.48, 132.79, 132.54, 129.25, 128.54, 

125.46, 124.11, 120.62, 111.23, 66.57, 52.78, 51.31, 46.33, 25.61. LC-MS (ES
+
): m/z  

(M+H) : 719. HRMS: m/z (ESI-TOF, [M+H
+
] ) calcd for C37H35N8O8 : 719.2579; 

found: 719.2605. 

 

 

6,10-Bis((3-(4-methoxyphenyl)-1,2,4-oxadiazol-5-yl)methyl)-6,7,8,9,10,11,17,18-

octahydro-5H-dibenzo[e,n][1,4,8,12]dioxadiazacyclopentadecine (168g) 

White solid (80 mg, 70%).  Rf  : 0.53 (n-hexane/EtOAc, 1:1).  M.p: 146-148
o
C  IR 

(KBr, v:cm
–1

): 3063 (Ar., CH), 2935, 2835 (Aliph., CH), 1612, 1597, 1562, 1481, 

1450, 1423, 1350,1303,  1253, 1172, 1107, 1030, 941, 840, 752. 
1
H NMR (400 MHz, 
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CDCl3): δ  8.03 (d, J = 8.6 Hz, 4H), 7.36 (d, J = 7.0 Hz, 2H), 7.28 (td, J = 3.2, 1.5 

Hz, 2H), 7.00 – 6.89 (m, 8H), 4.35 (s, 4H), 3.92 (s, 4H), 3.85 (s, 10H), 2.77 (t, J = 

6.6 Hz, 4H), 1.85 – 1.78 (m, 2H). 
13

C NMR (100 MHz, CDCl3): δ 177.23, 167.68, 

161.59, 156.77, 132.64, 129.20, 129.03, 125.95, 120.33, 119.54, 114.22, 110.78, 

66.72, 55.47, 52.90, 51.86, 46.27, 25.42. LC-MS (ES
+
): m/z  (M+H) : 689. HRMS: 

m/z (ESI-TOF, [M+H
+
] ) calcd for C39H41N6O6 : 689.3088; found: 689.3119. 

 

 

6,10-Bis((3-(4-(methylthio)phenyl)-1,2,4-oxadiazol-5-yl)methyl)-6,7,8,9,10,11,17, 

18-octahydro-5H-dibenzo[e,n][1,4,8,12]dioxadiazacyclopentadecine (168h) 

White solid (50 mg, 44%). Rf  : 0.60 (n-hexane/EtOAc, 1:1). M.p: 163-164 
o
C IR 

(KBr, v:cm
–1

): 3055 (Ar., CH), 2928, 2850 (Aliph., CH), 1600, 1589, 1546, 1492, 

1446, 1408, 1350, 1265,  1242, 1184, 1118, 1087, 1053,  952, 898, 833. 
1
H NMR 

(400 MHz, CDCl3): δ 7.98 (d, J = 8.0 Hz, 4H), 7.35 (d, J = 7.6 Hz, 2H), 7.28 (d, J = 

8.4 Hz, 6H), 6.98 – 6.87 (m, 4H), 4.35 (s, 4H), 3.93 (s, 4H), 3.85 (s, 4H), 2.77 (t, J = 

6.0 Hz, 4H), 2.51 (s, 6H), 1.81 (t, J = 6.36 Hz, 1H). 
13

C NMR (100 MHz, CDCl3): δ 

177.41, 167.70, 157.35, 142.78, 132.44, 128.99, 127.90, 125.94, 120.93, 117.73, 

115.98, 111.08, 66.86, 52.78, 51.41, 31.82, 30.43, 22.85. LC-MS (ES
+
): m/z  (M+H) 

: 721. HRMS: m/z (ESI-TOF, [M+H
+
] ) calcd for C39H41N6O6S2 : 721.2631; found: 

721.2635. 
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 4,4'-(((8,9,17,18-tetrahydro-5H-dibenzo[e,n][1,4]dioxa[8,12]diazacyclopenta 

decine-6,10(7H,11H)-diyl)bis(methylene))bis(1,2,4-oxadiazole-5,3-diyl))di 

benzonitrile (168i) 

White solid, (1.200 g, 68%), Rf  : 0.38 (n-hexane/EtOAc, 2:1). M.p: 150-151 
o
C  IR 

(KBr, v:cm
–1

): 3055 (Ar., CH), 2928, 2854, (Aliph., CH), 2229 (C≡N ), 1689, 1550, 

1492, 1450, 1415, 1350, 1265, 1118, 1057, 1018,  937, 898, 852. 
1
H NMR (400 

MHz, CDCl3): δ 8.19 (d, J = 8.3 Hz, 4H), 7.76 (dd, J = 7.5, 1.8 Hz, 4H), 7.32 (d, J = 

7.3 Hz, 2H), 7.30-7.25 (m, 2H), 6.97 – 6.89 (m, 4H), 4.35 (s, 4H), 3.95 (s, 4H), 3.85 

(s, 4H), 2.78 (t, J = 6.5 Hz, 4H), 1.83 – 1.75 (m, 2H). 
13

C NMR (100 MHz, CDCl3): 

δ 178.32, 166.61, 157.65, 132.64, 132.55, 131.11, 129.22, 127.91, 125.55, 120.93, 

117.57, 114.72, 111.08, 66.62, 53.05, 46.18, 30.38, 29.89. LC-MS (ES
+
): m/z  

(M+H) : 680. 
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Synthesis of diethyl 2,2'-((4-formyl-1,2-phenylene)bis(oxy))diacetate (170) 

To the suspension of  K2CO3 (87.60 g, 0.635 mol)  in dried acetone  was 

added to a mixture of ethylbromoacetate 161  (73 g, 0.44 mol) and  3,4-

dihydroxybenzaldehyde 169  (24 g, 0.18 mol). The resulting mixture was stirred at 

room temperature  for 48h. Then the mixture was filtered and the solvent was 

evaporated  and yellow oily substance was purified  with flash coloumn 

chromatography  with DCM gave white solid (10 mg, 20%). Rf  : 0.60 (n-

hexane/EtOAc, 1:1). M.p: 62-63 
o
C. IR (KBr, v:cm

–1
):

 
3115, 3047 (Ar., CH), 2978, 

2939, (Aliph.CH), 1726 (Ester C=O), 1687 (Aldehyde C=O), 1587, 1514, 1444, 

1431, 1307, 1273, 1265, 1232, 1213, 1174, 1139, 1055, 1028, 939, 887, 862, 

819,794, 765. 
1
H NMR (400 MHz, CDCl3): δ  9.82 (s, 1H), 7.45 (dd, J = 8.3, 1.9 Hz, 

1H), 7.36 (d, J = 1.8 Hz, 1H), 6.92 (d, J = 8.3 Hz, 1H), 4.77 (d, J = 13.5 Hz, 4H), 

4.24 (q, J = 7.1Hz, 4H), 1.32 – 1.23 (m, 6H).
13

C NMR (100 MHz, CDCl3): δ 190.36, 

168.57, 153.04, 148.26, 131.02, 126.74, 113.64, 113.10, 65.88, 60.77, 14.08. LC-MS 

(ES
+
): m/z  (M+Na) : 333. 

 

 

Synthesis of the (Z)-diethyl 2,2'-((4-((hydroxyimino)methyl)-1,2-phenylene) 

bis(oxy)) diacetate (171) 

 Diethyl 2,2'-((4-formyl-1,2-phenylene)bis(oxy))diacetate 170 (10 g, 0.0322 

mol), hydroxylaminehydrochloride (3.58 g, 0.052 mol ) and pyridine (150 ml), were 

mixed in EtOH (250 ml) and the reaction mixture was refluxed at 80
o
C for 2h. The 

reaction mixture was then evaporated under reduced pressure, extracted with 

EtOAC/H2O to give a white solid (5.92g,  59%). Rf: 0.71 ( n-hexane/EtOAc, 1:1). 
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M.p: 88-89 
o
C. IR(KBr, v:cm

–1
):

 
3448, (N-OH), 3080 (Ar. C-H), 2983, 2935, 2874, 

2781 (Aliph.C-H), 1753 (C=O), 1604 ( C=N),  1583, 1514, 1442, 1379, 1278, 1205, 

1170, 1145, 1064, 1026, 958, 860, 810, 758, 705, 439. 
1
H NMR (400 MHz, CDCl3):  

δ  8.01 (s, 1H), 7.18 (d, J = 1.8 Hz, 1H), 7.06 (dd, J = 8.3, 1.9 Hz, 1H), 6.82 (d, J = 

8.3 Hz, 1H), 4.72 (d, J = 1.6 Hz, 4H), 4.29 – 4.21 (qd, J = 7.1, 0.7 Hz, 4H), 1.27 (t, J 

= 7.1 Hz, 6H). 
13

C NMR (100 MHz, CDCl3): δ 168.37, 149.57, 149.50, 148.26, 

126.41, 122.64, 114.88, 112.04, 66.09, 61.19, 14.06. LC-MS (ES
+
): m/z  (M+Na) : 

348. 

 

Synthesis of the diethyl 2,2'-((4-cyano-1,2-phenylene)bis(oxy))diacetate (172) 

 

 (Z)-Diethyl2,2'-((4-((hydroxyimino)methyl)-1,2-phenylene)bis(oxy))diacetate 

171 (9.8 g , 0.0301 mol) and K2CO3 (8.73 g, 0.063 mol) were stirred in DMSO (25 

ml) for 1h then acetic anhydride (6.46 g, 0.063 mol) was added and  refluxed for 2h. 

Then, the reaction mixture was cooled to the room temperature. the mixture was 

poured into the ice  and stirred until a precipitate occurs. The precipitate was filtered 

off and dried to give  a white solid, (8.60 g,  93%). Rf : 0.87 (n-hexane/EtOAc, 1:1).  

M.p: 70-71 
o
C. IR (KBr, v:cm

–1
): 3061 (Ar. C-H), 2985, 2916,  2848, 2611 (Aliph.C-

H), 2227 (C≡N ), 1753, 1602, 1585, 1512,  1442,  1379,1267, 1062, 1028, 856, 812, 

734. 
1
H NMR (400 MHz, CDCl3): δ 7.28 (dd, J = 8.4, 1.9 Hz, 1H), 7.08 (d, J = 1.8 

Hz, 1H), 6.84 (d, J = 8.4 Hz, 1H), 4.72 (d, J = 15.7 Hz, 4H), 4.30 – 4.20 (m, 4H), 

1.29 (q, J = 7.1 Hz, 6H). 
13

C NMR (100 MHz, CDCl3): δ 168.04, 151.75, 147.88, 

127.47, 118.34, 114.45, 66.51, 66.01, 61.48, 47.55, 14.10.  LC-MS (ES
+
): m/z  

(M+Na) : 331. 
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Synthesis of the (Z)-diethyl2,2'-((4-(N'-hydroxycarbamimidoyl)-1,2-phenylene) 

bis(oxy))diacetate (173) 

 

 Diethyl 2,2'-((4-cyano-1,2-phenylene)bis(oxy))diacetate  172 (101 mg, 0.329 

mmol), hydroxylaminehydrochloride (36.36 mg, 0.5264 mmol),  and Et3N (79.9 mg, 

0.7896 mmol), were dissolved in EtOH (50 ml), then  it was refluxed under N2(g), for 

18h. The solvent was evaporated and extracted with CH2Cl2/H2O. The crude product 

was purified with  flash coloumn chromatography with (EtOAC/n-hexane, 3:1). 

White solid, (55 mg, 50%). Rf: 0.32 (n-hexane/EtOAc, 1:3). M.p: 111-112 
o
C. IR 

(KBr, v:cm
–1

): 3491, 3387 (NH), 3348(OH), 3086 (Ar., C-H), 2985 (Aliph.C-H ), 

1751 (C=O), 1651 (C=N),1608, 1523, 1435, 1381, 1334, 1284,1230, 1203, 1165, 

1122, 1064, 1018, 929. 
  1

H NMR (400 MHz, CDCl3): δ 7.41 (d, J = 1.7 Hz, 1H), 

7.35 (dd, J = 8.4, 1.7 Hz, 1H), 6.82 (d, J = 8.4 Hz, 1H), 6.01 (d, J = 143.6 Hz, 2H), 

4.74 (s, 4H), 4.23 (q, J = 7.2 Hz, 4H), 1.82 (s, 1H), 1.26 (td, 7.1, 1.5 Hz, 6H). 
13

C 

NMR (100 MHz, CDCl3): δ 168.88, 149.47, 147.51, 126.25, 124.86, 120.04, 115.01, 

113.05, 66.28, 61.75, 14.20. LC-MS (ES
+
): m/z  (M+H) : 341.  

 

 

Synthesis of diethyl2,2'-((4-(5-(chloromethyl)-1,2,4-oxadiazol-3-yl)-1,2-phenyle 

ne)bis (oxy))diacetate  (174) 

 

 (Z)-Diethyl2,2'-((4-(N'-hydroxycarbamimidoyl)-1,2-phenylene)bis(oxy))dia 

cetate  (173) (50 mg,  0.147 mmol) was dissolved in benzene (50 ml) by heating, 

then chloroacetyl chloride (26.56 mg, 0.236 mmol)  in benzene (2.5 ml) was added 
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dropwise  and reaction mixture was refluxed for 20h. Benzene was evaporated and 

then the remaining crude mixture was extracted with EtOAc/H2O and purified with 

flash column chromatography with (EtOAc/n-hexane 1:4) to give a white solid (40 

mg, 68%), Rf : 0.70 (n-EtOAc/n-hexane, 1:4). M.p: 83-84
 o
C. IR (KBr, v:cm

–1
): 3090 

(Ar., C-H), 2989,2916 (Aliph.C-H), 1759, 1747 (C=O), 1597, 1577, 1539, 1496, 

1485, 1442, 1404,1369, 1319, 1280, 1226, 1203, 1145, 1060, 1022, 1010, 925, 875, 

810, 756, 732, 705, 659, 597. 
1
H NMR (400 MHz, CDCl3):  δ 7.68 (dd, J = 8.4, 2.0 

Hz, 1H), 7.55 (d, J = 1.9 Hz, 1H), 6.90 (d, J = 8.5 Hz, 1H), 4.75 (s, 4H), 4.70 (s, 2H), 

4.29 – 4.21 (m, 4H), 1.27 (ddd, J = 7.2, 5.9, 4.6 Hz, 6H). 
13

C NMR (100 MHz, 

CDCl3): δ 174.28, 168.48, 150.59, 148.04, 122.23, 120.19, 114.62, 113.59, 66.57, 

65.99, 61.53, 33.41, 14.78.  LC-MS (ES
+
): m/z  (M+Na) : 421. 

 

 

Synthesis of diethyl2,2'-((4-(5-(azidomethyl)-1,2,4-oxadiazol-3-yl)-1,2-phenylene 

)bis(oxy))diacetate (175) 

 To a stirred solution of  diethyl 2,2'-((4-(5-(chloromethyl)-1,2,4-oxadiazol-3-

yl)-1,2-phenylene)bis(oxy))diacetate  174 (400 mg, 1.003 mmol) in a 20 mL 

water/acetone mixture (1:4) was added NaN3 (71.73 mg, 1.003 mmol). The resulting 

suspension was stirred at room temperature for 2d. Dichloromethane (DCM) was 

added to the mixture and the organic layer was separated. The aqueous layer was 

extracted with  DCM and the combined organic layers were dried over Na2SO4. The 

solvent was removed under reduced pressure, and the crude azide was purified by 

flash column chromatography. White solid, (240 mg,  93%). Rf : 0.45 

(EtOAc/MeOH, 5:1).  M.p: 56-57 
o
C. IR (KBr, v:cm

–1
): 3055, (Ar., C-H), 2985, 

(Aliph.C-H), 2110 (N=N=N), 1757, 1735 (C=O), 1610, 1579, 1438, 1379, 1298, 

1265, 1207, 1193, 1147, 1064, 740, 704. 
1
H NMR (400 MHz, CDCl3):  δ 7.69 (ddd, J 

= 8.3, 6.4, 1.9 Hz, 1H), 7.56 (d, J = 1.9 Hz, 1H), 6.91 (d, J = 8.5 Hz, 1H), 4.76 (s, 

4H), 4.58 (s, 2H), 4.25 (qd, J = 7.1, 2.5 Hz, 4H), 1.31 – 1.24 (m, 6H). 
13

C NMR (100 
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MHz, CDCl3): δ 173.80, 169.07, 150.26, 148.29, 122.60, 120.03, 115.60, 113.64, 

66.57, 61.85, 45.29, 33.59, 14.48.  LC-MS (ES
+
): m/z (M+Na) : 428. 

