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ABSTRACT

PERFORMANCE ANALYSIS OF HIGHER-ORDER STATISTICAL

FEATURES IN CLASSIFICATION OF SOME MODULATION TYPES

Tezel, Remziye Büşra

M.S., Department of Electrical and Electronics Engineering

Supervisor : Prof. Dr. Ali KARA

January 2020, 53 pages

Modulation Classification algorithms are used to determine the modulation type of

signal obtained at the receiver and to use the appropriate demodulator. There are 2

types as Feature-based(FB) and Likelihood-based(LB). In this thesis, FB method is

used, which is less complex in structure. Algorithm has been developed to classify the

signals that were modulated by 12 Analog and Digital Modulation types. Statistical

features, Higher-order Moments(HOMs) and Higher-order Cumulants(HOCs) were

used as features. Signals, which are recorded as over-the-air adding synthetic simu-

lated channel effects, were classified with Linear, Quadratic, and Cubic Support Vec-

tor Machine(SVM). The classification performance of the signals examined at SNR

from 0 dB to 20 dB were presented. As a result, the classification performance was

found to be stable between 10 dB and 20 dB and is approximately 73%. The high-

est value of performance was observed in Quadratic SVM as 75.5% at 12dB. In this

thesis, the limits of the developed modulation classification algorithm successfully

presented with the features and SVM structure of 12 modulation types.

Keywords: Modulation Classification, Feature Extraction, Support Vector Machine,

Analog Modulations, Digital Modulations
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ÖZ

BAZI MODÜLASYON TÜRLERİNİN SINIFLANDIRILMASINDA YÜKSEK

MERTEBEDEN İSTATİSTİKSEL ÖZELLİKLERIN PERFORMANS

ANALİZİ

Tezel, Remziye Büşra

Yüksek Lisans, Elektrik ve Elektronik Mühendisliği

Tez Yöneticisi : Prof. Dr. Ali KARA

Ocak 22, 2020, 53 sayfa

Modülasyon Sınıflandırma algoritmaları, alıcıda elde edilen sinyalin modülasyon tip-

ini belirlemek ve uygun demodulator seçimi için kullanılır. Özellik tabanlı ve Ola-

bilirlik tabanlı olmak üzere 2 tür vardır. Bu tezde yapı olarak daha az karmaşık

olan FB yöntemi kullanılmıştır. 12 Analog ve Dijital Modülasyon tipli sinyalleri

sınıflandırmak için algoritma geliştirilmiştir. İstatistiksel özellikler, Yüksek Dere-

celi Momentler ve Yüksek Dereceli Kümülantlar kullanılmıştır. Havadan kaydedilen

ve sentetik simüle kanal etkileri eklenen sinyaller Lineer, Kuadratik ve Kübik Destek

Vektör Makinesi (DVM) ile sınıflandırıldı. SNR’de 0 dB ile 20 dB arasında incele-

nen sinyallerin sınıflandırma performansı sunulmuştur. Performansın 10 dB ve 20 dB

arasında kararlı olduğu ve yaklaşık %73, en yüksek performansın ise Karesel SVM’de

12dB’de % 75.5 olduğu gözlenmiştir. Bu tezde, geliştirilen algoritmasının sınırları,

12 modülasyon tipinin özellikleri ve SVM yapısı ile başarılı bir şekilde sunulmuştur.

Anahtar Kelimeler: Modülasyon Sınıflandırma, Öznitelik Çıkarımı, Destek Vektör

Makinesi, Analog Modülasyonlar, Dijital Modülasyonlar
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CHAPTER 1

INTRODUCTION

Communication systems are the efficient and safe transmission of information from

one place to another. Developing communication systems to meet the needs of people

to communicate has an important place in today’s technology. A general communica-

tion system consists of 3 main parts: Transmitter, Transmission Channel and Receiver

[2]. This system is shown in Figure 1.1.

Figure 1.1: General Communication System

The transmitter allows the information signal to be transmitted on the system. The

transmission channel provides the environment for the signal sent by the transmitter

to reach the receiver. The receiver receives the signal from the channel to obtain the

information signal. There are 2 types of transmission channels in the communication

systems: wired and wireless. In wired communication, transmission channels such

as twisted pairs, coaxial cables, and fiber-optic cables are used for data transmission,

and air or space is used in wireless communication. Wireless communication utilizes

infrared, radio and microwave signals.

There are two kinds of wireless transmission channels in the communication systems,

namely Additive White Gaussian Noise (AWGN) and Multi- fading, which are called
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wireless transmission environment. Additive white Gaussian noise, which is added

to the signals to mimic the wireless environment in nature, is a channel noise that

is widely mentioned in the literature. However, due to many factors in nature, the

AWGN channel is insufficient to represent nature. For this reason, A multi-fading

channel is presented for a more complex structure for signals. There are effects such

as reflection and refraction instead of noise due to objects in the wireless environment.

Because of this complex structure, applications show lower performance when work-

ing in multi-fading channels. However, in order to use the system efficiently in real

life, studies are conducted on multi-fading channels and the problems that may be in

practice are tried to be minimized.

Multi-fading channels consist of Rician and Rayleigh channels. The difference be-

tween these channels can be explained by Line of Sight (LOS). The LOS is the ab-

sence of any obstructions between the receiver and transmitter. If LOS is provided,

this channel is called the Rician channel. In other cases, LOS cannot be provided.

This channel is called Rayleigh. In real life, there are many obstacles in the wireless

communication environment and are subject to effects such as signal reflection and

refraction. Therefore, the use of the Rayleigh channel expresses more real effects.

Due to problems such as the wireless environment conditions and antenna size, it can-

not be performed properly in the transmission of low frequency signals. Therefore,

high frequency signals are used to transmit low frequency signals in wireless environ-

ment. The high-frequency signal used is called a carrier signal, and the transmission

of a low-frequency information signal by means of a carrier signal is called modula-

tion. There are 2 types of modulation, Analog Modulation and Digital Modulation

[3].

An algorithm for detecting the modulation type when a signal in which modulation

type is unknown reaches the receiver has an important place in the technology of

communication systems. The algorithms developed for this purpose are called modu-

lation classification algorithms. The lack of prior knowledge of the received signal in

communication systems creates a difficult situation for the Modulation method. This

method allows analyzing the modulated signal reaching the receiver with the appro-

priate demodulator. It has seen in literature that Modulation Classification methods
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are used generally in the military, civil and commercial fields [4]. The location of the

modulation classification algorithm in a communication system is shown in Figure

1.2.

