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ABSTRACT

In this thesis study; vibration characteristics of elliptical and circular cylindrical,
spheroidal (ellipsoid of revolution) and ellipsoidal thin shells are investigated. The
main goal of the study is to find the first few resonance frequencies of the thin shells
which have these types of geometries. This aim is achieved by finding the natural

frequencies of the shells.

The geometrical and physical equations of the investigated shells have been
derived by using the differential geometry mathematics and “Love thin shell theory”.
A finite element method with ring elements has been developed by using the energy
expressions, for obtaining the numerical results. These results have been obtained by

computer programmes which have been written in MATLAB.

The results found by; the vibration experiment, the commercial analysis software
IDEAS and the thesis study, have been compared to prove the validity of the derived
equations and the written MATLAB programmes. A satisfactory harmony has been

observed during the comparisons.

Keywords: Vibration, thin shells, resonance, finite element method, elliptic and

ellipsoidal geometries.
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OZET

Bu tez calismasinda; eliptik ve dairesel silindirik, sferoidal (dénel elipsoid) ve
elipsoidal ince kabuklarin titregsim karakteristikleri incelenmektedir. Calismanin esas
amaci, bu geometrilere sahip ince kabuklarin ilk birka¢ rezonans frekanslarim

bulmaktir. Bu amaca, kabuklarin dogal frekanslarinin bulunmasiyla ulagilmaktadir.

Incelenen kabuklarin geometrik ve fiziksel denklemleri, diferansiyel geometri
matematigi ve “Love ince kabuk teorisi” kullanilarak ¢ikarilmistir. Niimerik
sonuglarin elde edilmesi i¢in enerji denklemleri kullanilarak halka elemanl: sonlu
elemanlar metodu gelistirilmistir. Bu sonuglar, MATLAB’de yazilmig olan bilgisayar

programlar ile elde edilmistir.

Cikarilan denklemlerin ve yazilmis olan MATLAB programlarinin dogrulugunu
ispat etmek i¢in; titresim deneyi sonuglari, ticari bir analiz program olan IDEAS ile
elde edilen sonuglar ve tez ¢aligmasi ile bulunan sonuglar karsilastiritmigtir. Yapilan

kargilagtirmalar sirasinda tatmin edici bir uyum gézlemlenmistir.

Anahtar sézciikler: Titresim, ince kabuklar, rezonans, sonlu elemanlar metodu,

eliptik ve elipsoidal geometriler.
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CHAPTER ONE
INTRODUCTION

1.1 INTRODUCTION

This thesis is concerned with the vibration characteristics of cylindrical,
spheroidal and ellipsoidal thin shells. The main goal of the study is to determine the

primary resonance frequencies.

Vibration can often lead to a number of undesirable circumstances. For example,
vibration of an automobile or truck can lead to driver discomfort and eventually,
fatigue. Structural or mechanical failure can often result from sustained vibration.
Because of these reasons, governments, international agencies and also
manufacturers set desired vibration performance standards for some products. To
avoid from these vibration problems care should be taken in the design stage. In
design, the natural frequencies of a structure or machine are extremely important in
predicting and understanding a system’s dynamic behavior. The primary requirement
of widely performed vibration tests is a determination of a system’s natural
frequencies. And if the measured frequencies agree with those predicted by the
analytical model, the model is verified and can be used in design with some

confidence.

The fundamental idea behind the study is the resonance phenomena. Because of
the rapid rise in vibration magnitudes, probability of the structure fatigue and noise
problems, resonance comes out one of the major vibration problems. The natural
frequencies of shell structures must be known in order to avoid the destructive effect

of resonance with nearby rotating or reciprocating machinery. As the driving



frequency approaches the natural frequency of a lightly damped structure, resonance
occurs. This means that the vibration of the structure is in a harmony with the driving
force frequency; hence the excitation strongly supports the vibration magnitude. For
lightly damped structures the resonance frequencies may be taken to be equal to its
undamped natural frequencies. In general, the knowledge of the first few natural
frequencies gives an opportunity to avoid coincidence with the driving (forcing)

frequency.

The vibration of thin shells has received the attention of many authors. There is an
extensive literature on the subject, and many shell theories have been proposed

(Soedel, 1993), (Donnell, 1976), (Markus, 1988).

The foundations of the ‘classical’ theory of thin shells were established by Love,
who was the first to formulate the preconditions for thin shells. Love’s preconditions
are also termed Love’s approximation of the first kind, (Markus, 1988) and they were
originally published in 1892. These are: (1) the shell is thin; (2) the deflections are
small; (3) normal stresses perpendicular to the middle surface can be neglected in
comparison to the other stresses; (4) normals to the reference surface remain normal
to it during deflection and undergo no change in length during deformation (Soedel,
1976). These preconditions are the background of any linear theory of thin shells. All

subsequent theories aim at refining the original approximations introduced by Love.

The simplification which can be made by use of the Love’s approximation is very
great, as it permits the displacement of every point in the shell wall, and hence the
strains and stresses at every point, to be defined in terms of the displacement of one
surface such as the middle surface of the shell wall. This represents in effect the
reduction of the problem from three- to a two — dimensional one. The errors due to
the Love approximations are negligible for ‘thin shells’ of homogeneous material.
And it provides sufficiently accurate values for very much less computational effort
in comparison with a three dimensional theory which is accurate but much more

cumbersome. That is why the theory used in this thesis is "Love's thin shell theory".



For cylindrical (circular and elliptical), ellipsoidal and spheroidal thin shells,
Lame’ Parameters and radius of curvatures have been found. And also the strain —
displacement relations (with Love simplifications) have been derived for these

geometries.

After giving the kinetic and strain energy expressions for thin shell structures, the
ring element technique has been developed in F.E.M, for circular cylindrical and
spheroidal shells. This ring element has an axisymmetric geometric shape which is
used for shells of revolution. By using the ring finite element technique, the
fundamental natural frequencies of some axisymmetric thin shell structures in
different boundary conditions have been calculated. And the validity of these results
is proved by analyzing the same structures with a well — known ‘commercial’

software IDEAS.

For elliptical and ellipsoidal thin shells, the validity of the same ring elements has
been examined. Although the correct energy expressions have been used, the
investigation shows that the displacement functions (sine or cosine) used for
axisymmetric geometries do not give the completely true solution for elliptical and
ellipsoidal shells. Because those ring elements have an asymmetric shape through the
z-axis. This fact was observed during the experiment which has been performed for
the half piece of a compressor shell. As this structure has an elliptical — like cross
section, the results found by ring element model are not very close to the test results,
but not very far from them; because the elliptic curvature effect is not very noticeable
at the test structure. The experimental study has been performed to check the
reliability of the theoretical derivations and ring element formulation procedure. It
has been seen that the experimental study supports the theoretical calculations. The
performed experimental study is based on the frequency spectrum analysis of an
impulse excitation. By this experimental procedure the first few resonance

frequencies could be found.

The present thesis consists of five chapters. Presented in Chapter 2 are an analysis

of general shell geometry, and the strain — displacement relations that are required



for formulating the energy expressions, in a generality encompassing elliptical and

ellipsoidal thin shells.

Chapter 3 presents the strain and kinetic energy expressions for thin shells and a
finite element formulation is given. Ring elements are the fundamental implements

of the procedure.

“Numerical Results and Comparative Examples” is the title of Chapter 4. In this
chapter numerical results are given for some shell geometries and boundary
conditions. And these results are compared with the [-DEAS (cad/cam software)

results for the same shell types.

Experiment procedure and experimental measurement of a shell structure and the
numerical results related to that shell are presented in Chapter 5. The numerical

calculations and the physical results of the experiment are compared.



CHAPTER TWO
THEORETICAL CONSIDERATIONS

In this chapter, geometric equations and principal shell equations are presented.

These equations form the basis of the solution procedure.