 

 

Synthesis of diethyl 2,2'-((4-(5-((4,6-dioxo-5-phenyl-4,5,6,6a-tetrahydropyrrolo 

[3,4-d][1,2,3]triazol-1(3aH)-yl)methyl)-1,2,4-oxadiazol-3-yl)-1,2-phenylene)bis 

(oxy))diacetate (176) 

 

 Diethyl 2,2'-((4-(5-(azidomethyl)-1,2,4-oxadiazol-3-yl)-1,2-phenylene) bis 

(oxy))diacetate 175 (928 mg, 2.29 mmol) and N-phenylmaleimide (436 mg, 2.52 

mmol) were mixed in benzene (30 ml) and refluxed for 24h. After reaction was 

completed,  benzene was evaporated under the reduced pressure and then purified by 

the flash coloumn chromatography (EtOAc/n-hexane, 1:2). White solid (160 mg  

61%). Rf : 0.50 (EtOAc/n-hexane, 1:1). M.p: 77-78 
o
C. IR (KBr, v:cm

–1
): 3055 (Ar. 

C-H), 2987 (Aliph.C-H), 1755 (C=O), 1730 (Ester C=O), 1481, 1421, 1379, 1265, 

1193, 1064, 1028,  896, 746, 705. 
1
H NMR (400 MHz, CDCl3): δ 7.60 (dd, J = 8.4, 

1.9 Hz, 1H), 7.48 (t, J = 2.9 Hz, 1H), 7.42 – 7.36 (m, 3H), 7.23 – 7.17 (m, 2H), 6.86 

(d, J = 8.5 Hz, 1H), 5.87 (d, J = 10.8 Hz, 1H), 5.54 (d, J = 14.6 Hz, 1H), 5.28 (s, 2H), 

4.77 – 4.70 (m, 4H), 4.24 (q, J = 7.2 Hz, 4H), 1.27 (t, J = 7.2 Hz, 6H). 
13

C NMR 

(100 MHz, CDCl3): δ 173.90, 170.75, 168.85, 168.63, 168.48, 167.88, 150.06, 

147.80, 128.98, 126.47, 126.23, 122.39, 119.75, 114.43, 113.74, 83.31, 66.56, 61.45, 

57.01, 44.41, 14.38. LC-MS (ES
+
): m/z (M+Na) : 601. 
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Synthesis of diethyl 2,2'-((4-(5-(aminomethyl)-1,2,4-oxadiazol-3-yl)-1,2-phenyle 

ne)bis(oxy))diacetate (181) 

 

 Diethyl 2,2'-((4-(5-((4,6-dioxo-5-phenyl-4,5,6,6a-tetrahydropyrrolo[3,4-d][1, 

2,3]triazol-1(3aH)-yl)methyl)-1,2,4-oxadiazol-3-yl)-1,2-phenylene)bis(oxy))diaceta 

te (176) (383 mg, 0.662 mmol) was dissolved by heating in EtOH then 2,2'-(ethane-

1,2-diylbis(oxy))bis(ethan-1-amine) 47 (98 mg, 0.662 mmol) was added dropwise 

refluxed at 80-90 
o
C for 3h. EtOH was evaporated and the crude product was purified 

by flash coloumn chromatography (EtOAc/MeOH, 8:1) to give a yellow solid (150 

mg, 60%).  Rf : 0.40 (EtOAc/MeOH, 5:1). IR (KBr, v:cm
–1

): 3389, 3327 (N-H), 3057 

(Ar., C-H), 2983, 2933 (Aliph.C-H), 1735 (C=O), 1610, 1572, 1535, 1492, 1438, 

1369, 1267, 1193, 1145, 1116, 1064, 1028, 858, 734. 
1
H NMR (400 MHz, CDCl3): δ 

7.66 (dd, J = 8.4, 1.9 Hz, 1H), 7.54 (d, J = 1.6 Hz, 1H), 6.89 (d, J = 8.5 Hz, 1H), 4.74 

(s, 4H), 4.23 (qd, J = 7.1, 1.9 Hz, 4H), 4.10 (s, 2H), 1.90 (s, 2H), 1.25 (ddd, J = 15.6, 

9.6, 6.0 Hz, 6H). 
13

C NMR (100 MHz, CDCl3): δ 179.98, 168.77, 167.69, 150.32, 

147.96, 122.09, 120.72, 114.59, 113.53, 65.78, 61.58, 38.24, 14.21. LC-MS (ES
+
): 

m/z (M+H)  380. 
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Synthesis of 3,14-dioxo-2,3,4,5,6,8,9,11,12,13,14,15dodecahydrobenzo[b][1,4, 10, 

13, 7,16]tetraoxadiazacyclooctadecine-18-carbonitrile (182) 

 Diethyl 2,2'-((4-cyano-1,2-phenylene)bis(oxy))diacetate 172 (7 g, 0.023 mol) 

was dissolved by heating in EtOH then 2,2'-(ethane-1,2-diylbis(oxy))bis(ethan-1-

amine)  47 (6 g, 0.034 mol) was added dropwise and stirred at room temperature  for 

24h. EtOH was evaporated and the crude product was purified by flash column 

chromatography (EtOAc/MeOH, 5:1) to give a white solid  182 (3.100 g, 39%). Rf :  
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0.44 (EtOAc/MeOH, 5:1).  M.p: 222-223 
o
C (decomposed). IR (KBr, v:cm

–1
): 3404, 

3340 (NH), 3070 (Ar. C-H), 2929,  2881, 2856 (Aliph.C-H), 2224 (C≡N ), 1662 (N-

C=O), 1600, 1554, 1516,  1442, 1421, 1348, 1332, 1273, 1238, 1147, 1112, 1039, 

962, 871, 817. 
1
H NMR (400 MHz, CDCl3): δ 7.33 (dd, J = 8.5, 1.7 Hz, 1H), 7.11 (d, 

J = 1.7 Hz, 1H), 6.97 (t, J = 6.7 Hz, 2H), 6.93 (d, J = 8.4 Hz, 1H), 4.58 (d, J = 15.5 

Hz, 4H), 3.62 – 3.49 (m, 12H). 
13

C NMR (100 MHz, CDCl3): δ 166.77, 150.35, 

146.86, 127.70, 115.87, 113.01, 105.78, 70.31, 70.28, 69.80, 67.71, 38.80.  LC-MS 

(ES
+
): m/z  (M+Na) : 386. 

 

Synthesis of the (E)-N'-hydroxy-3,14-dioxo2,3,4,5,6,8,9,11,12,13,14,1dodecahyd 

robenzob[b][1,4,10,13,7,16]tetraoxadiazacyclooctadecine-18-carboximidamide 

(184) 

 

 3,14-Dioxo-2,3,4,5,6,8,9,11,12,13,14,15dodecahydrobenzo[b][1,4,10,13,7, 

16]tetraoxadiazacyclooctadecine-18-carbonitrile 182 (3.22 g, 8.9 mmol), hydroxyl 

amine hydrochloride (1.323 g, 17.7 mmol),  and Et3N (1.348 g, 12.45 mmol) were 

disolved in EtOH (50 ml),  then  the mixture was refluxed under N2 atmosphere, for 

24h. EtOH was evaporated and  extracted with CH2Cl2/H2O. The crude product was 

purified with  flash column chromatography (EtOAc/MeOH 5:1) to give 184 as a 

white solid, (2.786 g, 79%). Rf : 0.250 (EtOAc/MeOH 5:1).  M.p: 226-228 
o
C 

(decomposed). IR (KBr, v:cm
–1

): 3471, 3377 (NH), 3230 (OH), 3057 (Ar. C-H), 

2895, 2875 (Aliph.C-H), 1662, 1647 (N-C=O), 1577, 1541, 1523, 1464, 1440, 1383, 

1350, 1267, 1211, 1130, 1101, 1041, 964, 950, 815, 792, 696, 665, 605. 
1
H NMR 

(400 MHz, DMSO-d6):  δ  9.64 (s, 1H), 7.86 (s, 1H), 7.77 (q, J = 5.4 Hz, 2H), 7.50 

(td, J = 8.5, 1.9 Hz, 2H), 7.21 (s, 1H), 7.09 (d, J = 8.5 Hz, 1H), 4.52 (d, J = 2.9 Hz, 

4H), 3.46 (t, 8H), 2.49 – 2.41 (m, 4H). 
13

C NMR (100 MHz, DMSO-d6): δ 167.10, 

166.96, 148.80, 145.90, 127.56, 121.50, 113.00, 112.60, 69.34, 68.84, 67.60, 67.56. 

LC-MS (ES
+
): m/z (M+H) : 397. 
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Synthesis of 18-(5-(chloromethyl)-1,2,4-oxadiazol-3-yl)-5,6,8,9,11,12,13,15octa 

hydrobenzo[b][1,4,10,13,7,16]tetraoxadiazacyclooctadecine-3,14(2H,4H)-dione 

(185) 

 

 (E)-N'-hydroxy-3,14-dioxo-3,4,5,6,8,9,12,13,14,15-decahydro-2H,11H-

benzo[b][1,4,10,13]tetraoxa[7,16]diazacyclooctadecine-18-carboximidamide 184 

(1.552 g, 3.918 mmol) was dissolved  in benzene (500 ml) then chloroacetylchloride 

( 0.295 g, 2.612 mmol) in benzene (50 ml) was added dropwise  and reaction mixture 

was refluxed for 24h. Benzene was evaporated and then the crude mixture was  

extracted with EtOAC/H2O and purified with flash column chromatography  

(EtOAC/MeOH, 5:1) to give 185 as a white solid, (100 mg,  10%). Rf : 0.45 

(EtOAc/MeOH, 5:1). M.p: 173-174 
o
C. IR (KBr, v:cm

–1
): 3340 (NH), 3012 (Ar. C-

H), 2928, 2862 (Aliph.C-H), 1670 (N-C=O), 1600, 1543, 1473, 1427, 1346, 1257, 

1138, 1114, 1041. 891, 871, 821, 732. 
1
H NMR (400 MHz, CDCl3):  δ 7.75 (dd, J = 

8.5, 1.7 Hz, 1H), 7.62 (d, J = 1.7 Hz, 1H), 7.08 (s, 2H),6.98 (d, J = 8.5 Hz, 1H), 4.72 

(s, 2H), 4.64 (d, J = 11.0 Hz, 4H), 3.59 (d, J = 7.1 Hz, 12H). 
13

C NMR (100 MHz, 

CDCl3): δ 174.34, 167.98, 167.23, 149.20, 146.88, 122.15, 120.37, 112.97, 111.99, 

70.19, 69.70, 67.69, 67.54, 38.74. LC-M (ES
+
): m/z (M+Na) : 477. 

 

Synthesis of 18-(5-(azidomethyl)-1,2,4-oxadiazol-3-yl)-5,6,8,9,12,13-hexahydro-2 

H,11H-benzo[b][1,4,10,13]tetraoxa[7,16]diazacyclooctadecine-3,14(4H,15H)-dio 

ne (186) 

 

 A stirred suspension of 18-(5-(chloromethyl)-1,2,4-oxadiazol-3-yl)-5,6,8,9, 

11,12,13,15octahydrobenzo[b][1,4,10,13,7,16]tetraoxadiazacyclooctadecine-3,14(2 

H,4H)-dione 185 (0.255 g, 0.561 mmol) in 10 mL water/acetone mixture (1:4) was 

added NaN3 (0.04 g, 0.617 mmol). The resulting suspension was stirred at room 
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temperature for 6d. Dichloromethane (DCM) was added to the mixture and the 

organic layer was separated. The aqueous layer was extracted with  DCM and the 

combined organic layers were dried over Na2SO4. Solvent was removed under 

reduced pressure, and the crude azide was purified by flash column chromatography 

to give a white solid (240 mg,  93%). Rf: 0.45 (EtOAc/MeOH, 5:1). M.p: 186-187 

o
C. IR (KBr, v:cm

–1
): 3417 (NH), 3055 (Ar., C-H), 2939, 2862, 2685 (Aliph.C-H), 

2102 (N=N=N) 1674 (N-C=O), 1608, 1531, 1481, 1438, 1342, 1265, 1207, 1141, 

1114, 887. 
1
H NMR (400 MHz, CDCl3):  δ  7.75 (ddd, J = 8.0, 5.9, 1.8 Hz, 1H), 7.63 

(dd, J = 3.8, 2.1 Hz, 1H), 7.07 (t, J = 11.3 Hz, 2H), 6.99 (dd, J = 8.7, 2.3,  1H), 4.72 

(s, 2H), 4.69 – 4.56 (m, 4H), 3.62 – 3.56 (m, 12H). 
13

CNMR (100 MHz, CDCl3): δ 

173.68, 167.79, 167.18, 149.25, 146.92, 122.10, 120.40, 113.02, 112.06, 69.88, 

67.59, 45.06, 38.75, 33.24. LC-MS (ES
+
): m/z (M+Na) : 485. 
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Synthesis of 2,3,5,6,8,9,11,12-octahydrobenzo[b][1,4,7,10,13] pentaoxacyclopen 

tadecine-15-carbaldehyde  (29) (Kimura et al., 2006, Chen et al., 2016, Safonova 

et al., 2013) 

 

A mixture of benzo-15-crown-5 (28) ( 3.554 g, 0.013 mol) and TFA (9.87 mL)  was 

stirred under N2 atmosphere for 1h then HMTA  (2.622 g, 0.019 mol) was added and 

the reaction mixture was refluxed at 80 
o
C with stirring for 17h. Then the reaction 

mixture was cooled to room temperature and  HCl (15 mL)  was added.  The mixture 

was further refluxed at 95
 o

C for 1.5h. After completed, the mixture was cooled to 

room temperature and water is added into the mixture than extracted with benzene, 

benzene was removed under vacuum, product 29 was obtained as a yellow solid  (2 

g, 77 % ).  Rf : 0.29 (MeOH). M.p: 82-83
o
C. IR (KBr, v:cm

–1
): 3080 (Ar., C-H), 

2949, 2929, 2870, 2821, 2729 (Aliph.C-H), 1689 (aldehyde C=O), 1599, 1587, 1512, 

1440, 1404, 1398, 1271, 1244, 1139, 1118, 1087, 1051,.1043, 977, 925, 891, 864. 
1
H 

NMR (400 MHz, CDCl3):  δ 9.82 (s, 1H), 7.43 (dd, J = 8.1, 1.9 Hz, 1H), 7.37 (d, J = 

1.9 Hz, 1H), 6.93 (d, J = 8.2 Hz, 1H), 4.21 – 4.16 (m, 4H), 3.94 – 3.88 (m, 4H), 3.78 

– 3.74 (m, 8H). 
13

C NMR (100 MHz, CDCl3): δ 190.86, 154.57, 149.37, 130.18, 

126.90, 111.89, 111.18, 71.19, 70.32, 69.05, 68.74. LC-MS (ES
+
): m/z (M+Na) : 319. 

 

Synthesis of (Z)-2,3,5,6,8,9,11,12-octahydrobenzo[b][1,4,7,10,13]pentaoxacyclop 

entadecine-15-carbaldehyde oxime (187) 

 

 2,3,5,6,8,9,11,12-Octahydrobenzo[b][1,4,7,10,13]pentaoxacyclopentadecine-

15-carbaldehyde 29 (2.665 g, 8.99 mmol) was dissolved in EtOH and  sequently a 
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solution of  hydroxylaminehydrochloride (5.88 g, 84.5 mmol ) and NaOH (2.66 g, 

66.6 mmol) in water was added. The reaction mixture was refluxed  at 80
o
C for 3h. 

After reaction completed,  EtOH  was evaporated under reduced pressure. Then it 

was extracted with CH2Cl2/H2O and a white solid 187 was obtained (1.940 g, 69%). 

Rf : 0.711 ( n-EtOAc/MeOH 5:1). M.p: 61-62 
o
C. IR (KBr, v:cm

–1
): 3238 (N-OH), 

3080 (Ar., C-H), 2929, 2872 (Aliph. C-H), 1600 (C=N), 1581, 1518, 1456, 1435, 

1359, 1340, 1273, 1232, 1138, 1051, 910, 862, 844, 802, 729, 644, 621. 
1
H NMR 

(400 MHz, CDCl3): δ 8.00 (s, 1H), 7.18 (d, J = 1.7 Hz, 1H), 6.98 (dd, J = 8.2, 1.8 Hz, 

1H), 6.82 (d, J = 8.2 Hz, 1H), 4.15 (dd, J = 8.9, 5.1 Hz, 4H), 3.91 (dd, J = 8.8, 4.7 

Hz, 4H), 3.76 (s, 8H). 
13

C NMR (100 MHz, CDCl3): δ 150.79, 149.92, 149.25, 

125.29, 121.83, 113.04, 110.56, 71.05, 70.25, 69.53, 68.54. LC-MS (ES
+
): m/z 

(M+H) : 312. 