Figure 1.2: Modulation Classification Algorithm in Communication System

Modulation classification methods consist of two approaches: Likelihood-based (LB)

and Feature-based (FB). The first method, Likelihood-based approach uses the like-

lihood function and problems are identified by multiple hypothesis testing [5]. In

the Likelihood-based approaches, Average Likelihood Ratio Test (ALRT), General-

ized Likelihood Ratio Test (GLRT), Hybrid Likelihood (HLRT) [5] and Quasi-Hybrid

Likelihood Ratio Test (QHLRT) [6] are available in the literature. This approach does

not provide good performance in the presence of phase and frequency offset [7]. The

Second method, Feature-based method can be defined as extracting useful information

from an incoming signal that does not have information about it. The feature extrac-

tion can be performed in the frequency domain or time domain. In the literature, Sta-

tistical extracted from instantaneous amplitude, phase and frequency, spectrum sym-

metry, wavelet transform, Fourier transform, High order Moments (HOMs) and Cu-

mulants (HOCs), Higher-order Cyclic Cumulants, Very High-order Cumulants, Very

Higher-order Statistics (VHOS) are used as features. The performance of these fea-

tures may vary depending on factors such as signal characteristics, modulation types,

channel models. Using the right feature is an important factor.

LB shows the optimal classifier property while FB shows the suboptimal property.

Since the complexity of the FB method is lower than LB, it can be said that it is pre-

ferred more in practical applications. Also, the LB method is susceptible to nonideal

situations and model mismatch. Considering the advantages and disadvantages of FB
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and LB methods, it can be said that the FB method is more preferred in literature [8].

The extracted features go through a classification process to separate the signals by

modulation type. In general, there are many classification algorithms like Artificial

Neural Networks (ANN), Support Vector Machines (SVM), decision-tree in the liter-

ature.

In [9, 10, 11], intantaneous amplitude, phase and frequency information of the signal

were used as feature. Known signal processing techniques were used to extract this

characteristic information from the signal and the necessary pre-processing was com-

pleted before the information was given to the classification algorithm. It was seen

that decision tree or neural network [12] algorithms were used in classification step of

the articles used by these features.

In [13], wavelet transform was used as a method to extract features from signals. It

was preferred due to low computational complexity. The multi-layer neural network

which has increased in popularity recently was used as a classifier [14]. In [15], the

phase probability density function of the received signal was acquired using Tikhonov

function and the suboptimal classifier was improved. In [16], the MPSK signal was

represented using the Fourier series expansion unlike the paper was used Tikhonov

function. The asymptotic optimal classification algorithm is examined using the the-

oretical approach. In both, the signals were simulated in the AWGN channel.

In [17], An AMC was developed using the HOS as a solution of estimation of the blind

channel and pattern recognition in the Multipath channel. In [18] and [19], it was used

the 4th order cumulant for feature extraction step without the channel estimation co-

efficient. An important difference between the two articles is that [19] uses MIMO

systems. In [20]. In addition to the 4th order cumulant, the 6th cumulant was added

and the results were compared. The multipath channel is selected as the channel. Sim-

ilarly, the features were extracted with 6th cumulant [21]. Signals have been classified

with SCAEs, which is a learning method (Stacked convolutional auto-encoders). In

[22], the classification performance was improved by using the algorithm generated

by creating a relationship between 4th order cumulants. In [23], instantaneous val-

ues and higher-order statistics such as cumulants and moments were used to generate

features. In the classification of signals, different neural networks such as MLP neu-

4



ral networks, radial basis function neural networks, probabilistic neural networks,

Multi-class SVM based classifiers were used. In [24], second, fourth and sixth order

cumulants were used. Hierarchical polynomial structure showed a high performance

in contrast to conventional polynomial classifer. In [25], the performance of the Mod-

ulation classification algorithm under the conditions of SUMC (Sigle user modulation

classification) and MUMC (Multi user modulation classification) were examined us-

ing fourth and sixth order cumulants. In [26], the fourth cumulants were used and it

is aimed to achieve higher performance at low SNR using the hierarchical scheme. In

[27], it has used the correlation function, cyclic cumulants (CC), and cumulants for

the feature extraction step. The extracted features were examined to classify using

the tree-based algorithm. As the types of antenna, it was used SISO, SIMO, MISO,

MIMO in frequency selective fading channel. Also, in terms of the algorithm which is

simulated in the computer environment, this article is important. In [28], the statistical

features are extracted from the received signals have classified with deep neural net-

work method (DNN). Because DNN provides an advantage for a complex structure a

fading channel. The support vector machine method which is one of machine learning

methods has been used for classification in [29]. The importance of frequency offset

and fading problems have been emphasized. To solve this problem, the new algorithm

has been improved. In [30], it was used the correlation function for the received sig-

nal. A blind modulation classification algorithm was performed using SISO, SIMO,

MISO, MIMO with frequency selective channel.

In this thesis, a modulation classification algorithm has been developed in order to

determine which modulation type the signal is modulated. Modulation types used in

the developed algorithm include Mary-QAM (Quadrature Amplitude Modulation),

i.e. 16-QAM, 32-QAM, 64-QAM, 128-QAM, and 256-QAM, GMSK (Gaussian

Minimum Shift Keying) and OQPSK (Offset Quadrature Phase-shift Keying) as dig-

ital modulation and AM-DSB-WC (Double Sideband with Carrier), AM-DSB-SC

(Double Sideband Suppressed Carrier), AM-SSB-WC (Single Sideband with Carrier),

AM-SSB-SC (Single Sideband Suppressed Carrier) and FM (Frequency Modulation)

as analog modulations. Firstly, features that contain the characteristics of the modu-

lated signals were extracted from the signals. Afterward, the signals were separated

according to the modulation type by certain classification methods. Success rates
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were examined. Then the results were presented.

According to these purposes, the thesis was organized as follows; In the first chapter, a

general infrastructure of communication systems, modulation classification, and anal-

ysis of the information obtained in the literature review were presented. In the second

chapter, the topics were divided into 4 main topics. The characteristics of the data

used in the study were defined under the subtitle ”Description of Data”. The struc-

ture of the signals in this data was examined under the subtitle ”Signal Model”. The

structure of Modulation types with equations was examined under the subtitle ”Modu-

lation Types”. The characteristic information extracted from the signals to distinguish

with which modulation type the signals are modulated is explained together with the

equations under the subtitle ”Feature Extraction”. Then, The classification of signals

according to the modulation type and used classification algorithms were described

under the subtitle ”Modulation classification”. In the third chapter, the details of the

study were presented and the performance of the modulation classification algorithm

according to different SNR values and different modulation types were examined.
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CHAPTER 2

METHOD

This chapter details the modulation classification algorithm created and includes 4

subtitles. Under the title of ”Description of Data”, the content of the data is explained

with details included the modulation types, channel effect, SNR values, and lengths

of the signals. Under the title ”Signal Model”, the information obtained from the

important parts of the signal is given in order to analyze the signals in the I and Q

domains. Under the title of ”Modulation Types,”, The structure of the modulations

which are used in the algorithm were presented. These include Mary-QAM (Quadra-

ture Amplitude Modulation), i.e. 16-QAM, 32-QAM, 64-QAM, 128-QAM, and 256-

QAM, GMSK (Gaussian Minimum Shift Keying) and OQPSK (Offset Quadrature

Phase-shift Keying) as digital modulation and AM-DSB-WC (Double Sideband with

Carrier), AM-DSB-SC (Double Sideband Suppressed Carrier), AM-SSB-WC (Single

Sideband with Carrier), AM-SSB-SC (Single Sideband Suppressed Carrier) and FM

(Frequency Modulation) as analog modulations. Under the title of ”Feature extrac-

tion”, it is described that the details of how to create a feature space by using the

important information obtained from the signals in a smaller and summarized format.