2.1 REPRESENTATION OF SHELL GEOMETRY IN CURVILINEAR
COORDINATES

2.1.1 Shell Coordinates and Fundamental Forms

It is assumed that thin, isotropic and homogenous shells of constant thickness
have neutral surfaces (Soedel, 1993). Locations on the neutral surface, placed into a
three-dimensional Cartesian coordinate system, can also be defined by two —

dimensional curvilinear surface coordinates @, and «,, as shown by equation (2.2).

Because of this, curvilinear and Cartesian coordinates are related and the location of

a point P on the neutral surface (see Fig.2.1) can be expressed as P(x,,x,,X;) or

P(a,,a,).

x = fila,,a,), x, = fr(a,a,), x; = fi(a,a,). 2.1

The location of P can also be expressed by a vector r.

r(a,,) = fila, @))€, + fr(a,. a,)e, + (e, a,)e;, (2.2)

where e, is the unit vector, i=1,2,3.



Figure 2.1 Arbitrary shell geometry and location of a point on it.

2.1.2 Fundamental Forms and Their Coefficients

Vector N (see Fig.2.2) should be defined to obtain all of the fundamental forms.

It is the unit normal vector of the neutral surface and is given by (Akbulut, 1970)

Figure 2.2 Unit normal vector.



o o o o
_ Oa, Ba, da, Oa, @3)
Or o or or or or
T % o e B
Oa, Oa, 0, Oa, ) \Oa, 0a,
The differential changes dr and dN are
PR LA T . SO . S 2.4
da, da, da, oa,

Essentially, there are three fundamental forms and these can be shown practically

and generally by a matrix as given by (Akbulut, 1970)

;T
dN dr 0| @.5)
0 dN dr

Here, 1, Il and III are respectively first, second and third fundamental forms:

dr 0 0
e g | AR s |, @.6)
dN  dr oa, oa, da, oa,
dN 0
II=- =—dN -dr=— ﬂaloz]+6—Nda2 . ﬁa’a:,-r—ﬁr—dozZ 5 2.7
0 dr Oa, da, oo, da,
di
11l = et D e g N P B e . @.8)
dN da, oa, o, oa,
I =g, (de))’ +2g,dada, + g,,(da,)?, (2.9)

I =b,,(da,)* + 2b,da,da, +b,,(da,)? , (2.10)
11 1 2 22 2



Il = f,(da,)’ +2 fdade, + f,,(da,)?, (2.11)

where the coefficients are

or or
i 2.12a
i da, Oa, ( )
£, =0 (for orthogonal coordinates), (2.12b)
or or
- o 2.12
&n oa, oa, ( c)
oN or o’r
— by=—N, (213a
' da, oa e ¢ )
2
b, e DTG, BN OF , oras given by b, = & (2.13b)
2\ 0a, Oa, Oa, Oq, dayda,
2.
e o by, =6—r2-N, (2.13¢)
da, Oa, da,
DN i)
oa, O,
/12 =0 (for orthogonal coordinates), (2.14b)
ON ON
T B (2.14¢)

" oa, oa,



2.1.3 Lame’ Parameters and Radii of Principle Curvatures

Here, Lame’ Parameters and radii of the principle curvatures are stated. These
terms will be used in physical shell equations and in some calculations. They are

(Kreyszig, 1959):

A =8, (2.15)

4 =8xn > (2.16)

which are called Lame’ Parameters or Fundamental Form Parameters. Beside this,

K b and «,= by , 2.17)

Biei (2.18)

R=— (2.19)
Ik,

are the radii of principle curvatures.



2.2 GEOMETRIC PROPERTIES OF CYLINDERS AND ELLIPSOIDS

2.2.1 Geometric Properties of Cylinders

It is the aim of the study to present the geometric properties of a cylindrical shell.

Generally, an elliptical cylindrical shell looks like as shown in Fig. 2.3.

¥ ¥

7 ()

Figure 2.3 Elliptical cylinder in curvilinear coordinates.

A point on the surface of the shell can be defined by using the orthogonal

curvilinear coordinates, as given by (Lipschutz, 1969)

r=acosa.e, +hsinae, +ae;,, (2.20)

where 0 <, <27 .

Here, @, is the curvilinear coordinate about the center of the ellipse and on the xy —

plane. And «, is the longitudinally variable through the z-axis.



The differential properties of an elliptical cylindrical shell become

or ;
— =-asina,e, +bcosa,e, +Oe,,

oa,

r .
— =-—acosa,e, —bsinae, +0e;,
da,

or
=0e, +0e, +Oe,,
da,0a,
= =0e, +0e, +1e,,
2

o'r
—— = 0e, +0e, +0Oe;.
oa,

By substituting these into the equations in section 2.1, it can be found that

or or

N= Oa, 0Oa, _bcosae +asinae, +0e,
ﬁxi \/(bcosal)l+(asina,)z
Oa, Oa,

g, =(asing,)* +(bcosa,)?,

—ab(cos’ @, +sin’ @) —ab

' J(bcosa, ) +(asing,)?  |(beose,)? +(asing,)’

11

(2.21)

(2.22)

(2.23)

(2.24)

(2:25)

(2.26)

(2.27a)

(2.27b)

(2.27¢)

(2.282)



The Lame' parameters, 4; and A, are

4, =/(asine,)? +(beose, ),

& =i
.
b, (bcosa))’ +(asin ) —ab
K =—= = = = 3 9
' g, (beosa) +(asine;)’ l:(bcosa,)z+(asinal)2](>m
Kzzbi=9:0.
gn |

The radii of the curvatures, R; and R; are

1 [(bcosa] )’ +(asin 0‘1)2] -

R =
: |Kl| ab

= b
|K2!

R,

(2.28b)

(2.28¢)

(2.29)

(2.30)

(2.31)

(2.32)

(2.33)

(2.34)

If parameter b is equalized to parameter g, then the elliptical cylinder turns to be a

circular cylinder and it is illustrated in Fig. (2.4).



z(a)

Figure 2.4 Circular cylinder in curvilinear coordinates.

By substituting b=a in equations (2.29), (2.30). (2.33) and (2.34), the Lame’
parameters and radii of curvatures of a circular cylinder can be casily found. These

are given at the below.

A =+/(asine,)’ +(acosa,)’ =a, (2.35)
4 -1, (2.36)

2 ¥ 277 (3/2)
(acosa,) +(asina,)”
R :[ )+ V'] =a, (2.37)

1 2

R i (2.38)



2.2.2 Geometric Properties of Ellipsoids

The general equation for ellipsoids is (Thomas & Finney, 1992), referring to Fig. 2.5

for notation,

X_+L+i_=|, (2.39)

Figure 2.5 Ellipsoidal shell in curvilinear coordinates.

An arbitrary point on the surface of the shell can be defined by using the

orthogonal curvilinear coordinates, as given by (Kreyszig. 1993)

r=acosa, cosa,e +bcosa, sinae, +esina,e,, (2.40)
where 0< @, <27 and —7/2<a,<7/2.