 

Synthesis of 2,3,5,6,8,9,11,12-octahydrobenzo[b][1,4,7,10,13]pentaoxacyclopen 

tadecine-15-carbo nitrile (188) 

 

 (Z)-2,3,5,6,8,9,11,12-octahydrobenzo[b][1,4,7,10,13]pentaoxacyclopentade 

cine-15-carbaldehydeoxime 187 (2.100 g, 6.75 mmol ) and K2CO3 (2.049 g, 14.84 

mmol) were stirred in DMSO (8 ml) for 1h, then acetic anhydride ( 1.515 g, 14.84 

mmol) was added and the reaction mixture was refluxed for 2h. Then the reaction 

mixture was maintained to cool to the room temperature and the mixture was poured 

into the ice  and stirred until a precipitate occurs. The precipitate was filtered off and 

dried to give a white solid (1.760 g,  89%). Rf: 0.711 (n-EtOAc/MeOH, 5:1). M.p: 

105-106 
o
C.  IR (KBr, v:cm

–1
): 3128, 3063 (Ar., C-H), 2939, 2877, 2823 (Aliph.C-

H), 2225 (C≡N ), 1599, 1518,  1452, 1421, 1334, 1274, 1240, 1139, 1093, 1047, 981, 

939, 875, 788, 696, 619. 
1
H NMR (400 MHz, CDCl3): δ 7.25 (dd, J = 8.6, 1.6 HZ, 

1H), 7.07 (d, J = 1.9 Hz, 1H), 6.86 (d, J = 8.3 Hz, 1H), 4.17– 4.11 (m, 4H), 3.94 – 

3.87 (m, 4H), 3.77 – 3.72 (m, 8H). 
13

C NMR (100 MHz, CDCl3): δ 153.05, 149.04, 

126.72, 119.16, 116.38, 112.93, 103.98, 71.13, 70.32, 69.16, 68.65. LC-MS (ES
+
): 

m/z (M+Na) : 316. 
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Synthesis of (Z)-N'-hydroxy-2,3,5,6,8,9,11,12-octahydrobenzo[b][1,4,7,10,13]    

pe ntaoxacyclopentadeci ne-15-carboximidamide (189) 

 

 2,3,5,6,8,9,11,12-Octahydrobenzo[b][1,4,7,10,13]pentaoxacyclopentadecine-

15-carbonitrile 188 (1.669 g, 5.69 mmol), hydroxylamine hydrochloride (0.790 g, 

11.38 mmol) and Et3N (0.862 g, 8.535 mmol)  were dissolved in EtOH (50 ml),  then  

the mixture was refluxed under N2 atmosphere, for 24h. EtOH was evaporated and  

extracted with CH2Cl2/H2O. The crude product was purified with  flash column 

chromatography (EtOAc/MeOH 5:1) to give a white solid (500 mg, 27%). Rf: 0.32 

(EtOAc/MeOH 5:1). M.p: 196-197 
o
C.  IR (KBr, v:cm

–1
): 3425 (NH), 3255 (N-OH), 

3128, 3063 (Ar., C-H), 2951, 2928, 2739, 2677 (Aliph.C-H), 1654 (C=N), 1604, 

1519,  1465, 1435,1381,1261, 1219,1122,1095, 1037, 968, 945, 806, 783. 
1
H NMR 

(400 MHz, CDCl3): δ 9.44 (s, 1H), 7.16 (dd, J = 15.3, 10.0,  2H), 6.91 (dd, J = 16.0, 

8.2 Hz, 1H), 5.72 (s, 2H), 4.01 (d, J = 3.1 Hz, 4H), 3.69 (s, 4H), 3.05 – 2.88 (m, 8H). 

13
C NMR (100 MHz, CDCl3): δ 151.22, 149.55, 148.25, 126.58, 118.90, 113.48, 

111.43, 70.55, 69.93, 69.05, 68.69. LC-M (ES
+
): m/z  (M+H) : 327. 

 

Synthesis of 5-(chloromethyl)-3-(2,3,5,6,8,9,11,12-octahydrobenzo[b] [1,4,7,10, 

13]pentaoxacyclopenta decin-15-yl)-1,2,4-oxadiazole (190) 

 

 (Z)-N'-hydroxy-2,3,5,6,8,9,11,12-octahydrobenzo[b][1,4,7,10,13]pentaoxa 

cyclopentadecine-15-carboximidamide (140 mg,  0.43 mmol) was dissolved in 

benzene (100 ml) then chloroacetyl chloride (32.3 mg, 0.29 mmol) in benzene (5ml), 
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was added  dropwise and the reaction mixture was refluxed for 24 h. Benzene was 

evaporated. It was extracted  with EtOAC/H2O and purified with flash column 

chromatography with (EtOAC/MeOH, 5:1) to give a white solid (15 mg, 17%).  Rf: 

0.47 (EtOAc/MeOH, 5:1). M.p: 157-158
 o

C. IR (KBr, v:cm
–1

): 3028 (Ar., C-H), 

2924, 2874, 2592, 2457 (Aliph.C-H), 1600, 1577, 1481, 1446, 1361, 1346, 1265, 

1130, 1107, 1045, 941, 848, 732, 578. 
1
H NMR (400 MHz, CDCl3): δ 7.64 (dd, J = 

8.5, 2.2 Hz, 1H), 7.52 (d, J = 2.2 Hz, 1H), 6.90 (d, J = 8.5 Hz, 1H), 4.71 (s, 2H), 4.21 

– 4.15 (m, 4H), 3.91 (dd, J = 8.9, 3.8 Hz, 4H), 3.75 (s, 8H). 
13

C NMR (100 MHz, 

CDCl3): δ 174.19, 168.78, 151.82, 149.07, 121.37, 121.33, 118.76, 112.95, 111.95, 

71.09, 70.32, 69.37, 68.90, 33.34. LC-MS (ES
+
): m/z  (M+Na) : 407. 

 

Synthesis of 5-(azidomethyl)-3-(2,3,5,6,8,9,11,12octahydrobenzo[b] 1,4,7,10, 

13]pentaoxacyclopentade cin-15-yl)-1,2,4-oxadiazole (191) 

 

To a stirred solution of 5-(chloromethyl)-3-(2,3,5,6,8,9,11,12-octahydroben 

zo[b][1,4,7,10,13] pentaoxacyclopentadecin-15-yl)-1,2,4-oxadiazole 190 (25 mg, 

0.065 mmol) in a 10 mL water/acetone mixture (1:4) was added NaN3 (4.65 mg, 

0.071 mmol). The resulting suspension was stirred at room temperature for 3d. 

Dichloromethane (DCM) was added to the mixture and the organic layer was 

separated. The aqueous layer was extracted with  DCM and the combined organic 

layers were dried over Na2SO4. Solvent was removed under reduced pressure, and 

the crude azide was purified by flash column chromatography to give a white solid ( 

20 mg,  80%). Rf: 0.30 (EtOAc/MeOH, 5:1). M.p: 123-124 
o
C. IR (KBr, v:cm

–1
):  

3055 (Ar., C-H), 2924, 2874 (Aliph.C-H), 2110 (N=N=N) , 1600, 1577, 1485, 1446, 

1265, 1130,1049, 941, 848, 783, 744. 
1
H NMR (400 MHz, CDCl3): δ  7.67 (ddd, J = 

8.4, 6.6, 1.9 Hz, 1H), 7.55 (dd, J = 4.4, 1.9 Hz, 1H), 6.92 (dd, J = 8.4, 1.7 Hz, 1H), 

4.59 (s, 2H), 4.22 – 4.16 (m, 4H), 3.92 (dd, J = 8.0, 3.7 Hz, 4H), 3.76 (s, 8H).   

13
CNMR (100 MHz, CDCl3): δ 173.94, 167.06, 149.25, 146.92, 122.10, 120.40, 

113.02, 112.09, 112.06, 67.28, 45.06, 38.75, 33.24. LC-MS (ES
+
): m/z (M+Na) : 414  
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Synthesis of  N,N'-(butane-1,4-diyl)bis(2-chloroacetamide) (192) 
 

 In a 500 ml three-necked round-bottomed flask, equipped with a magnetic 

stirrer, cooling bath, internal thermometer and dropping funnel,  1,4-diaminobutane  

(10.0 g, 0.113 mol) was dissolved in methylene chloride (100 ml). To the above 

stirred solution was  added distilled water (80 ml)  and potassium carbonate (31.6 g, 

0.222 mol). The resultant mixture was ice-cooled and  chloroacetyl chloride (24.5 

ml, 0.222 mol) was  then  added over a period of 60–90 min, while the temperature is 

maintained below 10°C. The reaction mixture was then allowed to warm to room 

temperature and the precipitate was filtered to provide the crude product as a white 

solid. It was taken into 150 ml of water, stirred further vigorously for 2h and 

refiltered. The precipitate was then dried overnight in a vacuum oven at 60°C  to 

yield the desired compound as a white solid (19.84 g, 74 %). M.p. 132–133 °C. IR 

(KBr, v:cm
–1

): 3321 (NH), 2939, 2928, 1643 (C=O), 1610, 1550, 1504, 1454. 
1
H 

NMR (400 MHz, CDCl3): δ  8.18 (s, 2H, NHCO), 3.99 (s, 4H), 3.04 (d, J = 2.2 Hz, 

4H), 1.37 (s, 4H). 
13

C NMR (100 MHz, CDCl3): δ 165.96 (C=O), 42.61, 39.32, 

26.69. LC-MS (ES
+
): m/z  (M+H) : 264. 

 

Synthesis of 1,4,9,12-tetraazacyclohexadecane-2,11-dione (193) 

 

N,N'-(Butane-1,4-diyl)bis(2-chloroacetamide) (5 g, 0.02 mol), 1, 4-

butanediamine (1.83 g, 0. 021 mol) were mixed in acetonitrile (100 mL) under 

nitrogen gas,  then Na2CO3 (48.51 g, 0.46 mol) is added portionwise with mechanical 

stirring. The reaction mixture was further stirred at 80 
o
C for 24 h. When the reaction 

was completed as monitored by TLC, the mixture was filtered off. The solvent was 

evaporated under the reduced pressure. The crude product was purified by column 

chromatography on silica gel using DCM/MeOH (3:1) to give 193 as a white solid 
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(1.161 g  21 %). M.p: 141–142 °C.  Rf: 0.25 (DCM/MeOH, 5:2). IR (KBr, v:cm
–1

): 

3356 (NH), 3321 (NH), 3267 (NH), 2943, 2874, 1643 (C=O), 1539, 1442, 1242, 

1153, 848. 
1
H NMR (400 MHz, CDCl3): δ  7.40 (s, 2H, NHCO), 3.37– 3.28 (m, 4H), 

3.23 (s, 4H), 2.60 (t, J = 6.5 Hz, 4H), 1.63–1.48 (m, 10H). 
13

C NMR (100 MHz, 

CDCl3): δ 171.94 (C=O), 52.89 (NHCH2C=O), 50.12, 37.77, 27.75, 27.52. LC-MS 

(ES
+
): m/z  (M+H) : 257. 

 

Synthesis of 1,12-di(prop-2-yn-1-yl)-1,4,9,12tetraazacyclohexadecane-2,11-dione 

(194) 

 

1,4,9,12-Tetraazacyclohexadecane-2,11-dione 193 (519 mg, 2.025 mmol) 

was dissolved in acetonitrile (30 mL) and cesium carbonate  (2.836 g, 8.71 mmol) 

was added followed by propargyl bromide (0.721 mL, 8.096 mmol). Molecular 

sieves (4Å) were added to the reaction mixture and was stirred under refluxed for 2.5 

h. After the reaction was completed (monitored by TLC), it was filtered off  the  

precipitate  and washed  with acetonitrile. Solvent was  evaporated under the reduced 

pressure. Crude product was then purified by flash column chromatography 

(EtOAc/MeOH, 5:1) to give 194 as a white solid (362 mg, 54%). Mp 164-165°C. IR 

(KBr, v: cm
–1

): 3344 (NH), 3308 (C≡C-H), 3273 (NH), 3232 (NH), 2939, 2868, 

2818, 2096 (C≡C), 1647 (C=O), 1529, 1464,  1334, 1280, 1124. 
1
H NMR (400 MHz, 

CDCl3): δ  7.20 (br s, 2H), 3.35 (s, 4H), 3.29 (s, 4H), 3.10 (s, 4H), 2.53 (s, 4H), 2.20 

(s, 2H), 1.53 (s, 4H), 1.44 (s, 4H).  
13

C NMR (100 MHz, CDCl3): δ 170.82 (C=O), 

78.16, 73.40, 58.42, 54.90, 44.71, 37.96, 27.85, 26.06. LC-MS (ES
+
): m/z  (M+H) : 

333. 
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General procedure for the preparation of the compounds 196a-h and 

197a-h 

 

Synthesis of 4-((1-((3-phenyl-1,2,4-oxadiazol-5-yl)methyl)-1H-1,2,3-triazol-5-yl) 

methyl)-9-(prop-2-yn-1-yl)-1,4,9,12-tetraazacyclohexadecane-2,11-dione (196a) and 

4,9-bis((1-((3-phenyl-1,2,4-oxadiazol-5-yl)methyl)-1H-1,2,3-triazol-5-yl)methyl)-1,4 

,9,12-tetraazacyclohexadecane-2,11-dione (197a) 

To a stirred solution of  5-(azidomethyl)-3-phenyl-1,2,4-oxadiazole 195a (55 

mg, 0.274 mmol)  and azacrown-alkyne 194  (50 mg, 0.150 mmol) in tetrahydrofuran 

(25 mL) was added aqueous copper sulfate (13.7 mg, 0.055 mmol). Sodium 

ascorbate (27.1 mg, 0.137 mmol) was then added portionwise in  10 min. The 

reaction mixture was stirred for 3d to 2 weeks at room temperature. Solvent was 

evaporated and the crude material was purified by flash column chromatography  

(EtOAc/MeOH, 6:1)  to give (196a) and (197a). 

 

4-((1-((3-Phenyl-1,2,4-oxadiazol-5-yl)methyl)-1H-1,2,3-triazol-5-yl)methyl)-9-(prop-

2-yn-1-yl)-1,4,9,12-tetraazacyclohexadecane-2,11-dione (196a).  

Yellow oil  (30 mg, 38%).  Rf: 0.489 (EtOAc/MeOH, 5:1). IR (KBr, v: cm
–1

): 

3344 (NH), 3302 (C≡C-H), 3136, 3070, 2935, 2862, 2380 (C≡C) 1638 (C=O), 1600, 

1527, 1446, 1350, 1276, 1114. 
1
H NMR (400 MHz, CDCl3):  δ  8.01 (d, J = 9.6 Hz, 

2H), 7.78 (s, 1H), 7.56 – 7.40 (m, 4H), 7.31 – 7.26 (m, 1H), 5.91 (s, 2H, NHC=O), 

5.27 (s, 1H, CH2N-triazole), 3.82 (s, 2H, CH2-C≡C), 3.35 (s, 1H), 3.26 (d, J = 14.8 

Hz, 4H), 3.34 (d, J = 1.6 Hz, 1H), 3.26 (d, J = 14.8 Hz, 2H), 3.09 (d, J = 5.6 Hz, 2H), 

2.62 – 2.46 (dt, J = 24.4, 6.8, 6.4 Hz, 2H), 2.19 (br s, 1H), 1.57-1.35 (m, 8H). 
13

C 

NMR (100 MHz, CDCl3): δ 172.32 (C=O), 171.14 (C=O), 171.09 (C=N), 168.95 
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(C=N), 145.36, 131.85, 129.09, 128.92, 127.60, 125.82, 123.54, 78.19, 73.39, 58.45, 

58.36, 58.31, 55.73, 54.98, 50.55, 45.33, 44.76, 38.12, 38.03, 27.60, 26.14, 25.93. 

HRMS: m/z (ESI-TOF, [M+H
+
]) calcd for  C27H35N9O3 : 534.2941; found: 534.2920. 