It is used that Statistical features, extracted from instantaneous amplitude, phase and

frequency, Higher-order Moments (HOMs) and Higher-order Cumulants (HOCs) as a

feature. Under the title of ”Modulation Classification”, the modulation classification

algorithms which are used to analyze an unknown signal and to place it in the correct

class were presented. The details of the support vector machine algorithm used in this

thesis, to examine at the correct classification performance of the signals are given.
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2.1 Description of Data

The dataset includes recorded signals as over-the-air. Synthetic simulated channel

effects are added to these signals. In addition to these channel distortions, using Soft-

ware Defined Radio (SDR) was used to generate and transmit the modulated signal

and then to receive back the signals in the lab which indoor wireless channel on the

900MHz ISM band. Data is available on the RadioML website [31]. The signals are

generated in 2 layers as I and Q domains. The number of samples of the signals is

1024 and in the next step feature extraction, the features will be extracted with one

information per 1024 samples. Tha data was used in [32]. Signals generated by syn-

thetic simulated channel effects were recorded with an SNR of 0 dB to 20 dB. There

are 45056 signals for each modulation type. For only one dB value, there are 4096

signals. A simple concept for one modulation is given in Figure 2.1.

Figure 2.1: A Simple Concept of Data for One Modulation

Signals modulated by analog and digital modulation types. Data includes Higher-
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order Modulation types such as 128-QAM and 256-QAM. Modulation types in this

data set are given in Figure 2.2 .

Figure 2.2: The Used Modulations For Algorithm

2.2 Signal Model

A complex signal which expresses the output of the Hibert Filter for communication

systems is expressed as in Equation 2.1. I(n) represents the real part of the complex

signal, while Q(n) represents the imaginary part of the complex signal. I(n) and Q(n)

are the instantaneous in-phase and quadrature-phase components, respectively.

s(n) = I(n) + jQ(n) (2.1)

The instantaneous amplitude a(n), phase ϕ(n) and frequency f (n) informations ob-

tained from the complex signal is used to extract feature. Initially, amplitude and

phase signal characteristics have been used to obtain information from signals, and

frequency information has recently been utilized. a(n), ϕ(n) and f (n) the characteris-

tics are given in Equation 2.2, 2.3 and 2.4 , respectively.
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a(n) =
√

I2(n) + Q2(n) (2.2)

φ(n) = tan−1[
Q(n)
I(n)

] (2.3)

f (n) =
1

2π
φ(n) − φ(n − 1)

∆n
(2.4)

The instantaneous amplitude, frequency and phase values obtained are used for fea-

ture extraction after being centered to avoid the system bias. The centered operation

of these values is performed by subtracting the mean value. Centered the instanta-

neous amplitude ac(n), frequency fc(n) and phase ϕcnl(n) values are given in Equation

2.5, 2.6 and 2.8 respectively.

ac(n) = a(n) − µa (2.5)

fc(n) = f (n) − µ f (2.6)

Unlike the amplitude and frequency characteristic, the instantaneous phase φnl(n)

characteristic is subtracted from the linear component before the mean subtraction.

Linear component subtraction operation for phase characteristic is given 2.7.

φnl(n) = φ(n) − 2πµ f (n)∆t (2.7)

φcnl(n) = φnl(n) − µφnl
(2.8)
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where n is the sample number of the signal.

Preliminary operations were presented in order to use the instantaneous amplitude,

frequency and phase values of the signals efficiently in the feature extraction section.

2.3 Modulation Types

The transmission of low-frequency signals by means of high-frequency signals is

called modulation. There are two types of analog and digital modulation in communi-

cation systems. Nowadays, digital modulation is used more than analog modulation.

This is because they are more resistant to noise and are more suitable for coding and

cryptography. Thanks to repeaters, they are more successful in transmitting data over

longer distances. However, although it is thought that there is a transition to digital

modulation in practice, the use of analog modulation cannot be ignored [3].

2.3.1 Analog Modulation Types

The change of the carrier signal characteristics according to the information signal is

called analog modulation. If the amplitude of the carrier signal varies with the infor-

mation signal, this type of modulation is called AM. If the frequency of the carrier

signal varies with the information signal, this type of modulation is called FM. If the

phase of the carrier signal varies with the information signal, this type of modulation

is called Phase Modulation (PM) The main types of analog modulation are given in

Figure 2.3.
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Figure 2.3: Analog Modulation Types

2.3.1.1 Amplitude Modulation (AM)

If the amplitude of the carrier signal c(t) varies with the information signal m(t), this

type of modulation is called AM. It is a linear modulation. AM includes Single-

Sideband Amplitude Modulation (AM-SSB) and Double-Sideband Amplitude Mod-

ulation (AM-DSB). In amplitude modulation with no high bandwidth, more signals

are transmitted in a narrow space. At the same time, because the bandwidth is narrow,

it can be described as less complex and cost-effective. However, in wireless commu-

nication, it is susceptible to noise and disturbing effects in transmission. The carrier

signal with amplitude value Ac and frequency value fc is given in Equation 2.9

c(t) = Accos(2π fct) (2.9)

AM signal waveform acquires with the multiplication of the carrier signal and mes-

sage signal. AM signal waveform s(t), which the amplitude of the carrier signal was

changed according to the information signal and the frequency was fixed, is given

Equation 2.10
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s(t) = Ac[1 + kam(t)]cos(2π fct) (2.10)

where ka is constant which called the amplitude sensitivity. The waveform in the

frequency domain which acquired using AM waveform trigonometric transformations

is given in Equation 2.11 is obtained. The f m− f c and f m + f c frequencies represent

the sidebands. If it is present in two sidebands, it is called AM-DSB modulation.

Otherwise, if one of the sidebands is suppressed, it is called AM-SSB.

S ( f ) =
Ac

2
Ac[δ( f − fc) + δ( f + fc)] +

kaAc

2
Ac[δ( f − fc) + δ( f + fc)] (2.11)

In AM modulation, there are two types of modulation, the carrier of which is pressed

or not pressed. The carrier of Double Sideband - Suppressed Carrier Modulation

(AM-DSB-SC) and Single Sideband - Suppressed Carrier Modulation (AM-SSB-SC)

are suppressed. The unsuppressed version is called Double Sideband - with Car-

rier (AM-DSB-WC) and Single Sideband - with Carrier (AM-SSB-WC) Modulations.

The characteristics of the information signal to be sent in the communication environ-

ment are available in the sidebands of the modulated signal. Therefore, modulation

types with suppressed carrier information are more efficient to use.