Here, @, and a, are the curvilinear variables about the center of the ellipses in the

Xy — plane and the xz — plane respectively. So. the differential geometric properties

of an ellipsoidal shell become



0l
oa,

o'r

r
—— =—agcosa, sina,e, +bcosa, cosae, + ey,

—— =—acosa, cosa,e, —bcosa, sinae, + Oe,,

oa,

o'r

oa0a,

=asina, sina,e, —bsina, cosae, +0e;,

or ; ’ "
—— =—asina, cosq,e, —bsina, sina,e, +cCOSA,€;,

oa,

o'r

— — =—acosa,cosa,e, —bcosa, sina e, —csina,e;.

oa,”

By substituting these into the equations in section 2.1, it can be found that

or or

AL
_ 0oy Oa, _

chcos a, cos aye, +cacosa, sina,e, +absina,e;

NENES
oa, Oa,

e ’
J(chcos a, cosa,)? +(cacosa, sina, )’ +(absina, JE

g, =cos’ a, [(asina, ) +(bcosa1)2:l ;

8:=0,

g, = (asina, cos a,)’ +(bsina, sin a,)* +(ccosa,)?,

—chacos’ a,

b, =

= .
J(cbeosa, cosa,)? +(cacosa, sina,)” + (absina, )’

15

(2.41)

(2.42)

(2.43)

(2.44)

(2.45)

(2.46)

(2.47a)

(2.47b)

(2.47¢)

(2.48a)
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_ cha(sina, sina, cosa, cose, —sina, sina, c0sa, cosa,) 0

e -0, (2.48b)
\[(cbcosaz cosa,)” +(cacosa, sina,)” +(absina,)’
by, = s e . (2.48¢)
(chcosa, cosa,)’ +(cacosa, sina,)” + (absin o)
The Lame' parameters, 4, and A4, are
A =cosa, |:(asinoz,)2 +(bcosa])zil , (2.49)
s = \[(asin a,cosa,)* +(bsina, sina,)” + (¢ cosa,)’ , (2.50)
) —cba
-~ s, \/(?b cosa, cosa, )’ +(cacosa, sing,)’ +(ab sina, )’ @51
U [(asina,)er(bcosa,)z] .
—cba
- B \/(cbcosal cosa, ) +(cacosa, sin,)’ +(absina,)’ 2.52)
S (asina, cosa, )’ +(bsine, sina;)* +(ccosa,)’ q
The radii of the curvatures, R; and R; are
-
Jx]
[(asin a,) +(beosa, ) ]\f(?bcos a,cosq,)? +(cacosa, sina,)’ +(absin a,)
= , (2.53)

cha

il
el

[(asin a,cosa,)’ +(bsina, sin a) + (ccosnr,){N{cbcom2 cosa,)’ +(cacosa, sina,)’ + (absina,)’ (2 54)

cha




As it is known, an ellipsoid has three geometric parameters which are a, b and ¢.
If two of these are equal to each other, then this type of ellipsoid is known as
ellipsoid of revolution or spheroid. So, if parameter b is equalized to parameter @,

then an ellipsoid turns to be a spheroid and it is illustrated in Fig. (2.6).

Figure 2.6 Spheroidal shell in curvilinear coordinates.

By substituting b=a in equations (2.49), (2.50), (2.53) and (2.54), the Lame’
parameters and radii of curvatures of a spheroid can be easily found. These are given

at the below.

4= cosaz\![(asin a, )2 +(acosq, )2} =cos(a, )a. (2.55)

4= \/(asin a, cosa,)’ +(asina, sing,)’ +(ccosa,)’ . (2.56)

\/(cacosal cosa,)’ +(cacosa, sina,)’ +(a’ sina,)’
= .

(257)

c

’—lasina: cosa,)’ +(asina, sine,)’ +(ccosa, )::]J(Camsa: cosa, ) +(cacosa, sina,)’ + (a’sina,)’ (2.58)

ca
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2.3 SHELL EQUATIONS

Shell equations are based on the assumptions that the shells are thin with respect

to their radii of curvature and deflections are reasonably small.

2.3.1 General Strain-Displacement Relations with Love Simplifications

Love (Soedel, 1993) proposed, that if a shell is thin, it may be assumed that the

displacements in the «, and a, directions vary linearly through the shell thickness,

whereas displacements in the ¢, direction are independent of «; ; that is,

Uy (e, 2,05) =1 RN ACNAR (2.59)
U, (o, 0,,0;) =u, (a,0,) + o, B, (., ) » (2.60)
U, (o, @y, 0) =us (o, ;) (2.61)

where f, and f, represent angles.

By this assumption, strains can be separated into membrane and bending types.

Beside this, &,, (normal strain) and ¢, &,, (shear strains) are neglected. And finally,

strain — displacement relationships simplify to (Soedel, 1993)

&, =0, (2.62)
£; =0, (2.63)
£, =0, (2.64)

£, =&, + a3k, (2.65)



_ 0
Ey =&y +Aiky,

— o
Ep =& T Ak, .
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(2.66)

(2.67)

Here, &), &;,, &, are called the “membrane strains” (independent of «,) and ki,

k22, k12 are called the “bending strains” (proportional to ¢, ). These can be expressed

as follows (Soedel, 1993):

o L Ou u, 04 u
&= + —=
A 0a, A4, 0a, R

>

0 L6u2+ u, 6A2+£3_

A, 6a, AA, da, R,

198, B 04
"4 Ba, 4@6%’

105, B o4
o= oa
, 0a, A4, oa,’

v 0 () 4 0B
277 e\ 4 Aa% A4)

where £ and S, are angles given by

(2.68)

(2.69)

(2.70)

2.71)

(2.72)

(2.73)

(2.74)
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u 1 Ou
Pr="t—— >
R, 4, Oa,

(2.75)

2.3.2 Strain-Displacement Relations for Cylindrical Thin Shells

Using equations (2.29), (2.30), (2.35), (2.36) for A4, and 4,, and equations (2.33),
(2.34), (2.37), (2.38) for R, andR,, strains in an elliptical or a circular cylindrical

shell can be shown to be

o1 0w Uy

& = i 2.76
" e TR, (2.76)
go = 2.77)
oa,
g =t T, Oy (2.78)
4, Oa; Oa,
o o= L) 0 [w)|_ 01 0u 2.79)
"4 |0, \R ) oo\ 4 ba, )|’
o’u
ky =——, (2.80)
oa,
_Llow 2 O (2.81)
? R da, A dada’
u 1 Ou
p =t 1 (2.82)

_Rl 4 da,’
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B, = (2.83)

da,

2.3.3 Strain-Displacement Relations for Ellipsoidal (also Spheroidal) Thin Shells

Using equations (2.49), (2.50), (2.55), (2.56) for 4, and 4,, and equations (2.53),
(2.54), (2.57), (2.58) for R, and R,, strains in an ellipsoidal and also spheroidal shell

are found as:

16u1+ u, <'3A1+u_3

£ =— i (2.84)
A4 0a; AA, Oa, R
go = L Oy w O Uy (2.85)
4, 0a, AA, Oa; R,
& :ﬁ'i(u_zJ+ﬁi(“_l), (2.86)
4 ba,\ 4, | A4, da, \ 4
_ 1 o f(m _1ow) \R 40a)04 (2.87)
"4 00\ R, 4 0q 4.4, da,’
(yl_ 1 ouy
_ 1 0 (u 10w \R 40a)o4 (2.88)
2 4,0a,\R, 4,0a, A4,  Oa’
“_z__l_ Ouy ﬂ_i%
oA 0| R, Ada,| A4 0 |R 40a | (2.89)

27 4 da, 4, 4, da, 4
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g =2 % (2.90)

(2.91)

Note that, all of these strain — displacement relationships are used in strain and
kinetic energy expressions of shells to develop suitable required finite element

models.
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CHAPTER THREE
SOLUTION PROCEDURE

In this chapter, solution procedure is explained and presented. Finite element
solution technique is applied to achieve the result. Firstly, strain (potential) and
kinetic energies are derived, and then ring elements are used to complete the finite

element solution procedure.
3.1 STRAIN AND KINETIC ENERGY EXPRESSIONS FOR THIN SHELLS

For formulating the shell vibration problem by the help of the finite element
method, energy expressions are required. Now, strain (potential) and kinetic energy
expressions can be derived using the strain — displacement relations given in the

preceding chapter.