 

 

4,9-Bis((1-((3-phenyl-1,2,4-oxadiazol-5-yl)methyl)-1H-1,2,3-triazol-5-yl)methyl)-

1,4,9,12-tetraazacyclohexadecane-2,11-dione (197a)  

Yellow oil (100 mg, 73%). Rf: 0.378 (EtOAc/MeOH, 5:1). IR (KBr, v: cm
–1

): 

3348 (NH), 3136, 3055, 2939, 2862, 2831, 1662 (C=O), 1600, 1527, 1446, 1350, 

1269, 1114. 
1
H NMR (400 MHz, CDCl3): δ  8.00–7.93 (m, 4H), 7.82 (s, 2H), 7.52–

7.37 (m, 8H), 5.89 (s, 4H), 3.76 (s, 4H), 3.19 (s, 4H), 3.05 (s, 4H), 2.49 (s, 4H), 1.49 

(d, J = 6.7 Hz, 8H). 
13

C NMR (100 MHz, CDCl3):  δ 172.47 (C=O), 171.37 (C=N), 

168.86 (C=N), 145.52, 131.83, 129.41, 129.07, 128.88, 127.54, 125.80, 123.71, 

58.50, 55.79, 50.52, 45.32, 38.12, 27.32, 26.03. HRMS: m/z (ESI-TOF, [M+H
+
] ) 

calcd for  C36H42N14O4 : 735.3592; found: 735.3581. 
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4-(Prop-2-yn-1-yl)-9-((1-((3-(p-tolyl)-1,2,4-oxadiazol-5yl)methyl)-1H-1,2,3-triazol-

5-yl)methyl)-1,4,9,12-tetraazacyclohexadecane-2,11-dione (196b)  

White solid (30 mg, 44%). Rf: 0.480 (EtOAc/ MeOH, 5:1). Mp 146-147°C.  

IR (KBr, v: cm
–1

): 3348 (NH), 3302 (C≡C-H), 3140, 3051, 2935, 2862, 1662 (C=O), 

1597, 1531, 1450, 1269, 1230. 
1
H NMR (400 MHz, CDCl3): δ  7.90–7.86 (m, 2H), 

7.77 (s, 1H), 7.25 (dd, J = 4.4, 3.5 Hz, 4H),  5.89 (d, J = 1.0 Hz, 2H), 3.81 (s, 2H), 

3.33 (d, J = 9.4 Hz, 2H), 3.31–3.20 (m, 4H), 3.09 (d, J = 6.0 Hz, 4H), 2.54 (dd, J = 

13.2, 6.8 Hz, 2H), 2.49 (t, J = 6.4 Hz, 2H), 2.38 (s, 3H), 2.18 (d, J = 1.4 Hz, 1H), 

1.53 (s, 4H), 1.47 (dd, J = 18.9, 8.7 Hz, 4H). 
13

C NMR (100 MHz, CDCl3): δ 171.97 

(C=O), 168.86, 142.19, 129.67, 127.42, 122.91, 77.98 (CC),  73.31 (CC), 61.75, 

58.31, 55.55, 54.80, 50.52, 45.27, 44.58, 38.00, 27.48, 25.70, 21.58. LC-MS (ES
+
): 

m/z  (M+H) : 548.  HRMS: m/z (ESI-TOF, [M+H
+
]) calcd for C28H37N9O3 : 

548.3089; found: 548.3099. 

 

4,9-Bis((1-((3-(p-tolyl)-1,2,4-oxadiazol-5-yl)methyl)-1H-1,2,3-triazol-5-yl)methyl)-

1,4,9,12-tetraazacyclohexadecane-2,11-dione (197b)  

Yellow oil (50 mg, 53%).  Rf: 0.375 (EtOAc /MeOH, 5:1). IR (KBr, v: cm
–1

): 

3348 (NH), 3136, 2939, 2862, 1658 (C=O), 1597, 1531, 1481, 1454, 1411, 1346, 

1273, 1226.  
1
H NMR(400 MHz, CDCl3): δ 7.87 (d, J = 7.6 Hz, 4H), 7.80 (s, 2H), 

7.50 (t, J = 5.2 Hz, 2H), 7.26–7.24 (m, 4H), 5.88 (s, 4H), 3.78 (s, 4H), 3.23 (s, 4H), 

3.07 (s, 4H), 2.51 (s, 4H), 2.37 (s, 6H), 1.52 (d, J = 10.7 Hz, 8H). 
13

C NMR (100 

MHz, CDCl3): δ 172.03 (C=O), 168.83, 142.16, 130.85, 127.40, 122.92, 58.44, 

55.40, 50.55, 45.27, 38.09, 27.24, 25.83, 21.55. LC-MS (ES
+
): m/z  (M+H) : 763. 
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HRMS: m/z (ESI-TOF, [M+H
+
]) calcd for C38 H46 N14O4 : 763.3905; found: 

763.3916. 

 

4-((1-((3-(4-Fluorophenyl)-1,2,4-oxadiazol-5-yl)methyl)-1H-1,2,3-triazol-5-yl) 

methyl)-9-(prop-2-yn-1-yl)-1,4,9,12-tetraaza cyclohexadecane-2,11-dione (196c)  

Yellow oil.  (35 mg, 43%). Rf: 0.405 (EtOAc/MeOH, 5:1). IR (KBr, v: cm
–1

): 

3348, (NH), 3302, 3140, 2858,  1662 (C=O), 1585, 1531, 1481, 1450, 1419, 1342, 

1226. 
1
H NMR (400 MHz, CDCl3): δ  8.06–7.98 (dd, J = 8.0, 5.6 Hz, 2H), 7.77 (s, 

1H), 7.46 (br s, 1H), 7.26 (d, J = 6.4 Hz, 1H), 7.18–7.11 (t, J = 8.0 Hz, 2H), 5.91 (s, 

2H), 3.80 (s, 2H), 3.35 (s, 2H), 3.25 (d, J = 9.2 Hz, 4H), 3.09 (s, 4H), 2.63–2.44 (dt, 

J = 16.0, 12.0, 5.6 Hz, 4H), 2.19 (s, 1H), 1.61–1.38 (m, 8H). 
13

C NMR (100 MHz, 

CDCl3): δ  172.46 (C=O), 171.13, 168.13, 164.91 (d, J =  251.3 Hz, C-F), 145.40, 

129.90, 129.81, 123.54, 122.09, 122.06, 116.47, 116.25, 78.21 (CC), 73.39 (CC), 

58. 47, 58.32, 55.73, 55.06, 45.29, 44.84, 38.12, 38.04, 27.61, 27.58, 26.12, 25.96. 

HRMS: m/z (ESI-TOF, [M+H
+
] ) calcd for  C27H35FN9O3:  552.2847; found: 

552.2827. 
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4,9-Bis((1-((3-(4-fluorophenyl)-1,2,4-oxadiazol-5-yl)methyl)-1H1,2,3-triazol-5-yl) 

methyl)-1,4,9,12-tetraazacyclohexadecane 2,11-dione (197c)  

White solid (70 mg, 61%). Rf: 0.262 (EtOAc/ MeOH, 5:1). IR (KBr, v: cm
–1

): 

3348 (NH), 3140, 3055, 2939, 2862, 2831, 1666 (C=O), 1597, 1566,1527, 1469, 

1408, 1342, 1265.  
1
H NMR (400 MHz, CDCl3): δ  8.04–7.95 (m, 4H), 7.82 (d, J = 

14.6 Hz, 2H), 7.53–7.44 (m, 2H), 7.12 (t, J = 8.2 Hz, 4H), 5.90 (s, 4H), 3.76 (d, J = 

15.2 Hz, 4H), 3.21 (s, 4H), 3.04 (d, J = 15.1 Hz, 4H), 2.51 (s, 4H), 1.52 (s, 8H). 
13

C 

NMR (100 MHz, CDCl3): δ 172.53 (C=O), 171.36, 168.08, 164.87 (d, J = 251.3 Hz, 

C-F), 145.58, 129.86, 129.77, 123.62, 122.07, 122.03, 116.44, 116.22, 60.49, 58.51, 

55.87, 50.54, 45.28, 38.13, 27.35, 26.07.  HRMS: m/z (ESI-TOF, [M+H
+
]) calcd for 

C36H41F2N14O4:  771.3401; found: 771. 3391. 

 

4-((1-((3-(4-Chlorophenyl)-1,2,4-oxadiazol-5-yl)methyl)-1H-1,2,3-triazol-5-yl) 

methyl)-9-(prop-2-yn-1-yl)-1,4,9,12-tetraaza cyclohexadecane-2,11-dione (196d)  

Yellow oil (30 mg, 30%). Rf: 0.420 (EtOAc/ MeOH, 5:1). IR (KBr, v: cm
–1

): 

3348 (NH), 3302, 3136, 3055, 2935, 2862, 1662 (C=O), 1597, 1527, 1465, 1408, 

1384, 1342, 1265. 
1
H NMR (400 MHz, CDCl3): δ  7.98–7.93 (dd, J = 8.4, 1.2  Hz, 

2H), 7.76 (s, 1H), 7.47–7.41 (dd, J = 8.4, 1.2 Hz, 3H), 7.29–7.26 (m, 1H), 5.91 (s, 

2H), 3.81 (s, 2H), 3.40–3.01 (m, 5H), 2.60–2.48 (dt, J = 20.8, 12.0, 5.6 Hz, 4H), 

2.21–2.16 (m, 2H), 1.90–1.65 (br s, 4H), 1.60–1.15 (m, 8H). 
13

C NMR (100 MHz, 

CDCl3): δ 172.63 (C=O), 171.39, 168.13, 145.62, 138.04, 129.42, 128.88, 124.30, 

123.60, 78.23 (CC), 73.37 (CC), 58.49, 58.42, 55.73, 55.11, 54.93, 50.46, 45.28, 

44.88, 44.73, 38.13, 38.04, 37.98, 29.78, 27.85, 27.63, 27.58, 26.13, 26.09, 25.99. 
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HRMS: m/z (ESI-TOF, [M+H
+
] ) calcd for  C27H35ClN9O3:  568.2551; found: 

568.2539. 

 

4,9-Bis((1-((3-(4-chlorophenyl)-1,2,4-oxadiazol-5-yl)methyl)-1H-1,2,3-triazol-5-yl) 

methyl)-1,4,9,12-tetraazacyclohexadecane-2,11 -dione (197d)  

Yellow oil (60 mg, 42%). Rf: 0.320 (EtOAc/MeOH, 5:1). IR (KBr, v: cm
–1

): 

3348 (NH), 3136, 2928, 2854, 1658 (C=O), 1597, 1570,1527, 1465, 1408, 1342, 

1265. 
1
H NMR (400 MHz, CDCl3): δ  7.95–7.89 (m, 4H), 7.80 (s, 2H), 7.51–7.45 (br 

t, J = 5.6 Hz, 2H), 7.44–7.38 (dd, J = 8.8, 2.4 Hz, 4H), 5.89 (s, 4H), 3.77 (s, 4H), 

3.21 (br s, 4H), 3.05 (br s, 4H), 2.50 (br s, 4H), 1.21 (br s, 8H). 
13

C NMR (100 MHz, 

CDCl3): δ 172.63 (C=O), 171.39, 168.13, 145.62, 138.04, 129.42, 128.88, 124.30, 

123.60, 58.52, 55.89, 50.56, 45.28, 38.15, 31.99, 30.36, 29.77, 29.73, 29.69, 29.58, 

29.43, 29.23, 27.35, 26.08. HRMS: m/z (ESI-TOF, [M+H
+
]) calcd for 

C36H41Cl2N14O4: 803.2812; found: 803.2804. 

 

4-((1-((3-(4-Bromophenyl)-1,2,4-oxadiazol-5-yl)methyl)-1H-1,2,3-triazol-5-yl) 

methyl)-9-(prop-2-yn-1-yl)-1,4,9,12-tetraaza cyclohexadecane-2,11-dione (196e)  
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Yellow oil (35 mg, 38%). Rf: 0.410 (EtOAc/ MeOH, 5:1). IR (KBr, v: cm
–1

): 

3425, 3360 (NH), 3302, 3055, 2935, 2866,  1666 (C=O), 1597, 1527, 1469, 1423, 

1404, 1342, 1265. 
1
H NMR (400 MHz, CDCl3): δ 7.91–7.87 (d, J = 8.4 Hz, 2H), 

7.76 (br s, 1H), 7.62–7.58 (d, J = 8.4 Hz, 2H), 7.45 (br s, 1H), 7.28–7.22 (m, 1H), 

5.91 (s, 2H), 3.82 (s, 2H), 3.57 (s, 1H), 3.36 (s, 1H), 3.27 (d, J = 16.0 Hz, 4H), 3.09 

(s, 4H), 2.61–2.48 (dt,  J = 22.8, 16.4, 6.4 Hz, 4H), 1.70 (br s, 6H), 1.60–1.40 (m, 

4H).  
13

C NMR (100 MHz, CDCl3): δ 172.46, 171.12, 167.99, 132.42, 132.23, 

129.09, 126.52, 124.77, 123.47, 78.04 (CC), 74.10 (CC), 58.49, 58.34, 55.29, 

50.48, 45.29, 44.88, 38.13, 38.04, 27.64, 27.58, 26.11, 25.98. HRMS: m/z (ESI-TOF, 

[M+H
+
]) calcd for  C27H35BrN9O3:  612.2046; found: 612.2026. 

 

4,9-Bis((1-((3-(4-bromophenyl)-1,2,4-oxadiazol-5-yl)methyl)-1H-1,2,3-triazol-5-yl) 

methyl)-1,4,9,12-tetraazacyclohexadecane 2,11-dione (197e) 

Yellow oil  (95 mg, 71%). Rf: 0.273 (EtOAc/MeOH, 5:1). IR (KBr, v: cm
–1

):  

3348 (NH), 3140, 3055, 2939, 2862, 2831, 1666 (C=O), 1597, 1566, 1527, 1469, 

1408, 1342, 1265. 
1
H NMR (400 MHz, CDCl3): δ  7.89–7.85 (m, 4H), 7.79 (s, 2H), 

7.59 (dd, J = 11.1, 3.4 Hz, 4H), 7.49 (t, J = 5.3 Hz, 2H), 5.91 (s, 4H), 3.80 (s, 4H), 

3.24 (s, 4H), 3.08 (s, 4H), 2.53 (s, 4H), 1.53 (d, J = 9.6 Hz, 8H). 
13

C NMR (100 

MHz, CDCl3): δ 172.59 (C=O), 171.32, 168.26, 132.41, 129.06, 126.52, 124.75, 

123.52, 58.54, 55.89, 50.62, 45.28, 38.17, 27.36, 26.08. HRMS: m/z (ESI-TOF, 

[M+H
+
] ) calcd for  C36H41Br2N14O4: 891.1802; found: 891.1828. 
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4-((1-((3-(4-Nitrophenyl)-1,2,4-oxadiazol-5-yl)methyl)-1H-1,2,3-triazol-5-yl) 

methyl)-9-(prop-2-yn-1-yl)-1,4,9,12-tetraazacyclo hexadecane-2,11-dione (196f)  

Yellow oil (45 mg, 35%). Rf: 0.522 (EtOAc/MeOH, 5:1). IR (KBr, v: cm
–1

): 

3448 (NH), 3302, 3140, 3101, 2939, 2862, 1662 (C=O), 1612, 1531, 1450, 1415, 

1342, 1292. 
1
H NMR (400 MHz, CDCl3): δ  8.31 (d, J = 8.9 Hz, 2H), 8.20 (dd, J = 

7.3, 6.7 Hz, 2H), 7.79 (s, 1H), 7.41 (t, J = 5.2 Hz, 1H), 7.29–7.25 (m, 1H), 5.96 (s, 

2H), 3.81 (s, 2H), 3.35 (d, J = 1.7 Hz, 2H), 3.32–3.20 (m, 4H), 3.06 (d, J = 12.5 Hz, 

4H), 2.53 (dt, J = 13.1, 5.9 Hz, 4H), 2.19 (s, 1H), 1.53 (s, 4H), 1.52–1.43 (m, 4H).  

13
C NMR (100 MHz, CDCl3): δ 173.37 (C=O), 171.22, 171.15, 170.92, 167.41, 

149.78, 145.51, 131.68, 128.67, 124.31, 123.64, 78.25 (CC), 73.38 (CC), 58.51, 

58.29, 50.29, 45.24, 45.00, 38.13, 38.04, 27.64, 27.49, 26.07. HRMS: m/z (ESI-TOF, 

[M+H] ) calcd for C27 H35 N10O5:  579.2792; found: 579.2771. 

 

4,9-Bis((1-((3-(4-nitrophenyl)-1,2,4-oxadiazol-5-yl)methyl)-1H-1,2,3-triazol-5-yl) 

methyl)-1,4,9,12-tetraazacyclohexadecane-2, 11-dione (197f).  
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Yellow solid (75 mg,  41%). Rf: 0.370 (EtOAc/ MeOH, 5:1). Mp 133–134°C. 