2.3.1.2 Frequency Modulation (FM)

If the frequency of the carrier signal varies with the information signal, modulation is

called FM. FM has been developed because AM is susceptible to noise and disturbing

effects. It is the nonlinear modulation. The structure of the FM signal is more complex

than the AM signal. The equation for FM signal is given in Figure 2.12

s(t) = Ac = cos[2π fct + βsin(2π fmt)] (2.12)

where β is modulation index. The frequency of the carrier signal is called the central

frequency and the sidebands are formed by changes in frequency. The number of
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sidebands depends on the modulation index. FM signal in frequency domain is given

in Equation 2.13.

S ( f ) =
Ac

2

∞∑
n=−∞

Jn(β)[δ( f − fc − n fm) + δ( f + fc + n fm)] (2.13)

where Jn(β) is Bessel function. FM needs higher bandwidth due to the sidebands it

has. This analysis is done with the Bessel function, since the calculation of these

sidebands leads to complexity.

2.3.2 Digital Modulation Types

Digital modulation techniques are used to make digital signals suitable for communi-

cation channels. It is used more because of its advantages such as noise resistance,

allowing for more data transmission and information security. The modulation is the

changing of the amplitude, frequency, and phase of the carrier signal depending on

the information signal. The main types of digital modulation are given in Figure 2.4

Figure 2.4: Digital Modulation Types

The amplitude shift of a sinusoidal carrier signal relative to the information signal

is called Amplitude Shift Keying (ASK). The frequency shift of a sinusoidal carrier
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signal relative to the information signal is called Frequency Shift Keying (FSK). The

phase switching of a sinusoidal carrier signal relative to the information signal is

called Phase Shift Keying (PSK). If both the amplitude and the phase of the carrier

signal are switched together, it is called Quadrature Amplitude Modulation (QAM)

[1].

2.3.2.1 Gaussian Minimum Shift Keying (GMSK)

Unlike MSK modulation that produces a half sinusoidal pulse, a narrower main lobe

and fewer side lobes are obtained using the Gaussian pulse shape in the GMSK. This

provides spectral efficiency and bandwidth advantages. GMSK, which is a form of

continuous phase modulation type, is a member of the MSK family. MSK can be

defined as a special case of FSK modulation. Unlike standard FSK, the disadvantage

of the wide sidebands that occurs in FSK has been tried to be reduced in MSK and

GMSK. The use of wireless communication is quite high because MSK is resistant to

noise and disturbing effects and has an intense power spectrum [33].

In order to reduce the sidebands occurring in the MSK, the signal is passed through

a Gaussian filter G( f ) which is an ideal filter to obtain GMSK. GMSK has a wide

range of second and third-generation cellular communication systems thanks to its

narrow bandwidth advantage. Although GMSK is passed through a nonlinear filter, it

does not suffer deterioration. In addition, the signal is more resistant to noise because

the information is not stored in amplitude. These are the other advantages of GMSK

modulation.

A more intense power spectrum causes the symbols to mix. This mixing is called the

Inter Symbol Interference (ISI). In this modulation type, ISI is allowed to obtain a

more intense power spectrum. For GMSK modulation [34], transmitter structure is

given in Figure 2.5
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Figure 2.5: Trasmitter Structure for GMSK

The output of the Gaussian Filter is given in Equation 2.15.

∞∑
k=−∞

ak pc(t − kT ) (2.14)

where ak are the binary information symbols and pc(t) is the rectangular pulse re-

sponse of the Gaussian filter. And, for the output of the modulator, GMSK signal

expression is given in Equation 2.15.

s(t) = cos
(
2π fct +

πβ

T

∫ t

−∞

( ∞∑
k=−∞

bk p(µ − kT )
)
dµ

)
(2.15)

where β is modulation index and equals to 0.5, and p(t) is the truncated pulse.

2.3.2.2 Offset Quadrature Phase-shift Keying (OQPSK)

OQPSK modulation, which is the same structure as the QPSK modulation structure,

has taken place in the literature. In the QPSK, the pulses in the I and Q domain

simultaneously change, while in OQPSK, any of the pulses are delayed, resulting in

a new modulation type. This difference may observe for QPSK in Figure 2.6 and for

OQPSK in Figure 2.7. The main purpose of this process is to prevent zero transitions.

That is, phase changes in both the I and Q domains do not occur. The phase change

in QPSK is at most 180 degrees, whereas in OQPSK it is 90 degrees.
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Figure 2.6: The in-phase and quadrature components for QPSK [1]

Figure 2.7: The in-phase and quadrature components for OQPSK [1]

Sudden phase shifts are observed 2 times more in QPSK modulation. It uses 4 dif-

ferent values of the information to be transmitted with phase information. OQPSK

signal equation is given in Equation 2.16

s(t) = A
[( ∞∑

n=−∞

I2ng(t − 2nT )
)
cos2π fct +

( ∞∑
n=−∞

I2n+1g(t − 2nT − T ))
)
sin2π fct

]
(2.16)

17



2.3.2.3 M-ary Quadrature Amplitude Modulation (M-QAM)

It is produced to provide wide bandwidth in wireless communication systems. The

amplitude and phase value of the two carrier signals which have 90 degrees phase

difference at the same frequency is taken as output. One of the signals is called I

and the other is called Q. Mathematically, one of the signals is expressed with the

sine and the other with the cosine wave. Combined with the modulated signals, the

transmission is realized. One of the advantages is that QAM transmits more data

than standard amplitude and phase switching. The transmitted M-ary QAM signal is

defined in Equation 2.18

sk(t) =

√
2E0

T
akcos(2π fct) −

√
2E0

T
bksin(2π fct) (2.17)

where E0 is the energy of the signal with the lowest amplitude, ak and bk refer to am-

plitude values. M in M-QAM expression refers to the number of conditions a digital

signal carries according to its characteristics. M refers to the number of conditions

a digital signal carries according to its characteristics. It also refers to the situation

that occurs when more than one bit of data is sent in a transmission. This has the

advantage of transmitting more data to the receiver in one transmission. The number

of bits of data to be sent under certain conditions is defined in Equation 2.18

N = log2 M (2.18)

where N is the number of bits and M is the number of conditions. Mary-QAM creates

different modulation types in order to transmit different numbers of symbols in data

transmission. The constellation diagrams of 16-QAM, 32-QAM, 64-QAM, 128-QAM

and 256-QAM , which are widely used in literature, are shown in Figure 2.8, 2.9, 2.10,

2.11, and 2.12, respectively.
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Figure 2.8: 16-QAM Constellation Diagram

Figure 2.9: 32-QAM Constellation Diagram
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Figure 2.10: 64-QAM Constellation Diagram

Figure 2.11: 128-QAM Constellation Diagram
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Figure 2.12: 256-QAM Constellation Diagram

2.4 Feature Extraction

The purpose of feature extraction, which is a process in modulation classification, is

to reduce the dimension of the information in the existing data set and create a smaller

set of data that can summarize the information in a precise way. In this way, feature

space dimension and computational complexity reduce thanks to features derived us-

ing signal characteristics, and the information is thus easier to manage and process.