3.1.1 Strain Energy

The strain energy stored in an infinitesimal element that is acted on by stresses o,

is (Soedel, 1993)
1
dP= E(o—“g11 + 060 + Oy + 0361 + Oy + 06y ) AV (€RY

As noted before in equations (2.62) to (2.64), according to Love simplifications, the
last three terms in equation (3.1) can be neglected. Integrating this equation over the

volume of the shell gives the total strain energy as
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1
p= _[IJ-{E(611811+622822 +O'12€12)}dV, (3.2)

o a; ay

where the infinitesimal volume dV is given by

1

dV = A4, (1 +%—)(1 +%) dada,da,, (3.3)

) a, a
and neglecting the — , == terms, P becomes
1 2

1
P= J' .[ I{—i(allgl, + 0 py +O,E, )} AAdada,da, . (3.4

@ oy a;

According to the combination of Hooke’s Law and Love simplification, the stress

terms become (Soedel, 1993)

E o (]
o, = 1——;7[8” + ue;, +a, (k11 + uk,, )] , (3.5
Op= -2 [522 + pefy + o (K +:Uk11):| ) (3.6)
o, =G(&, +aky). (3.7

Here; u is the Poisson’s ratio, E is the modulus of elasticity and G is the shear

modulus, where

E

i (3.8)
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Substituting equations (3.5) to (3.7) and equations (2.65) to (2.67) into equation

(3.4), gives

E
1-

r-J] ol

L)

+G(8102 + a5k, )(5{’2 +ask, )

‘_ﬂ?[glox + pey + o (ku + pky, )](8101 + a3kll)

7 [5;2 + e + oy (kzz + pkyy )](3;2 + askzz)

rA A, dada,da; .

(3.9)

If this expression is integrated over the thickness of the shell from —4/2 to 4/2, this

22

gives
&[5101 + pgg, +a (K, + pkoy )](8101 +asky, )
a2
P= JJ_J; -12~ +_1 _E,u_z [6‘;2 + ue) +a, (k22 + ,uk“)](g;z +ask.
+G(£{'2 + sk, )(5{’2 + a3k12)

and arranging this term gives the strain energy as

1-p
02 o 0 02 02
K[gu +2ueEy +Ey + &

P1]

@ o +D[k”2 + 2k ey, + K +1_T”k122]

)

AAd,dada, ,

rAAdada,da, , (3.10)

(3.11)

where K is named membrane stiffness and D is named bending stiffness. K and D are

given by

(3.12)
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3
p-—ZIF (3.13)

12(1- )

Equation (3.11) is required expressing for the strain energy. If the membrane (&)
and bending (k) strains are substituted in equation (3.11), the strain energy can be

expressed in terms of shell displacements.

This is a general strain energy expression for any shape of shell. If equations
(2.76) to (2.81) and equations (2.29), (2.30) are substituted into equation (3.11),
strain energy for an elliptical cylindrical shell can be obtained. And if equations
(2.84) to (2.89) and equations (2.49), (2.50) are substituted into equation (3.11),
strain energy for an ellipsoidal shell can be obtained. Note that equations (2.35),
(2.36) are valid for circular cylindrical and (2.55), (2.56) are for spheroidal shells.

3.1.2 Kinetic Energy

Kinetic energy of one infinitesimal element is given by (Soedel, 1993)
dT=%p(Uf+U22+U32)dV. (3.14)

Substituting equations (2.59) to (2.61) into equation (3.14) and integrating over the

volume of the shell gives

1 i+ +i5 +03 (B + ) ( %)( %)
=— —= =2 |dadada, . )
e I A e ) R

. . a a . .
For thin shells, the quotients —> and —* can be neglected. Then, integrating over
1

the shell thickness of the shell (a; =—h/2 to a, =h/2) gives the kinetic energy

expression for any shape of shell.
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1 2 2 o W -
T=5ph”[uf +312 + i +E(ﬂf +/322)}A1A2da1da2 . (3.16)

X %

If equations (2.82), (2.83) are substituted into equation (3.16), kinetic energy of an
elliptical and also a circular cylindrical shell can be obtained. And if equations
(2.90), (2.91) are substituted into equation (3.16), kinetic energy of an ellipsoidal and

a spheroidal shell can be obtained as well.
3.2 RING ELEMENTS FOR CYLINDRICAL AND SPHEROIDAL SHELLS

For analyzing the vibration problems of cylindrical or spheroid thin shells, finite
element method will be used here. The strain and kinetic energies are reformulated in

a matrix form for application of this solution technique. For ¢, direction, a
sinusoidal function will be used and for the ¢, direction, a polynomial function will

be used for representing the shell displacements. This type of finite element is called

ring element used for axisymmetric thin shells of revolution in this study.
3.2.1 Ring Element Technique Used for Finite Element Modeling

The displacement functions that will be used in formulating the finite elements are

(Soedel, 1993)

u (ay,a)=U, (a,)sin n(a, - p), (3.17)
u,(ay,0,)=U,(a,)cos n(a, - ), (3.18)
uy (@, ;) = U, (e, ) cos n{a, —9), (3.19)

where U, U; and Uj are the polynomial functions in @, . #; and u, displacements are

tangential to a; and a; directions respectively. And u3 is in the direction of the

surface normal (see Fig. 3.1 and 3.2).
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u = (al +a,a, +aa,’ +a4a23)sin n(a,~9), (3.20)
u, =(a, + a,z, + a,0, + @@’ Jcos n(a,—9), (3.21)
U, = (a9 +a,Q, +a,a,’ +a,a,’ ) cos n(a, - 9), (3.22)

Equations (3.17) to (3.19) can be written in matrix form as

w=[1 @, &' &’ 0.0 0 0 0 0 0 0] lsinn(a-p), (3.23)

m,=[0 0001 a a & 00 0 0] |cosn(a-p), (3.24)




w=[0 00000001 a & a]

a,
ay,

ay

L% |

cos n(a,—p).
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(3.25)

General basic finite elements of the cylindrical and spheroid shells are shown in

Figures 3.1 and 3.2. Terms of sy and sy are the general o measures for any ring

element.

Figure 3.1 One ring finite element for circular cylinder.
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Figure 3.2 One ring finite element for spheroid.

Wk
(au,
(501 ]k
W) [ s & e o 0 0 0 0 0 |la]
("‘U: ] 0 1 25 3 0 0 0 0 0 0 0 0 |a
Sogm| oo oo sl s 0 0 0 o ||k
Wy, 0 0 0 0 0 1 25 3 0 0 0 0 | a
{BU; J o0 0 o0 00 0 0 1 s s s |a
da, ). | |0 0 0 0 0 0 0 0 0 1 25 35|«
ks |0 & &6 &2 0 0 0 0 0 0 0 0 || a
au, 0 1 28, 3%, 0 0 0 0 0 o0 0 0 |l a
[aa: ]M 0 0 0 0 1 S, S S O 00 0 0 | a
Us) 0 0 0 0 0 1 25, 3,0 0 0 0 | a,
B, 0 0 0 0 0 0 0 0 1 sy s S | @
[Baz ]H 0 0 0 0 0 0 0 0 0 1 25, 3s. 4]
(Uj)kd
(ff”"j (3.26)
[\O% Jiu ]
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Briefly, this can be rewritten as

U=Ca, (3.27)
and
A=C U (3.28)

By substituting equation (3.28) into equations (3.23) to (3.25), one can reach u;,
up and us. And if these u;, u; and w3 displacement equations are used in equation

(3.11), the strain energy for a single ring element will be of the form

1

VD =
2

UTc-TTT [Q(a,@,.n)]deyda, C'U, (3.29)
0 5

Proceeding similarly as equation (3.16), it can be shown that the kinetic energy also

for a single ring element is in the form
i phUTC—TZMMI:S(a,,az,n)]da,daz c'u. (3.30)
2 0 5

As it is known generally the potential and kinetic energy formulas are respectively

P:%UTRU, (331)

T :%UTmU. (3.32)

By the help of these forms, the stiffness and mass matrices for a structural element

appear as,



k=C" j j [Q(a.a,.n) |dada, C', (3.33)
m = phC”’ j j [S(a.a,.n)]dada, C. (3.34)
0 5

These matrices are for one single ring element. To find the whole mass and
stiffness matrices for the complete shell geometry, these local ring elements are
assembled into global matrices by connecting the circular edges of the elements end
to end. This procedure is accomplished by satisfying the displacement continuity at
the edge connections. In other words, the displacements and their derivatives must be
same at the circular edge connections, because one edge is shared by two successive
ring elements. Hence, for getting the entire (total) stiffness and mass matrices, the
displacement terms at these shared edges are summed for each successive element’s

matrix.