IR (KBr, v: cm
–1

): 3348 (NH), 3136, 2928, 2854, 1658 (C=O), 1597, 1570,1527, 

1465, 1408, 1342, 1265. 
1
H NMR (400 MHz, CDCl3): δ  8.29 (d, J = 8.0 Hz, 4H), 

8.18 (d, J = 8.4 Hz, 4H), 7.82 (s, 2H), 7.48 (t, J = 5.2 Hz, 2H), 5.96 (s, 4H), 3.81 (s, 

4H), 3.21 (br s, 4H), 3.06 (s, 4H), 2.53 (s, 4H), 1.53 (br s, 8H). 
13

C NMR (100 MHz, 

CDCl3): δ  173.36 (C=O), 171.38, 167.39, 149.76, 145.62, 131.65, 128.65, 124.30, 

123.65, 58.48, 55.98, 50.54, 45.25, 38.16, 27.37, 26.09. HRMS: m/z (ESI-TOF, 

[M+H
+
] ) calcd for C36H41N16O8:  825.3293 ; found: 825.3261. 

 

4-((1-((3-(4-Methoxyphenyl)-1,2,4-oxadiazol-5-yl)methyl)-1H-1,2,3-triazol-5-yl) 

methyl)-9-(prop-2-yn-1-yl)-1,4,9,12-tetraaza cyclohexadecane-2,11-dione (196g).   

White solid  (30 mg, 36%). Rf: 0.300 (EtOAc/MeOH, 5:1). Mp 124–125 °C.  

IR (KBr, v: cm
–1

): 3441, 3348 (NH), 3302, 3136, 3059, 2939, 2839,  1662 (C=O), 

1573, 1531, 1481, 1423, 1346, 1257.  
1
H NMR (400 MHz, CDCl3): δ  7.95–7.92 (m, 

2H), 7.76 (s, 1H), 7.48 (t, J = 5.3 Hz, 1H), 7.25 (t, J = 4.3 Hz, 1H), 6.96–6.93 (m, 

2H), 5.88 (s, 2H), 3.82 (t, J = 3.3 Hz, 3H), 3.80 (s, 2H), 3.34 (d, J = 1.2 Hz, 2H), 

3.26  (d, J = 14.7 Hz, 4H), 3.08 (d, J = 3.1 Hz, 4H), 2.52 (dt, J = 13.0, 6.0 Hz, 4H), 

2.18 (d, J = 0.9 Hz, 1H), 1.53 (s, 4H), 1.50–1.43 (m, 4H). 
13

C NMR (100 MHz, 

CDCl3): δ 172.01 (C=O), 171.19, 168.62, 162.39, 145.37, 129.26, 123.51, 118.19, 

114.47, 78.19 (CC), 72.87 (CC), 58.47, 55.76, 54.96, 53.55, 50.54, 45.32, 44.72, 

38.10, 38.01, 27.63, 26.18, 25.93. HRMS: m/z (ESI-TOF, [M+H
+
]) calcd for 

C28H37N9O4:  564.3047; found: 564.3041. 
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4,9-Bis((1-((3-(4-methoxyphenyl)-1,2,4-oxadiazol-5-yl)methyl)-1H-1,2,3-triazol-5-yl) 

methyl)-1,4,9,12-tetraazacyclohexadecane-2,11-dione (197g).  

White solid (54 mg, 46%). Rf: 0.180 (EtOAc/ MeOH, 5:1). Mp 191–192 °C. 

IR (KBr, v: cm
–1

): 3332 (NH), 3124, 2935, 2839, 1658 (C=O), 1612, 1597, 

1573,1527, 1481, 1346, 1303. 
1
H NMR (400 MHz, CDCl3): δ  7.90 (d, J = 8.2 Hz, 

4H), 7.79 (s, 2H), 7.46 (dd, J = 12.7, 7.3 Hz, 2H), 6.91 (t, J = 7.5 Hz, 4H), 5.86 (s, 

4H), 3.81 (d, J = 0.8 Hz, 6H), 3.78–3.74 (m, 4H), 3.21 (s, 4H), 3.05 (s, 4H), 2.49 (s, 

4H), 1.50 (d, J = 11.0 Hz, 8H). 
13

C NMR (100 MHz, CDCl3): δ 172.10 (C=O), 

171.33, 168.57, 162.35, 145.57, 129.22, 123.59, 118.18, 114.44, 58.56, 55.78, 55.50, 

50.55, 45.31, 38.11, 27.37, 26.07. HRMS: m/z (ESI-TOF, [M+H
+
]) calcd for 

C38H46N14O6: 795.3803; found: 795.3804. 

 

4-((1-((3-(4-(Methylthio)phenyl)-1,2,4-oxadiazol-5-yl)methyl)-1H-1,2,3-triazol-5-yl) 

methyl)-9-(prop-2-yn-1-yl)-1,4,9,12-tetra azacyclohexadecane-2,11-dione (196h).  
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Yellow oil (40 mg, 38%). Rf: 0.522 (EtOAc/MeOH, 5:1). IR (KBr, v: cm
–1

): 

3448  (NH), 3302  (C≡CH), 3136, 3055, 2931, 2858,  1662 (C=O), 1597, 1527, 

1469, 1408, 1346, 1269.  
1
H NMR (400 MHz, CDCl3): δ  7.91 (d, J = 8.1 Hz, 2H), 

7.76 (s, 1H), 7.47 (t, J = 5.3 Hz, 1H), 7.27 (t, J = 6.1 Hz, 3H), 5.90 (s, 2H), 3.81 (s, 

2H), 3.35 (t, J = 3.9 Hz, 2H), 3.26 (d, J = 15.1 Hz, 4H), 3.09 (d, J = 3.7 Hz, 4H), 

2.59–2.53 (m, 3H), 2.52–2.46 (m, 4H), 2.19 (dd, J = 2.2, 1.5 Hz, 1H), 1.54 (s, 4H), 

1.52–1.42 (m, 4H).  
13

C NMR (100 MHz, CDCl3): δ  172.29 (C=O), 171.38, 168.56, 

145.61, 143.90, 127.78, 125.79, 123.61, 121.92, 78.22 (CC), 73.37 (CC),    58.48, 

55.74, 55.02, 50.53, 45.32, 44.78, 38.11, 38.03, 27.61, 26.16, 25.96, 15.04 (SCH3). 

HRMS: m/z (ESI-TOF, [M+H
+
]) calcd for C28H37N9O3S:580.2818; found: 580.2803. 

 

4,9-Bis((1-((3-(4-(methylthio)phenyl)-1,2,4-oxadiazol-5-yl)methyl)-1H-1,2,3-triazol-

5-yl)methyl)-1,4,9,12-tetraazacyclohexadecane-2,11-dione (197h) 

White solid (60 mg, 41%).  Rf: 0.370 (EtOAc/MeOH, 5:1). Mp 184-185 °C. 

IR (KBr, v: cm
–1

):  3441 (NH), 3147, 2924, 2854, 1647 (C=O), 1593, 1527, 1465, 

1465, 1408, 1384, 1346.  
1
H NMR (400 MHz, CDCl3): δ  7.86 (d, J = 8.0 Hz, 4H), 

7.80 (s, 2H), 7.48 (t, J = 5.5 Hz, 2H), 7.27–7.24 (m, 4H), 5.88 (s, 4H), 3.76 (s, 4H), 

3.21 (s, 4H), 3.05 (s, 4H), 2.49 (dd, J = 11.4, 3.4 Hz, 10H), 1.50 (d, J = 10.8 Hz, 8H). 

13
C NMR (100 MHz, CDCl3): δ  172.29 (C=O), 171.38, 168.56, 145.61, 143.90, 

127.78, 125.79, 123.61, 121.92, 58.56, 55.82, 50.56, 45.31, 38.13, 27.35, 26.07, 

15.01 (SCH3). HRMS: m/z (ESI-TOF, [M+H
+
] ) calcd for C38H46N14O4S2:  

827.3346; found: 827.3316. 
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Synthesis of the 1,4-dioxa-7,18-dithia-10,15-diazacycloicosane-9,16-dione (199) 

 

N,N'-(Butane-1,4-diyl)bis(2-chloroacetamide) 192 (2.268 g, 9.41 mol),  2,2'-

(ethane-1,2-diyl bis (oxy))diethanethiol 198 (1.714 g, 9.41 mol) and K2CO3 (5.198 g, 

37.63 mol) were mixed in MeCN and stirred at room temperature for 2d. When 

reaction completed, MeCN was evaporated under the reduced pressure. the crude 

product was purified by column chromatography (EtOAC/MeOH, 5:1) to give a 

white solid (2.100 g, 64%). Rf : 0.311 (EtOAc/MeOH, 5:1). M.p: 115–116 
o
C. IR 

(KBr, v:cm
–1

):  3294 (NH), 3074, 2924, 2866, 2746, 1651 (C=O), 1546, 1438, 1419, 

1307, 1242, 1099, 1041, 979, 883, 732, 698. 
1
H NMR (400 MHz, CDCl3): δ 7.16 (s, 

2H), 3.70 (t, J = 5.4 Hz, 4H), 3.61 (d, J = 0.8 Hz, 4H), 3.31 (dd, J = 6.3, 3.2 Hz, 4H), 

3.26 (s, 4H), 2.74 (t, J = 5.4 Hz, 4H), 1.59 (s, 4H). 
13

C NMR (100 MHz, CDCl3): δ  

168.89, 70.87, 70.10, 39.24, 36.56, 32.43, 26.84. LC-MS (ES
+
): m/z  (M+Na) : 373. 
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Synthesis of the 6,7,9,10,17,18,20,21-octahydrodibenzo[b,k][1,4,7,10,13, 16]hexa 

oxacyclo octadecine-2,14-dicarbaldehyde (25) (Jagadale et al., 2015) 

 

A mixture of dibenzo-18 –crown-6 2 ( 1 mol, 3.60 g) and TFA (18mL)  was stirred 

under N2( g)  for 1h then HMTA  (2.5 mol, 3.50 g) was added and the reaction mixture 

was refluxed  at 80 
o
C with stirring for 17h. Then the reaction mixture was cooled to 

room tempereature and additional TFA (36.5 ml) was added to the mixture and  

refluxed again at 95
 o

C for 1.5h. After completion of reaction the mixture it was 

cooled to room temperature and water was added to the mixture. A precipitate 

occurred and it was filtered off then heated with acetone it was filtered once again 

and orange product was yielded (900 mg, 22 %).  Rf : 0.29 (MeOH). M.p: 194–195 

o
C (decomp.). IR (KBr, v:cm

–1
): 3190, 3070 (Ar. C-H) 2928, 2835, (Aliph.C-H), 

1685 (C=O), 1589, 1438, 1338, 1138, 1053. 
1
H NMR (400 MHz, DMSO-d6):  δ 9.79 

(s, 2H), 7.51 (d, J = 1.8 Hz, 1H), 7.48 (t, J = 3.3 Hz, 1H), 7.33 (d, J = 1.8 Hz, 2H), 

7.13 (s, 1H), 7.11 (s, 1H), 4.21 – 4.04 (m, 8H), 3.82 (s, 8H). 
13

C NMR (100 MHz, , 

DMSO-d6): δ 191.95 (C=O), 153.81, 148.75, 126.63, 112.19, 110.28, 69.13, 68.52, 

68.07. LC-MS (ES
+
): m/z  (M+Na): 439. 
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Synthesis of the (1E,1'E)-14-((E)-(hydroxyimino)methyl)-6,7,9, 10,17,18, 20,21-

octahydrodibenzo[b,k][1,4,7,10,13,16]hexaoxacyclooctadecine-2-

carbaldehydeoxime (200) 

 

6,7,9,10,17,18,20,21-octahydrodibenzo[b,k][1,4,7,10,13,16]hexaoxacyclo 

octadecine-2,14-dicarbaldehyde 25 (1.93 mmol, 0.805 g) was dissolved in pyridine 

(5ml) and EtOH (50 ml) mixture. Then  hydroxylamine hydrochloride (6.19 mmol, 

0.429 g) was added which was dissolved in  water (2 ml) and the reaction mixture 

was stirred for 2d. It was extracted with (DCM/H2O ) then the crude product was 

recrystallized with EtOH to give a light orange solid (600 mg, 70%).  Rf : 0.22 

(MeOH). M.p: 149–150
o
C (decomposed). IR (KBr, v:cm

–1
) 3417, 3282 (O-H), 3086 

(Ar.C-H) 2928, 2889 (Aliph.C-H), 1604 (C=N), 1519, 1435, 1330. 
1
H NMR (400 

MHz, DMSO-d6): δ 10.89 (s, 2H), 7.98 (s, 2H), 7.13 (d, J = 1.5 Hz, 1H), 7.04 (t, J = 

3.1 Hz, 1H), 7.02 (d, J = 1.6 Hz, 1H), 6.93 (d, J = 6.3 Hz, 1H), 6.89 (d, J = 6.6 Hz, 

1H), 4.04 (s, 8H), 3.80 (s, 8H).
13

C NMR (100 MHz, DMSO-d6): δ 149.37, 148.49, 

126.19, 120.75, 112.54, 109.39, 69.51, 67.75. LC-MS (ES
+
): m/z  (M+H): 447. 

 

Synthesis of the  6,7,9,10,17,18,20,21-octahydrodibenzo[b,k][1,4,7,10, 13,16]hexa 

oxacyclooctadecine-2,14-dicarbonitrile (201) 

 

(1Z,1'Z)-14-((Z)-(hydroxyimino)methyl)-6,7,9,10,17,18,20,21octahydrodi 

benzo[b,k][1,4,7,10,13,16] hexaoxacyclooctadecine-2-carbaldehyde oxime (200) 

(1.345 mmol, 600 mg), acetic anhydride (0.532ml) and K2CO3 (5.65 mmol, 779 mg) 

mixed in DMSO at room temperature and stirred about for 30 min. Then it was 

refluxed at 100
o
C for 7h than heating was stopped and the mixture was stirred 
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overnight at room temperature. After reaction was completed, the mixture was 

poured into the cold water than precipitate formed was extracted with (DCM/H2O) to 

give a yellow solid. Recrystallized with acetone to give a yellow solid (321 mg, 57 

%).  Rf :0.13 (MeOH). M.p: 189–190 
o
C (decomposed). IR (KBr, v:cm

–1
): 3082 (Ar. 

C-H) 2935, 2872, 2852 (Aliph.C-H), 2222 (C≡N), 1446, 1329, 1249, 1138, 1060, 

976, 952, 864, 783, 617. 
1
H NMR (400 MHz, CDCl3): δ 7.69-6.89(m, 6H), 438-

3.83(m, 16H). 
13

C NMR (100 MHz, CDCl3): δ 152.35 (C-O), 148.52 (C-O), 126.63 

(C=C), 119.33 (C≡N), 114.90, 112.04 103.93(-C=C),69.33 (-CH2-). LC-MS (ES
+
): 

m/z  (M+Na): 433. 
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4.  RESULTS AND DISCUSSION 

 

 
4.1 Synthesis of Crown Ethers and Azacrowns bearing 1,2,4-

 Oxadiazole Moieties 

 

Taking into account of the literature knowledge that we have already referred  

the coverage of this part of our work is basically related to synthesis of benzo-

di/triazacrown ethers with p-phenylsubstituted-1,2,4-oxadiazoles (166a-h), (168a-i) 

and a novel synthetic route for the benzotriazacrown ether 164. 

 

 The azacrown 163 has been obtained by using a procedure which has been 

reported previously by Kumar and his coworkers in 1992. In order to achieve our 

goal we have focused on the reduction of macrocycle 163 by using dimethylsulfide- 

borane complex. To our best knowledge, there have not been any reported synthetic 

route on the reduction of azacrown 163 by using DMS.BH3. Thus, the product 164 is 

a new compound. In the second step, the reduced compound 164 was reacted with p- 

phenylsubstituted-5-(chloromethyl)-3-phenyl-1,2,4-oxadiazoles (165a-h) (Dürüst, et 

al., 2012, 2015) carrying both electron-releasing and electron-withdrawing groups 

(Scheme 4.36).  
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 Scheme 4.32. Synthesis of the benzotriazacrowns with 1,2,4-oxadiazole  

   group  (166a-h) 

 

The structures of the newly synthesized 164 and 166(a-h) have been 

successfully characterised on the basis of  IR, 
1
H-NMR, 

13
C-NMR, LC-MS spectra 

and HRMS  measurements. 