A feature vector was created with the information extracted from the signals and pre-

pared for the modulation classification process. Statistical features extracted from

instantaneous amplitude, phase and frequency, Higher-order Moments (HOMs) and

Higher-order Cumulants (HOCs) were used in this study as a feature.

2.4.1 Statistical Features

The mean µ, variance σ2, kurtosis µ42, skewness γ are used as Statistical features.

These features are extracted using the amplitude frequency and phased characteristics

of the signal. The first moment of a distribution is mean, the second moment is vari-
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ance, the third is skewness, and the fourth one is kurtosis. Unlike mean and variance

in Equation 2.19, 2.20, kurtosis and skewness are used as normalized features with

standard deviation in modulation classification applications.

µx =
1

Nx

Nx∑
k=1

x(k) (2.19)

σ2
x =

1
Nx

Nx∑
k=1

[x(k) − x]2 (2.20)

Kurtosis and skewness statistics are less common than mean and variance, but they

are important criteria when interpreting a data distribution, although the mean and

variance are common in signal processing applications. Kurtosis and skewness fea-

ture help in executing ideas about data distribution. Kurtosis relates to the weight of

a data distribution tail. Skewness examines whether data distribution is symmetry.

Although these two concepts are thought to have a similar relationship, they should

not be confused one another. Skewness can take negative and positive values because

it is the 3rd moment, and kurtosis is the 4th moment, it only takes positive values. The

formulas of kurtosis and skewness are given Equation 2.21, 2.22, respectively.

γx =
1

σ3
xNx

Nx∑
k=1

[x(k) − x]3 (2.21)

µ42 =
1

σ4
xNx

Nx∑
k=1

[x(k) − x]4 (2.22)

where x is the mean of x(k). These features can be found for intantaneous amplitude,

frequency and phase, depending on the use case. So, x(k) can be ac(n), y fc(n) or

ϕcnl(n) value. HOSs features are given in Table 2.4
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Table 2.1: Statistical Features

µa Mean of the instantanous centered amplitude of the complex signal

µ f Mean of the instantanous centered frequency of the complex signal

µp Mean of the instantanous centered nonlinear phase of the complex sig-
nal

σ2
a Variance of the instantanous centered amplitude of the complex signal

σ2
f Variance of the instantanous centered frequency of the complex signal

σ2
p Variance of the instantanous centered nonlinear phase of the complex

signal

γa Skewness of the instantanous centered amplitude of the complex signal

γ f Skewness of the instantanous centered frequency of the complex signal

γp Skewness of the instantanous centered nonlinear phase of the complex
signal

µ42a Kurtosis of the instantanous centered amplitude of the complex signal

µ42 f Kurtosis of the instantanous centered frequency of the complex signal

µ42p Kurtosis of the instantanous centered nonlinear phase of the complex
signal

2.4.2 Higher-order Moments (HOMs)

HOMs are preferred in signal processing and modulation classification applications

for feature extraction process because they are less affected by noise which created by

multi-fading and AWGN channel. Moments are the generalized state of the expected

value which is changed according to the power of the moment in Equation 2.23.

Mpq = E[sp−q(s∗)q] (2.23)
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where p is the order of the moment and q is the power of the signal’s conjugate. In

the same way, the general formula for HOMs is given in Equation 2.24.

Mpq =
1
N

N∑
n=1

s[n]p−qs[n]∗q (2.24)

where N is the number of samples and s[n] is complex signal and s[n] = s[1], s[2], . . . , s[N].

The HOMs were used both as a feature and to obtain cumulants. The used HOMs are

given in Table 2.2.

Table 2.2: Higher-order Moments

2nd order moments M20, M21

4th order moments M40, M41, M42, M43

6th order moments M60, M61, M62, M63

8th order moments M80, M81, M82, M83, M84

2.4.3 Higher-order Cumulants (HOCs)

HOCs resist to the effect of the multi fading channel or AWGN. Therefore, the use of

HOCs has become more important in literature. HOCs are the statistical characteristic

of random variables such as HOMs. The used HOCs are given in Table 2.3

Table 2.3: Higher-order Moments

2nd order cumulants C20, C21

4th order cumulants C40, C41, C42

6th order cumulants C60, C61, C62, C63

8th order cumulants C80, C81, C82, C83, C84

HOCs are produced using HOMs. HOCs are given in Table 2.5 with calculations [35].
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Table 2.4: Higher order cumulants (HOCs) expression - 1

Cs,2,0 Es,2,0 = E[x2.(x)0]

Cs,2,1 Es,2,1 = E[x1.(x)1]

Cs,4,0 Es,4,0 − 3.(Es,2,0)2

Cs,4,1 Es,4,1 − 3.Es,2,0.Es,2,1

Cs,4,2 Es,4,2 − (Es,2,0)2 − 2(Es,2,1)2

Cs,6,0 Es,6,0 − 15Es,2,0Es,4,0 + 30(Es,2,0)3

Cs,6,1 Es,6,1 − 10Es,2,0Es,4,1 − 5Es,2,1Es,4,0 + 30(Es,2,0)2Es,2,1

Cs,6,2 Es,6,2 − Es,2,0Es,4,0 − 8Es,2,1Es,4,1 − 6Es,2,0Es,4,2 + 6(Es,2,0)3 + 24(Es,2,1)2Es,2,0

Cs,6,3 Es,6,3 − 6Es,2,0Es,4,1 − 9Es,2,1Es,4,2 + 18(Es,2,0)2Es,2,1 + 12(Es,2,1)3

Cs,8,0 Es,8,0 − 35(Es,4,0)2 − 630(Es,2,0)4 + 420(Es,2,0)2(Es,4,0)

Cs,8,1 Es,8,1 − 35Es,4,0Es,4,1 − 630(Es,2,0)3Es,2,1 + 210Es,4,0Es,2,0Es,2,1 + 210Es,2,1Es,4,1

Cs,8,2 Es,8,2 − 15Es,4,0Es,4,2 − 20(Es,4,1)2 + 30Es,4,0(Es,2,0)2 + 60Es,4,0(Es,2,1)2 +

240Es,4,1Es,2,1Es,2,0 + 90Es,4,2(Es,2,0)2 − 90(Es,2,0)4 − 540(Es,2,0)2(Es,2,1)2

Cs,8,3 Es,8,3 − 5Es,4,0Es,4,1 − 30Es,4,1Es,4,2 + 90Es,4,1(Es,2,0)2 + 120Es,4,1(Es,2,1)2 +

180Es,4,2Es,2,1Es,2,0 + 30Es,4,0Es,2,0Es,2,1 − 270(Es,2,0)3Es,2,1 − 360(Es,2,1)3Es,2,0