-

Figure 3.3 The whole finite element model for circular cylinder.
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Figure 3.4 The whole finite element model for spheroid.

To derive the equation of motion of a structure for free vibration, Lagrange

equations can be used. The Lagrange equations are given by

d G_L,}_iﬁ_’?:o (3.35)
dr (oU )| oU oU

where

L=T-P (3.36)

is called the Lagrangian function, 7 is kinetic energy. P is the potential energy, R is
the dissipation function, U is the displacement and U is the velocity. As any
dissipation is not considered here (such as damping), the dissipation function R is

neglected. Therefore the Lagrange function reduces to

&L Zap, (3.37)
dr\eU| eu

Lagrangian is
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1 ;
L:E(mUz -kU?). (3.38)

By substituting L into (3.37) the equation of motion is obtained as
mU+kU =0 (3.39)

If a harmonically time dependency (U = 0@’“") is assumed for displacement function

as a solution, then equation has the form
(k=wm)U=0. (3.40)
In matrix form

(K —»'m,,, )U=0. (3.41)

total
By a simple arrangement, equation (3.41) turns to be a typical eigenvalue problem:

3

total ™ total

(m™ -wI)U=0. (3.42)

If this eigenvalue problem is solved then the radian frequency values which give

natural frequencies of the structure can be found.

33 APPROXIMATE RING ELEMENTS FOR ELLIPTIC AND
ELLIPSOIDAL SHELLS

When constructing the finite element model of elliptical and ellipsoidal thin
shells, it is assumed that the displacement functions (3.17) to (3.19) can be used also
for elliptical and ellipsoidal ring elements. Although these functions are valid for
axisymmetric shells of revolution, it is assumed that these can be used for

asymmetric structures. By this assumption, the solution procedure is performed in the
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same way with circular cylindrical and spheroidal shells. In other words, the

equations given in Chapter 3 are also used for elliptical and ellipsoidal thin shells.

The strain — displacement equations of elliptic cylindrical and ellipsoidal thin
shells are used in energy expressions during the finite element modeling procedure.
And the geometric parameters, a and b are different from each other. Only these
differences exist comparing to section 3.2. The solution procedure given in section

3.2 is also valid for section 3.3.
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CHAPTER FOUR

NUMERICAL RESULTS AND COMPARATIVE
EXAMPLES

In this chapter, numerical results for some thin shell structures are given. And the
results for these shell structures are compared with the results of a commercial
software package IDEAS.

4.1 RESULTS FOR SOME CYLINDRICAL AND SPHEROIDAL THIN
SHELL STRUCTURES

To find the fundamental natural frequencies of some cylindrical and spheroidal
thin shell structures, MATLAB programmable “m” files were written. For the same
shell structures and boundary conditions, both MATLAB programs and well-known
commercial cad/cam software I-DEAS found the frequencies. The results were
compared to check the reliability of the written programs and the calculations

derived during the entire study.

The structures, its boundary conditions, geometric parameters, material properties
and meshed drawings in IDEAS software are depicted by Figures 4.1 — 4.4. And note

that typical structural steel was considered during the analysis procedures.

The MATLAB program names (“m” file names) and the results are given by
Tables 4.1 — 4.4 and Figures 4.1 — 4.4. These are the fundamental natural frequencies
of each of the related shell structure. As it can be seen from the tables, the results

found by the MATLAB programs are satisfactory close to the IDEAS’ ones.
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Simple Supported Edge

Simple Supported Edge A

/

Figure 4.1 The simple supported cylinder at both edges that lets axial motion
(Filel.m). (a=b=60 mm, cylinder length L=120 mm. h=3 mm, pu=0.3, E=206 GPa.
p=7860 kg/m*)

As it can be seen from the Table 4.1, exceptionally there is also a theoretical exact

result is given (EI-Mously, 2003) for a better comparison opportunity.

Table 4.1 Comparison of natural frequencies obtained by different solution sources

for Fig.4.1. (circumferential mode number, n,=3)

l Filel.m l I-DEAS Exact Result
I w (Hz) 3481 l 3429 3414
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Clamped Edge

@

Meshed IDEAS Model

Figure 4.2 The spheroidal thin shell clamped at cut edge (File2.m). (a=b=45 mm,
¢=85 mm, length Z=65 mm, h=3.5 mm, u=0.3, E=206GPa, p=7860 kg/m’)

Table 4.2 Comparison of natural frequencies obtained by different solution sources

for Fig.4.2. (circumferential mode number, n;=1)

File2.m I I-DEAS

w (Hz) 1844 ' 1815
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4
Clamped Edge ;

Meshed IDEAS Model

Figure 4.3 The spheroidal thin shell clamped at cut edge (File3.m). (a=b=80 mm,
¢=60 mm. length Z=35 mm, h=3.5 mm, p=0.3, E=206 GPa, p=7860 kg/ml)

Table 4.3 Comparison of natural frequencies obtained by different solution sources

for Fig.4.3. (circumferential mode number, n;=1)

I File3.m l I-DEAS l

I w (Hz) 3350 I 3308 I
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2
N
Clamped Edge = 't’
e 1} -

Meshed IDEAS Model

Figure 4.4 The thin shell formed by the combination of a half spheroidal and a
circular cylindrical thin shell which is clamped at cylindrical edge (File4.m).
(a=b=75 mm, ¢=30 mm, cylinder length L=60 mm, h=3.5 mm, pu=0.3, E=206 GPa.
p=7860 kg/m’)

Table 4.4 Comparison of natural frequencies obtained by different solution sources

for Fig. 4.4. (circumferential mode numbers of spheroid cap and cylinder, n;=1,

n=1)

I Filed.m I-DEAS
w (Hz) | 4582 4509
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4.2 RESULTS FOR SOME ELLIPTICAL AND ELLIPSOIDAL THIN SHELL
STRUCTURES

As indicated in section 4.1, some circular cylindrical and spheroidal shell
examples with various boundary conditions were studied. The numerical results

found by MATLAB programmes and IDEAS results are given and compared.

Now, a and b parameters are changed and these geometries are turned to be
elliptical and ellipsoidal thin shell structures. Other geometric and material
parameters are same with the structures depicted in Figures 4.1 — 4.4. The numerical
results found by MATLAB are given at the below (Table 4.5) referring to Figures 4.1
—4.4. The parameters are also given by Table 4.5.

Table 4.5 Fundamental natural frequencies for elliptical and ellipsoidal shells

obtained by finite element programmes.

Geometric Parameters . g Fundamental
. Circumferential
Filename Frequency
a (mm) b (mm) Mode (Hz)
Filel.m 63 37 3 3617
File2.m 47 43 | 3410
File3.m 83 77 1 3925
File4.m 77 73 (L.1) 4877
UL
5eweTIM KUR
'I.c-"m‘sm‘;g‘fﬂﬂ mﬂﬂ



CHAPTER FIVE

EXPERIMENT RESULTS

In this chapter, experimental setup and test results are presented. Firstly, the

experiment procedure is described and then a comparison between the experimental

and computational results is presented. The purpose of the test was to measure the

first few natural frequencies of a compressor shell and compare the measurement

with the predictions of the theory. The measured shell is made of a geometry which

is a combination of an elliptical-like cylinder and an ellipsoidal-like cap. A similar

figure is given by Fig. 5.2.

5.1 EXPERIMENTAL SETUP AND PROCEDURE

Test equipment connection can be depicted as in Fig. 5.1.

carrying frame

elastic
cord

accelerometer

signal analyzer

power

supply

0
mains supply

Figure 5.1 Schematic illustration of the test equipment connection.
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During the experiment, a dual channel portable signal analyzer (Briiel&Kjaer
Type 2148) which includes a power supply (ZG 0199), and an accelerometer
(Briiel& Kjaer Type 4338) were used as test instruments.

An elastic cord was used to satisfy the fully free boundary condition, by hanging
the test article with the help of it. A carrying frame was used to hang the test
article and an impact hammer was also used to give an impulsive excitation to the

test article. These were the other assistant test components.