 

Primary indication of the product 164 is the dissappearance of the carbonyl 

groups in the IR spectra.The appearance of the two new methylenic protons and 

carbons regarding three oxadiazolylmethyl groups at around 2.98 ppm as triplet in 

the 
1
H NMR  and 

13
C NMR spectra, respectively. Upon the examination of the 

1
H 

NMR spectrum of compound 163, methylene and two NH protons which are closer 

to the carbonyl have appeared respectively at 4.46 and  7.79 ppm as singlets, After 
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reduction, these protons shift to 4.07 and 2.50 ppm respectively, due to lack of 

carbonyl groups as we can see in Figure 4.13.The LC-MS and  HRMS spectra also 

confirmed the expected product.  

 

   
 

 Figure 4.13. 
1
H NMR spectrum of compound 164 

 

N-Substitution of benzodioxatriaza crown 164 by 5-chloromethyl-1,2,4-

oxadiazoles 165(a-h) gave N,N’,N’’-trisubstituted products 166(a-h). The first 

confirmative data for the new products were the disappearance of NH absorptions in 

the IR spectra. Secondly, in the proton NMR spectra of these products, along with 

aromatic protons arising from both oxadiazole and benzodioxatriaza crown, signals 

at around 8.04-6.87 ppm were evidences.
 13

C NMR signals of methylene carbons 

have appeared at around 52 ppm. All these findings have been supported by the LC–

MS spectra at which base peak was observed at m/z 740 for the compound 166a, as a 

representative example (Figure 4.14 and 4.15). These are supported by the HRMS 

measurements.  

 

1H NMR spectrum of the compound 163 
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 Figure 4.13. 
1
H NMR spectrum of compound 166a 

 

 

 

 Figure 4.14. 
13

C NMR spectrum of compound 166a 
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In addition, the crown ether 163 was reacted with 5-(chloromethyl)-3-phenyl-

1,2,4-oxadiazoles 165a (Scheme 4.37). The reaction of these two reagents did not 

end up with any anticipated product. Due to this failed attempt, the reactants were 

further tried to react in different conditions but no reaction occurred at all (Table 

4.1). This may be attributed to a strong intramolecular hydrogen bonding  interaction 

within macrocyclic ether 163 diminishing the availability of nitrogen lone pair.  

 

  
 

Scheme 4.33. Reaction of azacrown 163 with 1,2,4-oxadiazole 165a 

 
 

 Table 4.1. Different tried conditions for reaction of the compounds 163, 165a 

Type Base Solvent Temperature (
o
C) Product 

1 K2CO3 MeCN 80 No Reaction 

2 K2CO3 MeCN R.T NoReaction 

3 K2CO3 MeCN/H2O 120 No Reaction 

4 K2CO3 DMF 100 No Reaction 

5 Et3N MeCN 80 No Reaction 

6 NaOH MeCN 80 No Reaction 

7 NaH THF 65 No Reaction 

 

The second part of this work utilizes dibenzodioxadiazacrown 167 which has 

been subject to numerous works as a key starting material (Hogberg and Cram, 1975; 

Kulikov et al., 2005; Gray, et al., 2007;  Sharghi and Zare, 2006). In this regard,  5-

(chloromethyl)-3-phenyl-1,2,4-oxadiazole 165a was reacted with benzodioxadiaza 
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crown 163 under reflux in acetonitrile. Then, N,N-disubstitution of benzodioxa 

diazacrown with the 5-chloromethyl-1,2,4-oxadiazoles 165(a-i) were performed and 

eight novel products were obtained through this reaction (Scheme 4.38).  

 

 
  

 Scheme 4.34. Synthesis of the p-substituted 6,10-bis((3-phenyl-1,2,4-oxadia 

   methyl)-6,7,8,9,10,11,17,18-octahydro-5H-dibenzozol-5-yl

    [e,n][1,4]dioxa[8, 12]diazacyclo pentadecine 168(a-i) 
 

All these products were identified by their physical and spectral 

characteristics. Thus, in the 
1
H NMR spectrum of the compound 168f (Figure 4.16) 

sixteen protons can be observed at around 8.3–6.9 ppm and two methyl protons of 

the dibenzodixoadiaza appeared at around 3.97 ppm as singlet. The other singlets 

arising from methylenic protons; the one from 1,2,4-oxadiazoles and another one 

which are closer to nitrogens originated from the crown ether resonated at around 

3.95–3.86 ppm. In the 
13

C NMR spectrum, seventeen relevant different carbons are 

present (Figure 4.16) and the LC–MS spectrum showed molecular ion as base peak 

at m/z 719 (Figure 4.19). The physical and spectral characteristics have also been 
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supported by HRMS measurements for 168(a-i). In addition, recrystallization of 

compound 168d  from CHCl3 gave single fine crystals and structure of this 

compound was elucidated by single crystal X‒Ray diffraction (Figure 4.18). 

 

  
 

 Figure 4.15. 
1
H NMR spectrum of compound 168f 

 

 

 

 Figure 4.16. 
13

C NMR spectrum of compound 168f 
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 Figure 4.17. X-ray ORTEP view of compound 168d 

 

 
 

 Figure 4.18. LC-MS Spectrum of compound 168f 

 

 
 

[M+H+] 

[M+Na] 
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4.2 Synthesis of the Benzocrown Ethers Bearing Chloro/Azido methyl 

 1,2,4-oxadiazole  

 

In this part, azacrown ethers with 1,2,4-oxadiazole moieties 185, 186 were 

synthesized in different seven stages. In order to synthesize target products 185, 186, 

3,4-dihydroxybenzaldehyde 169 was subjected to undergo reaction with 

ethylbromoacetate to yield 170. Then it was converted into the aldoxime 171 by 

using hydroxylamine hydrochloride and pyridine. After having been synthesized the 

compound 172, it was  treated with the 1,8-diamino-3,6-dioxaoctane 47. The 

products 185 and 186  were obtained  by using the compound 184 (Scheme 4.39). 

 

 

 

 Scheme 4.35. Synthesis of the benzodiazacrown ethers carrying chloromethyl 

   1,2,4-oxadiazole and azidomethyl 1,2,4-oxadiazoles 185 and 

   186 
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 The IR spectrum of 170 showed the carbonyl stretching vibrations arising 

from the ester at 1761, 1726 cm
–1

 and aldehyde at 1687 cm
–1

 ( Figure 4.20 ). When 

the 
1
H NMR was run in CDCl3  the methylene protons which are adjacent to carbonyl 

groups appeared at 4.77–4.74 ppm as singlet and other methylene protons resonated 

at 4.24 ppm as quartet. In addition, the methyl protons at the range 1.32–1.23 ppm 

were also confirmative (Figure 4.21 ). 

 

 
 

 Figure 4.19. IR spectrum of compound 170 

 

 

 

 Figure 4.20. 
1
H NMR spectrum of compound 170 
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 The IR characteristics of 171 is the appearance of the N-OH as a broad band 

at 3448 cm
–1

 and C=N stretching vibration at 1604 cm
–1 

(Figure 4.22). The molecular 

ion as base peak in the LC-MS spectrum was also in accord with the molecular 

weight  (Figure 4.23).  

 

 
 Figure 4.21. IR spectrum of compound 171 

 

 
 

 Figure 4.22. LC-MS Spectrum of compound 171 
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As for the nitrile 172, the C≡N absorption was diagnosed at 2227 cm
–1

 in the 

IR spectrum (Figure 4.24). 
1
H NMR spectrum also exhibited the relevant signals 

corresponding to the structure (Figure 4.25) . 

 

 
 

 Figure 4.23. IR spectrum of compound 172 

 

 
 

 Figure 4.24. 
1
H NMR spectrum of compound 172 
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For compound 182, first indication for the structural elucidation is the NH 

absorbtions at 3404 and 3340 cm
–1 

in the IR spectrum which were proved  in the 
1
H 

NMR spectrum at 6.98 ppm. In addition, methylene protons which are  adjacent to 

carbonyl,  there are twelve protons at around 3.57–3.55 ppm (Figure 4.26). The 
13

C-

NMR and  LC-MS spectra supported the structure. 

 

 
 

 Figure 4.25. 
1
H NMR spectrum of compound 182 

 

In the direction of our purpose we synthesized the product 184 and  

byproduct 183 which was possibly generated by a Beckman rearrangement pathway. 

Then diazacrown ether with chloromethyl-1,2,4-oxadiazole group 185 was obtained 

through 184. NMR data are in accord with the structures. In this regard, upon 

examination of the 
1
H NMR spectrum, the protons of NH2 and OH which are 

originated from the compound 184 disappeared and CH2 protons that are originated 

chlorometyl-1,2,4-oxadiazole observed at 4.72 ppm as singlet (Figure 4.27). These 

structural evidences are also supported by  [M+Na]
+
 at 477 m/z in LC–MS spectra 

(Figure 4.28). 
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 Figure 4.26. 
1
H NMR spectrum of compound 185 

 

 
 

 Figure 4.27. LC-M S Spectrum of compound 185 

 

 The final product for this part is the azide 186. Benzodiazacrown ether with  

5-chloromethyl-1,2,4-oxadiazole 185 were reacted with sodium azide at room 

temperature in acetone/water mixture to afford benzodiazacrown ether with 5-

[M+Na]+ 
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azidomethyl-1,2,4-oxadiazole 186. The structural confirmation of the compound 186 

is first provided by the IR spectrum at which  N=N=N absorption can be seen at 2102 

cm
–1

 (Figure 4.29 ). The molecular ion peak was also in accord with the structure 

(Figure 4.30). 

 

 
 

 Figure 4. 28. IR spectrum of compound 186 

 

 
  

 Figure 4.29. LC-MS Spectrum of compound 186 
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All these new synthesized compounds 170, 171, 172, 173, 174, 175, 176, 181, 

182, 184, 185, 186  have been successfully characterised on the basis of  IR, 
1
H-

NMR, 
13

C-NMR, LC-MS spectra.  

 

During the attempts of synthesizing the target products 186 and 185, we have 

tried some synthetic routes (Schemes 4.39, 4.40) which resulted in an unexpected 

amine 181  (Scheme 4.41).  We experienced some difficulties to obtain the 

macrocycles using various diamines (Scheme 4.40). At the beginning of this part, the 

product 174 was synthesized by using 3,4-dihydroxybenzaldehyde, its structure was 

verified by the physical and spectral characteristics. Then, we intended to obtain the 

benzo-di/tri aza crown ether with 1,2,4-oxadiazole moiety 202, 203, 204, but these 

three reactions failed anyway (Scheme 4.40). 

  

 
 

  Scheme 4.36. Synthesis of the 2,2'-((4-(5-(chloromethyl)-1,2,4- 

                      oxadiazol-3-yl)-1,2-phenylene)bis(oxy))diacetate 174 

           and treatment with different types of amines 68, 47, 177 
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 These unsuccessful trials have forced us to think about what if we would treat 

5-(azidomethyl)-1,2,4-oxadiazole 175 with the dipolarophile N-phenylmaleimide  

and thus we could manage to obtain the crown ether  by the treatment of amines 68, 

47, 177 with the ester 176 (Scheme 4.41). 

  

  

 

 

 Scheme 4.37. Treatment of diethyl 2,2'-((4-(5-(chloromethyl)-1,2,4-oxadiaz 

   ol-3-yl)-1,2-phenylene)bis(oxy))diacetate  174 with different 

   types of amines 
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The expected product 176 was elucidated by the IR, (
1
H, 

13
C) NMR,  LC-MS 

spectra, and physical characteristics. Checking the 
1
H NMR spectrum we can see the 

two methylene protons of the 1,2,4-oxadiazole at around 5.28 ppm as singlet, in 

addition, the aromatic protons originated from the N-phenylmaleimide appeared at 

around 7.40–7.21 ppm. The 1,2,4-triazole ring protons of cycloadduct  can be seen at 

around 5.86 and 5.54 ppm. (Figure 4.31). In the 
13

C NMR  spectra, the corresponding 

carbon signals are present.  

 

 
 

 Figure 4.30. 
1
H NMR spectrum of compound 176 

 

The attempted and forced reactions of the different amines 68, 47, 177 with 

the diester 176, did not result in any final products 178, 179, 180, but instead, the 

only product was 2,2'-((4-(5-(aminomethyl)-1,2,4-oxadiazol-3-yl)-1,2-phenylene) 

bis(oxy))diacetate 181 which was elucidated by IR, NMR, LC-MS data. 
1
H NMR 

spectrum reveals that disappearance of the  aromatic proton of the N-

phenylmaleimide and protons in the 1,2,3-triazole ring  and especially appearance of 

the protons of  NH2 are the strong evidences. Those are supported by the thirteen 

different carbons via 
13

C NMR spectrum. LC-MS spectrum shows the molecular ion 

as base peak at m/z 380 (Figure 4.32- 4.34). 
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 Figure 4.31. 
1
H NMR spectrum of compound 181 

 

 
 

 Figure 4.32. 
13

C NMR spectrum of compound 181 
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 Figure 4.33. LC-MS spectrum of the compound 181  

 

   This unexpected product 181 forced us to think about how to synthesize the 

aza-crown ethers with 1,2,4-oxadiazole moieties 185, 186 and finally we could 

manage, as we discussed above (Scheme 4.41) . 

 

Inspired by the products depicted in Scheme 4.39  we have made substantial 

efforts to synthesize 5-(azidomethyl)-3-(2,3,5,6,8,9,11,12-octahydrobenzo[b][1,4,7, 

10,13]pentaoxacyclopentadecin-15-yl)-1,2,4-oxadiazole 191 starting from benzo-15-

crown-5 28. Initially, we formylated benzo-15-crown-5 28 to yield aldehyde 29 

according to the literature procedure (Kimura et al., 2006, Chen et al., 2016, 

Safonova et al., 2013). Then successive five steps  led us to target azide 191 (Scheme 

4.42). 

[M+H]+ 
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 Scheme 4.38. 5-(Azidomethyl)-3-(2,3,5,6,8,9,11,12-octahydrobenzo [b][ 1,4, 

   7,10,13 pentaoxacyclopentadecin-15-yl)-1,2,4-oxadiazole 191 

   by using benzo-15-crown-5 28 
 

Upon examination of  IR spectrum of 187 (Figure 4.35), we can clearly see 

the  dissappearance of the carbonyl absorption and an emerging broad OH absorption 

band at around 3269 cm
–1

 regarding aldoxime. In the 
13

C NMR spectrum (Figure 

4.36) the disappearance of the carbonyl carbon signal confirmed the IR spectrum.  

These evidences are verified by LC-MS and 
1
H NMR spectra. 
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 Figure 4.34. IR spectrum of compound 187 

  

 Figure 4.35. 
13

C NMR  spectra of compounds 29 and 187 

 

In the third step of these synthetic routes, the compound 188 was prepared by 

using acetic anhydride and K2CO3  in DMSO. The product was elucidated by 

physical and spectral characteristics. IR spectrum of 188 showed strong nitrile 
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absorption at 2225 cm
–1

 (Figure 4.37). The structure was confirmed by  LC–MS; 

[M+Na]
+
 at 316 m/z in (Figure 4.38) and 

1
H, 

13
C  NMR spectra. 

 

 

 

 Figure 4.36. IR spectrum of compound 188 

 

 
 

 Figure 4.37. LC-MS Spectrum of compound 188 

 

In order to synthesize benzo-15-crown-5 carrying 5-(chloromethyl)-1,2,4-

oxadiazole group 190, the amidoxime 189 was first obtained via nitrile 188 (Scheme 

4.42) and it was identified by using the spectral and physical data. In 
1
H NMR 
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spectrum, the protons of the  NH2 and OH, which are originated from the amidoxime 

189 disappeared and CH2 protons originated from chloromethyl 1,2,4-oxadiazole 190 

were observed at 4.71 ppm as singlet (Figure 4.39). [M+H]
+
 at 407 m/z in LC-MS 

spectra coincided with structure (Figure 4.40). 

  

 
  

 Figure 4.38. 
1
H NMR spectrum of compound 190 

 

 
 

 Figure 4.39. LC-MS Spectrum of compound 190 
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The final step for this part is the identification of the benzocrown ether with 

5-(azidomethyl)-1,2,4-oxadiazole 191. When we compared the IR spectra of 190 and 

191 (Figure 4.41), the only difference between them was azide group streching 

vibration which appeared at 2111 cm
–1 

 in IR spectrum (Figure 4.41). 