Cs,8,4 Es,8,4 − (Es,4,0)2 − 18(Es,4,2)2 − 16(Es,4,1)2 − 54(Es,2,0)4 − 144(Es,2,1)4 −

432(Es,2,0)2(Es,2,1)2 + 12Es,4,0(Es,2,0)2 + 96Es,4,1Es,2,1Es,2,0 + 144Es,4,2(Es,2,1)2 +

72(Es,4,2)(Es,2,0)2 + 96Es,4,1Es,2,0Es,2,1
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Table 2.5: Higher order cumulants (HOCs) expression - 2

C20 M20

C21 M21

C40 M40 − 3M2
20

C41 M41 − 3M20M21

C42 M42 − M2
20 − 2M2

21

C60 M60 − 15M20M40 + 30M3
20

C61 M61 − 10M20M41 − 5M21M40 + 30M2
20M21

C62 M62 − M20M40 − 8M21M41 − 6M20M42 + 6M3
20 + 24M2

21M20

C63 M63 − 6M20M21 − 9M21M42 + 18M2
20M21 + 12M3

21

C80 M80 − 35M2
40 − 630M2

20 + 420M2
20M40

C81 M81 − 35M40M41 − 630M3
20M21 + 210M40M20M21 + 210M20M41

C82 M82 − 15M40M42 − 20M2
41 + 30M40M2

20 + 60M40M2
21 + 240M41M21M20 +

90M42M2
20 − 90M4

20 + 540M2
20M2

21

C83 M83 − 5M40M41 − 30M41M42 + 90M41M42 + 120M41M2
21 + 180M42M21M20 +

30M40M20M21 − 270M3
20M21 − 360M3

21M20

C84 M84 + M2
40 − 18M2

42 − 16M2
41 − 54M4

20 − 144M4
21 − 432M2

20M2
21 + 12M40M2

20 +

966M41M21M20 + 144M42M2
21 + 72M42M2

20 + 72M42M2
21 + 96M41M20M41
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When the power of cumulants is increased to 2
p , a reduction in processing time oc-

curs when used in machine learning algorithms. This reduction provides a significant

advantage in practice. For example, normalization for C62 is given in Equation 2.25.

_

C62= C
1
3
62

(2.25)

Magnitude values of the complex moment and cumulant features are created to use

effectively and to protect against phase-shifting in the classification algorithms.

2.5 Modulation Classification

To distinguish between modulated signals, the characteristic information of each mod-

ulation class must be known. Because an appropriate demodulator must be used in the

system to regain the information signal at the receiver. If the modulation type of the

signal is not detected correctly and an incorrect signal is processed, the demodulator

may be damaged. For these reasons, the correct functioning of modulation classifi-

cation algorithms is extremely important. For the classification algorithms, it is easy

for some modulation types to distinguish signals according to modulation types and

difficult for others. For example; The higher-order of the modulation type, the more

difficult it is to distinguish. 64-QAM and 128-QAM modulations are more difficult to

separate, while BPSK and QPSK modulations are easier to separate. The other impor-

tant thing about correct working is the channel effect. It has a significant impact on

the success rate of modulation classification algorithms. Separating signals becomes

more difficult, especially when there is a complex channel effect. It is seen in the

literature that the AWGN channel is used more in classification algorithms. However,

algorithms are also being developed for multipath channels.

It is seen in the literature that machine learning algorithms and deep learning are

widely used in modulation classification. Machine learning algorithms can be sum-

marized under two headings as supervised and unsupervised learning [36]. In the

Supervised Method, the machine is trained with specific examples and labels for the

data reserved for the train. In other words, it knows and learns the signal is modulated
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with which modulation type. It then separates the signals in the test data according

to their class during the test process. Supervised algorithms include Support vector

machine, Neural network, Design tree. A system model for supervised learning is

given in Figure 2.13.

Figure 2.13: A System Model for Supervised Learning

In the Unsupervised method, the machine estimates the results without having been

trained with data that have a label. Unsupervised algorithms include Cluster algo-

rithms, K-means, Hierarchical clustering. A system model for supervised learning is

given in Figure 2.14

Figure 2.14: A System Model for Unupervised Learning

Supervised learning is more preferred in applications. Unsupervised learning is often

used as a preprocessing of supervised algorithms. Studies on unsupervised algorithms

are increasing in the literature.

One of the Supervised learning, the neural network algorithm consists of 3 stages.

The first one is Feature Extraction to determine a characteristic structure based on the

modulation type of the signals obtained in the receiver. The second one is a training
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process for the algorithm to learn the correct structures. Finally, the test process to

distinguish the signals according to the modulation type. Neural network algorithms

aim to achieve a higher classification performance by using multiple neural layers

in the modulation classification process. In addition, these layers minimize the time

spent in the whole modulation classification process. [37]

One of the supervised machine learning algorithms, the decision tree algorithm breaks

down data into small clusters with specific decision levels. Step by step structures

provides a system for easier classification. The decision tree provides ease of visual-

ization and interpretation. However, it can create complex structures and a problem

of overfitting, which is critical to machine learning algorithms, may arise [38].

The other supervised algorithm, deep learning algorithms, which are widely used in

the literature, such as machine learning algorithms, have shown rapid growth with

developing technology. In cases where machine learning algorithms have problems

and where a versatile system is needed, deep learning algorithms are an alternative.

One of the most important advantages is that the algorithm interprets, learns and gives

results without any feature extraction or pre-processing.

2.5.1 Support Vector Machine (SVM)

The SVM, which is one of the supervised algorithm, introduced in 1992 by Boser,

Guyon, and Vapnik [39]. ANN algorithms are widely used in the literature, but train

constraints negatively affect the performance of the algorithm. SVM provides an al-

ternative solution to these restrictions [40]. When it was first presented, it provided a

solution for the 2-class structure. But, since classes in real life are more than 2, today

SVM algorithm has fulfilled regression and multi-class tasks. Since SVM is resis-

tant to multi-class high data, it can perform poorly on data with fewer classes. The

SVM algorithm is called a non-parametric model because the number of parameters

is not constant when creating a model. There are two types as linear and nonlinear.

While the lines that Linear SVM uses for classification in a multidimensional plane

are straight, in nonlinear SVM, the lines can change shape to separate objects in the

multidimensional plane. The operating logic of the linear SVM algorithm is simply

shown in Figure 2.17
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Figure 2.15: The problem of Linear Support Vector Machine Algorithm

A problem arises when some of the data remain in the other class set when the data

is linearly separated. In order to solve this problem, in addition to a linear separation,

another line is added to the model, which varies according to the data. This form of

decomposition is called nonlinear SVM and is shown in Figure 2.18.