As the main goal of the test was to do frequency spectral analysis, firstly the FFT
Program which is one of the signal analyzer’s accessories was installed. After the
installation the analyzer was ready for the experimental procedure. Then the

connections of the test equipment were done carefully (see Fig. 5.1).

This test can be named as impact hammer experiment or in other words impulse
excitation lest. An impulsive excitation is a force that is applied for a very short, or
infinitesimal, length of time. And an impulse applied to a system is the same as
applying the initial condition of an initial velocity to that system. At the same time,
the impulse response is also physically interpreted as the response to an initial
velocity. Therefore if the test article (structure) is exposed to an impulsive excitation
by an impact hammer stroke then it begins to vibrate with its natural modes, because
the frequency solutions for an impulse excitation are the natural frequencies. So if
the vibration of the structure is measured by an accelerometer and if the amplitudes
are monitored in frequency domain, these natural frequencies reveal their selves by
showing the peak values at these frequency values. By this way, these frequencies
can be determined experimentally. This type of frequency based analysis is known as

frequency spectrum analysis or Fourier analysis.

According to the procedure above; firstly the equipment connections were
completed and the test structure was hanged, then an impact hammer was used to
apply an impulse to the test structure. The experimental results were obtained and

copied as a text file in a HD disk and could be plotted (see Fig. 5.3).
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Figure 5.2 Thin shell structure wanted to be tested for fully free boundary condition.
(¢=30 mm, L=60 mm, h=3.5 mm, p=0.3, E=206 GPa, p=7860 kg/m®,
a=b=75 mm for Model — I; a=77 mm, b=73 mm for Model — II)

Fig. 5.2 shows the structure for which the numerical results are calculated. As it is
seen from the figure explanation there are two models. named as “Model —I"" and
“Model — II”. Model — I is formed by a combination of a circular cylinder and a
spheroid cap, and Model — II is formed by a combination of elliptical cylinder and
ellipsoidal cap. Results of the experiment and the comparison of these with the
calculated ones are given by Fig. 5.3 and Table 5.1. “Free.m” is the file name of the
MATLAB programme written for finding the numerical results and it is given by

Appendix 1.

The test specimen has not the same shape with the Model — 1, but they are similar
shell structures. Hence, this similarity gives a chance to a comparative study. Despite
the small physically shape difference between Model — I and the test structure, it can
be seen that the experimental result supports the calculations. And for Model — I, the
circumferential mode (1.1) gives a frequency near to zero which represents the rigid
body motion. On the other hand Model — II is much more similar to the test

specimen. The geometric parameters a, b are changed according to the test
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structure’s physical appearance. Because the tested structure has not a circular, but
an elliptical like cross-section. Despite the geometric parameters are adapted
according to the test structure’s original shape, the calculated numerical results
deviate much more from the experimental ones; whereas it is expected that the
calculations (see Table 5.1) will agree with the experimental results in a better
manner than the first case (Model — I). In addition, for rigid body motion
circumferential mode numbers (1,1) does not give a frequency value of zero or in the

vicinity of zero for Model — I1. The obtained frequency for mode (1,1) is 463 Hz.

Although the numerical results of Model — I are completely true, this can not be
said for Model — II. Because, a single harmonic function (sine or cosine) was used
for representing the displacement function in the direction of ¢; in F.E.M given by
Chapter 3. This type of harmonic function can only be valid for shells which have
circular cross sections, but not completely true for axially asymmetric shells, like
elliptical ones. When this model is used for elliptical thin shells, the results deviate
from the reality. The more asymmetric the shell becomes, the more the result
deviation will observed. But for small differences between @ and b parameters, the

model does not exaggeratedly reveal its error by means of the results.
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Frequency Spectrum Analysis for Free Vibration
90 T T T T
P 4 Model|
+  Modelll
—— Euperimental Results

70t * |

50 +* &

Accelaration Magnitude
dB (ref. 10E-4 m/is*s)
3

1

40+ o g -

30 1 1 1 1 1 1
0 1000 2000 3000 4000 5000 6000 7000
Frequency (Hz)

Figure 5.3 Comparison of numerical (Model-I & Model-Il) and experimental results
(circumferential mode numbers of numerical results for cap and cylinder are

respectively (2,1), (3.1). (4,1). (5.1), (6,1), (7.1). (8,1) ).

Table 5.1 Numerical presentation of Fig. 5.3.

Model-1 Model-11 lExperimental Res.
w; (Hz) 623 752 464
w, (Hz) 1250 1346 1008
w; (Hz) 1901 1998 1776
wy (Hz) 2556 2656 2264
ws (Hz) 3207 3312 3040
we (Hz) 3843 3955 I 3600
w7 (Hz) 4449 4568 I 4344
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CHAPTER SIX
CONCLUSIONS

6.1 CONCLUSIONS

A theoretical and experimental study on finding the primary resonance
frequencies of the circular and elliptical cylindrical, spheroidal and ellipsoidal thin
shells is presented in the present thesis. Love theory (Soedel, 1993) has been used
during the derivations of thin shell equations. None of any other simplifications or

assumptions has been used during the derivations.

The Finite Element Method formed by ring elements has been used as the analysis
method. By using the ring elements, one of the two curvilinear coordinates has been
eliminated. This method gives an opportunity to simplify the modeling and
calculating stage. The model was based on potential (strain) and kinetic energy

expressions of the shell structures.

MATLAB software gives a great possibility to complicated matrix calculations
and flexible programmable computer codes. Hence, numerical results have been
calculated with the help of the programs (“m” files) which were constructed by the
computer codes written in MATLAB — 6.1. The validity of the written programs has
been proved by the comparison with a well — known commercial cad/cam software
IDEAS. For the same thin shell geometries, very close results have been found by
MATLAB programs and by IDEAS analysis. Besides this comparison, it has been
observed that the numerical results satisfy the theoretical exact solutions (Soedel,
1993), (El-Mously, 2003).
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Although the tested shell structure has not exactly the same shape -but similar-
with the computed ones, the experimental and calculated results are seemed to be in

an agreement, especially for Model — 1.

As given in detail in Chapter 5, single harmonic displacement function used in
finite element model does not give completely true numerical results for asymmetric
elliptical and ellipsoidal thin shells. In the future studies, a more appropriate function
will be used in the solution model to represent the a; dependent displacements on the

ring element, for these types of asymmetric thin shells.
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APPENDICES

APPENDIX 1: MatLab Codes of “Free.m” Programme.

cle;

clear;

SUBJECT=(' THIN SHELL VIBRATION ")

ATTENTION=(' Be sure that "additionalfilel.m", "additionalfile2.m",

"additionalfile3.m" and "additionalfile4.m" are in the same folder with "Free.m" ")

mu=input(’ Poisson Ratio -> mu : ');

E=input(' Modulus of Elasticity(Pa) > E : ');

ro=input(’ Density of the Shell Material(kg/m”3) > 10 :");

h=input(' Thickness of the Shell(m) ->h : ");

a=input(' x-Axis Geometric Parameter(m) ->a: ');

b=input(' y-Axis Geometric Parameter(m) > b : ');

c=input(' z-Axis Geometric Parameter(m) ->c¢ : ');

L=input(' Length of the Cylinder (m) ->L : ");

fii=0;

ni=input(’ Circumferential Mode Number for Spheroid(also Ellipsoid) ->nl : );

n2=input(’ Circumferential Mode Number for Cylinder ->n2 : ');

K=E*h/(1-mu"2); %Membrane Stiffness (Pascal*meter)
D=E*h"3/12/(1-mu”2); %Bending Stiffness (Newton*meter)

syms al a2; %Curvilinear Coordinates
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el num=input(' Element Number for FEM of the Structural Parts -> el_num : ');

m=input(' Numeric Integral Parameter for Simpson Method ->m :");

%Zkok=[1;a2;a2"2;a2"3};
%Z1=[Zkok',zeros(1,8)];
%Z2=[zeros(1,4),Zkok’,zeros(1,4)];
%Z3=[zeros(1,8),Zkok'];