 

 
 

 Figure 4.40. IR spectrum of compound 191 

 

LC-MS data also supported the structure of the compound 191 (Figure 4.42). 

along with the relevant 
1
H and 

13
C NMR  resonances.  

 

 
 

 Figure 4.41. LC-MS spectrum of compound 191 
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4.3 1,3-Dipolar Cycloadditions of Azamacrocycles carrying Acetylenic 

 Side Chain with Azidomethyl 1,2,4-Oxadiazoles  

 

In this part, we report a practical synthetic sequence for the synthesis of novel 

cycloadducts 196, 197 (a-h) (Scheme 4.44). In accordance with our goal, first 

protocol is a two-step sequence of synthesis of 193 (Scheme 4.43). 

 

 

 

 Scheme 4.39. Synthesis of the tetraazamacrocycle 193 and azamacrocycle 

   carrying acetylenic group 194 
 

Upon examination of 
1
H NMR spectrum of 193, NH protons and methylenic 

protons which are closer to the carbonyl appeared at around 7.40, 3.23 ppm as 

singlet, respectively. The other NH protons which are originated from 1,4-diamino 

butane 177 and four methylene groups appeared at around 1.63–1.48 ppm as 

multiplet. In addition, totally eight remaining methylene protons can be seen at 3.37– 

3.28 ppm as multiplet and 2.60 ppm as triplet. In the 
13

C NMR spectrum, the 
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carbonyl carbons at 171 ppm and totally six different related carbons can be seen 

(Figure 4.43). LC-MS data also supported the structure. 

 
 

 Figure 4.42. 
13

C and 
1
H NMR spectrum of the compound 193 

 

The second step is the synthesis of the dipolarophile 194 by using propargyl 

bromide as shown in Scheme 4.43. Indicative characteristics in the IR spectra are 

(C≡C–H), N-H and carbonyl absorptions. Those were supported by the 
1
H NMR at 

which two methylenic protons seen at around 3.36 ppm and two acetylenic protons at 

2.20 ppm, and carbonyl carbons at around 170 ppm. These structural evidences were 

also confirmed by [M+H]
+
 at 333 m/z in LC–MS spectra. The (

1
H, 

13
C) NMR spectra 

of the compound 194 are shown below as a representative example (Figure 4.44 and 

4.45). 
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 Figure 4.43. 
1
H NMR of the compound 194 

 

 
 

 Figure 4.44. 
13

C NMR  spectrum of the compound 194 

 

Azacrown with acetylenic side chain 194 was then subjected to 1,3-dipolar 

cycloaddition  with azidooxadiazole 195 to yield a mixture of mono and dipropargyl 

substituted cycloadducts 196, 197 which can easily be separated and purified 

(Scheme 4.44). 
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 Scheme 4.40. Synthesis and cycloadditions of  macrotetrazacycles 194  

   leading to cycloadducts 196a-h, 197a-h 
 

Among the important spectral characteristics of the novel compounds 196(a-

h) are an acetylenic proton, three CH2 protons, which are attached to propargyl, 

oxadiazole, triazole, and a C=CH proton of triazole ring and NH protons which are 

closer to carbonyl groups exhibiting resonances at around 2.18, 3.82, 5.88, 3.34 and 

7.25 and 6.96–6.93 ppm, respectively. Assignments of the protons were shown 

below (Figure 4.46). As for 
13

Carbon assignments for these compounds, the carbonyl 

and acetylenic carbons appeared at around 172–175 and 70–80 ppm range (Figure 

4.47). HRMS measurements were also in accordance with the structures. 
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 Figure 4.45. 
1
H NMR spectrum of the compound 196g 

 

 
 

 Figure 4.46. 
13

C NMR spectrum of the compound 196g 
 

Upon examination of the IR data of 197g, disappearance of the strong and 

weak absorptions at around 3327 cm
–1

 and 2096 cm
–1

 of the acetylenic group have 

been observed (Figure 4.48). 
1
H NMR spectra also showed the four methylene 

protons as separate singlet and doublets at around 5.92–5.90 and 3.81–3.76 ppm, six 
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aromatic protons, also two protons originated from 1,2,3-triazole ring can be seen at 

around 7.90, 6.92 ppm (Figure 4.49). Carbonyl carbons appeared at 173–172 ppm 

region (Figure 4.50). HRMS: m/z (ESI-TOF, [M+H
+
] ) calcd for : C38H46N14O6: 

795.3803; found: 795.3804 for compound 197g. 

 

 
 

 Figure 4.47.  IR spectrum of compound 197g 

  
 

 Figure 4.48. 
1
H NMR spectrum of the compound 197g 
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 Figure 4.49. 
13

C NMR spectrum of the compound 197g 
 
 

4.4 Synthesis of the Different Types of Crown Ethers  

 

In the direction of our goal we have focused on the synthesis of  various type 

of crown ethers unlike the ones we have mentioned previously. Since the crown 

ethers have found too many practical usages over the decades starting from their first 

dicovery in many areas such as material science, pharmaceutical science, and 

industry due to their affinity towards the metal cations (Mane, et al., 2016; 

Maciejewski, et al.,2009; Herman, et al., 2003; Wang, 2000; Vaira, et al., 1999). 

Herein we further introduce the synthesis of the 1,17-dioxa-3,14-dithia-6,11-

diazacyclononadecane-5,12-dione 199 (Scheme 4.45). This novel compound 199 was 

obtained in two steps. The first step was mentioned previously (Scheme 4.43), and in 

the second step  the crablike cyclization occurred between dithiol 198 and the amide 

192 (Scheme 4.45).  
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 Scheme 4.41. Synthesis of the 1,17-dioxa-3,14-dithia-6,11-diazacyclonona 

   decane-5,12-dione 199 
 

Upon the examination of the 
1
H NMR spectrum of the compound 199, the 

protons from amide and methylene protons which are closer to carbonyl resonate as 

singlet at 7.16 and 3.26 ppm. Further, the methylenic protons originated from 2,2'-

(ethane-1,2-diyl bis (oxy))diethanethiol 198 are observed at around 3.70–1.59 ppm 

(Figure 4.51). Carbonyl carbons can be viewed at 170 ppm in 
13

C NMR, and the 

structural elucidation is supported by the LC-MS data which gave [M+Na]
+
  at 373 

m/z as base peak (Figure 4.52). 
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 Figure 4.50. 
1
H NMR spectrum of  compound 199 

 

 
 

 Figure 4.51. LC-MS spectrum of compound 199 
 

In the literature, Duff and Bills first reported formylation of phenolic 

compounds by using hexamethylene tetramine (Duff and Bills, 1932, 1934). The 

formylation of the dibenzo-18-crown-6 were conducted according to Duff reaction 

conditions by Jagadele and coworkers (Jagadale, et al., 2015). This reaction route 

encouraged us to synthesize the products 200 and 201 (Scheme 4.46) and then we 

wanted to transform 201 to 202 by means of NH2OH.HCl, Et3N in EtOH, but this 
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trial was unsuccessful. Different reaction conditions were tried (Table 4.2). But any 

of them did not work at all to convert dinitrile 201 into diamidoxime 202. 

Consequently, we were able to generate two crowns identified by IR, (
1
H, 

13
C) NMR 

and LC-MS  spectra and also physical data (Figure 4.53–4.57). 

 

 
 

 Scheme 4.42. Synthesis of the benzocrown ethers with nitrile and aldoxime 

   functionalities 200, 201. 

 

 Table 4.2. Basic solutions assayed for the synthesis of compound 202 

 

Type Base Solvent Temperature (
o
C) Product 

1 Et3N EtOH 80 No Reaction 

2 Et3N MeOH:EtOH 80 No Reaction 

3 NaOH EtOH 80 No Reaction 

4 t-BuOK DMSO 100 No Reaction 

5 t-BuOK PhMe:MeOH 100 No Reaction 

6 DABCO DMSO 100 No Reaction 

7 Pyridine Pyridine  100 No Reaction 

8 K3PO4 DMF 100 No Reaction 

9 NaH THF 65 No Reaction 
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When we checked the IR spectrum of the compound 200, the OH and C=N 

absorbtions are seen at 3369 and 1600 cm
–1

 respectively (Figure 4.53). The 

compound 200 have two  distinct chemical shifts; NOH at around 10.89 ppm and are 

iminic proton at around 7.98 ppm ( Figure 4.54). This was supported by 
13

C NMR 

and LC-MS spectra (Figure 4.55).  
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 Figure 4.52. IR spectrum of the compound 200 

 
 

 Figure 4.53. 
1
H NMR spectrum of compound 200 
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 Figure 4.54. LC-MS spectrum of compound 200 
 

For the compound 201 the first evidence was nitrile absorption in the IR spectrum at  

2225 cm
–1

 (Figure 4.56). It was supported by the (
1
H,

13
C) NMR and LC-MS spectra 

(Figures 4.57, 4.58 ) and physical characteristics.  

 

 
 

 Figure 4.55. IR spectrum of compound 201 

[M+Na]+ 
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 Figure 4.56. 
1
H NMR spectrum of compound 201 

 

 
 

 Figure 4.57. LC-MS Spectrum of compound 201 
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5.  CONCLUSIONS AND RECOMMENDATIONS 

 

 
In summary, throughout this thesis work, the experiments designated to 

obtain the target macrocylic ethers were introduced in the following four sections.  

In the first part, we have focused on the synthetic sequence for the crown 

compound 164. After that  8 novel chloromethyl-1,2,4-oxadiazole substituted aza-

crowns (164a-h) were constructed. Moreover, 9 novel chloromethyl-1,2,4- 

oxadiazole substituted benzodioxatriaza crown 168(a-i) were synthesized. The 

structures of all the compounds 164, (164a-h) and 168(a-i) were exactly identified 

by means of 
1
H NMR, 

13
C NMR, IR, LC-MS spectra and HRMS measurements. 

 

In the second part, while we tried to synthesize the benzocrown ethers bearing 

1,2,4-oxadiazole moiety in different stages, we obtained an unexpected product 181 

also we reached our goals for this part. The benzo-crown ethers with 1,2,4- 

oxadiazole 186 and 191 were synthesized in different six steps. All of these 

compounds 170, 171, 172, 173, 174, 175, 176, 181, 182, 184,185, 186, 187, 188, 

189, 190, 191 have not been reported in the literature, to our best knowledge (Web of 

Science, SciFinder Scholar), these compounds are elucidated by physical and 

spectral characteristics. 

 

In the third part, 1,3-dipolar cycloadditions of azamacrocycles carrying 

acetylenic side chain with azidomethyl 1,2,4-oxadiazoles were accomplished in two 

protocols. In the fırst protocol, azamacrocycle 193 and azamacrocycles with 

acetylenic part 194 were synthesized and characterized by the spectral and physical 

data. In the second protocol, 1,3-DC reaction between dipoles 195(a-h) and 

dipolarophile 194 was carried out and the reaction resulted in a mixture of two 

different cycloadducts. Thus, 16 novel different cycloadducts 196 in which one of 

the acetylenic groups underwent cycloaddition, 197(a-h) in which both acetylenic 

groups underwent cycloaddition  were identified by means of  
1
H NMR, 

13
C NMR,  

LCMS, HRMS and IR spectra.  
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In the final part, in addition to previously described crown ethers, 3 different 

crowns 199,  200, 201 were successfully synthesized and identified. 

  

As a final remark, to our best knowledge of literature, all of these heterocyclic 

compounds are novel. Since they can be considered as potential bioactive 

heterocycles by taking account of their similar analogs in terms of main structural 

skeleton and existence of oxadiazole, triazole rings along with azamacrocycle, in the 

near future, it will be arranged to assay a series of biological activity screenings in a 

collaborative manner with internationally well-known laboratories. 
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7.  APPENDICES 
 

 

 
 

 Figure 7.58. IR spectrum of compound 162 
 

 
 

 Figure 7.59. 
1
H NMR spectrum of compound 162 
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 Figure 7.60. IR spectrum of compound 163 

 

 

 
 

 Figure 7.61. 
1
H NMR spectrum of compound 163 
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 Figure 7.62. 
13

C NMR spectrum of compound 163 
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 Figure 7.63. IR spectrum of compound 164 
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 Figure 7.64. 
1
H NMR spectrum of compound 164 

 

 
 

 Figure 7.65. 
13

C NMR spectrum of compound 164 
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 Figure 7.66. HR-MS Spectrum of compound 164 
 

 
 

 Figure 7.67. IR spectrum of compound 166a 
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 Figure 7.68. 
1
H NMR spectrum of compound 166a 

 

 
 

 Figure 7.69. 
13

C NMR spectrum of compound 166a 
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 Figure 7.70. LC-MS Spectrum of compound 166a 

 

 
 

 Figure 7.71. HR-MS Spectrum of compound 166a 
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 Figure 7.72. IR spectrum of compound 166b 
 

 
 

 Figure 7.73. 
1
H NMR spectrum of compound 166b 
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 Figure 7.74. 
13

C NMR spectrum of compound 166b 
 

 
 

 Figure 7.75. LC-MS Spectrum of compound 166b 

[M+H] 
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 Figure 7.76. HR-MS Spectrum of compound 166b 

 

 
 

 Figure 7.77. IR spectrum of compound 166c 

 

500750100012501500175020002500300035004000

1/cm

-0

15

30

45

60

75

%T

3
0

5
3

,4
2 2

9
8

5
,9

1

2
8

3
9

,3
1

1
6

1
4

,4
7

1
5

9
1

,3
3

1
5

6
6

,2
5

1
5

0
6

,4
6

1
4

8
1

,3
8

1
4

2
3

,5
1 1

3
5

2
,1

4

1
2

6
5

,3
5

1
1

7
4

,6
9

1
1

0
7

,1
8

1
0

3
1

,9
5

8
9

6
,9

3

8
4

2
,9

2

7
3

8
,7

6

7
0

5
,9

7

4
3

9
,7

8

4
3

0
,1

4

4
1

4
,7

1

4
0

1
,2

1

BO-340



162 

 

 
 

 Figure 7.78. 
1
H NMR spectrum of compound 166c 

 

 
 

 Figure 7.79. 
13

C NMR spectrum of compound 166c 
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 Figure 7.80. LC-MS Spectrum of compound 166c 

 

 
 

 Figure 7.81. HR-MS Spectrum of compound 166c 

 

 

(M+H) 
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 Figure 7.82. IR spectrum of compound 166d 

 

 
 

 Figure 7.83. 
1
H NMR spectrum of compound 166d 
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 Figure 7.84. 
13

C NMR spectrum of compound 166d 

 

 
 

 Figure 7.85. LC-MS Spectrum of compound 166d 
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 Figure 7.86. HR-MS Spectrum of compound 166d 
 

 
 

 Figure 7.87. IR spectrum of compound 166e 
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 Figure 7.88. 
1
H NMR spectrum of compound 166e 

 

 

 
 

 Figure 7.89. 
13

C NMR spectrum of compound 166e 
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 Figure 7.90. LC-MS Spectrum of compound 166e 

 

 

 
 

 Figure 7.91. HR-MS Spectrum of compound 166e 
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 Figure 7.92. IR spectrum of compound 166f 

 

 
 

 Figure 7.93. 
1
H NMR spectrum of compound 166f 
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 Figure 7.94. 
13

C NMR spectrum of compound 166f 
 

 

 
 

 Figure 7.95. LC-MS Spectrum of compound 166f 
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 Figure 7.96. HR-MS Spectrum of compound 166f 
 

 
 

 Figure 7.97. IR spectrum of compound 166g 
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 Figure 7.98. 
1
H NMR spectrum of compound 166g 

 

 

 
 

 Figure 7.99. 
13

C NMR spectrum of compound 166g 
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 Figure 7.100. LC-MS Spectrum of compound 166g 

 

 
 

 Figure 7.101. HR-MS Spectrum of compound 166g 
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 Figure 7.102. IR spectrum of compound 166h 
 

 
 

 Figure 7.103. 
1
H NMR spectrum of compound 166h 
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 Figure 7.104. 
13

C NMR spectrum of compound 166h 
 

 
 

 Figure 7.105. LC-MS Spectrum of compound 166h 
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 Figure 7.106. HR-MS Spectrum of compound 166h 

 

 
 

 Figure 7.107. IR spectrum of compound 168a 
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 Figure 7.108. 
1
H NMR spectrum of compound 168a 

 

 

 
 

 Figure 7.109. 
13

C NMR spectrum of compound 168a 
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 Figure 7.110. LC-MS Spectrum of compound 168 

 

 
 

 Figure 7.111. HR-MS Spectrum of compound 168a 
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 Figure 7.112. IR spectrum of compound 168b 

 

 
 

 Figure 7.113. 
1
H NMR spectrum of compound 168b 
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 Figure 7.114. 
13