Figure 2.16: The Problem of Nonlinear Support Vector Machine Algorithm
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The Decision Tree algorithm decreases performance when the number of samples de-

creases in feature space and the number of classes is high. SVM is preferred in such

cases. Among these, the popularity of Support Vector Machine algorithms which is

a machine learning algorithm has increased recently due to its high performance and

low computational complexity. Solving the classification problem into an optimiza-

tion problem is one of the most important advantages of SVMs. Structure of the SVM

includes the ideas of ”large margin” and ”mapping data into a higher-dimensional

space,” and the kernel functions in the SVM. Simply, SVM aims to draw two lines on

the existing data and to make the distance between the lines as large as possible. SVM

uses the hyperplane when classifying in feature space. It refers to the largest space

between data points of different classes. Among all available hyperplanes, SVM aims

to make an accurate classification by choosing the hyperplane at maximum distance

[41].

Unlike traditional algorithms, machine learning algorithms reduce train errors and

the complexity of the classification process. The SVM classification algorithm is

expressed as in Equation 2.26.

f (x) =

N∑
i=1

αiK(x, xi) + b (2.26)

where x is feature model, N is the number of support vectors, K(.,.) is the kernel

function, b is constant, αi , 0 represent the support vectors [42].

Kernel functions are used in pattern analysis and recognition subjects. It is used to

compute the classifier. It performs data with dot product function. The use of the

Kernel function in SVM algorithms is widely seen in the literature. There are many

types of the Kernel function like Linear, Nonlinear, Polynomial, Gaussian RBF (Ra-

dial Basis Function), Sigmoid Kernel. Polynomial and Gaussian RBF are widely used

in literature [43]. The Polynomial kernel is a non-stationary kernel and is defined in

Equation 2.27

K(x, xi) = (xxi + c)n (2.27)
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where c is constant and n is the power of the kernel function. SVM algorithms with

3 kernel functions are used in the thesis as linear, quadratic and cubic [44]. Linear

SVM represents 1. degree polynomial kernel function in Figure 2.15. Quadratic

SVM represents 2. degree polynomial kernel function in Figure 2.16and Cubic SVM

represents 3. degree polynomial kernel function in Figure 2.19.

Figure 2.17: Basic Concept of Linear Support Vector Machine Algorithm

Figure 2.18: Basic Concept of Quadratic Support Vector Machine Algorithm
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Figure 2.19: Basic Concept of Cubic Support Vector Machine Algorithm

The support vectors are closest to the separator hyperplane and form the boundary.

The Hyperplane size is directly related to the number of features discussed in the

classification algorithm. If the number of features is 2, the hyperplane is a line in

Figure 2.20, if the number of features is 3, it is a two-dimensional plane in Figure

2.21 , and as the number of features increases, the hyperplane becomes complex,

difficult to select with the eye.

Figure 2.20: Support Vectors and Line Hyperplane
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Figure 2.21: Two-dimensional Hyerplane
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CHAPTER 3

RESULTS

This chapter includes the results of the performance of the Modulation Classifica-

tion Algorithm developed with the feature extraction process and the Support Vector

Machine Algorithm (SVM). The results of the Confusion Matrix were presented sep-

arately at different SNR values to examine. The used Linear, Quadratic and Cubic

SVM algorithms at different SNR values were presented in the graph which includes

performance percent too to examine together.

Modulation classification algorithms mostly used in military fields are widely avail-

able in the literature. The modulation classification algorithm can be defined as the

analysis of a signal, about which no information is available, transmitted from a

transmitter to the receiver. Because the modulation type of a signal processed in

the Demodulator needs to be known. SVM, which is a Machine Learning algorithm

is used in this classification algorithm. Feature extraction, which is pretreatment of

SVM algorithm, provides information for the separation of modulated signals. The

3-dimensional structure used before feature extraction step and includes SNR values

and signals were created for 12 modulations is given in Figure 3.1 .
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Figure 3.1: The General Form for Data Analysis

12 modulation types were used for the modulation classification algorithm. These

include 16-QAM, 32-QAM, 64-QAM, 128-QAM, 256-QAM, GMSK and OQPSK as

digital modulation, also AM-DSB-SC, AM-DSB-WC, AM-SSB-SC, AM-SSB-WC

and FM as analog modulation. In the developed algorithm, 41 features were produced

to classify the signals according to their modulations. These features include Statis-

tical features, extracted from instantaneous amplitude, phase and frequency, Higher-

order Moments (HOMs) and Higher-order Cumulants (HOCs). Each of all features

is calculated from each 1024 samples of the signal. After extracting the features,

Matlab’s Classification Learner Application is used to separate the signals into mod-

ulation types. The Classification learner app provided the opportunity to see and use

the performance of classification algorithms.

A classification process consists of two stages: training and testing. It is desirable to

establish a learning mechanism by explicitly giving the training data to the machine

together with the correct classroom answer. It is asked from the machine, which

is trained with this data, to analyze the new test data and reach the correct outputs.

80% of the data is reserved for train step and 20% for test step to be used in the

machine learning algorithm. In the other words, 3277 of the 4096 signals found for
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each modulation in total were used in the training process, while 819 signals were

used in the test process to measure the performance of classification algorithms. To

avoid overfitting, 5-fold cross-validation was applied to the data. Machine learning

algorithms are first given a train data set to learn the structure of modulated signals.

The train data form with features and signals is given in Figure 3.2.

Figure 3.2: The Data Form for Train Process

Labels in the train data set represent the true answers for modulations. The test data set

doesn’t include the labels. It just includes features and modulated signals information.

It is wanted that the machine learning algorithm finds the correct modulation types

utilizing the information created in the training process. At the end of the test, the

confusion matrix is used to observe the performance rate of the modulations.

Data has been trained and tested with 22 different classifiers in Matlab’s classification

toolbox. Among them, all known to be successful in pattern recognition and linear

classification, Linear SVM, Quadratic SVM and Cubic SVM are outperform in Figure

3.3, 3.4 and 3.4, respectively.

37



Figure 3.3: The Confusion Matrix of Linear SVM at 10 dB
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Figure 3.4: The Confusion Matrix of Quadratic SVM at 10 dB
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Figure 3.5: The Confusion Matrix of Cubic SVM at 10 dB

It is observed that the performance result of these 3 algorithms is close to each other,

when the performance results of the modulation classification algorithm of Linear,

Quadratic and Cubic SVM algorithms were examined. At 10dB, Linear SVM perfor-

mance is 73.4%, Quadratic SVM performance is 74.1% and Cubic SVM performance

is 73.1%. Since the performance results of the 3 algorithms are close, the modula-

tion classification performance results at different SNR values are given only for one

algorithm. That is the Quadratic SVM.

Considering Table 3.1, performance success can be seen for each modulation type for

Linear SVM, Quadratic SVM and Cubic SVM. Apart from SSB modulation type, it

can be said that it does not make a significant difference for 3 different SVM algo-
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rithms.