%Z=[Z1
% 72
% Z3];

%ul=Z1*sin(n*(al-fii));
%u2=7Z2*cos(n*(al-fii));
%u3=Z3*cos(n*(al-fii));

%%%% %% %% %% %% %% %% %% %%6%%6%%6%%%6%%%%%%%%%%%%%%
% NOTE THAT Ep11,Ep22,Ep12,betal,beta2,k11,k22,k12 strain expressions are %
%included in additionalfile 1,2,3 and 4. %
%%%% %% %% %% % %% %% %%%%%6%%6%%%%%%%%%%%%%%%%%%%

gamma=pi/2/el_num;
Kmatl=zeros(6*el_num-+6);

Mmatl=zeros(6*el_num+6);

for i=1:1:el_num;
0=0;
p=2*pi;
r=(i-1)*gamma-+(-pi/2);
s=i*gamma+(-pi/2);
int num=2*m;
differencel=(p-o)/int_num;

difference2=(s-r)/int_num;
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C=[L,r,r"2,r"3,zeros(1,8)

0,1,2*r,3*r"2,zeros(1,8)

zeros(1,4),1,r,1°2,1"3,zeros(1,4)

zeros(1,4),0,1,2*r,3*r"2,zeros(1,4)

zeros(1,8),1,r,1°2,r3 '

zeros(1,8),0,1,2*r,3*r"2

1,s,5"2,5"3,zeros(1,8)

0,1,2*s,3*s2,zeros(1,8)

zeros(1,4),1,s,s"2,5"3,zeros(1,4)

zeros(1,4),0,1,2*s,3*s"2,zeros(1,4)

zeros(1,8),1,s,8"2,5"3

zeros(1,8),0,1,2*s,3*s72];
it
odd=zeros(12,12);
even=zeros(12,12);
for j=1:2:int num-1;

al=o+j*differencel;

%

odd1=zeros(12,12);

evenl=zeros(12,12);

for j=1:2:int num-1;

a2=rt+j*difference2;

additionalfilel;

Al=cos(a2)*sqrt((a*sin(al))"2+(b*cos(al))"2);
A2=sqrt((a*sin(a2)*cos(al))"2-+(b*sin(a2)*sin(al))2+(c*cos(a2))"2);

B=K*(Ep11*Ep1 1'+2*mu*Ep1 1 *Ep22'+Ep22*Ep22'+(1-mu)/2
*Ep12*Ep12)*A1*A2 + D*(k11*k11+2*mu*k11*k22'+k22*k22"+(1-mu)/2
*k12¥k12')*A1*A2;
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odd1=0dd1+B;
end
for j=2:2:int_num-2;

a2=r+j*difference2;
additionalfilel;

Al=cos(a2)*sqrt((a*sin(al))"2+(b*cos(al))"2);
A2=sqrt((a*sin(a2)*cos(al))2+(b*sin(a2)*sin(al))"2+(c*cos(a2))"2);

B=K*(Ep11*Ep11'+2*mu*Ep11*Ep22'+Ep22*Ep22'+(1-mu)/2
*Epl12*Ep12)*A1*A2 + D*(k11*k11'+2*mu*k11*k22'+k22*k22"+(1-mu)/2
*k12*k12)*A1*A2;

evenl=evenl+B;

end

a2=r;yo=B;

a2=s;yp=B;

G=difference2/3*(yo+yp+4*odd1+2*evenl);
%
odd=0dd+G;

end

for j=2:2:int_num-2;
al=o+j*differencel;
%
oddl=zeros(12,12);

evenl=zeros(12,12);

for j=1:2:int num-1;

a2=r+j*difference?2;



additionalfilel;

Al=cos(a2)*sqrt((a*sin(al))y"2+(b*cos(al))"2);
A2=sqrt((a*sin(a2)*cos(al))*2+(b*sin(a2)*sin(al))"2+(c*cos(a2))"2);

B=K*(Epl1*Epl 1"2*mu*Ep1 1 *Ep22+Ep22*Ep22"+(1-mu)/2
p p

*Ep12*Ep12)*A1*A2 + D*(k11*k11+2*mu*k11*k22"+k22*k22'+(1-mu)/2
*K12*k12)*A1*A2;

odd1=0dd1+B;
end
for j=2:2:int_num-2;

a2=r+j*difference2;

additionalfilel;

Al=cos(a2)*sqrt((a*sin(al))"2+(b*cos(al))"2);
A2=sqrt((a*sin(a2)*cos(al))2+(b*sin(a2)*sin(al))"2+(c*cos(a2))"2);

B=K*(Epl1*Epl I'+2*mu*Ep1 1*Ep22'+Ep22*Ep22'+(1-mu)/2
p

*Ep12*Ep12")*A1*A2 + D*(k11*k11'+2*mu*k11¥k22'+k22*k22"+(1-mu)/2

*k1

end

2*k12)*A1*A2;

evenl=evenl+B;

end

a2=r;yo=B;
a2=s;yp=B;
G=difference2/3*(yo+yp+4*odd1+2*evenl);
%

even=even+G;
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al=0;x0=G;

al=p;xp=G;

[=differencel/3*(xo+xp+4*odd+2*even);
%
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odd=zeros(12,12);

even=zeros(12,12);

for j=1:2:int_num-1;
al=o+j*differencel;
%
odd1=zeros(12,12);

evenl=zeros(12,12);

for j=1:2:int_num-1;

a2=r+j*difference2;
additionalfile2;

Al=cos(a2)*sqrt((a*sin(al))"2+(b*cos(al))*2);
A2=sqrt((a*sin(a2)*cos(al))"2+(b*sin(a2)*sin(al))"2+(c*cos(a2))"2);

B=ro*h*(ul*ul'+u2*u2'+u3*u3'+h”"2/12*(betal *betaltbeta2 *beta2"))*A1*A2;

odd1=0dd1+B;
end
for j=2:2:int_num-2;
a2=r+j*difference2;
additionalfile2;
Al=cos(a2)*sqrt((a*sin(al))"2+(b*cos(al))"2);
A2=sqrt((a*sin(a2)*cos(al))2+(b*sin(a2)*sin(al))"2+(c*cos(a2))"2);

B=ro*h*(ul*ul'+u2*u2'+u3*u3'+h"2/12*(betal *betal'+beta2*beta2"))*A1*A2;



evenl=evenl+B;

end

a2=r;yo=B;
a2=s;yp=B;

G=difference2/3*(yo+yp+4*odd1+2*evenl);
%
odd=0dd+G;

end

for j=2:2:int num-2;
al=o+j*differencel;
%
odd1=zeros(12,12);

evenl=zeros(12,12);

for j=1:2:int_num-1;

a2=r+j* difference2 :
additionalfile2;

Al=cos(a2)*sqrt((a*sin(al))"2-+(b*cos(al))"2);
A2=sqrt((a*sin(a2)*cos(al))*2+(b*sin(a2)*sin(al))"2+(c*cos(a2))"2);

B=ro*h*(ul*ul'+u2*u2'+u3*u3'+h"2/12*(betal *betal'+beta2*beta2"))*A1*A2;
odd1=0dd1+B;
end
for j=2:2:int_num-2;

a2=r+j*difference2;

additionalfile2;
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Al=cos(a2)*sqrt((a*sin(al))"2+(b*cos(al))"2);
A2=sqrt((a*sin(a2)*cos(al))"2+(b*sin(a2)*sin(al))"2+(c*cos(a2))"2);

B=ro*h*(ul*ul'+u2*u2+u3*u3'+h"2/12*(betal *betal'+beta2*beta2"))*A1*A2;

evenl=evenl-+B;

end

a2=r;yo=B;
a2=s;yp=B;
G=difference2/3*(yo+yp+4*odd1+2*evenl);
%

even=even+G;

end

al=o0;x0=G;

al=p;xp=G;

II=differencel/3*(xo+xp+4*odd+2*even);