C NMR spectrum of compound 168b 

 

 
 

 Figure 7.115. LC-MS Spectrum of compound 168b 



181 

 

 
 

 Figure 7.116. HR-MS Spectrum of compound 168b 

 

 
 

 Figure 7.117. IR spectrum of compound 168c 
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 Figure 7.118. 
1
H NMR spectrum of compound 168c 

 

 

 
 

 Figure 7.119. 
13

C NMR spectrum of compound 168c 
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 Figure 7.120. LC-MS Spectrum of compound 168c 

 

 

 
 

 Figure 7.121. HR-MS Spectrum of compound 168c 
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 Figure 7.122. IR spectrum of compound 168d 

 
 

 
 

 Figure 7.123. 
1
H NMR spectrum of compound 168d 
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 Figure 7.124. 
13

C NMR spectrum of compound 168d 

 

 
 

 Figure 7.125. X-Ray ORTEP view of compound 168d 



186 

 

 
 

 Figure 7.126. LC-MS Spectrum of compound 168d 

 

 
 

 Figure 7.127. HR-MS Spectrum of compound 168d 
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 Figure 7.128. IR spectrum of compound 168e 

 
 

 Figure 7.129. 
1
H NMR spectrum of compound 168e 
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 Figure 7.130. 
13

C NMR spectrum of compound 168e 

 

 
 

 Figure 7.131. LC-MS Spectrum of compound 168e 
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 Figure 7.132. HR-MS Spectrum of compound 168e 

 

 
 

 Figure 7.133. IR spectrum of compound 168f 
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 Figure 7.134. 
1
H NMR spectrum of compound 168f 

 

 

 
 

 Figure 7.135. 
13

C NMR spectrum of compound 168f 
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 Figure 7.136. LC-MS Spectrum of compound 168f 

 

 
 

 Figure 7.137. HR-MS Spectrum of compound 168f 
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 Figure 7.138. IR spectrum of compound 168g 

 

 
 

 Figure 7.139. 
1
H NMR spectrum of compound 168g 
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 Figure 7.140. 
13

C NMR spectrum of compound 168g 

 

 

 
 

 Figure 7.141. LC-MS Spectrum of compound 168g 
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 Figure 7.142. HR-MS Spectrum of compound 168g 

 

 
 

 Figure 7.143. IR spectrum of compound 168h 
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 Figure 7.144. 
1
H NMR spectrum of compound 168h 

 

 
 

 Figure 7.145. 
13

C NMR spectrum of compound 168h 
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 Figure 7.146. LC-MS Spectrum of compound 168h 

 

 
 

 Figure 7.147. HR-MS Spectrum of compound 168h 
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 Figure 7.148. IR spectrum of compound 168ı 

 

 
 

 Figure 7.149. 
1
H NMR spectrum of compound 168ı 
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 Figure 7.150. 
13

C NMR spectrum of compound 168ı 
 

 

 
 

 Figure 7.151. LC-MS Spectrum of compound 168ı 
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 Figure 7.152. IR spectrum of compound 170 

 

 
 

 Figure 7.153. 
1
H NMR spectrum of compound 170 
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 Figure 7.154. 
13

C NMR spectrum of compound 170 

 

 
 

 Figure 7.155. LC-MS Spectrum of compound 170 
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 Figure 7.156. IR spectrum of compound 171 

 

 
 

 Figure 7.157. 
1
H NMR spectrum of compound 171 
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 Figure 7.158. 
13

C NMR spectrum of compound 171 

 

 

 
 

 Figure 7.159. LC-MS Spectrum of compound 171 
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 Figure 7.160. IR spectrum of compound 172 

 

 
 

 Figure 7.161. 
1
H NMR spectrum of compound 172 
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 Figure 7.162. 
13

C NMR spectrum of compound 172 

 

 
 

 Figure 7.163. LC-MS Spectrum of compound 172 
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 Figure 7.164. IR spectrum of compound 173 

 

 

 
 

 Figure 7.165. 
1
H NMR spectrum of compound 173 
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 Figure 7.166. 
13

C NMR spectrum of compound 173 

 

 

 
 

 Figure 7.167. LC-MS Spectrum of compound 173 
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 Figure 7.168. IR spectrum of compound 174 

 
 

 Figure 7.169. 
1
H NMR spectrum of compound 174 
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 Figure 7.170. 
13

C NMR spectrum of compound 174 

 

 

 

 Figure 7.171. LC-MS Spectrum of compound 174 
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 Figure 7.172. IR spectrum of compound 175 

 

 

 
 

 Figure 7.173. 
1
H NMR spectrum of compound 175 
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 Figure 7.174. 
13

C NMR spectrum of compound 175 

 

 

 
 

 Figure 7.175. LC-MS Spectrum of compound 175 
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 Figure 7.176. IR spectrum of compound 176 

 
 

 
 

 Figure 7.177. 
1
H NMR spectrum of compound 176 
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 Figure 7.178.  
13

C NMR spectrum of compound 176 
 

 
 

 Figure 7.179. LC-MS Spectrum of compound 176 
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 Figure 7.180. IR spectrum of compound 181 

 

 

 
 

 Figure 7.181. 
1
H NMR spectrum of compound 181 
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 Figure 7.182. 
13

C NMR spectrum of compound 181 

 

 

 
 

 Figure 7.183. LC-MS Spectrum of compound 181 
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 Figure 7.184. IR spectrum of compound 182 
 

 
 

 Figure 7.185. 
1
H NMR spectrum of compound 182 
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 Figure 7.186. 
13

C NMR spectrum of compound 182 
 

 
 

 Figure 7.187. LC-MS Spectrum of compound 182 
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 Figure 7.188. IR spectrum of compound 184 

  
 

 
 

 Figure 7.189. 
1
H NMR spectrum of compound 184 
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 Figure 7.190. 
13

C NMR spectrum of compound 184 
 

 
 

 Figure 7.191. LC-MS Spectrum of compound 184 
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 Figure 7.192. IR spectrum of compound 185 
 

 
 

 Figure 7.193. 
1
H NMR spectrum of compound 185 
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 Figure 7.194. 
13

C NMR spectrum of compound 185 
 

 
 

 Figure 7.195. LC-MS Spectrum of compound 185 
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 Figure 7.196. IR spectrum of compound 186 
 

 
 

 Figure 7.197. 
1
H NMR spectrum of compound 186 
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 Figure 7.198. 
13

C NMR spectrum of compound 186 

 

 
 

 Figure 7.199. LC-MS Spectrum of compound 186 
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 Figure 7.200. IR spectrum of compound 29 

 

 
 

 Figure 7.201. 
1
H NMR spectrum of compound 29 
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 Figure 7.202. 
13

C NMR spectrum of compound 29 
 

 
 

 Figure 7.203. LC-MS Spectrum of compound 29 
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 Figure 7.204. IR spectrum of compound 187 

 

 
 

 Figure 7.205. 
1
H NMR spectrum of compound 187 
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 Figure 7.206. 
13

C NMR spectrum of compound 187 
 

 

 
 

 Figure 7.207. LC-MS Spectrum of compound 187 
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 Figure 7.208. IR spectrum of compound 188 
 

 
 

 Figure 7.209. 
1
H NMR spectrum of compound 188 
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 Figure 7.210. 
13

C NMR spectrum of compound 188 
 

 
 

 Figure 7.211.  LC-MS Spectrum of compound 188 
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 Figure 7.212. IR spectrum of compound 189 

 

 
 

 Figure 7.213. 
1
H NMR spectrum of compound 189 
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 Figure 7.214. 
13

CNMR spectrum of compound 189 

 

 
 

 Figure 7.215. LC-MS Spectrum of compound 189 
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 Figure 7.216. IR spectrum of compound 190 
 

 

 
 

 Figure 7.217. 
1
H NMR spectrum of compound 190 
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 Figure 7.218. 
13

C NMR spectrum of compound 190 

 

 
 

 Figure 7.219. LC-MS Spectrum of compound 190 
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 Figure 7.220. IR spectrum of compound 191 

 

 
 

 Figure 7.221. 
1
H NMR spectrum of compound 191 
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 Figure 7.222. 
13

C NMR spectrum of compound 191 
 

 
 

 Figure 7.223. LC-MS Spectrum of compound 191 
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 Figure 7.224. IR spectrum of compound 192 
 

 
 

 Figure 7.225. 
1
H NMR spectrum of compound 192 
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 Figure 7.226. 
13

C NMR spectrum of compound 192 

 

 
 

 Figure 7.227. LC-MS Spectrum of compound 192 
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 Figure 7.228. IR spectrum of compound 193 
 

 
 

 Figure 7.229. 
1
H NMR spectrum of compound 193 
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 Figure 7.230. 
13

C NMR spectrum of compound 193 

 

 
 

 Figure 7.231. LC-MS Spectrum of compound 193 
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 Figure 7.232. IR spectrum of compound 194 
 

 
 

 Figure 7.233. 
1
H NMR spectrum of compound 194 

 

500750100012501500175020002500300035004000

1/cm

-10

0

10

20

30

40

50

%T

3
3

4
4

,6
8

3
3

0
8

,0
3

3
2

7
3

,3
1

3
2

3
2

,8
0

2
9

3
9

,6
1 2

8
6

8
,2

4

2
8

1
8

,0
9

2
0

9
6

,6
9

1
6

4
7

,2
6 1

5
2

9
,6

0

1
4

6
4

,0
2

1
4

3
8

,9
4

1
3

3
4

,7
8

1
2

8
0

,7
8

1
1

9
5

,9
1

1
1

2
4

,5
4

1
0

9
3

,6
7

8
9

5
,0

0

7
4

8
,4

1

6
8

4
,7

5

BO-416



240 

 

 
 

 Figure 7.234. 
13

C NMR spectrum of compound 194 
 

 
 

 Figure 7.235. LC-MS Spectrum of compound 194 
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 Figure 7.236. IR spectrum of compound 196a 
 

 
 

 Figure 7.237. 
1
H NMR spectrum of compound 196a 
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 Figure 7.238. 
13

C NMR spectrum of compound 196a 

 

 
 

 Figure 7.239. HR-MS Spectrum of compound 196a 
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 Figure 7.240. IR spectrum of compound 197a 

 

 
 

 Figure 7.241. 
1
H NMR spectrum of compound 197a 
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 Figure 7.242. 
13

C NMR spectrum of compound 197a 
 

 
 

 Figure 7.243. HR-MS Spectrum of compound 197a 
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 Figure 7.244. IR spectrum of compound 196b 

 

 
 

 Figure 7.245. 
1
H NMR spectrum of compound 196b 
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 Figure 7.246. 
13

C NMR spectrum of compound 196b 
 

 
 

 Figure 7.247. MASS Spectrum of compound 196b 



247 

 

 
 

 Figure 7.248. IR spectrum of compound 197b  
 

 
 

 Figure 7.249. 
1
H NMR spectrum of compound 197b 
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 Figure 7.250. 
13

C NMR spectrum of compound 197b 

 

 
 

 Figure 7.251. HR-MS Spectrum of compound 197b 
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 Figure 7.252. IR spectrum of compound 196c 

 

 
 

 Figure 7.253. 
1
H NMR spectrum of  compound 196c 
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 Figure 7.254. 
13

C NMR spectrum of compound  196c 

 

 
 

 Figure 7.255. HR-MS Spectrum of compound 196c 
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 Figure 7.256. IR spectrum of compound 197c 

 

 

 
 

 Figure 7.257. 
1
H NMR spectrum of compound 197c 
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 Figure 7.258. 
13

C NMR spectrum of compound 197c 

 

 
 

 Figure 7.259. HR-MS Spectrum of compound 197c 
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 Figure 7.260. IR spectrum of compound 196d 
 

 

 
 

 Figure 7.261. 
1
H NMR spectrum of compound  196d 
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 Figure 7.262. 
13

C NMR spectrum of compound  196d 
 

 
 

 Figure 7.263. HR-MS Spectrum of compound 196d 
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 Figure 7.264. IR spectrum of compound 197d 
 

 

 
 

 Figure 7.265. 
1
H NMR spectrum of compound 197d 
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 Figure 7.266. 
13

C NMR spectrum of compound  197d 

 

 
 

 Figure 7.267. HR-MS spectrum of compound 197d 
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 Figure 7.268. IR spectrum of compound 196e 

 

 
 

 Figure 7.269. 
1
H NMR spectrum of compound 196e 
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 Figure 7.270. 
13

C NMR spectrum of compound 196e 

 

 

 

 

 Figure 7.271. HR-MS Spectrum of compound 196c 
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 Figure 7.272. IR spectrum of compound 197e 

 

 
 

 Figure 7.273. 
1
H NMR spectrum of compound  197e 
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 Figure 7.274. 
13

C NMR spectrum of compound  197e 
 

 
 

 Figure 7.275. HR-MS Spectrum of compound 197e 
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 Figure 7.276. IR spectrum of compound 196f 
 

 

 
 

 Figure 7.277. 
1
H NMR spectrum of compound 196f 
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 Figure 7.278. 
13

C NMR spectrum of compound 196f 
 

 

 

 Figure 7.279. HR-MS Spectrum of compound 196f 
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 Figure 7.280. IR spectrum of compound 197f 

 

 
 

 Figure 7.281. 
1
H NMR spectrum of compound  197f 
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 Figure 7.282. 
13

C NMR spectrum of compound  197f 

 

 
 

 Figure 7.283. HR-MS Spectrum of compound 197f 



265 

 

 
 

 Figure 7.284. IR spectrum of compound 196g 
 

 
 

 Figure 7.285. 
1
H NMR spectrum of compound  196g 
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 Figure 7.286. 
13

C NMR spectrum of compound  196g 
 

 
 

 Figure 7.287. HR-MS Spectrum of compound 196g 
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 Figure 7.288.  IR spectrum of compound 197g  

 

 
 

 Figure 7.289. 
1
H NMR spectrum of compound  197g 
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 Figure 7.290. 
13

C NMR spectrum of compound  197g 

 

 
 

 Figure 7.291. HR-MS Spectrum of compound 197g 
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 Figure 7.292. IR spectrum of compound 196h  

 

 
 

 Figure 7.293. 
1
H NMR spectrum of compound  196h 

500750100012501500175020002500300035004000

1/cm

37,5

45

52,5

60

67,5

75

%T

3
3

4
8

,5
4

3
3

0
2

,2
4

3
1

3
6

,3
6

3
0

5
5

,3
5

2
9

3
1

,9
0

2
8

5
8

,6
0

1
7

0
5

,1
3

1
6

6
2

,6
9

1
5

9
7

,1
1

1
5

2
7

,6
7

1
4

6
9

,8
1

1
4

0
8

,0
8

1
3

4
6

,3
6 1
2

6
9

,2
0

1
2

3
0

,6
3

1
1

8
8

,1
9

1
1

1
4

,8
9 1
0

4
9

,3
1

BO-440-FR-1



270 

 

 
 

 Figure 7.294. 
13

C NMR spectrum of compound 196h 

 

 
 

 Figure 7.295. HR-MS Spectrum of compound 196h 
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 Figure 7.296. IR spectrum of compound 197h  

 

 
 

 Figure 7.297. 
1
H NMR spectrum of compound  197h 
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 Figure 7.298. 
13

C NMR spectrum of  compound 197h 

 

 
 

 Figure 7.299. HR-MS Spectrum of compound 197h 
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 Figure 7.300. IR spectrum of compound 199 

 

 
 

 Figure 7.301. 
1
H NMR spectrum of compound  199 
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 Figure 7.302. 
13

C NMR spectrum of  compound 199 
 

 

 
 

 Figure 7.303. LC-MS Spectrum of compound 199 
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 Figure 7.304. IR spectrum of compound 25 

 

 
 

 Figure 7.305. 
1
H NMR spectrum of compound  25 
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 Figure 7.306. 
13

C NMR spectrum of  compound 25 
 

 
 

 Figure 7.307. LC-MS Spectrum of compound 25 
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 Figure 7.308. IR spectrum of compound 200 

 

 
 

 Figure 7.309. 
1
H NMR spectrum of compound  200 
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 Figure 7.310. 
13

C NMR spectrum of  compound 200 
 

 

 

 Figure 7.311.  LC-MS Spectrum of compound 200 
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 Figure 7.312. IR spectrum of compound 201 

 

 

 

 Figure 7.313. 
1
H NMR spectrum of compound  201 

 



280 

 

 

 

 Figure 7.314. 
13

C NMR spectrum of  compound 201 
 

 
 

 Figure 7.315. LC-MS Spectrum of compound 201 
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