Table 3.1: Comparing Linear SVM, Quadratic SVM and Cubic SVM For Each Mod-
ulation Types

Linear SVM Quadratic SVM Cubic SVM

16-QAM 68.5 68.7 64.3

32-QAM 54.1 52.9 51.8

64-QAM 38.6 36.1 36.6

128-QAM 48.5 51.2 45.4

256-QAM 36.1 35.9 36.8

SSB-WC 73.1 87.2 84

SSB-SC 78.1 72.4 75

DSB-WC 98.9 98.8 97.6

DSB-SC 87.2 87.7 87.5

FM 100 100 100

GMSK 100 100 100

OQPSK 97.9 98.4 98,7

Classification performance of 12 modulations are examined at 0 dB in Figure 3.6,

6 dB in Figure 3.7, 12 dB in Figure 3.8 and 18 dB in Figure 3.9. Thanks to the

confusion matrix, modulations can be analyzed one by one. And, it can be examined

which modulations mixed with each other.The result of the classification performance

is 44.5% at 0 dB, it is 69.9% at 6 dB, it is 75.5 at 12 dB, it is 73.6% at 18 dB.
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Figure 3.6: The Confusion Matrix of Quadratic SVM at 0 dB
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Figure 3.7: The Confusion Matrix of Quadratic SVM at 6 dB
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Figure 3.8: The Confusion Matrix of Quadratic SVM at 12 dB
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Figure 3.9: The Confusion Matrix of Quadratic SVM at 18 dB

The results are presented in Table 3.2 for a more convenient observation of perfor-

mance at different SNR values for each modulation. When the confusion matrix

was examined for each modulation, 8 modulations could be separated with a per-

formance of more than 70%. For others, it was observed that 32-QAM and 128-QAM

were classified with a performance of approximately 50%, while 64-QAM and 256-

QAM were classified with a percentage less than 50%. FM and GMSK modulations

showed approximately 100% classification performance starting from 2dB. DSB-WC

and OQPSK have been classified with an average of 90% success starting from 4dB.

While DSB-SC has a performance of more than 80% since 6dB, SSB-SC and SSB-
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WC have achieved 70% success from 10dB. For M-ary QAM, classification perfor-

mance remained stable from 6dB.

Table 3.2: Classification Performance at Different dB Values For each Modulation
Type

0 dB 2 dB 4 dB 6 dB 10 dB 14 dB 18 dB

16-QAM 20.4 38.6 57.1 65.9 68.7 71.1 71.2

32-QAM 26.1 38.5 47.3 52.3 52.9 52.3 52.6

64-QAM 18.2 17.8 27.1 28.9 36.1 30.5 33.7

128-QAM 25.4 37.5 43.6 44.2 51.2 49 52.1

256-QAM 20.9 30.3 35.4 36.8 35.9 37.6 39.9

AM-SSB-WC 50.9 49.3 55.2 67.5 87.2 91.9 84.5

AM-SSB-SC 43.5 56.3 59.1 69.7 72.4 76.9 62.5

AM-DSB-WC 83.2 82.9 88.6 94.4 98.8 99.3 99.4

AM-DSB-SC 54.1 61.4 74.4 81.7 87.7 87.8 87.5

FM 82.1 100 100 100 100 100 100

GMSK 73.3 99 99.9 100 100 100 100

OQPSK 36.4 74.2 92.4 97.6 98.4 99.1 99.6

The results of the classification performance at all SNR values for Linear SVM,

Quadratic SVM, and Cubic SVM are given in Figure 3.10. It is seen that perfor-

mance is stable from 10 dB to 20dB and observed the performance accuracy equals

to approximately 73%. When it is examined the performance at lower SNR, It is seen

that the performance of the algorithm is much lower. For example, the performance

is approximately 43% at 0dB and the performance is approximately 64% at 4dB. The

Quadratic SVM performs slightly better than the others at a rate of 1%.
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Figure 3.10: Correct Classification Probability at all SNR values
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CHAPTER 4

CONCLUSION

The aim of this thesis is to classify the modulated signals with 12 different modulation

types according to the modulation type with SVM which is a machine learning algo-

rithm with the help of features extracted from the signals. For this purpose, Statistical

features, extracted from instantaneous amplitude, phase and frequency, Higher-order

Moments (HOMs) and Higher-order Cumulants (HOCs) were used in order to pro-

vide information from signals at different SNR values. Linear SVM, Quadratic SVM,

Cubic SVM algorithms which are trained using these features and then used for the

testing phase were presented. The results of the performance of these algorithms in

the classification of signals from 0 dB to 20 dB were presented. As a result of these

analyzes, it was observed that the performances of these 3 algorithms were very close

to each other, but with a small difference, Quadratic SVM performance was superior.

In general, when confusion matrices at different dB values are examined, while for

Mary-QAM (Quadrature Amplitude Modulation), i.e. 16-QAM, 32-QAM, 64-QAM,

128-QAM, and 256-QAM, false prediction rates are high, GMSK (Gaussian Mini-

mum Shift Keying) and OQPSK (Offset Quadrature Phase-shift Keying) are separated

from other modulations more easily. In analog modulations, the algorithm has diffi-

culty in differentiating the modulation types in case of the presence and absence of

carriers of the same modulation type. That is, the Algorithm is forced to separate

AM-DSB-WC (Double Sideband with Carrier) and AM-DSB-SC (Double Sideband

Suppressed Carrier) modulations and to separate AM-SSB-WC (Single Sideband with

Carrier) and AM-SSB-SC (Single Sideband Suppressed Carrier). Also, FM (Fre-

quency Modulation) was separated easily.
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It can be observed that higher-order modulations are more difficult to classify than

others. In Mary-QAM types, classification performance for 256-QAM is 36.8% and

classification performance for 128-QAM is 44.2%, while classification performance

for 16-QAM is 65.9% and classification performance for 32-QAM is 52.3%. Further-

more, based on the formula 2n = M, it can be observed that n exhibits more confusing

than double and uniqueness. For example, 32-QAM and 128-QAM are confused, and

the other modulation types which are confused are 64-QAM and 256-QAM.

As a result, when the results of the classification performances are examined at all

SNR values, the stable result which is observed from 10 dB to 20 dB is approxi-

mately 73%. The most difference in classification algorithm performance is observed

at between 0 dB and 12 dB and it is approximately 31%. It performs well in analog

modulations and in digital modulations such as GMSK, OQPSK and low-order M-ary

QAM. Algorithm performance decreased in high order digital modulation types.

The developed modulation classification algorithm can be extended to include more

modulation than the existing modulation types. It may be important to increase the

number of digital modulations, especially as technology tends to use digital mod-

ulation types more. In addition, an experimental environment can be prepared in

a laboratory environment and a unique dataset can be prepared by transmitting the

modulated signals from the transmitter to the receiver. In this way, all the informa-

tion about the content of the generated dataset will be obtained and, thus possible

errors are prevented. By using multi-fading channel effects instead of synthetic chan-

nel effects, the algorithm can be adapted more easily to real life. In the classification

process, Deep learning applications, which have gained popularity in recent years,

can be adapted to algorithm. In the light of these recommendations, the success of the

algorithm developed for modulation classification can be increased and its scope can

be improved.
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