%
i
kk=(inv(C))"*I*(inv(C));

mm=(inv(C))*I*(inv(C));

kg=zeros(6*el_num+6);

mg=zeros(6*el num+6);

kg(6*i-5:6*i+6,6*i-5:6*i+6)=Kkk;
mg(6¥i-5:6*i+6,6*i-5:6*i+6)=mm:;

Kmat1=Kmat1+kg;
Mmatl=Mmat1+mg;
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end

Kmatl;
Mmatl;
069%%% %% %% %% %% % %% % %% %% % % %6 % % % % % % %% % % %% % % % % % Y

I=L/el_num;

Kmat2=zeros(6*el_num+6);
Mmat2=zeros(6*el_num+6);
for i=1:1:el_num;

0=0;

p=2*pi;

r=(i-1)*1+(0);

s=i*1+(0);

int num=2*m;

difference1=(p-o0)/int_num;

difference2=(s-r)/int_num,;

C=[1,r,1"2,t"3,zeros(1,8)
0,1,2%r,3*1r"2,zeros(1,8)
zeros(1,4),1,r,r"2,1"3,zeros(1,4)
zeros(1,4),0,1,2%r,3*1"2,zeros(1,4)
zeros(1,8),1,r,r"2,1"3
zeros(1,8),0,1,2%,3%1"2
1,s,5"2,5"3,zeros(1,8)
0,1,2*s,3*s"2,zeros(1,8)
zeros(1,4),1,s,5"2,s"3,zeros(1,4)
zeros(1,4),0,1,2*s,3*s"2,zeros(1,4)
zeros(1,8),1,s,5s"2,s"3
zeros(1,8),0,1,2*s,3*s"2];

Attt



odd=zeros(12,12);

even=zeros(12,12);

for j=1:2:int_num-1;
al=otj*differencel;
%
odd1=zeros(12,12);

evenl=zeros(12,12);
for j=1:2:int_num-1;

a2=rt+j*difference2;
additionalfile3;

Al=sqrt((a*sin(al))2+(b*cos(al))"2);
A2=1;

B=K*(Epl1*Epl1'+2*mu*Ep11*Ep22'+Ep22*Ep22'+(1-mu)/2
*Ep12*Epl2)*A1*A2 + D*(k11*k11'+2*mu*k11*k22'+k22*k22'+(1-mu)/2
*k12*¥k12)*A1*A2;

odd1=0dd1+B;
end
for j=2:2:int_num-2;

a2=r+j*difference2;
additionalfile3;

Al=sqrt((a*sin(al))"2+(b*cos(al))"2);
A2=1;

B=K*(Epl11*Ep11'+2*mu*Epl 1*Ep22'+Ep22*Ep22'+(1-mu)/2
*Ep12*Epl120)*A1*A2 + D*(k11*k11'+2*mu*k1 1*k22"+k22*k22'+(1-mu)/2
*k12*¥k12)*A1*A2;
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evenl=evenl+B;

end

a2=r;yo=B;
a2=s;yp=B;

G=difference2/3*(yo+yp+4*odd1+2*evenl);
%
odd=0dd+G;

end
for j=2:2:int_num-2;
al=o+j*differencel;

0,
o

odd1=zeros(12,12);

evenl=zeros(12,12);

for j=1:2:int_num-1;

a2=r4rj *difference2;
additionalfile3;

Al=sqrt((a*sin(al))"2+(b*cos(al))"2);
A2=1;

B=K*(Epl11*Epl11'+2*mu*Ep11*Ep22'+Ep22*Ep22'+(1-mu)/2
*Ep12*Ep12)*A1*A2 + D*(k11*k11+2*mu*k11*k22'+k22*k22'+(1-mu)/2
*k12*k12)*A1*A2;

odd1=o0dd1+B;
end
for j=2:2:int_num-2;

a2=r+j*difference2;
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additionalfile3;

Al=sqrt((a*sin(al))"2+(b*cos(al))"2);
A2=1;

B=K*(Ep11*Ep11'+2*mu*Epl [*Ep22'+Ep22*Ep22'+(1-mu)/2
*Ep12*Ep12)*A1*A2 + D*(k11*k11+2*mu*k11*k22+k22*k22"+(1-mu)/2
*k12*k12)*A1*A2;

evenl=evenl+B;

end

a2=r;yo=B;
a2=s;yp=B;

G=difference2/3*(yo+yp+4*odd1+2*evenl);
%

even=¢vent+G;
end
al=0;x0=G;

al=p;xp=G;

I=differencel/3*(xo+xp+4*odd+2*even);
%
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odd=zeros(12,12);

even=zeros(12,12);

for j=1:2:int_ num-1;
al=otj*differencel;
%
oddl=zeros(12,12);

evenl=zeros(12,12);

for j=1:2:int num-1;
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a2=r+j*difference2;
additionalfile4;

Al=sqrt((a*sin(al))"2+(b*cos(al))"2);
A2=1;

B=ro*h*(ul*ul'tu2*u2'+u3*u3'+h"2/12*(betal *betal'+beta2 *beta2'))* A1*A2;

odd1=0dd1+B;
end
for j=2:2:int num-2;

a2=r+j*difference2;
additionalfile4;

Al=sqrt((a*sin(al))"2+(b*cos(al))*2);
A2=1;

B=ro*h*(ul*ul'+u2*u2'+u3*u3'+h"2/12*(betal *betal'+beta2 *beta2"))*A1*A2;
evenl=evenl+B;

end

a2=r;yo=B;
a2=s;yp=B;

G=difference2/3*(yot+yp+4*odd1+2*evenl);
%
odd=odd+G;

end

for j=2:2:int num-2;

al=o+j*differencel;
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%
odd1=zeros(12,12);
evenl=zeros(12,12);
for j=1:2:int_num-1;

a2=r+j*difference2;
additionalfile4;

Al=sqrt((a*sin(al))"2+(b*cos(al))"2);
A2=1;

B=ro*h*(ul*ul'+u2*u2'+u3*u3'+h"2/12*(betal *betal +beta2*beta2))* A1*A2;
odd1=0dd1+B;
end
for j=2:2:int num-2;
a2#r+j *difference2;

additionalfile4;

Al=sqrt((a*sin(al))"2+(b*cos(al))"2);
A2=1;

B=ro*h*(ul *ul'+u2*u2'+u3*u3'+h"2/12*(betal *betal +beta2*beta2"))*A1*A2;

evenl=evenl+B;

end

a2=r;yo=B;
a2=s;yp=B;

G=difference2/3*(yotyp+4*odd1+2*evenl);
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%

even=even+G;

end

al=0;x0=G;

al=p;xp=G;

II=difference1/3*(xo+xp+4*odd+2*even);

%

Sl T T T T T T
kk=(inv(C))"*I*(inv(C));

mm=(inv(C))"*II*(inv(C));

kg=zeros(6*el_num+6);

mg=zeros(6*el_num+6);

kg(6*i-5:6*1+6,6*i-5:6*i+6)=kk;
mg(6*i-5:6*i+6,6*i-5:6*i+6)=mm;

Kmat2=Kmat2+kg;
Mmat2=Mmat2+mg;

end

Kmat2;
Mmat2;
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KGl=zeros(12*el_num+6);MG1=zeros(12*el_num+6);
KG2=zeros(12*el_num+6);MG2=zeros(12*el_num+6);
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KG1(1:6*el num+6,1:6*e] num+6)=Kmatl;
MGI1(1:6*el_num+6,1:6*el num+6)=Mmatl;
KG2(6*el_num+1:12*¢]l num+6,6*el_num+1:12*el_num+6)=Kmat2;

MG2(6*el_num+1:12*el_num+6,6*el num+1:12*el_num+6)=Mmat2;

KMAT=KG1+KG2;
MMAT=MGI1+MG2;

E=eig(inv(MMAT)*KMAT);
omega=sort(sqrt(E));
frequency Hz=omega/(2*pi);
Hz=frequency Hz(1)



